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Abstract 

Penetration Testers use a wide range of publicly available or custom made tools 

in their attempt to bypass security controls of the targeted systems during security 

assessments. A lot of these tools are often flagged by anti-virus products as suspicious or 

downright malicious. In order to avoid detection a number of solutions have been 

introduced, with the most popular one involving the use of crypters. A crypter is a piece 

of software that encrypts an executable object and encapsulates it into seemingly 

innocuous code, effectively modifying its appearance in a binary level, while at the same 

time preserves its original functionality. The purpose of this thesis is, based on a 

reference implementation of a PE crypter, to improve its Anti-Virus avoidance 

capabilities by using well established obfuscation techniques.  
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Περίληψη 

Κατά τη διενέργεια αξιολογήσεων ασφαλείας οι Penetration Testers στην 

προσπάθειά τους να παρακάμψουν τα τυχόν μέτρα ασφάλειας, χρησιμοποιούν ένα 

μεγάλο εύρος εργαλείων, πολλά εκ των οποίων επισημαίνονται από τα αντιβιοτικά 

προγράμματα ως ύποπτα ή και εμφανώς κακόβουλα. Ανάμεσα στις λύσεις που 

έχουν προταθεί προκειμένου να αποφεύγεται ο εντοπισμός αυτός, 

περιλαμβάνονται και οι κρυπτογράφοι (crypters). Με τον όρο κρυπτογράφος, 

εννοούμε το λογισμικό που, όπως φανερώνει το όνομά του, αναλαμβάνει να 

κρυπτογραφήσει το εκτελέσιμο-στόχο και να το περιβάλει με φαινομενικά αθώο 

κώδικα με σκοπό να διατηρήσει ατόφια την αρχική του λειτουργία, αλλάζοντας 

παράλληλα την εμφάνισή του σε δυαδικό επίπεδο. Ο σκοπός της εργασίας αυτής 

είναι ,βασιζόμενοι σε μια υλοποίηση αναφοράς ενός κρυπτογράφου για αρχεία 

τύπου PE (Portable Executable), να βελτιώσουμε τις ικανότητες του αποφυγής 

αντιβιοτικών, εφαρμόζοντας καθιερωμένες τεχνικές απόκρυψης.  
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1 Introduction 

Anti-Virus products being often the first line of defense in a corporate IT 

environment are an invaluable tool in the arsenal of System and Network 

Administrations in their constant struggle to keep their perimeter secure.  

During security assessments, Penetration Testers adopt the role of an 

unauthenticated attacker flying under the radar, thus are often faced with the need to 

deploy tools that are usually flagged by Anti-Viruses as suspicious or malicious. One 

method to avoid detection of those tools entails using crypters. 

A crypter is a piece of software that encrypts an executable (case at hand the 

suspicious tool) and wraps it with code that appears legit. This way a new executable is 

produced that has the same functionality as the original file, but is completely different 

in a binary level. 

The starting point of this thesis was “Hyperion” a POC PE crypter developed by 

Christian Amman, so after a brief reference in the ways that Antivirus products operate 

and a concise overview of the PE file, we will present the basic concepts behind the 

original implementation and point out its weaknesses. 

We then proceed into analyzing our improvements over the original 

implementation and presenting the results of the test we conducted, comparing the AV 

avoidance capabilities of the original with those of our implementation. 
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Due to the controversial nature of the implementation and in order to prevent its 

use for malicious reasons, no source code has been included in this document. For 

requests regarding access to the source code for research purposes, please contact the 

author. 
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2 Related Work 

This sections contains references to related implementations of PE packers that 

worked as inspiration for our work. 

2.1 Hyperion 

Hyperion (Ammann, Hyperion: Implementation of a PE-Crypter, 2012) is PE 

crypter developed by Christian Amman in 2012. Since our work was based on its 

original implementation a brief analysis of its inner workings can be found in section 6 

of this paper. 

2.2 Packing Heat! 

A presentation (Glinos, 2012) regarding a packer that generates metamorphic 

executables. Each executable generated by this type of packer both looks different on-

disk and behaves differently at runtime. No source code has been released, but the 

author describes with great detail the methods he followed. The packer was developed 

in Ruby, using METASM, a Ruby assembly manipulation suite (Guillot). 

2.3 PEScrambler 

PEScrambler (Harbour, 2008) is a tool to automatically obfuscate win32 binaries. 

