KEФAへAIO 3

ПOIOTHTA YПHPE

 ПЕААТН
3．1．Opıбноí

3．1．1．Oрıбцо́ৎ Поıóтŋтаৎ

－International Standard（ISO 9000 ：2000）
 $\pi \lambda \eta \rho o i ́ ~ \tau ı \varsigma ~ \alpha \pi \alpha ı \tau \eta ́ \sigma \varepsilon ı \varsigma . . . ~ » ~$

3．1．2．Орıбно́¢ ПЕえа兀ढ́v

－Edosomwan（1993）
 $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$（output）$\mu \mathrm{l} \alpha \varsigma \varepsilon \rho \gamma \alpha \sigma i ́ \alpha \varsigma . . . ~ »$
 катпүорієऽ ${ }^{18}$ ：

1．Пغ $\lambda \dot{\alpha} \tau \eta \varsigma-\alpha ́ \tau о \mu о ~(s e l f ~ u n i t ~ c u s t o m e r): ~ ' О \lambda \alpha ~ \tau \alpha ~ \alpha ́ \tau о \mu \alpha ~ \mu \tau о р о ט ́ v ~ v \alpha ~ \theta \varepsilon \omega \rho \eta \theta o v ́ v ~ \omega \varsigma ~$

 $\alpha v \tau \circ \beta \varepsilon \lambda \tau i \omega \sigma \eta \varsigma ~ \kappa \alpha ı ~ v \pi \varepsilon \rho о \chi \eta ́ \varsigma$.

[^0] $\tau \eta \varsigma \varepsilon \pi \tau \chi \varepsilon \dot{\rho} \eta \eta \sigma \eta \varsigma$.

1. Н чк α voлоі́ $\boldsymbol{\sigma \eta} \omega \varsigma \alpha \pi о \tau \varepsilon ̇ \lambda \varepsilon \sigma \mu \alpha$

- Howard - Sheth (1969)

- Westbrook - Reilly (1983)

- Churchill - Suprenant (1982)

- Hunt (1977)

- Engel - Blackwell (1982)

- Tse - Wilton (1988)

 хрŋ́бๆ тоט... »

- Ovretveit (1990)

 $\delta \varepsilon \delta о \mu \varepsilon ́ v \alpha$ к $\alpha ı$

 $\alpha \pi \alpha ı \tau \eta \sigma^{\circ} \omega v$ тоט $\pi \varepsilon \lambda \alpha ́ \tau \eta$
- Leffel - Blumenthal (1989)

- Black (1990)
 $\pi \varepsilon \lambda \alpha ́ \tau \eta ~ \kappa \alpha ı ~ \pi \alpha \rho \varepsilon ́ \chi \varepsilon \tau \alpha ı ~ \delta i ́ \kappa \alpha ı \alpha, ~ \alpha \pi о \delta о \tau ı \kappa \alpha ́, ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau ı \alpha \alpha ́ ~ \kappa \alpha ı ~ \alpha v \theta \rho \omega ́ \pi ı v \alpha . » ~$
- Evans - Lindsay (1996)

 Eival ${ }^{19}$:

- (1900)

- (1920-1930)

 β оол $\chi \alpha v i \alpha$.
- (1930-1940)
 DIN, BSI к.д.л.).
 $\sigma \tau \eta \beta 1 o \mu \eta \chi \alpha v i \alpha$ (Dodge \& Romig).
- (1940-1945)

- (1945-1960)

 $\varepsilon \varphi \alpha \rho \mu о \gamma \eta$ б $\tau \eta ~ \beta ı о \mu \eta \chi \alpha$ vía.

[^1]Aváл $\tau v \xi \eta ~ \alpha \rho \chi \omega ́ v ~ О \lambda ı к о v ́ ~ E \lambda \varepsilon ́ \gamma \chi о v ~ П о ı o ́ \tau \eta \tau \alpha \varsigma ~ к \alpha ı ~ \delta \eta \mu о б i ́ \varepsilon v \sigma \eta ~ \pi \rho \omega ́ \tau \omega v ~ \varepsilon \theta v ı к \omega ́ v ~$ $\pi \rho о \tau \cup ́ \pi \omega v \delta 1 \alpha \sigma \varphi \alpha ́ \lambda 1 \sigma \eta \varsigma \pi 0$ о́ $\tau \eta \tau \alpha \varsigma$.

