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Abstract 

 

A general consumption/ investment problem is considered for an agent whose actions 

cannot affect the market prices, and who strives to maximize total expected discounted 

utility of both consumption and/or terminal wealth. Under very general conditions on the 

nature of the market model and on the utility functions of the agent, it is shown how to 

approach the above problem by considering both simultaneously and separately the two 

more elementary ones of maximizing utility of consumption only and of maximizing utility 

of terminal wealth only, or even appropriately composing them. The optimal consumption 

and wealth processes are obtained quite explicitly. In the case of a market model with 

deterministic coefficients, the optimal portfolio and consumption rules are explicitly 

derived in feedback form on the current level of wealth. Furthermore, the Hamilton-Jacobi-

Bellman equation of dynamic programming is developed for the value function of the 

above utility optimization problem. In contrast to this nonlinear partial differential equation 

which governs the value function, its dual value function turns out to satisfy a linear one. 

The Monte Carlo simulation method is used for numerical applications which aim to the 

computation of the value function for a wide range of initial endowments. 

 

 

Key words: portfolio and consumption processes, utility functions, optimizations 

problems, deterministic coefficients, feedback formulae, Hamilton-Jacobi-Bellman 

equation, Monte Carlo simulation. 
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1. Introduction 
 

The first revolution in finance began with the 1952 publication of "Portfolio Selection," 

an early version of the doctoral dissertation of Harry Markowitz. This publication began a 

shift away from the concept of trying to identify the "best" stock for an investor, and 

towards the concept of trying to understand and quantify the trade-offs between risk and 

return inherent in an entire portfolio of stocks. The vehicle for this so-called mean-variance 

analysis of portfolios is linear regression; once this analysis is complete, one can then 

address the optimization problem of choosing the portfolio with the largest mean return, 

subject to keeping the risk (i.e., the variance) below a specified acceptable threshold. The 

implementation of Markowitz's ideas was aided tremendously by William Sharpe (1964), 

who developed the concept of determining covariances not between every possible pair of 

stocks, but between each stock and the “market”. For purposes of the above optimization 

problem each stock could then be characterized by its mean rate of return (its “α”) and its 

correlation with the market (its “β”). For their pioneering work, Markowitz and Sharpe 

shared with Merton Miller the 1990 Nobel Prize in economics, the first ever awarded work 

in finance. 

The portfolio-selection work of Markowitz and Sharpe introduced mathematics to the 

“black art” of investment management. With time, the mathematics has become more 

sophisticated. Thanks to Robert Merton and Paul Samuelson (1964), one-period models 

were replaced by continuous-time, Brownian-motion-driven models, and the quadratic 

utility function implicit in mean-variance optimization was replaced by more general 

increasing, concave utility functions. Model-based mutual funds have taken a permanent 

seat at the table of investment opportunities offered to the public. Perhaps more 

importantly, the paradigm of thinking about financial markets has become a mathematical 

model. This affects the way we now understand issues of corporate finance, taxation, 

exchange-rate fluctuations, and all manner of financial issues. 

Here is a high-level overview of the contents of this thesis. We take up the problem of a 

single agent faced with optimal consumption and investment decisions in the complete 

version of the market model. Tools from stochastic calculus and partial differential 

equations of parabolic type permit a very general treatment of the associated optimization 

problem. This theory can be related to Markowitz's mean-variance analysis and is 

ostensibly about how to "beat the market", although another important use for it is as a first 

step toward understanding how markets operate. Its latter use is predicated on the principle 
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that a good model of individual behavior is to postulate that individuals act in their own 

best interest. 

This thesis solves the problem of a single agent who begins with an initial endowment 

and who can consume the endowment at some rate ( )⋅c  and invest it in any of  1+d  

available assets, while also investing in a standard, complete market. The objective of this 

agent is to maximize the expected utility of consumption over the planning horizon, or to 

maximize the expected utility of wealth at the end of the planning horizon, or to maximize 

the combination of these two quantities. Except for the completeness assumption, the 

market model is quite general, allowing the coefficient processes to be stochastic processes 

that are not even assumed to be Markovian. Specializations of this model to the case of 

deterministic coefficients are provided in Section 4.1. 

The 1+d  assets or securities available to the agent in this paper are very general. One 

of them is a bond, a security whose instantaneous rate of return may fluctuate (possibly 

randomly), but which is otherwise riskless. The other assets are stocks, risky securities 

whose prices have randomly fluctuating mean rates of return ( )⋅ib  and volatility 

coefficients ( )⋅ijσ . Section 2.1 provides a careful exposition of these matters. The stock 

prices are driven by d independent Wiener processes; these represent the sources of 

uncertainty in the market model, which we assume to be complete in the sense of Harrison 

and Pliska (1981) and Bensoussan (1984). In our context, completeness amounts to 

nondegeneracy of the “diffusion” matrix ( ) ( ) ( )⋅⋅=⋅ Tσσα . 

This condition guarantees, roughly speaking, that “there are exactly as many stocks as 

there are sources of uncertainty in the market model.” It also enables us to construct a new 

probability measure under which the stocks prices, discounted at the rate ( )⋅r  of the bond, 

become local martingales; this fact is of great importance in the modern theory of financial 

economics, and we refer the reader to Harrison and Pliska (1981), (1983) for a fuller 

account of its ramifications.  

The processes ( ) ( ) ( ) djibr iji ≤≤⋅⋅⋅ ,1;,, σ  and ( ),⋅β  the instantaneous discount rate in 

the economy, will be collectively referred to as the coefficients of the market model. We 

assume that our agent is a “small investor”, in that his decisions do not influence the asset 

prices which are treated as exogenous. 

Single-agent consumption/investment problems have been investigated by a number of 

authors. A significant plateau was reached by Merton (1969), (1971). In the special case of 

a market model with constant coefficients, he found closed-form solutions for the 
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associated Bellman equations in the infinite-horizon and the zero-bequest, finite-horizon 

cases, when the utility of consumption belongs to the HARA class, i.e., 

( ) 0,11,1 ≠<<−= ppaccU p  or ( ) cacU log1 = . The infinite-horizon model was 

generalized by Karatzas, Lehoczky, Sethi and Shreve (1986) who presented closed-form 

expressions for the value function and the optimal consumption and investment policies, 

corresponding to general utility functions and general assumptions concerning the effect of 

bankruptcy, a possibility altogether ignored by previous authors. The work cited thus far 

allows short-selling of both the bond and stocks; indeed, such short-selling is mandated by 

the optimal investment process. A model in which such short-selling is prohibited, but in 

which the interest rate on the bond and the mean rate of return on the only stock are 

constant and equal, was studied by Lechoczky, Sethi and Shreve (1983). An explicit 

overview of the problem can also be found in Karatzas and Shreve (1998). 

In this thesis we take the time-horizon as finite and general utility functions for 

consumption and terminal wealth are allowed. Moreover, the coefficients of the market 

model are required only to be adapted and bounded processes. This means that stock prices 

can fluctuate in an almost arbitrary, not necessarily Markovian fashion. Such generality 

notwithstanding, explicit results for the solution of the problem are provided. The 

methodology that accounts for both the simplicity and generality of the obtained results is 

the usage of the deflator process ( )⋅H of (2.17) which removes the differences in mean rates 

of return among the investments and thus endows certain processes with the martingale 

property, under the original probability measure. Such an idea appeared in the context of 

option pricing by the Girsanov change of probability measure, in Harrison and Kreps 

(1979) and was more fully developed by Harrison and Pliska (1981).  

Section 2.1 describes the market model and the set of consumption and portfolio 

processes from which the investor in this market is free to choose. Section 2.2 introduces 

the notion of utility function. In Section 3.1, we formulate three optimization problems for 

an agent.  

Section 3.2 solves the problem of an agent who seeks to maximize expected utility from 

consumption plus expected utility from terminal wealth. The method of solution uses the 

convex dual function (Legendre transform) of the utility function. Related to this concept, 

we introduce and study the convex dual of the value function for the problem of Section 

3.1. Several examples are provided. 

Section 3.3 considers the problem of maximization of expected utility from 

consumption only, and the antithetical problem of maximization of expected utility from 
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terminal wealth only. These problems are related to that of Section 3.2 in the following 

way. Given an initial endowment x, an agent who wishes to maximize the expected utility 

of consumption plus the expected utility of terminal wealth can partition his initial 

endowment into two parts, 1x  and 2x , such that 21 xxx += . Beginning with initial 

endowment 1x , the agent should solve the problem of maximizing expected utility from 

consumption only; with 2x , he should solve the problem of maximizing expected utility 

from terminal wealth only. The superposition of these two solutions is then the solution to 

the problem of maximizing expected utility from consumption plus expected utility from 

terminal wealth. The partition of wealth that accomplishes this decomposition of the 

problems is derived from Section 3.3. 

The obtained results are specialized to models with deterministic coefficients in Chapter 

4. For such models a Markov-based analysis is provided, including the development of the 

Hamilton-Jacobi-Bellman equation for the agent’s value function and the optimal 

consumption and portfolio processes as feedback functions of the agent's wealth. The 

Hamilton-Jacobi-Bellman equation of Section 4.3 is a second-order highly non-linear 

parabolic partial differential equation. Furthermore, the dual value function turns out to 

satisfy a linear second-order parabolic partial differential equation. Illustrating examples are 

presented. 

Numerical applications via Matlab, which elaborate on the utility maximization from 

consumption and/or terminal wealth, are presented in Chapter 5. We examine three specific 

cases, maximization of utility only from consumption (Case 1), only from terminal wealth 

(Case 2) and from consumption and terminal wealth, simultaneously (Case 3). Considering 

constant coefficients, we begin each time with a specific initial endowment and, by using 

charts, we represent in each case the relationship between initial endowment and the value 

function of the investor. 

