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Abstract 

 

 
This paper investigates whether investors can improve their investment opportunity set that 

consists of traditional asset classes through the addition of VIX-related assets (Spot VIX and 

futures on VIX). First, we revisit the posed question within an in-sample setting by employing 

mean-variance and non-mean-variance spanning tests. To the best of our knowledge no 

previously published study has ever examined the results of non mean-variance spanning 

regarding VIX-related assets. Then, we form optimal portfolios by taking into account the 

higher order moments of the portfolio returns distribution and evaluate their out-of-sample 

performance. Under the in-sample setting, we find that VIX-related assets are beneficial both to 

mean-variance and to non mean-variance investors. Furthermore, these benefits are preserved 

out-of-sample. Our findings confirm the  diversification benefits of VIX-related assets and are 

robust across a number of performance evaluation measures ,utility functions and datasets. The 

results hold even when transaction costs are considered .  
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1.  Introduction 

                   VIX is the ticker symbol for the Chicago Board Options Exchange Market Volatility 

Index, a popular measure of the implied volatility of  S&P 500 index options .Volatility analysis 

shows that it hits its highest levels during periods of market turbulence .VIX is often referred as 

the fear index or the fear gauge, and it represents one measure of the market's expectation of 

stock market volatility . VIX represents the 30-calendar-day volatility, which is calculated from 

a model-free formula using the prices of a portfolio of out-of-the-money S&P 500 index (SPX) 

calls and puts whose weights are inversely proportional to the squared strike price. Moreover, 

the VIX formula also implies that the VIX-squared is replicable with a static portfolio of SPX 

options and thus allows the implementation of a tradable strategy for volatility speculation and 

hedging. Therefore, VIX futures and VIXsquared portfolios offer investors opportunities to 

expose their investment positions to the volatility risk directly. It is also possible to trade 

volatility by pure exposure to volatility alone without being affected by directional movements 

of the underlying asset. Classic methods for trading volatility, such as buying at-the-money 

(ATM) straddles, do not meet the demand of pure volatility exposure. They require frequent 

rebalancing to keep the options portfolio delta-neutral, which imposes high transaction costs. At 

first sight, investing in volatility appears attractive since volatility movements are known to be 

negatively correlated with stock index returns. Thus, adding volatility exposure to a portfolio of 

common stocks promises to improve risk diversification. In addition, past experience indicates 

that negative correlation is particularly pronounced in stock market downturns, offering 

protection against stock market losses when it is needed most.  
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                For example, Dumas et al.(1998) find that the correlation between S&P 500 index 

returns and changes in the Black–Scholes implied volatility of S&P 500 index options is _0.57 

from June 1, 1988 through December 31, 1993. Moreover, Whaley (2000) find not only a 

negative correlation but an asymmetric relation between stock market returns and changes in the 

VIX.2 He shows that if the VIX falls by 1%, the S&P 100 index will rise by 0.47%, whereas 

when the VIX rises by 1%, the S&P 100 index will fall by _0.71%. The evidence indicates that 

volatility derivatives may offer different risk return characteristics in comparison to the existing 

assets in the financial markets. This paper examines empirically the common perception on the 

diversification role of VIX-related assets by investigating the benefits of investing in VIX-

related assets in a more general setting than the one that the previous literature has adopted so 

far . 

             In fact there exist only a few papers that examine whether the incorporation of VIX-

related assets in a benchmark portfolio ( that consists of stocks and bonds ) is beneficial to 

investors . Chen , Chung and Ho (2010)  employ mean-variance spanning and intersection tests 

to examine whether the addition of a VIX-related asset ( spot VIX  , VIX futures , VIX-squared 

portfolio ) can significantly expand the investment opportunity set for investors relative to 

different groupings of benchmark portfolios . They prove that occurs a shift in the mean-

variance frontier indicating that adding VIX-related assets may provide diversification benefits . 

Also they perform out-of-sample tests to support the robustness of their in-sample results. They 

find out that Sharpe ratios for the augmented portfolios that include VIX-related assets are much 

larger than for the benchmark ones not including VIX-related assets .Optimal portfolio weights 

are positive for spot VIX and negative for VIX futures . Alexander and Korovilas (2011) 

investigate whether is has ever been optimal to add a long VIX futures  position to a long 

position on the S&P 500 within the Markowitz and Black-Litterman framework . Their analysis 

is limited to long equity investors and to VIX futures. They find that S&P achieves higher 

Sharpe ratios than VIX futures during the bullish period (April 2004-May 2007) while VIX 

futures achieve higher Sharpe ratios than S&P during the bearish period ( June 2007- June 

2010). Hafner and Wallmeier (2008) use an ex-post analysis to demonstrate the benefits of 

adding variance swaps to European equity portfolios . Egloff , Leippold , and Wu (2010) also 

focus on variance swaps , modeling their dynamics in a two-factor model and promoting their 

diversification benefits as well as those of volatility futures .  
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               Szado (2009) considers the diversification of S&P 500 exposure using VIX futures and 

options and SPX put options, claiming that a long volatility exposure is beneficial for 

diversification and that VIX derivatives are more efficient than an exposure through SPX 

options. They consider the crash period and they find that the spot VIX performs better that VIX 

futures. Several studies, e.g. Daigler and Rossi (2006), Dash and Moran (2005) and Pezier and 

White (2008) use the spot VIX, which is not tradable. Moran and Dash (2007) show that the 

desirable qualities of VIX do not always carry over to VIX futures and options. Delisle Doran 

Krieger ( 2010) find that  due to the asymmetric and negative relation between VIX and S&P 

500 returns, the VIX index provides a particularly effective hedge against market declines 

without proportionally penalizing performance when there are market gains. They find that the 

returns to VIX futures contracts are more negative when the S&P 500 is increasing, while the 

opposite is true of the VIX index itself. This contrast between the VIX futures and the index 

suggests the futures contracts did not offer the same downside protection investors would expect 

given the asymmetric relationship between volatility and returns. They state as well that it is not 

clear if this is due to low liquidity or mispricing of futures contracts. 

                   Briere, Burgues and Signora (2010) advocate a sliding approach when hedging , in 

which more (fewer) VIX futures contracts are held when VIX levels are notably lower (higher) 

due to the mean-reverting nature of the index. Jacob Rasiel ( 2008 ) prove that the VIX Index 

performs  well as a hedge to a long equity portfolio . Inclusion of the VIX Index in a long-only 

diversified portfolio of equities and bonds substantially improves the efficient frontier of 

risk/return tradeoffs. Moreover they show that VIX futures perform better in bearish markets. 

The convexity of VIX futures returns, when plotted against the S&P 500 Index, implies a 

decreasing marginal hedge (i.e., the more severe the equity correction, the fewer incremental 

VX Futures are required to hedge). Thus, the portfolio allocation to VX Futures remains low, 

and relatively stable, across a broad range of negative return scenarios for the S&P 500 Index. 

               Therefore the above mentioned literature has provided unanimous evidence that the 

investor is better off by including spot VIX in their portfolio. Unfortunately spot VIX  is not tradable 

, however we use it a proxy of VIX ETF’s. Also the existing literature claim that VIX futures 

perform better during periods of  market turmoil . Nevertheless this conclusion has been reached in 

most of the cases in a MV setting. This approach is subject to shortcomings though. The 

Markowitz setting may not reflect accurately the gains from investing in VIX-related assets 

since it is founded on two assumptions, i.e. that either the distribution of the asset returns is 

normal or investor’s preferences are described by a quadratic utility function.  
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                  Neither of these two conditions is expected to hold. In particular, there is ample 

empirical evidence that asset returns are not distributed normally, especially for relatively short 

horizons .In the case where the non-normality of returns is not taken into account in the optimal 

portfolio formation process, then there is a utility loss (Jondeau and Rockinger, 2006). This is 

because a risk averse investor has a preference for positive skewness and dislikes high kurtosis, 

and therefore one should consider these moments in the portfolio choice process. In fact spot 

VIX (1990-2011) demonstrates positive skewness (1.24) as futures on VIX (2004-2011) do so 

(2.63). Furthermore, a quadratic utility function exhibits negative marginal utility after a certain 

finite wealth level and increasing absolute risk aversion with respect to wealth; both these 

features are not consistent with rational behavior. All the previously published papers have 

studied the in-sample benefits of diversifying in VIX-related assets within a mean-variance 

framework.  

             In light of the previously mentioned shortcomings, we take a more general approach to 

examining whether VIX-related assets should be included in an investors’ portfolio. In 

particular, we consider an investor who allocates funds between equities, bonds, a risk-free asset 

and VIX-related assets in a standard static asset allocation context and make the following  

contributions to the existing literature. First, we revisit the posed question within an in-sample 

setting that has also been employed by the previous literature in order to draw direct comparison 

with previous findings. 

              The novelty though is that we employ rigorous tests that take into account the higher 

moments of the asset returns distributions instead of eyeballing the relative position of the 

efficient frontiers based on the traditional and the traditional augmented with VIX-related asset 

universes, respectively. To this end, we apply the regression-based spanning techniques to test 

for spanning when investor preferences are described by utility functions that are consistent with 

the MV setting, as well as, a more general non-MV one (see e.g., Huberman and Kandel, 1987, 

and DeRoon and Nijman, 2001, for MV spanning, and DeRoon et al., 1996, for generalized non-

MV spanning tests). Chen Chung Ho (2010) propose in their paper that since traditional mean-

variance spanning test ignore higher order moments , that someone can extend their analysis to 

mean-variance spanning tests on the diversification benefits of VIX-related assets in future 

research . To the best of our knowledge it is the first time in literature that a non-mean variance 

spanning test regarding VIX-related assets . 
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                 Second, we examine the question under scrutiny by employing an out-of-sample 

setting. In line with DeMiguel et al. (2009) and Kostakis et al. (2010), we form static one-period 

optimal portfolios at any point in time, calculate their corresponding realised returns and 

evaluate their performance under a number of performance measures. Third, we construct 

optimal portfolios by taking into account the higher order moments of the returns distributions 

of the involved assets. To this end, direct utility maximization is performed (e.g., Cremers et al., 

2005, Adler Kritzman, 2007). The appeal of this approach compared to the MV optimization 

applied by previous studies is that it yields optimal portfolios by maximizing the expected utility 

of the investor for any assumed type of returns distribution and description of her preferences. 

Alexander and Korovilas (2011) have also employ Black-Litterman analysis in order to include 

higher order moments in their out of sample analysis regarding VIX futures.  

                  Forth we study the posed question by considering alternative ways of investing in 

VIX . We use the spot VIX as a proxy for VIX ETF’s , because the historical data for VIX 

ETF’s is very small , as they were introduced in 2009. Also in our analysis we use historical 

data for VIX futures starting from 2004. Finally we employ a robustness test using sub-samples. 

We examine the performance of spot VIX and VIX futures during ( 2004-2007) a bullish period 

and during (2007-2011) a bearish period .   

                  We conduct a number of tests in order to check the robustness of the obtained results. 

First, we employ various utility/value functions and degrees of risk aversion that describe the 

preferences of the individual investor. This is because the formation of optimal portfolios is 

investor specific. In particular, exponential and power utility functions, as well as, the 

disappointment aversion setting introduced by Gul (1991) are adopted. The latter takes into 

account behavioral characteristics in investor’s preferences.  

