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CHAPTER 1: INTRODUCTION 
 

In this study, first we examine the dynamics of the term structure of energy commodity 

futures.  Next, apply our findings to forecasting subsequent futures prices.  Our raw data 

consist of crude oil futures traded on the New York Mercantile Exchange (NYMEX) and 

the International Petroleum Exchange (IPE), and heating oil and gasoline futures traded 

on NYMEX.  We use principal components analysis (PCA) to come up with a reduced 

number of latent factors that can adequately model their term structure.  We then use 

these factors to forecast the subsequent evolution of futures prices for the commodities 

under examination. 

 

Modeling the futures curve for energy commodities has gained increasing importance, 

as it can be used in a number of applications, including hedging, pricing of derivatives, 

and the valuation of energy-related contingent claims.  A number of methods and 

models have been used to estimate the futures curve and how it evolves over time.  

These generally follow two approaches.  The first approach involves identifying specific 

economic or financial factors that directly affect futures prices.  The disadvantage of this 

approach is that a lot of these variables exist in theory, but are not observable or 

measurable in practice (e.g., the convenience yield).  The second approach involves 

dealing only with the data available and manipulating the data in such ways that they 

would give meaningful information.  The forward curve is modeled directly as opposed to 

being modeled as a function of spot price and convenience yield processes.  The 

drawback of this approach is that, while it may lead to clean-cut and easy-to-use models, 

there is often no economic interpretation of the variables in play.  This study focuses on 

the second, market-oriented approach rather than the first, traditional approach.  The 

advantage is that we do not postulate ex-ante the factors that drive futures dynamics.  

Rather, we let the data speak for themselves. 

 

Lautier [2003] provides a general review of term structure models of commodity prices, 

their ability to describe the price curve empirically observed, and a description of the 

application of these models on hedging and investment decisions.  In her paper, she 

goes over major research done on the dynamics of futures prices.  She describes one-

factor stochastic models for a commodity’s term structure that can either follow a 

geometric Brownian motion or a mean-reverting process.  She explains how these 
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models can be expanded by the introduction of a second stochastic variable, most 

commonly the convenience yield or the long-term price, and then she talks about models 

that add the interest rate as a third factor.  Discussing how well these models reproduce 

the term structure of futures prices, she concludes that one-factor models perform 

poorly, but the addition of a second factor gives very satisfactory results.  Three-factor 

models are not materially better than two-factor models.  Finally, she reviews research 

conducted on using term structure models to hedge long-term commodity commitments 

and to make investment decisions that require knowing distant futures prices in order to 

compute the present value of cash flows associated with the investment. 

 

Moving on to individual work, extensive research has been done following the first of the 

approaches described above. 

 

Schwartz [1997] examined one-factor, two-factor, and three-factor stochastic models for 

futures prices of oil, copper, and gold.  His one-factor model followed a mean-reverting 

process for the logarithm of the spot price.  The two-factor model added the convenience 

yield as a second stochastic factor that also followed a mean-reverting process.  The 

three-factor model also included stochastic interest rates.  The data he used consisted of 

weekly futures prices for five contracts on crude oil, high grade copper, and gold (he 

repeated his analysis using various sets of maturities to check the effect of time, but all 

of these maturities were less than two years).  Oil data ranged from January 2, 1985 to 

February 17, 1995, copper data from July 29, 1988 to June 13, 1995, and gold data from 

January 2, 1985 to June 13, 1995.  There was also a proprietary dataset on oil futures 

prices provided by Enron for contract maturities from two months to nine years, which 

ranged from January 15, 1993 to May 16, 1996.  Schwartz then compared the relative 

performance of the three models by calculating the root mean square errors and mean 

errors by commodity across several periods of time.  He concluded that the one-factor 

model is often inadequate in reproducing the actual data.  The two-factor and three-

factor models both clearly outperform the one-factor model, but their relative 

performance is indeterminate.  Finally, the paper applies these models to hedging long-

term forward commitments and to making investment decisions under uncertainty. 

 

In subsequent papers, Schwartz studied variations of these models.  Miltersen and 

Schwartz [1998] developed a three-factor model to distinguish between forward and 
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futures convenience yields.  They also provided an application on pricing European 

options using the same data on high grade copper futures traded on the Commodity 

Exchange of New York (COMEX) as in Schwartz [1997].  They concluded that the 

introduction of stochastic convenience yields and the time lag between the maturity of 

the futures contracts and the options can give materially different results when pricing 

options. 

 

Clewlow and Strickland [1999a] extended Schwartz’s one-factor model by using it to 

derive formulas for pricing derivatives such as standard options on forwards and futures, 

caps, floors, collars, and swaptions.  They also studied trinomial trees consistent with the 

forward curve and volatility structure and showed how they can be used to price 

derivatives. 

 

Schwartz and Smith [2000] develop a two-factor model called the short-term/long-term 

model, which assumes that short-term deviations in spot prices follow a mean-reverting 

stochastic process and the equilibrium price level follows a Brownian motion process.  

We should note that the convenience yield does not enter the model, but the authors 

show that it is equivalent to the stochastic convenience yield models developed in 

Gibson and Schwartz [1990].  They then show how this model can be used to value 

futures contracts and European options on futures contracts.  Drawing on the same data 

as Schwartz [1997], they estimate the parameters of the model and demonstrate how it 

can be applied to real option investment decisions. 

 

Work has also been done on electricity forward curve dynamics.  Audet, Heiskanen, 

Keppo, and Valviläinen [2002] develop a model for forward prices using weekly data 

from Nord Pool’s 52 futures contracts between 1999 and 2001.  They then discuss three 

applications of their model: conditional forecasting of the forward curve, i.e., updating the 

initial forward curve with spot price predictions and comparing it with the realized forward 

curve; pricing of forward options; and checking the accuracy of a simplified forward 

curve model that only uses a finite number of forward curve points. 

 

Ribeiro and Hodges [2004] develop a more technical version of the two-factor model 

originally suggested by Schwartz [1997].  In their model, the two factors are still the spot 

price (which follows a geometric Brownian motion) and the instantaneous convenience 
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yield, but there are two important innovations: arbitrage possibilities are ruled out and 

spot price volatility depends on inventory levels, as predicted by the theory of storage.  

Their data consists of weekly observations of the seven nearest futures contracts of 

light, sweet crude oil traded on NYMEX from March 17, 1999 to October 15, 2003.  

Finally, they compare their model to Schwartz’s original model by calculating their mean 

pricing errors and root mean square errors for all the observations.  They conclude that 

their model outperforms Schwartz’s, although not significantly, and that both models are 

good at reproducing short-term maturity data, but not long-term. 

 

Several papers have also used the second approach to model forward curve dynamics 

directly, using only available market data.  A good deal of research conducted along 

those lines has used principal components analysis in the estimation of model 

parameters. 

 

Reisman [1991] examines pricing commodity-related claims.  He proposes a model 

where price processes of futures with several maturities are inputs and the spot price 

and the convenience yield processes are implied.  He then proceeds to show how his 

results can be used to value commodity claims.  Reisman’s paper is purely theoretical 

and has no applications using real data. 

 

Based on Reisman’s [1991] model, Schwartz and Cortazar [1994] used PCA in the 

general framework of valuing commodity-contingent claims.  They focused on two 

copper futures contracts traded on COMEX.  The contracts differ in terms of their 

specifications, mainly the quality of the product to be delivered and their maturities.  

Schwartz and Cortazar used daily futures return data between January 1978 and 

January 1990 for the nearest 21 months of the two contracts, grouping them in seven 

quarterly periods.  They then performed PCA to obtain a three-factor model that 

describes the stochastic movement of futures prices.  The three factors accounted for 

approximately 93%, 4%, and 1% of total variance respectively.  The first factor, i.e., the 

one with the highest loading, was fairly constant across maturities, indicating that shocks 

cause a parallel shift of the futures return curve.  The second factor represented 

steepness, meaning that shocks cause short-term and long-term contracts to move in 

opposite directions.  The third factor, curvature, represented shocks that affect long-term 

and short-term contracts in the same way, but medium-term contracts in the opposite 
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way.  Finally, they used the factor loadings found in PCA as volatility estimates for 

pricing Magma Copper Company’s publicly traded copper interest-indexed notes issued 

in 1988. 

 

Clewlow and Strickland [1999b] performed PCA to identify the most important principal 

components for crude oil and natural gas futures prices.  Their data ran from November 

1995 to December 1997 and consisted of daily closing futures prices for the nearest 24 

monthly contacts for light, sweet crude oil and Henry Hub natural gas traded on NYMEX.  

They concluded that in the case of light, sweet crude, the first three principal 

components are significant, whereas for natural gas, the first six principal components 

are significant.  They then went on to use those principal components as the volatility 

parameters in a multi-factor stochastic model for the evolution of the forward curve, 

which in turn was used to price European caps on natural gas and European swaptions 

on crude oil. 

 

In a similar line of research, Tolmasky and Hindanov [2002] applied PCA on crude oil 

and heating oil.  Their data consisted of weekly log returns of the nearest ten futures 

contracts traded on NYMEX from 1983 to 2000.  In the case of crude oil, they also found 

three components that explain 99.89% of the variance.  In line with previous research, 

the first factor represents a parallel shift or level, the second factor steepness, and the 

third factor curvature.  In the case of heating oil, they concluded that the first three 

factors (again representing level, steepness, and curvature) explain 99.63% of the total 

variance.  In addition, they examined the effects of seasonality, showing that the 

correlations among contracts are higher when the commodity is off-season and therefore 

the level factor becomes more important during that time.  However, they did not come 

up with a definitive answer as to whether seasonality is statistically significant.  They 

then ran PCA on crude oil and heating oil jointly and came up with four factors that 

explain 99.36% of total variance.  Finally, they showed that the results of PCA could be 

applied as the volatility functions in value-at-risk calculations or option pricing. 

 

Järvinen [2003] extended the analysis to Brent crude oil and pulp.  He used weekly 

NBSK Risi pulp data ranging from June 1998 to October 2001 and monthly data on 

Brent crude oil ranging from Frebruary 1997 to 2002.  The main innovation in this paper 

is that the forward curve is estimated from the par swap quotes rather than taken directly 
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from the futures market (the par swap price can be interpreted as a present value 

weighted sum of forward prices).1  The results of PCA showed a different picture than 

earlier research.  The first factor explained only 62% of total variance for Brent crude 

and 38% of total variance for pulp.  The second factor increased total variance explained 

to 81% for Brent crude and 63% for pulp, while the addition of a third factor increased 

the percentages to 89% and 84% respectively.  Particularly in the case of pulp, Järvinen 

suggests a four-factor model in order to satisfy the criterion of choosing factors with 

eigenvalues greater than one.2  The greatest difference, however, lies in the effects of 

the principal components on the curve.  The factors do not represent level, steepness, 

and curvature, but rather show a much more complex behavior, especially for pulp.  

