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Abstract 

With the rapid development of the weather derivatives market, researchers 

have proposed various models for the representation of the behavior of weather 

variables. The objective of this study is to obtain robust results between proposed 

temperature forecasting models - Campbell and Diebold (2005) and Benth and 

Saltyte-Benth (2005) - used as the underlying processes for valuing weather 

derivatives contracts, based on their performance in different locations and in 

different horizons. Furthermore, we propose and implement new ways - a first order 

autoregressive process, the principal component analysis (PCA) and the combining 

forecasting approach - of modeling and forecasting the temperature behavior. The 

statistical significance of these forecasts is examined. Finally, we attempt to 

dynamically forecast the two most traded weather indices in the CME market, the 

cumulative heating degree day (CumHDD) and the cumulative cooling degree day 

(CumCDD) indices. The statistical significance of these forecasts is examined using 

as benchmark the values produced by the “burn analysis” methodology.  

After examining the different forecasting models, we found that no one model 

was able to consistently outperform the others.  The most appropriate forecasting 

model varied between cities and horizons. Thus, a general model that adequately 

explains the temperature is absent and probably not possible. However, we tried the 

PCA for forecasting purposes and we found that it could be a very powerful method 

specifically for the temperature of the U.S.A. The combining forecasting approach 

performed best for the temperature of Europe. The index forecasting exercise showed 

that the CumHDD index is more difficult to be forecasted than the CumCDD index. 

Quite interestingly, the European weather indices can be forecasted more adequately 

than those of the U.S. since the accuracy measures are significantly lower. As far as 

regards the second objective of this exercise, we concluded that the forecasts 

calculated by the naïve “burn analysis” methodology should not be rejected a priori in 

every case.  
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1. Introduction 

 

Almost every business activity is exposed to adverse weather conditions. The 

Department of Commerce of the United States conducted a research about the weather 

risk affecting the U.S economy and found that about $1 trillion of the $7 trillion US 

economy is directly exposed to it. Moreover, more recent researches have shown that 

about 70% of companies encounter risks relevant with the weather. However, when 

we are talking about adverse weather conditions we do not only consider low 

probability, highly catastrophic events. Business can be affected easily by small 

disturbances of weather dynamics that the insurance industry cannot satisfy.  

Lately, a new class of financial instruments, weather derivatives, has been 

introduced to enable businesses to manage their volumetric risk - the uncertainty on 

their volume exposure regarding both the number of customers and their demanded 

goods volume - resulting from adverse weather patterns.1 A perfect hedge requires 

hedging both price risk, by way of standard commodity derivatives, and volume risk, 

by way of weather derivatives. Hence, the objective of these new instruments is to 

hedge volume risk that results from an alteration in the demand of commodities due to 

unexpected changes in weather.  

Traditional contingent claims have payoffs that depend upon the price of some 

fundamentals. Likewise, a weather derivative has as its underlying asset a weather 

variable. Financial contingent claims are priced by no-arbitrage arguments, such as 

Black-Scholes pricing model, based on the concept of continuous hedging. The main 

assumption of this model is that the underlying asset of the contract can be 

continuously traded. However, in the case of weather derivatives this hypothesis is 

violated and no riskless portfolio can be constructed. Until now the pricing of weather 

contracts is one of the hardest problems still to be solved. 

Two alternatives pricing methodologies can be followed to obtain the “fair 

value” of this new class of contingent claims. 2 The first approach is called “burn ana- 

1 For a brief description about the weather derivatives market, we refer the reader to Appendix I.  

2 See Jewson and Brix (2005), “Weather Derivative Valuation”, for an analytical review of the pricing 
methodologies. 
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lysis” and it is mostly adopted by the insurance industry. The burn analysis is based 

simply on the idea of evaluating how a contract would have performed every year in 

the past and then calculating the mean of the historical values. Although, there are 

cases when this method is quite inaccurate, - due to its simplicity assuming that 

weather variable would behave as it did in the past - is a good first step in pricing 

almost any type of contract.  

The second is called “weather modeling” and is more complicated, since it 

aims to model and forecast the weather behavior directly (see Alaton, Djehiche, 

Stillberger, 2002, Benth and Saltyte-Benth, 2005, 2007). Yet, the evolution of weather 

differs significantly from that of securities prices. Thus, it is of crucial importance to 

carefully validate the specified model before putting into practical use for pricing 

weather derivatives. 

This study concentrates on the most widely traded weather derivatives, 

temperature-based derivatives. In 2006 PriceWaterhouseCoopers conducted a survey 

showing that more than 95% of the notional values of weather contracts - including 

both over the counter (OTC) & CME market standardized contracts - are temperature-

based contracts.  This is attributed to the high participation of the energy industry in 

the weather market due to the high correlation between temperature and energy 

demand. 

The pay-off functions of temperature-based contracts are financially settled 

using as input values the measured values of various temperature indices. The most 

commonly used indices are degree day indices, average temperature indices, 

cumulative average temperature indices and event indices. Degree day indices 

originated in the energy industry and are designed to correlate well with the demand 

for heating and cooling. In winter, heating degree days (HDDs) are used to measure 

the demand for energy used for heating (the lower the temperature, the higher the 

HDD). In summer, cooling degree days (CDDs) are used to measure the demand for 

energy used for cooling (the higher the temperature, the higher the CDD). 

The last decades in parallel with the rapid development of the weather 

derivatives market, researchers have proposed temperature forecasting models that 

can be integrated into the pricing framework as the underlying processes and at the 

same time provided accurate estimates and forecasts, either in continuous or in time 
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series approaches. Cao and Wei (2004) first detrend and deseasonalize the 

temperature series by subtracting the historical mean. Then they model the daily 

temperature residuals with an autoregressive process with a seasonal conditional 

variance. Campbell and Diebold (2005) extended the autoregressive model of the 

previous paper. They propose a high parameter model that possesses seasonal 

components by means of a low order Fourier series and autoregressive components 

selected by the Akaike and Schwarz criteria. The conditional variance equation 

contains generalized autoregressive conditional heteroscedasticity (GARCH) 

dynamics (Engle 1982; Bollerslev 1986) with a seasonal component by means of a 

Fourier series. 

Dischel (1998) employed a continuous process such as those used for the 

explanation of the short term interest rate incorporating a parameter that explains the 

salient feature of seasonality. The criticism to the paper of Dischel (1998) was done 

by Dornier and Querel (2000), who did not approve the use of the mean reverting 

parameter to illustrate the trend and the seasonality. They argued that the model did 

not revert to the long run mean. They showed also that the answer to the problem is 

the addition of a parameter explaining the changes of seasonal variation. Alaton, 

Djehiche and Stillberger (2002) improved the work of Dischel (1998) by 

incorporating the suggestion of Dornier and Querel (2000), while in the same time 

modeled the mean seasonality with a sine wave function. The standard deviation of 

temperature is modeled by a piecewise function that varies across different months 

and remains constant in each month. Torro, Meneu and Valor (2003) modeled air 

temperature behavior in Spain with combining methods used for the modeling of short 

term interest rates and a generalized autoregressive conditional heteroscedastic 

(GARCH) time series approach. They observed that the quadratic variation is well 

explained by the GARCH model. However, they did not incorporate the adjusting 

factor proposed by Dornier and Querel (2000) and hence their model did not produce 

a consistent mean reversion to long run mean. 

Ending the scarce literature about the modeling of the temperature we refer to 

the papers of Benth and Saltyte-Benth (2005, 2007). The modeling of daily 

temperature variations is done with a mean reverting Ornstein-Uhlenbeck process with 

a seasonal mean and volatility. They found that the proposed dynamics fitted quite 
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successfully the Norwegian temperature data. Interestingly, the researchers accomplish 

also to derive straightforward prices for temperature derivatives. 

This paper makes at least three contributions to the ongoing discussion about 

temperature forecasting with a view to weather derivatives. First, it employs an 

extensive set of U.S. and European temperature data; the dataset contains daily 

temperature observations from ten U.S. and five European weather stations ranging 

from January 1, 1973 to December 31, 2007. We will attempt to obtain robust results 

between prior proposed models - Campbell and Diebold (2005) and Benth and 

Saltyte-Benth (2005) - based on their performance in different locations. Second, we 

propose and implement new ways - a first order autoregressive process, the principal 

component analysis (PCA) and the combining forecasting approach - of modeling and 

forecasting the temperature behavior. Point forecasts are formed and evaluated in 

short and longer horizons. Third, we enhance our analysis by attempting to 

dynamically forecast the two most traded weather indices in the standardized CME 

market, the monthly cumulative heating degree day (CumHDD) and cumulative 

cooling degree day (CumCDD) indices (see Stevenson and Oetomo, 2005, for a 

similar approach). In specific, we use two forecasting models - Campbell and Diebold 

(2005) and Benth and Saltyte-Benth (2005). This exercise would be valuable for 

taking positions in the weather derivatives market. 

To fix ideas, the possible presence of an inexpensive, simple and extensible 

time series model it may prove useful for weather derivative’s pricing purposes in the 

newly established market of Chicago Mercantile Exchange. Weather forecasting is of 

crucial importance since any firm or country exposed to weather risk on either its 

output (revenue) side or the input (cost) side wants to know how the weather would 

behave. In addition, the potential adequacy of a time series model would be also 

helpful for companies to hedge their weather risk. Finally, as the weather market has 

evolved to the point where hedge funds and other non-commercial traders trade CME 

weather products to absorb risk in exchange for possible profit on weather variations 

the necessity for adequate forecasting models expands. 

The remainder of the paper is structured as follows. In the next section, the 

data sets are described.  In section 3 we present the models to be used for forecasting. 

