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Abstract 
 
 

In this paper we apply several non-parametric, parametric and semi-parametric 

methods in order to determine the market risk of Greek mutual funds, according to the 

Value at Risk measure. More specifically, the methods used are Historical Simulation 

for two sample sizes, Simple Moving Average and Exponentially Weighted Moving 

Average (RiskMetrics model), GARCH (1,1) and EGARCH (1,1) with normally and 

Student’s t distributed innovations, unconditional and GARCH (1,1) filtered Extreme 

Value Theory for different thresholds and Filtered Historical Simulation for two 

sample sizes. All calculations were made in a rolling basis and our sample consists of 

the logarithmic returns of nine mutual funds over the period 22/3/1993 to 21/11/2008 

(3954 observations). The evaluation framework focuses on three tests proposed by 

Christoffersen (2003), namely unconditional coverage, independence and conditional 

coverage tests. Our results suggest that for the 95% VaR forecasts almost all methods 

do not perform well, while this is not the case for 99% confidence level. For the latter, 

some methods exhibit remarkably good performance, depending on the type of fund. 

Finally, we compute simple HS based Expected Shortfall just to give the reader an 

intuition of this alternative to VaR measure.   
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Introduction 
 
 

Over the last years risk management has evolved to a very important part of the 

financial and other industries. Although a lot of firms adopt risk management 

techniques, there is much debate over their effectiveness. A series of financial 

disasters has led to this discussion and has triggered the adoption of a series of 

regulations, especially with regard to the trading activities of financial institutions. As 

an illustration of the aforementioned disasters, in 1993 MG Refining and Marketing, a 

US subsidiary of Metallgesellschaft AG, reported losses in the amount of $1.3 billion 

dollars from positions in oil. Similarly, Gibson Greetings, Mead, P&G and Air 

Products and Chemicals reported losses from positions in differential swaps, the 

Japanese firm Kashima Oil lost $1.5 billion dollars on currency positions and the 

Orange County Investment Pool lost $1.7 billion dollar. The most remarkable failure, 

however, came in 1995, when Bearings, with over 230 years of history, went bankrupt 

after the realization of $1.4 billion dollar losses in Nikkei futures and option positions.  

The constant growth of the financial transactions between institutions globally, the 

use of derivatives and highly leveraged products, securitization, the steadily 

increasing accounts of portfolio investments in banks' balance sheets and the fragility 

of the whole system due to uncontrolled market risks led to the imposition of 

legislative frameworks, such as the Capital Adequacy Directive by the Bank of 

International Settlements in Basle (1996).     

In general terms, risk is defined as a situation that if materialized, could give rise to 

problems concerning the achievement of certain business goals or, in a more 

probabilistic expression according to McNeil (1999), “Risks are random variables, 

mapping unforeseen future states of the world into values representing profits and 

losses”. There are many types of risks, such as market risk, operational risk, credit 

risk, liquidity risk, business risk, sovereign risk and off-balance sheet risk. The focus 

of this paper is on market risk as measured by means of the Value at Risk standard, 

applied for Greek mutual funds. Market risk can be defined as the loss that could be 

experienced by a portfolio investor, due to adverse moves in the market factors which 

affect the value of the given portfolio. In these terms, market risk includes interest 

rate, currency, equity and commodities risk.  
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In this dissertation, we examine the performance of several parametric, non-

parametric and semi-parametric methods in order to compute the downside risk of 

Greek mutual funds. A lot of academic research has been carried out, mainly focused 

on stock portfolios and indices, bonds and exchange rates but little is done in the 

mutual funds field. Since this form of institutional investing is primarily index linked 

though, our results are comparable to the existing literature. From our analysis, for 

95% VaR estimations the results are not satisfactory, while at 99% confidence level 

we conclude that the performance of the models depends on the type of mutual funds, 

with some methods exhibiting good overall performance. 

The rest of the paper is organized as follows: in Chapter 1 we present briefly the 

historical evolution of Value at Risk, while in Chapter 2 we define it. In Chapter 3 we 

define Expected Shortfall; in Chapter 4 the main approaches to determine VaR are 

presented with Extreme Value Theory discussed in Chapter 5. Afterwards, we discuss 

the most important criticism points of VaR, in Chapter 7 we analyze some well 

documented facts about returns series, in Chapter 8 we describe explicitly the 

methods applied to estimate volatility and in Chapter 9 we present the evaluation 

framework. In Chapter 10 we discuss the most recent and, to the best of our 

knowledge, most similar past papers, while in Chapter 11 we introduce some facts 

about the Greek mutual funds market. Finally, in Section 2 (chapters 12 to 15) we 

discuss the empirical investigation and the results.    

 

1. History of Value at Risk     
 

The first and most inspiring ideas concerning risk and finance generally were 

expressed by Markowitz (1952), in a mean-variance framework. Markowitz's work 

constituted the base for later innovations by Treynor (1961), Sharpe (1964), Lintner 

(1965) and Mossin (1966), who independently introduced the Capital Asset Pricing 

Model. According to Holton (2002) these and some other theories are the 

predecessors of the Value at Risk measures (“VaR”), in the sense that VaR is a 

category of probabilistic measures of market risk. Later Ross (1976) subsequently 

introduced the Arbitrage Pricing Theory, which is based on somehow more realistic 

assumptions than CAPM.  
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As we shall see later in this section, capital requirements were legislated since the 

20's in the US and later in all over the world. According to Holton (2002), working 

towards these legislations, Garbade (1986, 1987) introduced a VaR measure for bond 

portfolios and Wilson (1993) made a breakthrough by replacing the normal 

distribution with the t-distribution, in order to capture the fatter tails of financial time 

series. Finally, in 1994 JP Morgan introduced Riskmetrics Technical Document and 

increased the popularity of VaR measures. Also, it widened the use of the term "Value 

at Risk". 

 

Prior to VaR measures: Regulatory Capital Requirements 

 

The regulations concerning capital requirements date back to 1922 in the New 

York Stock Exchange. By 1929 they became more formal, and as Holton (2002) 

states "the NYSE capital requirement had developed into a requirement that firms 

hold capital equal to: 

• 5% of customer debits; 

• a minimum 10% on proprietary holdings; 

• 30% on proprietary holdings in other liquid securities and 

• 100% on proprietary holdings in all other securities" 

This formulation constituted the basis that developed into the capital requirements 

concerning securities firms, including Mutual Fund Management Companies as well. 

In the following years further developments took place, including the establishment of 

the US Securities and Exchange Commission (SEC). 

In 1975 the original capital requirement framework was developed by SEC in 

order to apply to securities firms, resulting in the Uniform Net Capital Rule (UNCR) 

introduction. This rule posed a number of "haircuts", i.e. a number of ratios that 

ensured that firms would continue to function and meet their obligations, even if 

markets plunged. These ratios determined the capital requirement depending on the 

asset class (equity, treasury, illiquid assets etc).  

In 1980, nevertheless, these “haircuts” were modified. They were updated in order 

to capture losses with 95% confidence and with liquidation period of 30 days. In other 

words, it resembles the 95% 30 - day ahead VaR and it is very close to the form 

known today. Later on, legislation frameworks were developed worldwide, in order to 
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sustain stability of the financial system. Towards this direction, the 1988 Basle 

Accord sets minimum capital requirements for banks, which were adopted by the G-

10 countries. In Britain, the Securities and Futures Authority also set capital 

requirement measures for credit and market risk, followed by the 1993 Capital 

Adequacy Directive (CAD) by the European Union which introduced minimal capital 

requirements for banks' trading books based on a 95% 10 - day VaR measure. The 

latter measure, according to RiskMetrics Technical Document (1996) did not count 

for diversification effects and led to unreasonably high capital requirements. Finally, 

the 1996 Basle Accord laid the foundations of the current market-based capital 

requirements, allowing institutions to choose between Basle VaR measures or their 

own, if acceptable, in order to define the capital requirements.      

 

2. Definition of Value at Risk 
 

Value at Risk is a measure that captures the potential loss of an asset or a portfolio 

of assets over a certain period of time for a given confidence interval. In other words, 

as Cristoffersen (2003) states: "Value at risk is a simple risk measure that answers the 

following question: What dollar (euro in our case) loss is such that it will be exceeded 

p x 100% of the time in the next K trading days?" Mathematically expressed, VaR is:1 

 
Pr (€Loss>€VaR) = p,                                                (1) 

 
which stands for the probability of getting an even larger loss than VaR, or expressed 

in form of returns: 

 
pVaRRMF =−< )( Pr                                                  (2) 

 
 where MFR  stands for mutual fund returns.  

Assuming that the returns of a portfolio are normally distributed, with zero mean and 

standard deviation 1, +tMFσ , the p% one day ahead VaR will be: 

 

1
1,11,1

1,11,1tMF,11tMF,

*)/(

)//RPr()(R Pr
−

++++

++++++

Φ−=⇔=−Φ⇔

⇔=−<⇔=−<

ptMF
p

ttMF
p

t

tMF
p

ttMF
p

t

VaRpVaR

pVaRpVaR

σσ

σσ
        (3) 

                                                 
 
1 as derived from Christoffersen P, 2003, Elements of Financial Risk Management, Academic Press 
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where (*) Φ  denotes the cumulative density function of the standard normal 
distribution and  1

p
−Φ  the inverse cumulative density function for the Pth quantile.  

In the case where student’s t distributional assumptions are utilized (GARCH (t) 

and EGARCH (t) models), VaR takes the form: 

 

)( t2VaR 1-
p1,

p
1t dd

d
tMF

−−= ++ σ                                        (4) 

 
where d denotes the degrees of freedom of the student’s t distribution and )(t -1

p d  the 

inverse cumulative density function2 of the distribution, whose density is described by 

the formula: 

 

2d , ))2/(1(
)2()2/(

)2/)1(();(f 2/)1(2
(d)t~ >−+

−Γ
+Γ

= +− ddz
dd

ddz
π  

 
where z denotes a random variable with mean zero and standard deviation one and 

Γ(*) denotes the gamma function. 

 
3. Expected Shortfall 
 
 

Artzner et al. (1999) introduced “coherent measures of risk”, after finding evidence 

that VaR exhibits some flows (non subaddtitive) as explained in detail in chapter six 

later on in this paper. The alternative measure they proposed is the so called Expected 

Shortfall (ES or Conditional VaR or Tail VaR) that answers the question: “If things do 

get bad, how large are the losses expected to be”? In other words, while VaR tells us 

the number of losses that exceed it, ES tells us about the magnitude of the losses if 

VaR is exceeded. ES remains as simple as VaR, but conveys information about the 

shape of the tail and not just a point of it.  

 

]VaR-  [EES p
1t11t

p
1t ++++ <−= tt RR                                     (5) 

 

                                                 
2 { } ∫

∞
+−−+

−Γ
+Γ=====

z

-
dt 2/)1())2/(21(

)2()2/(
)2/)1((d)(z;

t~
Fp  where,pd)F(z;:z);(1-Fz ddz

dd
ddp

π
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In this paper we compute unconditional ES for 95% and 99% confidence intervals 

for sample of 100 and 252 observations, based on historical simulation method. 

 

4. Methods for computing VaR 
 
 

There are mainly three families of methods used to calculate VaR: Variance – 

Covariance methods (V-CV), Historical simulation methods (HS) and Monte – Carlo 

simulation (MS) methods. The first two methods are used and discussed in this paper.  

 
 
4.1 Variance – Covariance methods 
 
 

This family of methods lies upon certain distributional assumptions of the returns. 

The basic distribution attributed to the returns is the standard normal, which has very 

convenient properties and it is fully described by the first two moments, mean (which 

for daily data is usually set to zero) and variance. Assuming that the returns of each 

asset follow normal distribution, a portfolio with positions in these assets will follow 

normal distribution as well. Thus, after computing the covariance matrix of the assets 

and the historical volatility of the portfolio, VaR is computed as the product of a 

scaling factor (depending on the confidence level) and the volatility of the portfolio. 

Volatility can be estimated using a variety of models. 

The main advantage of the V-CV methods is that they can be easily implemented. 

On the other hand, financial returns exhibit fatter tails and negative skewness, which 

are moments that do not count for the normal distribution. This causes 

underestimation of the VaR measure, especially with regard to portfolios containing 

non linear financial instruments like options. 

In addition, financial time series are non stationary. We, therefore, use GARCH 

models to deal with the problem of heteroskedasticity and student’s t distributional 

assumptions (which has fatter tails than the normal) to deal with the “fat tails” effect.  
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Delos Blue Chips 99% VaR Forecasts
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Figure 1: Delos Blue Chips logarithmic returns and 99% Exponentially Weighted 
Moving Average, GARCH (n) and GARCH (t) VaR forecasts from 6/3/97 to 21/11/08 
 
 
4.2 Historical simulation methods (HS) 
 

This method is, by intuition, the simplest one. It does not have a parametric nature 

but assumes that the distribution of future returns can be approximated from the 

empirical distribution of past returns. In other words, the historical returns are 

possible scenarios for the future returns. In this context, in order to compute the VaR 

measure at p confidence level, we sort the historical returns in ascending order and 

find the corresponding percentile for which the 100p% observations will be smaller, 

or:  

 
}{ }{ pPercentile m 100,R  VaR

1τ-1tMF,
p

1t =++ −=
τ

                            (6) 
 
 

where m is the sample size of past returns. 
 

As with all methods, HS has certain advantages and drawbacks. Its main advantage 

is its simplicity, as no estimations have to be made. Additionally, its distribution-free 

nature implies that it counts for “fat-tails” and negative skewness.  

On the negative side lies the cost of not counting for volatility clustering, since all 

sample observations have equal weights and volatility updating is slow. The equal 

weights scheme causes much dependence on the sample selection. If a very large 
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sample is used, the latest observations that should count more to the result will 

actually have small weights and if we use a small sample we will have little extreme 

observations. Thus, a large unusual loss at t will lead to (overestimated) large VaR at 

t+1, which may not be the case. Vlaar (2000) states though, that the accuracy of HS 

VaR forecasts tends to increase, as sample size increases up to a point. Furthermore, 

HS lies upon the assumption that returns are i.i.d., which is not the case. It should be 

noted that Lambadiaris et al. (2003) has been used herein, who has used samples of 

100 and 252 observations.    

 

Interamerican/EFG Balanced HS 99% VaR Forecasts 
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Figure 2: Interamerican/EFG Balanced logarithmic returns and 99% Historical 

Simulation (for rolling samples of 100 and 252 observations) from 6/3/1997 to 

21/11/2008. 

 

As seen in figure 2, VaR forecasts produced by Historical Simulation exhibit box-

shaped patterns due to the slow volatility updating and the ignorance of volatility 

clustering. 

 

4.3 Semi-Parametric methods: Filtered Historical Simulation 

 

As previously discussed, Variance-Covariance and Historical simulation methods 

have certain advantages and drawbacks. Barone-Adesi, Giannopoulos and Vosper 

(1999) and Hull & White (1998) proposed a method that combines the volatility 

updating patterns of V-CV methods (GARCH or EWMA models), a drawback of HS 

method, and the non-parametric nature of the HS method to overcome the problem of 
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attributing a non-realistic distribution to the returns series. Assuming a GARCH or an 

EWMA variance model, they state that “the probability distribution of a market 

variable, when scaled by an estimate of its volatility, is often found to be 

approximately stationary”. Thus, let: 

 

:R jN,  historical return of the mutual fund j on day N 

:σ2
j1,N+  historical GARCH/EWMA estimate of the daily variance of the return of 

mutual fund j, made at day N for the next day N+1 

:σ2
j1,t+ the most recent GARCH/EWMA variance estimation, made now (at t) for 

tomorrow (t+1).  

Thus, we create a “new” stationary time series as: 

j,1

jN,
j,1

*
jN,

R
R

+
+=

N
t σ

σ                                                (7) 

Thus, they have achieved to create a stationary time series that incorporates a 

GARCH/EWMA volatility updating scheme. The historical simulation method is then 

applied to the new
*

jN,R series and the one day ahead VaR is computed as: 

 

}{ }{ pPercentile m 100,R  VaR
1

*
1tMF,

p
1t =++ −=

τ
                            (8) 

where m stands for the sample size. 

 

In this paper, we will use GARCH volatility updating and rolling sample of 500 

and 1000 observations for the calculation of the FHS VaR, due to the sensitivity of 

HS method to the sample selection.   

The reader can notice that the FHS method incorporates the volatility dynamics, 

due to the GARCH volatility modeling, and does not exhibit the box-shaped patterns 

of simple HS. A comparison of figures 2 and 3, which are constructed for the same 

mutual fund, is obviously in favor of the FHS method.   
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Interamerican/EFG Balanced FHS 99% VaR Forecasts 
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Figure 3: Interamerican/EFG Balanced logarithmic returns and 99% Filtered 

Historical Simulation (for rolling samples of 500 and 1000 observations) VaR 

forecasts from 6/3/1997 to 21/11/2008. 

 

5. Extreme Value Theory 
 

The need for distributions that capture the probabilities of downside returns (or 

extremes) has led to the development of Extreme Value Theory, which focuses on 

estimating the tails of financial time series. In this paper we apply the Peaks over 

Threshold method (POTS) for different thresholds. The returns time series should be 

i.i.d., otherwise as Angelidis et al. (2004) state the estimations could be biased. In this 

paper, we follow closely McNeil & Frey (2000), who apply the EVT method both at 

raw returns and at GARCH standardized ones (two stage model – G-EVT). As they 

state, the latter method gives “approximately i.i.d.” series and thus leads to better 

estimations. Assuming we have a series of i.i.d. returns n21 X,...,X,X  and a high 

threshold u, given that X>u for all X’s, the probability of the returns less the threshold 

u being bellow a value y is (y = X - u): 

u}Xyu-X {Pr   y)(Fu >≤≡                                        (9) 

and *)(Fu is the excess distribution function. 

