

iv

University of Piraeus

Department of Digital Systems

MSc. Techno-economic Management & Security of Digital Systems

Master’s Thesis

Enhancing AV-avoidance capabilities of a PE crypter

Christos Papadiotis

MTE 1062

Supervisor: Prof. Dr. C. Lambrinoudakis

Piraeus - March 2014

v

Abstract

Penetration Testers use a wide range of publicly available or custom made tools

in their attempt to bypass security controls of the targeted systems during security

assessments. A lot of these tools are often flagged by anti-virus products as suspicious or

downright malicious. In order to avoid detection a number of solutions have been

introduced, with the most popular one involving the use of crypters. A crypter is a piece

of software that encrypts an executable object and encapsulates it into seemingly

innocuous code, effectively modifying its appearance in a binary level, while at the same

time preserves its original functionality. The purpose of this thesis is, based on a

reference implementation of a PE crypter, to improve its Anti-Virus avoidance

capabilities by using well established obfuscation techniques.

vi

Περίληψη

Κατά τη διενέργεια αξιολογήσεων ασφαλείας οι Penetration Testers στην

προσπάθειά τους να παρακάμψουν τα τυχόν μέτρα ασφάλειας, χρησιμοποιούν ένα

μεγάλο εύρος εργαλείων, πολλά εκ των οποίων επισημαίνονται από τα αντιβιοτικά

προγράμματα ως ύποπτα ή και εμφανώς κακόβουλα. Ανάμεσα στις λύσεις που

έχουν προταθεί προκειμένου να αποφεύγεται ο εντοπισμός αυτός,

περιλαμβάνονται και οι κρυπτογράφοι (crypters). Με τον όρο κρυπτογράφος,

εννοούμε το λογισμικό που, όπως φανερώνει το όνομά του, αναλαμβάνει να

κρυπτογραφήσει το εκτελέσιμο-στόχο και να το περιβάλει με φαινομενικά αθώο

κώδικα με σκοπό να διατηρήσει ατόφια την αρχική του λειτουργία, αλλάζοντας

παράλληλα την εμφάνισή του σε δυαδικό επίπεδο. Ο σκοπός της εργασίας αυτής

είναι ,βασιζόμενοι σε μια υλοποίηση αναφοράς ενός κρυπτογράφου για αρχεία

τύπου PE (Portable Executable), να βελτιώσουμε τις ικανότητες του αποφυγής

αντιβιοτικών, εφαρμόζοντας καθιερωμένες τεχνικές απόκρυψης.

vii

Contents

Abstract ... iv

Περίληψη .. vi

Contents ... vii

List of Tables ... ix

List of Figures .. x

Acknowledgements ... xi

1 Introduction ... 12

2 Related Work ... 14

2.1 Hyperion ... 14

2.2 Packing Heat! ... 14

2.3 PEScrambler ... 14

3 Anti-Virus Modi Operandi ... 15

3.1 Signature-based detection .. 15

3.2 Heuristics-based detection ... 16

3.3 Behavioral detection .. 16

4 PE file ... 17

5 Hyperion .. 19

5.1 Description ... 19

5.2 Limitations .. 22

6 Our contribution ... 24

viii

6.1 Porting Hyperion to Python ... 24

6.2 Clearing-up ASM code & removing HLA elements ... 26

6.3 Using PEB technique to load Windows functions .. 29

6.4 Adding polymorphism ... 33

7 Testing .. 36

8 Conclusion and Further Work .. 39

9 References .. 40

ix

List of Tables

Table 1: ASM redundancy example ... 34

Table 2: Test results ... 37

x

List of Figures

Figure 1: Hyperion Crypter Workflow .. 19

Figure 2: Hyperion decryption procedure .. 21

Figure 3: Logging code in main.asm .. 26

Figure 4: Function call and function declaration with HLA elements 27

Figure 5 Function call and function declaration after removing most HLA elements 28

Figure 6: LDR Module .. 30

Figure 7: Locating kernel32.dll .. 31

Figure 8: Hashing loop and produced hashes .. 32

Figure 9: ASM redundancy .. 35

xi

Acknowledgements

Firstly, I would like to thank my parents (and first teachers) for allowing me to

realize my own potential. All the love and support they have provided me over the

years were the greatest gifts.