The out-of-sample performance of the generated forecasts is evaluated in sections 4. 
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In section 5 we present the index forecasting procedure along with the respective 

results. The last section concludes. 
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2.  The data set 

 

Our dataset contains daily temperature observations measured in Fahrenheit 

degrees, for two groups of measuring stations.3 Specifically, the first group consists of 

ten cities from the United States and the second group consists of five cities from 

Europe. The choice of our sample is based on locations, where weather derivatives 

contracts are traded and are regarded as global financial markets. 4 We obtained the 

data from Earth Satellite (Earth Sat) corporation; they are precisely those used to 

settle temperature-related weather derivative products on the CME, a fact important 

for the appreciation of our data. The underlying data source is the National Climatic 

Data Center (NCDC), a division of the National Oceanographic and Atmospheric 

Administration. Each of the measuring stations of our groups supplies its data to the 

NCDC, and those data are in turn collected by Earth Sat. 

The data comprise actually measured daily maximum and minimum 

temperature (measured in Fahrenheit). Table 1 shows the corresponding measuring 

stations for U.S.A and Europe in panels A and B, respectively. The data sample 

ranges from January 1, 1973 to December 31, 2007. We construct the daily average 

temperature series by averaging the daily maximum and minimum temperature. 

Following Campbell and Diebold (2005) and Taylor and Buizza (2006), we have 

discarded the 29th of February in leap years to maintain 365 days per year. So we have 

a total of 12,775 daily observations. The dataset contains an insignificant fraction of 

missing observations for our data in the groups of U.S.A. and Europe, due to the 

measuring stations failure to report to the NCDC. These missing observations are 

attributable to factors such as human error or mechanical failure of the measurement 

equipment. When missing values are encountered, we fill them with the method 

proposed by Kosater (2006), who replaced the missing observations by the average of 

3 The formula to convert a Fahrenheit scale temperature into degrees on the Celsius scale is 

( )5 32
9C FT T= − . 

4 In U.S.A., the Chicago Mercantile Exchange (CME) lists derivatives on various indices for a set of 

cities (http://www.cme.com).  Our initial sample included the city of Tucson where CME underwrites 

weather derivatives, but the large gaps in its dataset, induced us to employ the temperature of Los 

Angeles instead. 
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temperatures observed one year before and one year after, for the following reasons.5 

The mistakes do not occur in consecutive blocks and their relative appearance is less 

than 0.05% of the full sample. The alternative method used by Campbell and Diebold 

(2005), spatial interpolation, requests data from a significant number of nearby 

reference stations. Yet, the European measuring stations do not have an adequate 

number of reference stations for reliable results. Therefore, we would like to have a 

consistent approach in “Gap filling” for our two groups. 

The subset from January 1st 1973 to December 31st 2003 will be used for the 

in-sample evaluation and the remaining data will be used for the out-of-sample one. 

Figure 1 shows the evolution of temperature corresponding to our full sample.6 There 

we observe a significant seasonal behavior. Figure 2 shows the histogram for the data 

series, where is apparent the non-normality of the data. The distributions are, more or 

less, bimodal as temperature goes from high levels (summer) to low levels (winter). 

Table 2 shows the summary statistics of the daily average temperatures in 

levels and in first differences. We observe that the temperature is more variable in 

cold cities, since the standard deviation is higher in cities with lower mean 

temperatures. For most cities, the temperature series reflects a negative skewness that 

indicates the higher possibility of having more extremely cold days than extremely 

hot days. In order to detect the case of stationarity of our series, we perform the 

Augmented Dickey-Fuller (ADF, 1981) test. The ADF tests show that the temperature 

series are stationary. Temperature has strong autocorrelation since a cold day is more 

likely to be followed by a colder and vice versa.7 

Under the Jarque-Bera statistic we reject the hypothesis of the normal 

distribution in first differences for each city (see also Benth and Saltyte-Benth, 2007, 

for similar results for Norway). The average and standard deviation vary from city to 

city. The series exhibits also negative skewness. 

 
 
 
 
 
5 For a thorough analysis of the proposed “Gap Filling” procedures, we refer the reader to Appendix IΙ.  6 To conserve space we report the figures of two cities from each group. 
7 For parsimony reasons we do not report the autocorrelation coefficients. 
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3.  The forecasting models 

 

Five different approaches to temperature forecasting are examined in this 

study and one benchmark (random walk). The six models are defined below. 

 

3.1.  The Random Walk Model (RW) 

The benchmark model is a no change-forecast. This model assumes that daily 

average temperature follows a random walk and is called the “persistence forecast” in 

the climatological literature. The RW specification is given by: 

      1t t tT T ε−= +                                                       (3.1)  

3.2.  The Autoregressive Model (AR(1)) 

Univariate autoregressive models are employed in order to examine whether 

the evolution of temperature can be forecasted using its previous values. This model 

employs a constant that is interpreted as the average temperature level and a mean 

reverting parameter. The AR(1) is employed as a more sophisticated benchmark 

model, since it employs the salient mean reversion characteristic of temperature. The 

(1)AR  specification is given by:  

               0 1 1t t t tT c Tρ ε− −= + +                                            (3.2)  

3.3. The Benth and Saltyte-Benth Model (BSB) 

The third forecasting model is based on the paper of Benth and Saltyte-Benth (2005).  

This model is enclosed on the group of models (see Dornier and Querel, 2000, Alaton, 

Djehiche and Stillberger, 2002, Benth and Saltyte-Benth, 2007,  for a similar 

approach) that extend well known financial diffusion processes in order to incorporate 

the basic features of temperature. Benth and Saltyte-Benth propose the use of an 

Ornstein-Uhlenbeck process to model the temperature dynamics. The model can be 

written in a discrete time, as the following additive time series model: 
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3

0 1 , ,
1

( ) ( )cos 2 sin 2
365 365t c i s i t

i

d t d tT c c t i i uσ π σ π
=

    = + + + +        
∑
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         ( )3.3a  

          
1 1ˆ ˆt t t tu uρ ξ− −= +            t t tξ σ ε=   9      ( )0,1tε :                              ( )3.3b  

                    

The estimation is done in several steps. tT
 
, the average daily temperature, is first 

regressed on the seasonal component as in equation (3.3a). 0c is a constant that is 

interpreted as the average temperature level, t  a deterministic linear trend cos  
and 

sin  denote the well known trigonometrical functions, , ,,c p c pσ σ control the amplitude,  

i  controls the time frequency of the Fourier series and ( )d t  is a step function that 

cycles through 1, 2,…,365 (i.e. 1 denotes January 1, 2 denotes January 2 and so on).10 

Afterwards, the fitted residuals, which are called “temperature anomalies” in the 

weather derivatives market, are employed in a mean-reverting process with zero 

constant. In the last step, the volatility function is estimated.  

The model is a simple mean-reverting stochastic process, but yet powerful 

enough to describe the most apparent stylized facts of temperature data like 

seasonality and mean-reversion. The simplicity of the proposed dynamics allows for 

explicit calculation of weather derivatives futures prices quoted on the Chicago 

Mercantile Exchange (CME). They were also able to provide explicit prices for call 

and put options written on temperature futures typically traded on the CME. 

8 Benth and Saltyte-Benth suggest a cosine function to depict the seasonal component of the time series 
in their paper. In our case we employ a Fourier series as shown in (3.3a). We employed both equations 
and we found that our equation produces better fit than that suggested by Benth and Saltyte-Benth. Our 

choice of order 3 in the Fourier series is based both on the 2R and on the AIC. For this and for 
parsimony purposes in our study we employ the traditional Fourier series as shown in equation (3.3a). 
In advance, we employ a linear trend which we find statistically significant in most cases in our 
sample. 
9 The variance of residuals is estimated in the following way. First, the observed residuals are organized 
into 365 groups, one for each day of the year. Finding the average of the squared residuals in each 

group, we obtain an estimate for the expected daily squared residual. In this way, an estimate of 2
tσ  is 

obtained . Note that 2
tσ  is assumed  to be a periodic function such that 365t t kσ σ + ⋅= for 

1,...,365t = and 1, 2,3,...k = . 

10 For a more precise description of the Fourier series we refer the reader to Appendix III. 

3.4. The Campbell-Diebold model (CD) 
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Campbell and Diebold (2005) propose a high order autoregressive process 

with seasonal components and GARCH modeling. This model is contained in the 

group of models (see also Cao and Wei, 2000) that rely on a time series approach. The 

advantage in working with discrete processes is that permit the incorporation of auto-

correlation components beyond the lag of one period. Another reason is that the 

values the temperature indices are calculated are discrete. In such a case it seems 

better to adopt a discrete process directly, rather than to start with a continuous 

process and then discretize it. The Campbell-Diebold model specification is given by: 

1

L

t t t l t l t
i

T S T uρ − −
=

= + +∑
     

( )
. . .

20,
i i d

t tu N σ:
                                 ( )3.4a

 

0 1 , ,
1

( ) ( )cos 2 sin 2
365 365

P

t c i s i
i

d t d tS c c t i iσ π σ π
=

    = + + +        
∑

      
t t tu σ ε=              ( )3.4b

 

2 2 2
, , 1 1 1 1

1

( ) ( )
cos 2 sin 2

365 365

Q

t c q s q t t
q

d t d t
q q aσ γ π γ π ε β σ− −

=

= + + +    
        

∑    
. .

(0,1)
i i d

tε :  
11

     ( )3.4c  

The choice of lags is selected using the Akaike information criteria (AIC) to 

try to avoid any over-fitting problems that arise from the large number of the 

estimated coefficients.12 The extra parameters than need extra explanations are t , a 

deterministic linear trend, and i , q that control the time frequency of the Fourier 

series. 