It can relocate portions of code and protect them with anti-disassembly code. It also 

defeats static program flow analysis by re-routing all function calls through a central 

dispatcher function. 
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3 Anti-Virus Modi Operandi 

Despite any differences in the actual implementation of malware-detection 

mechanisms, all antivirus products tend to incorporate the same virus detection 

techniques (Zeltser, 2001). The following sections briefly describe these methods.  

3.1 Signature-based detection 

Signature-based detection is the oldest method used for antivirus detection. 

Modern antivirus products still use it as a first line of defense since it allows a quick 

detection of known threats. It could involve byte signatures and/or hash signatures. 

A byte-signature is basically a specific sequence of bytes that can be found in a 

file. Usually, this sequence is in hexadecimal form and is kept large enough to avoid 

false-positive and yet concise enough to avoid memory waste (Kumar, Sharma, & 

Kumar, 2011). It is chosen because it exist in multiple variants of malware from the same 

family and it can be any type of data such as code or data contained inside of a data 

stream of an executable, a XORed .pdf or a Word document. (Zeltser, 2001).  

For the creation of hashing signatures a plethora of methods have been proposed 

and implemented, ranging from simple cryptographic hashing algorithms (MD5, SHA1) 

that are being applied to known malware, to more advanced such a as context triggered 

piecewise hashing that can be used to identify modified versions of known malicious 
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files even if data has been inserted, modified, or deleted in the new files (Kornblum, 

2006). 

3.2 Heuristics-based detection 

Heuristic based detection uses a rule-based approach to diagnose a potentially-

malicious file. Antiviruses that perform heuristics-based detection include an analyzer 

engine that works through its rule-base, while checking a file against criteria that 

indicate possible malware, assigning score points when it locates a match. If the score 

meets or exceeds a threshold score, the file is flagged as suspicious (or potentially 

malicious) (Harley & Lee, 2008) and is handled accordingly. 

3.3 Behavioral detection 

Antiviruses using behavioral detection methods are based on integrating with 

the operating system of a host computer and monitoring programs in real-time. They 

basically attempt to identify malware by looking for suspicious actions. As with 

heuristics, each of these actions per se might not be enough to classify a program as 

suspicious, but certain sequences of actions could be indicative of malicious behavior. 
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4 PE file 

Since the implementation of a packer requires a deep understanding of the PE 

file format and the way that the Windows loader works, in this section we include a 

short overview of both.  

A Portable Executable (PE) file is the standard binary file format for an 

Executable or DLL under Windows NT, Windows 95, and Win32. The term "Portable 

Executable" was chosen because the intent was to have a common file format for all 

flavors of Windows, on all supported CPUs (Pietrek, 2002).  

The PE file format is organized as a linear stream of data. It begins with an MS-

DOS header, a real-mode program stub, and a PE file signature. Immediately following 

is a PE file header and optional header. Beyond that, all the section headers appear, 

followed by all of the section bodies. Closing out the file are a few other regions of 

miscellaneous information, including relocation information, symbol table information, 

line number information, and string table data. 

When the PE file is run the PE loader examines the DOS MZ header for the offset 

of the PE header. If found it skips to the PE header. The PE loader checks if the PE 

header is valid. If so, it goes to the end of the PE header. Immediately following the PE 

header is the section table, which contains information about each section in the image. 

The PE header reads the information about the sections and maps those sections into 
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memory using file mapping. It also gives each section the attributes as specified in the 

section table (Iczelion, 2002).After the PE file is mapped into memory the PE loader will 

continue to work on the logic of the file, such as importing code or data from DLLs 

(Locating all the imported functions and data and making those addresses available to 

the file being loaded). It then sets the necessary access permissions for each section and 

passes the execution to the PE file being loaded by jumping to its entry point. 
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5 Hyperion 

This chapter contains a description of the Hyperion functionality as well as the 

limitations of its design. 

5.1 Description 

Hyperion (Ammann, 2012) consists of two, parts a crypter and a container. 

 

Figure 1: Hyperion Crypter Workflow 
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The crypter receives a valid executable file as input, it calculates a checksum for 

it and encrypts both the checksum and the file with AES (with a purposely reduced key 

range). It then proceeds into creating a new executable file by utilizing FASM (Grysztar, 

n.d.), an assembler that supports programming in Intel-style assembly language on the 

IA-32 and x86-64 computer architectures. An assembler source code representation of 

the container is being used and is being fed into FASM along with the encrypted blob of 

the input executable as well as other critical pieces of information (image base and size 

of image of the input executable). 

