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ABSTRACT 

 

Derivative securities can be priced by using theoretical valuation models or by some 

numerical approximation techniques. In the context of this paper the technique called 

Adaptive Mesh Model (AMM), introduced in Figlewski and Gao (1999), is analyzed. The 

main advantage of this model is its capability of reducing nonlinearity error by grafting one 

or more small sections of fine-high resolution lattice onto a tree with coarser time and price 

steps. Four AMM structures are presented, one for pricing ordinary options, one for barrier 

options, one for double barrier options and one for computing delta and gamma efficiently. It 

must also be noted that lattice models are more intuitive and flexible than theoretical models 

which require knowledge of more complex mathematics. Accuracy is increased and 

execution time of the pricing algorithm is decreased through AMM structures. 

 

Keywords: Adaptive Mesh Model (AMM), Binomial & Trinomial Pricing Models, Ordinary 

Option Pricing, Barrier Option Pricing, Double Barrier Option Pricing, Greeks Pricing   
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1. Introduction 

 

1.1 Historical Overview 

Since the introduction of listed options exchange in 1973 many researchers 

have created models for option pricing. We must consider that virtually all corporate 

securities can be interpreted as portfolios of puts and calls on the assets of the firm. If 

we consider an elementary case of a firm with a single liability of a homogeneous 

class of pure discount bonds, then the stockholders have a call option on the assets of 

the firm which they can choose to exercise at the maturity date of the debt by paying 

its principal to the bondholders. Consequently, the bonds can be interpreted as a 

portfolio containing a default-free loan with the same face value as the bonds and a 

short position in a put option on the assets of the firm.  Therefore, methods for 

pricing options actually are also methods for pricing a firm. Consecutively, having 

the ability to accurately price the elements of a financial system we are able to make 

the best investment decisions at a specific moment.  

Within the concept of the above idea many researchers have created pricing 

methods over the time. Two main approaches of option valuation, closed-form 

solutions and, when derivation of such solutions wasn’t possible, numeric solutions 

were derived. 
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Fischer Black and Myron Scholes (1973) presented the first completely 

satisfactory equilibrium option pricing model. In the same year, Robert Merton 

(1973) extended their model in several important ways. Unfortunately, the 

mathematical tools employed in the Black-Scholes and Merton articles are quite 

advanced and have tended to obscure the underlying economics. So if the difficulty 

in understanding rises, we can imagine how difficult it may become to evolve or use 

such pricing models. Nevertheless, according to William Sharpe (1978) it is possible 

to derive the same results using only elementary mathematics. 

Lattice models are used widely for option pricing. The binomial option 

pricing model first proposed by Cox, Ross and Rubinstein (1979) provides a 

generalized numerical method for the valuation of options. This lattice approach has 

been extended by Rendleman and Bartter (1979), Boyle (1986), (1988) and Hull and 

White (1988). Moreover, by its very construction, it gives rise to a simple and 

efficient numerical procedure for valuing options for which early exercise may be 

optimal.  

Further generalizations of the binomial approach include the multinomial 

methods of Omberg (1988), Boyle, Envine and Gibbs (1989) , Kamrad and Ritchken 

(1991) and Parkinson (1977). An accelerated binomial method was proposed in 

Breen (1991) where a simple recursion was used to avoid redundant computations. 

Another lattice model is the trinomial option pricing model. The trinomial 

option pricing model differs from the binomial option pricing model in one key 

aspect, which is incorporating another possible value in one period’s time. Under the 

binomial option pricing model, it is assumed that the value of the underlying asset 

will either be greater than or less than, its current value. Therefore, the trinomial 

model incorporates a third possible value, a zero change in value over a time period, 

considering as possible for the value to be constant over a time step. 

Peter Ritchken (1996) offers an approach in the context of a trinomial model 

by introducing a stretch parameter into the lattice, which changes the price step just 

enough to place nodes in the desired location. Terry H.F. Cheuk and Ton C.F. Vorst 

(1996) also introduce a deformation of the trinomial tree where the extra degrees of 

freedom in a trinomial lattice allow price nodes to be placed more or less where the 

analyst chooses.   
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In this direction of research Figlewski and Gao (1999) presented the adaptive 

mesh model (AMM), a model that reduces the computational effort increasing the 

accuracy of pricing in specific critical regions. In the same year, Ahn, and Gao 

(1999) presented an especially effective AMM structure for pricing options with 

discrete barriers. In order to understand the magnitude of the computational effort, a 

basic example in that paper, according to which an AMM with 60 time steps is not 

only ten times more accurate than a 5000 step trinomial one, but runs more than 1000 

times faster. 

1.2 Basic Concepts 

In order to set a basis for our future understanding, we must define a financial 

derivative called option. 

Definition 1.1: A financial derivative that represents a contract sold by one party 

(option writer) to another party (option holder), subject to certain conditions. The 

contract offers the buyer the right, but not the obligation, to buy (call) or sell (put) a 

security or other financial asset at an agreed-upon price (the strike price) during a 

certain period of time or on a specific date (exercise date).  

During the 17
TH

 century option contracts were traded both in Amsterdam and 

in London. Ever since more complex option contracts have arisen. In this thesis we 

will encounter notions as ordinary option, barrier option and some of the Greek 

letters.  

 

1.2.1 Ordinary Option 

With the notion ordinary option we mean American or European call and put 

option. Their main difference is that an American option can be exercised at any 

given time during its life, while a European option can be exercised only at the 

maturity date of the option. When you are a call owner you benefit from an upward 

stock move and when you are a put owner you benefit from a downward stock move, 

as long as the underlying asset of the option is a stock. 
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1.2.2 Barrier Option 

Barrier options are more complex than plain vanilla options. In fact, a typical 

barrier option pays off at expiration like an ordinary call or put, except that the 

payoff is contingent upon whether the underlying asset price has reached a 

prespecified barrier price at some earlier point during the option’s lifetime.  

Barrier options come in two types: in options and out options. An in barrier 

option, or knock-in option, pays off only if the stock finishes in the money and the 

barrier is crossed at some time before expiration. When the stock crosses the barrier 

option is knocked in and becomes a standard option of the same type (call or put) 

with the same strike and expiration. If the stock never crosses the barrier, the option 

expires worthless.  

An out-barrier option, or knockout option, pays off only if the stock finishes 

in the money and the barrier is never crossed before expiration. As long as the stock 

never crosses the barrier, the out-barrier option remains a standard option of the same 

type (call or put) with the same strike and expiration. If the stock crosses the barrier, 

the option is knocked out and expires worthless. Therefore, barrier options can be up-

and-out, up-and-in, down-and-out, down-and-in. 

 

1.2.3 Greek Letters 

Definition 1.2:  The Greek letters are defined as the sensitivity of the option price to 

a single-unit change in the value of either a state variable or a parameter. 

Such sensitivities can represent the different dimensions to the risk in an 

option. Financial institutions who sell options to their clients can manage their risk 

by Greek letters analysis. As a result it is crucial for these institutions to have the 

optimal estimation of their risk through delta and gamma calculation. 

The Delta of an option, Δ, is defined as the rate of change of the option price 

with respect to the rate of change of the underlying asset price: 
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where Π is the option price and S is underlying asset price. The Gamma of an option, 

Γ, is defined as the rate of change of Delta with respect to the rate of change of the 

underlying asset price: 

  
  

  
 

   

   
       

where Π is the option price and S the underlying asset price. 

 

1.3 Option Pricing 

 

1.3.1 Closed-form Valuation 

In order for an investor to take the right decisions about his portfolio, he must 

know the price of each option he holds. Most of derivative securities need to be 

priced by numerical techniques, since only a small subset of these securities can be 

priced through closed-form valuation equations. 

Definition 1.3: In mathematics, an expression is called a closed-form expression if it 

can be expressed analytically in terms of a finite number of well-known functions. 

One of the most common closed-form valuation equations are derived in the 

Black-Scholes (1973) (BS) model. For example the (BS) closed-form valuation 

equation of the European call option for a non-dividend paying underlying stock is 

given below: 

                                    

   
  (

 
 )  (  

  

 )      

 √   
        

   
  (

 
 )  (  

  

 )      

 √   
     √             



6 

 

here S is the price of the stock, C(S,t) the price of a European call option, K the strike 

price of the option, r the annualized risk-free interest rate, continuously compounded, 

σ the volatility of the stock’s returns, t the time in years and N(x) the standard normal 

cumulative distribution function given by the following formula: 

     
 

√  
∫   

  

    
 

  

       

 

1.3.2 Lattice-based Valuation 

However, the securities in their majority are priced using appropriate 

numerical approximation techniques, such as Binomial and Trinomial lattice models. 

These models are widely used because they are intuitive and very flexible. We must 

take into consideration that as the lattice becomes finer, these methods converge to 

the theoretical option values that would be produced by a continuous-time, 

continuous-state model such as Black-Scholes. Convergence of the binomial method 

for pricing American options is proved in Amin and Khanna (1994). 

A serious disadvantage of these models is that they require a very large 

number of calculations to achieve acceptable accuracy. Particularly in some critical 

regions where the option is highly non-linear, i.e.  around the strike price at 

expiration or near the knock-out price for a barrier option, the computational effort 

required for a specific level of accuracy increases very rapidly if we attempt to 

reduce the step size. In addition to that, most of this computational effort is wasted 

on unimportant regions. 

A solution to the above problem is the Adaptive Mesh Model (AMM) 

presented by Figlewski and Gao (1999), which is a very flexible approach that 

increases considerably the efficiency in trinomial lattices. Coarse time and price 

steps are used in most of the tree, but small sections of finer mesh are constructed to 

improve resolution in specific critical areas. A relatively coarse grid that is fast to 

calculate is used for most of the lattice, but a small section of fine mesh is 

constructed where greater accuracy really matters. 
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1.3.3 Approximation Error 

Approximation error in lattice models can be thought of as arising from two 

different sources, distribution error and nonlinearity error. Distribution error occurs 

because, throughout the tree, the model attempts to approximate a continuous 

lognormal distribution with a discrete binomial or trinomial distribution. As a result 

no matter how fine we make the lattice we will not have enough price or time steps 

to cover the initial distribution. 