                 Second, we use a number of performance measures (Sharpe ratio, opportunity cost, 

portfolio turnover and risk-adjusted returns net of transaction costs) to compare the performance 

of the optimal portfolio based on traditional and augmented with VIX-related opportunity sets, 

respectively. This enables us to take into account the impact of the higher order moments as well 

as that of transaction costs on performance evaluation.  
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                  The rest of the paper is structured as follows. Section 2 describes the dataset. Section 

3 outlines the tests for spanning and discusses the results. Section 4 sets the asset allocation 

framework and then compares the out-of-sample performance of optimal portfolios that contain 

VIX-related assets with that of those that do not contain VIX-related assets and  Section 5 

conducts a number of further robustness tests. We summarize results in the last section. 

 

 

2.   The dataset  

 

The dataset consists of monthly closing prices of a number of indexes , spot VIX and VIX 

futures provided by Bloomberg. We employ the S&P 500 total return index, Spartan U.S. Bond 

Index Fund and the Libor one-month rate to proxy the equity market, bond market and the risk-

free rate, respectively. Spartan U.S. Bond Index Fund (FBIDX) replicate the performance of the 

Barclays Capital Aggregate Bond Index , investing at least 80% of the fund's assets in bonds 

included in the Barclays Capital U.S. Aggregate Bond Index. Using statistical sampling 

techniques based on duration, maturity, interest rate sensitivity, security structure, and credit 

quality to attempt to replicate the returns of the Index using a smaller number of securities. To 

get exposure to the VIX-related asset class, we employ the spot VIX and VIX futures returns . 

The dataset for all assets spans the period from April 1990 to August 2011 with the exception of 

VIX futures that covers the period from April 2004 to August 2011 due to data availability 

constraints.  

       VIX is an index, like the Dow Jones Industrial Average (DJIA), computed on a real-time 

basis throughout each trading day. The only meaningful difference is that it measures volatility 

and not price. VIX was introduced in 1993 with two purposes in mind. First, it was intended to 

provide a benchmark of expected short-term market volatility. To facilitate comparisons of the 

then-current VIX level with historical levels, minute-by-minute values were computed using 

index option prices dating back to the beginning of January 1986. This was particularly 

important since documenting the level of market anxiety during the worst stock market crash 

since the Great Depression—the October 1987 Crash—would provide useful benchmark 

information in assessing the degree of market turbulence experienced subsequently.  
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                 Second, VIX was intended to provide an index upon which futures and options 

contracts on volatility could be written. The social benefits of trading volatility have long been 

recognized. The Chicago Board Options Exchange (CBOE) launched trading of VIX futures 

contracts in May 2004 and VIX option contracts in February 2006. In attempting to understand 

VIX, it is important to emphasize that it is forward-looking, measuring volatility that the 

investors expect to see. It is not backward looking, measuring volatility that has been recently 

realized, as some commentators sometimes suggest. Conceptually, VIX is like a bond’s yield to 

maturity. Yield to maturity is the discount rate that equates a bond’s price to the present value of 

its promised payments. As such, a bond’s yield is implied by its current price and represents the 

expected future return of the bond over its remaining life. In the same manner, VIX is implied 

by the current prices of S&P 500 index options and represents expected future market volatility 

over the next 30 calendar days. 

                 Since April 2004, it has been possible for a portfolio to buy or sell cash-settled VIX 

futures. Entering into VIX futures may be a close substitute to theoretical investment in the VIX 

index. A portfolio that invests in VIX futures, starting with the availability of futures data in 

April 2004, through the end of August 2009, returns a statistically insignificant -3.12% a month. 

By comparison, the monthly return of the VIX index over the same period was 1.8% per 

month. When separated into periods of positive and negative S&P 500 returns, the returns to 

VIX futures contracts are more negative when the S&P 500 is increasing, while the opposite is 

true of the VIX index itself.5 The difference between mean returns of the VIX futures and the 

index were -4.73% when S&P 500 futures fell and -6.84% when S&P 500 futures rose. Thus, 

the holders of futures contracts overpaid relative to the index regardless of the direction of the 

S&P 500 futures returns. This contrast between the VIX futures and the index suggests the 

futures contracts did not offer the same downside protection investors would expect given the 

asymmetric relationship between volatility and returns. 

 

 

 

 

 



11 
 

 

3.   In-sample benefits of VIX-related assets: Testing for spanning 

 

Huberman and Kandel (1987) were the first to introduce the concept of spanning that was 

initially restricted to a  mean– variance framework. This method statistically tests whether 

adding a group of new assets can improve the investment opportunity set of an existing group of 

basis assets used as a benchmark, by analyzing the effects of the added assets on the mean–

variance frontier.  

               For ease of illustration, we call the combined group of new assets and benchmark 

assets ‘‘augmented assets.” If the mean–variance frontier of the benchmark assets coincides with 

that of the augmented assets, we refer to this result as ‘‘spanning,” which indicates that investors 

will gain no benefit from the addition of the new assets, regardless of their level of risk aversion 

. If, however, the mean–variance frontier of the benchmark assets is smaller than that of the 

augmented assets, this indicates an expanded opportunity set, showing that investors would gain 

diversification benefits from adding the new assets. In this section, we investigate the economic 

benefits from investing in VIX-related assets by means of tests for spanning, without restricting 

ourselves in an MV framework though. To this end, we follow DeRoon et al., (1996, 2003) and 

analyze the concept of spanning by means of the stochastic discount factor (SDF) that sets the 

ground for the ensuing discussion of spanning tests within a non-MV framework. 

 

 

3.1.  Definition of  spanning : The stochastic discount factor approach 

 

Let an investor who considers a set of K benchmark assets (stocks, bonds, and the risk-free 

asset) with 1tR   be the (K×1) vector of the respective gross returns. Asset pricing theory dictates 

that there exists a SDF  1tM    such that 

 

1 1[ | ]t t tE M R I                                                                 (1) 

 

                        

where tI  denotes the information available at time t and   a K-dimensional unit vector. In fact 

equation (1) is the fundamental equation of asset pricing .The SDF is derived from the first order 
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conditions of a portfolio choice problem where the investor maximizes the expected utility of 

her terminal wealth (DeRoon and Nijman, 2001). In this case, the SDF is proportional to the 

first derivative of the assumed utility function of wealth, given the investor’s optimal portfolio 

choice w* : 

 

1 1( )t tM U w R 

 
                                                            (2) 

                                     

                                                                                                                                      

Where λ is a constant and w* the (K×1) vector of optimal portfolio weights (see also DeRoon, et 

al., 2003). Equation (2) shows that the SDF varies across investors who have different utility 

functions or the same utility function with different risk aversion coefficients. Here  stands 

for the intertemporal marginal rate of substitution . 

              The investor has to decide whether she will incorporate a set of test assets (in our case 

one commodity asset), with gross return 1

test

tR  , in the initial K-asset universe. Let M be a set of 

SDF’s that price the K benchmark assets , i.e. for each 1tM   that belongs to M  equation (1) 

holds. 

            DeRoon et al. (1996, Proposition 1, page 6 )  show that the returns 1

test

tR   of the test asset 

are M-spanned  by the returns 1tR   of the benchmark assets if and only if  

 

 

  1 1 1
ˆ { : }test test

t t tR proj R M w R w W  
    for some wW                         (3) 

 

 

Where { : 1}kw W w w     . Proposition 1 yields the following testable hypothesis : the 

new asset is M-spanned by the benchmark assets if and only if the return of the new asset can be 

written as the return of a portfolio of the benchmark assets  , and a zero-mean error term 1t   i.e. 

 

 

    0 1 1 1: test

t t tH R w R   
                                                              (4) 
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where 1t   is orthogonal to the set M of the pricing kernels under consideration . 

 

 

 

3.2.   Mean-variance spanning tests  

 

First, we test for MV spanning. Hansen and Jagannathan (1991) show that the SDFs associated 

with MV optimizing behavior have the lowest variance among all admissible ones (that price 

correctly a set of asset returns) and are linear in asset returns. Hence, equation (3) can be 

estimated by the following linear regression 

 

 

     1 1 1

test

t t tR R                                                                (5) 

 

 

From a financial theory perspective, it is legitimate to use the risk-free rate as a regressor in 

equation (5). However, from an econometric perspective, this is an unattractive regressor given 

its persistency and therefore the stated reformulation is preferred. Notice also that in the case 

that the risk-free asset is included in the set of benchmark assets, testing for spanning is 

equivalent to testing for intersection. This can be easily perceived by means of the MV efficient 

frontier. In the case where there is a risk-free asset, two mutual fund separation theorem holds, 

i.e. the efficient frontier is linear and constructed by combining the risk-free asset with the 

tangency portfolio. Hence, testing for spanning amounts to testing whether the two linear 

frontiers, that of the test and benchmark assets and the one that includes only benchmark assets, 

are the same. This is equivalent to testing whether the tangency portfolios are the same, i.e. 

testing for intersection. 

 

The null hypothesis for spanning is ( see also Huberman and Kandel , 1987 ) 

 

 

0 : 0H     and 1                                                                 (6) 
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Since in our case the K-benchmark asset universe includes also the risk-free asset , the test for 

MV spanning is reformulated in excess return terms. To fix ideas, define J  to be the intercept 

in  the regression of the test asset’s excess returns of the K benchmark assets ,  i.e. 

 

 

    
1 1 1( )test f f

t t J t t K tR R R R i                                                          (7) 

 

 

with fR  being the risk-free rate of return and 1 1 1( ) ( ) 0t t tE E R     . In Appendix A, we 

derive the equivalence between the intercepts of equations (5) and (7) , i.e . 

 

  (1 ) 0f

J t KR i                                                                  (8) 

 

 

Given the regression model in equation (7), imposing the spanning constraints of equation (6) 

yields 0J  ,  i.e.   

 

 

   0 : (1 ) 0f

J t KH R i                                                              (9) 

 

 

Notice that in the case of the excess returns formulation, the hypothesis of spanning amounts to 

testing only the intercept term. The slope coefficients of the risky assets do not need to add up to 

one since they multiply only the excess returns of the (K-1) risky assets; the missing allocation 

is filled by the investment in the risk-free asset ( see also Huberman and Kandel , 1987 , Scherer 

and He , 2008) . 
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                It is important to underline that in the mean-variance case the α intercept term of the 

regression can be interpreted as the Jensen’s alpha . Whereas the Sharpe ratio is defined in terms 

of the characteristics of one portfolio ( the expected excess portfolio return and its standard 

deviation), Jensen’s alpha is defined in terms of one asset or portfolio relative to another. Sharpe 

ratios answer the question whether one portfolio is to be preferred over another, whereas 

Jensen’s alpha answers the question whether investors can improve the efficiency of their 

portfolio by investing in the new asset. So it becomes obvious that an α statistically significant 

different from zero means that the addition of VIX  related assets to a traditional portfolio leads 

to improvement of efficiency .  