 The excess distribution function can be written in terms of the actual returns function 

F (*): 

F(u)1
F(u)-u)F(yy)(Fu −

+
=                                            (10) 
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Extreme Value Theory lies upon the fact that as the threshold u gets large, the 

excess distribution *)(Fu  converges to a generalized Pareto distribution: 

 

⎩
⎨
⎧

=−
≠+−

==
0,ξ      exp(-y/βx1
0,ξ  ξy/β)1(1

)(G*)(F
-1/ξ

βξ,u y                            (11) 

 
with β>0, and 
 

⎩
⎨
⎧

<≤≤
≥≥

0ξ if     β/ξ-uyu
0ξ if          u         y

 

 
ξ is the shape (or tail) parameter and β is a scale parameter. 

The Generalized Pareto distribution covers a number of other distributions. A 

positive ξ means that the distribution is heavy tailed (like the student’s t), which is the 

case of the mutual funds’ returns and present the greatest interest for risk 

management. If the underlying distribution is the normal one then ξ=0.   

Combining equations (10) and (11) the following transformation can be made: 

 

F(u)u)-(xF(u))G-(1F(X) βξ, +=  , X>u                               (12) 

since X= y + u 
 

F(u) can be estimated by n/)N-n( u , where n is the size of the sample and uN is 

the number of data points beyond the threshold u. Combining it with maximum 

likelihood estimates of the Generalized Pareto Distribution, we get that: 

 
ξ/1

u

β
u-Χξ1

n
N-1F(X)

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= , X>u                                (13) 

 
If we invert the above function, we get to estimate the desired quantile of F(X) and 

thus compute VaR: 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

−

+ 1p)1(
N
n

ξ
βuVaR

tξ

tu,t

t
t

p
1t                                  (14) 

 
 
where p is the confidence level. 
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Alpha Equities 99% EVT VaR Forecasts
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Figure 4: Alpha Equities logarithmic returns and 99% unconditional EVT (for 10%, 
8% and 5% thresholds) VaR forecasts from 6/3/1997 to 21/11/2008. 
   
 

As seen in the above figure, EVT VaR produces smooth patterns, ignoring the 

volatility dynamics. Furthermore, raw returns are non i.i.d., thus the estimations could 

be biased. As Seymour et al. (2003) state, Danielsson and De Vries (2000) argue that 

since extreme returns occur infrequently, and do not appear to be related to a 

particular level of volatility, an unconditional approach is better suited to VaR 

estimation than conditional volatility forecasts. But since McNeil and Frey (2000), 

there is much evidence in the literature that their method (G-EVT hereafter) gives 

more accurate VaR forecasts than unconditional EVT. Thus, we applied their method 

as well, which assumes that GARCH standardized returns can reasonably be assumed 

as i.i.d. series and computing VaR with EVT based on the standardized returns gives 

better results. Furthermore, as observed in the following figure, it incorporates the 

volatility dynamics, although it some times overestimates VaR, as discussed in the 

results section. 
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Alpha Equities 99% G-EVT VaR Forecasts
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Figure 5: Alpha Equities logarithmic returns and 99% GARCH standardized Extreme 
Value Theory (for 10%, 8% and 5% thresholds) VaR forecasts from 6/3/97 to 
21/11/08. 
 
 
5.1 Advantages and Disadvantages of EVT 
 
 

Main advantage of the EVT method is that it exclusively focuses on the tails of the 

distribution, ignoring the center which is out of interest for risk management. GPD 

utilization makes no specific assumption about the distribution, but covers many types 

of them depending on the tail parameter. Furthermore, it treats each tail differently, 

allowing for asymmetries.  

According to Diebold, Schuermann and Stroughair (1999), EVT should be applied 

mostly for high quantiles (p ≥  0.99). This is in accordance with our results of the 

EVT method, as it performs best at the 99% confidence level. Furthermore, as they 

state, the most important debate on EVT is about the choice of the threshold since 

“there is an important bias - variance trade off when varying u for fixed sample size”. 

Indeed, as threshold u increases and we move towards the center of the distribution, 

more data are used for the estimation of ξ and thus variance decreases, but bias 

increases as the observations may not comply with GPD. On the other hand, high 

threshold means smaller sample for the estimation. In this paper, we use 10%, 8% and 

5% thresholds to overcome this problem. 
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6. Advantages of VaR and criticism 
 
 

Value at Risk provides the usefulness of aggregating the risk of a variety of 

instruments and portfolios in a single number, which can be easily understood by the 

stakeholders of an organization. Furthermore, a VaR breakdown per section/ 

market/department/trader etc could allow for more accurate risk-adjusted returns and 

lead to more efficient capital allocation and remuneration methods. Moreover, Culp, 

Miller and Neves (1998) state that, under certain circumstances, some of the financial 

mishaps mentioned in the introduction part could have been avoided if adequate VaR 

measures were implemented.  

On the other hand, a highly aggregate figure as VaR may loose in accuracy. 

Moreover, Beder (1995) characterizes VaR as “seductive but dangerous”. Seductive 

because it is simply communicated, but dangerous because the VaR figures depend 

heavily on the methodology, the data set, the assumptions and the parameters used. 

Thus, according to the author, differences in these factors produce considerably large 

variations in VaR measures for the same portfolios, pointing out that, although VaR is 

a powerful measure, it should be correctly understood.  

The main criticism point of VaR, though, came out by Artzner et al. (1999). In 

their study, they introduced the “coherence” framework for risk management 

measures. According to the authors, a risk measure can be seen as an amount of cash, 

that if added on a position, can make it accepted by the regulators. Furthermore, it is 

“coherent” when it fulfils the following axioms: 

Let Ω a set of states of the world, X a random variable counting the final worth of 

positions of each element of Ω, G the set of all risks, p the risk measure, mapping 

from G to the set of real numbers and r the rate of return of a reference instrument: 

1) Translation invariance: For all real numbers a, we have p(X+ar)=p(X) – a 

That is, if we add cash equal to a to our position, the risk measure should decrease 

by the same amount.  

2) Positive homogeneity: For all λ≥ 0 and all X∈G, p(λ,Χ)=λp(X) , meaning that 

keeping the synthesis (weigths) of a portfolio constant but increasing its’ size by λ, 

will increase the risk measure by λ as well.  
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3) Monotonicity: For all X and Y∈G with X≤Y, we have p(Y)≤ p(X), or a 

portfolio with lower returns (X) than an other portfolio (Y) should have bigger risk 

measures. 

4) Subadditivity: For all X1 and X2∈G, p(X1+X2)≤ p(X1) + P(X2) or if two 

portfolios are merged to one, the latter should have smaller risk measure or at least 

equal to the sum of the two risk measures individually.  

They proved that VaR does not always conform to the last axiom, meaning that 

diversification could not lead to lower VaR measures and they proposed Expected 

Shortfall (or Conditional VaR or Tail VaR) instead. 

 

7. Financial returns and Volatility 
 
 

Financial time series exhibit a number of characteristics, the presentation of which 

is crucial in order to understand the methods developed for dealing with them.  

 
7.1) Leptokurtosis (“fat tails”)  
 

The most common distribution used in order to describe returns is the standard 

normal, which is fully defined by its first two moments. But usually this is not the 

case, as the probability of extreme losses is greater than the one proposed by the 

normal, as witnessed by Mandelbrot (1963) and others. The empirical distribution 

usually has fatter tails and higher peak (i.e. kurtosis > 3) as can be concluded by the 

following histogram, with normal and empirical distributions superimposed:  

 

 
Figure 6: Alpha equities logarithmic returns empirical distribution with the normal 
distribution superimposed. 
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This holds for the whole sample of mutual funds and as illustrated in the Q-Q plots 

in the appendix, student’s t distribution seems to capture this effect better.   

Another fact against the normal distribution is that asset returns have larger 

probability of moving upwards than downwards, but when the latter comes into effect 

the drops are larger than the up movements. In other words, the unconditional 

distribution of returns is negatively skewed, a property not so obvious in the above 

histogram but discernible in the table of the descriptive statistics of our sample in the 

data set section.  

 
7.2)  Volatility clustering 
 

Except for the fact that homoskedasticity does not hold for financial time series, 

volatility is clustered in time, i.e. we have periods of concentrated high volatility 

followed by periods of also concentrated lower volatility, as put by Mandelbrot 

(1963). Alternatively, variance exhibits significant autocorrelation, as witnessed in the 

following figure: 

 
 

 
Figure 7: Interamerican/EFG Dynamic Equity logarithmic returns from 23/3/1993 to 
21/11/2008 
 
 

Consequently, in order to model volatility, we should apply methods that count for 

time varying variance and attribute more weight to the most recent returns. The latter 

will allow for volatility clustering, since if the most recent observations exhibit 
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large/small volatility, so will our forecasts for the future. Towards this direction, 

models such as the Exponentially Weighted Moving Average (EWMA hereafter) by 

JP Morgan (RiskMetrics Technical Document, fourth edition, 1996) and the GARCH 

family models (Bollersev, 1986) have been developed, which will be presented later 

on in this section.  

 
 7.3)  Leverage effect 
 

The so-called leverage effect refers to the negative correlation between variance 

and returns, first observed by Black (1976). To put it more simply, when bad news 

“hit” the market and asset prices drop, they cause volatility to increase more than it 

would have as a result of good news and upward shifts. Using stocks as an example, 

this could be attributed to the fact that when prices drop, a firm’s leverage becomes 

larger creating more doubts about its financial stability and thus increased volatility. 

To incorporate this fact in volatility modeling and forecasting, models like NGARCH 

and EGARCH have been proposed and will be presented bellow.  

 
 
8. Volatility Estimation and Forecasting 

 

In accordance with Figlewski (1994), we assume that the mean of the returns for 

our daily data is equal to zero. As he concluded, estimating the mean adds more bias 

in volatility estimation than considering it to be zero. This hypothesis is also 

statistically tested and proved to be correct for our sample, as we will see later on in 

the data set analysis. The methods used in this paper to estimate and forecast volatility 

are presented herein bellow. 

 
8.1) Simple Moving Average (SMA)   
 

The simplest way to estimate volatility (standard deviation) is: 

 

∑
=

++ =
n

t
1

2
τ-1t1 R

1-n
1

τ

σ                                                   (15) 

n: the sample size 

τ: the lag of past observations 

R: the past logarithmic returns 
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As noticed, this method puts equal weights 1/n-1 in all past squared returns, posing 

issues concerning the choice of n. A relatively high n will cause weights to be lower 

and thus produces smoother volatility estimations over time, while the opposite will 

give more jagged patterns. Furthermore, the equally weighting scheme does not allow 

for most recent returns to count more in tomorrow’s volatility, a fact not in 

accordance with volatility clustering. To overcome these problems, JP Morgan 

proposed the following method; 

 
8.2) Exponentially Weighted Moving Average (EWMA)   
 
 

JP Morgan’s method, as described in RiskMetrics Technical Document (1996), 

estimates volatility as: 

 

1λ0for   Rλ)1(
1

2
τ-1t

1-τ
1 <<−= ∑

∞

=
++

τ

λσ t                                    (16) 

or 
 

2
t

2
t1 λ)R1(λσ −+=+tσ                                                (17) 

    
λ is termed the decay factor and it determines the relative weights attributed to past 

observations and the length of the sample. The advantages of this method are two: 

Firstly,  it gives more weight to the most recent observations in a declining scale as 

we move towards the oldest ones (as lag t gets bigger), which means that the most 

recent observations matter more. In this way, it incorporates volatility clustering 

better than SMA. 

Secondly, the only estimation needed is the decay factor λ. It is estimated for many 

asset classes by RiskMetrics and found to be 0.94, a fact that automatically sets the 

length of the sample to 100 observations, since for the lags from 1 to 100 the vast 

majority of the weight has been used.   

On the other hand, as simple as this model is, it does not count for leverage effect 

discussed earlier. Also, it does not incorporate the mean reverting patterns of volatility 

as will be shown later on. 
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Delos Equity SMA (n=252) Volatility Forecasts
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Figure 8: Delos Blue Chips Simple Moving Average (rolling sample of 252 
observations) volatility forecasts from 6/3/1997 to 21/11/2008. 
 

Delos Equity EWMA (n=100) Volatility Forecasts
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Figure 9: Delos Blue Chips Exponentially Weighted Moving Average (rolling sample 
of 100 observations) volatility forecasts from 6/3/1997 to 21/11/2008. 
 
 

The above figures present the volatility forecasts for the same mutual fund over the 

same time period. We can see that SMA produces a smooth pattern, while EWMA a 

jagged one. This happens due to the fact that the second method reacts better to the 

“latest news”, allowing for volatility clustering more efficiently.   
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8.3) GARCH(p,q)  
 
 

The GARCH model was introduced by Bollersev (1986) in his paper “Generalized 

Autoregressive Conditional Heteroskedasticity”. The GARCH (p, q) volatility process 

is: 

 

∑∑
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Where: ω>0, iα >0, jβ >0 and ∑∑
==

+
q

j

p

i 1
j

1
i βα <1 and tz  is a random variable. 

 
The idea is that the variance of returns depends both on past values of the shocks 

(the past squared error terms) and on past values of itself. Also, p refers to the length 

of GARCH (or variance) lags and q to the length of ARCH (squared error terms) lags. 

The latter captures volatility clustering.  

The GARCH (1, 1) model is specified as: 
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Where: ω>0, α >0, β >0 and 1βα <+  

 

Intuitively, the GARCH (1, 1) specification estimates variance at t+1 as the long 

run variance ω plus/minus a value depending on the magnitude of squared residuals 

and variance at t. This is a key difference with the EWMA model, which is actually a 

special case GARCH model with α=λ and β=1-λ. We can, therefore, infer that 

GARCH specification incorporates mean reverting patterns for variance (and 

volatility), as it fluctuates around ω, while EWMA does not.  

Another perspective can be gained by examining this via the persistence of the 

model, i.e. the value α+β. Persistence expresses for how long the shocks that move 
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variance away from the long run variance will persist. For the EWMA model, where 

α+β=1 means that shocks will persist forever or that there is not long run variance. 

High variance at t means that in the future there will always be high variance, which 

may not actually be the case.  

 

Delos Equity EWMA, GARCH (n) Volatility Forecasts
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Figure 10: Delos Blue Chips Exponentially Weighted Moving Average (rolling 
sample of 100 observations) and GARCH (n) (rolling sample of 1000 obsevations) 
volatility forecasts from 6/3/1997 to 21/11/2008. 
 
 

The above mentioned arguments are obvious in the figure 10. As can be noticed, 

the GARCH (1,1) volatility forecasts seem to vary around a long run average, while 

the EWMA forecasts do not. Also, GARCH (1, 1) seems to update volatility forecasts 

faster and with greater magnitude than EWMA. 

Except for normal, innovations can follow student’s t distribution that has fatter 

tails and seems to fit better to extremes than the normal. Thus, in figure 11 GARCH 

(1, 1) with student’s t innovations seems to produce higher volatility forecasts than 

GARCH (1, 1) with normal innovations.  
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Figure 11: Delos Blue Chips GARCH (t) (rolling sample of 1000 observations) and 
GARCH (n) (rolling sample of 1000 observations) volatility forecasts from 6/3/1997 
to 21/11/2008. 
 
 

8.4) EGARCH (p, q) 

 

As discussed earlier, financial return series exhibit the leverage effect, i.e. negative 

correlation between variance and returns. The GARCH (p, q) models presented 

previously do not count for this fact, as they weight equally (and positively) both 

positive and negative returns (the innovations are squared) and do not count for 

asymmetries. To this end, a number of alterations have been proposed in order to 

capture it, namely, NGARCH (Non Linear GARCH), GJR-GARCH by Zakonian 

(1990) and Glosten, Jaganathan, Runkle (1993) and EGARCH (Exponential GARCH) 

by Nelson (1991), which is utilized in this paper.  

Nelson (1991), after posing some limitations of GARCH models, introduced 

Exponential GARCH: 

 

∑ ∑
= =

− ≡++=
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2
i

2 1β   ,)g(uβ  )ln(αω)ln( σσ                          (20) 

 

In order to incorporate asymmetry, )g(u t  must be a function of both the magnitude 

and the sign of tu . Thus: 
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[ ]tttt uEuγθu)g(u −+=                                         (21) 

with θ, γ constants. 

As Nelson states, )g(u t  is by construction a zero-mean i.i.d. sequence and in the 

spirit of GARCH models, it represents a magnitude effect according to the sign of the 

last return, relatively to the expected one (“bad or good news”). Finally, in the 

EGARCH model there are no inequality constraints as in the GARCH model. 

Volatility forecasts are assured to be positive due to the logarithmic expression.  

In comparing the two methods in the following plot, can conclude that GARCH 

model gives higher volatility forecasts than EGARCH, due to the difference in the 

magnitude of each innovation in estimating volatility.  

 

Delos Equity EGARCH (n), GARCH (n) Volatility Forecasts
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Figure 12: Delos Blue Chips EGARCH (n) (rolling sample of 1000 observations) and 
GARCH (n) (rolling sample of 1000 obsevations) volatility forecasts from 6/3/1997 to 
21/11/2008. 
 