This thesis is organised as follows. Chapter 2 introduces the model of the financial 

market, provides a detailed discussion on consumption/portfolio process pairs, and lists our 

assumptions on the utility functions. Chapter Section 3 studies three optimization problems 

for an agent: i.e., utility maximization coming from (i) both consumption and terminal 

wealth, (ii) from consumption only, (iii) from terminal wealth only. A decomposition of the 

former problem to the last two is also established. In Chapter 4 we specialize the former 

problem to the case of deterministic coefficients. We  provide the optimal consumption and 

portfolio strategies in explicit “feedback” formulae, and represent how the value function of 

the optimization problem satisfies the Hamilton-Jacobi-Bellman equation and how its dual 
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value function satisfies a linear partial differential equation. Finally, in Chapter 5 we use 

the Monte Carlo simulation method to demonstrate numerical applications of the obtained 

results through Matlab. 
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2.  The Financial Market 

 

2.1  Portfolio And Consumption Processes 

 
Let us consider a market in which  d+1 assets (or “securities”) are traded continuously 

on the fixed time-horizon                               . One of these assets, called the bond, has a 

price which evolves according to the differential equation 

 

 

The remaining d assets, called stocks, are risky; their prices are modeled by the linear 

stochastic differential equations: 

 

 

 

for i =1,2,…,d. Here                                                                                                    is a d-

dimensional Brownian motion on a probability space                     and the filtration ( ){ }tFFFF  

is the augmentation under P of the filtration                                                                       that 

is generated by W ; it represents the information available to agents at time t . All the 

processes which follow are assumed to be ( ){ }tFFFF - adapted, i.e., they are not anticipative of 

the future. 

The interest rate process,                                         as well as the vector of mean rates of 

return                                                                                  and the volatility matrix  

                                                                           are assumed to be measurable, adapted and 

bounded, uniformly in                              . We introduce the covariance matrix 

( ) ( ) ( )ttt Tσσα =:  and assume that it is invertible for every                                .  

We have now an investor who starts with some initial endowment 0≥x  and invests it 

in the d+1 assets described above. Let            denote the number of shares of asset  i owned 

by the investor at time t. Then                                        , and the investor’s wealth at time t  

is  

 

If the trading of shares (the adjustment of the portfolio) is allowed to take place only at 

discrete  time points, say at ⋅⋅⋅+−⋅⋅⋅ ,,,, httht and there is no infusion or withdrawal of 

funds, then 

 

( ), , PΩ FFFF

( ) [ ], 0,t Tω ∈ ×Ω

( )iN t

[ ]0, , 0T T< < ∞

( ) ( ) ( ) ( ) ( )( ) ( ){ }1 , , , ; 0
TdW W t W t W t t t T= = ≤ ≤L FFFF

( ) ( ){ }, ;0r t t t T≤ ≤FFFF

( ) ( ) ( )( ) ( ){ }1 , , , ; 0
T

db t b t b t t t T= ≤ ≤L FFFF

( ) ( )( ) ( ){ }1 ,
, ; 0ij i j d

t t t t Tσ σ
≤ ≤

= ≤ ≤FFFF

( ) ( )
0

0 0
d

i i
i

X x N s
=

≡ =∑

( ) ( )( ): ;0 ,0 ,W t W s s t t Tσ= ≤ ≤ ≤ ≤FFFF

( ) [ ], 0,t Tω ∈ ×Ω

( ) ( ) ( ) ( ) ( )0 0 0, 0 1, 0 . 2.1dS t r t S t dt S t T= = < ≤

( ) ( ) ( ) ( ) ( ) ( ) ( )
1

, 0 , 0 2.2
d

j
i i i ij i i

j

dS t S t b t dt t dW t S s t Tσ
=

 
= + = < ≤ 

 
∑

( ) ( ) ( )
0

. (2.3)
d

i i
i

X t N t S t
=

=∑

( ) ( ) ( ) ( ) ( ) ( )
0

. 2.4
d

i i i
i

X t h X t N t S t h S t
=

+ − = + −  ∑
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On the other hand, if the investor chooses at time t+h  to consume an amount                                       

                                   and reduce the wealth accordingly, then (2.4) should be replaced by 

 

 

Taking                , the continuous-time analogue of (2.5) is 

 

 

By taking (2.1), (2.2), (2.3) into account and denoting by                                    the amount 

invested in the stock  i, di ≤≤1 , we have 

 

 

Any component of the vector            may become negative, which is to be interpreted as 

short-selling that particular stock. The amount 

 

 

invested in the bond may also become negative and this corresponds to borrowing at the 

interest rate         .          

 

Definition 2.1 

A portfolio process                                                                                            is a 

measurable, adapted,        -valued process for which 

 

 

A consumption process                                                      is a measurable, adapted process 

with values in              and 

 

 

The conditions (2.7), (2.8) guarantee that the stochastic differential equation (2.6) has a 

unique solution given by (2.9), which comes from Ito’s Lemma as 

 

 

 

 

0h +→

( )tπ

( )r t

[ )0,∞

dR

( ) ( )t h t c t h+ − +  

( ) ( ) ( )( ) ( ){ }1 , , , ; 0
T

dt t t t t Tπ π π π= = ≤ ≤L FFFF

( ) ( ){ },
; 0c c t t t= ≤ < ∞FFFF

( ) ( ) ( ):i i it N t P tπ =

( ) ( ) ( )0
1

:
d

i
i

t X t tπ π
=

= −∑

( ) ( ) ( ) ( )
0

.
d

i i
i

dX t N t dS t c t dt
=

= −∑

0 ,t T≤ ≤

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

. 2.5
d

i i i
i

X t h X t N t S t h S t t h t c t h
=

+ − = + − − + − +      ∑

( ) ( ) ( ) ( ))( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

. 2.6
d d d

j
i i i ij

i i j

dX t X t r t c t dt t b t r t dt t t dW tπ π σ
= = =

= − + − +  ∑ ∑∑

( ) ( )2

0
1

. 2.7
d T

i
i

t dtπ
=

< ∞∑∫

( ) ( )
0

. 2.8
T

c t dt < ∞∫

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ){
( )( ) ( ) ( ) ( )} ( )

0 0 0

0 0

exp exp 1

exp ,                                2.9

t t s T

t s T

X t r s ds x r u du s b s r s c s ds

r u du s s dW s

π

π σ

 = + − − − 

+ −

∫ ∫ ∫

∫ ∫

%



 10

where     is the d-dimensional vector with every component equal to 1. All vectors are 

column vectors and transposition is denoted by the superscript  T .  

 

Definition 2.2 

A pair            of portfolio and consumption processes is said to be admissible for the 

initial endowment           if the wealth process ( ) ( )⋅≡⋅ XX cx π,,  of (2.9) satisfies 

 

 

We denote by               the class of all such pairs. 

If                                         , then the discount factor ( ){ }∫−
t

duur
0

exp  exactly offsets the rate 

of growth of all assets and (2.9) shows that 

 

 

 

is a stochastic integral. In other words, the process consisting of current wealth plus 

cumulative consumption, both properly discounted, is a local martingale. When     

                      , Q of  (2.14) is no longer a local martingale under P, but becomes one under 

a new probability measure     that removes the drift term                                     from (2.6). 

   Due to the boundedness of the model coefficients, the process 

 

 

is also bounded, and let 

 

 

Then, from Novikov’s condition, the local martingale                                           (cf. (2.16) 

below)is actually a martingale. In fact the new probability measure ( ) ( )[ ]ATZEAP 1
~

=  is 

such that P and P
~

 are equivalent on              , i.e. a set in              has P
~

- probability zero if 

and only if it has P - probability zero, and 

 

 

 

1
%

0x ≥

( ) ( )1; 0b t r t t T= ≤ ≤
%

( ) ( )1b t r t≠
%

P% ( ) ( ) ( )( )1T t b t r tπ −
%

( )xAAAA

( ),cπ

( ) ( ){ }, ; 0Z t t t T≤ ≤FFFF

( )tFFFF ( )TFFFF

( ) ( )0, 0 , 2.10X t t T≥ ≤ ≤

( ) ( ) ( )( ) ( ) ( )( ) ( )
0 0 0

: exp exp 2.11
t t s

Q t X t r u du x c s r u du ds= − − + −∫ ∫ ∫

( ) ( )( ) ( ) ( )( ) ( )1
: 1 , 0 , 2.12t t b t r t t Tθ σ

−
= − ≤ ≤

%

( ) ( ) ( ) ( ) ( )2

0 0

1
: exp . 2.13

2

t tTZ t s dW s s dsθ θ = − − 
 ∫ ∫

( ) ( ) ( ) ( )
0

: 2.14
t

W t W t s dsθ= + ∫%
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is a standard, d-dimensional Brownian motion under      (Girsanov (1960) or Karatzas and 

Shreve (1987, paragraph 3.5)). This new probability measure P
~

 is called an equivalent 

martingale measure. Therefore, in terms of  W
~

, we may rewrite (2.9) as: 

 

 

with 

 

be the solution of (2.1). 

In this market, the exponential local martingale ( )⋅Z  is indeed a martingale, which 

permits the definition of the standard martingale measure P
~

. We shall present the analysis 

of this chapter in a way that uses only the local martingale property of ( )⋅Z  and avoids the 

use of P
~

 altogether. For this model, the following condition will be imposed: 

 

 

Remark 2.3 

Let us define 

 

                                          

Setting,                  and by the Ito’s Lemma, we get from (2.13) that:  

 

                          

 

 

and we define the process  

                         

  

If we take (2.14)-(2.17) into account, we have from product rule: 

   

 

 

 

 

 

 

P%

( ) xf x e=

( ) ( )( )0 0
exp

t
S t r u du= ∫

( ) , , 0.r R Rρ ρ≤ ⋅ ≤ >

( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0

0 0 0

0

1 1

1
 

, 0 ,

T T

T

T T

X t X t X t X t
d H t X t d Z t dZ t Z t d dZ t d

S t S t S t S t

c t
Z t t X t dW t Z t dt t t t dt dW t

S t S t S t

Z t t t t dt
S t

H t t X t dW t H t c t dt H t t t dW t t T

θ π σ θ

π θ σ

θ π σ

     
= = + +          

     

 
= − + − + +    

 

−

= − − + ≤ ≤

( ) ( ) ( ) ( ) 2

0 0

1
: .

2

t tTt s dW s s dsθ θ Θ = − − 
 ∫ ∫

( )
( )

( )
( ) ( ) ( ) ( ) ( ) ( )

0 0
0 0 0

1
2.15

t t TX t c u
x du u u dW u

S t S u S u
π σ= − +∫ ∫ %

( ) ( )( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

1
2

1 1
2 2

                                                    2.16

t tT

T

dZ t df t f t d t f t d t d t

e t dW t t dt e t dt

Z t t dW t

θ θ θ

θ

Θ Θ

′ ′′= Θ = Θ Θ + Θ Θ Θ

 = − − +  

= −

( ) ( )
( )0

: . (2.17)
Z t

H t
S t

=
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which through integration gives 

 

 

When                               the left-hand side of (2.18) is nonnegative, and so the Ito 

integral on the right side is not only a local martingale under P, but also a supermartingale. 