- ($1960-1970)$
 $\sigma \tau \eta \nu$ I $\alpha \pi \omega v i ́ \alpha$.

Avá $\tau \tau v \xi \eta \tau \eta \varsigma \mu \varepsilon$ Oó $\delta o v \mu \eta \delta \varepsilon \nu 1 \sigma \mu \circ v ́ \quad \varepsilon \lambda \alpha \tau \tau \omega \mu \alpha ́ \tau \omega \nu$ (zero defects) $\gamma 1 \alpha \tau 1 \varsigma \alpha \nu \alpha ́ \gamma \kappa \varepsilon \varsigma \tau \eta \varsigma$ NASA.

 $\pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ \varsigma(M R P)$.

- ($1970-1980)$
 (software \& hardware).
 MRPII).
 $\chi \omega ́ \rho \varepsilon \varsigma$.
- ($1980-2000)$

Avá $\tau \tau v \xi \eta ~ \kappa \alpha \imath ~ v \lambda о \pi о i ́ \eta \sigma \eta ~ \delta ı \varepsilon \theta v \omega ́ v ~ \pi \rho о \tau v ́ \pi \omega v ~ \sigma v \sigma \tau \eta \mu \alpha ́ \tau \omega v ~ \delta ı \alpha \chi \varepsilon i ́ \rho ı \sigma \eta \varsigma ~ \pi о \iota o ́ \tau \eta \tau \alpha \varsigma ~(I S O ~$
 $\alpha \dot{\alpha} \lambda \lambda \alpha$.
- (2000 - $\Sigma \eta \dot{\eta} \mu \rho \alpha)$

- International Standard (ISO 9000 : 2000)

 $\delta 1 \alpha \sigma \varphi \alpha ́ \lambda 1 \sigma \eta \varsigma \pi 010 ́ \tau \eta \tau \alpha \varsigma \kappa \alpha 1 \beta \varepsilon \lambda \tau 1 \omega ́ \sigma \varepsilon 1 \varsigma \pi 010 ́ \tau \eta \tau \alpha \varsigma . .$. »

 $\alpha к o ́ \lambda o v \theta \alpha:$

1. Dr. W. Edwards Deming

 $\pi \rho о$ ö́v $\tau \alpha$.
 орү $\alpha \nu \omega \tau ı к о ́ ~ \varepsilon л і ́ \pi \varepsilon \delta о ~ \alpha \nu \eta ์ \kappa \varepsilon ı ~ \pi \rho \omega \tau \alpha \rho \chi ı \alpha ́ ~ \sigma \tau \eta ~ \delta ı i ́ к \eta \sigma \eta ~ \tau о v ~ \varepsilon к \alpha ́ \sigma \tau о \tau \varepsilon ~ о \rho \gamma \alpha \nu ı \sigma \mu о v ́, ~ o ́ ~ \pi \omega \varsigma ~$

 $\tau \omega \vee \pi \alpha \rho \alpha \kappa \alpha ́ \tau \omega \delta \varepsilon \kappa \alpha \tau \varepsilon \sigma \sigma \alpha ́ \rho \omega v(14) \alpha \rho \chi \omega ́ v:$

1. $\Sigma v v \varepsilon \chi \eta ́ s ~ \kappa \alpha \iota ~ \sigma v v \varepsilon \pi \eta ́ s ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon 1 \alpha ~ \gamma 1 \alpha ~ \tau \eta ~ \beta \varepsilon \lambda \tau i ́ \omega \sigma \eta ~ \tau \omega v ~ \pi \rho о і ̈ o ́ v \tau \omega v ~ \kappa \alpha ı ~ \tau \omega v$ v $\pi \eta \rho \varepsilon \sigma i \omega ́ v$.