Nonlinearity error arises because the option value is nonlinear in the 

underlying asset price, especially in critical regions, in a way that cannot be captured 

accurately by the discrete lattice. The Adaptive Mesh Model (AMM) sharply reduces 

nonlinearity error by grafting one or more small sections of fine high-resolution 

lattice onto a tree with coarser time and price steps. 
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2. Option valuation 

 

2.1 Theoretical Valuation 

The Black-Scholes (1973) (BS) option valuation model was one of the first 

that provided closed-form equations for pricing European call and put options based 

on observable parameters. Of equal importance, the no-arbitrage principle used to 

obtain the BS equation pointed the way towards theoretical valuation models for all 

types of contingent claims.  

Prior to (BS) several researchers have approached the valuation of options 

expressed in terms of warrants. Sprenkle (1961), Ayres (1963), Boness (1964), 

Samuelson (1965), Baumol, Malkiel and Quandt (1966), and Chen (1970) have 

produced such incomplete valuation formulas due to the use of one or more arbitrary 

parameters. The use of the no-arbitrage principle in the valuation procedure used by 

BS is the key difference between their predecessors’ models and BS. However, 

American options and other contracts with early exercise present a serious problem 

because, although the no-arbitrage principle still holds, usable closed-form valuation 

formulas seldom exist. 
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2.1.1 Black-Scholes Valuation Model 

Definition 2.1: According to Black-Scholes (1973) the following assumptions are 

made in order to value an option in terms of the price of the stock. 

(1) The short-term interest rate is known and is constant through time. 

(2) The stock price follows a random walk in continuous time with a variance 

rate proportional to the square of the stock price. Thus the distribution of 

possible stock prices at the end of any finite interval is lognormal. The 

variance rate of the return on the stock is constant. 

(3) The stock pays no dividends. 

(4) The option is called European if it can only be exercised at maturity. 

(5) There are no transaction costs in buying or selling the stock or the option. 

(6) It is possible to borrow any fraction of the price of a security in order to buy it 

or hold it, at the short-term interest rate. 

(7) There are no penalties to short selling. A seller who does not own a security 

will simply accept the price of the security from a buyer, and will agree to 

settle with the buyer on some future date by paying him an amount equal to 

the price of the security on that date. 

Consequently, these assumptions allow us to create a hedged position consisting 

of a long position in the stock and a short position in the option, whose value will not 

depend on the price of the stock. The Black-Scholes methodology begins with the 

assumption that the underlying asset follows the logarithmic diffusion 

  

 
                 

where dS denotes the change in the asset price S over the infinitesimal time interval 

dt, μ and σ are the instantaneous mean and volatility, and dz represents a standard 

Brownian motion. 

Definition 2.2: A standard Brownian motion (also known as standard Wiener 

process) is a stochastic process         (that is, a family of random variables   , 

indexed by nonnegative real numbers t, defined on a common probability space 

         with the following properties: 
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(1)     . 

(2) With probability 1, the mapping      is continuous in t. 

(3) The process         has stationary, independent increments. 

(4) The increment         has the        distribution. 

Here the term of independent increments means that for every choice of nonnegative 

real numbers  

                        

the increment random variables 

       
        

          
 

are jointly independent, and the term of stationary increments means that for any  

       , the distribution of the increment         has the same distribution 

with         . 

It is not obvious that properties (1)-(4) in the definition of standard Brownian 

motion are mutually consistent, so it is not a priori clear that a standard Brownian 

motion exists. (The main issue is to show that properties (3)–(4) do not preclude the 

possibility of continuous paths.) That it does exist was first proved by Norbert 

Wiener in about 1920. His proof was simplified by Paul Lévy.  

By assuming continuous trading, we can buy or sell any amount of stock even 

if the latter is not a round number. This kind of transaction is impossible in the real 

markets because obviously an investor can buy only round numbers of shares. 

Another assumption is that there are no transaction costs. With these two 

assumptions, an investor can follow a self-financing dynamic trading strategy to 

replicate a derivative security’s future payoff exactly. Thus, to avoid profitable 

arbitrage the option value must equal the cost of the replicating portfolio. This leads 

to the fundamental partial differential equation (PDE) of contingent claims pricing: 

  

  
 

  

  
   

 

 
    

   

   
          

where r is the risk-free interest rate, f is the option price, S the underlying asset and 

  is the variance rate of the return of the stock. 

http://en.wikipedia.org/wiki/L%C3%A9vy_process
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Definition 2.3: In mathematics, a PDE is a differential equation that contains 

unknown multivariable functions and their partial derivatives. 

In certain cases, such as pricing of European put options on non-dividend paying 

stocks, the PDE can be solved to give a closed-form valuation formula. Otherwise, 

an approximate option value can be obtained using finite difference in their solution 

techniques, as Michael J. Brennan and Eduardo S. Schwartz (1977) demonstrate in 

their investigation of American put pricing. The latter approach has been extended by 

Courtadon (1982b). 

 

2.2 Finite Difference Methods 

Definition 2.4: A finite difference is a mathematical expression of the form 

                          

Three forms of finite difference are commonly considered: forward, backward and 

central differences. In particular we have forward difference for         , 

backward difference for           and central difference for   
 

 
 ,   

 
 

 
 . 

 

2.2.1 Explicit Finite Difference Method 

The explicit finite difference technique for solving the PDE of (2.2) is 

equivalent to a trinomial tree procedure, though Hull and White (1990) find lattice 

methods more intuitive. However, according to Geske and Shastri (1985) the explicit 

finite difference method, with logarithmic transformations, is the most efficient 

approach when large numbers of stock options are being evaluated. The explicit 

difference technique transcends the implicit one because it is conceptually simpler, 

being a simple application of the trinomial lattice approach. The main disadvantage, 

though, is the method’s lack of convergence to the solution of the differential 

equation as    tends to zero. 
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We next give a description of the explicit finite difference method. The 

stochastic process that the underlying asset S follows is 

                              

where dz is a Wiener process, μ and σ are the instantaneous proportional drift rate 

and volatility of S. We must note the similarity to formula (2.1). If λ is the market 

price of risk of S, then, as shown in Garman (1976) and in Cox, Ingersoll and Ross 

(1985a), the price of the derivative security f, which depends on a single stochastic 

variable S, must satisfy the following equation: 

  

  
 

  

  
        

 

 
    

   

   
          

where r is the risk-free interest rate. Both r and λ may be functions of S and t. When 

S is the price of a non-dividend paying stock, then        and (2.5) reduces to 

the Black Scholes (1973) PDE (2.2). 

The next step of the explicit finite difference method is to construct a grid 

which will approximate the terms of equation (2.6). To implement the explicit finite 

difference method, a small time interval   , and a small change in S, ΔS, are chosen. 

A grid is then constructed for considering values of f when S is equal to: 

                        

and time is equal to 

                      

where the parameters    and      are the smallest and largest values of S 

respectively, considered by the model,    is the current time, and T is the end of the 

life of the derivative security also known as maturity date. 

Denoting        by   ,        by    and the option value at the       

point on the grid by     , the partial derivatives of f with respect to S at the node 

        are approximated as: 
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and the partial derivative with respect to t is approximated as 

  

  
 

           

   
            

We must note in this point that the equations for the implicit finite difference method 

are obtained in a similar way with the approximation of the latter partial derivative as 

follows 

  

  
 

           

   
           

 

Substituting (2.6)-(2.8) into (2.5) gives 

                                           

where 

     
 

     
[  

          

   
 

 

 

  
     

   ], 

      
 

     
[   

  
     

   ], and 

     
 

     
[ 

          

   
 

 

 

  
     

   
]. 

With these substitutions we relate the value        of the derivative security at time 

     to three alternative values of the derivative security at time   . If we define 

        [  
          

   
 

 

 

  
     

   ], 

        [   
  

     

   ], and 

       [ 
          

   
 

 

 

  
     

   ], 
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equation (2.10) becomes 

       
 

     
[                                  ]            

Apparently the explicit finite difference method is equivalent to a trinomial lattice 

approach if we interpret       ,      and        as the probabilities of moving from    

to     ,    and      respectively. We must note at this point that these probabilities 

add to unity and give a drift rate of         . A variance rate of      is implied if 

terms of        are ignored. Using this method we value   at time    as its expected 

value at time     , in a world where the drift rate of   is        , discounted at the 

risk-free rate of interest. 

 

2.2.2 Implicit Finite Difference Method 

As mentioned before, the implicit finite difference method differs from the 

explicit one at the approximation technique for the first partial derivative of    with 

respect to   . Moreover, the implicit method requires the specification of several 

boundary conditions for the derivative security as     and      while the 

explicit method does not require such conditions. 

In practice, it is efficient to use       rather than   as the underlying variable 

when finite difference methods are applied. When   is constant, the instantaneous 

standard deviation of        remains constant and independent of variables    . 

According to Hull and White (1990, p.90-91) convergence of these two finite 

difference methods is ensured by the use of       rather than   and it is proved by 

Hull and White with the use of a theorem in Ames (1977, p.45). 
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2.3 AMM Valuation 

In this section two lattice models will be analyzed, the binomial and trinomial 

lattice models. Although both models are very intuitive, the trinomial model will be 

the base for our AMM structure analysis. The main reason of this practice is that the 

binomial model has little flexibility to deal with more complex option problems. 

However, it is analyzed below in order to understand the evolution from binomial to 

trinomial models and finally understand AMM superiority of its predecessors.  

 

2.3.1 Binomial Lattice Model 

We assume that the price of the underlying asset follows a multiplicative 

binomial process over discrete periods. The rate of return on the underlying asset 

over each period can have two possible values, either     or    , with 

probabilities q and 1-q, respectively, with   for up and   for down movement of the 

underlying asset. 

Definition 2.6: The rate of return   on a stock is calculated by the following 

formula: 

  
        

  
         

where        and    are the stock price at time      and  , respectively. 

We can now easily understand that for     , i.e. in a single time step, if the 

current stock price is  , then the stock price will have two possible outcomes    or 

   as illustrated by Figure 2.1 below. 

Figure 2.1: 

 

 

 

 

𝑺 

𝒖𝑺 with probability q, 

𝒅𝑺 with probability 1-q. 
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Several further assumptions must be made. Firstly, the interest rate is 

assumed to be constant in order to lend as much money as an individual wishes at the 

specific rate. It is also assumed that there are no taxes, transaction costs or even any 

margin requirements, while short-selling of the stock is not forbidden. As long as the 

following inequality       stands, no profitable riskless arbitrage opportunities 

are possible. 