The output executable has the same image base as the input one, it includes the 

encrypted binary blob in its .data section and contains a .bss section with a virtual size 

that matches that of the input exe. 

At runtime, the container acts as a decrypter and a loader. Since the key for the 

encrypted input executable is not included in the output executable, the container 

basically brute forces the key, it calculates a checksum for every decryption output and 

compares it to the one included. Once decrypted the container’s PE header is 

overwritten with the input file PE header. The section table of the input file is being 

parsed, and its sections are also copied into the .bss section of the output at their virtual 

addresses. As it was mentioned earlier, the .bss section has the size of the input’s image 

size and is being positioned in memory before the output’s code section, thus ensuring 

that no portions of the output’s code will be overwritten. Furthermore, the import table 
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of the decrypted input file is processed and the necessary DLL are being loaded and its 

address table is being populated. Finally, the execution is being passed to the input file 

with a simple jump to its corresponding entry point. 

 

Figure 2: Hyperion decryption procedure 



 

22 

5.2 Limitations 

Hyperion is a brilliant implementation that, at the time of its issue, made Anti-

Virus evasion a rather trivial task. However due to its Proof-Of-Concept nature it suffers 

from a number of issues, some of which are outlined by its author himself at the “further 

work” section of his releasing paper (Ammann, Hyperion: Implementation of a PE-

Crypter, 2012). 

First of all, even if the input executable is being encrypted, the part of the 

container’s code responsible for decryption and loading is static. It is just included as an 

assembler source code representation by the crypter, it never changes, so it’s really easy 

for the antiviruses to create signatures for it and flag it as malicious every time it 

appears. 

The sparse import table of the output executable, which only contains 

ExitProcess, GetProcAddress and LoadLibraryA functions from kernel32.dll, is another 

factor that potentially raises red flags for the Anti-Viruses since it is a rather strong 

indication that more API functions will be resolved at run time, a behaviour that is in 

itself suspicious. 

The decrypter’s assembly code also contains a number functions for log creating, 

a feature that although useful during development and debugging, adds unnecessary 

overhead and potentially facilitates the AV signature development. 
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The key space size can only be changed inside the crypter source code to speed 

up or slow down at will the brute force key search algorithm. This can be an issue in 

cases where extensive fine tuning testing is required. 

It also must be mentioned that the original implementation is Windows oriented 

and extra steps have to be taken when cross-compilation is desired. 



 

24 

 

6 Our contribution 

Based upon the original implementation of Hyperion we performed a number of 

modifications in an attempt to enhance its AV-avoidance capabilities. This following 

sections describe the steps we took in order to accomplish this. 

6.1 Porting Hyperion to Python 

The part of the crypter that was originally developed in C, was rewritten in 

Python. We used well established python libraries such as PyCrypto for the AES 

encryption and argparse for a basic command-line interface (one that allows users to 

define key space size and range). We also used miasm & elfesteem in order to analyse 

input executable and create the output executable. 

Miasm (Desclaux, 2012) is an open source reverse engineering framework. It is, 

in a way, the Python equivalent of the Ruby-written METASM framework and it allows 

the analysis, modification and (re)generation of binary programs (PE/ELF/CLASS). We 

used its Elfesteem module to parse & construct valid PEs. Complex information 

extracting procedures, such as retrieving the image base or the image size value of an 

executable file, which would normally require a deep knowledge of the PE structure, 

can be performed in only a couple lines of code. 

For the creation of the output executable, we imported the modified (see 

following sections) ASM code of the container as a list of Python strings. These strings, 
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once concatenated, are parsed by MIASM and turned it into opcodes. Elfesteem is called 

again to construct the final output file, using opcodes from the previous step to create 

the .text section. The encrypted binary blob is being placed in the .data section of the 

output file. 
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6.2 Clearing-up ASM code & removing HLA elements 

The ASM code in the original implementation of Hyperion contains functions for 

logging purposes. During the execution of the decryptor a log.txt file is created in the 

same folder where the decryptor resides. Apart from potentially creating extra 

opportunities for the Anti-Viruses to create signatures for the binary, it increases the 

forensics footprint left on the targeted system. All log-related code has been therefore 

removed from our implementation. 

 

Figure 3: Logging code in main.asm 

Although FASM is a low-level assembler, it does support a number of High 

Level Assembly statements which can be found in the original implementation of 

Hyperion. Since MIASM does not support most of those statements, they have been 
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removed from our implementation. That being the case, certain features that the HLA 

offers, such as Win32-specific APIs, memory allocation and management were no longer 

available, and portions of the code had to be rewritten in order to compensate for the 

fact. 