I would like to thank my supervisor, Prof. Dr. Costas Lambrinoudakis for

allowing me to pursue a line of research that I am passionate about. I am grateful for his

advice, patience and understanding.

I would also like to thank my colleagues John Kolovos, Fanis Drosos and Lefteris

Panos for offering useful input and perspective and for tolerating my endless thinking-

out-loud rants during the development phase of this thesis.

Last but not least, I’d like to thank my brother Gavriil for being a persistent voice

of motivation (“Get over with it already!”) and an invaluable proofreader.

12

1 Introduction

Anti-Virus products being often the first line of defense in a corporate IT

environment are an invaluable tool in the arsenal of System and Network

Administrations in their constant struggle to keep their perimeter secure.

During security assessments, Penetration Testers adopt the role of an

unauthenticated attacker flying under the radar, thus are often faced with the need to

deploy tools that are usually flagged by Anti-Viruses as suspicious or malicious. One

method to avoid detection of those tools entails using crypters.

A crypter is a piece of software that encrypts an executable (case at hand the

suspicious tool) and wraps it with code that appears legit. This way a new executable is

produced that has the same functionality as the original file, but is completely different

in a binary level.

The starting point of this thesis was “Hyperion” a POC PE crypter developed by

Christian Amman, so after a brief reference in the ways that Antivirus products operate

and a concise overview of the PE file, we will present the basic concepts behind the

original implementation and point out its weaknesses.

We then proceed into analyzing our improvements over the original

implementation and presenting the results of the test we conducted, comparing the AV

avoidance capabilities of the original with those of our implementation.

13

Due to the controversial nature of the implementation and in order to prevent its

use for malicious reasons, no source code has been included in this document. For

requests regarding access to the source code for research purposes, please contact the

author.

14

2 Related Work

This sections contains references to related implementations of PE packers that

worked as inspiration for our work.

2.1 Hyperion

Hyperion (Ammann, Hyperion: Implementation of a PE-Crypter, 2012) is PE

crypter developed by Christian Amman in 2012. Since our work was based on its

original implementation a brief analysis of its inner workings can be found in section 6

of this paper.

2.2 Packing Heat!

A presentation (Glinos, 2012) regarding a packer that generates metamorphic

executables. Each executable generated by this type of packer both looks different on-

disk and behaves differently at runtime. No source code has been released, but the

author describes with great detail the methods he followed. The packer was developed

in Ruby, using METASM, a Ruby assembly manipulation suite (Guillot).

2.3 PEScrambler

PEScrambler (Harbour, 2008) is a tool to automatically obfuscate win32 binaries.

It can relocate portions of code and protect them with anti-disassembly code. It also

defeats static program flow analysis by re-routing all function calls through a central

dispatcher function.

15

3 Anti-Virus Modi Operandi

Despite any differences in the actual implementation of malware-detection

mechanisms, all antivirus products tend to incorporate the same virus detection

techniques (Zeltser, 2001). The following sections briefly describe these methods.

3.1 Signature-based detection

Signature-based detection is the oldest method used for antivirus detection.

Modern antivirus products still use it as a first line of defense since it allows a quick

detection of known threats. It could involve byte signatures and/or hash signatures.

A byte-signature is basically a specific sequence of bytes that can be found in a

file. Usually, this sequence is in hexadecimal form and is kept large enough to avoid

false-positive and yet concise enough to avoid memory waste (Kumar, Sharma, &

Kumar, 2011). It is chosen because it exist in multiple variants of malware from the same

family and it can be any type of data such as code or data contained inside of a data

stream of an executable, a XORed .pdf or a Word document. (Zeltser, 2001).

For the creation of hashing signatures a plethora of methods have been proposed

and implemented, ranging from simple cryptographic hashing algorithms (MD5, SHA1)

that are being applied to known malware, to more advanced such a as context triggered

piecewise hashing that can be used to identify modified versions of known malicious

16

files even if data has been inserted, modified, or deleted in the new files (Kornblum,

2006).