The most simplified approach of binomial model is a lattice of one step. 

Valuing a call option an a stock with the expiration date one period away we have a 

one-step lattice as illustrated by Figure 2.2 below. 

Figure 2.2:  

 

 

 

 

Here C is the current value of the call,    and    are the values of the option at the 

end of the period if the price of the stock goes up or down respectively, S is the value 

of the stock, and K the strike price. 

In order to replicate a portfolio of equal payoff to the option’s payoff we 

suppose that   shares of stock are required and B amount of stock’s currency is 

invested in riskless bonds. The cost of this replication strategy will be       while 

at the end of the period the value of this portfolio will be given by Figure 2.3. 

Figure 2.3: 

 

  

 

 

𝑪 

𝑪𝒖  𝒎𝒂𝒙 𝟎 𝒖𝑺  𝑲  with probability q, 

𝑪𝒅  𝒎𝒂𝒙 𝟎 𝒅𝑺  𝑲   with probability 1-q. 

𝜟𝑺  𝑩 

𝜟𝒖𝑺   𝟏  𝒓 𝑩 with probability q, 

𝜟𝒅𝑺   𝟏  𝒓 𝑩  with probability 1-q. 
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In order to achieve the equality of option’s and replication portfolio’s payoff we 

conclude to the following equations: 

                     

                    

Subsequently solving these equations for   and   we derive: 

  
     

      
        

  
       

          
          

Concluding, the value of the call option,  , cannot be less or greater than the 

current value of the replication portfolio      because otherwise there would be a 

riskless profit with no net investment. We must note that if the value of the call 

option is greater than the value of the replication portfolio then it must be assumed 

that the investor who bought the call option we sold will not exercise immediately 

although he can. Therefore from equations (2.15) and (2.16) we derive that: 

       

 
     

     
 

       

          
 

 
[(

   
   

)   (
   
   

)  ]
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Extending the binomial tree with more periods we will have a recursive procedure 

for finding the value of the option starting at the expiration date and working 

backwards. The generalized binomial valuation formula for a call option is: 

  

∑ (
  

        
)              [           ] 

   

      
             

Moreover in recombining trees we notice that the nodes at step n would have about 

the same prices with the nodes at step n+2 creating a peculiar “even-odd” property to 

convergence. So for example if we assume a call option with stock price 50, strike 

price 50,      ,      , time to maturity T=5/12 and a total of 50 steps then the 

non-monotonic convergence is exhibited in Diagram 2.1. The trinomial model also 

exhibits non-monotonic convergence, but not of such a striking form. 

 

2.3.2 Trinomial Lattice Model 

Although the binomial model is very intuitive, it has become outdated by the 

trinomial model which deals with more complex option problems. Due to trinomial 

model’s excess in degrees of freedom in comparison to binomial model, the former is 

more useful and adaptable for many derivative applications. 

As mentioned earlier, the asset price is assumed to be lognormal, fact that 

practically means that the tree is based on the logarithm of  . If we define    ln    

  is implied to be normally distributed. Furthermore under the risk neutrality 

assumption,   follows the process, 

      (    
  

 
)               

similar to the logarithmic diffusion followed by BS model in equation (2.1), where   

denotes the instantaneous rate of dividend payout. 

Constructing the trinomial tree, the underlying asset price is allowed to move 

to one of three values, designated as up (u), down (d) and middle (m). The risk 

neutral probabilities set,       and   , is associated with these branches providing 

greater rate of convergence when the tree is symmetrically constructed for some 
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applications according to Figlewski and Gao (1999). Let the middle node to remain 

constant and the up and down moves to be of equal magnitude. By   we denote the 

length of time step and   the size of an up or down move. Moreover, in every step   

goes to     with probability   , to     with probability    , and remains 

constant with probability   , as illustrated by Figure 2.4. 

Figure 2.4: 

 

 

 

 

 

Apparently the value of the time step   is determined by the formula   
 

 
     

partitioning the total time to maturity to equal time steps.  

Several constraints must be met for the model to be accurate. At every period 

the expected log price change must be proportional to the size of the step k 

multiplied by the coefficient of    in equation (2.19) so that the change of       

becomes zero. Furthermore the standard deviation must be consistent with the known 

volatility of the underlying asset. Also the probabilities from one node to another 

must sum to unity. 

In order to reduce the convergence error of the trinomial tree, the moments of 

the normal distribution must be matched with the expected values of the tree. As 

discussed in Cho and Lee (1995), moments beyond mean and variance must be used. 

The fourth moment, kurtosis, is selected over the third moment, skewness, due to the 

fact that all odd numbered moments of the trinomial model will be zero as a result of 

our symmetrical distribution selection. Consequently, we derive to the following 

system of equations: 

             

                                  

𝑿 

𝑿  𝒉 with probability 𝒑𝒖, 

𝑿  𝒉  with probability 𝒑𝒅. 

𝑿  with probability 𝒑𝒎. 
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where the four unknowns are the probabilities          and the size h of the up or 

down movement of  . Solving these equations for the unknown variables we 

conclude: 

   
 

 
    

 

 
    

 

 
     √                 

In order to determine the option price, given the asset price contingent 

payoffs at maturity and discounting backwards through the tree, we can derive the 

following formula that calculates the option price for a single node at date    and 

price  : 

                                             

                               

The latter equation is very similar with that of the binomial model at equation 2.17. 

Apparently the next step in this method is to create a recursive procedure for more 

than one time steps. We must note that in the current case the values of   and   are 

fixed, resulting to fixed probabilities. Otherwise, these probabilities could vary 

depending on the changes of h and at every step. 

Therefore, using the model in practice presents us nonlinearity error when the 

true option value does not change proportionally as the asset price changes between a 

pair of nodes. As mentioned in the introduction gamma is defined as the rate of 

change of delta respected to the rate of change of the underlying asset price, while 

delta is the rate of change of the option price respected to the rate of change of 

underlying asset. Hence, we can easily understand that nonlinearity error will create 

a large gamma value, in absolute terms, in the current price terms. The nonlinearity 

error is greatest around the strike price at expiration for a European option, due to the 

form of its payoff function, while for an American option this type of error affects 

both the strike price at expiration and the prices that surround the strike price.  
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A solution proposed by Broadie and Detemple (1996) is a simple substitution 

of the prices at every node around expiration with the Black-Scholes value for the 

option price. Therefore, moving backwards on the tree using equation (2.22) we will 

derive the option price with greater accuracy diminishing the approximation error. At 

this point we must note that for these specific nodes where the substitutions take 

place, the option is considered as European because, practically, there is not enough 

time for early exercise. It must also be noted that a closed form solution for the 

option we are valuing should exist, making this technique difficult to adjust to more 

complex derivatives. 

A typical procedure for reducing the approximation error in a lattice model is 

to decrease the length of the time steps. The disadvantage of this procedure, though, 

is a rapid increase in the number of nodes and consequently a massive increase on 

the computational effort required for the price calculation of each node. In order to 

quantify this negative effect we designate the initial node as    . The binomial 

model for instance had     nodes at time step     and a total of          

                     nodes. Respectively the trinomial model has 

     nodes at time step     and a total of        nodes. For example if   is 

proportional to √  as shown in equation (2.21), then to decrease the size of the price 

step in half requires a tree with quadruple time steps and approximately sixteen-fold 

nodes. 

The question that arises is if this many nodes are actually needed to achieve a 

certain accuracy level. More time steps are obligatory near some critical areas, such 

as the region of the strike price at expiration, but in other not so critical areas the 

large number of nodes is practically a computational waste. Finally, a hybrid tree 

(AMM) with a high resolution fine lattice in the region of the strike price at 

expiration and a coarse and fast lattice everywhere else was introduced by Figlewski 

and Gao (1999). 

 

2.3.3 AMM (Trinomial Lattice-Based) 

In order to create the AMM structure for an American put option we must 

adjust the finer mesh tree onto the general coarser tree. Shaping the AMM structure 
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for a European put option pricing, as illustrated by Figure 2.5, will equip us with a 

guide for the generalization to the American put option pricing structure. 

In Figure 2.5 the most crucial section of the AMM structure is illustrated; that 

is the section of the pricing lattice in the immediate vicinity of the strike price in the 

last few periods before expiration. As far as the coarse lattice is concerned, this is a 

lattice with price and time steps   and   respectively and is illustrated by heavy lines. 

Moreover, the fine mesh, with price and time steps     and     respectively, is 

illustrated by light lines covering all     coarse nodes from which there are both 

fine mesh paths that end up in the money and fine mesh paths that end up out of the 

money.  

We must note at this point that   is the strike price, while     and     are 

the two date   coarse mesh asset prices that bracket the strike price. Obviously the 

nodes of the fine mesh lattice at date   equip as with the desirable accuracy in the 

context that larger number of nodes are more possible to approximate the real price 

of the asset price. 

Figure 2.5: 
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The objective of this structure is to build a fine mesh tree around the strike 

price at expiration and merge it with the coarse lattice so that the valuation 

information is transmitted properly. As mentioned before to decrease the price step to 

half, i.e.     , the time steps should be decreased to    . Another advantage of this 

particular set of finer mesh is that it guarantees that its nodes will overlap the coarse 

mesh nodes one step before expiration. The overlapped nodes, namely    to   , will 

be calculated by the fine lattice, while the remaining nodes of the coarse lattice at 

this time step will be computed by the standard procedure of the terminal payoffs in 

the coarse lattice. This tactic ensures that the more accurate fine mesh values for the 

critical nodes will be fully exploited into the coarse lattice. The valuation of the asset 

price from that time step to the start of the coarse lattice proceeds by rolling back by 

the coarse lattice to the initial date. 

Obviously, the fine mesh is added for dates in the period      to  , only in 

the region around the strike price. Only the nodes of the coarse lattice from which 

start both fine mesh paths that end in the money and fine mesh paths that end up out 

of the money are covered by the fine mesh lattice. Apparently, a cover of more nodes 

would result to computational waste for the AMM structure. For example, it is 

unnecessary to calculate the value of     through a fine mesh lattice at time step 

    because every possible fine mesh path beginning at that point would end out 

of the money, i.e., at a node where the option payoff is linear and there is no 

nonlinearity error to correct. On the other hand, from node    , while the coarse 

lattice paths end up out of the money, a fine mesh path with only down moves 

between      and   would end up below   and actually in the money. So as far as 

around   the option payoff is nonlinear, the fine mesh value for node    will be 

more accurate than what the coarse mesh would have produced. 