Thus, from the supermartingale property we have: 

 

 

 which implies that the so-called budget constraint 

 

 

is satisfied for every                            .The budget constraint has the satisfying 

interpretation that the expected "discounted" terminal wealth plus the expected 

"discounted" total consumption cannot exceed the initial endowment. Here the 

"discounting" is accomplished by the state price density process H . 

 

Remark 2.4 

Bankruptcy is an absorbing state for the wealth process            when                          ; if 

wealth becomes zero before time T, it stays there, and no further consumption or 

investment takes place (cf. Chung (1982, Thm. 1.4) or Karatzas and Shreve (1987, Problem 

1.3.29)). 

The budget constraint (2.19) is not only a necessary condition for admissibility, 

but is also a sufficient condition, in a sense that we now explain. 

 

Theorem 2.5 

Let 0≥x  be given, let ( )⋅c  be a consumption process, and let ����be a nonnegative,             

- adapted random variable such that 

 

 

 

Then there exists a portfolio process          such that the pair           is admissible at x , i.e. 

( ) ( )xc AAAA∈π, ,and ( )TX=ξ .����������������

 

 

( ) ( ),c xπ ∈AAAA

( )X ⋅

ξ

( )π ⋅

( ) ( ),c xπ ∈AAAA

( ) ( ),c xπ ∈AAAA

( )TFFFF

( ),c π

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0
0 0 ,

T
E H t c t dt H T X T E H t c t dt H X   + ≤ +      ∫ ∫

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
0 0

. 2.18
t t TTH t X t H s c s ds x H s s s s X s dW sσ π θ + = + − ∫ ∫

( ) ( ) ( ) ( ) ( )
0

2.19
T

E H s c s ds H T X T x + ≤  ∫

( ) ( ) ( ) ( )
0

. 2.20
T

E H s c s ds H T xξ + =  ∫
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Proof 

Let us define ( ) ( ) ( )∫=
t

dsscsHtJ
0

:  and consider the nonnegative martingale 

 
 

 
From (2.20) ( ) xM =0  and according to the martingale representation theorem (e.g., 

Karatzas and Shreve (1991), Theorem 3.4.15 and Problem 3.4.16), there is an adapted,  

     - valued process ( )⋅ψ  satisfying 

�

 
almost surely and  
                               
 
 
Define a nonnegative process ( )⋅X  by 
 
 
      

 

 

 

so that,                                . 

Furthermore, from (2.17) we have that 

 

 

and a comparison with (2.18) shows that we should select a portfolio process         : 

 

 

Therefore, solving for ( )⋅π  we get that                            , where 

 

 

Since, from (2.21), ( ) 0≥tX  for 0 ≤ t ≤ T  the pair           is admissible. 

Finally, for t=T, we have from (2.21): 
                                     

 

almost surely.                                                                                                           �                                                                                                    

                                                                                         

( ) 2

0

T
s dsψ < +∞∫

( ) ( )0 0X M x= =

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )Td H t X t dM t dJ t t dW t H t c t dtψ= − = −

( )π ⋅

( ) ( ), ,x cX X π⋅ ≡ ⋅

( ),c π

dR

( ) ( ) ( ) ( ): , 0 .M t E J T H T t t Tξ= + ≤ ≤  FFFF

( ) ( ) ( )
0

, 0 .
t TM t x s dW s t Tψ= + ≤ ≤∫

( ) ( ) ( ) ( ) ( ) ( ).TH t t t t X t tσ π θ ψ − = 

( ) ( )
( ) ( ) ,0 ξξ == TH
TZ
TS

TX

( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( )( ) ( )

0

0 0

1
:

1

1
                                                           2.21

T

t

T t

X t
E H s c s ds H T t

S t Z t

E H s c s ds H T t H s c s ds
Z t

M t J t
Z t

ξ

ξ

 = +  

 = + −  

= −

∫

∫ ∫

FFFF

FFFF

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
11

: . 2.22Tt t t M t J t t
H t

π σ ψ θ
−
 = + − 
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2.2  Utility Functions 

 

The agent in this chapter desires to maximize his utility. In this section we develop the 

properties of the utility functions we consider. We also introduce the convex dual of a 

utility function. 

 

Definition 2.6 

Consider a strictly increasing, strictly concave and continuously differentiable 1C      

function                             with                                         and                                       . A 

function with these properties will be called a utility function in the sequel. Because                                        

                                  is strictly decreasing, it has an inverse, ( ) ( ) ( )∞→∞′= − ,0,0:: 1UI  

which is strictly decreasing, as well. 

 

Definition 2.7 

Let U be a utility function. The convex dual of U is defined as the function 

   

 

 

Lemma 2.8 

Let U be a utility function and      be its convex dual. Then: 

(i)                                                     , where the equality holds, if and only if                , 

(ii)   

(iii)  

 

Proof 

(i) The inequality comes directly from the definition of supremum in (3.1). To 

compute this supremum we have: 

                                                                                                                    , 

which makes the equality holds. 

(ii) It is an immediate consequence of (i).  

(iii) From (ii) we have that:  

 

                                                                                                                                 � 

 

U%

( ) ( ) , , 0U y U x xy x y≥ − ∀ >% ( )x I y=

( ){ } ( ) ( ) ( )0 0
U x xy

U x y U x y x I y
x

∂ −
′ ′= ⇔ − = ⇔ = ⇔ =

∂

( ): 0,U ∞ →R ( ) ( )lim 0
c

U U c
→∞

′ ′∞ = = ( ) ( )
0

0 lim
c

U U c
↓

′ ′= = ∞

( ) ( ): 0, 0,U ′ ∞ → ∞

( ) ( )( ) ( ) ,U y U I y yI y= −%

( ) ( ) , 0.U y I y y′ = − ∀ >%

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).U y U I y I y I y yI y yI y I y yI y I y′ ′ ′ ′ ′ ′= − − = − − = −%

( ) ( ){ } ( )
0

: sup , 0. 2.23
x

U y U x xy y
>

= − >% .
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3.  Utility Maximization From Consumption And/Or Terminal 

Wealth 
 

3.1  The Optimization Problems 

 

We formulate three optimization problems for an agent. This agent is sometimes called 

a small investor because his actions do not affect the prices of financial assets. 

 

Definition 3.1 

A preference structure is a pair of functions                                  and                            . 

as described below: 

(i) For each [ ] ( )⋅∈ ,,,0 1 tUTt  is a utility function (Definition 2.6). 

(ii) 1U  and ′
1U (where the prime denotes differentiation with respect to the second 

argument) are continuous on their domain. 

(iii) 2U  is a utility function. 

 

Let an agent have an initial endowment 0>x  and a preference structure (U1 ,U2). The 

agent can consider three problems whose elements of control are the admissible 

consumption and portfolio processes. 

 

Problem 3.2 (Utility from consumption) 

Find an optimal pair                               for the problem 

 

 

of maximizing expected total utility from consumption over [0, T] , where 

 

 

 
Problem 3.3 (Utility from terminal wealth) 
 

Find an optimal pair                               for the problem 

 

 

 

[ ] ( )1 : 0, 0,U T × ∞ →R ( )2 : 0,U ∞ →R

( ) ( )1 1 1,c xπ ∈AAAA

( ) ( )2 2 2,c xπ ∈AAAA

( )
( ) ( )

( )( ) ( )
1

1 10,
: sup , 3.1

T

c x
V x E U t c t dt

π ∈

 =   ∫
AAAA

( ) ( ) ( ) ( )( ){ } ( )1 10
: , ; min 0, , . 3.2

T
x c x E U t c t dtπ  = ∈ > −∞ ∫A AA AA AA A

( )
( ) ( )

( )( ) ( )
2

, ,
2 2

,
: sup 3.3x c

c x
V x E U X Tπ

π ∈

 =  
AAAA
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of maximizing expected utility from terminal wealth, where 

 

 

Problem 3.4 (Utility from consumption and terminal wealth) 

Find an optimal pair                               for the problem 

 

 

of maximizing expected total utility from both consumption and terminal 

wealth, where 

 

Of course, since                       for 0<x , we have                      for 0<x   and i=1,2,3.          

We adopt the convention that the supremum over the empty set is - ∞ . In the next sections 

we shall strive to compute the value junctions V1, V2 and V3 of these problems and to 

characterize (or even compute) optimal pairs                           , that attain the suprema in 

(3.1), (3.3) and (3.5), respectively. 

 

 

3.2  Utility From Consumption And Terminal Wealth 

 

In order to solve Problem 3.4, for 0>x  we know from the budget constraint (2.19) and 

Theorem 2.5 that (3.7) amounts to maximizing the expression  

over pairs ( )ξ,c , consisting of a consumption process ( )⋅c  and a nonnegative F  (T) - 

measurable random variable ξ , that satisfy the budget constraint:                  

 

 

Now, if 0>y   is a “Lagrange multiplier” that enforces this constraint, the problem reduces 

to the unconstrained maximization of:  

 

 
Therefore, recalling Lemma 2.8 (i), we have that: 
 
 
 
 
 
 

 

( )x =∅AAAA ( )i x =∅AAAA

( ) ( )3 3 3,c xπ ∈AAAA

( ), , 1, 2,3i ic iπ =

( ) ( ) ( )
0

.
T

E H t c t dt H T xξ + ≤  ∫

( )( ) ( )1 20
,

T
E U t c t dt U ξ +  ∫

( )( ) ( ) ( ) ( ) ( )1 20 0
, .

T T
E U t c t dt U y x E H t c t dt H Tξ ξ    + + − +        ∫ ∫

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

1 2 1 20 0 0

1 20

1 20

, ,

,

,

T T T

T

T

E U t c t dt U E U t c t dt U y x E H t c t dt H T

xy E U t c t yH t c t dt E U yH T

xy E U t yH t dt U yH T

ξ ξ ξ

ξ ξ

      + ≤ + + − +            

 = + − + −   

 ≤ + +  

∫ ∫ ∫

∫

∫ % %

( ) ( ) ( ) ( )( ){ } ( ), ,
2 2: , ; min 0, . 3.4x cx c x E U X Tππ  = ∈ > −∞ A AA AA AA A

( )
( ) ( )

( )( ) ( )( ) ( )
3

, ,
3 1 20,

: sup , 3.5
T x c

c x
V x E U t c t dt U X Tπ

π ∈

 = +  ∫
AAAA

( ) ( ) ( ) ( )3 1 2: . 3.6x x x= ∩A A AA A AA A AA A A
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with equality if and only if:                                                    and  
                                                                             

 

Making the appropriate substitutions in (2.20), we define now the function 

 

 

 

Assumption 3.5 

 

 

Remark 3.6 

Under this assumption, the function          inherits all the properties of the functions 1I  

and 2I ; namely, it is continuous on ( )∞,0  and strictly decreasing on ( )∞,0 . In particular, 

the function 3XXXX  has a strictly decreasing inverse function: 

                                                                                      , so that 

  

 

Quite clearly,                   is the only value of  y>0  for which the above pair (c,ξ) satisfies 

the budget constraint with equality; (cf.(2.20)). Thus, for every                  , we are led to the 

candidate optimal wealth:   

  
 

and the candidate optimal consumption process: 
 
 
 
From (4.1), (4.2), we have: 
 
 
 
and due to Theorem 2.5 there exists a candidate optimal portfolio process            such that                                   

                             and                          .  