The main differences from the BSB Model are that the estimation of the 

coefficients is done in one step, the significantly higher number of autocorrelation 

coefficients, the GARCH modeling for the residuals and that the order of the lags and 

autocorrelation coefficients is based on the AIC.  The disadvantage of this model is 

that is difficult to do analysis with it, as it can be employed for derivatives pricing 

only by simulation.  

3.5. The Principal Components model (PCA) 

 Principal components analysis (PCA) is a non-parametric technique that 
11Campbell and Diebold use a modification in the original GARCH dynamics proposed by Engle(1982) 
and Bollerlev (1986). In our study we employ the original GARCH model as shown in equation (3.4.c) 

12 The maximum order of L, P and Q is 25, 3 and 3 respectively. 

summarizes the dynamics of a set of variables by means of a smaller number of 

variables (principal components-PCs). Stock and Watson (2002) have shown that 
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PCA can be employed for forecasting purposes. In particular, the PCs are used as 

predictors in a linear regression equation since they are proven to be consistent 

estimators of the true latent factors under quite general conditions. Moreover, the 

forecast constructed from the PCs is shown to converge to the forecast that would be 

obtained in the case where the latent factors were known. These properties make PCA 

a very powerful technique for forecasting purposes since it lets the data decide on the 

predictors to be used. 

As the empirical analysis has shown the temperature behaves in different ways 

in different regions, so we apply PCA to the daily average temperature of our two 

groups separately. Before applying the technique we detrend and remove the seasonal 

behavior by regressing the temperature series to trend and Fourier series as in the 

following equation.12 

3

0 1 , ,
1

( ) ( )cos 2 sin 2
365 365t c i s i t

i

d t d tT c c t i i uσ π σ π
=

    = + + + +        
∑

               
( )3.5a  

Next we apply the PCA. We retain the first 6 PCs for the U.S. group and the 4 

PCs for the European group. These explain more than 94% οf the total variance of the 

residuals. Next, the fitted residuals are regressed on the previous day values of the 

first six PCs and first four PCs for the U.S. and European cities, respectively (PCA 

model). We retain two lags for each component based on the AIC. 

2 2 2 2 2 2

, 0, 1 , , 2 , , 3 , , 4 , , 5 , , 6 , , ,
1 1 1 1 1 1

ˆ 1 2 3 4 5 6t us us j us t j us j us t j us j us t j us j us t j us j us t j us j us t j us t us
j j j j j j

u r r PC r PC r PC r PC r PC r PC ε− − − − − −
= = = = = =

= + + + + + + +∑ ∑ ∑ ∑ ∑ ∑
( )3.5b  

   
2 2 2 2

, 0, 1 , , 2 , , 3 , , 4 , , ,
1 1 1 1

ˆ 1 2 3 4t eu eu j eu t j eu j eu t j eu j eu t j eu j eu t j eu t eu
j j j j

u r r PC r PC r PC r PC ε− − − −
= = = =

= + + + + +∑ ∑ ∑ ∑        ( )3.5c  

Where , , 0,...,6i usr i =  and , , 0,..., 4j eur j = are coefficients to be estimated. 

 

 

3.6. The Equal Weighted Forecast model (EWF) 
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Equal weighted forecasts are generated by averaging the forecasts of the 

previous three models, Benth and Saltyte-Benth (BSB), Campbell and Diebold (CD) 

and principal component analysis (PCA). 13 McNees (1986) argued that the experience 

of the past tells us that no one forecasting model remains accurate for all variables all 

the time.  The selection of a forecasting model cannot be accomplished by simply 

choosing the best model for a given period. Given that identifying the best model for 

each period in most cases is not feasible, combining different forecasts that average 

differences when one measure gives an over-forecast while the other an under-

forecast seems a sensible alternative. Errors may cancel each other out so that the 

combined forecast would turn out to be relatively closer to the actual value than either 

forecast independently. 

This method does not require any knowledge about the accuracy or the 

correlation between the errors.  Clemen and Winkler (1986) used the simple average 

of GNP forecasts by utilizing the four major models of Wharton econometrics, the 

Chase Econometrics, the Data Resources, Inc., and the Bureau of Economic 

Analysis.  Clemen and Winkler (1986) found that the simple average performed better 

than any single model.  

 

 

 

 

 

 

 

 

 

13 We applied the PCA model to the temperature series directly and we found significant low 
forecasting ability, sometimes lower than that of the random walk’s. Therefore, we do not report results 
for that model.  

4.  Out-of-sample forecasting performance 
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4.1. Evaluation Metrics 

Firstly, we briefly review the forecasting methodology, which is rather 

standard. Specifically, we estimate several models for each series to be forecast and 

focus on forecast horizons ( )h of 1, 5, 10, 15 days. The longer horizon forecasts are 

produced in a non-overlapping fashion. Our point forecasting proceeds in the rolling 

scheme.  

Let the total sample size be 1T + . The last P  observations of this sample are 

used for forecast evaluation. The first R  observations are used to construct an initial 

set of regression estimates that are then used for the first prediction. We choose the 

order of the lags and the order of the Fourier series using the first R  observations (in-

sample). We then forecast the out-of-sample observations by using always a sample 

of the size R . Namely, the first estimates of the parameters will be estimated with a 

sample running from 1 to R  and then forecast the observation 1R + , the next 

estimates with a sample running from 2 to 1R +  and then forecast the observation 

2R + ,…, the last estimates with a sample running from h  to 1R h+ −  and then 

forecast the observation R h+ . 

We assess the out-of-sample forecasting performance of each model that we 

described in the previous section. The out-of-sample exercise is performed from 

January 1, 2004 to December 31, 2007. 

In line with Campbell and Diebold (2005), we use the root mean squared error 

(RMSE) to assess the out of sample forecasting performance of the employed models.  

i. The root mean squared error (RMSE) is the square root of the average squared 

deviations of each model’s forecast averaged over the number of the forecasts. 

We use the measure, as our desired model should not produce large forecast 

errors. 

In addition, we use the following metrics: 
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ii. The mean absolute prediction error (MAE) that is the average of the absolute 

differences between the forecasts errors of the respective models. 

iii. The mean correct prediction (MCP) of the direction of the change that is the 

average frequency for which the change in temperature predicted by the model 

has the same sign as the realized change in the temperature. 

In order to someone have well-defined results must establish the statistical 

significance of these measures. So to examine the statistical significance of the RMSE 

and the MAE we employ the modified Diebold Mariano test of Harvey et al. (1997). 

In our first evaluation we use as benchmark the random walk model to assess whether 

any model under consideration outperforms the random walk model. The null 

hypothesis is that the model under consideration and the benchmark model perform 

equally well (one-sided test). To compute the Diebold Mariano (DM) test, we use the 

Newey-West (1987) heteroskedasticity and autocorrelation consistent variance 

estimator. 

Let 2 2
,1 1, 2,m t td ε ε= − and ,2 1, 2,m t td ε ε= − where , , 1, 2i t iε =  is the forecast error of model 

i .  

Given the sequence of P  forecasts, Diebold and Mariano (1995) show that  

                          ( ) ( )1/2
,1 0,mP d Nµ− → Ω where ( )1 2 2

,1 1, 2,
1

P

m t t
t

d P ε ε−

=

= −∑ .14 

 The test statistic they propose is the following:    

( )1/2 1/2 2 2
1, 2,

1

P

t t
t

DM P ω ε ε− −

=

= −∑  

Where ω is a consistent estimator of the asymptotic variance Ω . Under the 

null hypothesis, the two non-nested models produce equal RMSEs and DM follows a 

(0,1)N distribution.  

To overcome problems of small out-of-sample forecasts, Harvey et al (1997)  

14 The Diebold-Mariano statistic of the mean absolute error (MAE) is calculated in the same way as that 

of the root mean squared error (RMSE). We just replace the error loss function of the RMSE with that 

of MAE.  
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propose the following modification to the original DM test: 

( ){ }1/21* 1 2 1 /MDM DM P h P h h P− = + − + −   

Where modified Diebold-Mariano ( )MDM  follows the t-distribution with 

( )1P − degrees of freedom. They also report simulation results revealing that the 

modified statistic performs better than the original one for forecast horizons, h , 

greater than 1. 

To assess whether any model under consideration outperforms the random 

walk model in a statistically significant sense under the mean correct prediction 

(MCP) metric, we use a ratio test. The null hypothesis is that the random walk model 

and the model under consideration perform equally well (one-sided test).15 

4.2. One-day Horizon 

Tables 3 and 4 report the results for the one day-ahead horizon forecasts of the 

U.S. and Europe measuring stations, respectively. Specifically, we report the RMSE, 

the MAE and the MCP for each model and for each weather station for our two 

groups, respectively. One and two asterisks denote the rejection of the null hypothesis 

at 1% and 5% significance levels, respectively.  

Almost always the employed forecasting models outperform the random walk. 

Exception to this pattern is the autoregressive model nearly for every city, under the 

mean absolute error (MAE) metric,  and the PCA model, only when employed for the 

Des Moines and Paris temperature series. Even for the less volatile cities, such as Los 

Angeles and Barcelona the persistence (RW) forecasts are inadequate, since there 

exists a statistically predictable pattern in the temperature dynamics (by assuming 

independence at a level of significance of 1%). The predictable pattern is strongest in 

the case of the European temperature series than the U.S ones since the accuracy 

measures are by far smaller. 