 $\pi \rho \varepsilon ́ \pi \varepsilon \iota \vee \alpha$ єíval $\varepsilon \vee \sigma \omega \mu \alpha \tau \omega \mu \varepsilon ́ v \eta ~ \sigma \tau \eta \nu \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́$.

2. $\Sigma v v \varepsilon \chi \eta ́ s ~ \varepsilon ́ \rho \varepsilon v v \alpha ~ o ́ \sigma o v ~ \alpha \varphi o \rho \alpha ́ ~ \sigma \tau \alpha ~ \pi \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha ~ \tau о v ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~ \pi \alpha \rho \alpha \gamma \omega \gamma \eta ́ s ~ к \alpha ı ~$

 бта兀ıбтוкŋ́s.

ПОІОТНТА ҮПНРЕГI®N \＆BАӨМОГ IKАNОПОІНГНГ TOY ПЕЛАТН

2．Dr．Joseph Juran

 Pov $\mu \alpha v_{i ́ \alpha} \kappa \alpha l ~ \sigma v v \varepsilon ́ \beta \alpha \lambda \varepsilon ~ \pi о \lambda v ́ ~ \sigma \eta \mu \alpha v \tau ı \kappa \alpha ́ ~ o \tau \eta ~ \delta t \delta \alpha \sigma к \alpha \lambda i \alpha ~ \tau \omega v ~ I \alpha \pi \omega ́ v \omega v ~ o ́ \sigma o v ~ \alpha \varphi о \rho \alpha ́ ~ \sigma \tau о v ~$
 $\varepsilon \pi \varkappa \varepsilon \iota \emptyset \eta ́ \sigma \varepsilon i ́ s ~ \tau o v \varsigma$.

 $\delta 1 \alpha \delta \iota \kappa \alpha \sigma i ́ \alpha \varsigma ~ \tau \eta \varsigma ~ \varepsilon \pi \downarrow \chi \varepsilon i ́ p \eta \sigma \eta \varsigma$.

 $\pi \alpha \rho \alpha ́ \gamma \varepsilon 1 ~ \tau о ~ \zeta 乌 \eta \tau о и ́ \mu \varepsilon v o ~ \pi \rho о і ̈ o ́ v . ~$

3. Philip B. Crosby

 « $\mu \eta \delta \varepsilon ́ v ~ \lambda \alpha \theta \omega ́ v »$ (zero defects).
甲ора́... » $\alpha \lambda \alpha \alpha ́ \kappa \alpha \iota ~ \tau \eta \vee ~ \alpha \rho \chi \eta ่ ~ \tau \omega v ~ « \mu \eta \delta \varepsilon ́ v ~ \lambda \alpha \theta \omega ́ v » . ~$

 $\pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma \beta \varepsilon \lambda \tau i \omega \sigma \eta \varsigma$.
 $\varepsilon \theta \varepsilon \lambda о v \tau 1 \kappa \alpha ́ ~ \sigma v \mu \mu \varepsilon \tau \varepsilon ́ \chi о v \tau \varepsilon \varsigma ~ \varepsilon \rho \gamma \alpha \zeta$ ̧́ $\mu \varepsilon v o v \varsigma$.
3. $\Sigma v v \varepsilon \chi \eta ́ \varsigma ~ \varepsilon \pi \iota \mu о ́ \rho \varphi \omega \sigma \eta ~ к \alpha l ~ \varepsilon к \pi \alpha i ́ \delta \varepsilon v \sigma \eta ~ \tau \eta \varsigma ~ \Delta ı i ́ к \eta \sigma \eta \varsigma, ~ \tau \omega \nu ~ \sigma \tau \varepsilon \lambda \varepsilon \chi \omega ́ v ~ к \alpha l ~ \tau \omega \nu$ $\varepsilon \rho \gamma \alpha \zeta о \mu \varepsilon ́ v \omega \nu \tau \eta \varsigma \varepsilon \pi \tau \chi \varepsilon i ́ \rho \eta \sigma \eta \varsigma$.