3.2 Heuristics-based detection

Heuristic based detection uses a rule-based approach to diagnose a potentially-

malicious file. Antiviruses that perform heuristics-based detection include an analyzer

engine that works through its rule-base, while checking a file against criteria that

indicate possible malware, assigning score points when it locates a match. If the score

meets or exceeds a threshold score, the file is flagged as suspicious (or potentially

malicious) (Harley & Lee, 2008) and is handled accordingly.

3.3 Behavioral detection

Antiviruses using behavioral detection methods are based on integrating with

the operating system of a host computer and monitoring programs in real-time. They

basically attempt to identify malware by looking for suspicious actions. As with

heuristics, each of these actions per se might not be enough to classify a program as

suspicious, but certain sequences of actions could be indicative of malicious behavior.

17

4 PE file

Since the implementation of a packer requires a deep understanding of the PE

file format and the way that the Windows loader works, in this section we include a

short overview of both.

A Portable Executable (PE) file is the standard binary file format for an

Executable or DLL under Windows NT, Windows 95, and Win32. The term "Portable

Executable" was chosen because the intent was to have a common file format for all

flavors of Windows, on all supported CPUs (Pietrek, 2002).

The PE file format is organized as a linear stream of data. It begins with an MS-

DOS header, a real-mode program stub, and a PE file signature. Immediately following

is a PE file header and optional header. Beyond that, all the section headers appear,

followed by all of the section bodies. Closing out the file are a few other regions of

miscellaneous information, including relocation information, symbol table information,

line number information, and string table data.

When the PE file is run the PE loader examines the DOS MZ header for the offset

of the PE header. If found it skips to the PE header. The PE loader checks if the PE

header is valid. If so, it goes to the end of the PE header. Immediately following the PE

header is the section table, which contains information about each section in the image.

The PE header reads the information about the sections and maps those sections into

18

memory using file mapping. It also gives each section the attributes as specified in the

section table (Iczelion, 2002).After the PE file is mapped into memory the PE loader will

continue to work on the logic of the file, such as importing code or data from DLLs

(Locating all the imported functions and data and making those addresses available to

the file being loaded). It then sets the necessary access permissions for each section and

passes the execution to the PE file being loaded by jumping to its entry point.

19

5 Hyperion

This chapter contains a description of the Hyperion functionality as well as the

limitations of its design.

5.1 Description

Hyperion (Ammann, 2012) consists of two, parts a crypter and a container.

Figure 1: Hyperion Crypter Workflow

20

The crypter receives a valid executable file as input, it calculates a checksum for

it and encrypts both the checksum and the file with AES (with a purposely reduced key

range). It then proceeds into creating a new executable file by utilizing FASM (Grysztar,

n.d.), an assembler that supports programming in Intel-style assembly language on the

IA-32 and x86-64 computer architectures. An assembler source code representation of

the container is being used and is being fed into FASM along with the encrypted blob of

the input executable as well as other critical pieces of information (image base and size

of image of the input executable).

The output executable has the same image base as the input one, it includes the

encrypted binary blob in its .data section and contains a .bss section with a virtual size

that matches that of the input exe.

At runtime, the container acts as a decrypter and a loader. Since the key for the

encrypted input executable is not included in the output executable, the container

basically brute forces the key, it calculates a checksum for every decryption output and

compares it to the one included. Once decrypted the container’s PE header is

overwritten with the input file PE header. The section table of the input file is being

parsed, and its sections are also copied into the .bss section of the output at their virtual

addresses. As it was mentioned earlier, the .bss section has the size of the input’s image

size and is being positioned in memory before the output’s code section, thus ensuring

that no portions of the output’s code will be overwritten. Furthermore, the import table

21

of the decrypted input file is processed and the necessary DLL are being loaded and its

address table is being populated. Finally, the execution is being passed to the input file

with a simple jump to its corresponding entry point.