9. Backtesting3 
 

In order to find out if a VaR model has adequate predictive power we should 

compare the series of p*100% VaRs to the series of the corresponding realized returns 

of the mutual funds and construct the "hit sequence" of VaR violations, as: 

                                                 
3 based on Christoffersen, P., 2003. “Elements of Financial Risk Management, Academic Press 
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Thus, the hit sequence returns 1 on day t+1 if the loss is greater than the forecasted 

VaR, which means we have a violation. Otherwise, if the projected VaR is not 

violated, the hit sequence returns 0.  

Assuming that we are using a perfect VaR model, then we should not be able to 

predict whether the VaR will be violated. This means that our forecast of a violation 

should be 100*p% every day, so that the above described hit sequence of violations 

should be completely unpredictable and thus independently distributed over time: 

 
(p) Bernoulli.d.i.i~I:Ho 1t+  

 

The Bernoulli distribution function is: 
1t1t II1

1t p)p1()p ;I(f ++−
+ −=  

 
 

In the classic coin tossing example with p=0.5 the Bernoulli distribution describes 

the distribution of getting a head. In our case, p will equal the coverage rate of the 

forecasted VaR, that is 1% and 5%, and the hit sequence will return 1 (meaning 

violation) 1% or 5% of the time assuming that the VaR model used is perfect. In these 

terms, there are three types of hypotheses to be tested: 

1) The number of VaR violations is as promised by the coverage rate 

(Unconditional Coverage Testing), 

2) The violations are independent throughout the backtesting period 

(Independence Testing) and 

3) The hypotheses 1 and 2 are jointly valid (Conditional Coverage Testing). 

 

9.1 Unconditional Coverage Testing 

 

In order to find out if the actual fraction of violations π is as promised, we should 

test whether it is significantly different from the coverage rate (or significance level) 

p. This is the unconditional coverage hypothesis that π=p. The likelihood of an i.i.d. 

Bernoulli (π) hit sequence is: 
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∏
=

ΤΙ− ππ−=ππ−=π ++

T

1t

TI1 101t1t )1()1()(L                            (23) 

 

where t=1,2,…T are the days for which we have VaR predictions and realized returns 

with T the number of observations, 0T  and 1T  are the number of 0s and 1s in the 

sample (i.e. the hit sequence). π can be estimated by the fraction π̂=T1/T that stands 

for the observed fraction of violations in the hit sequence and the likelihood. Thus the 

likelihood function becomes: 

  
10 T

1
T

1 )T/T()T/T1()ˆ(L −=π                                          (24) 

 

As we stated earlier, under the unconditional coverage null hypothesis π=p and 

thus the likelihood becomes: 

 

∏
=

ΤΙ− −=−= ++

T

1t

TI1 101t1t p)p1(p)p1()p(L                               (25) 

 

The unconditional coverage hypothesis can be tested using a likelihood ratio test: 

 

)]ˆ(L/)p(Lln[2LR uc π−=                                            (26) 

 

Asymptotically, as the number of observations T goes to infinity the test will be 

distributed as 2x  with one degree of freedom and inserting the likelihood functions 

we finally get: 

 

{ }[ ] 2
1

T
1

T
1

TT
uc x~)T/T()T/T1(/p)p1(ln2LR 1010 −−−=                  (27) 

 

 After choosing a significance level we compare the LRuc and the critical value of 

the 
2
1x  distribution. If LRuc> critical value, we reject the VaR model at the specified 

significance level, otherwise it is not rejected. Choosing the significance level 

depends on making two types of errors: 
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• Type I error: reject a correct model 

• Type II error: accept an incorrect model 

If we increase the significance level, we will probably face larger Type I errors but 

smaller Type II errors and the opposite. Typically, in academic work 1%, 5% or 10% 

significance levels are used but in practice Type II errors are more costly and thus 

10% significance level should be preferred.  

 

9.2 Independence Testing 

 

With the previous test we can assure that the number of violations is as promised. 

But that is not enough. These violations should be scattered in time. If many 

violations happen in a small time period, we have violations clustering and this raises 

serious doubts about the viability of the organization. If we have violations clustering, 

then if today is a violation, tomorrow it is more than p*100% likely to be a violation 

as well. Thus we need a test that will reject such models. 

We assume that the hit sequence is dependent over time and it can be described by 

as a first order Markov sequence with transition probability matrix: 

 

   ⎥
⎦

⎤
⎢
⎣

⎡
ππ−
ππ−

=Π
1111

0101
1   1

  1
 

 

This means that, conditional that today we have non-violation ( 0t =Ι ), then the 

probability that tomorrow we will have violation ( 11t =Ι + ) is 01π . If today we have a 

violation, then the probability that tomorrow we will have also a violation is 

 1) and 1Pr( 1tt11 =Ι=Ι=π + . The first-order Markov property means that only today 

matters for what happens tomorrow, i.e. the 1 or 0 of the hit sequence today matters 

for tomorrow's 1 or 0 and not any past outocomes. Since the possible outcomes are 

two (0 or 1) the whole process is described by the two probabilities  01π and  11π . The 

probability of a non-violation following a non-violation 00π  is 011 π−  and the 

probability of a non-violation following a violation 10π  is 111 π− . The likelihood 

function of this first-order Markov process is: 
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11

111101011
100100 )1()1()(L ΤΤΤΤ ππ−ππ−=Π     (28) 

 

with j,iT , i, j=0, 1 being the number of observations with an i followed by j. For the 

maximum likelihood estimates we get: 
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since probabilities sum to one. 

Substituting these estimations to the transition probability matrix we get: 
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If the hit sequence has dependence (and our model gives violations clustering) then 

1101 π≠π  but if we have independence (no violations clustering - good model) then  

π=π=π 1101 , which is the independence hypothesis that we will test. Under 

independence, all probabilities are the same and the transition probability matrix will 

be: 

 

⎥
⎦

⎤
⎢
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⎡
ππ−
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ˆ    ˆ1ˆ  

We use a likelihood ratio test to test the independence hypothesis 1101 π=π : 

 

[ ] 2
11ind ~)ˆ(L/)ˆ(Lln2LR χΠπ−=                                      (30) 
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where 10 T
1

T
1 )T/T()T/T1()ˆ(L −=π , the likelihood under the alternative hypothesis 

from the previous test. As the number of observations becomes large, the indLR  

statistic is also distributed as 2χ with one degree of freedom. 

 

9.3 Conditional Coverage Testing 

 

Conditional coverage testing provides a way to test jointly for independence and 

correct coverage and thus consists a strong indication whether to accept or not a 

model. In this case the hypothesis tested is p1101 =π=π . 

 
2
21cc ~)]ˆ(L/)p(Lln[2LR χΠ−=                                   (31) 

 

or, since it combines the previous two tests: 

 
2
2induccc ~LRLRLR χ+=                                          (32) 

with two degrees of freedom.  
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10. Past papers review 
 
McNeil & Frey (2000) compute VaR end Expected Shortfall with a variety of 

methods for five series of financial logarithmic returns: S&P 500 (1/1960 – 6/1993), 

DAX and BMW share price (1/1973 – 6/1996), US dollar/British pound exchange rate 

(1/1980 – 5/1996) and the price of gold (1/1980 – 12/1997). They use a rolling sample 

of 1000 observations for each method: Conditional EVT (POTS with AR(1)-

GARCH(1,1) process), Unconditional EVT (POTS) each with threshold set at 10%, 

Conditional Normal (GARCH(1,1) with normal innovations) and Conditional 

student’s t (GARCH(1,1) with t distributed innovations) for 95%, 99% and 99,5% 

confidence levels. They conclude that conditional EVT performs best, with GARCH 

(t) following, emphasizing that it works well for symmetric tails but not otherwise. 

GARCH (n) looses accuracy for confidence levels grater than 95%. For ES, their EVT 

approach proved to perform better than GARCH (n).  

 
Vlaar (2000) focuses on VaR for the banking sector. He calculates the performance of 

several historical simulation, variance – covariance and Monte Carlo simulation 

methods at predicting 99% 10-day VaR for 25 portfolios consisting of Dutch fixed 

interest securities. The data set covers 17 years of historical returns with daily 

frequency. The historical simulation method was applied for sample of 250, 550, 750, 

1250 and 2550 observations. For the Monte Carlo simulation, there was a variety of 

methods concerning the calculation of the expected price change of the process used 

including random walk and positive autocorrelation and the variance – covariance 

matrix was construed either with naive variance, EWMA or GARCH specification 

assuming normal or student-t distributions. For the VC method, also naïve variance, 

EWMA and GARCH methods were used and finally there was a combination of 

Monte Carlo Simulation and VC methods. The best results were obtained by the 

combined Monte Carlo - VC methods, especially the GARCH specified ones. Good 

performance was also achieved by the VC naive variance method. In all cases, the 

worst results came from student’s-t distributional assumptions. From a supervisory 

point of view, it was proved that accurate VaR calculation methods could lead to 

higher capital requirements than simpler but inaccurate measures, under the k-

multiplier BIS framework.   
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Barone – Adesi & Gianopoulos (2001) carry out a comparative study of Historical 

Simulation and Filtered Historical Simulation methods. After a brief description of the 

two methods and their pros and cons respectively, they apply them on three 

hypothetical portfolios: One that consists of a long position on S&P 100 and the other 

two consist of a short position on a European call option on the same basis. The data 

set covers the period from 1/1/1997 to 26/11/1999 and the VaR computed is at 99% 

confidence level for 1, 5, 10 and 20 days ahead. They conclude that there are 

discrepancies between the results of the two methods, with FHS being better due to its 

ability to produce VaR figures consistent with the current state of markets.   

 

Lambadiaris, Papadopoulou, Skiadopoulos and Zoulis (2003) apply historical and 

Monte Carlo simulation methods in order to calculate one day ahead 95% and 99% 

VaR for linear and non-linear portfolios, using data from the Greek stock and bond 

market. More specifically, the historical simulation methods applied are one day 

rolling window with sample of 100 and 252 observations. For the linear portfolio, the 

Monte Carlo simulation methods used were Moving Average, Exponentially 

Weighted Moving Average and diagonal BEKK volatility estimators, using a 

geometric Brownian motion. For the non-linear bond portfolio Monte Carlo 

simulation, they used a process analogous to the one used in the Libor market models 

and its volatility was estimated by principal component analysis. The results are 

mixed, depending on the portfolio size, the criterion and confidence level. For the 

linear portfolio, the historical simulation method leads to more capital commitment 

than needed, but for the non-linear one there is no clear superiority and the number of 

the PCA factors does not affect the performance of the VaR model.   

 

Sarma, Thomas and Shah (2003) examine several methods in estimating 95% and 

99% 1 day ahead VaR for the S&P 500 and India’s NSE - 50 indexes. The methods 

applied are HS for windows of 50, 125, 250, 500 and 1250 observations, due to its 

sensitivity in the sample size, Equally Weighted Moving Average (or Simple Moving 

Average in the present paper) and the RiskMetrics model (or EWMA in the present 

paper) also for windows of 50, 125, 250, 500 and 1250 observations for different 

lamdas ( 0.9, 0.94, 0.96, 0.99) and AR(1) – GARCH (1,1) models for window of 1250 

observations. Their sample covers the period from July 1990 to July 2000 

(approximately 2500 observations). Their backtesting procedure is based on two 
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aspects, the conditional coverage rate (as in the present paper) for the statistical 

accuracy and loss functions in order to conclude to the model that yields the least loss. 

For the 95% VaRs on S&P 500, EWMA (500) and all HS methods are rejected, 

except from HS (125), while for the NSE – 50 EWMA (50), EWMA (500), all 

RiskMetrics models except from RiskMetrics (0.90) and all HS models except from 

HS (1250) are rejected. For the 99% VaR on S&P 500, all models are rejected, while 

for the NSE – 50 EWMA (50), EWMA (1250) and all HS methods except from HS 

(500) are rejected. The loss functions determine that the AR(1) – GARCH (1,1) model 

produces the lower economic losses, while the differences from the RiskMetrics 

(0.90) model are not statistically significant.  

 

Seymour and Polakow (2003) examine the performance of Historical Simulation, 

EWMA and Extreme Value Theory based methods in the emerging South African 

market. More specifically, they apply HS, EWMA and EVT (HS based as in 

Danielsson and DeVries (2000) and based on a two stage model as in McNeil and 

Frey (2000) for portfolios consisting of nine stocks, with at least ten years of 

historical data with windows of 1500 observations. The predicted VaR covers 

confidence levels from 95% to 99,95%. HS is found to perform poorly in all cases, as 

the HS based EVT, which gave superior results though for confidence intervals larger 

that 99% as expected. The EWMA model performed well for low confidence levels 

and the two-stage EVT model had the superior performance due the GARCH type 

volatility incorporation. The backtesting procedure was performed in a percentage of 

violations framework.    

 

Angelidis and Benos (2004) compute 97.5% and 99% 1 day ahead VaR for long and 

short positions on the Greek stock market. The models they use are GARCH, TARCH 

and EGARCH with normal, student’s t and skewed student’s t distributed innovations, 

simple Variance – Covariance, EWMA, Historical Simulation, Filtered Historical 

Simulation and EVT with GARCH filtered returns series (as in McNeil and Frey, 

2000) for 5% threshold. Their dataset covers four stocks (Alpha Bank, Commercial 

Bank, National Bank, Titan), two equally weighted portfolios with positions on this 

stocks and ASE index for the period of January 2nd, 1991 to December 18th, 2003. The 

VaR estimation for each position (long – short) is made with a rolling window of 

1000 observations. In order to decide for the best models, they apply two tests: 1) 
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Unconditional and Conditional Coverage, to test the percentage of violations with 

respect to the confidence level and 2) Loss functions in order to see whether the 

differences between the VaR forecasts are statistically significant. V-CV and EWMA 

methods often fail to match the backtesting criteria, normal GARCH (1,1), EGARCH 

(1,1) and TARCH (1,1) perform better for 97.5% VaR for the long positions, while 

fail for the short ones. The parametric models under student’s t and skewed student’s t 

overestimate VaR, HS presents violations clustering and FHS and EVT methods 

perform best for both long and short positions. According to the loss function, there is 

no unanimous decision on the best model, as it varies across different assets and 

positions.  

 

Gencay and Selcuk (2004) focus on VaR for emerging markets. They use data for 

stock indices of nine countries, namely Argentina, Brazil, Hong Kong, Indonesia, 

Korea, Mexico, Philippines, Singapore, Taiwan and Turkey. The sample size varies 

from 1076 to 7305 observations and one-day ahead VaR is computed with rolling 

window of 500, 1000 and 1500 observations for 95%, 97.5%, 99%, 99.5% and 99.9% 

confidence levels. The models applied are Variance - Covariance with normal and 

student’s t distributional assumptions, Historical Simulation and Generalized Pareto 

Distribution (GPD – POTS) with threshold set to 2.5%. The decision over the best 

performing model comes in the sense of having the right percentage of violations 

depending on the confidence level, or as much closer to it, as fewer violations would 

mean overestimation of VaR and consequently high market capital requirements. 

They conclude that GPD (POTS) performs best, with ascending success as we move 

towards to the highest confidence level.  

 

Papadamou and Stephanides (2004) apply four models in order to estimate one month 

ahead 95% VaR and Expected Tail Loss (Expected Shortfall herein) for US mutual 

funds investing in Europe. The models used are Conditional Normal, Bootstrapping, 

Historical Simulation and an alternative Style Based Method. This method comes as a 

consequence of Sharpe’s (1998) style analysis framework and it is a two-step 

procedure: The first step is to find the factors (or indices) that contribute to the MF’s 

performance, compute the market risk VaR for each factor and then the overall impact 

on the fund. The second step is to compute the VaR of the fund manager specific 

characteristics (“Value at Selection Risk”) and add it to the total VaR. Their sample 
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covers 19 US mutual funds over the period from 31/06/97 to 31/01/2002 which leaves 

the authors with a rather small sample of 56 monthly observations and 20 

observations for backtesting, using a rolling window of 36 observations. The 

backtesting was carried out in an unconditional coverage and magnitude of violations 

framework. Style based VaR was found to perform well, while Style Based ES leads 

to overestimations in comparison with the other models. The MF’s VaR major source 

is the market VaR, while “Value at Selection Risk” does not count much. Finally, the 

authors conclude that the selection of VaR methods should be made according to the 

style followed by each fund.  

 

Kuester, Mitnik and Paolella (2005) examine the performance of a variety of models, 

classified as Historical Simulation Methods (and filtered ones), fully parametric 

models, Extreme Value Theory models and quantile regression models. Their analysis 

is applied on a long position in the NASDAQ Composite Index, with more than 5000 

stocks, for 30 years of data (8/9/1971 – 22/6/2001) or 7681 observations and the 

estimation of one day ahead 95%, 97,5% and 99% VaR is performed with moving 

windows of 1000, 500 and 250 observations. The backtesting methods are the ones 

used in the present paper and the results are also evaluated under the Basle Committee 

thre-zone framework. The unconditional models, HS, Normal, student’s t, skewed 

student’s t and EVT do not give good results, with skewed student’s t being superior 

from others. Although they perform badly, some of them could enter the “yellow 

zone” of the BIS framework. GARCH filtering methods (for a variety of innovations’ 

distributions) improve significantly the results, giving GARCH with skewed t 

distributed errors, FHS and EVT with filtered innovations (normal, skewed t or GED) 

the best overall performance. CAViaR models achieved a rather poor performance. 

Finally, they conclude that the validity of the aforementioned best methods is not 

affected by the window size, except from the reversion of EVT normal and EVT 

skewed t performance. 