 

 

3.3.   Non  mean-variance spanning tests  

 

Next, we outline the test for spanning in the non–MV case. Let investors’ preferences be 

described by a non-MV utility function ( )U  , i.e. not a quadratic one. Consequently, the set M 

of pricing kernels under consideration includes the MV linear SDFs as well as the SDFs of the 

assumed non-MV utility function that correspond to different risk aversion coefficients. 

Equation (2) implies that any given value for the risk aversion coefficient imposes a different 

SDF that should be included in the set M. Therefore, in the case where a non-MV utility 

function is considered, the test for spanning should be carried out by examining whether the 

relative restrictions hold for any value of risk aversion. For the purposes of our study, we 

employ a wide range of risk aversion coefficients for each non-MV utility function ( )iU   of 

interest with i=1,2,…,n corresponding to the ith risk aversion value. Following the approach 

suggested by DeRoon et al. (1996, 2003), we estimate equation (3) by projecting the excess 

returns of the test assets on the set M of SDFs, i.e.: 

 

   
*'

1 1 1 1

1

( )
n

test

t t i i i t t

i

R R U w R      



                                           (10)            
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 where *'

1( )i i tU w R 
  , i=1,2,…n  are the derivatives of the (non mean-variance) utility functions 

of interest, i.e., for all utility functions that are in M. In fact this regression plots the relation 

between the returns of the test asset and the increase in the wealth of the potential investor .The 

increase of wealth of the potential investor is expressed by the marginal utility of their 

respective utility function . 

          and test jointly for spanning in the mean-variance and non mean-variance case by 

evaluating the restrictions 

 

0 : 1kH     and 0i i                                                         (11) 

 

 

Again, the test for non-MV spanning is reformulated in excess returns terms and the following 

linear regression equation is estimated (see Appendix B): 

 

 
*'

1 1 1 1

1

( ) ( )
n

test f f

t t J t t K i i i t t

i

R R R R i U w R      



                             (12) 

 

So the restrictions that need to hold for the joint existence of mean-variance and non mean-

variance spanning become  

 

 

0 : 0JH        and     0i i                                                     (13) 

 

Ja can be interpreted as Jensen’s alpha only in the mean-variance framework. 

 

From an implementation point of view, the restrictions in (9) and (13) are tested by Wald test 

(see e.g., DeRoon and Nijman, 2001). We correct the standard errors of the estimators by the 

Newey and West (1987) method to account for the presence of autocorrelation and 

heteroskedasticity in the residual term. Moreover, to perform the regression in equation (12), we 

need to estimate the unobserved regressors (i.e. the marginal utilities).  
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To this end, we make an assumption about the utility function and estimate the optimal portfolio 

weights. In particular, we consider an investor whose preferences are described by either an 

exponential utility function or a power utility function, for different levels of risk aversion. The 

negative exponential utility function is defined as: 

 

 

U( W ) = -exp{ -nW } / n  ,  n>0                                                  (14) 

 

 

 

where  n  is the coefficient of absolute risk aversion (ARA) . The power utility function is 

defined as 
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where  γ is the coefficient of relative risk aversion ( RRA ). 

 

We estimate the optimal portfolio weights by applying the Generalized Method of Moments 

(GMM, see e.g., Cochrane, 2005). The moment conditions generated by the SDFs of interest 

need to be defined. Given the assumed non mean-variance utility function, equations (1) and (2) 

imply that the returns on the K benchmark assets should satisfy the following conditions: 

 

 

 *'

1 1( ) |i i i t t t KE U w R R I  
   i                                            (16) 

 

Let the parameter vector *[ ]i i ic w   that corresponds to the ith  value of risk aversion,  i = 

1,2,..,n . Define the errors , 1( )t iu   :  

                          

       
*'
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                                              (17) 
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Then , for  a sample of size T , the moment conditions ( )T ig   are defined as the sample mean of 

the errors 1( )t iu     i.e. 
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By definition, the SDF (for each i) should price each one of the three benchmark assets. This 

provides us with three moment conditions in order to estimate i  . We obtain the GMM 

estimate of i  by minimizing the quadratic function   

 

 

 

     ( ) ( ) ( )T i T i T iJ g Wg                                                    (19) 

 

 

 

where W is a positive definite weighting matrix . We set W equal to the identity matrix I since 

the number of unknowns equals the number of moment conditions . We performed the GMM 

estimation using EVIEWS .  

 

 

3.4.   Results  and  discussion  

 

This section tests the spanning hypothesis when a VIX-related asset is included in a traditional 

asset universe , consisting of stocks , bonds and the risk-free rate .  
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We conduct the analysis using as test asset either the spot VIX , which we also use it as a proxy 

for the VIX ETF’s or VIX futures .Table 1 reports the Wald test statistics and the respective p-

values for testing the null hypothesis that there is spanning . We test the following hypotheses 

separately : only mean-variance spanning , mean-variance and non mean-variance spanning 

jointly ( MV & exponential , MV & power ) as well as only non mean-variance spanning ( 

exponential , power ). We use risk aversion coefficients for a range of values (ARA ,RRA = 

2,4,6,8,10) to conduct the non mean-variance spanning tests (equation (12)) . We can see that 

the null hypothesis of MV spanning can be rejected at a 5% significance level. This holds for the 

spot VIX as well as for the VIX futures .Therefore the results suggest that under a MV 

framework , the performance of traditional portfolios , consisting of stocks, bonds and cash can 

be significantly improved by in investing VIX-related assets . 

                 These findings are in line with those reported by Chen,Chung,Ho (2010) , who find 

that there is not spanning when the test asset is either spot VIX ,or VIX futures , or VIX squared 

portfolios .This is the only published paper that conducts spanning test regarding VIX-related 

assets . 

                 It is common knowledge that the returns are characterized by non zero skewness and 

kurtosis . The S&P 500 total index returns demonstrate negative skewness and excess positive 

kurtosis , while the VIX-related asset  returns demonstrate high positive skewness and positive 

excess kurtosis .So except for the mean-variance spanning test we conducted also non mean-

variance spanning tests in order to take into  account these higher moments .To the best of our 

knowledge no previously published study has ever examined the results of non mean-variance 

spanning regarding VIX-related assets . In the non mean-variance framework we can see that the 

spanning hypothesis is rejected for spot VIX and for VIX futures as well .Results hold 

regardless of whether testing is carried out for joint MV and non-MV or for only non-MV 

spanning and are in agreement with the mean-variance results. Therefore in our in-sample 

analysis we show that VIX-related assets offer added value to investors in a mean-variance ( 

Markowitz ) framework as well as in a non mean-variance framework that takes into account 

higher order moments . 
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4.  Out-of-sample benefits of VIX-related assets 

 

Next, we investigate whether the (MV as well as the non-MV) in-sample diversification benefits 

provided by VIX-related assets are preserved in an out-of-sample setting, too. To this end, we 

calculate optimal portfolios separately for an asset universe that includes “traditional” asset 

classes (stock, bond, risk-free asset) and an “augmented” one that also includes VIX-related 

assets. Next, we evaluate their relative performance in an out-of-sample setting which is the 

ultimate test given that at any given point in time, the investor decides on the portfolio weights; 

the portfolio returns to be realized over the investment horizon are uncertain. 

 

 

4.1.  The asset allocation setting  

 

In about the 4th century, Rabbi Issac bar Aha proposed the following simple rule for asset 

allocation: ‘One should always divide his wealth into three parts: a third in land, a third in 

merchandise, and a third ready to hand.’  Since then many things has changed so we have to  

conduct a different method. Let a myopic investor with fixed initial wealth tW  who faces an 

asset universe of N assets that pay off at time t+1. Their utility function U(.) is assumed to be 

continuous, increasing, concave and differentiable. Let  be the weight of wealth invested in the 

risky asset i over the next period. We construct the optimal portfolio at time t by maximizing the 

investor’s expected utility of wealth at time t+1 with respect to the portfolio weights, i.e. 
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                                         (20) 

 

 

Let also , 1i tr   be the simple rate of return n the individual asset i  and , 1p tr   the portfolio return . 

Without loss of generality , we assume that the initial wealth is normalized to one i.e . 1tW  .  
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The end-of-period wealth is given by : 

                                                                                                                  

1 , 1 , 1 , 1

1 1

(1 ) 1 1
N N

t t i i t i i t p t

i i

W W w r w r r   

 

                                     (21) 

 

 

To solve the expected utility maximization problem, an assumption about the utility function of 

the investor needs to be made. First, we assume that the preferences of the investors are 

described either by the negative exponential or the power utility function (equations (14) and 

(15), respectively) that are commonly used in the finance literature. To ensure the robustness of 

our results, we use various levels of absolute and relative risk aversion (ARA, RRA=2, 4, 6, 8, 

10). In addition, we consider the disappointment aversion (DA) setting introduced by Gul 

(1991) to capture behavioral characteristics in investors preferences. In particular, this 

framework has been employed in recent asset allocation studies so as to capture the presence of 

loss aversion (see e.g., Driessen and Maenhout, 2007, Kostakis et al., 2010), i.e. the fact that 

investors are more sensitive to reductions in their financial wealth than to increases relative to a 

reference point. The advantage of Gul’s (1991) DA setting over other behavioral models is that 

it is founded on formal decision theory that retains all assumptions and axioms underlying 

expected utility theory but the independence axiom that is replaced by a weaker one to 

accommodate the Allais paradox. In line with Driessen and Maenhout (2007) and Kostakis et al. 

(2010), we employ a DA value function based on a power utility function, i.e. 
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where γ denotes the RRA coefficient that controls the loss function in each region, A≤1 is the 

coefficient of DA that controls the relative steepness of the value function in the region of gains 

versus the region of losses and  is the reference point relative to which gains or losses are 

measured; the investor gets disappointed in the case where her wealth drops below the reference 

point. Notice that the loss aversion decreases as A increases; A=1 corresponds to the case of the 

standard power utility function where there is no loss aversion. In accordance with Driessen and 

Maenhout (2007), we employ two values for A=0.6, 0.8. Furthermore, in line with Kostakis et 

al. (2010) and references therein, we set  equal to the initial wealth invested at the risk-free rate, 

i.e. . This choice of the reference point implies that the investor uses the risk-free rate as a 

benchmark to distinguish gains from losses. The DA function is not globally differentiable and 

hence it cannot be employed in the spanning tests described in Section 3 . 

 

 

 

4.2.  Calculating the optimal portfolio 

 

 

We implement the optimization problem in equation (20) by performing direct utility 

maximization defined as the following non-linear optimization problem: 
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where F ( is the joint cumulative distribution function (CDF) of the N returns at time t+1. 

Direct utility maximization provides a more general asset allocation setting compared with the 

Markowitz MV one since it takes into account the higher order moments of the joint CDF as 

well.  
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On the other hand, the joint CDF needs to be estimated; this requires assuming either a specific 

estimator or a parametric form for the CDF leading to an estimation error. To circumvent this, 

we estimate optimal portfolios by applying the full scale optimization method proposed by 

Cremers et al. (2005) and Adler and Kritzman (2007). This is a non-parametric technique based 

on a numerical grid search procedure that uses as many asset mixes as necessary to identify the 

weights that yield the highest expected utility. The method requires no assumptions about the 

joint CDF of returns or potential estimators. On the other hand, the absence of simplifying 

assumptions comes at the cost of computational burden. 