Järvinen concludes that this may be due to the mean-reverting nature of commodity 

prices or to the liquidity and reliability of the swap quotes from which he derived the 

forward curves. 

 

Our study presents two main innovations.  First, we extend the empirical investigations 

done in the field by examining data on four energy commodities: crude oil traded on 

NYMEX, crude oil traded on the IPE, heating oil, and gasoline.  We used PCA to model 

the dynamics of the term structure of futures prices.  We found that the first three 

components explain more than 95% of total variance for each commodity.  Furthermore, 

the shape and effect of these principal components is similar for all commodities and 

consistent with the general findings in the literature.  The second innovation involves 

using multiple regression analysis to examine whether the retained principal components 

have any predictive power for futures prices.  We ran this analysis using the retained 

principal components of all commodities as regressors.  The advantage is that we 

essentially used the whole term structure of futures prices through a few variables only.  

In addition, by choosing principal components of all commodities as the independent 

variables, we were able to check for possible spillover effects across commodities.  To 

the best of our knowledge, no previous studies have used principal components to 

forecast subsequent futures prices.  Our results showed that IPE crude oil and heating 

oil principal components contain information on their respective commodities’s 

subsequent futures prices.  On the flip side, this implies the absence of spillover effects.  

                                                   
1 For more information and additional methods for extracting the forward curve using swap prices, 
see Järvinen [2002]. 
2 To satisfy the criterion of choosing factors that explain 90% of total variance or more, one would 
need four factors for both Brent crude and pulp. 
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In the case of NYMEX crude oil and gasoline, however, there was no evidence of a 

relationship between principal components of any commodity and the next day’s futures 

prices. 

 

This study is organized as follows: Chapter 1 provides a literature review and outlines 

the contributions of our study.  Chapter 2 contains an overview of energy markets and 

the dataset we will be using.  Chapter 3 describes the theory behind principal 

components analysis and discusses our results from PCA.  Chapter 4 examines the 

forecasting power of principal components across commodities using multiple regression 

analysis.  Chapter 5 concludes. 
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CHAPTER 2: PETROLEUM MARKETS 
 
2.1 Physical properties of crude oil 

 

The physical properties of crude oil vary depending on the reservoir, field or even region 

that it has been pumped from.  The two main physical characteristics according to which 

crudes are classified are API gravity and sulfur content. 

 

API gravity is the universally accepted scale adopted by the American Petroleum 

Institute (API) for expressing the density of the crude.3  Light crudes, i.e., less dense 

crudes with a low specific gravity and hence high API gravity, have a greater proportion 

of the higher-value light hydrocarbons, which are typically easier to recover during the 

refining process.  Heavy crudes, i.e., denser crudes with a high specific gravity and 

hence low API gravity, have a greater proportion of heavy hydrocarbons, which are less 

valuable and require further refining in order to break down into lighter, more valuable 

products such as LPG, naphtha, and straight-run gasoline.  There is no clear-cut divisor 

between light and heavy crudes, but generally, crude oils with gravities above 30o or 35o 

API are considered light and crude oils with gravities below 24o API are considered 

heavy. 

 

Sulfur content is the second major physical characteristic that distinguishes crudes.  It is 

important because sulfur compounds released during combustion are harmful pollutants 

to the environment.4  Sweet crudes are crudes with a relatively low sulfur content, a 

property that makes refining easier and the finished product more desirable, and as such 

are more valuable.  Sour crudes are crudes with a relatively high sulfur content, which 

require additional processing to produce valuable finished products.  Again, there is not 

a universal strict cut-off point that distinguishes sweet from sour crudes.  In general, 

crudes with less than 0.5% sulfur by weight are said to be sweet and crudes with more 

than 0.5% sulfur by weight are said to be sour. 

 
                                                   
3 API gravity is gravity (weight per unit volume) of oils as measured by the API scale whereby API 
gravity = (141.5 / Specific gravity) – 131.5.  Specific gravity is defined as the ratio of the density of 
a substance at 60o Fahrenheit to the density of water at the same temperature. 
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Other crude oil characteristics include metal content, viscosity, color, and the specific 

molecular structure of the oil.  Such characteristics are important in the use and cost of a 

particular crude.  For example, they help us determine whether a crude is suitable for 

obtaining products such as lubricants or petrochemicals.  Referring to crude oil by its 

streams (fields of origin) is useful because it summarizes all characteristics. 

 

 

2.2 Crude oil benchmarks 

 

Crude oil is valued for the products it yields, such as gasoline and heating oil.  Since 

there are more than 150 different types of crude, it is easier to follow just a few crudes 

that are representative of a specific quality (called benchmarks) and then price other 

crudes of a similar quality at a premium or discount to the benchmarks. 

 

The US benchmark is West Texas Intermediate (WTI).  It is a crude oil of very high 

quality, having a relatively high natural yield of naphtha and straight-run gasoline.  It is 

light, with an API gravity of 39.6o, and sweet, with a sulfur content of 0.24%.  WTI is 

extracted in Texas and Oklahoma, delivered through pipelines to Cushing, Oklahoma, 

and refined mostly in the Midwest and the Gulf of Mexico region.  Its physical 

characteristics and convenient location make WTI a premium crude. 

 

Brent is another major crude, used as a benchmark mainly in Europe and Africa.  It is 

also a light, sweet crude (although not as light or sweet as WTI), with an API gravity of 

38.5o, and a sulfur content of 0.36%.  Brent is actually a blend of crudes extracted from 

15 different oil fields in the Brent and Ninian systems in the North Sea and is deliverable 

at Sullum Voe on Shetland Islands.  Brent is typically refined and consumed in 

Northwest Europe, but it also moves to East Coast and Gulf Coast refineries when price 

differentials favor exports.  Because Brent is of a lower quality than WTI, it is usually 

priced at a discount to WTI. 

 

There are several other important crudes, such as the OPEC basket, Saudi Arabia’s 

Arab Light or Dubai Crude.  While following individual crude oil prices may be sometimes 
                                                                                                                                                       
4 After an Environmental Protection Agency regulation passed in 1993, diesel fuel used by 
vehicles on the highway must contain no more than 0.05% sulfur by weight.  In California, this 



 11 

useful, we should not forget that the oil markets are physically interconnected at a global 

level and therefore prices of both crudes and products are inevitably correlated and are 

affected by international political or economic factors. 

 

 

2.3 Crude oil trading 

 

Crude oil is the world’s most actively traded commodity.  It is usually traded under 

contract arrangements, which are tailor-made transactions.  However, it is also sold in 

spot markets (under cargo-by-cargo, transaction-by-transaction arrangements) and in 

futures markets (under standardized contracts traded on regulated exchanges and 

settled daily).  The two biggest international forums for trading crude oil futures are the 

New York Mercantile Exchange (NYMEX) and the International Petroleum Exchange 

(IPE) in London. 

 

Crude oil has been trading on NYMEX since 1983.  The NYMEX light, sweet crude oil 

futures contract is the world’s most heavily traded futures contract of a physical 

commodity in terms of volume and liquidity.  It trades in units of 1,000 barrels (equivalent 

to 42,000 US gallons) and its price is quoted in US dollars and cents per barrel.  The 

minimum price fluctuation is $0.01 per barrel or $10.00 per contract.  The maximum 

price fluctuation is $10.00 per barrel or $10,000 per contract.  However, if any contract is 

traded, bid or offered at the $10.00 per barrel limit for five consecutive minutes, trading is 

halted for five minutes.  When trading resumes, the limit is expanded by another $10.00 

per barrel in either direction.  If another halt is triggered, the limit will continue to be 

expanded by $10.00 per barrel in either direction after each successive five-minute 

trading halt.  Trading is conducted by open outcry from 10:00am until 2:30pm New York 

time and via an internet-based platform after hours (Mondays through Thursdays from 

3:15pm until 9:30am the following day and from 7:00pm on Sundays).  There exist 

contracts for the next 30 consecutive months as well as contracts for delivery in 36, 48, 

60, 72, and 84 months (35 futures contracts in total).  Trading terminates at the close of 

business on the third business day prior to the 25th calendar day of the month preceding 

the delivery month.  If the 25th calendar day of the month is a non-business day, trading 

ceases on the third business day prior to the business day preceding the 25th calendar 
                                                                                                                                                       
low-sulfur content is also required of distillate fuel oil used off the highway. 
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day.  Settlement is done with physical delivery, although the majority of contracts are 

actually not executed for physical delivery.  The underlying asset can be thought to be 

WTI, although a number of other streams are also deliverable.5  The delivery point is 

Cushing, Oklahoma (free on board seller’s facility).  The delivery period is a full month, 

meaning that deliveries must be initiated on or after the first calendar day and completed 

on or before the last calendar day of the delivery month.  Due to the nature of crude oil 

trading, the WTI spot price is usually at parity to the nearest futures contract.  

Differences typically arise because the spot price delivery scheduling period does not 

exactly coincide with the expiration of the futures contracts (it is in fact three days later).6 

 

The IPE is the second most liquid crude oil market in the world.  The Brent Crude futures 

contract has been trading on the IPE since 1988.  Together with physical (so-called 

dated) Brent and forward Brent, it forms the Brent blend complex, which is used as a 

basis for pricing for two thirds of the world’s traded crude oil.  The trading unit is 1,000 

barrels of Brent crude oil.  Prices are quoted in US dollars and cents per barrel with a 

minimum price fluctuation of $0.01 per barrel ($10.00 per contract) and no upper limit for 

price fluctuation.  Trading is conducted by open outcry from 10:02am until 7:30pm 

London time (5:02am until 2:30pm New York time) and electronically from 2:00am until 

10:00pm (9:00pm until 5:00pm New York time).  On Fridays, electronic trading ceases at 

8:30pm (3:30pm New York time).  There exist contracts for the next 12 consecutive 

months, then quarterly out to a maximum 24months, and then half-yearly out to a 

maximum 36 months (18 futures contracts in total).  Trading terminates at the close of 

business on the business day immediately preceding the 15th day prior to the first day of 

the delivery month.  If the 15th day is a non-banking day in London (including Saturday), 

trading ceases on the business day immediately preceding the first business day prior to 

the 15th day.  The contract is traded for physical delivery with an option to cash settle 

against the IPE Brent Index price for the day following the last trading day of the futures 
                                                   
5 Deliverable US crudes are crudes with a sulfur content of 0.42% by weight or less and an API 
gravity between 37o and 42o.  Deliverable streams are WTI, Low Sweet Mix, New Mexico Sweet, 
North Texas Sweet, Oklahoma Sweet, and South Texas Sweet.  Deliverable non-US crudes are 
crudes with an API gravity between 34o and 42o.  Deliverable streams are the UK’s Brent and 
Forties and Norway’s Oseberg Blend at a $0.30 per barrel discount, Nigeria’s Bonny Light and 
Colombia’s Cusiana at a $0.15 per barrel premium, and Nigerian Qua Iboe at a $0.05 per barrel 
premium. 
6 For example, if a futures contract for October expires on September 22, then from September 
23-25 the futures price will track prices for November delivery, whereas the spot price will still 
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contract.7  The underlying asset is current pipeline export quality Brent blend as supplied 

at Sullom Voe. 