Reducing in half the price step  , each node at a time step   will end up in a 

radius of nodes of    at time step     than    that was the radius of nodes at time 

step   for the coarse lattice. For instance, in Figure 2.5 the number of nodes to be 

calculated in the area between the time steps     and   increased from 12 in the 

coarse lattice to 52 in the finer lattice. If we do not take into consideration the path 

that comes through    , simply by going always up, we actually have a trinomial 

lattice tree of a total of 20 nodes. Furthermore, if we employ an adaptive mesh the 
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computational effort will be less than just adding one time step in the coarse tree. For 

larger number of nodes the use of an adaptive mesh would increase the number of 

calculations by less than 0.4% for a 100 step trinomial tree. 

Another advantage of the AMM structure is that it is isomorphic at successive 

levels of refinement, i.e. once an adaptive mesh tree is constructed it is simple to 

construct another finer adaptive mesh lattice that could be added on the existing tree. 

For example, in Figure 2.5 an extra adaptive mesh of price steps of size     could be 

added at time period       to  , while the total cost of this further refinement is 

just 40 additional node calculations. 

In Table 2.1 the comparison between Binomial and Trinomial models’ 

performance versus the AMM performance, whether there is only one layer of fine 

mesh or two, is illustrated. These AMM are added around the strike price at 

expiration. In this comparison theoretical values are computed for a test set of 27 

European put options. One may wonder why American put options are not used in 

this example. The reason for this tactic is that an exact benchmark can compute 

European options and  compare it with our approximations. In such a way we can 

estimate the accuracy of our model. In practice there is no real need to estimate the 

value of European puts because we already know a closed form formula for their 

value. As mentioned before, though, American put options act like European put 

ones near their expiration because there is no possibility to exercise. 

For the models in Table 2.1, the initial asset price is set to 40, the riskless 

interest rate is 5% which actually corresponds to a 4.88% continuous rate, and we 

assume that no dividends are paid. There are 27 combinations of European put 

options, simply by combining every element of the following triads of information: 

we assume three strike prices of  35, 40 and 45; three different maturity dates of 1, 4 

and 7 months; and three different possible volatilities of 0.20, 0.30 and 0.40. So 

actually in Table 2.1 we can see a column of root mean squared errors (RMSE) for 

the computed values through Binomial, Trinomial and AMM with one or two layers 

of fine mesh compared to the exact Black and Scholes valuation. We can also see the 

number of nodes needed for the computation of each model and use it as a 

comparison for the time needed for the completion of calculations of each model. 

Moreover, lattices with 25, 100, 250 and 1000 time steps are illustrated. 
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As one can see in these results the accuracy of the price calculation is 

significantly improved through the use of AMM, subject to quite small change in the 

number of nodes and subsequently in the execution time. For example the model 

with the double fine mesh attached of only 25 time steps is much more accurate than 

a standard Trinomial of  250 time steps and only a little less accurate than a 1000 

step Binomial that requires about 250 times more calculation time. 

If we compare only the Trinomial-based models, we can see that they have 

almost the same number of nodes and as a result about the same execution time. 

Obviously in comparison with the Binomial, the Trinomial-based models are slower 

but far more accurate. As far as accuracy is concerned, the AMM model with one 

layer of fine mesh is about four times as accurate as the standard Trinomial, while 

the AMM model with the two layers of fine mesh is about four times as accurate as 

the AMM with one layer of fine mesh. 

This particular AMM approach has little effect on delta and gamma 

calculations which will be analyzed further in Chapter 4. At this point we must note 

that delta and gamma are not computed as numerical derivatives by simply 

perturbing the starting asset price. As it will be explained in Chapter 4, that 

procedure is inaccurate and is greatly affected by the nonlinearity error.  

A solution was provided by Pelsser and Vorst (1994), where an extension of 

the tree, by one period prior to the initial date, is required for the subsequent 

calculation of the Greek letters from the node values within the extended tree. The 

calculations then require differencing option values at asset prices exactly one price 

step apart, minimizing accordingly the effect of nonlinearity error since nonlinearity 

error at expiration affects both option prices similarly. More extensively in Chapter 4 

another adaptive mesh structure will be applied to the initial nodes of the tree in 

order to improve the estimates of delta and gamma risk exposures.   
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3. Barrier Option Pricing 

 

In the AMM structure that was presented in the previous chapter accuracy 

was greatly improved with very little computational cost by adding a fine mesh in a 

critical region of the asset price valuation trinomial tree. In the present chapter we 

will show how an adaptive mesh extension of the prior structure can be used for 

pricing barrier options or other derivatives whose values depends on whether the 

asset price reaches a specified level at any point during the option’s life. Simple and 

double barrier option valuation will be studied. 

As mentioned in more exotic derivatives numerical approximation is usually 

the only method that applies to the valuation of the asset price. Closed form solutions 

rarely exist for even plain vanilla European options let alone for more complex 

derivatives. The concept of this project is to enhance a simple structure of a trinomial 

lattice with an adaptive mesh procedure in order to achieve the wanted accuracy with 

much less computational effort, especially for procedures like calculating implied 

volatilities which involve intense computations. 
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3.1 Single Barrier Option 

The case of a barrier option pricing when the initial asset price is close to the 

barrier is the standard problem at which we will apply the adaptive mesh structure. 

By definition a barrier option is contingent upon whether the underlying asset price 

has reached the specified barrier price at some earlier point during the option’s 

lifetime. Otherwise, the latter pays off at expiration like an ordinary call or put. A 

down and out call option with strike price   and barrier price   , for example, has 

the same payoff at expiration as a European call, if the stock price remains higher 

than    throughout its entire life. In an opposite case, if the price falls even once 

below   the option is knocked out and expires worthless, regardless of the 

underlying asset price at expiration. We must note that the barrier price    of the 

example is also called out-strike. 

Barrier options have become widespread, especially for foreign currency 

contracts. Derivatives that make use of barriers in their pricing structure were 

described by Rubinstein (1991) and briefly explained by Gastineau and Kritzman 

(1996), namely capped options, ladder options and interest rate corridors. 

 

3.1.1 Trinomial Lattice Pricing Procedure 

In this type of options nonlinearity error creates obstacles in the valuation 

procedure. Specifically in barrier options the nature of the derivative changes 

according to the price barrier, so we can understand that the option price is directly 

correlated with the magnitude of the price steps. In other words, the discreteness of 

the price on the tree affects directly the valuation procedure. 

As demonstrated in Diagram 2.1 there was an even-odd behavior of the 

convergence of the binomial model for regular options to the Black and Scholes one. 

Likewise, for the trinomial model the convergence follows a slightly different pattern 

which has a similar effect that will be demonstrated subsequently. 

A European down and out call option will be used to illustrate the valuation 

problems of barrier options, due to the existence of a closed form equation valuation 

formula that can serve as a benchmark for the accuracy of the evaluation method. At 
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this point it must be noted that this closed form was derived by Merton (1973) and is 

illustrated below: 

                                (
 

 
)
 (    

  

 
)

   (
  

 
        )        

 

where     denotes the down and out call value and     denotes the Black and 

Scholes call formula. 

In comparison with the valuation procedure of Subsection 2.3.2, the 

corresponding trinomial valuation procedure uses the same variables as before with 

one addition, that of   which is used as the option’s knock out barrier provided that 

is below the price  . Useful information for the knock out barrier price is that it 

remains constant throughout the derivative’s lifetime.  The key part for the valuation 

procedure is to have each layer of nodes fall at the same price in every time step. In 

order to achieve this we must built the trinomial tree around the initial log stock price 

without adjusting for the mean, therefore,             for all  . Due to this 

modification, however, we are not able to set the kurtosis of the tree distribution 

equal to the risk neutral distribution, but, we can still match the mean and variance 

with the risk neutral distribution. So, our main difficulty in the present moment is to 

find a value for  . 

Similar to the trinomial procedure for a plain vanilla option, we try to form here a 

system of equations for the trinomial tree using equations (2.20) as a guideline. As 

we mentioned earlier we can’t no longer use the fourth equation of (2.20) regarding 

kurtosis, the fourth moment. Thus, after we derive a system of three equations and 

three unknown variables, we result in the solutions illustrated below: 
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where            and q denotes the instantaneous rate of dividend payout. 

It can easily be noticed that the triad of probabilities is also a function of   which still 

remains unknown. Nevertheless, for a given  , only specific values of   produce 

positive probabilities for all three nodes simultaneously. Generally   and   are 

constants, so from the third equation of (3.2) we derive: 

                             

To guarantee the no negativity assumption for the above probabilities   

should be of the same order as √ . In order to make calculations more 

understandable we set           , which apparently is the last term of equation 

(3.3) inverted. For     we achieve the latter assumption. Let     and consider 

the standard trinomial model implied by equations (2.22) and (3.2) in order to value a 

down and out call with      ,      ,     year,      ,        and 

    . 

In Diagram 3.1 the convergence of the standard trinomial method for the 

valuation of a down and out call in comparison with the Black and Scholes closed 

form pricing equation is illustrated. We observe the approximation method first to 

approach the Black and Scholes benchmark and then suddenly to jump away from it. 

The typical error is very large even for a trinomial tree of one thousand time steps, 

which is the approximate equivalent of more than one million node calculations. 