 

So and Yu (2005) use seven models for twelve market indices and four exchange 

rates, in order to compute 1 day ahead 95%, 97.5% and 99% VaR for both long and 

short positions. More specifically, the models used are GARCH (1,1), IGARCH (1,1), 

FIGARCH(1,d,0) with normal and student’s t innovations and EWMA. Their data set 

covers equity indices from Australia (AOI), United Kingdom (FTSE100), Indonesia 
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(JSX), Hong Kong (HIS), Malaysia (KLSE), South Korea (KOSPI), United States 

(NASDAQ and S&P500), Japan (NIKKEI), Thailand (SET), Singapore (STII) and 

Taiwan (WEIGHT) and varies from 1975 to 1998. The exchange rates under 

consideration are GPB/USD, YEN/USD, AUD/USD and CAD/USD from 1980 to 

1998. In all cases, the backtesting period covers 1995 to 1998 and it is carried out in a 

percentage of violations to VaR confidence level framework. For the long equity 

positions, IGARCH(t), GARCH(t) and FIGARCH(t) perform best at 99% confidence 

level, IGARCH and IGARCH(t) perform best at 97,5% and EWMA performs best at 

95% predictions. For the short positions, at 99% GARCH(n) and FIGARCH(n) 

perform well, at 97,5% GARCH (n) and GARCH(t) and at 95% EWMA and GARCH 

(t). For the exchange rate positions, results are similar for both long and short 

positions, as at 99% confidence level the student’s t distributed error models perform 

well, IGARCH(n) and GARCH(t) at 97.5% and EWMA at 95%. Finally, the authors 

conclude that although there is presence of long memory in variance, FIGARCH 

models do not produce more accurate VaR predictions than GARCH models.   

 

Bali and Theodossiou (2006) illustrate that the skewed generalized t (SGT) 

distribution matches better the returns than other distributions. Thus, they calculate 

95%, 97,5%, 98%, 98.5%, 99% and 99.5% 1 day ahead VaR and Expected Shortfall 

for the S&P 500 index, using data from 1950 to 2000. The models used are GARCH, 

AGARCH, EGARCH, GJR-GARCH, IGARCH, NGARCH, QGARCH, SQR-

GARCH, TGARCH, TS-GARCH and VGARCH with SGT and normally distributed 

innovations with a rolling sample of ten years of observations. From the unconditional 

coverage tests, the TS-GARCH performs well, followed very closely by the 

EGARCH and NGARCH models all with SGT innovations, while the results for the 

normal ones are disappointing for 99.5%, 99% and 98.5% confidence levels and 

exhibit some predictive power only for 95% VaRs. The conditional coverage test 

accepts all SGT models but rejects almost all normal ones, except for the 2.5% VaRs. 

For the Expected Shortfall measure, the SGT ES predictions perform better for levels 

larger than 98%, in the sense that actual violations of ES are closer to the ones 

obtained by the empirical distribution. The same results apply for ES calculated from 

standardized returns, with normal models giving accurate predictions for confidence 

levels up to 97.5%.  
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Angelidis, Benos & Degiannakis (2007) apply several parametric, non – parametric 

and semi – parametric models in order to compute 97.5% and 99% VaR for long and 

short positions on small and big capitalization stocks of the DJ Euro Stoxx index. 

More specifically, they apply Variance – Covariance, GARCH, EGARCH, TARCH 

and APARCH with normal, student’s t and skewed student’s t distributional 

assumptions, Filtered Historical Simulation and Extreme Value Theory with GARCH 

and APARCH specifications and finally Historical Simulation. Their sample covers 

the period from January 2, 1987 to July 29, 2005 and it is split into two subgroups of 

2399 observations to test the results more efficiently and the window used is 1750 

observations. They test if the forecasted VaRs are as promised by the confidence level 

and if they produce statistically significant deviations from each other. FHS with 

GARCH specification was found to perform well in all cases, while ARCH models 

with normally distributed innovations and FHS with ARCH updating technique seem 

to describe the tails more efficiently.  

 

Fϋss et al. (2007) determine VaR for hedge funds. After a brief explanation of hedge 

fund strategies and styles (based on S&P categorization, i.e. Arbitrage, Event - driven 

and Directional – Tactical) they move on to calculating the 95% daily VaR for totally 

one month ahead in order to check the out of sample performance for three methods: 

conventional, Cornish Fischer, GARCH and EGARCH VaR with normally distributed 

residuals. The dataset covers the period from September 2002 to May 2006 (926 

observations, 904 for estimation and the rest for out of sample testing) and consists of  

S&P hedge fund index series, with the authors admitting the possible presence of 

selection and survivorship bias. Due to the small sample for out of sample testing, 

they construct hit ratios with weights depending on how big each violation is. The 

results show better performance of the GARCH VaRs - mainly due to the 

incorporation of time varying volatility and thus risk - although skewness and kurtosis 

are not completely removed from the standardized errors.        

 
Giamouridis & Ntoula (2009) study the downside risk of hedge funds by means of 

VaR and ES. They perform their analysis in a univariate framework rather than 

disaggregating risk exposures, by applying several methods in a series of HFR (Hedge 

Fund Research Inc) investable strategy indices: Equity Hedge, Macro, Relative Value 

Arbitrage, Event – Driven, Convertible Arbitrage, Distressed Securities, Equity 
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Market Neutral and Merger Arbitrage. Their sample covers the period from March 3 

2003 to May 25 2006, limiting the window choice to 500 observations and 295 

observations for backtesting, which may allow for some caution in the results. The 

methods applied are Historical Simulation for 125 and 250 observations, Filtered 

Historical Simulation (FHS), Generalized Pareto Distribution (GPD), Cornish – 

Fisher (CF) and Gaussian (G) model. In all cases except from the HS method, an 

ARMA – GARCH specification is used (as in McNeil & Frey, 2000) to filter the 

residuals. Their results suggest that FHS, G, CF and GPD perform equally for 95% 

VaR predictions, outperforming HS methods on the basis of lower average size of 

violations and number of threshold violations, while for 99% VaR FHS, CF and GPD 

perform best with G being the worst method. Backtesting shows evidence in favor of 

the conditional models at 95% VaR and for CF and GPD at 99% VaR. For the ES 

measures, they conclude that HS250, FHS, CF and GPD perform better than HS125 

and G, in the sense that they are not often violated. The backtesting suggests that 

HS250, FHS and CF have the best overall performance.       

 

11. The Greek Mutual Funds Market 
 
 

According to Karathanasis and Limperopoulos (2002), the idea of pooling holdings 

in a mutually managed scheme dates back to ancient Greece and more specifically in 

the fifth century B.C. These entities where not managed in order to achieve certain 

performance goals as known today, but rather for military purposes. The first form of 

mutual funds was created in the US in 1924, due to the need for new investing 

vehicles in a steadily developing economy and the positive returns of the stock 

market. After the 1929 crisis, mutual funds faced many difficulties, but in the 40’s the 

American Congress approved a new legislative framework (“Investment Company 

Act”) on their operations, establishing this form of institutional investing in the 

financial industry. Since then, total assets of mutual funds globally steadily increased, 

except from periods of crises as 2008. By the end of 2008 13.6 trillion euros were 

invested in mutual funds. 
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Figure 13: Total assets value of mutual funds globally 
Source: EFAMA, International Statistical Release Q4 2008 
 

In Greece, mutual funds began to operate in the 70’s. The first two mutual funds 

where “Delos Balanced” (included in our sample) by the National Bank of Greece and 

“Ermis Dynamic” by Emporiki Bank. Until the late 80’s the mutual fund industry did 

not achieve significant developments, but in the early 90’s, as new management 

companies joined the market, it began to expand. Currently, 22 management 

companies operate, managing 322 mutual funds with total assets of 8.7 billion euros 

by 31/12/2008.  
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Figure 14: Total assets value of Greek mutual funds  
Source: EFAMA, International Statistical Release Q4 2008 



 46

 
 
There are five types of mutual funds in the Greek market: 

1) Equity: Invest mainly in equity markets (at least 65% of total assets) and 

secondarily in bonds and money market instruments. 

2) Bond: Invest mainly in bonds (at least 65% of total assets), in money market 

instruments and up to 10% in equity markets. 

3) Balanced: Invest in all three asset classes mentioned, with an upper limit of 

65% in each one. 

4) Money market: Invest mainly in short term money market instruments (at least 

65% of total assets), in bonds and up to 10% in equity markets. 

5) Fund of funds: Invest in other funds. Depending on the type of funds they 

invest, they are characterized as equity, bond or balanced and they where 

established in 2005. 

All types above can be domestic, i.e. invest mainly in Greece, foreign, i.e. invest 

abroad or international, i.e. invest both domestically and abroad.  

 

11.1 Sample Selection 

 

The selection of mutual funds included in our sample was made according to the 

following criteria:  

1) Include the management companies (and mutual funds) with the greatest 

market share, in order for the results to be as much as possible indicative for 

the whole market, and 

2) Include mutual funds that provide large number of past data in order to have 

adequate sample size for the backtesting procedure.  

In these terms, we use historical returns for nine funds, (three of each category: 

equity, balanced and bond) of the three major management companies.  

 

The three management companies included are: 

 

1) NBG ASSET MANAGEMENT M.F.M.C. 

2) EFG M.F.M.C. S.A. 

3) ALPHA ASSET MANAGEMENT M.F.M.C. 
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 Cumulatively, they serve the 67.54% of the market at 31/12/2008 and manage 177 

out of the total 322 funds (55%), as illustrated by the following figures. 

M.F.M.C.'s Market Share 

27%

23%18%

32%

NBG ASSET MANAGEMENT MFMC EFG M.F.M.C. S.A.
ALPHA ASSET MANAGEMENT M.F.M.C. REST

Number of Mutual Funds Managed

61

80

36

145

NBG ASSET MANAGEMENT MFMC EFG M.F.M.C. S.A.
ALPHA ASSET MANAGEMENT M.F.M.C. REST

 
Figure 15: Total market share and number of funds managed by the MFMC’s 

included in our sample 

 Source: Association of Greek Institutional Investors 

 

The funds of our sample are: 

Equity Balanced Bond 

Alpha Domestic Equities 

Fund 

Alpha Domestic Balanced Alpha Domestic Bonds 

Fund 

Delos Blue Chips 

Domestic 

Delos Balanced Domestic Delos Income Bonds 

Domestic 

Interamerican Dynamic 

Domestic Equity 

Interamerican Hellenic 

Domestic Balanced 

Interamerican Fixed 

Income Domestic Bond 

Fund 

Table 1: Mutual funds included in our sample. 

 

In order to include in our sample EFG, one of the three biggest M.F.M.C.’s, we 

included “Interamerican” funds, which are managed by EFG since 2004. Afterwards 

we present the figures that depict the average portfolio synthesis for the first quarter 

of 2009, except for Delos funds for which the data found cover the last month of 

2008.  
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Figures presenting the historical evolution of the Net Asset Value4 of each fund 

can be found in the appendix.   

   

Equity Funds 

Alpha Domestic Equities Fund

4,09

0,96

2,12

92,83

Deposits Domestic Deposits Foreign Bonds Foreign Equity Domestic  
 

Delos Blue Chips Domestic

4,511,12
9,46

81,61

1,41

1,89

Deposits Domestic Bonds Domestic Bonds Foreign
Equity Domestic Equity Foreign Mutual Funds  

Interamerican/EFG Dynamic Domestic Equity

10,82

3,9

82,37

2,91

Deposits Domestic Bonds Foreign Equity Domestic Equity Foreign  
 

Balanced Funds 

                                                 
4 The NAV of each MF is defined as: 
 NAV = (Market Value of Assets – Liabilities)/ Number of Shares Outstanding 
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Alpha Domestic Balanced

7,87

10,79

17,13

18,43

45,78

Deposits Domestic Deposits Foreign Bonds Domestic Bonds Foreign Equity Domestic
 

 

Delos Balanced Domestic

38,35

1,09

25,88

34,68

Deposits Domestic Bonds Domestic Bonds Foreign Equity Domestic  

Interamerican/EFG Hellenic Domestic Balanced

16,97

47,63

3,47

28,2

3,73

Deposits Domestic Bonds Domestic Bonds Foreign Equity Domestic Mutual Funds
 

 

Bond Funds 
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Alpha Domestic Bonds Fund

7,97

0,05

52,39

39,59

Deposits Domestic Deposits Foreign Bonds Domestic Bonds Foreign
 

Delos Income Bonds Domestic

3,6

75,59

20,3

0,37

0,15

Deposits Domestic Bonds Domestic Bonds Foreign Equity Foreign Money Market
 

Interamerican/EFG Fixed Income Domestic Bond Fund

6,47

75,42

12,85

0,5

4,76

Deposits Domestic Bonds Domestic Bonds Foreign Mutual Funds Money Market
 

Figure 16: Portfolio breakdown for the mutual funds included in our sample. 

Source: Association of Greek Institutional Investors 

 

It is interesting to see which models can capture best the extremes of the bond 

funds, which exhibit the greatest kurtosis.  
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SECTION 2 - Empirical Investigation 
 

12. Methods 
 

In this part of the paper, we present the implementation of the methods used. In all 

cases, rolling windows of different sizes have been used in the estimation procedure. 

 

1) Variance – Covariance Methods (V-CV) 

 

Several models where used within this family of methods. Standard deviation is 

estimated with various methods, applied on the logarithmic returns time series. 

Simple Moving Average (SMA) is applied with eqn. (15) and a rolling sample of 252 

observations (or one year of historical data as regulators usually state). Exponentially 

Weighted Moving Average (EWMA or RiskMetrics model) is applied as in eqn. (17), 

with λ set at 0.94, as estimated by RiskMetrics. The rolling sample in this case 

contains 100 observations, as the weights are almost completely used until lag 100. 

Also, GARCH (1,1) and EGARCH (1,1) with normal innovations are applied, using 

eqns. (19) and (20) respectively for a rolling sample of 1000 observations 

(approximately four years of data). In all cases, the estimation restrictions where 

fulfilled. All aforementioned methods where applied assuming normality. 

Consequently, VaR was computed through eqn. (3) for confidence levels (p) of 95% 

and 99%. 

Since normality is usually a very unrealistic hypothesis, and as can be seen from 

the descriptive statistics and the Q-Q plots in the appendix, cannot describe the tails of 

the distributions, we applied GARCH (1,1) and EGARCH (1,1) specifications with 

student’s t distributed innovations for rolling samples of 1000 observations. In these 

cases, VaR was computed from eqn. (4). The crucial point in using student’s t 

distribution, is the degrees of freedom (d), that must be larger than two in order to be 

well defined. In most of the literature we are aware of in our effort to write this paper, 

d was assumed to be constant (usually set to 5, as in Vlaar (2000)) in order to avoid 
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values below two. In this paper, however, d was calculated5 in a rolling basis (as 

volatility estimates) and in all cases was found to be larger than two. 

  

2) Historical Simulation (HS) and Filtered Historical Simulation Methods (FHS) 

 

HS is the simplest method, as the only (unrealistic) assumption is that the returns 

are i.i.d series. Here, we apply HS for rolling samples of 100 and 252 observations (as 

in Lambadiaris et al. (2003)), to eliminate any bias that could be attributed to the 

sensitivity of these methods to the sample election. In order to compute VaR, returns 

are sorted in groups of the size of the rolling window and then VaR is computed as in 

eqn. (6). Despite its’ assumption – free nature, it has certain drawbacks, as mentioned 

earlier. Thus we also apply FHS (Hull and White (1998)) for sample of 500 and 1000 

observations. The greater sample size is due to the fact that the raw returns are 

standardized via a GARCH (1,1) specification, creating new “stationary” series, as in 

eqn. (7). Then, VaR is computed as in simple HS to the new returns series (eqn. (8)).  

 

3) Extreme Value Theory (EVT) and GARCH specified EVT (G-EVT) 

 

EVT is also applied with a rolling window of 1000 observations, both at raw returns 

(EVT) and GARCH standardized ones (G-EVT), as in McNeil and Frey (2000). VaR 

from EVT based methods is computed with eqn. (14). The tail parameter ξ is also 

estimated in a rolling basis, and in the vast majority of the cases it has a positive 

value, meaning that the distribution of the returns has fatter tails than the normal 

distribution. As explained previously, there is a bias – variance trade off when 

choosing the threshold u. To overcome this problem, we compute VaR for 10%, 8% 

and 5% thresholds for both methods.  

 

4) Expected Shortfall (ES) 

 

Artzner et al. (1999) proposed ES as an alternative, “coherent” measure of risk that is 

mathematically expressed in eqn. (5). Herein, we compute unconditional ES for 95% 

and 99% confidence levels for samples of 100 and 252 observations. Since the 
                                                 
5 d was calculated from the formula d=(6/excess kurtosis) + 4 , as derived from Christoffersen P, 2003, 
Elements of Financial Risk Management, Academic Press, p.77 
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primary purpose of this paper is to examine market risk in means of the VaR measure, 

ES is computed with only one method, in order to allow the reader to get the intuition. 

The results are presented in unconditional coverage framework and in VaR/ES ratio.  

 

13. Data Set and descriptive statistics 
 

As mentioned earlier, our data set consists of the logarithmic returns (as computed 

from NAV of each fund) of nine mutual funds from 22/3/1993 to 21/11/2008 that sum 

up to 3954 daily returns and were obtained from the Association of Greek 

Institutional Investor’s database6. The moving windows vary from 100 observations 

of HS to 1000 of GARCH, EVT and FHS methods, a fact that leaves us 2954 

observations for backtesting for all methods, in order to obtain comparable results. 

The following table includes the descriptive statistics for the whole sample. 