 

 

2.4 Refined products markets and trading 

 

The two most important refined products are gasoline and heating oil, accounting for 

approximately 40% and 25% of the yield of a crude oil barrel respectively.   

 

Gasoline is the largest single volume refined product sold in the United States, which in 

turn has the highest gasoline yield per barrel of crude oil in the world.  The market for 

gasoline is very diverse and complex.  It involves hundreds of wholesale distributors and 

thousands of retail outlets and requires a massive distribution infrastructure to move 

gasoline to every retail outlet.  In addition, there are multiple pricing levels (“classes of 

trade”) depending on the point of the distribution chain that the gasoline is sold.  Thus, 

gasoline is sold at refinery gate prices by refiners as it leaves the refinery, at rack prices 

by refiners or by resellers as it leaves a distribution terminal or at dealer tank wagon 

prices by refiners or resellers to retailers at the gasoline service station.  Refinery gate 

prices and rack prices are influenced primarily by spot and/or futures prices.  Dealer tank 

wagon prices also reflect other services, such as trademark, credit cards, advertising, 

and security of supply.  In general, however, gasoline prices are determined by crude oil 

prices since crude oil is the feedstock at refineries. 

 

Both heating oil and gasoline futures trade on NYMEX in contracts of 42,000 US gallons 

(equivalent to 1,000 barrels).  Prices are quoted in US dollars and cents per gallon.  The 

minimum price fluctuation is $0.00001 (¢0.01) per gallon or $4.20 per contract.  The 

maximum daily price fluctuation is $0.25 per gallon or $10,500 per contract for all 

months.  However, if any contract is traded, bid or offered at the $0.25 per gallon limit for 

five consecutive minutes, trading is halted for five minutes.  When trading resumes, the 

limit is expanded by another $0.25 per gallon in either direction.  If another halt is 

                                                                                                                                                       
reflect prices for October delivery.  After September 25, the spot price will also reflect prices for 
November delivery and it will be again in par with the futures prices. 
7 The IPE Brent Index is the weighted average of the prices of all confirmed 21-day 
Brent/Forties/Oseberg (BFO) deals throughout the previous trading day for the appropriate 
delivery months.  The IPE Index is issued by the IPE on a daily basis at 12 noon London time. 
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triggered, the limit will continue to be expanded by $0.25 per gallon in either direction 

after each successive five-minute trading halt.  Trading is conducted by open outcry from 

10:05am until 2:30pm New York time and via an internet-based platform after hours 

(Mondays through Thursdays from 3:15pm until 9:30am the following day and from 

7:00pm on Sundays).    There exist contracts for the next 18 consecutive months for 

heating oil and the next 12 consecutive months for gasoline.  Trading terminates at the 

close of business on the last business day of the month preceding the delivery month.  

Settlement is done with physical delivery, although, as is the case with most futures, the 

majority of contracts is not executed for physical delivery.  The grade and quality of the 

deliverable heating oil and gasoline generally conform to industry standards for fungible 

No. 2 heating oil and for Phase II Complex Model Reformulated Gasoline in accordance 

with Colonial Pipeline Co. specifications for fungible A grade, 87 octane index gasoline 

respectively.  Delivery is free on board seller’s facility in New York harbor, ex-shore, 

although it may also be completed by pipeline, tanker, book transfer or inter- or intra-

facility transfer.  In the case of heating oil, the buyer may request delivery by truck, if 

available, at a surcharge.  The delivery period begins on the day after the fifth business 

day of the delivery month and ends on the last business day of the delivery month. 

 

 

2.5 Properties of petroleum markets 

 

Energy markets, including crude oil markets, behave quite differently than money 

markets.  Both fundamental and quantitative analysis have shown that energy prices 

respond differently to fundamental micro- or macroeconomic drivers and require different 

models to best describe their behavior and support derivative valuation and risk 

management. 

 

The mere fact that energy markets are dealing with a physical product (as opposed to 

“paper” markets) makes energy price behavior very complex and its modeling extremely 

hard.  The crude oil market, for example, is affected by factors that have to do with 

extracting the oil from the ground, transferring it, storing it, and actually using (burning) it, 

which again depends on whether the end user is a utility, a refinery or an industrial 

producer.  Energy markets have many and complex fundamental price drivers, including 
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technology and local or global politics, as opposed to few and simple drivers in money 

markets. 

 

On the demand side, the physical nature of consumption commodities gives rise to the 

convenience yield issue.  The convenience yield reflects the net benefit of holding a 

physical asset in your hands, ready for immediate consumption.  For industrial users and 

refineries, it is important that production runs uninterrupted.  Therefore, they keep crude 

oil in inventory, even if it earns no return, because it guarantees them immediate energy 

supply in case of need.  On the flip side, holding a forward contract is less valuable to 

them, because if they run out of fuel, there is not much they can do.  The convenience 

yield captures the difference in value between holding forwards and holding the actual 

commodity in storage.8  It is essentially the premium that crude oil users are willing to 

pay in order to be sure they have enough energy available to keep production running.  

The convenience yield is absent from money markets, although it is often thought of as 

being analogous to a dividend payment. 

 

On the supply side, energy markets are affected by production and storage in a way that 

financial markets are not.  New technological advents in the extraction of crude oil may 

impact long-term forward prices significantly more than short-term prices.  Storage of 

crude oil and other physical commodities is limited.  This resuls in spot prices being 

much more volatile than forward prices.  Moreover, short-term forwards price crude oil 

that has been extracted and is in storage, whereas long-term forwards price crude oil 

that is still in the ground and is anticipated to be extracted at some point in the future.  

 

Therefore, we can argue that short-term and long-term petroleum prices have different 

fundamental drivers.  Short-term fundamentals include wars, strikes, extreme 

temperatures or other acts of God, which would cause an imbalance in short-term supply 

and demand.  Long-term fundamentals include technological improvements (e.g. 3-D 

seismic testing, deepwater exploration and production) or new productive reservoirs, 

which would cause an imbalance in the long-term supply and demand, even if such 

events do not occur as frequently as the events that affect the short term. These 

                                                   
8 Since forwards cannot be consumed, holding them is less valuable than holding the actual 
physical asset, i.e. Ft ≤ (St+U)er(T-t), where Ft is the forward price at time t, S is the spot price at 
time t, U is the present value of storage costs, T-t is the time to maturity, and r is the risk-free 
rate.  The convenience yield y then is such that Ftey(T-t) = (St+U)er(T-t). 
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different drivers imply that the correlation between short-term forward prices and long-

term forward prices is low, whereas in financial markets it is high.9 

 

Unlike money markets, energy markets exhibit relatively strong mean reversion.  In 

addition, this mean reversion does not seem to follow economic cycles; rather, it is a 

function of specific “events” and how quickly these events dissipate or the supply side 

responds to bring the system back in balance.  For example, during the Gulf War, spot 

and short-term forward prices spiked, while long-term forward prices were much less 

affected.  The difference indicated how quickly the market expected the production side 

to react in order to restore equilibrium.  For this reason, the standard lognormal model 

used in equity markets is not appropriate for describing crude oil behavior.  Instead, we 

need a mean-reverting model for crude oil spot prices.  Research in this field is ongoing, 

but various attempts have indicated that a log of price mean-reverting model works well 

for the WTI spot market (Pilipovic [1998]).10  Given that energy markets are relatively 

young, it is almost certain that there is still a great deal of research and analysis to be 

done in modeling crude oil spot prices. 

 

Interestingly enough, unlike other energy assets, such as natural gas and electricity, 

crude oil prices do not exhibit seasonal patterns. 

 

When it comes to the history of energy markets and energy trading, we should keep in 

mind that energy markets have only been around for a short period of time.  This implies 

that we do not have a large data set of historical prices.  Furthermore, if we exclude 

near-term futures contracts on NYMEX and the IPE, the oil markets are relatively illiquid.  

Also, even though the crude oil market in the US is now deregulated, in most parts of the 

world it remains highly regulated, often with no intention to change.  Geography also 

plays a role: a barrel of oil is priced differently depending on location, whereas for 

example the stock of a company is worth the same no matter where we may try to sell or 

buy it. 

 

                                                   
9 In the case of crude oil, the short term can be considered to be three to six months out. 
10 A log of price mean-reverting model assumes that the natural logarithm of the price rather than 
the price itself reverts to some mean.  It is given by the equation dxt = a(b-xt)dt + σdzt where 
xt=ln(st).  Here s is the spot price, a is the rate of mean reversion, b is the long-term equilibrium of 
x, and σ is the volatility. 
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For all of the reasons mentioned above, energy derivatives are much more complex than 

financial derivatives as difficulties arise in pricing and delivery specifications that meet 

the needs of all parties involved. 

 

 

2.6 The dataset 

 

We obtained data on crude oil, heating oil, and gasoline futures trading on NYMEX and 

crude oil futures trading on the IPE from Bloomberg, which, in turn, gets the data directly 

from the exchanges.  Bloomberg provides raw data on futures contracts for any maturity, 

but it also rolls over contracts to construct generic series that essentially represent 

contracts with a fixed time to maturity.  Generics use the value of a particular contract 

month until they roll to the next month in the series.  Thus, the first generic (CL1) is the 

nearest futures contract traded on NYMEX at any point in time, the second generic 

(CL2) is the second nearest futures contract traded on NYMEX at any point in time etc.  

For the purposes of this study, we need to use fixed maturity time series of futures 

prices.  Therefore, we drew our data from Bloomberg’s generic contracts.  Trading often 

becomes significantly heavier a few days before a futures contract expires, resulting in 

increased volatility and potential price spikes.  Thus, we have chosen generics to roll to 

the next contract month seven days prior to expiration to avoid noise in prices due to 

increased trading activity.  There are 35 generics for crude oil futures traded on NYMEX 

(labeled CL1-CL35), 18 generics for crude oil futures traded on the IPE (labeled CO1-

CO18), 18 generics for heating oil futures traded on NYMEX (labeled HO1-HO18), and 

12 generics for gasoline futures traded on NYMEX (labeled HU1-HU12).  However, most 

trading is done in near-term futures; long-dated contracts are relatively illiquid.  