 

 

 

 

 

 

( )3y x=YYYY

( )3π ⋅

( )3 3, ,
3

x cX Tπξ =

( ) ( )( )1 , , 0 ,c t I t yH t t T= ≤ ≤ ( )( )2 .I yH Tξ =

3XXXX

( ) ( )3 : 0, 0,
onto

∞ → ∞YYYY

( )0,x∈ ∞

( ) ( )3 3,c xπ ∈AAAA

( ) ( )3 , 0, .y y< ∞ ∀ ∈ ∞XXXX

( ) ( ) ( )( ) ( ) ( )( ) ( )3 1 20
: , , 0 . 3.7

T
y E H t I t yH t dt H T I yH T y = + < < ∞  ∫XXXX

( )( ) ( ) ( )3 3 , 0, . 3.8x x x= ∀ ∈ ∞X YX YX YX Y

( ) ( )( ) ( )3 2 3: 3.9I x H Tξ = YYYY

( ) ( ) ( )( ) ( )3 1 3: , , 0 . 3.10c t I t x H t t T= ≤ ≤YYYY

( ) ( ) ( ) ( )( ) ( )3 3 3 30
3.11

T
E H u c u dt H T x xξ + = =  ∫ X YX YX YX Y
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Theorem 3.7 

Suppose that Assumption 3.5 holds, let ( )∞∈ ,0x  be given, let 3ξ and ( )⋅3c  be given by 

(3.9), (3.10) and let ( )⋅3π  be such that                             and                           . Then                             

and ( )33 ,πc  is optimal for Problem 3.4: 

 

Proof 

We only need to show that                             . Indeed, for 1=x  and ( ) ( )tHxy     YYYY3= , we 

have from that  

     

 and 

 

 
 
Consequently, 

  

 

 

                                                                                                                                        � 

Remark 3.8 
 

Assume that                   . It follows that            is the unique optimal consumption 

process and      is the unique optimal terminal wealth. This implies also that           is the 

unique optimal portfolio process, again up to almost everywhere equivalence. 

 

Making use of (2.17), (2.20)-(2.22), (3.9), (3.10) and (3.12), we conclude to the following 

result. 

 

Corollary 3.9 

Under the Assumption 3.5 the optimal wealth process                               is: 

  

 

Furthermore, the optimal portfolio ( )⋅3π  is given by: 

 

 

 

( )3π ⋅3ξ

( )3V x < ∞

( ) ( )3 3 3,c xπ ∈AAAA

( )3c ⋅

( ) ( )3 3,c xπ ∈AAAA ( )3 3, ,
3

x cX Tπξ = ( ) ( )3 3 3,c xπ ∈AAAA

( ) ( ), ,
3

x cX X π⋅ = ⋅

( )( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )1 3 1 3 3 3 1 3 1 3, , , ,1U t c t U t c t x H t c t U t x H t U t x H t≥ − = ≥ −%Y Y YY Y YY Y YY Y Y

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 3 2 3 3 3 2 3 2 31 .U U x H T U x H T U x H Tξ ξ ξ≥ − = ≥ −%Y Y YY Y YY Y YY Y Y

( )( ) ( ){ } ( ) ( )

( ) ( ) ( )

1 3 2 3 1 20 0

3 0

min 0, , min 0, min 0, ,1 min 0, 1

   

T T

T

E U t c t dt U U t dt U

x E H t dt H T

ξ  + ≥ +           

 − +  
> −∞

∫ ∫

∫YYYY

( ) ( )( ) ( )( ) ( )3 3, ,
3 1 3 20

, . 3.12
T x cV x E U t c t dt U X Tπ = +  ∫

( ) ( ) ( ) ( ) ( ) ( ) ( )3 3 3

1
: , 0 . 3.13

T

t
X t E H s c s ds H T t t T

H t
ξ = + ≤ ≤  ∫ FFFF

( ) ( ) ( )
( ) ( ) ( ) ( )3

3 3 , 3.14T X
H

ψ
σ π θ

⋅
⋅ ⋅ = + ⋅ ⋅

⋅
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in terms of the integrand            in the stochastic integral representation 

                                                   of the martingale 

 

 

The value function V3  is then given as 

  

where 

   

 

 

Example 3.10: 

For every Tt ≤≤0  let                                               for 0>x . Then,   

 for 0>y , and (3.7) gives  

 

              

so that its inverse is  

 

 

The optimal terminal wealth, consumption and wealth processes are given respectively by 

(3.9), (3.10) and (3.13), as: 

 

           

             

 

and 
 
 
 
 
 
    
In particular, from (3.15) we have that                   , so                  , and the optimal portfolio, 

given by (3.14), is 

 

 

where we have also used (2.12). 

 

( )3ψ ⋅

( ) ( ) ( )3 30

t TM t x s dW sψ= + ∫

( )3 0tψ =

( ) ( )1 2, , logU t x U t x x= = ( ) ( )1 2

1
,I t y I y

y
= =

( )3M x⋅ =

( ) ( ) ( ) ( ) ( )3 0

1 1 1
, 0

T T
y E H t H T y

yH t yH T y

  +
= + = < < ∞ 

 
∫XXXX

( )3

1
, 0 .

T
x x

x
+

= < < ∞YYYY

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

3
3

3
3

1
,

1

1
1

x
x H T T H T

x
c t

x H t T H t

ξ = =
+

= =
+

YYYY

YYYY

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )

3

1
1 1

1
, 0 .

1

T

t

x x
X t E H s ds H T t

T H s T H TH t

x T t
t T

T H t

 
= + + + 

− +
= ≤ ≤

+

∫ FFFF

( ) ( ) ( ) ( ) ( ) ( )3 3 30
: , 0 . 3.15

T
M t E H s c s ds H T t t Tξ = + ≤ ≤  ∫ FFFF

( ) ( )( ) ( )3 3 3 , 0 , 3.16V x G x x= < < ∞YYYY

( ) ( )( )( ) ( )( )( ) ( )3 1 1 2 20
: , , , 0 . 3.17

T
G y E U t I t yH t dt U I yH T y = + < < ∞  ∫

( ) ( ) ( ) ( ) ( )( ) ( ) ( )
1

3 31 , 0 , 3.18Tt t b t r t X t t Tπ σσ
−

= − ≤ ≤
%



 20

Furthermore, (3.16) and (3.17) show that 

 

  

 

and 

 

 

  

 
Example 3.11 

For every Tt ≤≤0  let                                               for ,0>x  ,1<p  0≠p . 

  

Then, ( ) ( ) 1
1

21 , −== pyyIytI  for ,0 ∞<< y  and (3.7) gives                                                                                   

 

 

 

 

so that its inverse is 

               

 

The optimal terminal wealth, consumption and wealth processes are given respectively by 

(3.9), (3.10) and (3.13), as: 

  

 

and 

 

      

Finally, from (3.16) and (3.17) we get that 

 

 

 

 

 

 

( )
( )( ) ( )

( )
( )( )

1 1
1 1

3 3
3 3

,
1 1

p p
x x

H T c t H tξ − −= =
X XX XX XX X

( ) ( ) ( )

( ) ( ) ( )

3 0

0

1 1
log log

1 log log log , 0 ,

T

T

G y E dt
yH t yH T

T y E H t dt H T y

    
= +            

 = − + − + < < ∞  

∫

∫

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

3 3 0

0

1 log log log

1 log log log , 0 .
1

T

T

V x T x E H t dt H T

x
T E H t dt H T x

T

 = − + − +  

   = + − + < < ∞    + 

∫

∫

YYYY

( ) ( )1 2

1
, , pU t x U t x x

p
= =

( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )

1 1
1 1

3 0

1 1
1 11 1

30
1 , 0 ,

T p p

p pTp pp p

y E H t yH t dt H T yH T

y E H t dt H T y y

− −

− −− −

 
= + 

  

 = + = < < ∞  

∫

∫

XXXX

XXXX

( ) ( )

1

3
3

, 0 .
1

p
x

x x
−

 
= < < ∞  
 

YYYY
XXXX

( ) ( ) ( ) ( )( ) ( )( ) ( )1 1
3

3

.
1

p pT
p p

t

x
X t E H s ds H T t

H t
− −

 
= + 

 
∫ FFFF

XXXX

( ) ( )( ) ( )( )

( )

1 1
1 1

3 0

1
3

1 1

1
1 , 0 ,

p p
T

p p

p
p

G y E yH t dt yH T
p p

y y
p

− −

−

     = +    
     

= < < ∞

∫

XXXX

( ) ( ) ( ) ( )( )11
3 3 3 3

1 1
1 1 , 0 .

p pppV x x x x
p p

−
−= = < < ∞Y X XY X XY X XY X X
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We may write  

                                                                             , 

 where 

 

 

 
 
If                 are deterministic, then          is deterministic and          is a martingale,  

 
 

so, 
 
 
 
for every .0 Tst ≤≤≤  

 
Furthermore, using (3.15), (3.19) and (3.20), we obtain that 

 
 
 
 
 
 
 
 
 
 
 

Moreover, if we define ( ) ( ) ( )∫ +=
t

tmdssmtN
0

: , then 

        
              
 
 
 
 
 

  
 
the martingale property gives that ( )[ ] ( )[ ] .0,10 TtEtE ≤≤∀=Λ=Λ  
 

Therefore, (3.22) may be equivalently written as 
 

                                                              
 
 
 
 
                                                                      

( ) ( ),r θ⋅ ⋅ ( )m ⋅ ( )Λ ⋅

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }3 0

t T

t

x
M t m s s ds t m s ds m T

N T
 = Λ + Λ +  ∫ ∫

( ) ( )
( )

( )

( ) ( ) ( )
( )

( )

2

20 0

2
2

20 0

: exp ,
1 2 1

: exp .
1 2 1

t t

t tT

p p
m t r s ds s ds

p p

p p
t s dW s s ds

p p

θ

θ θ

  = + 
− −  

  Λ = − 
− −  

∫ ∫

∫ ∫

( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
3 0

0

0

0

1

;

p pT
p p

T

T

T

E H t dt H T

E m t t dt m T T

m t E t dt m T E T

m t dt m T N T

− −
 

= + 
 

 = Λ + Λ  

= Λ + Λ      

= + =

∫

∫

∫

∫

XXXX

( )( ) ( ) ( ) ( )1 3.19
p

pH t m t t− = Λ

( ) ( ) ( ) ( ) ( )3.20
1

Tp
d t t t dW t

p
θΛ = Λ

−

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 , 3.21
p

pE H s t E m s s t m s E s t m s t−
 

= Λ = Λ = Λ        
 

F F FF F FF F FF F F
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p pT
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and by taking differentials, in conjunction with (3.20), we have                                                                                                     
 

 
 
 
 

 
 

 
 

 
On the other hand, performing the same computations as we did in (3.22) we get that 
 
 
and we conclude that 

 

 

But we also know that                                                  , thus a comparison with the last 

conclusion reveals that                                                    and by solving for ( )⋅3π  in (3.14) 

and recalling (2.12) we arrive at 

 
 
 
for the case of deterministic         and         . 
 