            We performed directed utility maximization using MATLAB . We used fmincon to 

minimize the negative expected utility function. 

 

 

4.3. Out-of-sample performance measures 

 

 

      To ensure the out-of-sample nature of our study, a “rolling-sample” approach is employed. 

Let the dataset consist of T monthly observations for each asset and K be the size of the rolling 

window to be used for the calculation of the portfolio weights, where K≤T. Standing at any 

given point in time (month) t, we use the previous K observations to estimate the asset allocation 

weights that maximize expected utility. The estimated weights at time t are then used to 

compute the out-of-sample realised return over the period [t,t+1]. This process is repeated by 

incorporating the return for the next period and ignoring the earliest one, until the end of the 

sample is reached. To ensure the robustness of the obtained results, we use alternative rolling 

windows sizes of K=36, 48, 60, 72 monthly observations. This rolling-window approach allows 

deriving a series of T-K monthly out-of-sample optimal portfolio returns, given the preferences 

of the investor and length of the estimation window. The time series of realised portfolio returns 

is then used to evaluate the out-of-sample performance of the formed optimal portfolios. 

     Following DeMiguel et al. (2009) and Kostakis et al. (2010), we employ a number of 

performance measures, namely the Sharpe ratio (SR), opportunity cost, portfolio turnover and a 

measure of the portfolio risk-adjusted returns net of transaction costs.  
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To fix ideas, let a specific strategy v. The estimate of the strategy’s SRv is defined as the fraction 

of the sample mean of out-of-sample excess returns  ,  divided by their sample standard 

deviation . 
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      The sharpe ratio , also known as the ‘ reward to variability’ ratio , measures the slope of the 

line from the risk-free rate to any portfolio in the mean-standard deviation plane.  

            To test whether the SRs of the two optimal portfolio strategies are statistically different, 

we use the statistic proposed by Jobson and Korkie (1981) and corrected by Memmel (2003). 

            However, the SR is suitable to assess the performance of a strategy only in the case 

where the strategy’s returns are normally distributed .We have already mentioned that the returns of 

stocks , bonds and VIX aren’t normally distributed , as they demonstrate positive skewness and 

excess kurtosis .  Hence, we use next the concept of opportunity cost (Simaan, 1993) to assess the 

economic significance of the difference in performance of the two optimal portfolios based on 

the traditional and augmented with VIX-related asset universes, respectively. Let denote 

the optimal portfolio realized returns obtained by an investor with the expanded investment 

opportunity set that includes VIX-related assets and the investment opportunity set restricted to 

the traditional asset classes, respectively.  

           The opportunity cost θ is defined as the return that needs to be added to the portfolio 

return so that the investor becomes indifferent (in utility terms) between the two strategies 

imposed by the different investment opportunity sets, i.e. 

 

            1 1nv wvE U r U r                                                     (25) 

 

So, a positive opportunity cost implies that the investor is better off in case of an investment 

opportunity set that allows VIX-related assets investing.  
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           Notice that the opportunity cost takes into account all the characteristics of the utility 

function and hence it is suitable to evaluate strategies even when the return distribution is not 

the normal one , as it is in our case .  

            Moreover, we use the portfolio turnover metric so as to quantify the amount of trading 

required to implement each one of the two strategies. The portfolio turnover  for a strategy v 

is defined as the average absolute change in the weights over the T-K rebalancing points in time 

and across the N available assets i.e. 
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where  are the derived optimal weights of asset j under strategy c at time t and 

t+1, respectively; is the portfolio weight before the rebalancing at time t+1; the quantity | 

 - shows the magnitude of trade needed for asset j at the rebalancing point t+1. 

The PT quantity can be interpreted as the average fraction (in percentage terms) of the portfolio 

value that has to be reallocated over the whole period. In simple words the turnover quantity 

defined above can be interpreted as the average percentage of wealth traded in each period .  

         Finally, we also evaluate the two investment strategies under the risk-adjusted, net of 

transaction costs, returns measure proposed by DeMiguel et al. (2009). To fix ideas, let pc be the 

proportional transaction cost and the realized portfolio return at t+1 (before 

rebalancing). The evolution of the net of transaction costs wealth  for strategy v, is given 

by: 
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So , the return net of transaction costs is defined as  
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The return-loss measure is calculated as the additional return needed for the strategy with the 

restricted opportunity set to perform as well as the strategy with the expanded opportunity set 

that includes VIX-related assets. Let be the monthly out-of-sample mean of RNTC 

from the strategy with the expanded and the restricted opportunity set, respectively, and 

be the corresponding standard deviations. Then, the return-loss measure is given by: 
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To calculate  , we set the proportional transaction cost pc equal to 50 basis points per 

transaction for stocks and bonds ( see DeMiguel et al., 2009, for a similar choice ) , 50 basis 

points for VIX-related assets for the period 2004-2011 and 27 basis points for the period 2007-

2011 ( based on discussion with practitioners in the volatility market ) .Nowadays the VIX 

transaction costs have been significantly reduced reaching 5 basis points per transaction for VIX 

futures. We set the proportional transaction cost for the risk-free rate equal to zero .  
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4.4.   Direct Maximization: Results and discussion 

 

             This section discusses the results on the out-of-sample performance of the traditional 

and augmented with VIX-related assets portfolios formed by direct maximization of expected 

utility . Tables 2 , 3 and 4 show the results for the cases where the preferences of the investor are 

described by a power utility , DA value function and exponential utility , respectively .Investors 

access investment in volatility market via the spot VIX ( sample from 1990 to 2011) , which 

although is not tradable , is used as a proxy for the VIX ETF’s .Results are reported for the four 

performance measures and various levels of ( absolute/ relative ) risk and disappointment 

aversion , as well as different sample sizes of the estimation window . 

             To assess the statistical significance of the superiority in SRs , the p-values of 

Memmel’s (2003) test are reported within parentheses . The null hypothesis is that the SRs 

obtained from the traditional investment opportunity set and the augmented investment 

opportunity set that also includes VIX-related assets are equal . We can see that the augmented 

portfolios with volatility yield definitely greater SRs than the corresponding traditional 

portfolios that don’t invest in volatility. This happens throughout tables 2,3,4 without an 

exception. However , the p-values of Memmel’s (2003) test indicate that the differences in SRs 

are not statistically significant. Interestingly , we can see that for any given level of risk aversion 

, the SRs decrease as the size of the rolling window increases . This implies that the recently 

arrived information should be weighted more heavily ( see also Kostakis et al., 2010 for a 

similar finding ) . 

           As far as the opportunity cost is concerned , we can see that it is positive in all cases .The 

positive sign indicates that the investor is not willing to pay a premium / or is willing to accept a 

premium  in order to replace the optimal strategy that includes investment in spot VIX with the 

optimal one that invests only in the traditional assets. This implies that the investor is better off 

when the augmented investment opportunity set is considered . These results are in accordance 

with the ones obtained under the SR despite the fact the distribution of the optimal portfolio 

returns deviates from normality . Interestingly , in most cases , the opportunity cost decreases ( 

in absolute terms ) as the risk aversion increases . This implies that the investor becomes 

indifferent in utility terms between including and excluding spot VIX in their asset portfolio as 

they become more risk averse .  
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              In contrast the portfolios that include only the traditional asset classes induce less 

portfolio turnover compared with the ones that also include spot VIX in almost all cases . 

Interestingly we can see that in most cases the difference in the portfolio turnovers of the two 

strategies decreases as the risk aversion increases . This suggest that as the investor becomes 

more risk averse , they decrease their rebalancing activity since they are willing less to 

undertake an active bet . Finally , we can see that the return-loss measure that takes into account 

transaction costs is also positive . The positive sign simply confirms the out-of-sample 

superiority of the expanded portfolios that include spot VIX , even after deducting the incurred 

transaction costs. We can see that the return-loss measure decreases (in absolute terms) as the 

risk aversion increases, just as was the case with the opportunity cost. These findings hold 

regardless of the assumed utility/value function, degree of the investor’s relative/absolute risk 

and disappointment aversion, and the employed size of the estimation window. 

             The results reported in the tables mentioned above are in agreement with the ones 

reported in Chen Chung Ho (2010) , who mention that portfolios that consist of spot VIX or 

VIX squared achieve higher SRs than the traditional ones .  

            Tables 4 , 5 , 6 show the results when investors access investment in volatility markets 

via VIX futures and their preferences are described by a power utility , DA value function , 

power utility respectively . Results are reported for all values of risk aversion . 

            However due to historical data limitations ( VIX futures were introduced in April 2004) 

we employ rolling windows of the sizes : 36 months , 48 months , 60 months . Results are 

similar to the ones obtained in the case where spot VIX is considered . i.e. in almost all cases 

augmented portfolios that invest in VIX futures outperform the traditional ones . In particular , 

we can see that the expanded portfolios yield higher SRs than the traditional ones . However the 

p-values of Memmel’s (2003) test indicate that the differences in SRs are not statistically 

significant . These findings hold regardless of the assumed utility/value function , degree of 

investor’s relative /absolute risk and disappointment aversion , and the employed size of the 

estimation window .  
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                   Regarding the opportunity cost we can see that it is positive in all cases .In most 

cases , the opportunity cost decreases as the  ( in absolute terms ) as the risk aversion increases . 

In contrast the portfolios that include traditional assets induce less 

Portfolio turnover compared to the ones that also include VIX futures . This was the case with 

the spot VIX as well . Interestingly we can also see that in most cases the difference in the 

portfolio turnovers of the two strategies decreases as the risk aversion increases . Finally 

regarding the return-loss measure , it is always positive . This implies that even though the 

portfolios based on an investment opportunity set that includes VIX futures / or spot VIX have 

greater turnover than the ones based on the traditional opportunity set , investors can still earn 

positive risk-adjusted return by investing in volatility .  

                 After all , the reported out-of-sample results are in total agreement with the with the 

in-sample results ( whether the framework employed is mean-variance or non mean-variance ) . 

 

 

5.   Further robustness tests 

 

 

        In this section we perform further tests to assess the robustness of the results reported in 

sections 3.4 and 4.4.In fact , we divide the sample to two sub-periods  and repeat the previous 

analysis. We divide the sample into two sub-periods in order to examine the effect of the recent 

subprime crisis . Like Carr , wu (2008) we split our sample in a bullish and a bearish period , to 

investigate  how VIX-related assets behave in these two extremely different circumstances . We 

take the same sub-sample as Alexander and Korovilas do i.e. the bullish period outspreads from 

April 2004 to May 2007 , while the bearish period outspreads from June 2007 to August 2011. 
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5.1.   sub-sample analysis : The bullish period (2004-2007) 

 

            During these years S&P 500 total index has exhibited a significant growth . In April 

2004 the index was at 1624 points and in May 2007 reached 2377 points . In April 2004 VIX 

futures were introduced , that’s why our sub-sample starts from this date  .In contrast during this 

quite tranquil and booming period spot VIX was at low levels . In April 2004 spot VIX was at 

17.19 points  and in May 2007 was at 13,05 points .During this bullish period next to none had 

predicted that in the upcoming years things will take an different route. This specific sub-sample 

analysis attempts to examine whether an investor should have included VIX-related assets in 

their portfolio during a period characterized by a bullish market and low volatility. We will 

examine spot VIX and VIX futures separately to investigate the potential  differences between 

them.  