Therefore, we have only used CL1-CL15, CO1-CO9, HO1-HO12, and HU1-HU11, for 

which there is satisfactory liquidity and we can be confident that prices truly reflect 

market dynamics.  Furthermore, even though crude oil futures have been trading on 

NYMEX since 1983, data is limited (there is no open interest or volume data from May 

30, 1983 to June 30, 1986 and again from January 1, 1987 to July 31, 1989) and trading 

in longer maturity futures did not become available until several years later.  For Brent 

contracts on the IPE as well as for heating oil and gasoline contracts on NYMEX, data 

doesn’t become continuous and abundant until the early ‘90s.  As a result, we have 

decided to use 11 years of daily data, namely from 1/1/1993 to 12/31/2003. 
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As mentioned above, prices of different crudes are correlated and so are crude oil prices 

with refined product prices.  This becomes evident by Table 1, which shows correlations 

of concurrent generics for the four commodities under examination.  In addition, Figure 1 

plots prices of the nearest maturity contracts for the four commodities over time, which 

gives a visual representation of the high correlations between petroleum commodity 

prices.  The graphs showing simultaneous price movements of the second, third, etc. 

nearest contracts of the four commodities show a very similar pattern and are therefore 

not shown here. 

 

Table 1: Correlation matrix for NYMEX crude oil, IPE crude oil, 
heating oil, and gasoline futures contracts of the same maturity 

 CL CO HO HU 
     

Panel A: Nearest contract 
     
CL 1.00 0.99 0.97 0.96 
CO 0.99 1.00 0.97 0.96 
HO 0.97 0.97 1.00 0.91 
HU 0.96 0.96 0.91 1.00 
     

Panel B: Second nearest contract 
     
CL 1.00 1.00 0.98 0.96 
CO 1.00 1.00 0.98 0.96 
HO 0.98 0.98 1.00 0.91 
HU 0.96 0.96 0.91 1.00 
     

Panel C: Third nearest contract 
     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.96 
HO 0.98 0.98 1.00 0.92 
HU 0.97 0.96 0.92 1.00 
     

Panel D: Fourth nearest contract 
     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.96 
HO 0.98 0.98 1.00 0.93 
HU 0.97 0.96 0.93 1.00 
     

Panel E: Fifth nearest contract 
     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.97 
HO 0.98 0.98 1.00 0.93 
HU 0.97 0.97 0.93 1.00 
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Panel F: Sixth nearest contract 

     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.97 
HO 0.98 0.98 1.00 0.94 
HU 0.97 0.97 0.94 1.00 
     

Panel G: Seventh nearest contract 
     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.97 
HO 0.98 0.98 1.00 0.94 
HU 0.97 0.97 0.94 1.00 
     

Panel H: Eighth nearest contract 
     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.97 
HO 0.98 0.98 1.00 0.93 
HU 0.97 0.97 0.93 1.00 
     

Panel I: Ninth nearest contract 
     
CL 1.00 1.00 0.98 0.97 
CO 1.00 1.00 0.98 0.97 
HO 0.98 0.98 1.00 0.93 
HU 0.97 0.97 0.93 1.00 
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Figure 1: Price evolution of the nearest NYMEX crude oil, IPE crude oil, 
heating oil, and gasoline generic futures contracts from 1/1/93 to 12/31/03 
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Before we move on, we need to check the series for stationarity since principal 

components analysis only applies to stationary series (see Frachot, Jansi, and Lacoste 

[1992]).  We checked the AR(1) process and observed autocorrelation in the residuals.  

We therefore performed an Augmented Dickey-Fuller (ADF) test using four lagged terms 

on the daily settlement prices of the generic series CL1-CL15, CO1-CO9, HO1-HO12, 

and HU1-HU11.  We found that we could not reject the null at the 1% significance level, 

meaning that the series were non-stationary.  However, taking first differences and 

repeating the test resulted in stationary series.  We could easily reject the null at the 1% 

significance level for all series.  Table 2 shows ADF test statistics for levels and first 

differences for NYMEX crude oil, IPE crude oil, heating oil, and gasoline generic futures.  

A graphical representation of non-stationary levels versus stationary first differences is 

shown on Figure 2 for an indicative contract (CL1).  Appendix A discusses testing for 

stationarity using the Dickey-Fuller and Augmented Dickey-Fuller tests. 

 

 

 

 

 

 

Table 2: ADF test statistic for NYMEX crude oil, IPE 
crude oil, heating oil, and gasoline generic futures 
contracts 

 ADF test statistic 
 Levels First differences 

   
Panel A: NYMEX crude oil generics 

   
CL1 0.18 -22.64 
CL2 0.07 -22.51 
CL3 0.16 -22.26 
CL4 0.24 -22.44 
CL5 0.30 -22.66 
CL6 0.35 -22.90 
CL7 0.38 -23.11 
CL8 0.42 -23.16 
CL9 0.44 -23.29 
CL10 0.50 -23.46 
CL11 0.53 -23.60 
CL12 0.63 -23.84 
CL13 0.65 -23.94 
CL14 0.71 -24.15 
CL15 0.75 -24.41 
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Panel B: IPE crude oil generics 

   
CO1 -0.78 -22.55 
CO2 -0.57 -22.32 
CO3 -0.61 -22.21 
CO4 -0.58 -22.29 
CO5 -0.43 -22.51 
CO6 -0.31 -22.69 
CO7 -0.33 -22.83 
CO8 -0.35 -22.91 
CO9 -0.23 -23.05 
   

Panel C: Heating oil generics 
   
HO1 0.88 -21.02 
HO2 1.26 -20.89 
HO3 1.25 -20.98 
HO4 0.87 -20.94 
HO5 0.43 -21.16 
HO6 0.01 -21.56 
HO7 -0.23 -21.80 
HO8 -0.31 -22.01 
HO9 -0.15 -22.22 
HO10 0.12 -22.38 
HO11 0.35 -22.69 
HO12 0.75 -24.08 
   

Panel D: Gasoline generics 
   
HU1 -0.32 -21.89 
HU2 -0.11 -21.02 
HU3 -0.20 -21.08 
HU4 0.59 -20.72 
HU5 1.16 -21.73 
HU6 1.26 -21.42 
HU7 1.53 -20.92 
HU8 1.25 -21.68 
HU9 0.75 -20.79 
HU10 0.60 -19.90 
HU11 0.13 -18.91 
   

Note: Critical values according to MacKinnon are -1.61 for the 10% significance level, -1.94 for 
the 5% significance level, and -2.57 for the 1% significance level. The null hypothesis is rejected if 
the ADF test statistic is less than the critical value. 
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Having decided that we will be using the first difference series in our analysis, the final 

step in preparing the data involves accounting for illiquidity issues.  We have already 

shown that we excluded illiquid contracts with large blocks of missing data and that we 

chose the starting date such that trading would be virtually continuous for all maturities 

chosen.  To eliminate further problems arising from thin trading, we excluded datapoints 

for which volume was less than ten contracts.  That way our series is free from the effect 

of artificial settlement prices that do not reflect true supply and demand. 

 

Summary statistics for our final dataset are shown in Table 3 to Table 6 below.  We have 

added a “Δ” in the generic contract label to indicate that we are dealing with a time 

series of first differences.  Missing datapoints correspond to days for which data was 

unavailable (e.g. public holidays) or to days that were filtered out subject to the ten-

contract volume constraint and were subsequently left out of statistic calculations.  

Notice that missing datapoints account for only about 7-9% of total for the nearest 

contracts but as much as 41% for ΔCL15, 47% for ΔCO9, 42% for ΔHO12, and 34% for 

ΔHU11. 
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Figure 2: Evolution of price levels and first differences for nearest NYMEX 
crude oil generic futures contract 
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Table 3: Summary statistics for NYMEX crude oil generic contracts (first differences) 

 ΔCL1 ΔCL2 ΔCL3 ΔCL4 ΔCL5 ΔCL6 ΔCL7 ΔCL8 ΔCL9 ΔCL10 ΔCL11 ΔCL12 ΔCL13 ΔCL14 ΔCL15 
Retained observ. 2647 2644 2644 2642 2642 2631 2626 2611 2555 2465 2398 2288 2149 1870 1699 
Missing observ. 222 225 225 227 227 238 243 258 314 404 471 581 720 999 1170 

Mean 4.3E-03 3.4E-03 3.6E-03 3.4E-03 3.2E-03 3.4E-03 4.2E-03 3.1E-03 3.2E-03 2.5E-03 5.4E-03 6.1E-03 4.3E-03 7.6E-03 1.3E-03 
Median 0.01 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mode -0.04 -0.09 0.00 0.00 -0.02 0.02 -0.02 0.00 0.00 0.00 0.00 -0.07 -0.07 -0.07 0.00 
Std. Deviation 0.50 0.45 0.41 0.37 0.35 0.33 0.32 .3050 0.30 0.29 0.28 0.27 0.27 0.26 0.26 

Skewness -0.57 -0.58 -0.46 -0.48 -0.52 -0.51 -0.48 -0.47 -0.46 -0.47 -0.43 -0.41 -0.38 -0.40 -0.66 
Kurtosis 5.14 5.51 4.26 4.54 4.94 4.97 4.69 4.47 4.26 4.23 4.28 4.22 3.46 3.57 4.80 

Jarque-Bera  (JB) 3,043 3,479 2,083 2,358 2,791 2,805 2,491 2,256 2,014 1,916 1,893 1,754 1,116 1,033 1,745 
(JB p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Minimum -3.96 -3.82 -3.00 -3.00 -3.00 -2.88 -2.67 -2.48 -2.32 -2.21 -2.13 -2.08 -2.04 -2.00 -1.97 
Maximum 2.81 2.48 2.20 1.92 1.70 1.51 1.31 1.21 1.16 1.10 1.09 1.09 1.03 1.09 1.09 
 

Table 4: Summary statistics for IPE crude oil generic contracts (first differences) 

ΔCO1 ΔCO2 ΔCO3 ΔCO4 ΔCO5 ΔCO6 ΔCO7 ΔCO8 ΔCO9
Retained observ. 2628 2668 2667 2653 2623 2472 2223 1861 1509
Missing observ. 241 201 202 216 246 397 646 1008 1360

Mean 3.7E-04 3.9E-04 1.1E-05 -4.1E-05 1.3E-04 3.3E-03 1.7E-03 1.0E-03 1.8E-02
Median 0.02 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.02

Mode 0.00 0.07 0.00 0.00 0.02 -0.07a 0.00 0.00 0.00
Std. Deviation 0.47 0.42 0.39 0.36 0.34 0.33 0.32 0.32 0.30

Skewness -0.56 -0.52 -0.44 -0.47 -0.49 -0.48 -0.46 -0.55 -0.13
Kurtosis 5.28 4.99 4.71 4.67 4.75 4.77 4.68 4.87 2.83

Jarque-Bera  (JB) 3,175 2,869 2,537 2,494 2,564 2,421 2,097 1,918 504
(JB p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Minimum -3.42 -3.32 -3.12 -2.94 -2.79 -2.66 -2.56 -2.48 -1.88
Maximum 2.80 2.30 2.01 1.80 1.63 1.50 1.45 1.39 1.32

a  Multiple modes exist. The smallest value is shown. 
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Table 5: Summary statistics for heating oil generic contracts (first differences) 

ΔHO1 ΔHO2 ΔHO3 ΔHO4 ΔHO5 ΔHO6 ΔHO7 ΔHO8 ΔHO9 ΔHO10 ΔHO11 ΔHO12
Retained observ. 2612 2594 2598 2594 2582 2582 2537 2421 2307 2159 1904 1651
Missing observ. 257 275 271 275 287 287 332 448 562 710 965 1218

Mean 2.1E-02 2.1E-02 2.4E-02 2.1E-02 1.8E-02 1.1E-02 2.0E-03 -1.8E-04 1.2E-03 5.4E-03 2.2E-03 -8.8E-03
Median 1.0E-02 -1.0E-02 .0000 1.0E-02 .0000 .0000 -1.0E-02 -1.0E-02 -1.0E-02 .0000 -1.0E-02 -2.0E-02

Mode -0.30 -0.37a -0.25 0.17 0.03 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25
Std. Deviation 1.47 1.27 1.16 1.08 1.03 0.99 0.94 0.90 0.88 0.85 0.84 0.84

Skewness -0.48 -0.24 -0.20 -0.27 -0.43 -0.54 -0.48 -0.40 -0.37 -0.35 -0.32 -0.33
Kurtosis 5.24 3.33 3.12 3.21 4.02 4.44 4.19 3.39 3.20 3.08 3.10 3.30

Jarque-Bera  (JB) 3,074 1,223 1,066 1,136 1,807 2,232 1,942 1,215 1,028 892 789 774
(JB p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Minimum -11.14 -6.80 -6.65 -6.15 -7.85 -8.05 -7.95 -6.80 -6.15 -5.85 -5.55 -5.55
Maximum 7.04 6.23 5.73 5.03 4.73 4.43 4.03 3.74 3.64 3.26 3.31 3.36

a  Multiple modes exist. The smallest value is shown. 