Figure 2: Hyperion decryption procedure

22

5.2 Limitations

Hyperion is a brilliant implementation that, at the time of its issue, made Anti-

Virus evasion a rather trivial task. However due to its Proof-Of-Concept nature it suffers

from a number of issues, some of which are outlined by its author himself at the “further

work” section of his releasing paper (Ammann, Hyperion: Implementation of a PE-

Crypter, 2012).

First of all, even if the input executable is being encrypted, the part of the

container’s code responsible for decryption and loading is static. It is just included as an

assembler source code representation by the crypter, it never changes, so it’s really easy

for the antiviruses to create signatures for it and flag it as malicious every time it

appears.

The sparse import table of the output executable, which only contains

ExitProcess, GetProcAddress and LoadLibraryA functions from kernel32.dll, is another

factor that potentially raises red flags for the Anti-Viruses since it is a rather strong

indication that more API functions will be resolved at run time, a behaviour that is in

itself suspicious.

The decrypter’s assembly code also contains a number functions for log creating,

a feature that although useful during development and debugging, adds unnecessary

overhead and potentially facilitates the AV signature development.

23

The key space size can only be changed inside the crypter source code to speed

up or slow down at will the brute force key search algorithm. This can be an issue in

cases where extensive fine tuning testing is required.

It also must be mentioned that the original implementation is Windows oriented

and extra steps have to be taken when cross-compilation is desired.

24

6 Our contribution

Based upon the original implementation of Hyperion we performed a number of

modifications in an attempt to enhance its AV-avoidance capabilities. This following

sections describe the steps we took in order to accomplish this.

6.1 Porting Hyperion to Python

The part of the crypter that was originally developed in C, was rewritten in

Python. We used well established python libraries such as PyCrypto for the AES

encryption and argparse for a basic command-line interface (one that allows users to

define key space size and range). We also used miasm & elfesteem in order to analyse

input executable and create the output executable.

Miasm (Desclaux, 2012) is an open source reverse engineering framework. It is,

in a way, the Python equivalent of the Ruby-written METASM framework and it allows

the analysis, modification and (re)generation of binary programs (PE/ELF/CLASS). We

used its Elfesteem module to parse & construct valid PEs. Complex information

extracting procedures, such as retrieving the image base or the image size value of an

executable file, which would normally require a deep knowledge of the PE structure,

can be performed in only a couple lines of code.

For the creation of the output executable, we imported the modified (see

following sections) ASM code of the container as a list of Python strings. These strings,

25

once concatenated, are parsed by MIASM and turned it into opcodes. Elfesteem is called

again to construct the final output file, using opcodes from the previous step to create

the .text section. The encrypted binary blob is being placed in the .data section of the

output file.

26

6.2 Clearing-up ASM code & removing HLA elements

The ASM code in the original implementation of Hyperion contains functions for

logging purposes. During the execution of the decryptor a log.txt file is created in the

same folder where the decryptor resides. Apart from potentially creating extra

opportunities for the Anti-Viruses to create signatures for the binary, it increases the

forensics footprint left on the targeted system. All log-related code has been therefore

removed from our implementation.

Figure 3: Logging code in main.asm

Although FASM is a low-level assembler, it does support a number of High

Level Assembly statements which can be found in the original implementation of

Hyperion. Since MIASM does not support most of those statements, they have been

27

removed from our implementation. That being the case, certain features that the HLA

offers, such as Win32-specific APIs, memory allocation and management were no longer

available, and portions of the code had to be rewritten in order to compensate for the

fact.

Figure 4: Function call and function declaration with HLA elements

28

Figure 5 Function call and function declaration after removing most HLA

elements

29

6.3 Using PEB technique to load Windows functions

As mentioned earlier, the original implementation of Hyperion imports

GetProcAddress and LoadLibraryA functions from kernel32.dll and uses them to import

all other functions needed during runtime. In our version we chose to implement an

alternative method, used commonly by shellcode writers to locate and import the

necessary functions. The method entails manually locating KERNEL32.dll and then

parsing its Export Address Table (EAT) to find necessary functions.