In Table 4 we observe an interesting result that we should mention. In the 

northern European cities the temperature models produce more accurate forecasts than 

15 Strictly speaking, the MCP cannot be calculated under the random walk model. Hence, in the ratio 

test, we treat the random walk model as a naïve model that would yield MCP=50%. 
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in the southern ones. This result contributes to the empirical analysis inference that 

the coldest cities are more volatile relative to the hottest ones through the year. We do 

not deduct the exact same pattern in the U.S., as the weather there is also dependent to 

extreme phenomena such as the El Nino.16 

Through the accuracy measures reported in Tables 4 and 5 we observe that the 

autoregressive model has by far the lowest forecasting ability relative to the other 

employed models. Given that all models outperform the random walk and the 

autoregressive model has very low forecasting ability we attempt to answer the 

question which model performs best among the BSB, CD, PCA and EWF models. We 

first test pairwise the BSB model using as benchmark models the CD, the PCA and 

the EWF models sequentially. In the same way we test the CD, PCA and EWF 

models by using all models sequentially as alternative benchmarks. Overall we 

calculate twelve modified Diebold-Mariano (one-sided test and 5% significance level) 

statistics for each city and horizon. In the case where the Null Hypothesis of equal 

forecasting ability is not rejected in the respective pair of models we report both 

models. Bold denotes the model with the lowest root mean squared error (RMSE).  

Table 5 reports the best model in each city based on the modified Diebold-

Mariano (MDM) statistic. We can see that after examining the different forecasting 

models, no one model was able to outperform the others consistently.  The most 

appropriate forecasting model varied between cities. Thus, a general model that 

adequately explains the temperature behavior is absent and probably not possible.  

However, there have been extracted some important inferences.  

As far as concerns the U.S. weather stations the PCA model performs best in 

60% of the cases. The CD and the EWF models perform best in the rest 40% of the 

cases. In the case of the European weather stations temperature, the EWF and the 

PCA models performed best in most cases. Our results reveal that a PCA technique 

could prove more useful than employing parametric techniques especially in the U.S. 

weather stations.  

16 El Nino is a set of specific interacting parts of a single global system of coupled ocean-atmosphere 
climate fluctuations that come about as a consequence of oceanic and atmospheric circulation. The 
irregularity of E.N. makes predicting a difficult assignment, as it is demonstrably connected to 
seasonal, even yearly, regional climatic effects on large areas. 

4.3. Longer Horizons 
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We next turn our attention to the accuracy of the forecasting models at longer 

horizons, namely to 5-, 10- and 15- days ahead. For any given temperature series, we 

estimate the previously mentioned statistical models with non-overlapping data to 

check whether there is evidence of predictability in longer horizons.17 Non-

overlapping data are used to avoid the problems in the statistical inference that are 

encountered in the case of long horizon predictive regressions with overlapping data 

(see e.g., Valkanov, 2003).  

Tables 6 and 7 report the results for the five days-ahead horizon forecasts of 

the U.S. and Europe measuring stations, respectively. Tables 8 and 9 report the results 

for the ten days-ahead horizon forecasts of the U.S. and Europe measuring stations, 

respectively. Tables 10 and 11 report the results for the fifteen days-ahead horizon 

forecasts of the U.S. and Europe measuring stations, respectively. Specifically, we 

report the RMSE, the MAE and the MCP for each model and for each weather station 

for our two groups, respectively. As previously bold denotes rejection of the null 

hypothesis of equal forecasting ability at the 1% and 5% level. 

The forecasts of the employed models outperform almost always those of the 

random walk’s. Compared with the short horizon forecasts their comparative 

superiority increases with the horizon. As was the case in the one step-ahead horizon 

forecasts the autoregressive model has the lowest forecasting ability. Table 12 shows 

the best model per city based on the modified Diebold-Mariano, as in the previous 

subsection. We can see that there is no single model that yields accurate forecasts for 

all temperature series, just as was the case with the one day-ahead forecasts. Though, 

some important deductions are again produced. In the case of the U.S. group as the 

horizon increases the principal component analysis (PCA) model along with model 

along with the averaged forecasts (EWF) produce the best forecasts. In the case of the 

European  group as the horizon increases again the EWF and the PCA models 

perform best.  In the longest horizons, fifteen days ahead, the Campbell and Diebold 

(CD) model performs best almost in every city of our sample. The statistical evidence 

of a more pronounced predictability in the longest horizons is attributed to the failure 

17 In each horizon, we re-estimate the number of lags for the model of Campbell and Diebold (CD) 
based on the Akaike information criterion. ΠΑ
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of the low order Fourier series to depict the seasonality of the non-overlapping data 

and  to the presence of long memory characteristics.. 

Quite interestingly, the PCA model we propose leads to better forecasts in 

many cities and horizons. In addition, as many forecasters advocate the simple 

averaging of individual models can lead to better forecasts in many cases judging 

from the performance of the EWF model in the European measuring stations. Finally, 

our results show also the importance of the incorporation of seasonality in 

temperature modeling judging from the low performance of the autoregressive model. 

To sum up, both at a spatial basis and at a temporal basis, the PCA model in 

the U.S group and the EWF model in the European group perform best in most cases. 

If someone wants to forecast temperature in long horizons the model of Campbell and 

Diebold should be employed. However, the temperature dynamics are not easily 

explained in a way that many models should be tested in order to choose the best one 

for a specific area and for a specific time period. 
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5.   Index Forecasting 

 

Weather derivatives are mostly written in terms of the monthly-cumulative 

sum of the daily HDDs (CumHDDs) and CDDs (CumHDDs), either in a monthly 

period or in a customer-based period, and traded months prior to the settlement date. 

Therefore, risk managers and other market participants are required to forecast well in 

advance estimates of both the CumHDDs and CumCDDs indices to take the 

appropriate trading positions in the weather market. To address this issue, we attempt 

to forecast the indices over the same out-of-sample period as the point forecast.  

We define heating degree days ( iHDD : measure of cold in winter) and cooling 

degree days ( iCDD : measure of heat in summer) by the quantities: 

 

                                                  { }max 65 ,0i iHDD T= −                                         (5.1) 

 

                                                 { }max 65,0i iCDD T= −                (5.2) 

The cumulative heating degree days (CumHDDs) and the cumulative cooling 

degree days (CumCDDs) indices for each month are defined by the following 

equations, where n  describes the number of days per month: 

                               
1

n

i
i

CumHDD HDD
=

= ∑  and  
1

n

i
i

CumCDD CDD
=

= ∑                (5.3) 

The analysis on the monthly CumHDDs will cover the months of January, 

February, March, April, October, November and December, while the analysis on the 

monthly CumCDDs will cover the months of April, May, June, July, August, 

September and October.  The month selection of each weather index is based on the 

trading specifications of CME.  

The forecasted temperatures for the out-of-sample period would be generated 

using a dynamic forecasting approach of one month. On the last day of each month, 

and for each city we use the estimated daily model to forecast the temperature of the 

following month. The forecast for the 1t +  period is generated using the in sample 
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information included at period t . The forecast for the 2t +  and subsequent time 

periods over the forecasting horizon, however, are generated conditional on all 

information up to and including period t , as well as forecasted values extending from 

period 1t + . Then we convert the forecasted temperature into HDD or CDD values, 

which we cumulate over the HDD or CDD month. After passing through the entire 

sample, we have 28 observations for the CumHDD and the CumCDD indexes, 

respectively. 

For each of the models - BSB and CD - the forecast accuracy of the forecasted 

indices is tracked over the same out-of-sample period as the point forecasting one, 

namely January 2004 to December 31 2007, but now in a monthly accumulated 

period. 18  

5.2. Index Forecasting Performance 

Table 13 reports the descriptive statistics of actual and forecasted values for the out-

of-sample periods of the monthly CumHDDs and CumCDDs indices for our two 

models - BSB and CD. In the first line we report the means for the weather indices 

and in parenthesis we report the standard deviation of the means. We observe that the 

standard deviation of the HDD months is higher than that of the CDD months.  We do 

not observe a constant match of the descriptive statistics between the actual values 

and the forecasted ones of any model. Nevertheless, in some cities we observe an 

adequate fit between the forecasted values and the actual ones. Figures 3 and 4 plot 

the realized values for the monthly CumHDDs and CumCDDs indices along with the 

forecasted values calculated by the best forecasting model in each city. 19 There we 

observe how well the forecasted series fits the realized one.  

Table 14 shows the out-of-sample RMSE and the MAE for our two indices 

and groups, respectively. In both our groups, significantly higher accuracy measures 

are associated with the CumHDD index. This implies greater difficulty in forecasting 

the CumHDD index relative to the CumCDD index. This is probably attributed to the 

higher weather noise observed during the winter months. Quite interestingly, the  

18 Given the designs of the PCA and the autoregressive models a dynamic step forecast approach is not 

considered. The EWF model is constructed in this section by averaging the BSB, CD forecasts and the 

Burn Analysis values. 
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European  weather indices can be forecasted more adequately than those of the U.S. 

since the accuracy measures are significantly lower. This is attributed to the small 

variations around the historical mean of the European temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 To conserve space we report the figures of two cities from each group. 

6.  Conclusion 
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Weather derivatives have gained great popularity in the financial markets as a 

hedging tool of weather related risk. Markets for weather related products are 

emerging (CME) and this facts necessities good temperature models to assess the risk 

exposure. This study has addressed issues whether different temperature models 

pertain their forecasting power in different areas and in different horizons.  

Temperature forecasting is of crucial importance for the market participants of 

the weather derivatives market. Risk managers want to assess their weather related 

exposure in order to construct their hedging strategies. Weather derivatives writers 

need to understand how temperature behaves as standard approaches of arbitrage-free 

pricing are not applicable in this kind of derivatives. The most rational and practical 

way to price derivatives is by modeling and forecasting the underlying variable.  