 

 

Table 6: Summary statistics for gasoline generic contracts (first differences) 

ΔHU1 ΔHU2 ΔHU3 ΔHU4 ΔHU5 ΔHU6 ΔHU7 ΔHU8 ΔHU9 ΔHU10 ΔHU11
Retained observ. 2656 2656 2655 2654 2655 2632 2585 2482 2311 2112 1897
Missing observ. 213 213 214 215 214 237 284 387 558 757 972

Mean 1.8E-02 1.5E-02 3.4E-03 1.6E-02 2.1E-02 2.0E-02 2.2E-02 1.9E-02 1.6E-02 1.5E-02 1.0E-02
Median 5.0E-02 3.0E-02 3.0E-02 2.0E-02 2.0E-02 3.0E-02 2.0E-02 2.0E-02 1.0E-02 1.0E-02 .0000

Mode 0.14 -0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Std. Deviation 1.64 1.38 1.21 1.13 1.07 1.03 1.01 0.99 0.97 0.94 0.95

Skewness -0.86 -0.36 -0.47 -0.29 -0.25 -0.01 -0.03 -0.02 0.07 -0.30 -0.53
Kurtosis 10.05 4.58 4.63 4.33 3.68 5.11 4.99 5.29 6.35 5.62 6.55

Jarque-Bera  (JB) 11,451 2,363 2,462 2,098 1,519 2,854 2,665 2,881 3,860 2,799 3,458
(JB p-value) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Minimum -16.40 -9.25 -9.85 -6.72 -6.37 -6.09 -6.00 -6.60 -7.20 -7.90 -8.25
Maximum 9.68 8.13 6.25 7.33 5.56 8.75 7.36 6.66 7.55 6.48 5.59
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CHAPTER 3: PRINCIPAL COMPONENTS ANALYSIS 
 
3.1 Description 

 

Principal components analysis (PCA) is a procedure that linearly transforms a set of 

correlated variables to a new set of uncorrelated variables (principal components, PC’s) 

with the same dimension.  The principal components are orthogonal to each other and 

sorted in order of decreasing variance.  That is, the first principal component is the linear 

combination of variables that explains the greatest amount of variance of the original 

variables.  The second principal component is orthogonal to the first and explains as 

much of the variance not explained by the first.  The third principal component is 

orthogonal to both the first and the second and explains the greatest amount of the 

remaining variance, etc.  There is no information lost during this procedure.  The new set 

of principal components reproduces the original variance-covariance structure and the 

total variance of the principal components equals the total variance of the original 

variables. 

 

The main use of PCA is to reduce the dimension of the data.  From the description of the 

procedure above, it becomes evident that there can be as many principal components as 

original variables.  In this case, the principal components explain 100% of the variance of 

the original variables.  However, we could drop the principal components that explain a 

small amount of variance and only keep the first few ones, which still explain most of the 

variance.  This way we achieve compressing the data while losing as little information as 

possible.  The advantages are that we reduce the amount of data and hence make 

computations simpler and faster, we possibly eliminate noise (as the data not contained 

in the first few principal components may be mostly due to noise), and we may make 

visualization possible if the dimension chosen is low. 

 

More formally, assume a set of n variables x1,…,xn with variance-covariance matrix Cx.  

Since the goal is to transform this set of variables into a set of uncorrelated variables 

(i.e., orthogonal), all we need to do is find Cx’s eigenvalues and their corresponding 

eigenvectors.  The eigenvalues λi and the eigenvectors ei are nothing but the solutions of 
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the equation Cxei = λiei (where i=1,…,n) and can be found by solving the characteristic 

equation || Cx – λI || = 0 where I is the identity matrix of the same order as Cx.11 

 

Adding a time dimension to the above, if we denote time by t=1,…,T, our original 

variables are n (Tx1) vectors x.12  We want to find linear combinations of these vectors 

that are orthogonal to each other and maximize variance.  If we denote these linear 

combinations (principal components) by z, we have Z=XA where Z is a (Txn) matrix of 

principal components, X is a (Txn) matrix of the original variables, and A is a (nxn) matrix 

of coefficients (called loadings).  The first-order condition of this maximization problem 

results in (Cx – λI)A=0 where λi are the Lagrange multipliers, I is a (nxn) identity matrix, 

and Cx is the variance-covariance matrix.  As before, we see that to solve this equation 

we need to calculate the eigenvalues and the eigenvectors of Cx. 

 

If we want to reduce the dimension of the data by keeping only the first k principal 

components and discarding the rest, we get Xk = ZkA’k + uk where Zk is a (Txk) matrix of 

principal components, Xk is a (Txk) matrix of original variables, Ak is a (kxk) matrix of 

loadings, and uk is a (Txk) matrix of residuals.  The percentage of the original variance 

that is explained by the k principal components is called communality and can be 

calculated from the loadings.  There is no hard and fast rule for the specification of k.  

We can choose a fixed number of eigenvectors and their respective eigenvalues or we 

can choose a fixed percentage of variance explained and use as many 

eigenvectors/eigenvalues as necessary.  Alternatively, we may use formal tests, but we 

should keep in mind that their results might not be entirely reliable.13  Finally, the 

principal components that we can come up with may be just abstract latent variables, but 

they may also have some economic meaning.14  A potential economic interpretation of 

the principal components can be useful in determining how many we should retain. 

 

 

                                                   
11 We often use the correlation matrix instead of the variance-covariance matrix to standardize 
the variables in case they have different units of measurement or unequal variances. 
12 The time series of original variables should be stationary, otherwise the results given by PCA 
can be misleading (see Frachot, Jansi, and Lacoste [1992]). 
13 For more on the various criteria for choosing the right number of principal components, see 
Basilevsky [1994] and Jackson [1991]. 
14 For instance, extensive research has been done on interest rates and using PCA to explain the 
term structure of interest rates.  Three principal components are typically retained, the first one 
being linked to the concept of duration (see Skiadopoulos [2004]). 
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3.2 Results of PCA and discussion 

 

We performed PCA for each of the four commodities under examination after adjusting 

for stationarity and liquidity issues as described above (see Section 2.6).  Hence, the 

original variables are time series of the first differences of select generic contracts 

(ΔCL1-ΔCL15, ΔCO1-ΔCO9, ΔHO1-ΔHO12, and ΔHU1-ΔHU11) for the period 1/1/2003 

to 12/31/2003.  The analysis used the correlation matrix.  Data points were excluded 

listwise if there were missing values for any one variable at any one date.  Table 7 

shows the cumulative percentage of variance explained by all principal components for 

each of the commodities. 

 

For NYMEX crude oil futures, we can see from Table 7 that the first four principal 

components explain 99.9% of total variance.  Figure 3 plots their loadings.  The first 

principal component corresponds to a nearly parallel shift in futures price differences.  

The second principal component corresponds to a twist or slope of the curve: a change 

in the second principal component causes futures prices for contracts expiring in the 

next seven months to move in one direction and futures prices for contracts expiring in 

the next eight to 15 months to move in the other direction.  The third principal component 

corresponds to a bowing of the curve: it causes prices of short-maturity and long-

maturity futures to move in one direction and prices of mid-maturity futures to move in 

the other direction.  The fourth principal component is probably noise and will be 

excluded from future analyses. 

 

We should recall that Tolmasky and Hindanov [2002] ran PCA on the nearest ten 

contracts and had very similar results.  They found that 95.9% of total variance was 

explained by the first component alone (level), 99.5% was explained by the first and 

second component (level and steepness), and 99.9% was explained by the first three 

components (level, steepness, and curvature).  They also explain that the third principal 

component is steeper for short expirations than for long ones as a result of the higher 

correlations among longer expirations. 

 

 

 



 28 

Table 7: Cumulative percentage of variance explained by each principal component 

Principal 
component NYMEX crude oil IPE crude oil Heating oil Gasoline
1 95.660 96.012 93.309 86.488
2 99.468 99.026 97.164 92.401
3 99.835 99.625 99.127 95.725
4 99.911 99.815 99.645 96.836
5 99.948 99.895 99.859 97.573
6 99.974 99.935 99.938 98.258
7 99.983 99.964 99.963 98.881
8 99.990 99.984 99.978 99.354
9 99.993 100.000 99.988 99.728
10 99.995 99.993 99.919
11 99.997 99.997 100.000
12 99.998 100.000
13 99.999
14 99.999
15 100.000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As for IPE crude oil futures, Table 7 shows that the first three principal components 

explain 99.6% of total variance and the fourth one provides only an additional 0.2%.  

Figure 4 plots loadings for the first four principal components.  The picture is strikingly 

similar to what we had before.  The first principal component again corresponds to a 

parallel shift, the second principal component to a slope of the same direction, and the 

third principal component to a bowing of the same concavity.  In addition to the general 

shape of the curves, the values of the loadings are very similar to the values of the 

respective loadings for the NYMEX crude oil PC’s.  As before, the fourth principal 

component is probably noise and will be excluded from future analyses. 