6. К $\alpha \tau \alpha ́ \rho \tau ı \sigma \eta ~ \delta \varepsilon ı \kappa \tau \omega ́ v \alpha \pi o ́ \delta о \sigma \eta \varsigma ~ \gamma ı \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \lambda \varepsilon ı \tau о v \rho \gamma ı \kappa \eta ́ ~ \delta ı \varepsilon \rho \gamma \alpha \sigma i \alpha$.

8. K $\alpha \theta$ орı $\sigma \mu$ ós $\rho \varepsilon \alpha \lambda \imath \sigma \tau ı \kappa \dot{v} \nu \tau$ о́ $\chi \omega$.
9. Проळ́ $Ө \eta \sigma \eta$, $\pi \rho о \beta о \lambda \eta ́ \kappa \alpha \imath ~ \kappa \alpha \theta ı \varepsilon ́ \rho \omega \sigma \eta ~ \tau \eta \varsigma ~ \eta \mu \varepsilon ́ \rho \alpha \varsigma ~ \tau \omega v ~ « \mu \eta \delta \varepsilon ́ v ~ \lambda \alpha \theta \omega ́ v »$.

 $\varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta \varepsilon \tau \alpha \iota \alpha \pi o ́ \alpha v \tau \alpha ́$.
11. K α өє́ $\rho \omega \sigma \eta \tau \alpha \kappa \tau \imath \kappa ळ ́ v ~ \sigma \cup \mu ß о v \lambda i ́ \omega v . ~$
12. $\Sigma v \vee \varepsilon \chi \eta \eta_{\varsigma} \pi \alpha \rho \alpha \kappa о \lambda о v ́ \theta \eta \sigma \eta \tau \eta \varsigma \pi \rho о о ́ \delta$ оv кал
13. $\mathrm{E} \pi \alpha \nu \alpha \dot{\lambda} \eta \eta \eta \tau \omega v \pi \alpha \rho \alpha \pi \alpha ́ v \omega \gamma 1 \alpha \pi \varepsilon \rho \alpha \iota \varepsilon \rho \omega \beta$ $\beta \lambda \tau \tau \omega \sigma \eta$.

4. A. V. Feigenbaum

5. Kaoru Ishikawa

 Cause-and-Effect $\kappa \alpha \iota$ Pareto $\omega \varsigma \beta о \eta \forall \eta \tau \imath \kappa \alpha ́ ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \gamma ı \alpha ~ \tau \eta \nu ~ \varepsilon \pi i ́ \lambda v \sigma \eta ~ \tau \omega v$ $\pi \alpha \rho о v \sigma ı \zeta \zeta ́ \mu \varepsilon \nu \omega \nu \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega \nu$.

6. Genichi Taguchi

O Genichi Taguchi $\theta \varepsilon \omega ́ \rho \eta \sigma \varepsilon ~ \tau \eta v ~ \pi о \iota ́ \tau \eta \tau \alpha ~ \varepsilon v o ́ s ~ \pi \rho о і ̈ o ́ v \tau о \varsigma ~ \omega \varsigma ~ « . . . \tau \eta v ~ \pi \rho o ́ к \lambda \eta \sigma \eta ~$

 $\pi \rho о$ öv七七я.

1. $\Sigma \chi \varepsilon \delta 1 \alpha \sigma \mu$ о́ $\sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma$
2. $\Sigma \chi \eta \mu \alpha \tau \iota \sigma \mu$ ó $\pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho \omega v \kappa \alpha \imath$

 $\varphi \dot{\eta} \mu \eta$.

 $\kappa \alpha ́ \theta \varepsilon \pi \lambda \varepsilon \cup \rho \alpha ́ ~ \tau \eta \varsigma ~ \zeta \varsigma \emptyset ́ \varsigma ~ \tau o v \varsigma . ~$