 

Figure 4: Function call and function declaration with HLA elements 
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Figure 5 Function call and function declaration after removing most HLA 

elements 



 

29 

6.3 Using PEB technique to load Windows functions 

As mentioned earlier, the original implementation of Hyperion imports 

GetProcAddress and LoadLibraryA functions from kernel32.dll and uses them to import 

all other functions needed during runtime. In our version we chose to implement an 

alternative method, used commonly by shellcode writers to locate and import the 

necessary functions. The method entails manually locating KERNEL32.dll and then 

parsing its Export Address Table (EAT) to find necessary functions. 

This basically renders the original import table useless and allows it to be 

populated with a number of dummy Windows API functions, (which could later even 

appear to be invoked by junk code added inline to the original code). This technique can 

up to a certain point obscure the actual activities of our program and potentially hinder 

automatic analysis, since a number of antiviruses appear to reach to conclusions 

regarding the maliciousness of newly discovered programs, by amongst other checks, 

examining the Imports Table. 

KERNEL32.dll is always automatically mapped into a process's address space 

regardless of the executable's import table. In order to locate it we can take the following 

steps: In Windows every created thread have their own TEB block Structure (Nowak, 

2008). TEB (Thread Environment Block) is a memory block containing system variables. 

Its base address is stored in the FS segment register. At offset 0x30 we can find the PEB 

(Process Environment Block), a structure that contains all User-Mode parameters 
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associated by system with current process. The PEB includes a pointer to LoaderData, 

which contains linked lists with information on loaded modules (SkyLined & Cipher, 

2009). From these lists the location of kernel32.dll can be determined. Depending on the 

version of Windows, kernel32.dll is the second or the third entry in the 

"InitializationOrder" list, thus by walking the list and checking the length of the name of 

each module we can find kernel32.dll (The Unicode string "kernel32.dll" has a 

terminating 0 as the 12th character, so scanning for a 0 as the 24th byte in the name 

allows us to find kernel32.dll correctly.) 

 

Figure 6: LDR Module 

The following assembly code snippet implements the locating procedure 

described above. 
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Figure 7: Locating kernel32.dll 

Having located kernel32.dll we proceed in locating the necessary functions. A 

well-established method (also used by shellcoders) is to populate our code with 

precomputated hashes of those functions and iterate through the export table of 

kernel32.dll during runtime to find functions that their name produce the same hashes 

(The Last Stage of Delirium Research Group, 2002). 

Instead of using one of the publicly available hashing algorithms, included in 

published shellcode implementations, we chose to develop our own in an attempt to 

evade signature-based anti-viruses which could potentially identify known 

implementations as frequently associated with malicious code and therefore suspicious. 

Our hashing algorithm, as well as the hashes it produces, given the names of the 

functions we need to locate can be seen in the following figure: 
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Figure 8: Hashing loop and produced hashes 
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6.4 Adding polymorphism 

One of the biggest issues in the original implementation of Hyperion, one that 

allowed antiviruses to flag it in a short period of time as malicious, was the static nature 

of it code. The portions of code responsible for memory decrypting and loading the 

target executable are hardcoded in the original C code as a FASM template and are 

basically 100% the same in every executable produced by running Hyperion. We 

attempted to rectify the issue by using two different methods, taking advantage of the 

versatility that the MIASM framework offers to the developer. 

When constructing a PE file, the elfesteem module of the MIASM framework is 

creating assembly code blocks , making use of the ASM labels placed by the developer to 

transfer the flow of execution, as well as labels that itself sets in previous steps of the 

building process. The framework uses an optimization algorithm to place these blocks in 

order, based on the calling graph of the final executable amongst other factors (which 

code block is calling which). 

By modifying the portion of the framework’s code responsible for the ordering, 

we managed to make this selection process random. This practically means that every 

time our implementations creates an new output executable, even if the input executable 

is the same, the assembly code blocks will be ordered in a different way, creating every 

time a seemingly different executable file. 
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As a further step towards antivirus evasion, we used the inherent redundancy 

found in the x86 instruction: It is possible for certain assembly language instructions to 

be encoded in machine code in various different ways (Kankowski, 2009). We will use 

the ADD instruction as an example, to explain this property. 