 

Remark 3.12 

We have that ( ) 02 >yI  for all 0>y , so that the random variable 3ξ  of (4.3) is strictly 

positive almost surely, as is the optimal wealth process ( )tX 3 of (4.7) for Tt ≤≤0 . We can 

define the portfolio proportion 

                                                     ( ) ( )
( ) ,0,:

3

3
3 Tt

tX
t

tp ≤≤=
π

 

a process which is obviously ( ){ }tF -progressively measurable and satisfies 

( )∫ ∞<
T

dttp
0

2
3  almost surely. The components of the vector ( )tp3  represent the 

proportions of wealth ( )tX 3  invested in the respective assets at time [ ]Tt ,0∈ , and equation 

(2.18) for ( )⋅3X  becomes 

                            
( )
( )
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~
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0
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In (3.18) and (3.23) of Examples 3.10 and 3.11, ( )tp3  depends on the market processes and 

the utility functions, but not on the wealth of the agent. 

We close this section with the observation that the value function 3V  is a utility function 

in the sense of Definition 2.6, and we find its derivative and convex dual.  

 

Theorem 3.13 

If Assumption 3.5 holds, then the value function 3V  satisfies all the conditions of 

Definition 2.6 as well as 

 

  

 

 

where  

 
 
Proof 

We first prove the concavity of 3V . Let                         be given and let  

                               also be given. It is easily verified that for                        with 

the consumption/portfolio pair                                                        is in               with 

                           and                                                                 . 

We know that 1U and 2U  are concave and using (3.5) we have: 

 

  

 
 
 
 
 

 
 
 
 

Consequently, maximizing over                               and                               , we obtain 
 

             
                                                                                                                                        � 
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It is easily seen from (3.16) that 3V  is strictly increasing as a composition of       with        

which are strictly decreasing. As a concave function 3V  is also continuous on ( )∞,0 . 

Furthermore, if (3.24) holds, which is proved below, we have that 3V ′  is continuous. 

We turn to (3.25). The second equation in (3.25) follows directly from Lemma 2.8(ii), 

(3.7) and (3.17). For the first, let                                             for ∞<< y0 , and observe 

from (2.23) 

that:  

 

hold almost surely for any 0>y , 0>x  and                          . Consequently, from the 

second equation of  (3.25), the definition of ( )⋅Q  and the budget constraint (2.19), we have 

                          

                                               

 

 

with equality if and only if, 

  

and 

 

Taking the supremum in (3.28) over                         , we obtain                                  for all 

          . 

 

and thus                            ,  for all 0>y . For the reverse inequality, observe that equality 

holds in (3.28) if (3.29) is satisfied and                                         . Consequently, 

  

 

 

 

 

Therefore, this gives                                                                       .   

This completes the proof of (3.25) and shows that for 0>y , the maximum in (3.27) is 

attained by                   . 
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To prove (3.26), we use Lemma 2.10(ii) and   ( ) ( ) 0,
~

>∀−=′ yyIyU   to write for any 

utility function U and for ∞<<< yz0 , 

 

 

 

Therefore, applying the change of variables formula and by the change of 

variable, ( )tH 0λξ = , we have:              

                    

 

 

 

 

 

 

 

 

 

or equivalently by (3.25) we have that  

             

and (3.26) follows. 

The function  V can be recovered from V
~

 by the Legendre transform inversion formula 

(cf.(3.27)) 

 

To compute this infimum we have: 
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Remark 3.14 

From (3.16) we have                                     for all ( )∞∈ ,0y . If               exists, then 

( )yG3′   also exists and is given by the formula 

 

 

 

 

3.3  Utility From Consumption Or Terminal Wealth 

 

Theorem 3.17 below provides a complete solution to Problem 3.2 of maximization of 

expected utility from consumption alone, and Theorem 3.20 does the same for Problem 3.3 

of maximization of expected utility from terminal wealth alone. This section also contains 

examples of these solutions and examines the dual value functions for Problems 3.2 and 

3.3. Theorem 3.24 shows how to combine the solutions of these two problems to obtain the 

solution of Problem 3.4 of maximization of expected utility from consumption plus 

expected utility from terminal wealth. In particular, the dual value function for Problem 3.4 

is the sum of the dual value functions for Problems 3.2 and 3.3. 

Let a preference structure ( )21 ,UU  be given. We define the functions 

 

                  

 

 

Assumption 3.15:  

 

Assumption 3.16:  

 

Just as we proved Remark 3.6, we can show that for each 2,1=i , under Assumptions 

3.13-3.16, the function         is strictly increasing and continuous on            with                     

and with                     and has a strictly decreasing inverse function  

The proof of the following theorem parallels the proof of Theorem 3.7 and Corollary 

3.9. 
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Theorem 3.17 (Maximization of the expected utility from consumption) 

Let Assumption 3.14 hold, let ( )∞∈ ,0x  be given, and define 

 
 
 
(i) There exists a portfolio ( )⋅1π  such that                             ,                          , and the 

pair              is optimal for Problem 3.2, i.e., 

 

 

(ii)  The optimal wealth process                                is 

 

 

(iii) The optimal portfolio ( )⋅1π  is given by 

 

 
where ( )⋅1ψ  is the integrand in the stochastic integral representation 

                                                  of the martingale 

 

 

(iv) The value function 1V  is given by                                  

                                                                                   

where 
 
 

Imitating the proof of Theorem 3.13, we can show that 1V  has the following properties. 

 

Theorem 3.18 

Let Assumption 3.15 hold, and assume ( ) ∞<xV1  for all 0>x . Then 1V  satisfies all the 

conditions of Definition 2.6, and 

 
 

 

 

where 
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Example 3.19 (Subsistence consumption)  

For every  Tt ≤≤0   suppose                                                Then ( ) yytI 1,1 =  and 

( )34.3  gives                         for ∞<< y0 . We have                       for 0>x  and the optimal 

consumption and wealth processes from (3.36), (3.37) are 

 

 
respectively. 
 
Furthermore, ( )39.3  and ( )40.3  show that 

                                      ( ) ( )dttHEyTyG
T

loglog
01 ∫−−= , ,0>y  

  
 
 
Finally, from Theorem 3.17(iii) we have that ( ) ,1 xM =⋅ so ( ) ,01 =⋅ψ and the optimal 

portfolio given by (3.38) is 

  

 
 
The analogues of Theorems 3.17, 3.18 for Problem 3.3 are the following. 

 

Theorem 3.20 (Maximization of utility from terminal wealth)  

Let Assumption 3.16 hold, let ( )∞∈ ,0x  be given, and let   

  

(i) With 02 ≡c , there exists a portfolio ( )⋅2π such that                              , 

( ) 2
,, 22 ξπ =TX cx , and the pair ( )22 ,πc is optimal for Problem 3.3, i.e., 

 

 

(ii) The optimal wealth process                                   is  

 

 

(iii)The optimal portfolio ( )⋅2π is given by 

 

where ( )⋅2ψ is the integrand in the stochastic integral representation  

                                                    of the martingale.  
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(iv) The value function 2V is given by                                  

 

where  

 

 

Theorem 3.21 

Let Assumption 3.16 hold, and assume ( ) ∞<xV2  for all 0>x . Then 2V  satisfies all 

the conditions of Definition 2.6, and 

 

 
 
 

 
where 

 
 

 
Remark 3.22 

If ( )y′1XXXX  and ( )y′2XXXX exist, then just as in Remark 3.14, we have for L,3,2,1=i , 

  

 

Example 3.23 (Portfolio insurance) 

Suppose                                               We have                         for ∞<< y0 . Also, we 

have ( ) xx 12 =YYYY  for 0>x , and the optimal consumption and wealth processes are ( ) 02 ≡tc  

and                                                    

           

Finally,                                                   , so 

 

As in Example 3.19, we can derive the optimal portfolio for ( ) xM =⋅2  and ( ) 02 =⋅ψ  to 

explicitly be  

 
 
 

In the remainder of this section we examine the relationship among the value functions 

and the optimal policies for Problems 3.2-3.4. Consider an agent with initial endowment 

0>x  who divides this wealth into two pieces, 01 >x and 02 >x , so that xxx =+ 21 . 
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 For the piece 1x , he constructs the optimal policy ( ) ( )1111 , xc AAAA∈π  of Theorem 3.17 for the 

problem of maximization of utility from consumption only. With the piece 2x , he constructs 

the optimal policy ( ) ( )2222 , xc AAAA∈π  of Theorem 3.20 for the problem of maximization of 

utility from terminal wealth only. Note that ( ) 0111 ,, =TX cx π  and  ( ) 02 ≡⋅c , so the 

superposition ( )2121 , ππ ++ cc  of the policies ( ) ( )2211 ,,, ππ cc  is in ( )x3AAAA , results in the 

wealth process ( ) ( ) ( )tXtXtX cxcxcx 222111 ,,,,,, πππ +=  which is governed by (2.18), and satisfies 

 