In an attempt to find the cause of this problem we create two figures, Figure 

3.1 and 3.2. In the first figure the price barrier    is set above the node that we come 

across if we move two steps downwards. Practically, this means that whenever the 

price falls two steps below the initial price  , then the option is knocked out. This 

fact stops our valuation procedure for a number of nodes that could otherwise be 

exploited. Therefore, to exploit more information from the tree we need to increase 

the nodes that are above the barrier line.  
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Figure 3.1: 

 

 

 

 

 

 

 

 

 

 

 

 

In an attempt to create more steps above the knock out we increase the 

number of time steps by reducing their size and we derive Figure 3.2, where the price 

step is actually reduced since the barrier price remains constant. It is easily seen that 

three steps downwards are now needed for the option to be knocked out using the 

trinomial tree as a guide. Therefore, with the addition of a little computational effort 

arising from the increase in the number of time steps, a tree with slightly increased 

number of price steps is produced. The trinomial tree of Figure 3.2 decreases 

significantly the probability of the option being knocked out and there is accordingly 

an increase in its estimating value. If our example was an in-option that pays off at 

maturity only if the barrier has been previously reached, there would be a decrease in 

the estimating value of the tree by a procedure of this type. 
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Figure 3.2: 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, depending on the value   of time steps, the price step is the factor 

that determines how close we are to the barrier. The ideal situation, obviously, would 

be for the barrier to coincide with a horizontal layer of nodes, which implies a zero 

price change for the middle node in every movement throughout the lattice and a 

perfect selection of   . These optimal values for a binomial method have been 

computed by Boyle and Lau (1994), but as mentioned earlier the binomial method 

provides us with limited freedom and subsequently cannot be extended for pricing 

derivatives that include barriers. 

However, as illustrated in Ritchken (1995), the performance of this model can 

be enhanced by restricting variable    to take values that produce an integer number 

of price steps between the current asset price and the barrier. Figlewski and Gao 

(1999) refer to this method as the Restricted Trinomial Model (RTM) and they show 

that it can be fitted to also match a second barrier also, having more degrees of 

freedom, but further generalization typically does not work. 

𝑺 

𝑯 
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Difficulties will emerge, though, if the barrier price is very close to the initial 

asset price. If the asset price falls below the barrier price even after just one 

downward price step, in this case the option will be automatically knocked out as far 

as the trinomial method is concerned. Then an upper bound for the price step must be 

found in order to overcome such difficulties and it could be no other than         

      . As a consequence, this maximum price step selection determines a 

minimum number   of time steps, that may be very large for small price step values 

in the case of an initial asset price being very close to the barrier price. 

For the down and out call illustrated in Figure 3.2 with      ,    

   ,     year,      ,       , H=90, assume that the current asset price is 

much closer to the barrier. If, for example,         then the maximum price step 

that allows us to move one step down before hitting the barrier and knocking out the 

option is                                        . Following this 

procedure and setting   equal to 3, from equation            we derive   

        . Practically, if there are 250 trading days in a year and 7 trading hours in a 

day, this    value means that we have a time step of approximately 17.2 trading 

minutes. Accordingly, for a year that has 365 days, whether the market is open or 

closed, this specific value of    translates into a time step of 86.2 calendar minutes. 

Furthermore, the resulting lattice has            time steps, which 

means                   node calculations. Not to mention that if one wanted to 

be more accurate and use two price steps to reach the barrier, the lattice should have 

four times as many time steps,        to be precise, and almost 600 million nodes. 

Obviously, this procedure leads to very slow convergence. Thus we have to 

improve the standard Trinomial to a more flexible model in order to solve this 

problem, because even with 1000 time steps we result in a very large pricing error. 

The estimated option value is 1.102 while the exact value from Merton’s formula 

(3.1) is 0.642 which is about 71.7% mispricing. So as shown in Diagram 3.1 

convergence is not stable because for any relatively low    the produced value is not 

correct. In particular, the option value approaches almost the correct value and then 

jumps when the number of time steps changes. 
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3.1.2 Simple ΑΜΜ Lattice  

The problem of slow convergence can be solved using an adaptive mesh 

lattice. In this case the high resolution lattice must be near the barrier price and 

should be adjusted to the coarser tree so that the rest of the tree can still be used for 

computing. The logic followed here is the opposite to the ordinary option AMM. The 

information in this case emerges from the coarser lattice and it leads to the finer 

lattice, while in the ordinary option AMM the information flowed from the high 

resolution lattice to the coarser one. 

The adaptive mesh structure we wish to construct is illustrated in Figure 3.3. The 

bold lined tree is the coarse mesh lattice, where the nodes are labeled by    , with   

and   the number of the coarse mesh price steps over the barrier and the number of 

the coarse time steps, respectively.  

Obviously, the A nodes lying on the bold dashed line are the ones that fall 

exactly on the barrier price. The adaptive mesh nodes are noted by the letter   and 

create the light-lined tree with a reduced price step to the half of the price step of the 

coarser tree. 

Figure 3.3:  
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At first we compute the values of the coarse tree, creating the prices for all 

the   labeled nodes. Next, we use the coarse mesh lattice to compute the option 

values of the fine mesh lattice at the price levels        and         for time 

intervals of length    . Then, we compute the remaining fine mesh nodes for the 

price           at the same time intervals. The light concrete and dashed lines are 

indicating the nodes that were used for pricing each node at the left of each branch. 

Following this procedure we can calculate the option price at     . We must note at 

this point that the option values at the     nodes are all equal to zero since they fall 

on the knock out barrier. On the contrary, in the case of barrier options that pay a 

rebate when they are knocked out these values are set equal to the rebate price. The 

fine dotted line starting with      at price       
 

 
  indicates where the second level 

of fine mesh would be placed.  

Further details about the structure illustrated in Figure 3.3 are given below. 

The nodes     and     coincide with the nodes     and     of the coarse tree so we 

avoid recalculating them. In contrast, nodes    ,     and     are computed rolling 

backwards from nodes     ,     and    . Obviously, we will use equation (2.22) for 

this backward calculation, but some changes must be made otherwise we would 

create just one value instead of three. The key difference between nodes    ,     and 

    is that they are falling on dates which are     ,       and    , respectively, 

from the next coarse lattice time step. Henceforth, three different sets of probabilities 

are connected to the latter nodes. To obtain these probabilities we replace   in the set 

of equations (3.2) by each node’s respective time step size. 

In order to make the preceding procedure understood, consider for example 

the calculation of the node    . Using     instead of   in the set of equations (3.2) 

and we derive the following set of equations: 

          
 

 
(  (

   

  
)    (

     

  
)   (

   

 
))  

          
 

 
(  (

   

  
)    (

     

  
)   (

   

 
))  

                                          



35 

 

 

The next step is to use these probabilities in equation (2.22) and derive that the value 

of the option at node     is: 

             (                               

                )            

where by using nodes as variables we mean the vector of the price step and time step 

of each node in order to make the notation more easily understood. 

Consequently, having computed the  nodes     and     for every  , we define 

a new set of probabilities for the derivation of nodes at the price step of size      and 

time steps of length     . Similarly to the prior derived probability set as an example, 

we present the application of the procedure for node      : 
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Finally, in order to compute the nodes     we start from the node at expiration and 

we use the recursive scheme of (2.22) rolling back through the tree and eventually 

deriving the option value of     as: 

             (                                   
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3.1.3 General AMM Lattice 

Having constructed in Figure 3.3an adaptive mesh lattice with only one level 

of finer mesh, we can easily construct an adaptive mesh lattice with more than one 

levels of finer mesh simply by adding every time an additional level with a price step 

that is the half of that of the former level. The dashed line starting with     in Figure 

3.3 shows exactly where the middle nodes of the second level of fine mesh would be. 

The base though to every level of fine mesh lattice is the coarse tree which must be 

set up carefully so that the levels of fine mesh that will follow are as accurate as we 

want. In order to achieve this effectiveness we must ensure that the current asset 

price is exactly one price step above the barrier and the number of coarse mesh steps 

in the tree is an integer. 

Figure 3.4:  

  

 

 

 

 

 

 

 

 

 

 

In Subsection 3.1.1 we have set           , while we arbitrarily 

imposed    to be  . Because of the peculiarity of barrier options we can no longer 

select freely,   and    so that the above relationship is just satisfied. In Ritchken 

(1995)    is the stretch parameter, because it is actually a factor that defines how 
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much we should stretch the tree so that the tree’s price nodes lie exactly on the out 

barrier. Figure 3.4 illustrates exactly that stretch for the simple barrier model. 

An approximation procedure can be used at this point so that we can define  . 

At first, we calculate the non-integer number of steps the targeted   would yield and 

then lengthen the time step just enough to eliminate the rounding error. A simple 

general calculation formula presented in Figlewski and Gao (1999) for the 

calculation of the time step k is: 

                                

The procedure followed in order to create an AMM with several levels of fine 

mesh is the following. At first, we define how many levels of fine mesh are needed. 

Let   be that integer number. Obviously for the example presented in the previous 

subsection the value of   is equal to unity. The maximum price step is set 

to              , and by reducing in half for every new level of fine mesh we 

derive the following formula for the price step   of each level: 

                               

We construct the   nodes starting with the initial node with asset price   

      . Consequently, we construct the     etc. nodes by adding every new level of 

finer mesh on the former lattice. As far as consistence of this method is concerned 

the proof is illustrated in Figlewski and Gao (1999) and can easily be applied to other 

AMM structures. 

The number of calculations needed for every level of fine mesh can be easily 

found if we have in mind Figure 3.3. Apart from the    nodes we see three groups 

of   nodes, the upper, the middle and the down ones. For the upper and lower groups 

three new possible values must be computed for each node that do not coincide with 

an   node. For the middle group there are four new nodes for every node in the 

coarse tree. Summing the calculations needed we get           nodes for each 

time step and     in total. Therefore, a lattice consisted of 100 steps 

contains             nodes from the coarse mesh and               nodes 

from the fine mesh, resulting in a total of         nodes to be computed. In contrast, 

if we did not make use of AMM and decide to increase the resolution in a standard 
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trinomial model by halving the price step and by quadruplicating the number of time 

steps then the calculation of              nodes will be required. Practically we 

avoid the calculation of                        nodes, an amount of nodes 

by no means negligible in comparison to the         nodes that are going to be 

computed with the AMM technique.  

In case the accuracy needed is not reached we may always add some new 

levels of fine mesh on the lattice. So counting the nodes we need 10 new nodes for 

every time step and in general if we have m levels of fine mesh then           

new nodes will be created. More details about the computational comparison are 

illustrated in Table 3.1. 

Concluding, the advantage of the AMM is that although the standard 

trinomial method produces smaller distribution approximation errors, the AMM 

approaches the standard trinomial method’s nonlinearity error. This occurs because 

at the critical areas near the barrier both models have the same size of price step for 

the layer adjacent to the barrier. 