Table 1: ASM redundancy example 

opcode first opcode mod r r/m instruction 

03 C3 ADD reg , reg/mem32 11 000 (eax) 011 (ebx) ADD eax , ebx 

01 D8 ADD reg/mem32, reg 11 011 (ebx) 000 (eax) ADD eax , ebx 

 

In the IA-32 architecture, the ADD instruction consists of 1 primary opcode byte 

and an addressing-form specifier byte (the ModR/M byte). The ModR/M byte contains 

three fields of information, the mod field, the r field and the r/m field. The mod filed 

value in our example (11B) indicates that the r/m field refers to a register (a general-

purpose in case of an ADD instruction). Since the ADD instructions requires a second 

operand, this information can be found in the r field. 

According to the Intel Architectures Software Developer’s Manual (Intel, 2014), 

the opcode 03 corresponds to ADD r, r/m (so the first operand will be taken from r (=000 

= eax), and second will be taken from r/m (=011 = ebx). At the same time, the 01 opcode 

corresponds to ADD r/m, r. (so the first operand will be from r/m (=000 = eax), and 
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second will be from reg (=011 = ebx).Combining all the above, we can infer that both 03 

C3 and 01 D8 can be disassembled as ADD eax, ebx. 

The assembler in MIASM framework provides all possible opcode versions for 

an instruction. 

 

Figure 9: ASM redundancy 

Although during building of an executable file the elfesteem module is 

configured by default to choose the first item of the provided options list, by modifying 

its code, we were able to force the framework to randomly choose between the available 

options. This effectively means, that the code of each output file created will be 

significantly different. 
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7 Testing 

In order to test the effectiveness of our methods a testing environment was 

created. We built 15 different Virtual Machines running Windows, using VMware 

Workstation that shared a folder with the host machine. In each of the VMs a different 

antivirus was installed and was allowed to update itself. A VM running Kali Linux was 

then added to our lab, which was configured to handle shell connections. 

5 different binaries were used for our testing. 

 A Windows reverse tcp shell executable, created with Metasploit, 

(Offensive Security, 2014) configured to connect to our Kali running 

machine (1.exe) 

 1.exe packed with the original version of Hyperion (vanilla_1.exe) 

 1.exe packed with our version (alpha_1.exe) 

 A totally harmless “Hello World” exe packed with the original version of 

Hyperion (vanilla_HW.exe) 

 The same Hello World exe packed with our version (alpha_HW.exe) 

The testing results can be found in the following table: 
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Table 2: Test results 

 1.exe vanilla_HW.exe vanilla_1.exe alpha_HW.exe alpha_1.exe 

Avast flagged flagged flagged flagged flagged 

AVG flagged OK flagged OK OK 

Avira flagged flagged flagged flagged flagged 

Bitdefender flagged flagged flagged flagged flagged 

ESET NOD32 flagged flagged flagged OK OK 

Kaspersky flagged OK flagged OK OK 

Malwarebytes flagged OK OK OK OK 

McAffee flagged OK OK OK OK 

Microsoft S.E. flagged OK flagged OK OK 

Norton flagged flagged flagged OK OK 

Panda OK flagged flagged OK OK 

Sophos flagged OK OK OK OK 

Symantec flagged OK OK OK OK 

Trendmicro flagged OK OK OK OK 

Webroot OK OK OK OK OK 
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It is evident from the results that only three of the tested antivirus were able to 

identify our sample as malicious. The rest allowed its execution and a command shell 

was presented to us in our Kali running machine, offering us unfettered access to the 

targeted machines in the context of the user that executed the sample. 
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8 Conclusion and Further Work 

Antivirus evasion is no trivial task. Antivirus vendors constantly devise new 

methods for flagging and rooting out malicious code, in a constant arms race against 

malware writers. The security professional that has to emulate the actions of 

hypothetical attackers, is involuntarily being made part of the same equation, often 

finding herself in need to evade defenses in order to stealthily infiltrate her targets 

virtual perimeter.  

Based on our test results, our PE crypter implementation can be a valuable aid 

towards achieving this goal. The fact that certain AV were able to flag it does point out 

the need for further calibrating. The introduction of anti-emulation techniques are 

expected to improve the undetection rates, such as those that allow the crypter to 

detected that is being executed by an antivirus in an emulated environment and exit out 

gracefully without even decrypting its payload. 

Since the original goal was to evade automated analysis, no steps were taken to 

prevent or hinder manual dissection of the crypter by a human analyst. However, as 

further work, the addition of Anti-Debugging, Anti-Disassembly and Anti-VM 

techniques could be definitely proposed.  
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