In the present study, I have analyzed temperature data measured on ten U.S. 

and five European stations. After examining five different temperature forecasting 

models for use as the underlying models for valuing weather derivatives contracts we 

find that no one model consistently outperforms the others. The temperature behavior 

is so complex that for each forecast horizon and for each city the best forecasting 

model varies. However, we tried the principal component analysis (PCA) for 

forecasting purposes in the case of temperature and we found that it could be a very 

powerful method. Specifically, in the U.S. cities it beats in most cases its competitors. 

In the European cities the simple averaging of the individual models (EWF) 

performed best in most cases. In the longest horizons the Campbell and Diebold 

model (CD) performed best. 

Then we attempted to forecast the cumulative heating degree day (CumHDD) 

and cumulative cooling degree day (CumCDD) indices so as to see how well the 

models can forecast the weather indices. This exercise showed that the CumHDD 

index is more difficult to be forecasted than the CumCDD index. Quite interestingly, 

the European weather indices can be forecasted more adequately than those of the 

U.S. since the accuracy measures are significantly lower. This is attributed to the 

small variations around the historical mean of the European temperature.   ΠΑ
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In the near future it will be of great interest to attempt to model the weather 

indices directly. However, that study will require longer temperature series. This may 

improve the out-of-sample-forecast relative to the daily temperature modeling. 

Further research should focus also in constructing trading strategies to assess if there 

is space for speculation purposes using temperature forecasting models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



25 
 

References 

 

Alaton P., Djehiche, B., Stillberger, D., 2002. On Modeling and Pricing Weather 
Derivatives. Applied Mathematical Finance 9 (1), 1-20. 

Benth F.E., Saltyte-Benth J., 2005. Stochastic Modeling of Temperature Variations 
with a View towards Weather Derivatives. Applied Mathematical Finance 12 (1), 53-
85. 

Benth F.E., Saltyte-Benth J., Jalinskas P., 2007. A Spatial-temporal Model for 
Temperature with Seasonal Variance. Journal of Applied Statistics 34 (7), 823-841. 

Benth F.E., Saltyte-Benth J., 2007. The volatility of temperature and pricing of 
weather derivatives. Quantitative Finance 7 (5), 553-561. 

Bollerslev, T., 1986. Generalized ARCH. Journal of Econometrics 31, 307-327. 

Bollerslev,T., Wooldridge, J., 1992. Quasi-Maximum Likelihood Estimation and 
Inference in Dynamic Models with Time Varying Covariances. Econometric Reviews 
11, 143-172. 

Brockett, P., Wang., M., Yang. C., Zou, H., 2006. Portfolio Effects and Valuation of 
Weather Derivatives. The Financial Review 41, 55-76. 

Brody, D.C., Syroka, J., Zervos, M., 2000. Dynamic pricing of weather derivatives. 
Quantitative Finance 2, 189-198. 

Campbell, S.D., Diebold, F.X., 2005. Weather forecasting for weather derivatives. 
Journal of the American Statistical Association, 100 (469), 6-16.  

Cao, M., Wei, J., 2000. Pricing the weather. Risk 67, 67-70. 

Cao, M., Wei, J., 2004. Weather Derivatives Valuation and Market Price of Weather 
Risk. Journal of Futures Market 24 (11), 1065-1089. 

Clemen, R., Winkler, R., 1986. Combining Economic Forecasts. Journal of Business 
& Economic Statistics 4 (1), 39-46.  

Davis, M., 2001. Pricing Weather Derivatives by Marginal Value. Quantitative 
Finance 1, 305-308. 

Diebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. Journal of 
Business & Economic Statistics 13, 256-263. 

Dischel, R.S., 2002. Climate Risk and the Weather Market: Financial Risk 
Management With Weather Hedges, London: Risk Publications. 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



26 
 

Dornier, F., Querel, M., 2000. Caution to the Wind. Energy Power Risk Management, 
30-32. 

Dunis, C.L., Karalis, V., 2003. Weather Derivatives Pricing and Filling Analysis form 
Missing Temperature Data. Working Paper, Centre for International Banking 
Economics & Finance. 

Engle, R.F., 1982. Autoregressive Conditional Heteroskedasticity with Estimates of 
the Variance of U.K. Inflation. Econometrica 50, 987-1008. 

Granger, C.W.J., Bates, J.M., 1969. The Combination of Forecasts. Operational 
Research Quarterly 20 (4), 451-468. 

Granger, C.W.J., Ramanathan, R., 1984. Improved Methods of Combining Forecasts. 
Journal of Forecasting 3 (2), 197-204. 

Harvey, D., Leybourne, S., Newbold, P., 1997. Testing the equality of prediction 
mean squared errors. International Journal of Forecasting 13, 281-291.   

Huang, H., Shiu, Y., Lin, P., 2008. HDD and CDD Option Pricing with Market Price 
of Weather Risk for Taiwan. The Journal of Futures Markets 28 (8), 790-814. 

Hull, J., 1999. Options, Futures and Other Derivatives. Fifth Edition, Prentice Hall.   

Jewson, S., Brix, A., 2005. Weather Derivatives Valuation. Cambridge University 
Press, New York. 

Kosater, P., 2006. Cross-City Hedging with Weather Derivatives using Bivariate DCC 
GARCH Models. Discussion Papers in Statistics and Econometrics. 

McNees. S., 1986. Forecasting Accuracy of Alternative Techniques: A Comparison of 
U.S. Macroeconomic Forecasts. Journal of Business & Economic Statistics 4 (1), 5-
15. 

Stock, J.H., Watson, M.W., 2002. Forecasting using principal components from a 
large number of predictors. Journal of the American Statistical Association 97, 1167-
1179. 

Stock, J.H., Watson, M.W., 2004. Combining Forecast of Output Growth in a Seven-
Country Data Set. Journal of Forecasting 23, 405-430. 

Stevenson, M., Oetomo, T., 2005. Hot or Cold? A Comparison of Different 
Approaches to the Pricing of Weather Derivatives. Journal of Emerging Market 
Finance 4 (2), 101-133. 

Taylor, J.W., Buizza, R., 2006. Density forecasting for Weather Derivative Pricing. 
Journal of International Forecast 22, 29-42. ΠΑ

ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



27 
 

Torro, H., Meneu, V., Valor E., 2001. Single Factor Stochastic Models With 
Seasonality Applied to Underlying Weather Derivatives Variables. Manuscript, 
University of Valencia. 

West, J., Platen, E., 2005. A Fair Pricing Approach to Weather Derivatives. Financial 
Engineering and the Japanese Markets 11 (1), 23-53. 

Wilks, D. S., 1995. Statistical Methods in the Atmospheric Sciences. New York: 
Academic Press.  

Zeng, L. 2000, Pricing Weather Derivatives. The Journal of Risk Finance 1 (3), 72-
78. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



28 
 

Appendices 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



29 
 

Appendix I 

 

Weather Derivatives 
 

 

Weather derivatives are a new class of financial instruments. This instrument 

enables companies to manage the volumetric risk that results from unfavorable 

weather patterns.  

Traditional derivatives have payoffs that depend on the price of a cluster of 

fundamentals, such as equities, commodities, currencies or even interest rates. This 

new kind of derivative’s underlying ‘asset’ is a weather measure, like temperature, 

precipitation, snowfall, hurricane etc.  

The most active participants of the weather derivative market are power and 

energy companies, since they want to manage their temperature-sensitive revenues 

effectively. The reason for that is the recent deregulation of the energy market. The 

producers of energy had long observed the strong correlation between the 

consumption of energy and the fluctuations of weather. So when the deregulation 

initiated the market became more competitive and the participants decided to hedge 

the risk with the use of weather derivatives. 

The history of weather derivatives is pretty short. The first weather transaction 

was executed on the September of 1997, when two American energy companies, 

Enron and Koch, signed their first weather derivative contract in the over the counter 

(OTC) market. The reason for this transaction was the expected fluctuations of 

temperature in the following winter. 

Another fact that drove the weather market was the El Nino Southern 

Oscillation phenomenon and its influence on the economy of the United States. The 

‘El Nino’ part is a fluctuation in the surface temperatures of the eastern half of the 

equatorial Pacific Ocean, while the ‘Southern Oscillation’ part is a shift in the wind 

and pressure patterns over the whole of the Pacific. In the winter of 1998 the 

phenomenon appeared very intensively and took the attention of media in the States. 

Then many companies afraid of expected negative results because of the mild winter 

turned to the weather market. 
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The most important date of the weather market was the June of 1999, when 

was established the Weather Risk Management Association (WRMA) by the main 

marketers of the derivatives. Moreover, one month later the Chicago Mercantile 

Exchange (CME) created the first organized market of weather derivatives. The CME 

today lists contracts for the following major cities in the United States: Atlanta, 

Baltimore, Boston, Chicago, Cincinnati, Dallas, Des Moines, Detroit, Houston, 

Kansas City, Las Vegas, Minneapolis, New York, Philadelphia, Portland, Sacramento, 

Salt Lake City and Tucson. The CME lists also contracts for nine European cities, six 

Canadian and two Asian: Amsterdam, Barcelona, Berlin, Essen, London, Madrid, 

Paris, Rome, Stockholm, Calgary, Edmonton, Montreal, Toronto, Vancouver, 

Winnipeg, Osaka and Tokyo. The electronic trading system on CME has attracted 

new participants, because it provides increased liquidity, low transaction costs and 

drastic decrease of credit risk.    