 

3.2 Double Barrier Option 

For the discrete double barrier option pricing we can distinguish two distinct 

cases. In the first case the up and down barrier are far away from each other. So there 

is no intersectional area between the adaptive mesh lattices for the up and down 

barrier. The procedure followed is exactly the same as for the simple barrier with the 

only difference that is applied two times, one for the upper barrier and one for the 

lower barrier. The second case, though, is very interesting because the two AMM 

lattices intersect with one another. This usually happens when the barriers are 

extremely close. Figure 3.5 illustrates exactly this situation. 

In order to have a simple illustration, only the AMM lattice for the lower 

barrier is shown in Figure 3.5. However, this does not mean that the AMM lattice for 

the upper barrier does not exist. The coarse lattice which is covered with   nodes is 

the lattice with the wider links. The smaller solid links define the links between    
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nodes of the first layer of AMM and finally the dashed lines define the branches of 

the second layer of AMM with the   nodes. 

If the upper barrier is so close to the lower that node     belongs to the 

intersection of the nodes of the two AMM then the second layer of AMM will also 

be affected. As Figure 3.5 shows the proximity of the upper barrier to the AMM 1 

layer of the lower barrier automatically knocks out the nodes    ,     and     which 

coincides with   . In order to avoid the double calculation of the same nodes we 

must use a common AMM lattice for both barriers in the intersecting areas. 

The environment of this type of a double barrier is quite unfriendly for the 

formation of an algorithm that could be programmed to a computer. Nevertheless, in 

case someone wants to try and create an algorithm some facts observed for this case 

of AMM lattice are the following:  

1) If two m-level adaptive meshes are combined, then the two (m-1)-level 

adaptive meshes should be combined. 

2) If the two m-level adaptive meshes are individual, then the two (m+1)-level 

adaptive meshes should also be individual. 

Obviously for double barrier options there are two sections where nonlinearity 

error would emerge from; the sections adjacent to the barriers. In order to decrease 

nonlinearity error with a standard trinomial model we would half the price step but 

this action would have a quadruple negative effect on the number of nodes to be 

calculated, making this procedure unbearable in terms of computational effort. 

However, if we attach a set of adaptive mesh layers to the coarse lattice of Figure 3.5 

then we would need 60 new nodes to be calculated. These 60 nodes are practically all 

the   nodes of the first layer of the two adaptive meshes. From these 60 nodes 

though many would be knocked out so we do not need any extra calculation for the 

next layer of fine mesh. Moreover, by increasing the number of nodes maximum by 

120 nodes, if the upper and lower barrier lattices are individual, we can decrease the 

nonlinearity error in half.    
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Figure 3.5: 
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4. Gamma and Delta Calculation 

 

A precise calculation of delta and gamma is very important for researchers 

and traders. On the one hand, researchers usually focus on the valuation of an option 

through numerous option pricing models but they could also focus on risk 

management through option valuation. On the other hand, traders make adjustments 

to volatility and other input parameters in order to setup a valuation model that will 

match in values the observed market prices. As mentioned in Subsection 1.2.3, risk 

exposure is measured mostly by delta and gamma, i.e. the change in option value 

given a small change in asset price and the change in delta, respectively. If we have 

acquired a closed form valuation model then delta and gamma can theoretically be 

obtained in closed form following the equations (1.1) and (1.2). 

In this chapter we will demonstrate different approaches for estimating delta 

and gamma in a lattice model. The main differences of these approaches are the 

accuracy and speed of convergence.  Using an adaptive mesh technique, accuracy 

improves significantly. 
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4.1 Trinomial Lattice 

If we use a binomial model then it will be easy to estimate delta because the 

number of shares of a riskless portfolio is practically one estimator of delta. On the 

contrary, in a trinomial model there is no comparable delta estimator because, unlike 

binomial, the trinomial model is not based on option replication. 

In the trinomial model the procedure for delta and gamma estimation is the 

following. At first we create an interval around the initial log price, using a small 

amount  , and begin to form new lattices from the edges of this specific interval. So 

we have three lattices starting from asset prices         and     , respectively. 

This procedure, though, creates very noisy estimates due to the nonlinearity error and 

in the same manner as with option pricing; the estimates do not converge 

monotonically. Also, this procedure demands a second and a third recalculation of 

the entire lattice for the estimation of both delta and gamma. 

Alternatively, as long as we use log prices for the new asset prices, delta and 

gamma calculation formulas can be altered as follows: 
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where we have employed a central finite difference approach for the partial 

derivatives.  The problem arising here is that we have to compute two whole trees 

one for each perturbation of    . Figlewski and Gao (1999) generalized an idea 

presented in Pelsser and Vorst (1994), whose concept for a binomial model is to start 

two time steps earlier from time  , as we usually begin, and construct a tree in such a 

way that the middle node of the new tree’s second time step would coincide with the 

original initial asset price as shown in Figure 4.1. 

 



43 

 

 

Figure 4.1: 

 

 

 

 

 

 

 

 

In Figure 4.1 the extensions of the binomial tree are the dashed lines and the original 

tree is the solid line tree. Also, the initial asset price is denoted by  . Generalizing for 

the trinomial lattice we construct the tree illustrated in Figure 4.2. 

Figure 4.2: 
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You may notice that for the trinomial tree only one step backwards is needed 

because its middle node connection enables the tree to fall onto the initial price node 

in a single step. Using the same notation, the dashed lines are the newly created 

extensions of the tree, while the solid ones are the original tree branches. Apparently, 

extending the tree one period backwards is a much simpler procedure than the 

creation of two whole new lattices based on     h and     h. The benefit of this 

tactic is a total of       node calculations; in fact, we do not include in these 

calculations the single node in time      because it has no actual use in practice. 

In order to obtain delta and gamma values we substitute the price step   for    in the 

set of equations (4.1). 

Using the same test set as in Table 2.1, Table 4.1 compares different 

approaches of estimating gamma and delta with trinomial lattices for 4 different  . 

In a similar way as in Table 2.1, the root mean squared errors are relative to the 

values produced by the closed form formula of Black and Scholes. The first two lines 

of every set in Table 4.1 are using a perturbation of         and       , 

respectively. Every third line gives results for the method of extending the tree one 

step back in time. We expect that the perturbation methods should take at least two 

times as long as simply pricing the option. But, an interesting effect is produced, 

since pricing with smaller   the accuracy is less than that of pricing with larger  . 

The explanation given to this phenomenon is that the division with very small 

numbers, like        , magnifies the nonlinearity error effect. So it is not 

recommended to use small   in the valuation of gamma and delta. Nevertheless, the 

trinomial tree extension takes less time to compute and actually gives more accurate 

results, especially for gamma.  

 

4.2 AMM (Quadrinomial Lattice-Based) 

In the present section the use of an adaptive mesh lattice around the initial 

asset price will be illustrated. At first, we will create only one layer of adaptive mesh 

to increase our accuracy on the estimation of delta and gamma. Secondary, more 

layers of adaptive mesh will be added on the trinomial tree. A quadrinomial model 

will be used for the added adaptive mesh because the initial nodes of the AMM will 
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fall between a pair of nodes of the trinomial lattice, making it impossible to select 

three nodes of the trinomial to connect with each initial node of AMM. 

 

4.2.1 Simple AMM Lattice 

Figure 4.3: 

 

 

 

 

 

 

 

 

 

 

 

 

In this section we shall show how an adaptive mesh model with a region of 

fine mesh around the initial asset price allows numerical derivatives to be computed 

using any perturbation   subject to only a very small increase in the total number of 

node calculations. In Figure 4.3 a lattice set up much like the one in Figure 4.2 is 

illustrated, with perturbation trees that overlap the original lattice and add new nodes 

only at the highest and lowest prices in each period diminishing accordingly the 

computational effort. The difference here is that these new sections of lattice begin at 

time 0 at asset prices of        and        . These deviations from the original 

asset price      are actually half as large as in the example of Figure 4.2. 
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One may observe four links starting from the new nodes in Figure 4.3, while 

the links starting from the original asset price are only three according to the 

definition of a trinomial model. This new linking procedure is a quadrinomial 

branching for the two new nodes. The extended tree shown in Figure 4.2 adds a node 

at the price      for time 0 from which the only links would be      ,      

and   . In contrast, the quadrinomial branching links the time 0 and price        

node with any of the four possible nodes in front of it. This kind of modification 

makes all three original tree nodes accessible from the new ones. So the perturbation 

used in delta and gamma calculation is actually reduced in half without any change 

on the number of new nodes demanded.  

The use of quadrinomial branching solves the problem of negative 

probabilities in the case of trinomial branching from a node like       ; a node 

that does not belong in the original tree. Nevertheless, quadrinomial branching 

necessitates the calculation of a fourth probability. These four probabilities attached 

to the four possible next period nodes are    ,    ,    ,     . These probabilities link 

the new node        to the   time nodes placed at the prices that are  
 

 
 , 

 

 
, 

 

 
 

and  
 

 
  far  respectively, from itself.  

Using the system of equations (2.20), we defined earlier the three 

probabilities for the trinomial lattice and pinpointed the relationship between   and 

 . In the quadrinomial case, though, the price and time steps are predetermined by 

the construction of the lattice. So there is not any extra degree of freedom available. 

In the same way of thinking these four probabilities must obey the following 

conditions: 

(1) The expected return over the next time step is the riskless rate 

(2) The second moment is consistent with the volatility   of the underlying asset 

(3) The skewness, i.e. the third moment, is equal to zero like in the normal 

distribution 

(4) The probabilities have a total of 1. 

 

 



47 

 

Quantifying the above assumptions, we obtain 
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If we solve this system of four equations with four unknowns, keeping in mind that 

       , we conclude that: 

              

                     

 

 

4.2.2 General AMM Lattice 

In this subsection we will illustrate the procedure through which more layers 

of fine mesh can be added in the trinomial tree. In Figure 4.4 a lattice with two layers 

of fine mesh is illustrated.  

In Figure 4.3 we have illustrated the lattice with one layer of fine mesh 

attached at the beginning of the tree, using a price step of   and a time step of 

   which was extended by two nodes at time 0 being     far from the initial price   . 