            Table 8 show the results for the cases where the preferences of the investors are 

described by a power utility function , and they access the volatility market via spot VIX during 

the two different sub-sample periods . Table 9 show the respective results when an exponential 

utility function is assumed . Table 10 show the results for the cases where the preferences of the 

investors are described by a power utility function and they access the volatility market via  VIX 

futures during the two different  sub-sample periods. Table 11 show the respective results when 

an exponential utility function is assumed .Due to historical data limitations and to facilitate the 

calculation of performance measures we employ rolling window of 24 months for each period , 

nevertheless we experimented also with a rolling window of 36 months that produced the same 

results .  

             During the bullish period we can see that the inclusion of spot VIX significantly benefit 

the potential investor ( whether a power or an exponential function is assumed ) as shown in 

panel A of tables 8 and 9 respectively . We can see that the augmented with spot VIX portfolios 

yield greater SRs than the traditional ones . However the differences in SRs are not statistically 

significant . Regarding the opportunity cost we can see that it is positive in all cases. This 

implies that the investor is better off when spot VIX investment is allowed . Finally , the 

positive reported return-loss measure also confirms the out-of-sample superiority of the 

augmented with spot VIX even after deducting the incurred transactional costs. 
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            The results for spot regarding to this period are similar to those of Chen , Chung ,Ho that 

show that the augmented portfolios with spot VIX perform better than the traditional ones . The 

results are also in line with Delisle , Doran , Krieger (2010) who find that  due to the asymmetric 

and negative relation between VIX and S&P 500 returns, the VIX index provides a particularly 

effective hedge against market declines without penalizing performance when there are market 

gains. 

           As stated before spot VIX is not tradable but it is a proxy for VIX ETF’s , for that reason 

we also investigate the performance of VIX futures during this tranquil period . Panel A of 

tables 10 and 11 show the performance of VIX futures during the bullish period under a power 

and an exponential utility respectively .  

            Interestingly we can see that the traditional portfolios that don’t invest in VIX futures 

perform better than the augmented ones .The augmented portfolios demonstrate lower SRs than 

the traditional ones and negative return-loss measure . However for risk aversion 2 and 4 the 

augmented have positive opportunity cost while for greater level of risk aversion they have 

negative . The positive sign of the opportunity cost shows that SRs cannot capture the higher 

order moments characteristics of the augmented with VIX futures , because SRs are based in the 

mean-variance framework ( 1
st
 and 2

nd
 moments ) , so this measure may underrate the 

augmented portfolios as far as the 2
nd

  and 4
th

 level of risk aversion is considered. The results 

mentioned above hold for both power and exponential utility function . Although when the 

whole sample is considered portfolios that invest in VIX futures outperform the traditional ones 

, when the question comes to bullish period the superiority of VIX futures is at stake .  

         These results are in line with the ones obtained by Alexander Korovilas (2011)  who find 

that during ( April 2004- May 2007 ) portfolios that refrain from investing in VIX futures 

outperform the augmented ones , while the opposite is true in the bearish period ( June 2007 –

August 2010) . Szado (2009) reports also that VIX futures perform better during 2008 rather 

than the bullish period .He also notes that VIX futures does not directly mimic holdings in the 

spot levels of VIX given that the mean-reverting nature of derivative instruments are priced 

into their values.  
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              Jacob Rasiel (2009) also report that VIX futures perform better during periods of 

market turmoil . They claim that the reason for  this,  resides in the following matter. The 

convexity of VIX Futures returns, when plotted against the S&P 500 Index, implies a decreasing 

marginal hedge (i.e., the more severe the equity correction, the fewer incremental VX Futures 

are required to hedge). Thus, the portfolio allocation to VX Futures remains low, and relatively 

stable, across a broad range of negative return scenarios for the S&P 500 Index. Delisle , Doran , 

Krieger (2010) show that when separated into periods of positive and negative S&P 500 returns, 

the returns to VIX futures contracts are more negative when the S&P 500 is increasing, while 

the opposite is true of the VIX index itself. This contrast between the VIX futures and the index 

suggests the futures contracts did not offer the same downside protection investors would expect 

given the asymmetric relationship between volatility and returns. This is maybe due to their term 

structure , where sellers of the futures incorporate a premium for the upside risk in the index 

futures( i.e VIX futures are in contango) , since on average, VIX futures have an upward sloping 

term-structure. As a matter of fact we can see that the moderate performance of VIX futures 

during periods of bullish markets has been examined quite thoroughly by the bibliography 

existing already. 

             

        

5.2.   sub-sample analysis :  The bearish period (2007-2011) 

           During these years S&P 500 total index has exhibited an unprecedented decline. In June 

2007 the index was at 2338 points and in February 2009 was only at 1188 points.  In contrast 

during this highly volatile and bearish period spot VIX spiked at a high . In June 2007 spot VIX 

was at 13.05  points  and in October 2008 reached the historical high level of 59.89 points .The 

large negative correlation between daily returns on the S&P 500 and those on VIX , averaging 

about -0.7 before the banking crisis , became even more negative -0.85 during the crisis. During 

these volatile years VIX-related assets became beyond any doubt the new effective diversifier 

for traditional asset classes .The motivation for undertaking the analysis under this period is to 

examine the diversification benefits of VIX-related assets during periods of turbulence markets . 

The already existing bibliography unanimously reports the diversification benefits of VIX-

related assets during bearish periods.  
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             During the bearish period we can see that the inclusion of spot VIX significantly benefit 

the potential investor ( whether a power or an exponential function is assumed ) as shown in 

panel A of tables 8 and 9 respectively . We can see that the augmented with spot VIX portfolios 

yield greater SRs than the traditional ones . However the differences in SRs are not statistically 

significant .We have to underline that during these turbulence years the traditional portfolios 

demonstrate negative SRs for 2 level of risk aversion ( whether a power or an exponential utility 

function is considered ). Therefore investing in volatility during these years appears to be a 

protection again substantial loses . Regarding the opportunity cost we can see that it is positive 

in all cases. This implies that the investor is better off when spot VIX investment is allowed . 

Finally , the positive reported return-loss measure also confirms the out-of-sample superiority of 

the augmented with spot VIX even after deducting the incurred transactional costs. Moreover 

we can see that during the bearish period the turnover for both portfolios is greater compared to 

the bullish period , a fact that shows the magnitude of volatility that prevailed the specific 

period. 

              It comes to no surprise that the superiority of volatility  augmented portfolios is 

preserved when investors access the volatility market during this bearish period via VIX futures 

.The expanded portfolios with VIX futures perform better than the traditional ones in terms of 

higher SRs , significantly positive opportunity cost , and positive return-loss measure. This 

holds under power utility as well as under exponential utility . Alexander , Korovilas (2011) find 

similar result for this bearish  period (as mentioned above) , so does Szado ( 2009 )  and Jacob 

,Rasiel (2009). 

              Investment in VIX-related assets ( either VIX futures or spot VIX ) during this period 

delivers the potential investor from substantial and unprecedented loses. 

 

 

6.   Conclusions  

 

          This Msc Thesis investigates whether an investor can improve his performance by 

including VIX-related assets in a portfolio that consists of traditional asset classes , namely 

stocks , bonds and cash. To this end we take a general approach conducting in-sample and out-

of-sample analysis.  
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In particular we depart from the previous literature in the following aspects. First we revisit the 

posed question within an in-sample setting by employing rigorous spanning tests that are 

consistent with mean-variance as well as non mean-variance preferences. No previously 

published paper has ever examined the results of non mean-variance spanning tests regarding 

VIX-related assets.  Then we study the diversification benefits of VIX-related assets within an 

out-of-sample non mean-variance framework, in order to take into account higher order 

moments like skewness and kurtosis. To this end, we form optimal portfolios under the 

traditional and augmented with VIX-related asset universes, separately, by taking into account 

the higher order moments of returns distribution. Next, we evaluate their comparative 

performance. To check the robustness of the obtained results, we consider alternative ways of 

investing in volatility (spot VIX and VIX futures) and various utility/value functions that 

describe the preferences of the individual investor. Furthermore, we employ a number of 

performance measures and take into account the presence of transaction costs. Finally we 

conduct  further robustness tests considering sub-samples. 

          We find out that within the in-sample setting , VIX-related assets (either spot VIX or VIX 

futures) do yield added value whether a mean-variance framework is considered or higher order 

moments are taken into account (non mean-variance framework). These  benefits are  also 

preserved in the out-of-sample framework. In the vast majority of the cases , the augmented 

portfolios with volatility have superior performance than the traditional ones. 

          Given that the out-of-sample setting is the ultimate test for addressing the primary 

question of this Msc Thesis, our results confirm that VIX-related assets should be included in 

investor’s portfolio , especially during periods of bearing markets. Most importantly, the 

findings are robust given that they hold regardless of the performance measure, and 

specification of utility function . Furthermore, the superiority of the augmented portfolios is 

confirmed even under the presence of transaction costs. The only exception appears when the 

optimal portfolio invests in VIX futures over the 2004-2007 bullish period. Previously published 

literature has already discussed the moderate performance of VIX futures during bullish periods. 

Therefore, VIX-related assets do provide diversification benefits , but should be used with 

caution and by experienced investors. Our finding come to light in a period that the VIX-related 

assets are considered as the definite diversification instrument .  
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Appendix  A  :  Mean-Variance Spanning Tests in Excess Returns 

In case where the initial K-benchmark asset universe includes also the risk-free asset , we 

modify the test for MV spanning to formulate it in excess returns terms. In particular , 

subtracting the risk-free rate from both sides of (5) , yields  

1 1 1 1 1 1( (1 ) )test f f test f f f

t t t t t t t t t K t K tR R R R R R R R R                            

1 1 1(1 ) ( )test f f f

t t t K t t K tR R R R R      
                                                 (30)                                               

Let J  denote  the intercept term  in the regression of the test asset’s excess returns on the 

excess returns of the K-benchmark assets [ see equation (7) ]. Equation (30) establishes the 

equivalence between the intercepts of equations (5) and (7) , i.e.  (1 )f

J t KR i      . Given 

that the restrictions in the case where the test is formulated in gross returns are 0   and 

1Ki  , the equivalent restriction in excess returns is that 0J  . 

 

Appendix B : Non Mean-Variance Spanning Tests in Excess Returns 

In the case where the initial K-benchmark asset universe includes also the risk-free asset , we 

formulate the test for non-MV spanning in terms of excess returns . In particular , subtracting 

the risk-free  rate from  both sides of (10) yields  

*

1 1 1 1

1

( )
n

test

t f t f i i i t t

i

R R R R U w R   


   



        

*'

1 1 1 1

1

( (1 ) ) ( )
n

test

t f t f K f K i i i t t

i

R R R R R U w R        



          

*'

1 1 1 1

1

(1 ) ( ) ( )
n

test

t f f K t f K i i i t t

i

R R R R R U w R        



                               (31)                              

Let J  again denote the intercept term in the regression (31) , i.e. (1 )J f KR     . In the 

case where test is formulated in gross returns the constraints are 0i i      and  1Ki   . 