( ) ( ) ( )( ) ( )( ) ( )., 30

,,
212211 xVTXUdttctUExVxV

T cx ≤



 +=+ ∫ π  

Therefore, 

( ) ( ){ } ( ) ( )45.3.0,,0,0;sup 321212211 >∀≤=+>>+ xxVxxxxxxVxV  

Moreover, the reverse of inequality (3.45) holds. Again, for 0>x , let ( ) ( )xc 333 , AAAA∈π  

be the optimal policy of Theorem 3.7 for the problem of maximization of utility from 

consumption and terminal wealth; moreover, in conjunction with (3.11), define 

( ) ( ) ( ) ( )[ ],:,:
0

,,
02301

33∫ ==
T cx TXTHExdttctHEx π  

so that xxx =+ 21 . Theorem 2.5 and the former definition guarantee for ( ) ( )⋅=⋅ 3cc  and 

0=ξ , the existence of a portfolio process ( )⋅1π̂  such that ( ) 0131 ˆ,, =TX cx π  and 

( ) ( )1113 ˆ, xc AAAA∈π  ; therefore, ( )( ) ( )∫ ≤
T

xVdttctUE
0 1131 , . This same theorem for ( ) 0=⋅c  and 

( )TX cx 33 ,, πξ = , and the latter definition guarantee the existence of a portfolio process ( )⋅2π̂  

such that with 0ˆ2 ≡c , we have ( ) ( )TXTX cxcx 33222 ,,ˆ,ˆ, ππ =  and ( ) ( )2222 ˆ,ˆ xc AAAA∈π ; therefore, 

( )( ) ( )( ) ( ).22
ˆ,ˆ,

2
,,

2
22233 xVTXEUTXEU cxcx ≤= ππ  We have then                                                                           

 

( ) ( )( ) ( )( )
( ) ( ).

,

2211

0

,,
2313

33

xVxV

TXEUdttctUExV
T cx

+≤

+= ∫
π

 

 
Therefore, ( ) ( ) ( ){ } ,0,,0,0:sup 212122113 >∀=+>>+≤ xxxxxxxVxVxV  and we 

conclude with the following result. 

 

Theorem 3.24 

Let Assumption 3.5 hold. Then  

( ) ( ) ( ){ } ( )46.3.0;sup 212213 >∀=++= xxxxxVxVxV  
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If, in addition, ( ) ∞<xVi  for all 0>x  and ,2,1=i  then for each ( )∞∈ ,0x  the supremum in 

(3.46) is attained by ( )( )xx 311 YYYYXXXX= , ( )( )xx 322 YYYYXXXX= . In particular, 

 