An important asymmetry in the weather market is the slow development of the 

European and Asian markets in contrast with the American. Analysts state two main 

reasons for this fact. The first one is that the European and Asian energy industries are 

not fully deregulated, while the American is. The second one is the high cost of 

purchasing the weather data to conduct circumstantial analysis.  

 

Ι.1 Differences between weather derivatives, financial derivatives and insurance 

contracts 

 

The main difference between weather derivatives and financial derivatives is 

that in the first kind the underlying asset is not negotiable. So a trader cannot take 

simultaneously a position both in the underlying asset and in the derivative. A second 

important difference is that the underlying asset, weather, cannot be manipulated in 

contrast with traditional derivatives that has been observed some manipulation, 

mostly from Hedge Funds. Ending, the vast majority of weather indexes can be 

forecasted with an adequate level of accuracy.  

Many are also the factors where weather derivatives differentiate from the 

standard insurance products. The main difference is the type of coverage that provide 

these different tools. Insurance’s main activity is to provide protection to extreme 

physical events, such as hurricanes, earthquakes, fires, etc. Instead, weather 

derivatives are used to protect the customer from the uncertainty that stems from 
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variations of normal weather conditions. Another important difference is that weather 

derivatives are more standardized and flexible from insurance products reducing the 

cost of hedging and increasing the liquidity of the market. A financial derivative is 

revocable, by taking the opposite position in the market, while an insurance contract 

does not have this property. Finally, weather contracts can be bought for speculation, 

like any standard derivatives. 

The list of actual trading weather contracts is large and dramatically evolving. 

The structure of weather derivatives is usually structured as swaps, futures and 

options based on different underlying weather indexes. The type of measure depends 

on the specifies of contract and can be based on one single weather variable such as 

temperature, snowfall, rainfall, wind speed, humidity or a combination of these 

factors. The most common and developed weather contracts are based on temperature 

indices. The reason for this development is the previously mentioned correlation 

between the weather and the energy market. Lastly, temperature is a more easily 

manageable weather variable than hurricane, snowfall or even precipitation.  

 

Ι.2 Temperature derivatives 

 

Given a weather station, we note by max
iT  and min

iT , respectively, the 

maximum and the minimum temperatures (in degree Fahrenheit) measured in one 

day i . We define the average daily temperature at day i  as the average of the day’s 

maximum and minimum temperature on a midnight-to-midnight basis for a specific 

weather station: 

 

                                                  
max min

2
i i

i
T TT +

=                                            (Ι.2.1) 

  

Weather derivatives are usually written on the cumulative cooling degree days 

(CumCDD) or the cumulative heating degree days (CumHDD) over a calendar month 

or a season. A degree day measures how much a day’s average temperature deviates 

from a threshold (mostly 65o Fahrenheit). The degree day indices origin’s come from 

the energy sector, since they measure the cooling and heating demand per day. ΠΑ
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We define heating degree days ( iHDD : measure of cold in winter) and cooling 

degree days ( iCDD : measure of heat in summer) by the quantities: 

 

                                                 { }max ,0i ref iHDD T T= −                                       (Ι.2.2) 

 

                                                 { }max ,0i i refCDD T T= −               (Ι.2.3) 

Where refT is the reference temperature and iT the mean temperature of a day i . 

In the following table we report a description of the contract specification traded on 

CME. 1 

 
U.S. Weather Derivatives Contract 

Specification 

Contract size $100 x the CME degree day index 

Quotation Degree day index points 

Monthly contracts 
traded 

CDD contract: April, May, June, July 

August, September, October 

HDD contract: October, November, December, January, 
February, March, April 

Seasonal contracts 
traded 

CDD contracts: May through September 

HDD contracts: November through March 

Last trading day 

Futures: The first exchange business day that is at least 
two calendar days 

Options on futures: Same date and time as underlying 
futures after the contract month 

Final settlement     
price 

The exchange will settle the contract to the respective 
CME degree days 

Index Reported by the Earth Satellite Corporation 

1 In addition to contracts traded on organized markets (e.g. CME) there are also contracts that are traded 
over the counter (OTC). 
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The indices described above define how weather variability is encapsulated for 

the purposes of a weather derivative contract. The contract is then financially settled 

using the measured value of the index as the input of a pay-off function. We will 

consider the pay-off for each of these structures from the point of view of the buyer 

(long position). The seller of the contract (short position) will have exactly the 

opposite pay-off. The swap, call and put options are by far the most common and their 

respective pay-off functions are described below.   

 

The pay-off, p, from a long swap contract is given by: 

1 1

1 2

2 2

( )   if  
( ) ( )       if  

( )     if  

D K L x L
p x D x K L x L

D L K x L

− − <
= − ≤ ≤
 − >

                             (Ι.2.4) 

Where x is the index, D is the tick, K is the strike and 1L  and 2L  are the 

upper and lower limits expressed in units of the index. OTC contracts are usually 

traded with limits while the CME contracts do not have limits.2 A long swap contract 

has the economic function of insuring against high values of the index by paying the 

buyer a pay-off dependent on the value of the index. The downside for the buyer of a 

swap is that he has to pay the seller for low values of the index. 

 

The pay-off, p, from a long call contract is given by: 

 0                if  
( ) ( )    if  

( )    if  

x K
p x D x K K x L

D L K x L

<
= − ≤ ≤
 − >

                                    (Ι.2.5) 

A long call contract has the economic function of insuring against high values 

of the index. At the start of the contract the buyer pays a premium to the seller. At the 

end of the contract the seller pays the buyer a pay-off dependent on the value of the 

index. 

 

 

 

2 The CME options on futures are European, meaning that can only be exercised at the expiration date. 
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The pay-off, p, from a long put contract is given by: 

( )    if  
( ) ( )    if  

0                 if  

D K L x L
p x D K x L x K

x K

− <
= − ≤ ≤
 >

                                      (Ι.2.6) 

A long put contract has the economic function of insuring against low values 

of the index. At the start of the contract the buyer pays a premium to the seller. At the 

end of the contract the seller pays the buyer a pay-off dependent on the value of the 

index. 

Ending our conversation about temperature derivatives we state the following 

example for the understanding of their use in practice. An oil company should think 

that if the following winter will be mild, the company will have low sales. However, 

if the winter is very cold, the company will have significant incomes. This, in turn, 

creates volumetric exposure inducing the company to hedge its exposure by selling a 

heating degree day call contract. If the winter is not particularly cold, the company 

will keep the premium, while if the winter is too cold the company will have enough 

money to finance the payout of the option. In this way the oil company reduces its 

exposure to its weather related volumetric risk. 

 

Ι.3 Valuation of weather derivatives 

 

Traditional derivatives are priced by no-arbitrage arguments, such as Black-

Scholes pricing model, which rest on continuous hedging. This premise cannot be 

implemented in weather derivatives and hence no riskless portfolio can be built. 

However, at the first years of the birth of weather derivatives market the first attempts 

involved the Black-Scholes model. But, quickly this approach was rejected for the 

following reasons: 

 

• The methodology of Black-Scholes for the valuation of options demands the 

underlying asset be tradable. Weather indices are not. 

• It is impossible to create a risk-neutral portfolio, namely taking positions in 

the derivative and the underlying asset. 

• The weather derivatives do not have a high level of liquidity, yet.  
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So the market quickly turned to techniques based on historical data. The 

alternative pricing methodologies that can be followed to obtain the price are the 

following two, “burn analysis” and “weather modeling”. The first is adopted in the 

insurance industry while the second one tries to model the weather dynamics. 

The “burn analysis” is the most naïve methodology and its main requirement is a 

good and reliable source of weather data. This method answers to the question: “How 

much we would have paid if we had sold a similar contract with that we want to price 

every year in the past?” The average of these prices gives us an indication for the 

price of our option. 

However, this procedure does not take into account the pressures from the demand 

and the premiums of the underwriters. The procedure is composed by the following 

steps: 

 

1. Collect the historical weather data. 

2. Modify the data to the weather indices.  

3. Identify corruptions in the data and correct them. 

4. For every year of the past, define the resulting trade payoff. 

5. Calculate the average of these payoffs. 

6. Discount back from settlement date to today. 

 

The main limitation is that we do not incorporate the weather forecasts. We only 

assume that the following season will resemble the previous seasons of our sample. 

Moreover, the literature has not defined an adequate range for the sample of the data 

for our analysis. 

The weather based models try to model and forecast the underlying variable, 

directly. This procedure consists from the following steps: 

 

1. Collect the historical weather data. 

2. Identify corruptions in the data and correct them. 

3. Choose a statistical model. 

4. Simulate possible weather patterns in the future. 

5. Calculate the index for every simulated future pattern. 

6. Calculate the payoffs of the derivative. 

7. Calculate the average of these payoffs. 
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8. Discount back from to the settlement date. 

 

Ι.4 Other Weather Derivatives 

 

In this subsection we will concisely mention the rest of the weather derivatives 

that are offered from the weather market. The most commonly used after the 

temperature ones are those that depend on the wind and on the precipitation. 

However, more specialized weather derivatives exist and their indices depend on 

variables such as snow depth, snowfall, river flow, hurricanes and even on the number 

of frost days. Yet, since their use concerns special business fields, these derivatives 

have very low liquidity. The readers could find more information about them in 

Dischel (2002) and Jewson (2005).  
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Gap Filling Methodologies 

 

Here we will discuss more thoroughly the methodologies proposed in the 

literature about filling missing data. 

II.1. Naïve approach 

In the simplest approach we fill the missing temperature observation with the 

same day value of that of previous year. 

                                                          1t tT T −=                                                        (II.1)  

Where tT  is the missing temperature data at period t and 1tT −  is the 

corresponding observation of the previous year.  