Figure 3: NYMEX crude oil futures – first four PC loadings 
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Our results are in line with the general literature, including Schwartz and Cortazar [1994], 

Clewlow and Strickland [1999b], and Tolmasky and Hindanov [2002].  In the case of IPE 

crude oil in particular, the notable exception is Järvinen [2003], who used Brent crude oil 

swap quotes from 1997 to 2002 to derive the futures curve.  His research concluded that 

the first three principal components explain 89% of total variance.  Furthermore, the 

shape of his loadings was strikingly different.  The first factor sloped upwards for 

maturities of up to 21 months before flattening out and even had an opposite sign for 

three-month and six-month maturities.  The second factor showed a more complex 

behavior, representing shocks that move contracts with maturities of up to 21 months in 

one direction and then contracts with longer maturities in the other direction, albeit with a 

curvature in the middle.15  The third factor resembled the familiar curvature factor, which 

moves short-maturity and long-maturity futures in one direction and intermediate ones in 

the opposite.  Finally, the fourth factor’s loadings alternated from negative to positive 

every few months and therefore represented shocks that move futures prices in all 

directions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moving on to heating oil, the picture doesn’t change much.  This time, the first three 

components explain 99.1% of total variance (see Table 7).  If we wanted to explain the 

same amount of variance that we did for NYMEX and IPE crude oil, we would need to 

                                                   
15 Contracts maturing in 42 and 45 months actually moved in the opposite direction, i.e. in the 
same direction as the short-maturity contracts. 

Figure 4: IPE crude oil futures – first four PC loadings 
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retain the first five components, whose explanatory power is 99.9%.  However, there is 

probably a great deal of noise in the fourth and fifth component.  Figure 5 shows loading 

plots for the first four principal components. The first three principal components are 

similar in shape and values to the first three principal components retained for NYMEX 

and IPE crude oil.  The fourth one is different and is again discarded as noise. 

 

In their research, Tolmasky and Hindanov [2002] found that 95.8% of total variance is 

explained by the level factor, 99.0% by the level and steepness factors, and 99.6% by 

the level, steepness, and curvature factors.  Their results are very similar to our findings. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, performing PCA on gasoline futures shows that the first three principal 

components account for 95.7% of total variance (see Table 7).  The explanatory power 

of each principal component is lower for gasoline than for the other commodities we 

examined. For example, the first principal component explains 86.5% of total variance 

compared to more than 93.0% for the first principal component of the other three 

commodities.  Again, if we wanted a greater amount of variance explained, we would 

retain more principal components.  Figure 6 shows plots of loadings for the first four 

principal components.  Once more, the first three principal components conform to the 

general findings so far.  The fourth one is noisy and will be left out of future analyses. 

 

 

Figure 5: Heating oil futures – first four PC loadings 
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Overall, we found that all four commodities can be modeled by three principal 

components, representing level, steepness, and curvature in order of importance.  Our 

conclusions are strikingly similar to the general findings in the literature.  Clewlow and 

Strickland [1999b] also found a level factor accounting for most of the variance, which, 

however, declined slightly over the first eight months before flattening out to become 

almost constant.  Their second factor was negative for the first eight maturities and 

positive for the remaining 16 and their curvature factor was negative for contracts 

maturing in the next two months or in more than 14 months and positive for contracts 

maturing in between.   

 

Principal components analysis has also been used in the interest rate literature to 

describe the dynamics of interest rates and of implied volatilities.  It is generally accepted 

that government bond returns can also be explained in terms of three factors called 

level, steepness, and curvature.  These broadly look like the principal components we 

found in this study and function in a similar way (see Skiadopoulos [2004] for a brief 

overview of PCA applications to interest rates). 

 

3.3 Stability of PCA results 

 

A final checkpoint is the stability of our PCA results over time.  Figure 7 shows that crude 

oil prices (and hence product prices) have fluctuated widely over the period under 

examination depending on supply and demand conditions as well as global political and 

economic events.  We therefore performed PCA on the four commodities breaking up 

Figure 6: Gasoline futures – first four PC loadings 
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the period in two subperiods: 1/1/1993 to 5/13/1997 and 5/14/1997 to 12/31/2003, the 

cutoff point being the day we can identify as the beginning of the Asian crisis.16  The 

Asian crisis led to stagnant oil demand, which, combined with increased production in 

the Middle East, caused oil prices to plummet.  It turns out that the results obtained from 

PCA for each of the two subperiods are not significantly different than the results we 

obtained for the full length of time.  This gives us confidence about the stability of 

principal component loadings over time.  In the upcoming analyses, therefore, we will 

use the results obtained in the full period between 1/1/1993 and 12/31/2003, choosing 

the first three principal components for each commodity.    Figures 8 to 10 show time 

plots of principal components for NYMEX crude oil generic futures.  Time plots of 

principal components for the other three commodities look very similar and are therefore 

not shown here.  Table 8 shows summary statistics of the three principal components 

chosen for each commodity.  Finally, Table 9 shows Augmented Dickey-Fuller statistics 

for these components and the corresponding MacKinnon critical values for the rejection 

of the null hypothesis of a unit root.  As can be seen, the null hypothesis can be rejected 

at the 1% significance level for all principal components, meaning that they are 

stationary. 

 

                                                   
16 On May 14, 1997, the Thai bhat depreciated dramatically as the country’s economic slowdown 
and political instability urged speculators to proceed to massive sell orders. 
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Figure 7: Spot WTI crude oil prices for the period 1/1/93 to 12/31/03 
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Figure 8: Time plot of CLPC1 for the period 1/1/93 to 12/31/03 
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Figure 9: Time plot of CLPC2 for the period 1/1/93 to 12/31/03 
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Figure 10: Time plot of CLPC3 for the period 1/1/93 to 12/31/03 
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Table 8: Summary statistics of principal components by commodity 

PC1 PC2 PC3
 

Panel A: NYMEX crude oil 
 

Retained observations 962 962 962
Missing observations 1907 1907 1907

Mean 4.1E-16 -7.3E-16 -7.9E-17
Median 2.1E-03 8.8E-03 -4.9E-02

Mode -7.76a -5.94a -6.30a

Std. Deviation 1.00 1.00 1.00
Skewness -0.65 -0.15 0.92

Kurtosis 5.17 5.60 9.80
Jarque-Bera  (JB) 1,125 1,243 3,937

(JB p-value) (0.00) (0.00) (0.00)
Minimum -7.76 -5.94 -6.30
Maximum 3.64 6.29 6.03

 
Panel B: IPE crude oil 

 
Retained observations 1014 1014 1014
Missing observations 1855 1855 1855

Mean -3.4E-16 1.2E-16 2.0E-16
Median -1.1E-02 5.3E-03 -2.2E-02

Mode -5.69a -7.13a -5.38a

Std. Deviation 1.00 1.00 1.00
Skewness -0.24 -0.16 0.53

Kurtosis 2.84 5.41 4.97
Jarque-Bera  (JB) 346 1,227 1,076

(JB p-value) (0.00) (0.00) (0.00)
Minimum -5.69 -7.13 -5.38
Maximum 4.18 5.15 6.53

 
Panel C: Heating oil 

 
Retained observations 1021 1021 1021
Missing observations 1848 1848 1848

Mean 4.6E-16 -4.0E-16 -3.0E-16
Median -3.1E-02 -1.6E-02 -1.9E-04

Mode -6.10a -8.79a -8.69a

Std. Deviation 1.00 1.00 1.00
Skewness -0.31 -0.26 1.20

Kurtosis 3.03 13.90 47.39
Jarque-Bera  (JB) 400 8,148 94,828

(JB p-value) (0.00) (0.00) (0.00)
Minimum -6.10 -8.79 -8.69
Maximum 3.77 6.32 11.46
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Panel D: Gasoline 

 
Retained observations 1897 1897 1897
Missing observations 972 972 972

Mean -7.6E-16 2.4E-16 -1.3E-16
Median 7.0E-03 1.0E-02 1.3E-02

Mode -6.06a -15.37a -10.37a

Std. Deviation 1.00 1.00 1.00
Skewness -0.28 -2.85 -1.11

Kurtosis 2.99 40.54 42.44
Jarque-Bera  (JB) 726 131,581 141,751

(JB p-value) (0.00) (0.00) (0.00)
Minimum -6.06 -15.37 -10.37
Maximum 4.86 5.58 10.06

 
a  Multiple modes exist. The smallest value is shown. 

 

 

Table 9: Stationarity tests for principal components 

 ADF test statistic 1% critical value 
CLPC1 -4.93 -2.60 
CLPC2 -3.74 -2.60 
CLPC3 -2.68 -2.60 
COPC1 -5.89 -2.58 
COPC2 -4.30 -2.58 
COPC3 -4.42 -2.58 
HOPC1 -6.67 -2.58 
HOPC2 -3.37 -2.58 
HOPC3 -5.08 -2.58 
HUPC1 -19.00 -2.57 
HUPC2 -16.48 -2.57 
HUPC3 -18.39 -2.57 
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CHAPTER 4: PCA AND FORECASTING POWER 
 
4.1 The regression setup 

 

Having found a limited number of principal components that capture the term structure of 

futures prices, we can next examine whether they have any forecasting power.  The 

general idea is to check whether one day’s principal components can predict the next 

day’s futures prices.  To this end, we ran multiple regression analysis.  The dependent 

variables were first differences of futures prices measured at time t.  The independent 

variables were the principal components of the commodities found in Chapter 3 

measured at time t-1.  Alternatively, we could have used futures prices as the 

independent variables.  However, the advantage of using principal components instead 

is that they summarize the term structure of all futures prices.  Thus, we get the same 

information from the regression using only 12 regressors (three per commodity) as 

opposed to 47 (15 for NYMEX crude, 9 for IPE crude, 12 for heating oil, and 11 for 

gasoline).  Also, by using principal components of all commodities as the regressors, we 

can check for spillover effects across commodities.17 

 

We have used the general-to-specific approach, starting off with all 12 principal 

components as regressors and dropping the ones that are not statistically significant at 

the 5% significance level. More formally, we estimated the regressions 

ΔFt
j = c + a1CLPC1t-1 + a2CLPC2t-1 + a3CLPC3t-1 + b1COPC1t-1 + b2COPC2t-1 + 

b3COPC3t-1 + c1HOPC1t-1 + c2HOPC2t-1 + c3HOPC3t-1 + d1HUPC1t-1 + d2HUPC2t-1 + 
d3HUPC3t-1 + u (Equation 1) 
 
where j = ΔCL1t,…, ΔCL15t, ΔCO1t,…, ΔCO9t, ΔHO1t,…, ΔHO12t, ΔHU1t,…, ΔHU11t.  

From this point onwards, for ease of notation, we will drop subscripts and denote lagged 

values of NYMEX crude principal components with lag 1 by CLPC1, CLPC2, CLPC3, of 

IPE crude by CLPC1, COPC2, COPC3, of heating oil by HOPC1, HOPC2, HOPC3, and 

of gasoline by HUPC1, HUPC2, HUPC3. 

 

                                                   
17 We also ran vector autoregression and Granger causality tests.  The idea was to run a cross 
check for our non-structural model by relating all variables to each other, to determine whether 
we needed a greater number of lags, and finally to make sure that principal components caused 
changes in futures prices and not vice versa.  The results of these tests were not conclusive and 
are consequently not shown here. 