and   

( ) ( ) ( ) ( ) ( )48.3.,0,
~~~

213 ∞∈∀+= yyVyVyV  

 

Proof 

For fixed ( )∞∈ ,0x , let us consider the concave function                           defined by                         

( ) ( ) ( ).: 12111 xxVxVxf −+=  Under the assumption that ∞<iV  for ,2,1=i  this function is 

finite on its domain. Now, ( ) ( ) ( )12111 xxxxf −−=′ YYYYYYYY   for xx << 10 , and f ′  is continuous 

and strictly decreasing on this interval. 

The maximum in (3.46) is attained by the unique value ( )xx ,01 ∈  where ( ) 01 =′ xf , 

i.e., ( ) ( )1211 xxx −=YYYYYYYY . We check that ( )( )xx 311 YYYYXXXX=  solves this equation, to wit,  

 

 

 

 

 

since from (3.7), (3.34) and (3.35) we have that 

                                                     

                                                                                                                                                     

We have shown that the supremum in (3.46) is attained by 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )xxxxxxxx 323133312311 , YYYYXXXXYYYYXXXXYYYYXXXXYYYYXXXXYYYYXXXX =−=−== ; i.e., (3.47) holds. 

Equation (3.48) follows immediately from (3.25), (3.41), (3.43), and the definitions of iG  

and iXXXX  for  .3,2,1=i                                                                                                           

                                                                                                                                              � 

 

 

 

 

 

 

( ): 0,f x →R
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4.  A Dynamic Programming Framework 

 

4.1  Deterministic Coefficients 

 

In this section we specialize the results of  Section 3.2 to the case of continuous, 

deterministic functions                                                                and 

the set of dd ×  matrices. In this case, stock prices and the money-market price become 

Markov processes. We will focus on obtaining an explicit formula for the optimal portfolio 

( )⋅3π  of Corollary 3.9, whose existence was established there but for which no useful 

representation apart from (3.14) was provided. We shall show that the value function for 

Problem 3.4 is a solution to the nonlinear, second-order parabolic Hamilton-Jacobi-Bellman 

partial differential equation one would expect (Theorem 4.9), and the dual value function is 

the unique solution of a linear second-order parabolic partial differential equation (Theorem 

4.10). Several examples are provided.  

We shall represent both the optimal portfolio ( )⋅3π  and also the optimal consumption 

rate process ( )⋅3c  in "feedback form" on the level of wealth ( )⋅3X  of (3.13), i.e., 

  

for suitable functions                                              and  

(cf. Theorem 4.7), which do not depend on the initial wealth. Such a representation shows 

that in the case of deterministic coefficients the current level of wealth is a sufficient 

statistic for the utility maximization Problem 3.4: an investor who computes his optimal 

strategy at time t  on the basis of his current wealth only, can do just as well as an investor 

who keeps track of the whole past and present information               about the market! 

Similar results hold for Problems 3.2 and 3.3; their derivation is straightforward. 

Throughout this section, the following two assumptions will be in force. These are not the 

weakest assumptions that support the subsequent analysis, but they will permit us to 

proceed with a minimum of technical fuss.  

 

Assumption 4.1 

We have that the processes ( )⋅r , ( )⋅θ  and ( )⋅σ  are nonrandom, continuous (and hence 

bounded) functions on [ ]T,0 , and ( )⋅r  and ( )⋅θ  are in fact Holder continuous, i.e., for 

some 0>K  and ( )1,0∈ρ  we have 

 

[ ] ( ) [ ): 0, 0, 0,C T × ∞ → ∞

( )tFFFF

( ) [ ] ( ) [ ]: 0, , : 0, dr T Tθ⋅ → ⋅ →R R ( ) [ ] ( ): 0, : ,d dT Lσ ⋅ → R R

[ ] ( ): 0, 0, dTΠ × ∞ →R

( ) ( ) ( ) ( )1 2 1 2 1 2 1 2,p pr t r t K t t t t K t tθ θ− ≤ − − ≤ −

( ) ( )( ) ( ) ( )( ) ( )3 3 3 3, , , , 0 , 4.1c t C t X t t t X t t Tπ= =Π ≤ ≤
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for all [ ]Ttt ,0, 21 ∈ . Furthermore, ( )⋅θ  is bounded away from zero and infinity. In 

particular, there are positive constants 21 ,κκ  such that      

  

almost surely.  

Because of Novikov's condition (e.g., Karatzas and Shreve (1991)), Assumption 4.1 

guarantees that the local martingale ( )⋅Z  is in fact a martingale. This permits the 

construction of the martingale measure P
~

 under which the process W
~

 of (2.14) is a 

Brownian motion. We have not needed this probability measure in previous sections, but 

we shall make use of it in this section. 

 

Assumption 4.2 

The agent's preference structure ( )21 ,UU  satisfies the terminal conditions: 

(i) (polynomial growth of 1I and 2I ) there is a constant 0>γ such that  

 

 

(ii) (polynomial growth of 11 IU o and 22 IU o ) there is a constant 0>γ such that 

 

  

(iii) (Holder continuity of 1I ) for each ( )∞∈ ,00y , there exist constants ( ) 00 >yε , 

( ) 00 >yK , and ( ) ( )1,00 ∈yρ  such that 
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y

ytITt ,:,,,0 11 ∂
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=′∈  is defined and strictly negative for 

all y  in a set of positive Lebesgue measure, or else ( )yI 2′  is defined and strictly 

negative for all y  in a set of positive Lebesgue measure. 
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Furthermore, for each ( )∞∈ ,00y  and ( )0yε , ( )0yK ,and ( )0yρ  as in Assumption 4.2(iii), 

the mean value theorem implies for all                                                                that  

 

 

 

where ( )tι  takes values between ( )ytI ,1  and ( )01 , ytI  and M is a bound on the continuous 

function ( )( )η,, 11 tItU ′  as ( )η,t  ranges over the [ ] ( ) ( ) ( )( )[ ]0000 ,,0,0 yyyyT εε +−∩∞× .                                      

In other words, 11 IU o  enjoys the same kind of Holder continuity posited in Assumption 

4.2(iii) for 1I . 

 

 

4.2 Feedback Formulae 

 

We introduce the process  
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where                         denotes expectation with respect to the martingale measure     ,and                                                 

                                       is given by 

 

 

 

The Markov property for ( ) ( )⋅ytY ,  under P implies that 

 

is a function of  ( ) ( ) ytY yt =, , i.e., is deterministic. Therefore, 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

and                is an extension of the function                               defined by (3.7). We should 

properly write                  rather than                 , to indicate that this function is associated 

with Problem 3.4. However, we do not carry out an analysis for Problems 3.2 and 3.3 under 

the assumption of deterministic coefficients, and hence permit ourselves the convenience of 

suppressing the subscript. 

 

Lemma 4.4 
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Furthermore, for each [ ),,0 Tt∈               is strictly decreasing with  

     

                                        

Consequently, for [ ),,0 Tt∈               has a strictly decreasing inverse function  

                               , i.e., 

 

 

and YYYY is of class 2,1C  on the set 
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Proof 
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Furthermore, making use of arguments involving suitable stopping times, we may treat the 

local martingale term as to be a true martingale under P
~

. Therefore, by taking expectations, 

this term vanishes and we obtain: 

     
 
 
 

It follows immediately that XXXX is of class [ ] ( )( ) [ ) ( )( )∞×∩∞× ,0,0,0,0 2,1 TCTC  and  
 

 
 
 
 

Substituting the latter into (4.11) and (4.12) we have that 

 

 

 

 

  

which are (4.6) and (4.7). 

The function                 inherits the properties of 1I and 2I  and the rest assertions of the 

Lemma follow from the implicit function theorem. Moreover, from the implicit function 

theorem we have the existence of the function YYYY that satisfies (4.9) for all [ ]Tt ,0∈ , is of 

class 2,1C on D , and is continuous on                                       .                                            � 
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Remark 4.6 

The proof of Lemma 4.4 also shows that XXXX  is the unique  

[ ] ( )( ) [ ) ( )( )∞×∩∞× ,0,0,0,0 2,1 TCTC  solution to the Cauchy problem (4.6), (4.7) among 

those functions f  satisfying a suitable exponential growth condition. 

 

We now derive the feedback form for optimal consumption and investment. 

 

Theorem 4.7 

Under the Assumptions 4.1 and 4.2, the feedback form (4.1) for the optimal 

consumption/portfolio process pair ( )33 ,πc  for Problem 3.4 is given by 
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Proof 
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4.3 Hamilton-Jacobi-Bellman Equation 

 

Finally, we develop the Hamilton-Jacobi-Bellman (HJB) equation associated with 

Problem 3.4. To do that, we must extend the value function 3V of (3.5) to include the time 

variable. Given                                , and given a consumption/portfolio process pair 

( ) ( )( )⋅⋅ π,c , the wealth process ( )⋅π,,, cxtX  corresponding to ( )π,c  with initial condition ( )xt,  

is given by (cf. (2.15)) 
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Lemma 4.8 

Under Assumptions 4.1 and 4.2, the function G  defined by (4.21) is of class 

[ ] ( )( ) [ ) ( )( )∞×∩∞× ,0,0,0,0 2,1 TCTC  and, among such functions that also satisfy the 

previously mentioned suitable growth condition of Remark 4.6, is the unique solution to the 

Cauchy problem 

 

 

 

Furthermore,  

 

 

 

 

 

Proof 

The proof of (4.25) and (4.26) is like the proof of (4.6) and (4.7), except that now we 
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Theorem 4.9 (Hamilton-Jacobi-Bellman equation)  

Under Assumptions 4.1 and 4.2, the value function ( )xtV , of (4.22) is of class 2,1C on 

the set D  of (4.10), continuous on the set ( ) [ ] ( ){ }∞×∈ ,0,0, Txt , and satisfies the boundary 

conditions (4.23), (4.24). Furthermore, V satisfies the Hamilton-Jacobi-Bellman equation of 

dynamic programming: 

 

 

 

In particular, the maximization in (4.31) is achieved by the pair ( ) ( )( )xtxtC ,,, Π of (4.16), 

(4.17). 

 

Proof 

Differentiating (4.9), we obtain for ( ) Dxt ∈, , 

 

 

Differentiating (4.22) and using the formula (4.28), we obtain for ( ) Dxt ∈, , 

 

 

 

 

 

Using these formulas, we can rewrite the left-hand side of (4.31) as 

 

 

 

 

Both expressions to be maximized are strictly concave. Setting their derivatives equal to 

zero, we verify that (4.16) and (4.17) provide the maximizing values of c  and π , 

respectively. Substitution of these values converts the expression of (4.32) into 
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We can also use (4.28) and the first two identities of this proof to write this expression in 

the form: 

 

 

 

  

Setting                     , so that,                       we can use (4.28) and (4.25) to write this in the 

simpler form: 

 

 

 

which through (4.28) equals to 

 

 

 

According to Lemma 4.4, this last expression is zero.                                                           � 

 

Theorem 4.9 provides only a necessary condition for the value function V ; it is not 

claimed that V  is the only function that is of class 2,1C on D  and satisfies (4.31) with 

boundary conditions (4.23), (4.24). In order to make such a uniqueness assertion, one 

would have also to impose additional technical condition on V . Instead of pursuing this 

approach, it is easier to derive a necessary and sufficient condition for the convex dual of 

V , defined by the formula 

 

 

 

In contrast to the nonlinear partial differential equation (4.31), which governs the value 

function V , the dual value function V
~

 satisfies the linear partial differential equation (4.36) 

below. Then the function V  can be recovered from V
~

 by the Legendre transform inversion 

formula 
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Theorem 4.10 

(Convex dual of ( )⋅,tV ): Let Assumptions 4.1 and 4.2 hold. Then, for each [ ]Tt ,0∈  the 

function ( )⋅,tV satisfies all the conditions of Definition 3.1, and 

 

 

 

 

 

Moreover, V
~

 is of class [ ] ( )( ) [ ) ( )( )∞×∩∞× ,0,0,0,0 2,1 TCTC  and is the unique solution of 

the Cauchy problem 

 

 

 

 

Proof 

All the claims (4.33)-(4.35) made here for fixed [ )Tt ,0∈ are contained in Theorem 

3.12, for 0=t . When Tt = , (4.33)-(4.35) and (4.37) follow directly from the definitions. 

Equation (4.34), Lemma 4.4, and Lemma 4.8 show that V
~

 has the claimed degree of 

smoothness. Equations (4.34), (4.25), (4.6), and (4.35) yield (4.36).                                     �                                      

 

The following examples illustrate the use of Theorem 4.10 to compute the value 

function and the optimal consumption and portfolio processes in feedback form. 

 

Example 4.11 

Fix ( ) { }0\1,∞−∈p  and set 

 

Then, 
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subject to the function                          to be determined. Differentiating (4.38) we have: 

  

 

 

 

 

Substituting these into (4.36), (4.37) we obtain: 

 

 
or  

 
 
 
 

and 

 

  

Since these relationships should hold 0>∀ y , it shows that (4.38) is a solution of (4.36), 

(4.37) if and only if 
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where 

 

 

From these conditions, we see that  

 

The function V
~

, defined by (4.38) and (4.40), is the unique solution of (4.36) and (4.37). 

 

From (4.34) and (4.35) we have that, 
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thanks to (4.22). The optimal consumption and portfolio in feedback form of (4.16), (4.17) 

are 

 

 
 
 

Example 4.12 