II.2. Kosater approach 

A more reasonable approach where we fill the missing temperature 

observation by a weighted temporal approach is that of Kosater; where we fill the 

missing observation with a weighted average day values of previous and next year’s 

observation. 

                                                    1 1

2
t t

t
T TT − ++ =  

 
                                               (II.2) 

Where tT  is the missing temperature data at period t, 1tT −  the corresponding 

observation of the previous year and 1tT +  the corresponding observation of the next 

year. 

II.3. Campbell and Diebold approach 

The approach that Campbell and Diebold (2005) used in their study has the 

following steps. 

1. Earth Sat identifies the geographically closest National Climatic Data Center 

(NCDC) measuring station for each city. 
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2. Earth Sat calculates for each city the thirty-year daily average difference of the 

missing variable ( maxT or minT ) between the measuring station and its reference 

station. In this calculation, each day in the year is taken as distinct; hence the 

thirty-year average is based on thirty observations. 

3. Finally, Earth Sat adds to the reference station measurement the thirty-year 

average difference. 

II.4. Fallback Approach 

Data missing for less than twelve consecutive days 

 If temperature data is unavailable for less than twelve consecutive days during 

the calculation period, the missing temperature data will be computed for each 

observation using a period of the fifteen days immediately prior to, and the fifteen 

days immediately following the relevant missing observations. If there are unavailable 

temperature data at the measuring or reference station, within the fifteen days prior to 

and following to the missing gap then an adjustment period of the first fifteen days on 

which the relevant temperature values are available on either side of each station 

should be used to calculate the gap.  

Data missing for twelve or more consecutive days 

 If there are missing temperature observations for more than twelve 

consecutive days, the filling for each observation will be calculated using temperature 

data from a period fifteen days prior and fifteen days after the relevant missing 

observations for the three prior years. If there is no data for the index station or the 

reference station in the immediate three previous years, the adjustment period will be 

extended until three years of temperature values can be obtained. In the event that 

there are unavailable temperatures at the reference station or the index station within 

the periods of the fifteen days prior to or the fifteen days after the missing temperature 

observations then an adjustment period should be constructed. This should be based 

on the first fifteen days on which the relevant temperature data are available 

(maximum 25 days) on either side of each missing data observations. 

II.5. Other Approaches 
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More complicated methods include the expectation maximization (EM) 

algorithm, the data augmentation (DA) algorithm, state space models and the Kalman 

filter, the neural networks regression (NNR) models and the principal component 

analysis. 
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Fourier Series 

 

Here we will discuss how the cosine function captures the characteristics of 

the temperature dynamics.  

A Fourier series is an expansion of a periodic function f(x) in terms of an 

infinite sum of sines and cosines. Fourier series makes use of the orthogonality 

relationships of the sine and cosine functions. As we add a series of cosine and sine 

terms (with decreasing amplitudes and decreasing periods), the combined signal 

resembles the original seasonal variable. 

  The Fourier series of order P  is given by the following specification: 

                        
, ,

1

( ) ( )cos 2 sin 2
365 365

P

c p s p
i

d t d tp pσ π σ π
=

    +        
∑

                          
(III.1) 

Where , ,,c p c pσ σ control the amplitude, p  controls the time frequency and 

( )d t  is a step function that cycles through 1, 2,…, 365 (i.e. 1 denotes January 1, 2 

denotes January 2 and so on). 

 

Figure III.1, Panel A and B, shows the movements of the cosine functions for 

a two-year period, when we replace the time frequency and the amplitude of the 

functions with the unity. Panel C shows the movements of the previous two functions 

combined (First order Fourier series). 

 

 

 

 

Figure III.1 
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Panel A:
( )

cos 2
365
d t

π
 
 
   
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Panel B: 
( )

sin 2
365
d t

π
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Panel C: 
( ) ( )

cos 2 sin 2
365 365
d t d t

π π
   

+   
   
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, ,

( ) ( )cos 2 sin 2
365 365t c p s p
d t d tT c σ π σ π   = + +   

                       
(III.2) 

To show how well the cosine function captures the seasonality of temperature 

we regress the temperature series of Chicago (1/1/1973 – 12/31/1974) to a constant, 

that is interpreted as the average temperature, and the Fourier series of first order as in 

equation (III.2). After substituting the estimated coefficients of equation (III.2) we 

reach equation (III.3)  

               

( ) ( )51.81 7.89cos 2 21.61sin 2
365 365t
d t d tT π π   = − −   

                    
(III.3) 
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Figure III.2 represents the goodness of the fit of the Fourier series to the 

temperature of Chicago. 

Figure III.2 
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Figures 
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Figure 1: Historical Daily Average Temperature  

1-1-1973 to 12-31-2007 
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Note: Daily Average Temperature is reported in Farenheit Degrees.                                      
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Figure 2: Histogram of Daily Average Temperature 

1-1-1973 to 12-31-2007 
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Note: Daily Average Temperature is reported in Farenheit Degrees.    
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Figure 3: Forecasted Monthly CumHDD Index 

January 2004 to December 2007 
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Panel C 

 

 

Panel D 

 

Note: The heating degrees are reported in Farenheit Degrees. The heating degree days (HDD) 

are calculated with the following equation { }max 65 ,0 .i iHDD T= −  The monthly 

cumulative heating degree days are calcualted with the following equation     

1

n

i
i

CumHDD HDD
=

= ∑  , where n denotes the number of days per month. We report in each 

figure the best forecast, based on the RMSE metric, along with the realized values. The 

heating months are January, February, March, April, October, November and December.            
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Figure 4: Forecasted Monthly CumCDD Index 

April 2004 to October 2007 
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Panel C 

 

 

Panel D 

 

Note: The cooling degrees are reported in Farenheit Degrees. The cooling degree days (CDD) 

are calculated with the following equation { }max 65,0 .i iCDD T= −  The monthly 

cumulative cooling degree days are calcualted with the following equation     

1

n

i
i

CumCDD CDD
=

= ∑  , where n denotes the number of days per month. We report in each 

figure the best forecast, based on the RMSE metric, along with the realized values. The 

heating months are April, May, June, July, August, September and October.            
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Tables 
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Table 1 

 

  Temperature Measuring Stations   

 Panel A: U.S.A. 
 

City Measuring Station State 
Atlanta Hartsfield Airport GA 
Chicago O'Hare Airport IL 

Cincinnati Convington, KY OH 
Dallas Dallas - Fort Worth TX 

Des Moines Des Moines Int.Airport IA 
Las Vegas  McCarran Int.Airport NV 

Los Angeles Los Angeles Int.Airport CA 
New York La Guardia NY 

Philadelphia Philadelphia Int.Airport PA 
Portland Portland Int.Airport OR 

 Panel B: Europe 
 

City Measuring Station   
Barcelona Barcelona Airport  
London Heathrow Airport  

Paris Paris Airport  
Rome Rome Ciapino  

Stockholm Stockholm Bromma   
 
 
 

  

   

   

   

   

   

Table 1: Temperature Measuring Stations.  The table reports the measuring stations and 
their respective locations for the U.S. and European cities in panels A and B, respectively. 
GA denotes the state of Georgia, IL denotes the state of Illinois, OH denotes the  state of 
Ohio, TX denotes the state of Texas, IA denotes the state of Iowa, NV denotes the state of 
Nevada, CA denotes the state of California, NY denotes the state of New York, PA denotes 
the state of Pennsylvania and OR denotes the state of Oregon. 
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Table 2 

  

  
Summary Statistics for Daily Average Temperature: Jan 1,1973 to Dec 31, 2007 

  Panel A: U.S.A. (Levels) 
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

Mean 62.68 50.71 56.14 68.00 51.36 68.24 63.45 55.00 56.08 54.67 
Median 64.05 52.10 58.00 69.85 53.50 67.55 63.50 55.50 57.05 53.95 

Maximum 92.95 92.50 90.50 97.85 91.95 105.45 89.40 91.50 90.95 86.45 
Minimum 5.00 -20.05 -10.05 12.10 -17.50 22.45 43.10 5.95 1.95 14.45 

Std.Deviation 14.64 19.78 17.66 15.78 20.95 16.86 6.33 16.45 17.37 11.64 
Skewness -0.40 -0.32 -0.37 -0.45 -0.39 0.01 0.05 -0.19 -0.22 0.00 
Kurtosis 2.25 2.26 2.27 2.39 2.29 1.77 2.76 2.10 2.06 2.35 

ADF(intercept) -7.9176* -8.2399* -8.0467* -8.1380* -8.2784* -8.8637* -8.1171* -8.7443* -8.5929* -8.2070* 
  Panel Β: U.S.A. (First Differences) 
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

Mean -0.0005 0.0002 0.0000 0.0002 0.0000 0.0000 0.0000 -0.0011 -0.0011 -0.0002 
Median 0.45 0.40 0.45 0.45 0.45 0.45 0.00 0.00 0.45 0.10 

Maximum 25.90 27.45 26.10 23.50 29.95 14.80 16.55 23.50 22.05 15.60 
Minimum -35.45 -32.2 -34.75 -43.30 -28.10 -16.90 -16.45 -28.95 -33.40 -16.45 

Std.Deviation 4.57 6.18 6.10 5.75 6.05 3.33 2.46 4.82 5.06 3.43 
Skewness -0.79 -0.20 -0.32 -0.68 -0.22 -0.85 -0.15 -0.15 -0.52 -0.24 
Kurtosis 6.31 4.30 4.14 5.43 4.75 5.33 6.12 4.30 4.97 4.09 

Jarque-Bera 7186.98* 992.55* 927.27* 4161.61* 1749.66* 4472.94* 5262.90* 950.81* 2653.09* 768.31* 
ADF(intercept) -18.2500* -16.6009* -18.4019* -17.4767* -16.8205* -14.1029* -29.7422* -14.8178* -15.8444* -16.8517* 