This basically renders the original import table useless and allows it to be

populated with a number of dummy Windows API functions, (which could later even

appear to be invoked by junk code added inline to the original code). This technique can

up to a certain point obscure the actual activities of our program and potentially hinder

automatic analysis, since a number of antiviruses appear to reach to conclusions

regarding the maliciousness of newly discovered programs, by amongst other checks,

examining the Imports Table.

KERNEL32.dll is always automatically mapped into a process's address space

regardless of the executable's import table. In order to locate it we can take the following

steps: In Windows every created thread have their own TEB block Structure (Nowak,

2008). TEB (Thread Environment Block) is a memory block containing system variables.

Its base address is stored in the FS segment register. At offset 0x30 we can find the PEB

(Process Environment Block), a structure that contains all User-Mode parameters

30

associated by system with current process. The PEB includes a pointer to LoaderData,

which contains linked lists with information on loaded modules (SkyLined & Cipher,

2009). From these lists the location of kernel32.dll can be determined. Depending on the

version of Windows, kernel32.dll is the second or the third entry in the

"InitializationOrder" list, thus by walking the list and checking the length of the name of

each module we can find kernel32.dll (The Unicode string "kernel32.dll" has a

terminating 0 as the 12th character, so scanning for a 0 as the 24th byte in the name

allows us to find kernel32.dll correctly.)

Figure 6: LDR Module

The following assembly code snippet implements the locating procedure

described above.

31

Figure 7: Locating kernel32.dll

Having located kernel32.dll we proceed in locating the necessary functions. A

well-established method (also used by shellcoders) is to populate our code with

precomputated hashes of those functions and iterate through the export table of

kernel32.dll during runtime to find functions that their name produce the same hashes

(The Last Stage of Delirium Research Group, 2002).

Instead of using one of the publicly available hashing algorithms, included in

published shellcode implementations, we chose to develop our own in an attempt to

evade signature-based anti-viruses which could potentially identify known

implementations as frequently associated with malicious code and therefore suspicious.

Our hashing algorithm, as well as the hashes it produces, given the names of the

functions we need to locate can be seen in the following figure:

32

Figure 8: Hashing loop and produced hashes

33

6.4 Adding polymorphism

One of the biggest issues in the original implementation of Hyperion, one that

allowed antiviruses to flag it in a short period of time as malicious, was the static nature

of it code. The portions of code responsible for memory decrypting and loading the

target executable are hardcoded in the original C code as a FASM template and are

basically 100% the same in every executable produced by running Hyperion. We

attempted to rectify the issue by using two different methods, taking advantage of the

versatility that the MIASM framework offers to the developer.

When constructing a PE file, the elfesteem module of the MIASM framework is

creating assembly code blocks , making use of the ASM labels placed by the developer to

transfer the flow of execution, as well as labels that itself sets in previous steps of the

building process. The framework uses an optimization algorithm to place these blocks in

order, based on the calling graph of the final executable amongst other factors (which

code block is calling which).

By modifying the portion of the framework’s code responsible for the ordering,

we managed to make this selection process random. This practically means that every

time our implementations creates an new output executable, even if the input executable

is the same, the assembly code blocks will be ordered in a different way, creating every

time a seemingly different executable file.

34

As a further step towards antivirus evasion, we used the inherent redundancy

found in the x86 instruction: It is possible for certain assembly language instructions to

be encoded in machine code in various different ways (Kankowski, 2009). We will use

the ADD instruction as an example, to explain this property.

Table 1: ASM redundancy example

opcode first opcode mod r r/m instruction

03 C3 ADD reg , reg/mem32 11 000 (eax) 011 (ebx) ADD eax , ebx

01 D8 ADD reg/mem32, reg 11 011 (ebx) 000 (eax) ADD eax , ebx

In the IA-32 architecture, the ADD instruction consists of 1 primary opcode byte

and an addressing-form specifier byte (the ModR/M byte). The ModR/M byte contains

three fields of information, the mod field, the r field and the r/m field. The mod filed

value in our example (11B) indicates that the r/m field refers to a register (a general-

purpose in case of an ADD instruction). Since the ADD instructions requires a second

operand, this information can be found in the r field.