 

  Equity Balanced Bond 
  Alpha Dilos Inter/EFG Alpha Dilos Inter/EFG Alpha Delos Inter/EFG 

Observations 3954 3954 3954 3954 3954 3954 3954 3954 3954 
Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

t-stat for 
Ho:mean=0  1.452 1.184 1.381 1.912 1.714 1.602 2.876 1.266 2.684 

P-Value 0.1467 0.2364 0.1675 0.0559 0.0865 0.1093 0.004 0.2056 0.0073 
S.D. 0.014 0.015 0.014 0.008 0.010 0.009 0.004 0.012 0.004 

Skewness -0.361 0.072 -0.246 -2.943 -0.147 -0.309 -34.348 -0.166 -35.546 
Kurtosis 8.574 11.193 7.465 56.195 7.751 10.947 1562.473 1615.697 1465.021 

Maximum 0.080 0.169 0.072 0.039 0.056 0.062 0.052 0.493 0.007 
Minimum -0.106 -0.096 -0.089 -0.160 -0.070 -0.099 -0.217 -0.492 -0.198 

Med 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Jarque-Bera 5.2E+03 1.1E+04 3.3E+03 4.7E+05 3.7E+03 1.0E+04 4.0E+08 4.3E+08 3.5E+08 
Probability 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 2: Descriptive statistics for the whole sample. 

 

The higher moments of the empirical distribution suggest that we have negative 

skewness and fat tails, especially for the bond funds. Also, the Jarque-Berra test 

statistic rejects the normality hypothesis in all cases. Another interesting point is that 

in 7 out of nine cases the mean of the sample is statistically insignificant7. This 

supports our hypothesis of using zero mean in all computations and is in accordance 

                                                 
6 www.agii.gr 
7 Although the descriptive statistics presented here cover the whole sample, mean was estimated also in 
a rolling basis and proved that our hypothesis holds, especially for larger window sizes.  
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with adopting Figlewski’s (1994) results and most of the literature mentioned earlier 

in Volatility Estimation and Forecasting chapter.  

Further statistical evidence can be found in the appendix. The Q-Q plots against 

the normal distribution are in accordance with the properties of the table, whereas    

Q-Q plots against the student’s t distribution support its usage because it has fatter 

tails than the normal. This is not the case for bond funds though, which exhibit very 

large kurtosis and in the Q-Q plots seem to have some observations far from what 

normal or student’s t would suggest. It is interesting to see whether EVT that focuses 

on the tails can capture these large exceedances, especially for the highest threshold 

(5%).   

 

14. Results 
 

In this part, we present the results, categorized according to the types of mutual 

funds. In this way, since we know the asset classes in which each fund invests, we 

will be able to understand why some methods performed better than others. In all 

cases, the conditional coverage test is the basic criterion, since it includes both 

unconditional and independence testing. In the case where conditional coverage is not 

met by any method, as frequently noticed for 95% VaR, we will evaluate the methods 

by the other two criteria.  

 
14.1 Equity Funds - 95% VaR 
 
 

In terms of conditional coverage for 95% VaR estimations, the results do not 

suggest clear superiority. More specifically, the aforementioned criterion was met 

only by FHS 500 and only for one fund (Alpha), although many methods predicted 

the correct percentage of violations.  

Moreover, correct unconditional coverage rate was achieved by the most of the 

models, with FHS 500, GARCH (n), EGARCH (n), G-EVT 8% and EWMA 

performing well, while HS, EVT 10% and FHS 1000 underestimated VaR and EVT 

5% and especially G-EVT 5% produced highly overestimated VaRs.  

For Delos, the methods with the best unconditional coverage rate are EGARCH 

(n), EVT 8%, GARCH (n), SMA and EWMA. Again, HS and EVT 10% 

underestimated VaR, while EVT 5% and G-EVT 5% overestimated it.  
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Finally, for Interamerican/EFG, again in unconditional coverage evaluation 

framework, EWMA performs best, followed by GARCH (t), GARCH (n), SMA and 

EGARCH (n). VaR underestimation was produced by EVT (10%) and HS methods, 

while EVT 5% and G-EVT 5% gave overestimations.  

 

Equity Funds - 95% VaR – Best performing models 

Alpha Delos Interamerican/EFG 

FHS 500 

Violations %: 5.08 

LRcc P-Value = 0.16 

EGARCH (n) 

Violations %: 4.91 

LRuc P-Value =0.89 

EWMA 

Violations %: 5.11 

LRuc P-Value =0.78 

GARCH (n) 

Violations %: 5.08 

LRuc P-Value =0.85 

EVT 8% 

Violations %: 5.08 

LRuc P-Value =0.85 

GARCH (t) 

Violations %: 5.21 

LRuc P-Value =0.60 

EGARCH (n) 

Violations %: 5.18 

LRuc P-Value =0.66 

GARCH (n) 

Violations %: 4.91 

LRuc P-Value =0.82 

GARCH (n) 

Violations %: 4.77 

LRuc P-Value =0.57 

G-EVT 8% 

Violations %: 4.77 

LRuc P-Value =0.57 

SMA 

Violations %: 5.11 

LRuc P-Value =0.78 

SMA 

Violations %: 5.25 

LRuc P-Value =0.54 

EWMA 

Violations %: 5.45 

LRuc P-Value =0.27 

EWMA 

Violations %: 5.11 

LRuc P-Value =0.78 

EGARCH (n) 

Violations %: 5.28 

LRuc P-Value =0.49 

Table 3: Five best performing methods for equity funds and 95% VaR forecasts, 

according to LRuc P-Values. In all cases the LRcc P-Values where insignificant (5% 

significance level) except from FHS 500. Expected violations rate: 5% 

 

Clearly, at 95% confidence level, HS and high and low threshold EVT and G-EVT 

is not well suited for equity funds. In an unconditional coverage backtesting 

framework, the GARCH family performs adequately in all tree funds, as does 

EWMA, EVT and G-EVT with 8% threshold as well. Unfortunately, we cannot 

conclude in one model for the best overall performance, as the only one that passes 

conditional coverage test is the FHS 500 model, but only for one fund. It should be 

also noted that, for all equity funds, FHS 500 performed better than FHS 1000, 

suggesting that a smaller sample gives more accurate VaR predictions. Also, FHS 

performed better than simple HS in all cases, a fact that is in accordance with the 
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literature, while the superiority of G-EVT over simple EVT is not clear at this 

confidence level. 

 

Further information on the performance of equity funds at 95% confidence level 

can be found in the appendix at pages 98, 100 and 102. 

 

14.2 Balanced Funds – 95% VaR 

  

For the balanced funds, at 95% confidence level no method managed to pass the 

conditional coverage tests. Thus, all results are again presented in terms of 

unconditional coverage testing. 

For Alpha, the best performing model is EVT 8% (5.01% violations), followed 

closely by GARCH (t), SMA, EWMA and EGARCH (t). HS and EVT 10% 

underestimate VaR, while as in equity funds EVT and G-EVT 5% overestimate VaR.  

For Delos, the best VaR prediction comes from SMA (5.01%), followed closely by 

EGARCH (n) and GARCH (t), EWMA, HS 100 and EVT 8%. In this case, HS seems 

to perform well in comparison to the other funds, while EVT 10% underestimates and 

EVT and G-EVT 5% overestimates VaR.  

Finally, the VaR of Interamerican/EFG is well captured by GARCH (n), EGARCH 

(n), SMA, EVT 8% and G-EVT 8%. HS, EGARCH (t) and EVT 10% underestimate 

VaR and as usual EVT and G-EVT 5% methods overestimate it.  

Since no method passes the conditional coverage test, violations come clustered in 

time and raise issues concerning the capital adequacy of the MFMC’s that compute 

95% VaR with these methods. Except for this fact, many methods succeed in 

producing the expected violations ratio. Namely, for balanced mutual funds methods 

like EVT 8%, the GARCH family methods, SMA and EWMA should be used, while, 

as with equity funds, high and low threshold EVT and some times HS methods do not 

seem to produce accurate VaR forecasts.   
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Balanced Funds - 95% VaR – Best performing models 

Alpha Delos Interamerican/EFG 

EVT 8% 

Violations %: 5.01 

LRuc P-Value = 0.98 

SMA 

Violations %: 5.01 

LRuc P-Value =0.98 

GARCH (n) 

Violations %: 5.04 

LRuc P-Value =0.91 

GARCH (t) 

Violations %: 4.98 

LRuc P-Value =0.95 

GARCH (t) 

Violations %: 5.04 

LRuc P-Value =0.91 

EGARCH (n) 

Violations %: 5.18 

LRuc P-Value =0.66 

SMA 

Violations %: 4.91 

LRuc P-Value =0.82 

EGARCH (n) 

Violations %: 5.04 

LRuc P-Value =0.91 

SMA 

Violations %: 4.81 

LRuc P-Value =0.63 

EWMA 

Violations %: 4.87 

LRuc P-Value =0.75 

EWMA 

Violations %: 5.08 

LRuc P-Value =0.85 

EVT-8% 

Violations %: 5.21 

LRuc P-Value =0.60 

EGARCH (t) 

Violations %: 4.77 

LRuc P-Value =0.57 

HS 100 

Violations %: 5.11  

LRuc P-Value =0.78 

G-EVT 8% 

Violations %: 4.74 

LRuc P-Value =0.51 

Table 4: Five best performing methods for balanced funds at 95% VaR forecasts, 

according to LRuc P-Values. In all cases, the LRcc P-Values where insignificant (5% 

significance level). Expected violations rate: 5% 

 

Further evidence on the performance and backtesting of these methods can be 

found in the appendix at pages 104, 106 and 108. 

 

14.3 Bond Funds – 95% VaR 

 

The table of the descriptive statistics shows that the bond funds have the greatest 

kurtosis of all, and in the Q-Q plots in the appendix even the fat-tailed student’s t 

distribution does not seem to be able to capture the extremes, especially at 95% 

confidence level. Our expectations materialize, as for most funds all methods fail to 

pass the conditional coverage test. But for the Delos fund, SMA and EWMA which 

assume normality perform surprisingly well as they pass even the conditional 

coverage test.  

More specifically, for the Alpha fund only three methods meet the unconditional 

coverage criterion, namely EWMA (4.57%), SMA (4.47%) and EGARCH (n) (4.4%), 
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although they exhibit some overestimation patterns. The rest of the GARCH models 

overestimate VaR, while all the others underestimate it heavily. To give some 

examples, FHS 1000 and G-EVT 10% produce 10.32% violations and HS252 9.38% 

respectively.  

For the Delos fund, as mentioned earlier, SMA (4.37%) and EWMA (4.33%)) 

perform well, as they manage to pass the conditional coverage test, although VaR is 

slightly overestimated. EVT 10% (4.33%) is the only method from the others that 

passes the unconditional coverage test, while GARCH methods overestimate VaR and 

all others underestimate it. To give some examples, FHS 1000 and G-EVT 10% 

produce 11.27% and 11.48% violations respectively.  

Finally, for the Interamerican/EFG fund the results are different. Two methods 

succeed in the unconditional coverage, G-EVT 5% (5.42%) and EVT 5% (5.59%). 

Again, GARCH methods overestimate VaR, as SMA and EWMA do, while all the 

rest underestimate it, with HS252 producing 9.88% violations.  

The aforementioned results suggest that there is no clear best performing method 

for bond funds at 95% VaR forecasts. There is unanimity though, for the worst 

methods that overestimate or underestimate VaR. Thus, GARCH family methods, 

FHS, HS and EVT in some cases, seem less favorable.  

 

Bond Funds - 95% VaR – Best performing models 

Alpha Delos Interamerican/EFG 

EWMA 

Violations %: 4.57 

LRuc P-Value = 0.28 

SMA  

Violations %: 4.37 

LRcc P-Value =0.22 

G-EVT 5% 

Violations %: 5.42 

LRuc P-Value =0.31 

SMA 

Violations %: 4.47 

LRuc P-Value =0.18 

EWMA 

Violations %: 4.33 

LRcc P-Value =0.22 

EVT 5% 

Violations %: 5.59  

LRuc P-Value =0.15 

EGARCH (n) 

Violations %: 4.40 

LRuc P-Value =0.13 

EVT 5% 

Violations %: 4.33 

LRuc P-Value =0.09 

 

 

Table 5: Three (two for Interamerican/EFG) best performing methods for bond funds 

at 95% VaR forecasts, according to LRuc P-Values (or LRcc if significant at 5% 

significance level). Expected violations ratio: 5% 
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Further evidence on the performance of all methods, can be found in the appendix 

at pages 110, 112and 114. 

 

Afterwards, we present the results for 99% VaR forecasts. At this confidence level, 

the exceptional performance of some methods is clearer. The basic criterion now is 

the conditional coverage test, since some methods repeatedly exhibit high forecasting 

ability. 

 

14.4 Equity Funds – 99% VaR 

 

In contrast to the 95% VaR, the 99% forecasts reveal some methods that perform 

best for all funds and thus the results can be more easily universalized. In all cases, 

GARCH family methods with student’s t distributional assumption, FHS and G-EVT 

perform well, with their ranking depending on the fund. 

For the Alpha fund, the best performing method is G-EVT 10%, followed by FHS 

1000, FHS 500 and GARCH (t) with same LRcc P-Values, EGARCH (t) and G-EVT 

8%. All the other methods underestimate VaR, with G-EVT 5% overestimating it. 

99% VaR of the Delos fund is well estimated also by G-EVT 10%, followed by 

GARCH (t), FHS 1000, G-EVT 8%, EGARCH (t) and FHS 500. Again, all the rest 

methods underestimate VaR, while G-EVT 5% overestimates it and EVT 5% 

produces 0.91 %violations. 

The ranking for the Interamerican/EFG fund is different, since the best performing 

method is EGARCH (t), followed closely by G-EVT 10%, FHS 1000, GARCH (t), G-

EVT 8% and EVT 5%. As usual, all other methods underestimate VaR while G-EVT 

5% overestimates it and FHS 500 giving fair percentage of violations (1.12%).  

Commenting on the results, we can conclude that G-EVT 10% is the best method 

for equity funds. This is in accordance with McNeil and Frey (2000), Angelidis and 

Benos (2004), Kuester et al. (2005) among others, which found G-EVT to perform 

better than other methods (and unconditional EVT) for equity indices and portfolios. 

Also, in most of the aforementioned literature, GARCH and EGARCH models with 

student’s t distributed innovations perform adequately, as in our study. Finally, our 

results are in accordance with Hull and White (1998) and Barone – Adesi and 

Gianopulos (2001) among others, who state that FHS is for sure a better method than 

simple HS.  
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Another conclusion that can be drawn is that FHS 1000 seems to perform slightly 

better than FHS 500 in all cases. This should be a subject for further investigation, 

since the reasons for this fact could be two: either the 1000 observations sample for 

the GARCH filtering allows for better variance estimations, or the HS component 

gives more accurate results, as the window size increases. 

    

Equity Funds - 99% VaR – Best performing models 

Alpha Delos Interamerican/EFG 

G-EVT 10% 

Violations %: 0.88 

LRcc P-Value: 0.38 

G-EVT 10% 

Violations %: 1.05 

LRcc P-Value: 0.60 

EGARCH (t) 

Violations %: 1.08 

LRcc P-Value: 0.59 

FHS 1000 

Violations %: 1.08 

LRcc P-Value =0.13 

GARCH (t) 

Violations %: 1.18 

LRcc P-Value =0.45 

G-EVT 10% 

Violations %: 1.12 

LRcc P-Value =0.56 

GARCH (t) 

Violations %: 1.08  

LRcc P-Value =0.13 

FHS 1000 

Violations %: 0.85  

LRcc P-Value =0.31 

FHS 1000 

Violations %: 0.91   

LRcc P-Value = 0.45 

FHS 500 

Violations %: 1.15 

LRcc P-Value =0.13 

G-EVT 8% 

Violations %: 0.81 

LRcc P-Value =0.24 

GARCH (t) 

Violations %: 1.25 

LRcc P-Value =0.32 

EGARCH (t) 

Violations %: 0.98 

LRcc P-Value =0.10 

FHS 500 

Violations %: 1.12 

LRcc P-Value =0.13 

G-EVT 8% 

Violations %: 0.78 

LRcc P-Value =0.18 

Table 6: Five best performing methods for equity funds at 99% VaR forecasts, 

according to LRcc P-Values and 5% significance level. Expected violations ratio: 1%. 

 

Further evidence on the performance of all methods, can be found in the appendix 

at pages 99, 101 and 103. 

 

14.5 Balanced Funds – 99% VaR 

 

The same picture comes from the examination of the balanced funds results, except 

from one. In general, G-EVT performs best, with FHS and GARCH (t) and EGARCH 

(t) following.  
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On a fund to fund analysis, G-EVT 10% performs by far better than the other 

methods for Alpha, followed by G-EVT 8%, FHS 1000, EGARCH (t) and FHS 500. 

The worst performance comes from SMA, EWMA and HS100 that constantly 

underestimate VaR, while G-EVT 5% gives no more than 0.37% violations when 1% 

is expected. 

For the Delos fund though, only two methods pass conditional coverage test. They 

are FHS 500 and GARCH (t), while several other methods succeed only in 

unconditional coverage (in these terms, G-EVT 10% with 1.02% of violations, 

followed by EVT 8% with 1.15% of violations). Again, the worst performers are 

SMA, EWMA and HS 100. 

Finally, for the Interamerican/EFG balanced fund G-EVT 10% performs best, 

followed closely by FHS 1000, EVT 5%, GARCH (t) and G-EVT 8%. The usual 

“worst performers” apply here as well.  