So the final extended lattice has 3 nodes at time 0 whose prices are     apart. These 

nodes are linked with the five nodes of time   which differ by  . 
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Figure 4.4: 

 

 

 

 

 

 

 

 

 

 

 

In order to achieve the second layer of fine mesh we have to add a new 

section of lattice with a price step of      and a time step of     and then connect it 

to the five nodes in the first layer of AMM lattice. The initial asset price    remains 

at the center of the lattice at time 0.  From this particular node three branches are 

connected to three fine mesh nodes at time     with prices       ,     and  

      , respectively.  

Following the same reasoning as in the creation of the first layer of the 

adaptive mesh we place at time 0 nodes one quarter of a price step above and below 

  ; practically this means nodes for price steps of        ,     and        . 

Facing the same problem as in the first layer of adaptive mesh, we cannot create a 

middle branch for the two new nodes following a trinomial branching procedure, so 

we use quadrinomial branching. Therefore three nodes at time 0 connect to five 

nodes at time       making necessary the calculation of nodes at price         

and         at time      . We must note at this point that these two nodes were 

not necessary for the first adaptive mesh lattice calculation. 
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The bold lines in Figure 4.4 indicate the coarse lattice with price step size   

and time step size  , the dashed lines represent the first adaptive mesh added and the 

thinner solid lines are the branches of the second layer of adaptive mesh. Following 

the same procedure we could create a third layer of adaptive mesh with a finer time 

step of     , and three new nodes at time 0 with prices       ,     and           

respectively. In general if a middle branch can be used for the move from the one 

node to the next then we use trinomial branching, if not we use quadrinomial 

branching. 

This was the procedure to build the AMM lattice with two layers. Now we 

are going to create a general AMM lattice with   coarse steps and   AMM layers. 

The only exception on the layers is the first layer which does not demand the 

addition of a fine mesh with shorter time step. So for every layer     of adaptive 

mesh, there will be a time step of length       . Furthermore, the time length of the 

extended tree will be    
 

 
           . If the option’s maturity    and 

volatility   are given, then the values for   and   are derived from the following 

formulas: 

  
 

    ∑         
   

  

    √           

In order to make the lattice easier to understand from a computational point 

of view, denote the price and time steps for the      level of  adaptive mesh as 

          and          . The very first node must be placed at time 0 and 

have the price    , while the two nodes that will be used for the computation of both 

delta and gamma have price values of           and         , respectively. 

Every three nodes of this type are then linked to five nodes of the next time step 

which is    far from the present time step. Obviously for the nodes at   we use the 

trinomial branching procedure. After the nodes and branches for the first    steps 

are produced, the next step in the procedure is to double the price step and multiply 

the time step by four following the same technique of branching and node creation. 

At the point where there is no more fine mesh there will be connection to the coarse 

lattice and then connection eventually to the maturity date of the option. 
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As far as performance is concerned Table 4.2 illustrates the difference of a 

simple trinomial lattice to several other adaptive mesh models. A first try with the 

addition of adaptive meshes at the beginning of the coarse lattice improved the 

estimates of delta and gamma. But, with a second thought these sizes are affected by 

the nonlinearity effect presented mainly near the expiration time. So a second set of 

adaptive mesh layers were added at expiration so that delta and gamma values would 

be more accurate than before. One main difference is that the accuracy is improved 

by almost 67% for delta and 50% for gamma in the AMM 1 model, without any 

effect in the execution time. Although with a second addition of fine mesh delta is a 

little improved, gamma on the other hand is not. 

Continuing our experimentation by adding adaptive meshes both in the 

beginning and at the maturity of the option we observe radical improvement in delta. 

For the case of gamma, the calculation becomes more accurate when only one 

adaptive mesh layer is added on the beginning and the end. If more layers are added 

not only it does not improve, but the accuracy also deteriorates for every added layer. 

For every new layer of fine mesh added we must note that the execution time is 

slightly increased incomparable to the large improvement in accuracy. Thus the 

benefit from the use of AMM lattice is significant. 
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5. Conclusion 

 

Throughout the years the option valuation formula of Black and Scholes has 

been widespread, but as the market derivatives evolved it became even more difficult 

to create a new closed form formula for their valuation. American options and more 

exotic options could not be priced with the use of a closed form formula, even 

though the no-arbitrage condition continued to hold. This was the beginning of a new 

era; the era of lattice-based models. These models being intuitive and flexible offered 

an easy solution in the problem of derivative valuation, especially for researchers 

who could not fit the idea of Black and Scholes to their needs. 

As illustrated before, two of these lattice models are the Binomial and 

Trinomial. Using these models as a flexible base there was an improvement in 

computation performance for a certain level of accuracy. Still, though, many 

important problems of  pricing common derivative instruments remained 

theoretically solvable but practically infeasible with the standard methods. The main 

cause for this problem is that they required a vast amount of computations for a 

certain level of accuracy. 
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A partial solution to this problem is given by the AMM. So in this thesis 

several structures of AMM were exploited. At first we used an AMM for the 

valuation of an American put option and we managed to attach an adaptive mesh 

lattice near the expiration of the option. Furthermore, in Chapter 2 we illustrated how 

to construct one or multiple layers of adaptive mesh lattice near the barrier of a down 

and out barrier option. Moreover, an AMM structure for double barrier options was 

also illustrated in the second part of the latter chapter. Following the same context, 

procedures for the valuation of delta and gamma of options were illustrated in 

Chapter 4. There is also a sharp improvement in the accuracy of our calculations for 

the delta and gamma when we add an adaptive mesh near the maturity of the option. 

As illustrated explicitly, these adaptive mesh extensions improved in a major 

way their predecessors; the naked Binomial and Trinomial models. When two AMM 

were combined, one near the initial price of the asset price and one near the 

expiration date, significant improvements occurred for both the valuation of the 

option price and the estimation of delta and gamma. 

AMM structures can also be adapted in even more complex derivative 

valuation due to their flexibility. In the bibliography, Ahn, Figlewski and Gao (1999) 

and Chih-Jui Shca in his thesis have illustrated AMM structures for the valuation of 

such derivatives. Proposals for research are endless on this sector of expertise. Future 

research could be occupied with more complex derivatives like barrier options with 

variable barrier or discontinuous barriers. Furthermore, in other derivatives it may 

not be obvious which areas are critical in order to need an adaptive mesh attached. 

So, an index for such areas should be created. If such an index exists and can be 

used, then we would be able to target exactly the critical areas, where more details 

are needed, and discharge our valuation model from the computational effort. 
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DIAGRAMS 

Diagram 2.1 

 

The constant value is the theoretical valuation of the option and the oscillated line is 

the binomial model’s approximation. 
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Diagram 3.1 

 

The constant value is the theoretical option value computed using equation (3.1) and 

the oscillated line is the trinomial model’s approximation of the option value for 

different values of time steps. 
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TABLES 

Table 2.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

We compare an average of 27 European put option valuations through different 

models against the Black and Scholes valuation. These models are Binomial, 

Trinomial, Trinomial with one level of fine mesh (AMM 1) and Trinomial with two 

levels of fine mesh (AMM 2). Further analysis is presented in Subsection 2.3.3. 

 

  

Approximation 

Model  

Time 

Steps  

Price  

RMSE 

Number 

of Nodes  

Binomial 25 0.020841 351 

Trinomial 25 0.012025 676 

AMM 1 25 0.002812 716 

AMM 2 25 0.000615 756 

Binomial 100 0.004929 5151 

Trinomial 100 0.002770 10201 

AMM 1 100 0.000600 10241 

AMM 2 100 0.000151 10281 

Binomial 250 0.002214 31626 

Trinomial 250 0.001360 63001 

AMM 1 250 0.000245 63041 

AMM 2 250 0.000057 63081 

Binomial 1000 0.000448 501501 

Trinomial 1000 0.000244 1002001 

AMM 1 1000 0.000056 1002041 

AMM 2 1000 0.000016 1002081 
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Table 3.1 

Approximation Model N=25 N=100 N=400 

Standard Trinomial 676 10,201 160,801 

AMM M=1 926 11,201 164,801 

Equivalent Trinomial 10,816 163,216 2,572,816 

AMM M=2 1,926 15,201 180,801 

Equivalent Trinomial 173,056 2,611,456 41,165,056 

AMM M=3 5,926 31,201 244,801 

Equivalent Trinomial 2,768,896 41,783,296 658,640,896 

AMM M=4 21,926 95,201 500,801 

Equivalent Trinomial 44,302,336 668,532,736 10,538,254,336 

 

Comparison of the number of nodes in a barrier option AMM versus a standard 

trinomial model with the same size of price step as in the finest level AMM mesh. 
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Table 4.1 

N Approximation Model  
Delta 

RMSE  

Gamma 

RMSE 

Execution 

time (s) 

25 

Trinomial ε = 0.001 0.034958  0.499567 0.0200 

Trinomial ε = 0.01 0.020866  0.101378 0.0200 

Trinomial tree extension 0.003337  0.000428 0.0100 

100 

Trinomial ε = 0.001 0.015642  0.242340 0.2810 

Trinomial ε = 0.01 0.006151  0.044298 0.2800 

Trinomial tree extension 0.000846  0.000144 0.0920 

250 

Trinomial ε = 0.001 0.009286  0.242539 1.5820 

Trinomial ε = 0.01 0.001689  0.026351 1.5830 

Trinomial tree extension 0.000346  0.000061 0.5298 

1000 

Trinomial ε = 0.001 0.004631  0.120938 24.6160 

Trinomial ε = 0.01 0.000656  0.004602 24.6650 

Trinomial tree extension 0.000079  0.000015 8.1918 

 

Performance of the trinomial model in estimating delta and gamma for European put 

options. The same set of 27 European put options used in Τable 2.1 is used as 

illustrated in Figlewski and Gao (1999). 
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Table 4.2 

Approximation 

Model  
N t = 0 t = T 

Delta 

RMSE  

Gamma 

RMSE 

Execution 

Time (s) 