So , the equivalent restriction in excess returns is that 0J i i    .  
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TABLE 1 

Testing for spanning: Results 

 
Entries report the Wald test statistics and respective p-values for the null hypothesis that a set of benchmark assets 

consisting of stocks, bonds and the risk-free asset spans a given test asset from the volatility market. The first 

column reports results for the null hypothesis that there is mean-variance spanning. The next column reports results 

for the null hypothesis that there is both mean-variance and exponential utility spanning with risk aversion 

coefficient ranging from 2 to 10. The third column reports results for the null hypothesis that there is spanning only 

for investors with exponential utility function. The forth column reports results for the null hypothesis that there is 

both mean-variance and power utility spanning with risk aversion coefficient ranging from 2 to 10. The last column 

presents the respective results when only power utility function is considered. The initial set of assets is the S&P 

500 Total Return Index, Spartan Fidelity Bond Index and Libor 1-month. Results are based on monthly 

observations from April 1990 –August 2011 for spot VIX and April 2004-August  2011 for VIX futures. All test 

statistics are based on a Newey-West covariance matrix with five lags. 
 
 

 

 

 

                      

Test Asset 
 Mean - 

Variance 

(MV) 

 
MV & 

Exponential 

 
Exponential 

 MV & 

Power 

 
Power 

     

      

           
VIX 

 
    8.47 

 
   6.11 

 
   3.97 

 
   6.13 

 
   5.25 

  
(0.003) (0.000) (0.003) (0.000) (0.001) 

           

           
FUTURES VIX 

 
   5.44 

 
   7.16 

 
  7.34 

 
  7.08 

 
    7.23 

  
(0.021) (0.000) (0.000) (0.000) (0.000) 

 

 

 

 

*Notice that the Disappointment Aversion function is not globally differentiable and hence it cannot be employed 

in the spanning test. 
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TABLE 2 

Direct Utility Maximization :Volatility Index ( VIX ) and Power Utility Function 
 

Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under a power utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from 

the traditional investment opportunity set is equal to that derived from the expanded set that includes spot VIX. Results are reported for different sizes of the rolling window 

(K=36,48,60,72 observations) and different degrees of absolute risk aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via spot VIX. Results are 

based on monthly observations from April 1990 to August 2011. 
 

 

 

Volatility Index ( VIX )    ( 1990-2011) 
  RRA=2  RRA=4  RRA=6  RRA=8  RRA=10 

  Expanded Traditional  Expanded Traditional  Expanded Traditional  Expanded Traditional  Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0.33 0.22  0.37 0.30  0.39 0.34  0.40 0.37  0.42 0.38 

(p-value)      (0.267)       (0.212)       (0.225)       (0.273)       (0.186) 

Opp. Cost 1.26%   0.65%   0.49%   0.41%   0.36%  

Port.Turnover 56.15% 36.51%  42.08% 40.49%  45.53% 36.42%  46.33% 37,61%  37.25% 33.50% 

Return-Loss 0.65%   0.41%   0.30%   0.25%   0.19%  

K
=

4
8
 

Sharpe ratio 0.31 0.21  0.36 0.26  0.37 0.29  0.38 0.32  0.39 0.34 

(p-value)     (0.218)       (0.248)       (0.281)       (0.368)       (0.439) 

Opp. Cost 1.10%   0.62%   0.45%   0.34%   0.25%  

Port.Turnover 44.74% 34.22%  39.93% 31.35%  28.73% 26.97%  29.76% 26.65%  24.41% 27.33% 

Return-Loss 0.59%   0,45%   0.32%   0.21%   0.13%  

K
=

6
0
 

Sharpe ratio 0.30 0.17  0.31 0.21  0.31 0.23  0.31 0.25  0.32 0.27 

(p-value)     (0.114)      (0.209)      (0.245)      (0.323)      (0.371) 

Opp. Cost 1.00%   0.61%   0.41%   0.29%   0.20%  

Port.Turnover 34.70% 26.71%  27.07% 22.73%  20.88% 21.37%  16.25% 16.81%  16.63% 16.26% 

Return-Loss 0.87%   0.54%   0.33%   0.22%   0.13%  

K
=

7
2
 

Sharpe ratio 0.28 0.13  0.26 0.16  0.30 0.19  0.27 0.22  0.28 0.23 

(p-value)     (0.133)      (0.185)       (0.289)      (0.403)       (0.401) 

Opp. Cost 1.13%   0.63%   0.37%   0.22%   0.16%  

Port.Turnover 37.36% 23.13%  19.00% 13.70%  17.08% 11.67%  12.99% 10.52%  11.67% 10.79% 

Return-Loss 0.90%   0.52%   0.30%   0.16%   0.09%  
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TABLE 3  /   PANEL A   (A=0.6) 

Direct Utility Maximization: Volatility Index ( VIX ) and Disappointment Aversion Value  Function 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under a power utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from 

the traditional investment opportunity set is equal to that derived from the expanded set that includes spot VIX. Results are reported for different sizes of the rolling window 

(K=36,48,60,72 observations) and different degrees of absolute risk aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via spot VIX. Results are 

based on monthly observations from April 1990 to August 2011. 

 

                                Panel A: Volatility Index ( VIX )    ( 1990-2011)     (A=0.6) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,42 0,38 
 

0,44 0,39 
 

0,45 0,40 
 

0,46 0,42 
 

0,46 0,43 

(p-value)         (0,550) 
 

         (0,511) 
 

         (0,410) 
 

        (0,496) 
 

        (0,569) 

Opp. Cost 0,47% 
  

0,38% 
  

0,40% 
  

0,37% 
  

0,33% 
 

Port.Turnover 41,82% 33,79% 
 

35,21% 26,00% 
 

30,92% 24,97% 
 

30,85% 24,67% 
 

28,84% 19,80% 

Return-Loss 0,15%     0,12%     0,10%     0,04%     0,00%   

K
=

4
8
 

Sharpe ratio 0,36 0,30 

  

0,38 0,33 

  

0,38 0,34 

  

0,39 0,37 

  0,40 0,37 

(p-value)         (0,389)          (0,498)          (0,583)          (0,645)  

         
(0,565)  

Opp. Cost 0,34%   0,31%   0,29%   0,28%   0,29%  

Port.Turnover 27,52% 19,26%  25,76% 19,70%  24,37% 19,46%  19,32% 17,89%  20,19% 16,54% 

Return-Loss 0,22%     0,14%     0,05%     0,00%     0,00%   

K
=

6
0
 

Sharpe ratio 0,30 0,23 
 

0,29 0,24 
 

0,29 0,28 
 

0,30 0,29 
 

0,32 0,30 

(p-value)         (0,325) 
 

        (0,543) 
 

        (0,853) 
 

        (0,822) 
 

        (0,728) 

Opp. Cost 0,34% 
  

0,24% 
  

0,15% 
  

0,14% 
  

0,14% 
 

Port.Turnover 27,90% 20,10% 
 

19,18% 18,14% 
 

21,19% 15,18% 
 

23,33% 14,49% 
 

22,89% 13,28% 

Return-Loss 0,28%     0,10%     -0,03%     -0,05%     -0,04%   

K
=

7
2
 

Sharpe ratio 0,24 0,20 
 

0,25 0,23 
 

0,27 0,25 
 

0,28 0,26 
 

0,29 0,28 

(p-value)         (0,525) 
 

        (0,717) 
 

        (0,708) 
 

        (0,696) 
 

        (0,702) 
 

Opp. Cost 0,23% 
  

0,16% 
  

0,17% 
  

0,15% 
  

0,12% 
 

Port.Turnover 24,60% 17,15% 
 

19,48% 17,35% 
 

19,54% 17,57% 
 

23,15% 18,33% 
 

20,35% 16,37% 

Return-Loss 0,19%     0,03%     0,00%     -0,01%     -0,02%   
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TABLE 3 / PANEL B   ( A=0.8) 
    Direct Utility Maximization: Volatility Index ( VIX ) and Disappointment Aversion Value  Function 
     Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the 

expected utility is maximized under a power utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that 

the SR obtained from the traditional investment opportunity set is equal to that derived from the expanded set that includes  spot  VIX. Results are reported for 

different sizes of the rolling window (K=36,48,60,72 observations) and different degrees of absolute risk aversion (ARA=2,4,6,8,10). Investors access investment in 

Volatility market either via spot VIX. Results are based on monthly observations from April 1990 to August 2011. 
 

    Panel B : VIX (1990-2011)     (A=0,8) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    
    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

    

K
=

3
6
 

Sharpe ratio 0,36 0,27 
 

0,41 0,34 
 

0,44 0,38 
 

0,45 0,39 
 

0,46 0,40 
    

(p-value)        (0,337) 
 

       (0,385) 
 

       (0,405) 
 

       (0,312) 
 

       (0,327) 
    

Opp. Cost 0,79% 
  

0,49% 
  

0,39% 
  

0,38% 
  

0,35% 
     

Port.Turnover 52,90% 38,29% 
 

40,68% 31,80% 
 

36,54% 34,40% 
 

32,42% 26,88% 
 

28,82% 23,75% 
    

Return-Loss 0,39%     0,25%     0,20%     0,17%     0,10%   
    

K
=

4
8
 

Sharpe ratio 0,34 0,25 

  

0,37 0,30 

  

0,38 0,32 

  

0,38 0,34 

  0,40 0,36 

    
(p-value)        (0,320)         (0,395)         (0,372)         (0,562)        (0,443) 

    
Opp. Cost 0,66%   0,40%   0,37%   0,27%   0,27%  

    
Port.Turnover 37,41% 20,76%  30,63% 20,17%  29,43% 20,89%  29,12% 21,05%  25,16% 17,52% 

    
Return-Loss 0,43%     0,24%     0,21%     0,06%     0,05%   

    

K
=

6
0
 

Sharpe ratio 0,32 0,19 
 

0,31 0,23 
 

0,31 0,25 
 

0,31 0,27 
 

0,32 0,28 
    

(p-value)        (0,180) 
 

       (0,256) 
 

        (0,373) 
 

       (0,490) 
 

       (0,528) 
    

Opp. Cost 0,75% 
  

0,42% 
  

0,29% 
  

0,21% 
  

0,15% 
     

Port.Turnover 24,00% 16,00% 
 

19,75% 17,91% 
 

19,12% 17,48% 
 

20,03% 15,81% 
 

20,45% 15,17% 
    

Return-Loss 0,70%     0,33%     0,38%     0,08%     0,02%   
    

K
=

7
2
 

Sharpe ratio 0,26 0,14 
 

0,25 0,19 
 

0,26 0,23 
 

0,27 0,24 
 

0,29 0,26 
    

(p-value)        (0,171) 
 

       (0,403) 
 

       (0,561) 
 

       (0,587) 
 

       (0,502) 
    