 

Balanced Funds - 99% VaR – Best performing models 

Alpha Delos Interamerican/EFG 

G-EVT 10% 

Violations %: 1.02 

LRcc P-Value: 0.72 

FHS 500 

Violations %: 0.95 

LRcc P-Value: 0.52 

G-EVT 10% 

Violations %: 1.02 

LRcc P-Value: 0.59 

G-EVT 8% 

Violations %: 0.85 

LRcc P-Value =0.55 

GARCH (t) 

Violations %: 0.98 

LRcc P-Value =0.10 

FHS 1000 

Violations %: 1.12 

LRcc P-Value =0.56 

FHS 1000 

Violations %: 1.39  

LRcc P-Value =0.12 

G-EVT 10% 

Violations %: 1.02  

LRuc P-Value =0.93 

EVT 5% 

Violations %: 0.95   

LRcc P-Value = 0.52 

EGARCH (t) 

Violations %: 1.05 

LRcc P-Value =0.12 

EVT 8% 

Violations %: 1.15 

LRuc P-Value =0.42 

GARCH (t) 

Violations %: 1.29 

LRcc P-Value =0.26 

FHS 500 

Violations %: 1.02 

LRcc P-Value =0.11 

EVT 5% 

Violations %: 0.85 

LRuc P-Value =0.39 

G-EVT 8% 

Violations %: 0.78 

LRcc P-Value =0.18 

Table 7: Five best performing methods for balanced funds at 99% VaR forecasts, 

according to LRcc P-Values and 5% significance level. Expected violations ratio: 1%. 

For Delos fund, G-EVT 10%, EVT 8% and EVT 5% are presented in terms of 

unconditional coverage, since conditional coverage P-Values are insignificant. 
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G-EVT 10% seems to perform well for balanced funds, except from one, for which 

it produces almost 1% violations though. Also, FHS seems to perform well, followed 

by the GARCH and EGARCH with student’s t distributed innovations. Since results 

are not common for all funds, we can conclude that the best methods for the balanced 

funds of our sample are G-EVT 10% and FHS methods, with the former producing 

slightly better violations ratio. 

 

Further evidence on the performance of all methods can be found in the appendix 

at pages 105, 107 and 109. 

 

14.6 Bond Funds – 99% VaR 

 

As noted in the descriptive statistics table and the Q-Q plots in the appendix, bond 

funds exhibit the largest kurtosis and have “fatter” tails than the rest of the funds. 

Thus, in order to model these exceedances, we would expect that EVT, G-EVT or 

GARCH (t) models would produce the best results. This expectation is actually true 

for two out of three funds. 

More specifically, GARCH (t) performs well for the Alpha fund, followed by G-

EVT 5%, EVT 5% and EGARCH (t), which gives overestimated VaR though (0.64% 

violations). As expected, the rest of the methods underestimate VaR with the worst 

result coming from HS 100 and FHS 1000. 

GARCH (t) and G-EVT 5% work well for the Delos fund as well, followed by 

GARCH (n), EVT 8% and EGARCH (t). Again, all other methods underestimate 

VaR, with FHS 1000 being the worst.  

The results are a bit different for the Interamerican/EFG fund though, since the 

best performance is achieved by GARCH (n), followed by EVT 5%, EGARCH (n), 

GARCH (t) and G-EVT 5%. The worst performers are the same for this fund.     

Generally, the best results come from the GARCH (t) models. This is in contrast 

with Vlaar (2000) who concludes that the student’s t assumption produces the worst 

VaR estimates for Dutch bonds. Our results are this way probably due to the fatter 

tails of the t distribution, although in the Q-Q plots in the appendix it does not seem to 

capture well the extremes. G-EVT 5% and EVT 5% threshold perform well as well, 

but it is of great interest to notice that for the rest of the funds, lower thresholds gave 
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the best performance. The fact that the higher threshold gives good results for the 

bond funds, is probably attributed to the large kurtosis these funds exhibit.  

 

Bond Funds - 99% VaR – Best performing models 

Alpha Delos Interamerican/EFG 

GARCH (t) 

Violations %: 1.02 

LRcc P-Value: 0.59 

GARCH (t) 

Violations %: 0.88 

LRcc P-Value: 0.63 

GARCH (n) 

Violations %: 0.91 

LRcc P-Value: 0.45 

G-EVT 5% 

Violations %: 1.12 

LRcc P-Value =0.13 

G-EVT 5% 

Violations %: 1.18 

LRcc P-Value =0.45 

EVT 5% 

Violations %: 1.22 

LRcc P-Value =0.33 

EVT 5% 

Violations %: 1.15  

LRcc P-Value =0.13 

GARCH (n) 

Violations %: 0.78  

LRuc P-Value =0.38 

EGARCH (n) 

Violations %: 0.85   

LRcc P-Value = 0.31 

EGARCH (t) 

Violations %: 0.64 

LRcc P-Value =0.10 

EVT 5% 

Violations %: 0.78 

LRuc P-Value =0.38 

GARCH (t) 

Violations %: 0.71 

LRcc P-Value =0.21 

Table 8: Four best performing methods for bond funds at 99% VaR forecasts, 

according to LRcc P-Values and 5% significance level. Expected violations ratio: 1%. 

 

Furthermore, GARCH (n) worked surprisingly well for one fund, leaving behind 

EVT or GARCH (t), a fact that was not expected. Also, in all cases, although both HS 

100 and HS 252 do not perform well, HS 252 produces violations ratios closer to the 

expected ones. Thus, our results are in accordance with Vlaar (2000), who states that 

HS performs better for bonds as sample size increases. 

The complete backtesting tables with 99% VaR for bond funds are in the appendix, 

namely tables A14, A16 and A18 at pages 111,113 and 115 respectively. 

 

14.7 Expected Shortfall 

 

HS based ES is computed in this paper, for confidence levels of 95% and 99% and 

for two sample sizes, 100 and 252 observations. Since, by definition (eqn. 5), ES 

expresses the expected losses when VaR is exceeded, there are no expected violations 

ratios to be fulfilled. The best method will be the one which is more rarely violated, 

since ES is primarily computed to give some intuition to the reader.  
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In these terms, for the equity funds ES 252 is the best method since it is not 

violated as often as ES 100. The same results apply for the balanced and the bond 

funds as well. The results are also confirmed by the VaR/ES ratio.  

 

 
95% ES Assumptions Free 

Window length: 100 observations 
Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Mutual 
Fund 

Alpha 
Equity 

Delos 
Equity 

Intramerican 
/EFG 

Equity 

Alpha 
Balanced 

Delos 
Balanced 

Interamerican
/EFG 

Balanced 

Alpha 
Bond 

Delos 
Bond 

Interamerican
/EFG Bond 

Violations 96 99 96 92 92 92 87 90 90 
% 3.25 3.35 3.25 3.11 3.11 3.11 2.95 3.05 3.05 

VaR/ES 
Ratio 0.76 0.75 0.74 0.73 0.75 0.75 0.62 0.65 0.49 

99% ES Assumptions Free 
Violations 55 52 55 58 55 55 61 51 53 

% 1.86 1.76 1.86 1.96 1.86 1.86 2.06 1.73 1.79 
VaR/ES 

Ratio 0.85 0.87 0.88 0.84 0.89 0.90 0.59 0.66 0.42 
Table 9: 95% & 99% ES forecasts with sample of 100 observations 

 
 

95% ES Assumptions Free 
Window length: 252 observations 

Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 
Mutual 
Fund 

Alpha 
Equity 

Delos 
Equity 

Intramerican 
/EFG 

Equity 

Alpha 
Balanced 

Delos 
Balanced 

Interamerican
/EFG 

Balanced 

Alpha 
Bond 

Delos 
Bond 

Interamerican/
EFG Bond 

Violations 75 74 77 72 70 71 77 88 71 
% 2.54 2.51 2.61 2.44 2.37 2.40 2.61 2.98 2.40 

VaR/ES 
Ratio 0.70 0.67 0.67 0.65 0.68 0.68 0.54 0.35 0.41 

99% ES Assumptions Free 
Violations 21 21 23 18 23 23 23 36 28 

% 0.71 0.71 0.78 0.61 0.78 0.78 0.78 1.22 0.95 
VaR/ES 

Ratio 0.83 0.85 0.86 0.79 0.85 0.86 0.45 0.23 0.32 
Table 10: 95% & 99% ES forecasts with sample of  252 observations 
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15. Conclusion 

 

The primer purpose of this dissertation is to find the best methods in determining 

95% and 99% Value at Risk for Greek mutual funds. Several methods were applied 

and some of the results can be universalized. Generally, we should agree that the 

ability of a method to produce reliable VaR estimations depends heavily on the type 

of mutual fund and the confidence level. The performance of each method was 

determined in terms of three tests, proposed by Cristoffersen (2003), namely 

unconditional coverage, i.e. having the right total number of violations, independence 

testing, i.e. the violations should not be clustered in time and conditional coverage 

test, which tests jointly the two aforementioned hypotheses.   

At 95% confidence level, the results were a bit disappointing, sine most of the 

methods failed to pass the conditional coverage tests. For equity funds, only one 

method and for one fund made it (FHS 500), for balanced funds no method and for 

bond funds only SMA and EWMA for also one fund. On the other hand, many 

methods performed well in unconditional coverage basis, with GARCH (n), 

EGARCH (n) and EWMA performing well for equity funds. The same holds for 

balanced funds as well, with EVT 8% and SMA giving the right violations ratio. 

Finally, EWMA, SMA and G-EVT 5% work acceptably for bond funds.  

For 99% VaR forecasts, the results were far more satisfying, since many methods 

performed well in a conditional coverage basis. For equity funds, G-EVT 10% 

worked well for two out of three funds, followed by GARCH (t) and EGARCH (t). 

FHS also showed good predictive ability. Most of the other methods underestimate 

VaR, while G-EVT 5% overestimates it. For the balanced funds, the best results came 

also from G-EVT 10%, followed by FHS and GARCH (t). The worst performers for 

this category of funds are SMA, EWMA and HS that constantly underestimate VaR, 

while G-EVT-5% overestimates it. Finally, for the bond funds the best performance is 

achieved by GARCH (t) and GARCH (n) models (in one case), followed by G-EVT 

5% and EVT 5% methods. The worst performance for bond funds comes from HS 

and FHS methods. 

Finally, due to some criticism on VaR, we computed Expected Shortfall that has 

been proposed as an alternative measure, in order to give some intuition to the reader. 

It was computed in HS based way, for two confidence intervals (95% and 99%) and 

for two sample sizes (100 and 252 observations). Since, by definition, ES is larger 
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than VaR, the best method should be the one produces the fewer violations. In these 

terms, the larger sample size (252) seems to give ES 252 better performance than ES 

100.    

Value at Risk is a good and widely used method in estimating the downside risk of 

many asset classes. As every method using historical data, relying on the past may not 

give the best results. For instance, an asset that has low volatility for a while equal to 

the sample of a VaR model, will probably lead to violations on its’ first high volatility 

days. Generally, the notion of Value at Risk, as every other quantitative method, 

could be described by Albert Einstein’s quote: “Not everything that can be counted 

counts, and not everything that counts can be counted”. But, using the “right” models 

could give the risk manager the means to deal with the uncertainty of adverse price 

changes.  
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Appendix 
Alpha Domestic Equities Fund 

Figure A1 – Histogram and stats  
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Figure A2 – Ljung-Box autocorrelation test  
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Figure A3 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  
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Figure A4 – Net Asset Value and Logarithmic Returns 
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Alpha Equities Log Returns from 23/3/1993 to 21/11/2008
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Delos Blue Chips Domestic Fund 
Figure A5 – Histogram and stats 
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Figure A6 – Ljung-Box autocorrelation test  
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Figure A7 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  

 

-.06

-.04

-.02

.00

.02

.04

.06

-.10 -.05 .00 .05 .10 .15 .20

Quantiles of DELOS_EQUITY

Q
ua

nt
ile

s 
of

 N
or

m
al

 
 

-.3

-.2

-.1

.0

.1

.2

.3

-.10 -.05 .00 .05 .10 .15 .20

Quantiles of DELOS_EQUITY

Q
ua

nt
ile

s 
of

 S
tu

de
nt

's 
t

 
 
 
 
 
 
 



 76

Figure A8 – Net Asset Value and Logarithmic Returns 
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Interamerican/EFG Dynamic Domestic Equity Fund 
Figure A9 – Histogram and stats 
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Figure A10 – Ljung-Box autocorrelation test  
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Figure A11 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  
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Figure A12 – Net Asset Value and Logarithmic Returns 
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Alpha Domestic Balanced Fund 
Figure A13 – Histogram and stats 
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Figure A14 – Ljung-Box autocorrelation test  
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Figure A15 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  
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Figure A16 – Net Asset Value and Logarithmic Returns 
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Delos Domestic Balanced Fund 
Figure A17 – Histogram and stats 
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Figure A18 – Ljung-Box autocorrelation test  
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Figure A19 – Q-Q Plots of the empirical against the Normal and the student’s t 

distribution  
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Figure A20 – Net Asset Value and Logarithmic Returns 
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Interamerican/EFG Hellenic Domestic Balanced Fund 
Figure A21 – Histogram and stats 
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Figure A22 – Ljung-Box autocorrelation test  
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Figure A23 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  
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Figure A24 – Net Asset Value and Logarithmic Returns 
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Alpha Domestic Bonds Fund 
Figure A25 – Histogram and stats 
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Figure A26 – Ljung-Box autocorrelation test  
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Figure A27 – Q-Q Plots of the empirical against the Normal and the student’s t 

distribution  
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Figure A28 – Net Asset Value and Logarithmic Returns 
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Delos Income Domestic Bonds Fund 
Figure A29 – Histogram and stats 
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Figure A30 – Ljung-Box autocorrelation test  
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Figure A31 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  
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Figure A32 – Net Asset Value and Logarithmic Returns 
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Interamerican/EFG Fixed Income Domestic Bonds Fund 

Figure A33 – Histogram and stats 
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Figure A34 – Ljung-Box autocorrelation test  
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Figure A35 – Q-Q Plots of the empirical against the Normal and the student’s t 
distribution  
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Figure A36 – Net Asset Value and Logarithmic Returns 
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Results and Backtesting 
 

95% VaR for MF Alpha Equity  
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc&` LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -2.24 -2.25 -2.28 -2.18 -2.32 -2.29 -2.22 -2.17 
σ(VaR) 0.83 0.84 1.00 0.85 1.10 1.06 1.11 1.02 
Min % -3.81 -5.30 -5.63 -4.25 -9.70 -8.88 -9.27 -12.46 
Max % -1.12 -1.10 -0.74 -0.99 -0.90 -0.75 -0.89 -0.74 

Violations 167 161 166 184 150 153 170 173 
% 5.65 5.45 5.62 6.23 5.08 5.18 5.75 5.86 

LRuc P-Value 0.11 0.27 0.13 0.00 0.85 0.66 0.07 0.04 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -2.10 -2.33 -2.81 -2.23 -2.44 -2.83 -2.35 -2.28 
σ(VaR) 0.62 0.69 0.81 1.19 1.31 1.51 1.36 1.25 
Min % -3.23 -3.53 -4.07 -10.95 -11.98 -13.89 -12.69 -11.50 
Max % -1.25 -1.39 -1.74 -0.80 -0.87 -1.00 -0.83 -0.78 

Violations 196 165 120 178 141 84 150 172 
% 6.64 5.59 4.06 6.03 4.77 2.84 5.08 5.82 

LRuc P-Value 0.00 0.15 0.02 0.01 0.57 0.00 0.85 0.05 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 

 

Table A1: 95% VaR for Alpha Domestic Equities Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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99% VaR for MF Alpha Equity  

Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 
Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 

Method SMA EWMA Historical Simulation GARCH 
(n) 

EGARCH 
(n) 

GARCH 
(t) 

EGARCH 
(t) 

Window length 252 100 100 252 1000 1000 1000 1000 
E(VaR) % -3.16 -3.18 -3.22 -3.73 -3.28 -3.24 -3.60 -3.51 
σ(VaR) 1.17 1.19 1.47 1.47 1.55 1.50 1.83 1.68 
Min % -5.38 -7.48 -7.21 -6.56 -13.69 -12.54 -15.04 -20.99 
Max % -1.59 -1.55 -1.09 -1.64 -1.27 -1.06 -1.46 -1.22 

Violations 67 63 80 47 51 47 32 29 
% 2.27 2.13 2.71 1.59 1.73 1.59 1.08 0.98 

LRuc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.92 
LRind P-Value 0.00 0.05 0.00 0.22 0.07 0.01 0.05 0.03 
LRcc P-Value 0.00 0.00 0.00 0.01 0.00 0.00 0.13 0.10 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -3.79 -4.06 -4.56 -3.98 -4.17 -4.67 -3.83 -3.72 
σ(VaR) 1.11 1.17 1.23 2.23 2.31 2.59 2.24 2.00 
Min % -5.59 -5.82 -6.36 -17.96 -18.80 -19.88 -20.06 -16.63 
Max % -2.17 -2.27 -2.50 -1.29 -1.34 -1.44 -1.36 -1.29 

Violations 60 51 34 26 21 13 34 32 
% 2.03 1.73 1.15 0.88 0.71 0.44 1.15 1.08 

LRuc P-Value 0.00 0.00 0.42 0.50 0.10 0.00 0.42 0.65 
LRind P-Value 0.00 0.00 0.00 0.23 0.14 0.05 0.06 0.05 
LRcc P-Value 0.00 0.00 0.00 0.38 0.08 0.00 0.13 0.13 

 
 
 

Table A2: 99% VaR for Alpha Domestic Equities Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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95% VaR for MF Delos Equity  

Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 
Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 

Method SMA EWMA Historical Simulation GARCH 
(n) 

EGARCH 
(n) 

GARCH 
(t) 

EGARCH 
(t) 