Set  ( ) ( ) ,0,log, 21 >== xxxUxtU   

then, 
 
 
 
 
 
In view of the form of 1

~
U  and 2

~
U , we seek a solution V

~
of (4.36), (4.37) of the form 

 
 
 

Differentiating the latter, we have: 

 

 

 

 

Substituting these into (4.36), (4.37) we obtain: 

 

 

which leads to  

 

 

and 

 

which yields  

 

This function V
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solves (4.36), (4.37) if and only if 
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Again, this function V
~

is the unique solution of (4.36), (4.37), and from (4.34), (4.35) we 

have that 

 

 

Consequently, for ,0 Tt ≤≤  

 

 

 

 

thanks to (4.22), and the feedback formulae of (4.16) and (4.17) are 
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5.  Monte Carlo Numerical Applications With Matlab 

 

The starting point for the application of Monte Carlo method is the generation of 

sample paths of the underlying factors. In our cases, that will be described below, we need 

a whole path or, at least, a sequence of values at given time instants. We consider the 

geometric Brownian motion model: 

( ) ( ) ( ) ( ),tdWtHdttrHtdH θ−−=  

that corresponds to the process of (2.17) for constant coefficients, and from this equation 

we get 

( ) ( ) ( ) ( )1.5,εδθ ttHdttrHtdH −−=  

where tδ  is the discretization step and ε ∼ ( )1,0NNNN . The marginal distribution of each value 

( ) ( )tiHiH δ=  is normal. Actually, taking a very small tδ we may reduce the error, but this 

is time consuming. With complicated stochastic differential equations, we may have to 

generate the whole sample path, even if we are only interested in values at maturity. 

To simulate the path of the product ( ) ( )( )tyHtItH , , as we will see below, over an 

interval [ ]T,0 , we must discretize time with a time step tδ . Equation (5.1) is particularly 

useful as it can be integrated exactly according to (4.2), yielding: 

( ) ( ) ( )2.5,
2

exp
2









−








−−=+ εδθδθδ ttrtHttH  

where ε ∼ ( )1,0NNNN  is a standard normal random variable. Based on equation (5.2), it is 

fairly easy to generate sample paths for the product ( ) ( )( )tyHtItH , . 

We will use Matlab to create functions for three specific cases. In Case 1, we will see an 

example of maximization of utility only from consumption. In Case 2, an example of  

maximization of utility only from terminal wealth, and finally, in Case 3 an example of 

maximization of utility only from consumption and terminal wealth. In each case, we have 

to provide the equation (5.2) with inputs and an initial value. Firstly, by (2.17) we have that 

( ) 10 =H . In addition, we will use constant coefficients which are, the rate of the bond  r, 

with %13=r , and the market price of risk θ - theta, with  theta = 11%. Moreover, the time 

horizon T, will be for one year, T=1. Finally, the number of time steps NSteps, with Nsteps 

= 365, and the number of replications NRep1, with NRep1 = 100000. 
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Case 1 (Maximization of utility from consumption) 

 

In this case we will formulate in practice the maximization of the expected discounted 

utility only from consumption. Because utility comes only from consumption, it is plausible 

that one should strive to compute the net effect of the latter, corresponding to a wide range 

of initial endowments. 

For every Tt ≤≤0  let ( ) xxxtU 2log,1 +=  for 0>x . Then, ( ) ( ) 2
1 21142, yyyytI +++=   

for 0>y . Also, from (3.34) we know that, ( ) ( ) ( )( ) .0,,:
0 11 ∞<<



= ∫ ydttyHtItHEy

T
XXXX  

With the help of Matlab we create function ( )y1XXXX  which is used to give us the Monte Carlo 

simulation. The Matlab codes are presented in Tables 5.1 and 5.2. 

 

Table 5.1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We generate one hundred thousands one-year sample paths for the product 

( ) ( )( )tyHtItH ,1  with initial price 1 monetary unit, r = 11%, and theta = 13%, assuming that  

 

function [Final,I2]=Paths(H0,r,theta,T,NSteps,NRep1,y) 

                 

HPaths=zeros(NRep1, 1+NSteps); 

HPaths(:,1)=H0; 

Final=zeros(NRep1, NSteps); 

I2=zeros(NRep1, NSteps); 

dt=T/NSteps; 

nudt=(-(0.5*theta^2)-r)*dt; 

sidt=theta*sqrt(dt); 

 

for i=1:NRep1 

    for j=1:NSteps 

        HPaths(i,j+1)=HPaths(i,j)*exp(nudt - sidt*randn); 

        HT = HPaths(i,j+1); 

        I2(i,j)=(2*y*HT+sqrt((4*y*HT)+1)+1)./(2*(y*HT).^2); 

        Final(i,j) = HT * I2(i,j); 

    end 

end 
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the time step is 365 days. A straightforward code to generate sample paths of the product 

( ) ( )( )tyHtItH ,1  following geometric Brownian motion is given in the above figure. The 

function Paths yields a matrix of sample paths, where the replications are stored row by row 

and columns correspond to time instants. 

Table 5.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

In this code NSamples is the number N of sampled points to compute the arithmetic 

average, which should not be confused with the number of replications NRep1. In this case, 

we have to generate whole sample paths; we need samples only by specified time instants, 

but we may still have to generate a large amount of data.  

Also, this code is based on one nested “for” loop, which makes NRep1 times the 

computation ( ) ( )( ) ( ) ( )( )







≈ ∑∫

=

N

i
iii

T
tyHtItH

N
dttyHtItH

1
10 1 ,

1
,  for tit i δ=  and NTt =δ , 

where 1=T  and 100000=N . Finally, “normfit” returns the mean of the latter NRep1 

values. 

We know that, for the initial endowment x  we have, ( ) xy =1XXXX . Having each time a 

different initial endowment, we find the corresponding y  that verifies the latter. Also, from 

(3.40) we have that,                                                                                        We create this 

function, with Matlab and from (3.39) we take the corresponding value function                                                

                                   . The Matlab code is presented in Table 5.3. 
 
 
 
 
 
 
 

function [P,CI]=Integral(H0,r,T,theta,NSamples,NRep1,y) 

M=zeros(NRep1,1); 

for i=1:NRep1 

    Final=Paths(H0,r,theta,T,NSamples,NRep1,y); 

    M(i)=mean(Final(i, :)); 

end 

 

[P,aux,CI]=normfit(M); 

 

( ) ( )( )( )1 1 10
3.40 : , , , 0 .

T
G y E U t I t yH t dt y = < < ∞  ∫

( ) ( )( )1 1 13.39 , 0,V x G x x= >YYYY
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Table 5.3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

This code is based again on “for” loop, which makes NRep1 times the computation 

( )( )( ) ( )( )( )







≈ ∑∫

=

N

i
iii

T
tyHtItU

N
dttyHtItU

1
110 11 ,,

1
,,  for tit i δ=  and NTt =δ , where 

1=T  and 100000=N . Finally, again “normfit” returns the mean of the latter NRep1 

values. 

In addition, by giving specific prices to our inputs, with the help of Matlab, we found 

for each initial endowment x  the corresponding y , which verifies ( ) xy =1XXXX , and the 

corresponding value function ( )xV1 . Finally, we create a chart which has on each axis the 

results for the initial endowment and the value function, respectively. The above results are 

presented in Table 5.4 and Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

 

function [P,CI]=Integral2(H0,r,T,theta,NSteps,NRep1,y) 

 

U2=zeros(NRep1, NSteps); 

[Final,I2]=Paths(H0,r,theta,T,NSteps,NRep1,y); 

U2 =log(I2)+2*sqrt(I2); 

 

for i=1:NRep1 

    M(i)=mean(U2(i, :)); 

end 

 

[P,aux,CI]=normfit(M); 
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Table 5.4 

Initial Endowment 

x  

 

Corresponding y  

Value Function 

( )xV1  

1 2,03 2,15 

10 0,427 8,9 

20 0,282 12,3 

50 0,167 18,6 

100 0,114 25,3 

200 0,0781 34,3 

300 0,0633 41,5 

400 0,0542 47,6 

500 0,0484 52,3 

600 0,0439 57,1 

700 0,0405 61,4 

800 0,0379 65,1 

900 0,0356 68,6 

1000 0,0337 72,3 

 

Figure 5.5 
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Case 2 (Maximization of utility from terminal wealth) 

 

In this case, with a utility function 2U  as in Case 1, the problem now is to maximize the 

expected discounted utility from terminal wealth. Because, utility comes now only from 

terminal wealth, it is quite reasonable again to estimate the corresponding value function 

for various values of initial endowments. 

For every Tt ≤≤0  let ( ) xxxtU 2log,2 +=  for 0>x . Then, ( ) ( ) 2
2 21142 yyyyI +++=   

for 0>y . Also, from (3.35) we know that, ( ) ( ) ( )( )[ ] .0,: 22 ∞<<= yTyHITHEyXXXX  

With the help of Matlab we create function ( )y2XXXX  which is used to give us a simpler 

Monte Carlo simulation. The Matlab code is presented in Table 5.6. 

 

Table 5.6 

 

  

 

 
 
 
 
 
 
 
 

 

Here, we compute firstly NRep1 times the value of, ( ) ( ) ,
2

exp0
2









−








−−= εθθ

TTrHTH  

where, ( ) 10 =H  and 1=T , for each line of the table that we have create. Finally, with 

“normfit”, we average these values and compute the mean ( ) ( )( )( )TyHITHE 2 , having 

NRep1=100000. 

We know that, for the initial endowment x  we have, ( ) xy =2XXXX . Having each time a 

different initial endowment, we find the corresponding y  that verifies the latter. Also, from 

Theorem 3.20 (iv) we have that,                                                                           We create 

this function, with Matlab and from (3.42) we take the corresponding value function                                               

( ) ( )( ) .0,222 >= xxGxV YYYY  The Matlab code is presented in Table 5.7. 

 
 

function [Price,CI,I2]=GBM(H0,r,T,theta,NRep1,y) 

 

nudT=(-(0.5*theta^2)-r)*T; 

siT=theta*sqrt(T); 

HT=H0*exp(nudT-siT*randn(NRep1,1)); 

I2=(2*y*HT+sqrt((4*y*HT)+1)+1)./(2*(y*HT).^2); 

 

[Price,VarPrice,CI]= normfit(HT.*I2); 

 

( ) ( )( )( )2 2 2: , 0 .G y EU I yH T y= < < ∞
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Table 5.7 
 
 
 
 
 
 
 
 

In this code, we compute NRep1 values of expression,        

( )( )( ) ( )( ) ( )( )TyHITyHITyHIU 2222 2log += , 

for each line of the table that we have, and with “normfit” we compute its expectation, 

having NRep1=100000. 

Moreover, by giving specific prices to our inputs, with the help of Matlab, we found for 

each initial endowment x  the corresponding y , which verifies ( ) xy =2XXXX , and the 

corresponding value function ( )xV2 . Finally, we create a chart which has on each axis the 

results for the initial endowment and the value function, respectively. The above results are 

presented in Table 5.8 and Figure 5.9. 

Table 5.8 

Initial Endowment 

x  

 

Corresponding y  

Value Function 

( )xV2  

1 2,07 2,3 

10 0,44 9,2 

20 0,29 12,6 

50 0,172 19,2 

100 0,117 26,2 

200 0,081 35,8 

300 0,065 42,7 

400 0,056 49,2 

500 0,0497 54,4 

600 0,0453 58,7 

700 0,0421 63,2 

800 0,0388 67,2 

900 0,0365 71,5 

1000 0,0348 74,3 

 

function [EU,CI]=V2(H0,r,T,theta,NRep1,y) 
 
[Price,CI,I2]=GBM(H0,r,T,theta,NRep1,y); 
U2=log(I2)+2*sqrt(I2); 
 
[EU,VarPrice,CI]= normfit(U2); 
 



 54

Table 5.9 

 
 

 
Case 3 (Maximization of utility from both consumption and terminal wealth) 

 

A stochastic control problem, which is arguably more interesting than those we saw in previous 

cases, concerns the maximization of the total expected discounted utility from both consumption and 

terminal wealth. 

For every Tt ≤≤0  let ( ) ( ) xxxtUxtU 2log,, 21 +==  for 0>x . Then, 

( ) ( ) ( ) 2
21 21142, yyyyIytI +++==  for 0>y . From (3.7) we know that, 

( ) ( ) ( )( ) ( ) ( )( ) .0,,: 2103 ∞<<



 += ∫ yTyHITHdttyHtItHEy

T
XXXX  By combining the codes in 

Tables 5.2 and 5.6 from Cases 1 and 2, respectively, we create function ( )y3XXXX  which is 

used to give us the  Monte Carlo. Matlab code represented in Table 5.10. 

 

Table 5.10 
 
 
 
 

 

function X3=montecarlo(H0,r,T,theta,NSamples,NRep1,y) 
 
[P,CI]=Integral(H0,r,T,theta,NSamples,NRep1,y); 
[Price,CI,I2]=GBM(H0,r,T,theta,NRep1,y); 
 
X3=P+Price; 
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We know that, for the initial endowment x  we have, ( ) xy =3XXXX . Having each time a 

different initial endowment, we find the corresponding y  that verifies the latter. Also, from 

(3.17) we have that, ( ) ( )( )( ) ( )( )( ) .0,,,:
0 22113 ∞<<



 += ∫ yTyHIUdttyHtItUEyG

T
                                                                         

We create this function, by taking together the codes in Tables 5.3 and 5.7 from Cases 1 

and 2, respectively and from (3.16) we take the corresponding value function 

( ) ( )( ) .0,333 ∞<<= xxGxV YYYY  The Matlab code is presented in Table 5.11. 

 

Table 5.11 

 

 
 
 
 
 
 
 

 

 

Furthermore, by giving specific prices to our inputs, with the help of Matlab, we found 

for each initial endowment x  the corresponding y , which verifies ( ) xy =3XXXX , and the 

corresponding value function ( )xV3 . Finally, we create a chart which has on each axis the 

results for the initial endowment and the value function, respectively. The above results are 

presented in Table 5.12 and Figure 5.13. 

 

 

 

 

 

 

 

 

 

 

 

 

function V3=montecarlo2(H0,r,T,theta,NSteps,NRep1,y) 

 

[P,CI]=Integral2(H0,r,T,theta,NSteps,NRep1,y); 

[EU,CI]=V2(H0,r,T,theta,NRep1,y); 

 

V3=P+EU; 
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Table 5.12 
Initial Endowment 

x  

 

Corresponding y  

Value Function 

( )xV3  

1 3,49 1,78 

10 0,67 12,8 

20 0,431 18,1 

50 0,25 27,5 

100 0,169 37,7 

200 0,1147 51,4 

300 0,093 61,3 

400 0,079 70,4 

500 0,07 78,2 

600 0,064 84,6 

700 0,059 90,1 

800 0,055 96,5 

900 0,0519 101,7 

1000 0,049 106,8 

 
 

Figure 5.13 
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To sum up, we present the above three cases in one chart to see the differences between 

each case. Our results are presented in Figure 5.14. Obviously, the value functions 21 , VV  

and 3V  satisfy all the conditions of a utility function as obtained in Theorems 3.18, 3.21 and 

3.13, respectively.  

 

Figure 5.14 
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