Opp. Cost 0,70% 
  

0,32% 
  

0,18% 
  

0,15% 
  

0,15% 
     

Port.Turnover 24,64% 10,15% 
 

17,64% 10,96% 
 

12,65% 10,73% 
 

11,53% 9,59% 
 

15,50% 9,71% 
    

Return-Loss 0,68%     0,24%     0,09%     0,04%     0,02%   
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TABLE 4 

Direct Utility Maximization: Volatility Index( VIX ) and Exponential Utility Function 
 Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under An exponential utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR 

obtained from the traditional investment opportunity set is equal to that derived from the expanded set that includes spot VIX. Results are reported for different sizes of the 

rolling window (K=36,48,60,72 observations) and different degrees of absolute risk aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via spot 

VIX. Results are based on monthly observations from April 1990 to August 2011. 
                

 
              

VIX ( 1990 -2011 ) 

  
ARA=2 

 

ARA=4 

 
ARA=6 

 
ARA=8 

 
ARA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,33 0,23 
 

0,37 0,30 
 

0,39 0,33 
 

0,41 0,24 
 

0,41 0,29 

(p-value)           (0,167) 
 

         (0,123) 
 

          (0,227) 
 

         (0,067) 
 

         (0,152) 

Opp. Cost 1,02% 
  

0,57% 
  

0,38% 
  

0,74% 
  

0,52% 
 Port.Turnover 51,34%           36,89%  44,27%      34,97% 

 
41,95% 38,95% 

 
39,31% 38,51% 

 
37,51%      36,81% 

Return-Loss 0,63%     0,37%     0,24%     0,58%     0,49%   

K
=

4
8
 

Sharpe ratio 0,32 0,21   0,36 0,27   0,37 0,30   0,34 0,21   0,37 0,26 

(p-value)           (0,219)           (0,301)           (0,301)           (0,078)           (0,090) 

Opp. Cost 1,00%   0,56%   0,43%   0,58%   0,47%  

Port.Turnover 46,01% 36,77%  31,67% 27,65%  27,12% 24,41%  39,46% 33,56%  37,86% 36,41% 

Return-Loss 0,61%     0,44%     0,31%     0,43%     0,37%   

K
=

6
0
 

Sharpe ratio 0,31 0,16 
 

0,32 0,21 
 

0,31 0,23 
 

0,31 0,24 
 

0,30 0,23 

(p-value)          (0,134) 
 

         (0,171) 
 

         (0,210) 
 

         (0,326) 
 

         (0,296) 

Opp. Cost 1,10% 
  

0,67% 
  

0,43% 
  

0,26% 
  

0,24% 
 Port.Turnover 31,52% 26,99% 

 
20,45% 16,00% 

 
17,75% 15,10% 

 
19,49% 18,27% 

 
18,38% 17,81% 

Return-Loss 0,95%     0,64%     0,35%     0,18%     0,23%   

K
=

7
2
 

Sharpe ratio 0,27 0,12 
 

0,26 0,16 
 

0,27 0,19 
 

0,24 0,21 
 

0,28 0,23 

(p-value)          (0,154) 
 

         (0,189) 
 

         (0,281) 
 

         (0,641) 
 

         (0,489) 

Opp. Cost 1,06% 
  

0,61% 
  

0,35% 
  

0,00% 
  

0,14% 
 Port.Turnover 30,07% 20,01% 

 
16,58% 12,91% 

 
15,29% 11,36% 

 
17,62% 13,49% 

 
17,75% 15,04% 

Return-Loss 1,00%     0,59%     0,29%     0,00%     0,00%   
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TABLE 5 

Direct Utility Maximization: VIX Futures  and Power Utility Function 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under A power utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from 

the traditional investment opportunity set is equal to that derived from the expanded set that includes VIX futures. Results are reported for different sizes of the rolling window 

(K=36,48,60 observations) .We don’t employ rolling window 72 due to historical data limitations and different degrees of absolute risk aversion (ARA=2,4,6,8,10). Investors 

access investment in Volatility market either via VIX FUTURES. Results are based on monthly observations from April 2004 to August 2011. 

                VIX FUTURES ( 2004-2011 ) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,19 0,09 
 

0,25 0,13 
 

0,29 0,16 
 

0,30 0,18 
 

0,31 0,18 

(p-value)         (0,414) 
 

        (0,409) 
 

        (0,389) 
 

        (0,391) 
 

        (0,409) 

Opp. Cost 1,41% 
  

1,37% 
  

1,31% 
  

1,24% 
  

0,97% 
 Port.Turnover 73,51% 67,66% 

 
74,83% 53,74% 

 
61,55% 49,19% 

 
51,29% 47,44% 

 
45,66% 39,85% 

Return-Loss 0,18%     0,17%     0,11%     0,08%     0,05%   

K
=

4
8
 

Sharpe ratio 0,20 0,11   0,24 0,09   0,25 0,11   0,25 0,12   0,26 0,12 

(p-value)         (0,362)          (0,375)          (0,389)          (0,396)          (0,363) 

Opp. Cost 1,40%   1,39%   1,27%   1,12%   0,73%  

Port.Turnover 84,29% 62,54%  58,42% 40,11%  40,82% 36,37%  31,89% 31,62%  28,15% 26,42% 

Return-Loss 0,45%     0,42%     0,35%     0,27%     0,23%   

K
=

6
0
 

Sharpe ratio 0,10 0,03 
 

0,06 -0,02 
 

0,05 -0,02 
 

0,08 0,00 
 

0,07 0,00 

(p-value)         (0,402) 
 

        (0,398) 
 

        (0,394) 
 

        (0,405) 
 

        (0,331) 

Opp. Cost 1,02% 
  

0,81% 
  

0,63% 
  

0,35% 
  

0,16% 
 Port.Turnover 51,93% 29,75% 

 
27,59% 17,79% 

 
18,53% 14,57% 

 
14,44% 12,91% 

 
13,03% 11,93% 

Return-Loss 0,38%     0,31%     0,21%     0,19%     0,21%   
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TABLE 6 / PANEL A ( A=0.6 ) 

Direct Utility Maximization : VIX Futures and Disappointment Aversion Value  Function 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under a Disappointment Aversion utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the 

SR obtained from the traditional investment opportunity set is equal to that derived from the expanded set that includes VIX futures . Results are reported for different sizes of 

the rolling window (K=36,48,60 observations) .We don’t  employ rolling window 72 due to historical data limitations and different degrees of absolute risk aversion 

(ARA=2,4,6,8,10). Investors access investment in Volatility market either via VIX FUTURES. Results are based on monthly observations from April 2004 to August 2011. 

                Panel A : VIX FUTURES  ( 2004-2011 )  /  ( A=0.6 ) 

  
RRA=2 

 

RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,33 0,18 
 

0,35 0,24 
 

0,36 0,26 
 

0,37 0,26 
 

0,37 0,28 

(p-value)         (0,460) 
 

        (0,471) 
 

        (0,514) 
 

        (0,482) 
 

        (0,520) 

Opp. Cost 1,07% 
  

1,03% 
  

0,86% 
  

0,74% 
  

0,69% 
 Port.Turnover 67,75% 55,97% 

 
64,81% 51,99% 

 
57,18% 42,73% 

 
49,03% 38,41% 

 
45,70% 36,12% 

Return-Loss 0,07%     0,05%     0,02%     0,02%     0,00%   

K
=

4
8
 

Sharpe ratio 0,27 0,15   0,28 0,17   0,29 0,16   0,29 0,17   0,27 0,17 

(p-value)         (0,641)          (0,453)          (0,486)          (0,590)          (0,418) 

Opp. Cost 1,05%   0,96%   0,80%   0,72%   0,66%  

Port.Turnover 65,49% 53,00%  57,74% 43,61%  43,87% 35,20%  30,55% 29,72%  27,90% 25,41% 

Return-Loss 0,10%     0,08%     0,07%     0,05%     0,00%   

K
=

6
0
 

Sharpe ratio 0,13 0,04 
 

0,11 0,05 
 

0,10 0,04 
 

0,09 0,00 
 

0,09 -0,01 

(p-value)         (0,538) 
 

        (0,617) 
 

        (0,842) 
 

        (0,787) 
 

        (0,450) 

Opp. Cost 0,95% 
  

0,79% 
  

0,64% 
  

0,48% 
  

0,43% 
 Port.Turnover 48,33% 31,56% 

 
33,12% 21,59% 

 
19,19% 13,87% 

 
13,70% 12,66% 

 
12,38% 11,71% 

Return-Loss 0,09%     0,07%     0,05%     0,02%     0,00%   

 

 



47 
 

TABLE 6 / PANEL B ( A=0.8 ) 

Direct Utility Maximization : VIX Futures and Disappointment Aversion Value  Function 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under a Disappointment Aversion utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the 

SR obtained from the traditional investment opportunity set is equal to that derived from the expanded set that includes VIX futures. Results are reported for different sizes of the 

rolling window (K=36,48,60 observations) .We don’t  employ rolling window 72 due to historical data limitations and different degrees of absolute risk aversion 

(ARA=2,4,6,8,10). Investors access investment in Volatility market either via VIX FUTURES. Results are based on monthly observations from April 2004 to August 2011. 

                
Panel B : VIX FUTURES (2004-2011) / ( A=0.8 ) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,31 0,17 
 

0,33 0,23 
 

0,34 0,23 
 

0,35 0,25 
 

0,35 0,26 

(p-value)         (0,425) 
 

        (0,317) 
 

        (0,361) 
 

        (0,430) 
 

        (0,419) 

Opp. Cost 1,36% 
  

1,25% 
  

1,11% 
  

0,89% 
  

0,81% 
 

Port.Turnover 69,54% 58,30% 
 

66,73% 54,27% 
 

59,91% 45,73% 
 

51,23% 40,20% 
 

46,81% 38,12% 

Return-Loss 0,12%     0,10%     0,07%     0,05%     0,05%   

K
=

4
8
 

Sharpe ratio 0,25 0,16 

  

0,26 0,17 

  

0,30 0,19 

  

0,30 0,18 

  0,29 0,19 

(p-value)         (0,561)          (0,519)          (0,473)          (0,550)          (0,389) 

Opp. Cost 1,14%   1,01%   0,96%   0,77%   0,68%  

Port.Turnover 67,19% 55,80%  60,45% 48,94%  48,81% 37,10%  37,69% 32,43%  34,83% 29,51% 

Return-Loss 0,11%     0,11%     0,08%     0,07%         

K
=

6
0
 

Sharpe ratio 0,15 0,03 
 

0,12 0,03 
 

0,12 0,02 
 

0,11 0,00 
 

0,10 0,00 

(p-value)         (0,149) 
 

        (0,234) 
 

        (0,265) 
 

        (0,381) 
 

        (0,464) 

Opp. Cost 1,04% 
  

0,86% 
  

0,63% 
  

0,51% 
  

0,46% 
 

Port.Turnover 47,92% 31,89% 
 

39,27% 24,65% 
 

26,46% 18,03% 
 

15,30% 12,71% 
 

13,82% 11,99% 

Return-Loss 0,12%     0,08%     0,05%     0,03%     0,00%   
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TABLE 7 

Direct Utility Maximization:  VIX Futures and Exponential Utility Function 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under an exponential utility function. The p-values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained 

from the traditional investment opportunity set is equal to that derived from the expanded set that includes VIX futures. Results are reported for different sizes of the rolling 

window (K=36,48,60 observations) .We don’t  employ rolling window 72 due to historical data limitations and different degrees of absolute risk aversion (ARA=2,4,6,8,10). 