- Oı $\delta \eta \mu$ óбıєऽ $\sigma \cup \gamma к о \imath \omega v i ́ \varepsilon \varsigma ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \theta \varepsilon \omega \rho \eta \theta о v ́ v ~ \omega \varsigma ~ \mu i ́ \alpha ~ \varepsilon \pi ı \chi \varepsilon i ́ p \eta \sigma \eta ~ \pi о ט ~ \beta о \eta \theta \alpha ́ \alpha ~ \sigma \tau \eta ~$
 $\alpha v \alpha ́ \pi \tau v \xi ̆ \eta \varsigma . ~ O \delta \eta \gamma o v ́ v \tau \alpha \iota ~ \tau o ́ \sigma o ~ \alpha \pi o ́ ~ \tau \eta v ~ \alpha \gamma o \rho \alpha ́ ~ o ́ \sigma o ~ к \alpha l ~ \alpha \pi o ́ ~ \tau \eta v ~ \varepsilon \kappa \pi \lambda \eta \eta \rho \omega \sigma \eta ~ \tau \eta \varsigma ~ \alpha \pi о \sigma \tau о \lambda \eta ́ s ~$

 $\pi о \lambda \lambda \alpha \pi \lambda \omega \dot{\nu} \mu \varepsilon ́ \sigma \omega v, \delta \eta \mu о ́ \sigma 1 \alpha \sigma v \sigma \tau \eta ́ \mu \alpha \tau \alpha \mu \varepsilon \tau \alpha \varphi о \rho \omega ́ v$.

 $\alpha v \alpha ́ \pi \tau v \xi ̆ \eta \varsigma$.
- Av́ǧๆбๆ $\tau \eta \varsigma \tau \alpha \chi \dot{\tau} \eta \tau \alpha \varsigma$.
- B $\varepsilon \lambda \tau i \omega \sigma \eta \tau \eta \zeta \alpha \sigma \varphi \alpha ́ \lambda \varepsilon ı \alpha \varsigma$.

Н $\boldsymbol{\zeta} \boldsymbol{\eta} \boldsymbol{\tau} \boldsymbol{\eta} \boldsymbol{\eta} \boldsymbol{\eta} \gamma 1 \alpha \boldsymbol{\mu} \boldsymbol{\tau} \alpha \boldsymbol{\kappa} \boldsymbol{\imath} \boldsymbol{\eta} \boldsymbol{\eta} \boldsymbol{\eta}$:

- като́ $\tau \eta ~ \delta \iota \alpha ́ \rho к \varepsilon \iota \alpha ~ \tau \eta \varsigma ~ \eta \mu \varepsilon ́ \rho \alpha \varsigma . ~$
- $\alpha v \alpha ́ ~ \eta \mu \varepsilon ́ \rho \alpha ~ \tau \eta \varsigma ~ \varepsilon \beta \delta о \mu \alpha ́ \delta \alpha \varsigma . ~$
- $\alpha v \alpha ́ \lambda о \gamma \alpha \mu \varepsilon$ то бкото́ тпऽ $\mu \varepsilon \tau \alpha к і ́ \eta \eta \sigma \eta \varsigma . ~$
 бuхvótๆта.

[^2]
3.4. $\downarrow \iota \alpha \kappa \rho i ́ \sigma \varepsilon ı \varsigma ~ П о ı ́ \tau \eta \tau \alpha \varsigma ~ \gamma ı \alpha ~ \tau \eta v ~ A . M . E . A . ~ A . E . ~$

 $\Delta \varepsilon v 勹 ́ \theta v v \sigma \eta ~ \Sigma v v \tau \eta ́ \rho \eta \sigma \eta \varsigma ~ T \rho о \chi \alpha i ́ o u ~ Y \lambda ı к о и ́ ~ \mu \varepsilon ~ \tau \eta ~ о u v \varepsilon \rho \gamma \alpha \sigma i ́ \alpha ~ \tau \eta \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \alpha \varsigma ~ \Sigma \chi \varepsilon \delta ı \alpha \sigma \mu о v ́, ~$

 Е $\pi \chi \chi \varepsilon \uparrow \emptyset \dot{\sigma} \sigma \varepsilon \omega v$ (E.E. $\Delta . \mathrm{E}).$.

 Apıбtعí $»$ ».

[^0]:

[^1]: ${ }^{19}$ А.Г. Аауобウ́ $\mu \mathrm{o}$ (2005)

[^2]: ${ }^{20}$ Ortuzar - Willumsen (1994)