According to the Intel Architectures Software Developer’s Manual (Intel, 2014),

the opcode 03 corresponds to ADD r, r/m (so the first operand will be taken from r (=000

= eax), and second will be taken from r/m (=011 = ebx). At the same time, the 01 opcode

corresponds to ADD r/m, r. (so the first operand will be from r/m (=000 = eax), and

35

second will be from reg (=011 = ebx).Combining all the above, we can infer that both 03

C3 and 01 D8 can be disassembled as ADD eax, ebx.

The assembler in MIASM framework provides all possible opcode versions for

an instruction.

Figure 9: ASM redundancy

Although during building of an executable file the elfesteem module is

configured by default to choose the first item of the provided options list, by modifying

its code, we were able to force the framework to randomly choose between the available

options. This effectively means, that the code of each output file created will be

significantly different.

36

7 Testing

In order to test the effectiveness of our methods a testing environment was

created. We built 15 different Virtual Machines running Windows, using VMware

Workstation that shared a folder with the host machine. In each of the VMs a different

antivirus was installed and was allowed to update itself. A VM running Kali Linux was

then added to our lab, which was configured to handle shell connections.

5 different binaries were used for our testing.

 A Windows reverse tcp shell executable, created with Metasploit,

(Offensive Security, 2014) configured to connect to our Kali running

machine (1.exe)

 1.exe packed with the original version of Hyperion (vanilla_1.exe)

 1.exe packed with our version (alpha_1.exe)

 A totally harmless “Hello World” exe packed with the original version of

Hyperion (vanilla_HW.exe)

 The same Hello World exe packed with our version (alpha_HW.exe)

The testing results can be found in the following table:

37

Table 2: Test results

 1.exe vanilla_HW.exe vanilla_1.exe alpha_HW.exe alpha_1.exe

Avast flagged flagged flagged flagged flagged

AVG flagged OK flagged OK OK

Avira flagged flagged flagged flagged flagged

Bitdefender flagged flagged flagged flagged flagged

ESET NOD32 flagged flagged flagged OK OK

Kaspersky flagged OK flagged OK OK

Malwarebytes flagged OK OK OK OK

McAffee flagged OK OK OK OK

Microsoft S.E. flagged OK flagged OK OK

Norton flagged flagged flagged OK OK

Panda OK flagged flagged OK OK

Sophos flagged OK OK OK OK

Symantec flagged OK OK OK OK

Trendmicro flagged OK OK OK OK

Webroot OK OK OK OK OK

38

It is evident from the results that only three of the tested antivirus were able to

identify our sample as malicious. The rest allowed its execution and a command shell

was presented to us in our Kali running machine, offering us unfettered access to the

targeted machines in the context of the user that executed the sample.

39

8 Conclusion and Further Work

Antivirus evasion is no trivial task. Antivirus vendors constantly devise new

methods for flagging and rooting out malicious code, in a constant arms race against

malware writers. The security professional that has to emulate the actions of

hypothetical attackers, is involuntarily being made part of the same equation, often

finding herself in need to evade defenses in order to stealthily infiltrate her targets

virtual perimeter.

Based on our test results, our PE crypter implementation can be a valuable aid

towards achieving this goal. The fact that certain AV were able to flag it does point out

the need for further calibrating. The introduction of anti-emulation techniques are

expected to improve the undetection rates, such as those that allow the crypter to

detected that is being executed by an antivirus in an emulated environment and exit out

gracefully without even decrypting its payload.

Since the original goal was to evade automated analysis, no steps were taken to

prevent or hinder manual dissection of the crypter by a human analyst. However, as

further work, the addition of Anti-Debugging, Anti-Disassembly and Anti-VM

techniques could be definitely proposed.