Investors access investment in Volatility market either via VIX FUTURES. Results are based on monthly observations from April 2004 to August 2011. 

                
VIX FUTURES ( 2004 - 2011 ) 

  
ARA=2   ARA=4 

 
ARA=6 

 
ARA=8 

 
ARA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,20 0,09 
 

0,26 0,12 
 

0,29 0,14 
 

0,29 0,15 
 

0,31 0,18 

(p-value)         (0,401) 
 

        (0,365) 
 

        (0,393) 
 

        (0,317) 
 

        (0,152) 

Opp. Cost 1,39% 
  

1,35% 
  

1,31% 
  

1,21% 
  

0,88% 
 

Port.Turnover 73,52% 64,02% 

 
77,70% 49,99% 

 
60,67% 48,78% 

 
49,88% 45,72% 

 
46,71% 40,50% 

Return-Loss 0,10%     0,19%     0,08%     0,02%     0,02%   

K
=

4
8
 

Sharpe ratio 0,21 0,11 

  

0,24 0,10 

  

0,26 0,12 

  

0,27 0,13 

  0,27 0,13 

(p-value)         (0,541)          (0,492)        (0,411)          (0,278)          (0,090) 

Opp. Cost 1,27%   1,13%   1,02%   0,97%   0,64%  

Port.Turnover 82,18% 62,43%  57,32% 58,58%  40,96% 35,78%  33,26% 31,24%  27,41% 26,20% 

Return-Loss 0,47%     0,48%     0,33%     0,27%     0,19%   

K
=

6
0
 

Sharpe ratio 0,12 0,04 
 

0,06 -0,02 
 

0,05 -0,03 
 

0,05 -0,02 
 

0,06 0,00 

(p-value)         (0,330) 
 

        (0,371) 
 

      (0,293) 
 

        (0,326) 
 

        (0,294) 

Opp. Cost 1,00% 
  

0,88% 
  

0,59% 
  

0,47% 
  

0,23% 
 

Port.Turnover 59,14% 40,99% 
 

28,91% 25,86% 
 

18,56% 15,11% 
 

15,06% 13,61% 
 

13,34% 11,86% 

Return-Loss 0,34%     0,32%     0,22%     0,19%     0,18%   
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TABLE 8 

Direct Utility Maximization :Volatility Index( VIX ) and Power Utility Function 

further robustness  sub sample  ( April 2004-May 2007 , June 2007-August 2011) 
Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under a power utility function and the sample is divided to two sub-samples , a bullish period ( 2004-2007) and a bearish period (2007-2011). The p-values 

of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived 

from the expanded set that includes spot VIX. Results are reported for different sizes of the rolling window (K=36 observations) .We don’t  employ rolling window 72 due to 

historical data limitations and different degrees of absolute risk aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via spot VIX . Results are 

based on monthly observations from April 2004 to August 2011. 

                
Panel A : VIX (2004-2007) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,81 0,68 
 

1,05 0,68 
 

1,14 0,76 
 

1,19 0,82 
 

1,27 0,79 

(p-value)           (0,195) 
 

          (0,201) 
 

          (0,263) 
 

           (0,062) 
 

           (0,058) 

Opp. Cost 2,22% 
  

1,41% 
  

1,06% 
  

1,02% 
  

1,15% 
 

Port.Turnover 54,92% 51,52% 
 

48,91% 46,06% 
 

43,70% 36,58% 
 

56,38% 48,81% 
 

52,17% 48,20% 

Return-Loss 1,12%     2,28%     2,29%     2,13%     2,12%   

                                

                
Panel B : VIX (2007-2011) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,25 -0,02 
 

0,30 0,06 
 

0,30 0,11 
 

0,29 0,13 
 

0,29 0,14 

(p-value)           (0,520) 
 

          (0,514) 
 

          (0,524) 
 

          (0,468) 
 

          (0,471) 

Opp. Cost 1,90% 
  

1,14% 
  

0,77% 
  

0,58% 
  

0,50% 
 

Port.Turnover 83,76% 74,79% 
 

74,13% 74,92% 
 

74,93% 67,01% 
 

66,04% 56,53% 
 

65,58% 50,10% 

Return-Loss 2,39%     1,38%     0,92%     0,67%     0,55%   
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TABLE 9 

Direct Utility Maximization: Volatility Index( VIX ) and Exponential Utility Function 
further robustness  sub sample  ( April 2004-May 2007 , June 2007-August 2011) 

Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under an exponential utility function and the sample is divided to two sub-samples , a bullish period ( 2004-2007) and a bearish period (2007-2011). The p-

values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that 

derived from the expanded set that includes spot VIX. Results are reported for different sizes of the rolling window (K=36 observations)  and different degrees of absolute risk 

aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via spot VIX . Results are based on monthly observations from April 2004 to August 2011. 

                
Panel A : VIX (2004-2007) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,83 0,69 
 

1,06 0,69 
 

1,14 0,76 
 

1,20 0,86 
 

1,28 0,81 

(p-value)           (0,530) 
 

           (0,207) 
 

          (0,330) 
 

         (0,133) 
 

          (0,121) 

Opp. Cost 2,16% 
  

1,40% 
  

1,06% 
  

1,02% 
  

0,97% 
 

Port.Turnover 53,21% 50,64% 
 

46,76% 43,92% 
 

41,54% 35,58% 
 

52,09% 48,21% 
 

50,55% 47,20% 

Return-Loss 1,25%     2,34%     2,22%     2,11%     2,04%   

                

                

                
Panel B : VIX (2007-2011) 

  
RRA=2 

 

RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,25 -0,01 
 

0,30 0,07 
 

0,29 0,10 
 

0,29 0,12 
 

0,29 0,11 

(p-value)           (0,514) 
 

          (0,500) 
 

          (0,521) 
 

         (0,562) 
 

          (0,655) 

Opp. Cost 1,83% 
  

1,08% 
  

0,73% 
  

0,55% 
  

0,51% 
 

Port.Turnover 84,43% 74,72% 
 

73,56% 76,46% 
 

68,41% 60,41% 
 

60,64% 41,64% 
 

58,65% 39,77% 

Return-Loss 2,34%     1,36%     0,89%     0,64%     0,49%   
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TABLE 10  

Direct Utility Maximization :Volatility Index ( VIX FUTURES ) and Power Utility Function 
further robustness  sub sample ( April 2004-May 2007 , June 2007-August  2011) 

Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under a power utility function and the sample is divided to two sub-samples , a bullish period ( 2004-2007) and a bearish period (2007-2011). The p-values 

of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that derived 

from the expanded set that includes VIX futures. Results are reported for different sizes of the rolling window (K=36 observations) . and different degrees of absolute risk 

aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via  VIX FUTURES . Results are based on monthly observations from April 2004 to August 

2011. 

                
Panel A : VIX FUTURES  (2004-2007) 

  
RRA=2   RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

2
4
 

Sharpe ratio 0,42 0,68 
 

0,51 0,68 
 

0,59 0,76 
 

0,64 0,82 
 

0,63 0,79 

(p-value)           (0,395) 
 

          (0,567) 
 

          (0,438) 
 

               (0,611) 
 

          (0,280) 

Opp. Cost 0,81% 
  

0,25% 
  

-0,16% 
  

-0,34% 
  

-0,50% 
 

Port.Turnover 60,43% 51,52% 
 

57,81% 46,06% 
 

68,23% 36,58% 
 

71,09% 48,81% 
 

56,17% 48,20% 

Return-Loss -1,17%     -0,81%     -0,90%     -0,81%     -0,60%   

                

           

                
Panel B : VIX FUTURES  (2007-2011) 

  
RRA=2 

 

RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,28 -0,02 
 

0,34 0,06 
 

0,36 0,11 
 

                  0.37 0,13 
 

0,38 0,14 

(p-value)          (0,553) 
 

           (0,585) 
 

          (0,602) 
 

              (0,519) 
 

          (0,576) 

Opp. Cost 2,33% 
  

1,54% 
  

1,03% 
  

0,81% 
  

0,69% 
 

Port.Turnover 84,30% 74,79% 
 

75,12% 74,92% 
 

72,86% 67,01% 
 

67,49% 56,53% 
 

65,23% 50,10% 

Return-Loss 2,36%     1,46%     1,02%     0,82%     0,72%   
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TABLE 11 

Direct Utility Maximization :Volatility Index( VIX FUTURES ) and Exponential Utility Function 
further robustness  sub sample ( April 2004-May 2007 , June 2007-August  2011) 

Entries report the performance measures (annualized Sharpe Ratio, annualized Opportunity Cost, Portfolio Turnover, annualized Return- Loss) for the case where the expected 

utility is maximized under an exponential utility function and the sample is divided to two sub-samples , a bullish period ( 2004-2007) and a bearish period (2007-2011). The p-

values of  Memmel's (2003) test are also reported within parentheses; the null hypothesis is that the SR obtained from the traditional investment opportunity set is equal to that 

derived from the expanded set that includes VIX futures. Results are reported for different sizes of the rolling window (K=36 observations) . and different degrees of absolute 

risk aversion (ARA=2,4,6,8,10). Investors access investment in Volatility market either via  VIX FUTURES . Results are based on monthly observations from April 2004 to 

August 2011. 

                
Panel A :  VIX FUTURES (2004-2007) 

  
RRA=2 

 

RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

2
4
 

Sharpe ratio 0,43 0,69 
 

0,54 0,68 
 

0,57 0,76 
 

0,61 0,82 
 

0,60 0,80 

(p-value)           (0,170) 
 

           (0,265) 
 

          (0,399) 
 

          (0,463) 
 

          (0,280) 

Opp. Cost 0,63% 
  

0,39% 
  

-0,36% 
  

-0,60% 
  

0,00% 
 

Port.Turnover 57,42% 50,62% 
 

54,09% 44,75% 
 

57,34% 35,58% 
 

65,46% 48,21% 
 

53,90% 47,20% 

Return-Loss -1,20%     -0,80%     -0,90%     -0,87%     0,00%   

                

                

                
Panel B :  VIX FUTURES (2007-2011) 

  
RRA=2 

 

RRA=4 

 
RRA=6 

 
RRA=8 

 
RRA=10 

    Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional   Expanded Traditional 

K
=

3
6
 

Sharpe ratio 0,28 -0,01 
 

0,34 0,07 
 

0,36 0,10 
 

0,37 0,12 
 

0,36 0,11 

(p-value)            (0,543) 
 

           (0,499) 
 

          (0,525) 
 

          (0,416) 
 

           (0,465) 

Opp. Cost 2,29% 
  

1,53% 
  

1,09% 
  

0,84% 
  

0,68% 
 

Port.Turnover 83,81% 74,72% 
 

78,39% 76,46% 
 

69,17% 60,41% 
 

50,57% 41,64% 
 

44,61% 39,77% 

Return-Loss 2,30%     1,44%     1,04%     0,81%     0,63%   
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