Window length 252 100 100 252 1000 1000 1000 1000 
E(VaR) % -2.29 -2.30 -2.32 -2.18 -2.31 -2.26 -2.23 -2.18 
σ(VaR) 0.85 0.86 1.04 0.87 1.15 1.05 1.12 1.03 
Min % -3.92 -4.85 -5.38 -3.94 -9.17 -8.32 -8.82 -8.30 
Max % -1.17 -1.14 -0.71 -0.98 -0.94 -0.83 -0.96 -0.81 

Violations 151 151 168 173 145 146 154 161 
% 5.11 5.11 5.69 5.86 4.91 4.94 5.21 5.45 

LRuc P-Value 0.78 0.78 0.09 0.04 0.82 0.89 0.60 0.27 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -2.20 -2.45 -2.99 -2.27 -2.48 -2.97 -2.31 -2.26 
σ(VaR) 0.67 0.75 0.91 1.29 1.41 1.70 1.35 1.28 
Min % -3.42 -3.75 -4.43 -9.95 -10.92 -12.72 -11.18 -10.54 
Max % -1.27 -1.45 -1.77 -0.79 -0.85 -0.99 -0.83 -0.79 

Violations 175 150 104 162 128 86 160 163 
% 5.92 5.08 3.52 5.48 4.33 2.91 5.42 5.52 

LRuc P-Value 0.02 0.85 0.00 0.23 0.09 0.00 0.31 0.20 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
 

Table A3: 95% VaR for Delos Blue Chips Domestic Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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99% VaR for MF Delos Equity  
Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -3.23 -3.24 -3.36 -3.92 -3.26 -3.19 -3.65 -3.56 
σ(VaR) 1.20 1.22 1.62 1.51 1.63 1.48 1.86 1.70 
Min % -5.53 -6.85 -7.14 -7.06 -12.95 -11.75 -15.15 -13.27 
Max % -1.65 -1.61 -1.09 -1.67 -1.32 -1.17 -1.59 -1.34 

Violations 71 72 78 42 56 52 35 33 
% 2.40 2.44 2.64 1.42 1.90 1.76 1.18 1.12 

LRuc P-Value 0.00 0.00 0.00 0.03 0.00 0.00 0.33 0.53 
LRind P-Value 0.00 0.00 0.00 0.00 0.02 0.08 0.43 0.05 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.13 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -3.99 -4.27 -4.83 -3.97 -4.23 -4.85 -4.05 -4.09 
σ(VaR) 1.13 1.19 1.29 2.30 2.45 2.84 2.34 2.47 
Min % -5.67 -5.91 -6.49 -16.49 -17.63 -20.70 -21.21 -17.77 
Max % -2.22 -2.29 -2.49 -1.26 -1.37 -1.52 -1.42 -1.29% 

Violations 55 45 27 31 24 12 33 25 
% 1.86 1.52 0.91 1.05 0.81 0.41 1.12 0.85 

LRuc P-Value 0.00 0.01 0.63 0.79 0.29 0.00 0.53 0.39 
LRind P-Value 0.00 0.00 0.00 0.33 0.19 0.04 0.05 0.21 
LRcc P-Value 0.00 0.00 0.01 0.60 0.24 0.00 0.13 0.31 

 
 
Table A4: 99% VaR for Delos Blue Chips Domestic Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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95% VaR for MF Interamerican/EFG Equity  
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -2.22 -2.22 -2.23 -2.09 -2.25 -2.18 -2.18 -2.13 
σ(VaR) 0.81 0.82 0.97 0.80 1.10 0.99 1.08 1.01 
Min % -3.78 -4.79 -5.55 -3.75 -8.29 -7.57 -8.30 -7.96 
Max % -1.20 -1.18 -0.72 -1.06 -0.94 -0.82 -0.98 -0.85 

Violations 155 151 170 176 141 156 154 167 
% 5.25 5.11 5.75 5.96 4.77 5.28 5.21 5.65 

LRuc P-Value 0.54 0.78 0.07 0.02 0.57 0.49 0.60 0.11 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -2.08 -2.31 -2.81 -2.18 -2.39 -2.85 159 -2.18 
σ(VaR) 0.62 0.70 0.85 1.20 1.32 1.60 5.38 1.21 
Min % -3.18 -3.50 -4.11 -9.00 -9.85 -11.49 -2.23 -9.20 
Max % -1.25 -1.34 -1.54 -0.78 -0.85 -0.98 1.28 -0.77 

Violations 193 160 111 165 131 84 159 168 
% 6.53 5.42 3.76 5.59 4.43 2.84 5.38 5.69 

LRuc P-Value 0.00 0.31 0.00 0.15 0.15 0.00 0.35 0.09 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
 

Table A5: 95% VaR for Interamerican/EFG Dynamic Equity Fund. The 

methods applied are Simple Moving Average (SMA), Exponentially Weighted 

Moving Average (EWMA or RiskMetrics model), Historical Simulation (HS for 

two window sizes), GARCH (1,1) and EGARCH (1,1) with normally and 

student’s t distributed innovations, unconditional and GARCH filtered Extreme 

Value Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and 

Filtered Historical Simulation (FHS) for two window sizes. The methods 

accepted under Unconditional Coverage, Independence and Conditional 

Coverage (5% significance level) tests are marked with bold font. 
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99% VaR for MF Interamerican/EFG Equity  
Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -3.13 -3.14 -3.27 -3.82 -3.18 -3.08 -3.53 -3.44 
σ(VaR) 1.15 1.16 1.54 1.46 1.55 1.40 1.76 1.63 
Min % -5.33 -6.76 -6.16 -6.16 -11.71 -10.70 -13.24 -12.70 
Max % -1.70 -1.66 -1.14 -1.53 -1.33 -1.16 -1.60 -1.38 

Violations 70 66 74 39 55 56 37 32 
% 2.37 2.23 2.51 1.32 1.86 1.90 1.25 1.08 

LRuc P-Value 0.00 0.00 0.00 0.10 0.00 0.00 0.18 0.65 
LRind P-Value 0.03 0.25 0.01 0.01 0.85 0.39 0.48 0.35 
LRcc P-Value 0.00 0.00 0.00 0.01 0.00 0.00 0.32 0.59 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -3.75 -4.02 -4.59 -3.73 -3.99 -4.52 -3.87 -3.80 
σ(VaR) 1.06 1.12 1.21 2.08 2.24 2.52 2.15 2.11 
Min % -5.28 -5.63 -6.17 -15.11 -16.33 -18.39 -15.43 -15.04 
Max % -1.91 -2.02 -2.22 -1.26 -1.33 -1.51 -1.48 -1.35 

Violations 55 49 33 33 23 14 33 27 
% 1.86 1.66 1.12 1.12 0.78 0.47 1.12 0.91 

LRuc P-Value 0.00 0.00 0.53 0.53 0.21 0.00 0.53 0.63 
LRind P-Value 0.00 0.00 0.05 0.38 0.17 0.05 0.01 0.24 
LRcc P-Value 0.00 0.00 0.13 0.56 0.18 0.00 0.02 0.45 

 
 

Table A6: 99% VaR for Interamerican/EFG Dynamic Equity Fund. The 

methods applied are Simple Moving Average (SMA), Exponentially Weighted 

Moving Average (EWMA or RiskMetrics model), Historical Simulation (HS for 

two window sizes), GARCH (1,1) and EGARCH (1,1) with normally and 

student’s t distributed innovations, unconditional and GARCH filtered Extreme 

Value Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and 

Filtered Historical Simulation (FHS) for two window sizes. The methods 

accepted under Unconditional Coverage, Independence and Conditional 

Coverage (5% significance level) tests are marked with bold font. 
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95% VaR for MF Alpha Balanced 
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -1.13 -1.13 -1.08 -1.02 -1.14 -1.17 -1.09 -1.07 
σ(VaR) 0.34 0.34 0.42 0.32 0.47 1.39 0.47 0.40 
Min % -1.74 -3.23 -2.71 -2.08 -5.47 -70.11 -4.91 -4.41 
Max % -0.66 -0.64 -0.41 -0.55 -0.49 -0.48 -0.51 -0.47 

Violations 145 144 180 188 132 135 147 141 
% 4.91 4.87 6.09 6.36 4.47 4.57 4.98 4.77 

LRuc P-Value 0.82 0.75 0.01 0.00 0.18 0.28 0.95 0.57 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -1.03 -1.14 -1.38 -1.02 -1.12 -1.32 -1.05 -1.04 
σ(VaR) 0.22 0.24 0.31 0.46 0.51 0.61 0.53 0.46 
Min % -1.45 -1.61 -1.95 -6.07 -6.66 -7.89 -7.57 -6.11 
Max % -0.71 -0.78 -0.89 -0.43 -0.47 -0.54 -0.43 -0.45 

Violations 174 148 98 168 136 83 169 163 
% 5.89 5.01 3.32 5.69 4.60 2.81 5.72 5.52 

LRuc P-Value 0.03 0.98 0.00 0.09 0.32 0.00 0.08 0.20 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 

Table A7: 95% VaR for Alpha Domestic Balanced Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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99% VaR for MF Alpha Balanced 
Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -1.60 -1.60 -1.59 -1.87 -1.61 -1.65 -1.79 -1.77 
σ(VaR) 0.48 0.49 0.69 0.67 0.66 1.96 0.80 0.69 
Min % -2.45 -4.56 -3.70 -3.43 -7.73 -99.01 -8.45 -7.59 
Max % -0.93 -0.90 -0.61 -0.95 -0.70 -0.68 -0.84 -0.76 

Violations 67 65 80 46 52 50 34 31 
% 2.27 2.20 2.71 1.56 1.76 1.69 1.15 1.05 

LRuc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.79 
LRind P-Value 0.00 0.23 0.09 0.71 0.08 0.27 0.01 0.04 
LRcc P-Value 0.00 0.00 0.00 0.02 0.00 0.00 0.02 0.12 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -1.93 -2.08 -2.43 -1.89% -2.03% -2.36% -1.89% -1.78% 
σ(VaR) 0.45 0.49 0.59 0.90% 0.99% 1.19% 0.95% 0.81% 
Min % -2.55 -2.71 -3.18 -9.93% -10.69% -13.38% -10.56% -9.46% 
Max % -1.10 -1.13 -1.24 -0.72% -0.76% -0.82% -0.74% -0.74% 

Violations 44 38 26 30 25 11 30 41 
% 1.49 1.29 0.88 1.02 0.85 0.37 1.02 1.39 

LRuc P-Value 0.01 0.13 0.50 0.93 0.39 0.00 0.93 0.05 
LRind P-Value 0.00 0.00 0.02 0.43 0.51 0.76 0.04 0.58 
LRcc P-Value 0.00 0.00 0.05 0.72 0.55 0.00 0.11 0.12 

 
 

Table A8: 99% VaR for Alpha Domestic Balanced Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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95% VaR for MF Delos Balanced 
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -1.49 -1.49 -1.49 -1.41 -1.49 -1.47 -1.46 -1.45 
σ(VaR) 0.68 0.69 0.74 0.64 0.76 0.73 0.79 0.76 
Min % -2.73 -3.34 -2.96 -2.71 -6.09 -4.84 -6.26 -5.16 
Max % -0.65 -0.64 -0.45 -0.54 -0.52 -0.49 -0.52 -0.47 

Violations 148 150 151 171 138 149 149 159 
% 5.01 5.08 5.11 5.79 4.67 5.04 5.04 5.38 

LRuc P-Value 0.98 0.85 0.78 0.05 0.41 0.91 0.91 0.35 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -1.47 -1.64 -2.00 -1.43 -1.55 -1.85 -1.42 -1.42 
σ(VaR) 0.51 0.57 0.69 0.80 0.87 1.05 0.83 0.80 
Min % -2.29 -2.51 -2.99 -5.53 -6.04 -7.30 -5.25 -5.70 
Max % -0.72 -0.81 -1.00 -0.42 -0.46 -0.54 -0.42 -0.43 

Violations 181 141 91 160 130 76 166 164 
% 6.13 4.77 3.08 5.42 4.40 2.57 5.62 5.55 

LRuc P-Value 0.01 0.57 0.00 0.31 0.13 0.00 0.13 0.18 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
 

Table A9: 95% VaR for Delos Balanced Domestiv Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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99% VaR for MF Delos Balanced 

Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 
Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 

Method SMA EWMA Historical Simulation GARCH 
(n) 

EGARCH 
(n) 

GARCH 
(t) 

EGARCH 
(t) 

Window length 252 100 100 252 1000 1000 1000 1000 
E(VaR) % -2.10 -2.11 -2.19 -2.51 -2.10 -2.08 -2.36 -2.33 
σ(VaR) 0.97 0.97 1.24 1.17 1.07 1.03 1.27 1.23 
Min % -3.85 -4.72 -5.05 -4.51 -8.60 -6.84 -10.47 -8.49 
Max % -0.92 -0.90 -0.58 -1.00 -0.73 -0.69 -0.84 -0.77 

Violations 72 70 77 42 45 39 29 24 
% 2.44 2.37 2.61 1.42 1.52 1.32 0.98 0.81 

LRuc P-Value 0.00 0.00 0.00 0.03 0.01 0.10 0.92 0.29 
LRind P-Value 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.01 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.03 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -2.66 -2.84 -3.22 -2.50 -2.66 -3.10 -2.59 -2.63 
σ(VaR) 0.90 0.95 1.07 1.46 1.58 1.90 1.61 1.60 
Min % -3.91 -4.14 -4.52 -10.64 -11.71 -14.84 -11.09 -11.39 
Max % -1.31 -1.42 -1.61 -0.68 -0.73 -0.80 -0.70 -0.70 

Violations 38 34 25 30 23 12 28 23 
% 1.29 1.15 0.85 1.02 0.78 0.41 0.95 0.78 

LRuc P-Value 0.13 0.42 0.39 0.93 0.21 0.00 0.77 0.21 
LRind P-Value 0.00 0.00 0.00 0.00 0.01 0.04 0.27 0.00 
LRcc P-Value 0.00 0.00 0.00 0.01 0.02 0.00 0.52 0.00 

 
 
 

Table A10: 99% VaR for Delos Balanced Domestic Fund. The methods applied 

are Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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95% VaR for MF Interamerican/EFG Balanced 
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -1.50 -1.50 -1.50 -1.43 -1.49 -1.48 -1.44 -1.44 
σ(VaR) 0.63 0.63 0.72 0.60 0.79 0.76 0.78 0.74 
Min % -2.77 -3.23 -3.24 -2.73 -7.47 -12.50 -5.80 -5.05 
Max % -0.70 -0.68 -0.40 -0.64 -0.51 -0.43 -0.54 -0.45 

Violations 142 137 174 173 149 153 163 177 
% 4.81 4.64 5.89 5.86 5.04 5.18 5.52 5.99 

LRuc P-Value 0.63 0.36 0.03 0.04 0.91 0.66 0.20 0.02 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -1.43 -1.60 -1.97 -1.43 -1.56 -1.84 -1.50 -1.43 
σ(VaR) 0.49 0.55 0.67 0.80 0.88 1.05 0.90 0.81 
Min % -2.28 -2.50 -3.02 -6.22 -6.91 -8.17 -6.07 -6.41 
Max % -0.79 -0.85 -0.98 -0.44 -0.48 -0.56 -0.46 -0.44 

Violations 184 154 103 169 140 89 170 171 
% 6.23 5.21 3.49 5.72 4.74 3.01 5.75 5.79 

LRuc P-Value 0.00 0.60 0.00 0.08 0.51 0.00 0.07 0.05 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
 

Table A11: 95% VaR for Interamerican/EFG Hellenic Domestic Balanced Fund. 

The methods applied are Simple Moving Average (SMA), Exponentially 

Weighted Moving Average (EWMA or RiskMetrics model), Historical 

Simulation (HS for two window sizes), GARCH (1,1) and EGARCH (1,1) with 

normally and student’s t distributed innovations, unconditional and GARCH 

filtered Extreme Value Theory (EVT and G-EVT) for thresholds of 10%, 8% 

and 5% and Filtered Historical Simulation (FHS) for two window sizes. The 

methods accepted under Unconditional Coverage, Independence and 

Conditional Coverage (5% significance level) tests are marked with bold font. 
 