40

9 References

Ammann, C. (2012, May 8). Hyperion: Implementation of a PE-Crypter. Retrieved from

http://www.nullsecurity.net/papers/nullsec-pe-crypter.pdf

Ammann, C. (2012). Presentation of the Hyperion runtime encrypter for portable executables at

Berlinsides 2012. Retrieved from http://www.nullsecurity.net/papers/nullsec-

bsides-slides.pdf

Desclaux, F. (2012). Miasm: Framework de reverse engineering. Symposium sur la sécurité

des technologies de l'information et des communications. Rennes. Retrieved from

https://www.sstic.org/media/SSTIC2012/SSTIC-

actes/miasm_framework_de_reverse_engineering/SSTIC2012-Article-

miasm_framework_de_reverse_engineering-desclaux_1.pdf

Glinos, D. (2012). Packing Heat! Retrieved from http://census-labs.com/media/packing-

heat.pdf

Grysztar, T. (n.d.). flat assembler 1.71 Programmer's Manual. Retrieved from

http://flatassembler.net/docs.php?article=manual

Guillot, Y. (n.d.). Metasm, the Ruby assembly manipulation suite.

Hanel, A. (2001, January). An Intro to Creating Anti-Virus Signatures. Retrieved from

http://hooked-on-mnemonics.blogspot.gr/2011/01/intro-to-creating-anti-virus-

signatures.html

Harbour, N. (2008, August). Advanced Software Armouring and Polymorphic Kung-

Fu. Retrieved from https://www.defcon.org/images/defcon-16/dc16-

presentations/defcon-16-harbour.pdf

Harley, D., & Lee, A. (2008, January). Heuristic Analysis - Detecting Unknown Viruses.

ESET. Retrieved from http://www.eset.com/us/resources/white-

papers/Heuristic_Analysis.pdf

Iczelion. (2002). Overview of PE file format. Retrieved from

http://win32assembly.programminghorizon.com/pe-tut1.html

41

Intel. (2014). Intel Architectures Software Developers Manual. Retrieved from

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-

ia-32-architectures-software-developer-manual-325462.pdf

Kankowski, P. (2009). Redundancy of x86 Machine Code. Retrieved from

http://www.strchr.com/machine_code_redundancy

Kath, R. (1994). The Portable Executable File Format from Top to Bottom.

Kornblum, J. (2006). Identifying almost identical files using context triggered piecewise

hashing. Digital Forensic Research Workshop. Lafayette: Digital Forensic Research

Workshop.

Kumar, A., Sharma, V., & Kumar, S. (2011). A Comparative Analysis of Various Exact

String-Matching Algorithms for Virus Signature Detection. First International

Conference on Emerging Trends in Soft Computing and ICT(SCICT-2011) (pp. 162-

166). Bilaspur, India.

Nowak, T. (2008). ntinternals.net. Retrieved from http://undocumented.ntinternals.net/

Offensive Security. (2014). Metasploit Unleashed. Retrieved from http://www.offensive-

security.com/metasploit-unleashed/Binary_Payloads

Pietrek, M. (2002, February). An In-Depth Look into the Win32 Portable Executable File

Format. MSDN Magazine. Retrieved from http://msdn.microsoft.com/en-

us/magazine/cc301805.aspx

SkyLined & Cipher. (2009). Shellcode/kernel32. Retrieved from

http://skypher.com/wiki/index.php?title=Hacking/Shellcode/kernel32

The Last Stage of Delirium Research Group. (2002, December 12). Win32 Assembly

Components. Retrieved from http://lsd-pl.net/projects/winasm.zip

Zeltser, L. (2001, October). How antivirus software works: Virus detection techniques.

Retrieved from http://searchsecurity.techtarget.com/tip/How-antivirus-software-

works-Virus-detection-techniques

	�Abstract

	Περίληψη

	�Contents

	�List of Tables

	�List of Figures

	�Acknowledgements

	1 Introduction

	2 Related Work

	2.1 Hyperion

	2.2 Packing Heat!

	2.3 PEScrambler

	3 Anti-Virus Modi Operandi

	3.1 Signature-based detection

	3.2 Heuristics-based detection

	3.3 Behavioral detection

	4 PE file

	5 Hyperion

	5.1 Description

	5.2 �Limitations

	6 Our contribution

	6.1 Porting Hyperion to Python

	6.2 �Clearing-up ASM code & removing HLA elements

	6.3 �Using PEB technique to load Windows functions

	6.4 �Adding polymorphism

	7 Testing

	8 Conclusion and Further Work

	9 References