 37 

In addition, we checked the correlations among the principal components.  It turns out 

that the first principal components of all commodities are highly correlated to each other 

(with correlations of around 90%), but all other combinations have relatively low 

correlations.  The high correlations among first principal components could explain the 

high R2 values we will see in the regressions below.  Table 10 shows the full correlation 

matrix. 

 

Table 10: Correlation matrix of regressors in Equation 1 

 CLPC1 CLPC2 CLPC3 COPC1 COPC2 COPC3 HOPC1 HOPC2 HOPC3 HUPC1 HUPC2 HUPC3 
CLPC1 1.00 0.06 -0.15 0.93 -0.06 -0.14 0.90 0.10 0.10 0.90 -0.07 -0.19 
CLPC2 0.06 1.00 0.05 0.22 0.52 -0.38 0.25 0.50 -0.25 0.29 0.41 -0.15 
CLPC3 -0.15 0.05 1.00 -0.21 0.25 0.24 -0.16 -0.04 0.02 -0.17 -0.08 -0.11 
COPC1 0.93 0.22 -0.21 1.00 -0.05 -0.12 0.91 0.22 0.01 0.89 0.02 -0.17 
COPC2 -0.06 0.52 0.25 -0.05 1.00 -0.10 0.02 0.33 -0.06 0.07 0.25 -0.20 
COPC3 -0.14 -0.38 0.24 -0.12 -0.10 1.00 -0.15 -0.26 0.17 -0.19 -0.28 0.06 
HOPC1 0.90 0.25 -0.16 0.91 0.02 -0.15 1.00 0.24 -0.02 0.92 0.04 -0.17 
HOPC2 0.10 0.50 -0.04 0.22 0.33 -0.26 0.24 1.00 -0.16 0.19 0.32 -0.13 
HOPC3 0.10 -0.25 0.02 0.01 -0.06 0.17 -0.02 -0.16 1.00 0.09 -0.06 -0.41 
HUPC1 0.90 0.29 -0.17 0.89 0.07 -0.19 0.92 0.19 0.09 1.00 -0.01 -0.19 
HUPC2 -0.07 0.41 -0.08 0.02 0.25 -0.28 0.04 0.32 -0.06 -0.01 1.00 0.05 
HUPC3 -0.19 -0.15 -0.11 -0.17 -0.20 0.06 -0.17 -0.13 -0.41 -0.19 0.05 1.00 

 

 

 

Moreover, we used White’s test to test for heteroskedasticity.  For a description of 

White’s test, see Appendix B.  It turned out that most regressions did show the presence 

of heteroskedasticity at the 5% significance level and the Durbin-Watson statistic for 

most regressions was either above 2.5 or below 1.5, indicating negative or positive 

autocorrelation respectively.  This required using standard errors corrected for 

heteroskedasticity.  As explained in Appendix B, we have used Newey-West standard 

errors, which correct for both heteroskedasticity and autocorrelation.  Table 11 shows 

the results of White’s test.  The test statistic is calculated as n*R2 and the corresponding 

p-values are reported in parentheses next to the test statistic. 
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Table 11: White’s test for ΔFj

t where 
j = ΔCL1t, …, ΔHU11t 

j Test statistic 
   

Panel A: NYMEX crude oil 
   
ΔCL1 114.9 (0.04) 
ΔCL2 111.4 (0.06) 
ΔCL3 111.1 (0.07) 
ΔCL4 111.9 (0.06) 
ΔCL5 112.5 (0.05) 
ΔCL6 113.2 (0.05) 
ΔCL7 113.7 (0.05) 
ΔCL8 114.2 (0.04) 
ΔCL9 114.4 (0.04) 
ΔCL10 114.0 (0.04) 
ΔCL11 111.0 (0.07) 
ΔCL12 110.6 (0.07) 
ΔCL13 110.5 (0.07) 
ΔCL14 105.3 (0.13) 
ΔCL15 100.0 (0.22) 
   

Panel B: IPE crude oil 
   
ΔCO1 132.0 (0.00) 
ΔCO2 120.7 (0.00) 
ΔCO3 70.7 (0.00) 
ΔCO4 28.2 (0.01) 
ΔCO5 43.4 (0.00) 
ΔCO6 33.5 (0.00) 
ΔCO7 8.6 (0.13) 
ΔCO8 35.7 (0.00) 
ΔCO9 133.3 (0.00) 
   

Panel C: Heating oil 
   
ΔHO1 339.8 (0.00) 
ΔHO2 185.4 (0.00) 
ΔHO3 232.0 (0.00) 
ΔHO4 251.6 (0.00) 
ΔHO5 739.3 (0.00) 
ΔHO6 248.7 (0.00) 
ΔHO7 662.7 (0.00) 
ΔHO8 186.0 (0.00) 
ΔHO9 85.2 (0.00) 
ΔHO10 346.0 (0.00) 
ΔHO11 268.1 (0.00) 
ΔHO12 246.8 (0.00) 
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Panel D: Gasoline 

   
ΔHU1 117.6 (0.03) 
ΔHU2 120.4 (0.02) 
ΔHU3 118.4 (0.02) 
ΔHU4 68.3 (0.96) 
ΔHU5 116.4 (0.03) 
ΔHU6 113.1 (0.05) 
ΔHU7 104.0 (0.15) 
ΔHU8 17.2 (0.00) 
ΔHU9 19.0 (0.00) 
ΔHU10 116.6 (0.03) 
ΔHU11 16.1 (0.00) 
   

Note: The White statistic is reported for each commodity across all maturities.  The p-values of 
the test are reported within parentheses. 
 

 

 

4.2 Regression results 

 

Table 12 presents the results of the regressions per commodity.  The first column shows 

the dependent variable of Equation 1.  The next 13 columns show the constant term and 

the coefficient values of the regressors along with their t-statistics in parentheses.  The 

following two columns show the R2 statistic and the Durbin-Watson statistic for first order 

serial correlation.  Finally, the last column shows the F-statistic for testing the null 

hypothesis that all coefficients (excluding the constant term) are zero.  The F-statistic’s 

p-values are given in parentheses. 

 

From Table 12, we see that for IPE crude oil and heating oil, the principal components of 

each commodity can be used to forecast subsequent futures prices for any maturity.  In 

most cases, the principal components from the other commodities do not provide any 

additional information.  In the case of NYMEX crude oil and gasoline, the analysis fails to 

reach the same conclusions.  The results from the regressions showed that the principal 

components of any commodity do not carry any information on NYMEX crude oil or 

gasoline futures prices. 
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Table 12: Results from regressing ΔFt
j (where j = ΔCL1t, …, ΔHU11t) on the retained principal components of the four commodities 

j c 
(t-stat) 

a1 
(t-stat) 

a2 
(t-stat) 

a3 
(t-stat) 

b1 
(t-stat) 

b2 
(t-stat) 

b3 
(t-stat) 

c1 
(t-stat) 

c2 
(t-stat) 

c3 
(t-stat) 

d1 
(t-stat) 

d2 
(t-stat) 

d3 
(t-stat) 

R2 Durbin-
Watson 

F-stat 
(prob) 

                 
Panel A: Dependent variables are NYMEX crude oil generic futures contracts 

                 
No significant results found for any maturity. 
                 

Panel B: Dependent variables are IPE crude oil generic contracts 
                 
ΔCO1 0.038 - - -0.005 0.476 0.188 0.075 - - - - - - 0.999 3.068 98,199 
 (54.6) - - (-4.1) (520.8) (112.1) (36.5) - - - - - -   (0.00) 
                 
ΔCO2 0.032 - - 0.013 0.457 0.080 -0.038 - - - - - - 0.992 3.086 12,573 
 (17.6) - - (3.8) (191.4) (18.9) (-7.2) - - - - - -   (0.00) 
                 
ΔCO3 0.025 - - - 0.424 0.040 -0.039 - - - - - - 0.997 2.656 126,739 
 (44.4) - - - (439.1) (52.1) (-32.1) - - - - - -   (0.00) 
                 
ΔCO4 0.023 - - -0.004 0.395 0.013 -0.028 - - - - - - 0.998 3.129 40,503 
 (28.0) - - (-3.4) (396.7) (9.6) (-16.0) - - - - - -   (0.00) 
                 
ΔCO5 0.021 - - -0.005 0.369 -0.012 -0.017 - - - - - - 0.997 2.786 38,612 
 (24.6) - - (-4.5) (413.7) (-8.4) (-10.4) - - - - - -   (0.00) 
                 
ΔCO6 0.019 - - - 0.349 -0.032 - - - - - - - 0.996 2.662 122,199 
 (31.9) - - - (394.2) (-25.5) - - - - - - -   (0.00) 
                 
ΔCO7 0.018 - - - 0.332 -0.044 - - - - - - - 0.996 2.774 136,028 
 (27.4) - - - (517.0) (-68.9) - - - - - - -   (0.00) 
                 
ΔCO8 0.017 - - - 0.319 -0.056 0.019 - - - - - - 0.998 2.577 152,204 
 (45.4) - - - (521.9) (-84.5) (28.3) - - - - - -   (0.00) 
                 
ΔCO9 0.015 - - - 0.305 -0.064 0.031 - - - - - - 0.995 2.823 65,730 
 (27.7) - - - (333.5) (-46.5) (18.6) - - - - - -   (0.00) 
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j c 

(t-stat) 
a1 

(t-stat) 
a2 

(t-stat) 
a3 

(t-stat) 
b1 

(t-stat) 
b2 

(t-stat) 
b3 

(t-stat) 
c1 

(t-stat) 
c2 

(t-stat) 
c3 

(t-stat) 
d1 

(t-stat) 
d2 

(t-stat) 
d3 

(t-stat) 
R2 Durbin-

Watson 
F-stat 
(prob) 

                 
Panel C: Dependent variables are heating oil generic contracts 

                 
ΔHO1 -0.039 - - - - - - 1.432 0.669 0.397 - - 0.222 0.983 2.488 11,490 
 (-6.5) - - - - - - (148.4) (14.4) (7.6) - - (4.2)   (0.00) 
                 
ΔHO2 -0.040 - - - - - - 1.337 0.396 - - - -0.109 0.992 2.436 33,487 
 (-8.9) - - - - - - (196.1) (22.2) - - - (-5.3)   (0.00) 
                 
ΔHO3 -0.040 - - - 0.038 - - 1.222 0.234 -0.082 - - -0.092 0.993 1.060 9,176 
 (-7.1) - - - (2.2) - - (65.9) (11.2) (-2.8) - - (-3.6)   (0.00) 
                 
ΔHO4 -0.032 - - - 0.028 - - 1.167 0.105 -0.196 - - -0.043 0.996 1.100 15,762 
 (-8.0) - - - (2.2) - - (87.6) (9.2) (-7.6) - - (-2.1)   (0.00) 
                 