 
 
 
 
 
 



 109

 
 
 

99% VaR for MF Interamerican/EFG Balanced 
Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -2.12 -2.12 -2.21 -2.50 -2.11 -2.09 -2.35 -2.34 
σ(VaR) 0.89 0.90 1.09 1.02 1.12 1.07 1.28 1.21 
Min % -3.92 -4.56 -4.63 -4.62 -10.55 -17.65 -10.06 -8.76 
Max % -0.98 -0.95 -0.71 -1.17 -0.72 -0.61 -0.90 -0.74 

Violations 67 65 80 44 49 54 38 36 
% 2.27 2.20 2.71 1.49 1.66 1.83 1.29 1.22 

LRuc P-Value 0.00 0.00 0.00 0.01 0.00 0.00 0.13 0.25 
LRind P-Value 0.08 0.23 0.00 0.17 0.78 0.00 0.50 0.01 
LRcc P-Value 0.00 0.00 0.00 0.02 0.00 0.00 0.26 0.02 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -2.58 -2.76 -3.14 -2.49 -2.65 -3.01 -2.53 -2.44 
σ(VaR) 0.76 0.80 0.84 1.47 1.57 1.82 1.47 1.43 
Min % -3.68 -3.85 -4.21 -12.48 -13.72 -16.54 -10.39 -11.37 
Max % -1.26 -1.31 -1.47 -0.73 -0.78 -0.88 -0.72 -0.70 

Violations 46 41 28 30 23 16 33 33 
% 1.56 1.39 0.95 1.02 0.78 0.54 1.12 1.12 

LRuc P-Value 0.00 0.05 0.77 0.93 0.21 0.01 0.53 0.53 
LRind P-Value 0.01 0.13 0.27 0.31 0.17 0.07 0.05 0.38 
LRcc P-Value 0.00 0.04 0.52 0.59 0.18 0.00 0.13 0.56 

 
 
 

Table A12: 99% VaR for Interamerican/EFG Balanced Domestic Fund. The 

methods applied are Simple Moving Average (SMA), Exponentially Weighted 

Moving Average (EWMA or RiskMetrics model), Historical Simulation (HS for 

two window sizes), GARCH (1,1) and EGARCH (1,1) with normally and 

student’s t distributed innovations, unconditional and GARCH filtered Extreme 

Value Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and 

Filtered Historical Simulation (FHS) for two window sizes. The methods 

accepted under Unconditional Coverage, Independence and Conditional 

Coverage (5% significance level) tests are marked with bold font. 
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95% VaR for MF Alpha Bond 
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -0.28 -0.28 -0.18 -0.17 -0.40 -0.94 -0.53 -3.23 
σ(VaR) 0.14 0.14 0.15 0.13 0.32 13.71 2.50 9.58 
Min % -0.80 -2.42 -0.68 -0.50 -9.35 -585.37 -102.80 -162.90 
Max % -0.08 -0.08 0.03 0.03 -0.17 -0.04 -0.09 -0.02 

Violations 132 135 222 277 101 130 117 84 
% 4.47 4.57 7.52 9.38 3.42 4.40 3.96 2.84 

LRuc P-Value 0.18 0.28 0.00 0.00 0.00 0.13 0.01 0.00 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -0.14 -0.16 -0.20 -0.14 -0.15 -0.19 -0.18 -0.14 
σ(VaR) 0.09 0.11 0.13 0.12 0.13 0.15 0.15 0.11 
Min % -0.29 -0.33 -0.41 -0.86 -0.94 -1.10 -0.92 -0.88 
Max % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Violations 287 242 188 305 269 190 215 305 
% 9.72 8.19 6.36 10.32 9.11 6.43 7.28 10.32 

LRuc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
 

Table A13: 95% VaR for Alpha Domestic Bonds Fund. The methods applied are 

Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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99% VaR for MF Alpha Bond 

Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 
Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 

Method SMA EWMA Historical Simulation GARCH 
(n) 

EGARCH 
(n) 

GARCH 
(t) 

EGARCH 
(t) 

Window length 252 100 100 252 1000 1000 1000 1000 
E(VaR) % -0.40 -0.40 -0.26 -0.28 -0.57 -1.33 -0.91 -5.46 
σ(VaR) 0.20 0.20 0.20 0.20 0.46 19.35 4.39 15.92 
Min % -1.13 -3.42 -0.73 -0.76 -13.20 -826.61 -180.51 -270.37 
Max % -0.12 -0.12 0.03 0.02 -0.23 -0.06 -0.15 -0.03 

Violations 49 47 88 58 39 50 30 19 
% 1.66 1.59 2.98 1.96 1.32 1.69 1.02 0.64 

LRuc P-Value 0.00 0.00 0.00 0.00 0.10 0.00 0.93 0.04 
LRind P-Value 0.05 0.74 0.02 0.13 0.00 0.01 0.31 0.61 
LRcc P-Value 0.00 0.01 0.00 0.00 0.00 0.00 0.59 0.10 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -0.28 -0.31 -0.39 -0.28 -0.31 -0.39 -0.31 -0.27 
σ(VaR) 0.15 0.15 0.13 0.17 0.17 0.20 0.25 0.19 
Min % -0.55 -0.59 -0.67 -1.36 -1.59 -2.89 -1.59 -1.40 
Max % 0.00 -0.01 -0.04 0.00 0.00 -0.03 0.00 0.00 

Violations 74 61 34 73 51 33 52 78 
% 2.51 2.06 1.15 2.47 1.73 1.12 1.76 2.64 

LRuc P-Value 0.00 0.00 0.42 0.00 0.00 0.53 0.00 0.00 
LRind P-Value 0.00 0.00 0.06 0.00 0.00 0.05 0.31 0.00 
LRcc P-Value 0.00 0.00 0.13 0.00 0.00 0.13 0.00 0.00 

 
 
 

Table A14: 99% VaR for Alpha Domestic Bonds Fund. The methods applied are 

Simple Moving Average (SMA), Exponentially Weighted Moving Average 

(EWMA or RiskMetrics model), Historical Simulation (HS for two window 

sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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95% VaR for MF Delos Bond 
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -0.48 -0.47 -0.14 -0.13 -0.90 -0.83 -0.27 -1.46 
σ(VaR) 1.37 1.33 0.10 0.09 1.11 1.06 0.21 9.32 
Min % -7.24 -7.03 -0.35 -0.30 -6.39 -7.25 -3.20 -450.26 
Max % -0.06 -0.06 0.02 0.03 -0.08 -0.03 -0.07 -0.03 

Violations 129 128 183 235 66 113 99 82 
% 4.37 4.33 6.19 7.96 2.23 3.83 3.35 2.78 

LRuc P-Value 0.11 0.09 0.00 0.00 0.00 0.00 0.00 0.00 
LRind P-Value 0.51 0.72 0.00 0.00 0.00 0.04 0.06 0.03 
LRcc P-Value 0.22 0.22 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -0.13 -0.15 -0.18 -0.10 -0.11 -0.13 -0.13 -0.10 
σ(VaR) 0.07 0.08 0.09 0.09 0.10 0.13 0.12 0.10 
Min % -0.22 -0.24 -0.29 -3.01 -3.34 -4.10 -3.84 -3.16 
Max % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Violations 214 179 128 339 290 213 213 333 
% 7.24 6.06 4.33 11.48 9.82 7.21 7.21 11.27 

LRuc P-Value 0.00 0.01 0.09 0.00 0.00 0.00 0.00 0.00 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 
 

Table A15: 95% VaR for Delos Income Bonds Domestic Fund. The methods 

applied are Simple Moving Average (SMA), Exponentially Weighted Moving 

Average (EWMA or RiskMetrics model), Historical Simulation (HS for two 

window sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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99% VaR for MF Delos Bond 
Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -0.68 -0.67 -0.21 -0.24 -1.28 -1.17 -0.45 -2.54 
σ(VaR) 1.93 1.87 0.14 0.15 1.57 1.50 0.37 16.38 
Min % -10.22 -9.93 -0.52 -0.50 -9.02 -10.24 -5.62 -790.74 
Max % -0.08 -0.08 0.02 0.02 -0.11 -0.04 -0.11 -0.04 

Violations 49 44 80 70 23 44 26 22 
% 1.66 1.49 2.71 2.37 0.78 1.49 0.88 0.74 

LRuc P-Value 0.00 0.01 0.00 0.00 0.21 0.01 0.50 0.14 
LRind P-Value 0.05 0.17 0.09 0.03 0.54 0.17 0.49 0.15 
LRcc P-Value 0.00 0.02 0.00 0.00 0.38 0.02 0.63 0.13 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -0.28 -0.31 -0.40 -0.21 -0.24 -0.34 -0.24 -0.19 
σ(VaR) 0.12 0.13 0.14 0.19 0.21 0.27 0.22 0.19 
Min % -0.48 -0.55 -0.82 -5.98 -6.57 -7.94 -6.90 -6.08 
Max % -0.03 -0.05 -0.15 -0.03 -0.05 -0.07 0.00 0.00 

Violations 34 23 11 79 56 35 59 98 
% 1.15 0.78 0.37 2.67 1.90 1.18 2.00 3.32 

LRuc P-Value 0.42 0.21 0.00 0.00 0.00 0.33 0.00 0.00 
LRind P-Value 0.01 0.54 0.76 0.08 0.39 0.43 0.03 0.00 
LRcc P-Value 0.02 0.38 0.00 0.00 0.00 0.45 0.00 0.00 

 
 

Table A16: 99% VaR for Delos Income Bonds Domestic Fund. The methods 

applied are Simple Moving Average (SMA), Exponentially Weighted Moving 

Average (EWMA or RiskMetrics model), Historical Simulation (HS for two 

window sizes), GARCH (1,1) and EGARCH (1,1) with normally and student’s t 

distributed innovations, unconditional and GARCH filtered Extreme Value 

Theory (EVT and G-EVT) for thresholds of 10%, 8% and 5% and Filtered 

Historical Simulation (FHS) for two window sizes. The methods accepted under 

Unconditional Coverage, Independence and Conditional Coverage (5% 

significance level) tests are marked with bold font. 
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95% VaR for MF Interamerican/EFG Bond 
Expected violations: 148 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc& LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -0.26 -0.26 -0.13 -0.11 -0.43 -0.40 -0.45 -1.37 
σ(VaR) 0.20 0.20 0.13 0.11 0.37 0.42 2.27 2.42 
Min % -0.92 -2.62 -0.48 -0.38 -2.57 -2.72 -79.04 -25.65 
Max % -0.07 -0.06 0.03 0.03 -0.09 -0.01 -0.07 -0.03 

Violations 116 111 204 292 78 80 88 75 
% 3.21 3.76 6.91 9.88 2.64 2.71 2.98 2.54 

LRuc P-Value 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRind P-Value 0.01 0.08 0.00 0.00 0.21 0.09 0.00 0.01 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -0.11 -0.12 -0.15 -0.11 -0.12 -0.15 -0.14 -0.11 
σ(VaR) 0.08 0.09 0.11 0.13 0.15 0.18 0.17 0.14 
Min % -0.22 -0.24 -0.29 -2.01 -2.19 -2.61 -2.11 -2.05 
Max % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Violations 266 218 165 265 235 160 194 265 
% 9.00 7.38 5.59 8.97 7.96 5.42 6.57 8.97 

LRuc P-Value 0.00 0.00 0.15 0.00 0.00 0.31 0.00 0.00 
LRind P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
LRcc P-Value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 
 

Table A17: 95% VaR for Interamerican/EFG Fixed Income Domestic Bond 

Fund. The methods applied are Simple Moving Average (SMA), Exponentially 

Weighted Moving Average (EWMA or RiskMetrics model), Historical 

Simulation (HS for two window sizes), GARCH (1,1) and EGARCH (1,1) with 

normally and student’s t distributed innovations, unconditional and GARCH 

filtered Extreme Value Theory (EVT and G-EVT) for thresholds of 10%, 8% 

and 5% and Filtered Historical Simulation (FHS) for two window sizes. The 

methods accepted under Unconditional Coverage, Independence and 

Conditional Coverage (5% significance level) tests are marked with bold font. 
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99% VaR for MF Interamerican/EFG Bond 
Expected violations: 30 / Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Backtesting significance level 5% / Critical value for LRuc & LRind: 3.84 / Critical value for LRcc: 5.99 
Method SMA EWMA Historical Simulation GARCH 

(n) 
EGARCH 

(n) 
GARCH 

(t) 
EGARCH 

(t) 
Window length 252 100 100 252 1000 1000 1000 1000 

E(VaR) % -0.37 -0.37 -0.19 -0.21 -0.61 -0.56 -0.78 -2.37 
σ(VaR) 0.29 0.29 0.17 0.17 0.52 0.59 3.98 4.23 
Min % -1.30 -3.70 -0.67 -0.67 -3.63 -3.84 -138.86 -45.04 
Max % -0.09 -0.09 0.03 0.03 -0.12 -0.01 -0.12 -0.05 

Violations 45 44 86 69 27 25 21 12 
% 1.52 1.49 2.91 2.34 0.91 0.85 0.71 0.41 

LRuc P-Value 0.01 0.01 0.00 0.00 0.63 0.39 0.10 0.00 
LRind P-Value 0.03 0.66 0.01 0.10 0.24 0.21 0.57 0.74 
LRcc P-Value 0.00 0.04 0.00 0.00 0.45 0.31 0.21 0.00 

Method EVT 
Thr=10% 

EVT 
Thr=8% 

EVT 
Thr=5% 

G-EVT 
Thr=10% 

G-EVT 
Thr=8% 

G-EVT 
Thr=5% 

FHS 500 FHS 1000 

Window length 1000 1000 1000 1000 1000 1000 500 1000 
E(VaR) % -0.22 -0.24 -0.29 -0.23 -0.25 -0.32 -0.25 -0.22 
σ(VaR) 0.13 0.14 0.15 0.25 0.27 0.42 0.27 0.22 
Min % -0.44 -0.49 -0.73 -3.94 -4.14 -5.16 -3.09 -3.23 
Max % 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Violations 80 62 36 75 66 36 48 80 
% 2.71 2.10 1.22 2.54 2.23 1.22 1.62 2.71 

LRuc P-Value 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 
LRind P-Value 0.00 0.01 0.34 0.01 0.00 0.08 0.01 0.09 
LRcc P-Value 0.00 0.00 0.33 0.00 0.00 0.11 0.00 0.00 

 
 

Table A18: 99% VaR for Interamerican/EFG Fixed Income Domestic Bond 

Fund. The methods applied are Simple Moving Average (SMA), Exponentially 

Weighted Moving Average (EWMA or RiskMetrics model), Historical 

Simulation (HS for two window sizes), GARCH (1,1) and EGARCH (1,1) with 

normally and student’s t distributed innovations, unconditional and GARCH 

filtered Extreme Value Theory (EVT and G-EVT) for thresholds of 10%, 8% 

and 5% and Filtered Historical Simulation (FHS) for two window sizes. The 

methods accepted under Unconditional Coverage, Independence and 

Conditional Coverage (5% significance level) tests are marked with bold font. 
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Expected Shortfall 

 
95% ES Assumptions Free 

Window length: 100 observations 
Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Mutual 
Fund 

Alpha 
Equity 

Delos 
Equity 

Intramerican 
/EFG 

Equity 

Alpha 
Balanced 

Delos 
Balanced 

Interamerican
/EFG 

Balanced 

Alpha 
Bond 

Delos 
Bond 

Interamerican
/EFG Bond 

E(ES) % -3.01 -3.10 -3.00 -1.48 -1.97 -1.99 -0.30 -0.22 -0.26 
σ(ES) % 1.36 1.41 1.37 0.65 1.04 0.94 0.25 0.16 0.32 
Min % -7.06 -6.49 -6.29 -3.97 -4.10 -3.87 -1.12 -0.86 -1.26 
Max % -1.05 -0.97 -1.08 -0.59 -0.56 -0.56 0.03 0.02 0.03 

Violations 96 99 96 92 92 92 87 90 90 
% 3.25 3.35 3.25 3.11 3.11 3.11 2.95 3.05 3.05 

VaR/ES 
Ratio 0.76 0.75 0.74 0.73 0.75 0.75 0.62 0.65 0.49 

99% ES Assumptions Free 
E(ES) % -3.77 -3.86 -3.73 -1.90 -2.45 -2.47 -0.44 -0.31 -0.44 
σ(ES) % 1.82 1.84 1.79 0.99 1.36 1.19 0.57 0.34 0.76 
Min % -8.88 -7.86 -7.48 -5.81 -5.51 -4.67 -2.83 -1.79 -3.19 
Max % -1.13 -1.16 -1.15 -0.63 -0.63 -0.75 0.03 0.02 0.03 

Violations 55 52 55 58 55 55 61 51 53 
% 1.86 1.76 1.86 1.96 1.86 1.86 2.06 1.73 1.79 

VaR/ES 
Ratio 0.85 0.87 0.88 0.84 0.89 0.90 0.59 0.66 0.42 

Table A19: Expected Shortfall for 95% and 99% confidence levels for window size of 
100 observations. 
 

 
95% ES Assumptions Free 

Window length: 252 observations 
Backtesting period: 6/3/1997 – 21/11/2008 (2954 observations) 

Mutual 
Fund 

Alpha 
Equity 

Delos 
Equity 

Intramerican 
/EFG 

Equity 

Alpha 
Balanced 

Delos 
Balanced 

Interamerican
/EFG 

Balanced 

Alpha 
Bond 

Delos 
Bond 

Interamerican/
EFG Bond 

E(ES) -3.12 -3.24 -3.11 -1.56 -2.07 -2.10 -0.31 -0.39 -0.27 
σ(ES) 1.18 1.22 1.16 0.52 0.93 0.84 0.14 0.77 0.20 
Min -5.95 -5.58 -5.51 -3.03 -3.80 -3.80 -0.89 -4.16 -1.02 
Max -1.40 -1.45 -1.47 -0.79 -0.81 -0.95 0.02 0.00 0.02 

Violations 75 74 77 72 70 71 77 88 71 
% 2.54 2.51 2.61 2.44 2.37 2.40 2.61 2.98 2.40 

VaR/ES 
Ratio 0.70 0.67 0.67 0.65 0.68 0.68 0.54 0.35 0.41 

99% ES Assumptions Free 
E(ES) -4.48 -4.61 -4.46 -2.35 -2.94 -2.90 -0.61 -1.05 -0.66 
σ(ES) 1.82 1.76 1.70 1.00% 1.38 1.09 0.54 3.17 0.74 
Min -8.05 -7.16 -6.86 -4.74 -4.93 -4.66 -3.61 -16.7 -4.16 
Max -1.99 -2.04 -1.92 -1.11 -1.10 -1.26 0.02 -0.04 0.02 

Violations 21 21 23 18 23 23 23 36 28 
% 0.71 0.71 0.78 0.61 0.78 0.78 0.78 1.22 0.95 

VaR/ES 
Ratio 0.83 0.85 0.86 0.79 0.85 0.86 0.45 0.23 0.32 

Table A20: Expected Shortfall for 95% and 99% confidence levels for window size of 
252 observations. 