Trinomial  

25 

0 0 0.003337  0.000428 0.0090 

1 0 0.001087  0.000333 0.0090 

2 0 0.000810  0.000400 0.0090 

1 1 0.000845  0.000080 0.0120 

2 2 0.000205  0.000113 0.0131 

3 3 0.000053  0.000120 0.0140 

100 

0 0 0.000846  0.000144 0.0931 

1 0 0.000265  0.000068 0.0922 

2 0 0.000188  0.000077 0.0931 

1 1 0.000210  0.000020 0.0942 

2 2 0.000056  0.000028 0.0971 

3 3 0.000014  0.000027 0.0991 

250 

0 0 0.000346  0.000061 0.5358 

1 0 0.000115  0.000029 0.5288 

2 0 0.000085  0.000031 0.5287 

1 1 0.000079  0.000006 0.5308 

2 2 0.000023  0.000010  0.5878 

3 3 0.000005  0.000011 0.5738 

1000 

0 0 0.000079  0.000015 8.5072 

1 0 0.000021  0.000006 8.3711 

2 0 0.000016  0.000007 8.3640 

1 1 0.000023  0.000002 8.3170 

2 2 0.000005  0.000003 8.3130 

3 3 0.000001  0.000003 8.3751 

 

Performance of trinomial AMM models in estimating delta and gamma for European 

puts. More details in Subsection 4.2.2 as illustrated in Figlewski and Gao (1999). 
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MATLAB ALGORITHMS 

 

Algorithm for diagram 2.1  

 

So=50; K=50; r=0.1; sigma=0.4; T=5/12; N=50; 

BlsC=blsprice(So,K,r,T,sigma); 

for i=1:N 

        LatticeC(i)=LatticeEurCall(So,K,r,T,sigma,i); 

end 

plot(1:N,ones(1,N)*BlsC); 

hold on 

plot(1:N,LatticeC); 

 

function [price,lattice] = LatticeEurCall(So,K,r,T,s,N) 

DT=T/N; 

u=exp(s*sqrt(DT)); 

d=1/u; 

p=(exp(r*DT)-d)/(u-d); 

lattice=zeros(N+1,N+1); 

for i=0:N 

    lattice(i+1,N+1)=max(So*(u^i)*(d^(N-i))-K,0); 

end 

for j=N-1:-1:0 

    for i=0:j 

        lattice(i+1,j+1)=exp(-r*DT)*(p*lattice(i+2,j+2)+(1-

p)*lattice(i+1,j+2)); 

    end 

end 

price=lattice(1,1); 

end  

 

 

European Call Valuation through binomial model 

  



63 

 

Algorithm for diagram 3.1 

So=100; K=100; r=0.1; sigma=0.4; T=1; N=1000; H=90; 

a=(H/So)^(2*(r-((sigma^2)/2))); 

b=((H^2)/So); 

BlsC=blsprice(So,K,r,T,sigma)-a*blsprice(b,K,r,T,sigma);  

for i=1:N 

        LatticeC(i)=TriCDO(So,K,r,T,sigma,i,H); 

end 

plot(1:N,ones(1,N)*BlsC); 

hold on 

plot(1:N,LatticeC); 

 

 

function [price,lattice] = TriCDO(So,K,r,T,s,N,H)  

k=T/N;  

h=s*sqrt(3*k);  

  

a=r-(s^2)/2; 

 

lattice=zeros(2*N+1,N+1); u=exp(h); 

 

d=1/u; 

 

pu=sqrt(k/(12*s^2))*a+1/6; 

pd=-sqrt(k/(12*s^2))*a+1/6; 

pm=2/3; 

  

for i=0:2*N 

    if So*exp((i-N))> H  

    lattice(i+1,N+1)=max(So*exp((i-N)*s*sqrt(3*k))-K,0     

else 

    lattice(i+1,N+1)=0;     

    end 

end                                               

 

for j=N-1:-1:0 

    for i=0:2*j 

        if So*exp((i-j))> H  
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        lattice(i+1,j+1)=exp(-

r*k)*(pu*lattice(i+3,j+2)+pm*lattice(i+2,j+2)+pd*lattice(i+1,j+2));  

        else 

        lattice(i+1,j+1)=0; 

        end 

    end                                          

end 

price=lattice(1,1); 

end  

 

Down and out call barrier valuation through trinomial model 
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Algorithm for diagram 3.1 

stpr=[35,40,45]; 

mada=[1/12,4/12,7/12]; 

vol3=[0.20,0.30,0.40]; 

  

l=1; 

  

for i=1:3 

    for j=1:3 

        for k=1:3 

            data(l,1)=stpr(i); 

            data(l,2)=mada(j); 

            data(l,3)=vol3(k); 

            l=l+1; 

        end 

    end 

end 

l=1; 

So=40; 

r=0.05; 

N=[25,100,250,1000]; 

for i=1:3 

    for j=1:3 

        for k=1:3 

            for ni=1:4 

            

BinVal(l,ni)=LatticeEurPut(So,data(l,1),r,data(l,2),data(l,3),N(ni))

; 

            

TriVal(l,ni)=TriPut(So,data(l,1),r,data(l,2),data(l,3),N(ni)); 

            

[dummy,Bls(l,ni)]=blsprice(So,data(l,1),r,data(l,2),data(l,3)); 

            end 

            l=l+1; 

        end 

    end 
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end 

  

for i=1:4 

    rmsebin(i)=sqrt((mean(BinVal(:,i)-Bls(:,i))^2)); 

    rmsetri(i)=sqrt((mean(TriVal(:,i)-Bls(:,i))^2)); 

end 

 

 

function [price,lattice] = LatticeEurPut(So,K,r,T,s,N) 

DT=T/N; 

u=exp(s*sqrt(DT)); 

d=1/u; 

p=(exp(r*DT)-d)/(u-d); 

lattice=zeros(N+1,N+1); 

for i=0:N 

    lattice(i+1,N+1)=max(K-So*(u^i)*(d^(N-i)),0); 

end 

for j=N-1:-1:0 

    for i=0:j 

        lattice(i+1,j+1)=exp(-r*DT)*(p*lattice(i+2,j+2)+(1-

p)*lattice(i+1,j+2)); 

    end 

end 

price=lattice(1,1); 

end 

  

 

function [price,lattice] = TriCall(So,K,r,T,s,N) 

k=T/N;  

h=s*sqrt(3*k);  

  

a=r-(s^2)/2; 

lattice=zeros(2*N+1,N+1);  

u=exp(h); 

d=1/u; 

pu=sqrt(k/(12*s^2))*a+1/6; 

pd=-sqrt(k/(12*s^2))*a+1/6; 

pm=2/3; 

  

for i=0:2*N 
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    lattice(i+1,N+1)=max(K-So*exp((i-N)*s*sqrt(3*k)),0);      

end                                               

for j=N-1:-1:0 

    for i=0:2*j 

        lattice(i+1,j+1)=exp(-

r*k)*(pu*lattice(i+3,j+2)+pm*lattice(i+2,j+2)+pd*lattice(i+1,j+2));  

    end                                          

end 

price=lattice(1,1); 

end  

 

function [price,lattice] = AMM1ordput(So,K,r,T,s,N) 

k=T/N;  

h=s*sqrt(3*k);  

 

a=r-(s^2)/2; 

lattice=zeros(2*N+1,N+1);  

u=exp(h); 

d=1/u; 

pu=sqrt(k/(12*s^2))*a+1/6; 

pd=-sqrt(k/(12*s^2))*a+1/6; 

pm=2/3; 

  

flag=0; 

  

for i=0:2*N 

    if flag==0 

        if So*exp((i-N)*s*sqrt(3*k))>K 

            flag=1; 

            fia=i+1; 

            num=8; 

        end 

        if So*exp((i-N)*s*sqrt(3*k))==K 

            flag=1; 

            fia=i+1; 

            num=7; 

        end 

    end    

    lattice(i+1,N+1)=max(K-So*exp((i-N)*s*sqrt(3*k)),0);  

end                                               
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for i=1:num 

    A(i)=lattice(fia-5+i,N+1); 

end 

B=zeros(1,num); 

B=AMM(A,So,K,r,k/4,s); 

for i=0:fia-6 

    lattice(i+1,N)=exp(-

r*k)*(pu*lattice(i+3,N+1)+pm*lattice(i+2,N+1)+pd*lattice(i+1,N+1)); 

end 

for i=1:num-4 

    lattice(fia-6+i,N)=B(i); 

end 

for i=fia-6+num-4+1:2*(N-1) 

    lattice(i+1,N)=exp(-

r*k)*(pu*lattice(i+3,N+1)+pm*lattice(i+2,N+1)+pd*lattice(i+1,N+1)); 

end 

  

for j=N-2:-1:0  

    for i=0:2*j 

        lattice(i+1,j+1)=exp(-

r*k)*(pu*lattice(i+3,j+2)+pm*lattice(i+2,j+2)+pd*lattice(i+1,j+2));  

    end                                          

end 

price=lattice(1,1); 

end  

 

 

function [B]=AMM(A,So,K,r,k,s) 

[dummy,sized]=size(A); 

step=(-A(2)+A(1))/2; 

h=s*sqrt(3*k);  

a=r-(s^2)/2; 

u=exp(h); 

d=1/u; 

pu=sqrt(k/(12*s^2))*a+1/6; 

pd=-sqrt(k/(12*s^2))*a+1/6; 

pm=2/3; 

     

if sized==8 

    amml=zeros(15,4);  

    for i=1:15 
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        amml(i,4)=A(1)+i*step  

    end 

    for j=6:-1:4  

    for i=0:2*j 

        amml(i+1,j-3)=exp(-r*k)*(pu*amml(i+3,j-2)+pm*amml(i+2,j-

2)+pd*amml(i+1,j-2));  

    end                                          

    end 

    for i=0:3 

        B(i+1)=exp(-

r*k)*(pu*amml(2*i+3,1)+pm*amml(2*i+2,1)+pd*amml(2*i+1,1)) 

    end  

end 

if sized==7 

    amml=zeros(13,4);  

    for i=1:13 

       amml(i,4)=A(1)+i*step;  

    end 

    for j=5:-1:3  

    for i=0:2*j 

        amml(i+1,j-2)=exp(-r*k)*(pu*amml(i+3,j-1)+pm*amml(i+2,j-

1)+pd*amml(i+1,j-1));  

    end                                          

    end 

    for i=0:3 

        B(i+1)=exp(-

r*k)*(pu*amml(2*i+3,1)+pm*amml(2*i+2,1)+pd*amml(2*i+1,1)); 

    end      

end 

end 

 

European put option valuation through binomial, trinomial, AMM1, AMM2 

valuation 