ΔHO5 -0.037 - - - - - - 1.134 0.043 -0.208 - - - 0.994 2.081 56,427 
 (-12.2) - - - - - - (227.5) (5.3) (-10.5) - - -   (0.00) 
                 
ΔHO6 -0.034 - - - -0.013 - - 1.096 -0.030 -0.201 - -0.019 0.044 0.998 1.154 28,558 
 (-15.0) - - - (-2.2) - - (159.3) (-4.2) (-11.8) - (3.3) (2.9)   (0.00) 
                 
ΔHO7 -0.029 - - - - - - 1.043 -0.095 -0.155 - - - 0.995 2.741 72,141 
 (-13.1) - - - - - - (196.2) (-8.3) (-15.1) - - -   (0.00) 
                 
ΔHO8 -0.024 - - - - - - 0.997 -0.138 -0.079 - - - 0.992 1.688 43,620 
 (-8.2) - - - - - - (284.3) (-11.6) (-6.8) - - -   (0.00) 
                 
ΔHO9 -0.020 - - - - - - 0.959 -0.165 - - - - 0.992 1.664 65,262 
 (-7.1) - - - - - - (253.8) (-16.3) - - - -   (0.00) 
                 
ΔHO10 -0.019 - - - - - - 0.926 -0.179 0.110 - 0.024 - 0.998 2.378 81,719 
 (-11.4) - - - - - - (555.1) (-46.4) (14.1) - (4.5) -   (0.00) 
                 
ΔHO11 -0.021 - - - - - - 0.898 -0.178 0.167 - - - 0.998 2.736 136,904 
 (-15.5) - - - - - - (416.7) (-35.3) (23.5) - - -   (0.00) 
                 
ΔHO12 -0.025 - - - - - - 0.875 -0.169 0.202 - - - 0.987 1.625 24,945 
 (-7.2) - - - - - - (202.2) (-11.9) (13.3) - - -   (0.00) 



 42 

 

 
j c 

(t-stat) 
a1 

(t-stat) 
a2 

(t-stat) 
a3 

(t-stat) 
b1 

(t-stat) 
b2 

(t-stat) 
b3 

(t-stat) 
c1 

(t-stat) 
c2 

(t-stat) 
c3 

(t-stat) 
d1 

(t-stat) 
d2 

(t-stat) 
d3 

(t-stat) 
R2 Durbin-

Watson 
F-stat 
(prob) 

                 
Panel D: Dependent variables are gasoline generic contracts 

                 
ΔHU1 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU2 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU3 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU4 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU5 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU6 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU7 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU8 - - - - -0.120 - - - - - - - - 0.012 2.246 - 
 - - - - (-2.9) - - - - - - - -   - 
                 
ΔHU9 - - - - -0.105 - - - - - - - - 0.010 2.275 - 
 - - - - (-2.6) - - - - - - - -   - 
                 
ΔHU10 - - - - - - - - - - - - - - - - 
 - - - - - - - - - - - - -   - 
                 
ΔHU11 - - - - -0.122 - - - - - - - - 0.015 2.169 - 
 - - - - (-3.0) - - - - - - - -   - 
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In the case of NYMEX crude oil futures price differences, the regressions we ran did not 

give any significant results.  All coefficients were statistically insignificant.  As a result, 

we can infer that knowledge of principal component values for any commodity on any 

given day are not useful in forecasting the next day’s NYMEX crude oil futures prices. 

 

Running the same regressions with IPE crude oil futures price differences as the 

dependent variables gave a different picture.  In this case, all three IPE crude oil futures 

principal components appear to have a high forecasting power.  Their coefficients were 

statistically significant across all maturities except for COPC3, which was statistically 

significant for all maturities except for ΔCO6 and ΔCO7.  This, however, could be just an 

exception.  Likewise, NYMEX crude oil futures third principal component (CLPC3) 

proved significant in forecasting ΔCO1, ΔCO2, ΔCO4, and ΔCO5.  However, we cannot 

generalize with confidence that CLPC3 should be present in all regressions for IPE 

crude oil futures.  It is worth noting that COPC1 has a large positive coefficient, while the 

coefficients for COPC2 and COPC3 are much smaller in absolute value and their signs 

are not consistent. 

 

Moving on to heating oil, we get equivalent results, namely we see that the same 

commodity’s principal components have consistently high forecasting power for all 

maturities except for HOPC3, which was left out in the equations for ΔHO2 and ΔHO9.  

Again, however, these could be mere exceptions.  In addition, COPC1 is statistically 

significant in three equations, HUPC3 in four, and HUPC2 in two.  It is likely that a 

general conclusion for heating oil futures would not include these in the principal 

components that can be used to forecast future prices.  As in the case of IPE crude oil, 

the coefficient of the first principal component of the commodity that the dependent 

variable belongs to (in this case HOPC1) is always positive and relatively high in value.  

On the contrary, the other coefficients, including HOPC2 and HOPC3, are more volatile 

and may be either positive or negative. 

 

Finally, regressing gasoline futures price differences on the retained principal 

components showed a similar behavior to crude oil.  There were no significant 

regressors for any maturity except for COPC1 in the case of ΔHU8, ΔHU9, and ΔHU11.  

However, judging from the small number of equations that they are present, the fact that 

these equations are for longer-term maturities, the low R2 statistic, and the small 
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absolute value of the coefficient, we are reluctant to conclude that COPC1 can be used 

to forecast gasoline futures prices overall.  It is more likely that it just happened to show 

up in these three equations.  In general, it would be safe to conclude that there are no 

principal components that can help us predict gasoline futures prices. 

 

From all of the above, the conclusion that can be drawn is that in order to forecast 

futures prices for a commodity, we can look at that particular commodity’s principal 

component values.  Principal components of other commodities do not add any 

information.  In other words, there are no major spillover effects.  This conclusion holds 

roughly for IPE crude oil futures and heating oil futures.  On the contrary, NYMEX crude 

oil and gasoline futures prices do not depend on any principal components.  It is odd that 

the results are so different, especially for NYMEX and IPE crude oil futures, which are 

very highly correlated to each other, but there doesn’t seem to be a satisfactory, intuitive 

explanation. 
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CHAPTER 5: CONCLUSION 
 

In this study, first we used principal components analysis to model the dynamics of the 

term structure of futures contracts on four energy commodities: NYMEX crude oil, IPE 

crude oil, heating oil, and gasoline.  Our approach extends the literature developed by 

Schwartz and Cortazar [1994], Clewlow and Strickland [1999b], Tolmasky and Hindanov 

[2002], and Järvinen [2003].  Compared to the previous studies, we used a larger 

dataset in terms of the length of the time series employed combined with the number of 

commodities under scrutiny.  Our results from principal components analysis are in line 

with the majority of the research done on the term structure of commodity futures prices.  

We identified three principal components that explain most of the variance in futures 

prices.  Specifically, they account for 99.8%, 99.6%, 99.1%, and 95.7% of total variance 

for NYMEX crude oil, IPE crude oil, heating oil, and gasoline futures prices respectively.  

Consistent with the available literature, the first principal component represents a parallel 

shift in the futures curve, the second one represents a tilt, and the third one represents 

curvature. 

 

Next, we examined whether the retained principal components have any forecasting 

power for subsequent futures prices.  To this end, we ran multiple regression analysis on 

the first differences of futures prices for all maturities of the four commodities under 

examination using the retained PC’s as regressors.  For any given commodity, we 

included the retained principal components not only for that commodity, but also for the 

rest of the commodities.  The idea was to check for spillover effects across commodities 

by testing whether shocks in one commodity affect the others.  We thus used a total of 

12 regressors, i.e., three principal components per commodity.  We found that the IPE 

crude oil and heating oil PC’s can be used to forecast their respective commodities’ 

futures prices.  The impact of the other commodities’ PC’s was not significant in the 

majority of cases.  This indicates that no spillover effects are present.  Results on 

NYMEX crude oil and gasoline were notably different, showing no significant 

relationship.  No principal components of any commodity had a forecasting power for 

NYMEX crude oil and gasoline futures prices.  Further research needs to be done to 

understand why commodities that are extremely similar (such as IPE crude oil and 

NYMEX crude oil) gave so different regression results. 
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APPENDIX A 
 

Testing for stationarity 

 

A stochastic process for a variable yt is said to be (weakly) stationary if the mean and 

covariances do not depend on time, i.e. E(yt) = constant for all t, Var(yt) = constant for all 

t, Covar(yt, yt+n) = constant for all t.  We can test for stationarity using the Dickey-Fuller 

(DF) test.  The DF test checks for unit roots in the series.  For example, an AR(1) 

process of the form yt = μ + ρyt-1 + ut with ut~IID(0,σ2) is stationary if |ρ|<1.  If ρ=1 (a unit 

root), the process is non-stationary (in fact, it is a random walk).  If |ρ|>1, the process is 

again non-stationary, but it is explosive (i.e. tends to either +∞ or -∞) and is therefore of 

no concern.  The null hypothesis and the alternative of the DF test are H0:ρ=1 and 

H1:ρ<1 respectively.  The null hypothesis is the presence of a unit root and non-

stationarity; the alternative is stationarity.   

 

A generalized version of the test that includes higher order lagged terms is the 

Augmented Dickey-Fuller (ADF) test.  The ADF test is appropriate for any AR(p) 

process.  The reason for using ADF instead of a simple DF test is that, if we use a 

simple DF test (which is designed for an AR(1) process) for a process that is in fact 

AR(p), then the errors will be autocorrelated to compensate for the misspecification of 

the model.  Since the Dickey-Fuller distributions assume that the error term is white 

noise, the autocorrelation will invalidate them.  The number of lags to be included should 

be carefully selected, since too few lags may result in rejecting the null when it is true 

(due to the presence of some remaining autocorrelation) and too many lags may reduce 

the power of the test.  A generally accepted formula for the selection of lags is 

l=int[12(T/100)1/4] where l is the lag length and T is the sample size. 

 

For a more detailed discussion of the Dickey-Fuller and other unit root test, see Harris 

[1995] and Enders [1995]. 
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APPENDIX B 
 

Testing for heteroskedasticity 

 

There are several tests that one can use to test for heteroskedasticity.  The one we have 

used in this study is White’s test.  White’s test estimates the original regression and then 

regresses the squared residuals obtained from the original equation on the original 

regressors, their squared values, and all their cross products (we call this regression the 

auxiliary regression).  Under the null hypothesis of homoskedasticity, n*R2 (where n is 

the sample size and R2 is the one obtained from the auxiliary regression) follows the χ2 

distribution with degrees of freedom equal to the number of regressors (excluding the 

constant term).  If White’s test statistic exceeds the χ2 value at a specified significance 

level, we can reject the null hypothesis and conclude that there is heteroskedasticity.  In 

that case, there exist several methods of correcting the standard errors.  In this study, 

we have used the Newey-West standard errors, which have the advantage of correcting 

both for heteroskedasticity and for autocorrelation (hence also called HAC or 

heteroskedasticity- and autocorrelation-consistent standard errors).   
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