           

           

Table 2: Summary Statistics. Entries report the summary statistics of each one of the temperature series in the levels and the first daily differences. The Jarque-Bera 
and the Augmented Dickey Fuller (ADF) (an intercept has been included in the equation) tests are also reported. One asterisk denotes the rejection of null hypothesis 
at the 1% level. The null hypothesis for the Jarque-Bera and the ADF Tests is that the series is normally distributed and has a unit root, respectively. 
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Table 2 

       Summary Statistics for Daily Average Temperature: Jan 1,1973 to Dec 31, 2007 
Panel C: Europe (Levels) 

 Barcelona London Paris Rome Stockholm 
Mean 60.60 51.74 52.75 59.67 43.17 

Median 59.35 51.15 52.70 59.00 42.80 
Maximum 87.60 84.10 88.80 88.70 80.60 
Minimum 29.10 18.50 7.00 22.10 -12.90 

Std.Deviation 10.32 10.31 11.91 12.09 14.94 
Skewness 0.10 0.06 -0.05 0.05 -0.19 
Kurtosis 1.99 2.35 1.96 1.96 2.48 

ADF(intercept) -8.7624* -7.7234* -7.7869* -8.2529* -6.8577* 
Panel D: Europe (First Differences) 

 Barcelona London Paris Rome Stockholm 
Mean -0.0003 0.0009 0.0006 -0.0010 -0.0003 

Median 0.00 0.00 0.00 0.00 0.00 
Maximum 15.30 24.05 19.55 24.05 35.75 
Minimum -14.40 -33.05 -26.75 -24.95 -37.55 

Std.Deviation 2.79 3.89 3.96 3.13 4.45 
Skewness -0.09 0.00 0.02 -0.02 0.00 
Kurtosis 4.27 4.67 3.81 5.32 5.40 

Jarque-Bera 881.27* 1497.52* 354.68* 2868.22* 3070.15* 
ADF(intercept) -15.4029* -30.3883* -20.8369* -15.7044* -34.3988* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Summary Statistics. Entries report the summary statistics of each one of the temperature series 
in the levels and the first daily differences. The Jarque-Bera and the Augmented Dickey Fuller (ADF) (an 
intercept has been included in the equation) tests are also reported. One asterisk denotes the rejection of 
null hypothesis at the 1% level. The null hypothesis for the Jarque-Bera and the ADF Tests is that the 
series is normally distributed and has a unit root, respectively. 
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Table 3: 1-step-ahead   U.S.A.      
     Panel A: RW      
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE 4.4799 5.7782 5.6635 5.6812 5.7988 3.2699 2.6958 4.6006 5.0471 3.5202 
MAE 3.0933 4.2114 4.1013 4.0000 4.2351 2.3510 1.7883 3.3826 3.6109 2.5493 

     Panel B: AR(1)      
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE 4.4243* 5.7154* 5.5890* 5.5833* 5.7416* 3.2553** 2.6357* 4.5570* 4.9947* 3.4807* 
MAE 3.1022 4.2495 4.1424 3.9771 4.2702 2.3658 1.7920 3.3830 3.6451 2.5645 
MCP 49.38% 49.31% 50.06% 52.94%** 50.75% 48.21% 47.87% 49.72% 48.01% 48.42% 

     Panel C: BSB      
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE 4.2026* 5.4202* 5.3107* 5.2613* 5.4744* 3.1096* 2.5501** 4.2878* 4.7178* 3.2981** 
MAE 2.9744* 4.0416* 3.9919* 3.7546* 4.1324** 2.3110** 1.7523 3.2183* 3.4751* 2.4731** 
MCP 58.08%* 59.24%* 58.21%* 59.58%* 56.84%* 56.50%* 54.24%* 59.65%* 57.87%* 57.46%* 

     Panel D: CD      
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE 4.0871* 5.2463* 5.1964* 5.1330* 5.3104* 2.9968* 2.4804* 4.1395* 4.5475* 3.1896* 
MAE 2.9333** 3.9220* 3.9074* 3.6956* 3.9892* 2.2324* 1.7084* 3.1090* 3.4069* 2.3972* 
MCP 59.58%* 61.43%* 60.06%* 61.09%* 59.31%* 60.34%* 55.57%* 61.84%* 59.38%* 60.68%* 

     Panel E: PCA      
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE 3.4750* 4.7141* 4.4019* 5.3992* 5.8533 3.0025* 2.4655* 3.5945* 3.7833* 3.1970* 
MAE 2.5706* 3.5764* 3.3923* 4.1262 4.4953 2.2965** 1.7101* 2.7239* 2.8499* 2.4164* 
MCP 69.04%* 68.63%* 70.13%* 61.84%* 56.78%* 59.79%* 53.35%* 68.28%* 71.36%* 60.68%* 

     Panel F: EWF      
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE 3.6605* 4.9159* 4.5988* 5.0526* 5.3881* 2.9534* 2.4752* 3.8108* 4.1213* 3.1983* 
MAE 2.6068* 3.6612* 3.4541* 3.6736* 4.0719* 2.2058* 1.6981* 2.8397* 3.0548* 2.3969* 
MCP 66.23%* 66.30%* 66.57%* 60.82%* 57.87%* 60.20* 54.45%* 65.12%* 67.87%* 60.41%* 

 Table 3: Out-of-sample performance of the model specifications for each one of the average temperature series. The root mean squared prediction error (RMSE), the mean 
absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of change in the value of average temperature are reported. The null hypothesis is that the 
random walk and the model under consideration perform equally well, against the alternative that the model under consideration performs better, have been tested via the 
Modified Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two asterisks denote rejection of the null hypothesis at 1% and 5% significance 
levels, respectively. 
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Table 4: 1-step-ahead Europe   
       Panel A: RW     
 Barcelona London Paris Rome Stockholm 

RMSE  2.6593 5.1765 3.7934 2.9613 4.2765 
MAE 2.0219 3.6256 2.9882 2.2067 3.2713 

       Panel B: AR(1)     
 Barcelona London Paris Rome Stockholm 

RMSE  2.6431** 5.0516* 3.7472* 2.9436** 4.2474* 
MAE 2.0344 3.5833* 2.9842 2.2258 3.2611 
MCP 49.79% 55.54%* 50.68% 48.90% 48.15% 

      Panel C: BSB     
 Barcelona London Paris Rome Stockholm 

RMSE  2.5165* 4.7765* 3.6061** 2.8031* 4.0499* 
MAE 1.9377* 3.4522* 2.8939** 2.1185* 3.1613* 
MCP 57.80%* 59.58%* 57.60%* 57.73%* 54.65%* 

      Panel D: CD     
 Barcelona London Paris Rome Stockholm 

RMSE  2.5272* 4.7973* 3.5275* 2.7989* 4.0180* 
MAE 1.9465* 3.4780* 2.8358* 2.1127* 3.1199* 
MCP 58.08%* 60.47%* 59.38%* 58.76%* 55.34%* 

      Panel E: PCA     
 Barcelona London Paris Rome Stockholm 

RMSE  2.4249* 4.8664* 3.8719 2.6450* 4.0175* 
MAE 1.8757* 3.6936 3.0491 1.9952* 3.1106* 
MCP 61.16%* 58.08%* 62.73%* 61.78%* 55.82%* 

      Panel F: EWF     
 Barcelona London Paris Rome Stockholm 

RMSE  2.4643* 4.7347* 3.4213* 2.7182* 4.0005* 
MAE 1.8999* 3.4814* 2.7438* 2.0474* 3.1033* 
MCP 59.65%* 60.00%* 62.26%* 61.57%* 56.50%* 

 
 

 

 

 

 

 

 

 

 

Table 4: Out-of-sample performance of the model specifications for each one of the 
average temperature series. The root mean squared prediction error (RMSE), the mean 
absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of
change in the value of average temperature are reported. The null hypothesis is that the 
random walk and the model under consideration perform equally well, against the alternative 
that the model under consideration performs better, have been tested via the Modified 
Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two 
asterisks denote rejection of the null hypothesis at 1% and 5% significance levels, 
respectively. RW denotes the random walk model, AR(1) the autoregressive model, BSB 
denotes the Benth & Saltyte-Benth model, CD denotes the Campbell & Diebold model, EWF 
the equal weighted forecast model and PCA denotes the Principal Component Analysis 
model. 
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Table 5 

Best Model per City 
Panel A: U.S.A. Panel B: Europe 

  1-day   1-day 
Atlanta PCA Barcelona PCA 
Chicago PCA London EWF 

Cincinnati PCA Paris EWF 
Dallas EWF Rome PCA 

Des Moines CD  Stockholm BSB & CD & EWF & PCA 
Las Vegas  EWF   

Los Angeles CD & EWF & PCA   
New York PCA   

Philadelphia PCA   
Portland CD & EWF & PCA     

    

    

    

    

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: Best Model per City. Entries report the results of the horse race among the 
employed models, BSB, CD, EWF and PCA. The results are based on the Modified Diebold-
Mariano statistic (5% significance level, one-sided test). We first test pairwise the BSB model 
using as benchmark models the CD, the PCA and the EWF models sequentially. In the same 
way we test the CD, PCA and EWF models by using all models sequentially as alternative 
benchmarks. Overall we calculate twelve modified Diebold-Mariano statistics for each city. In 
the case where the Null Hypothesis of Equal Forecasting Ability is not rejected in the 
respective pair of models we report both models. BSB denotes the Benth & Saltyte-Benth 
model, CD denotes the Campbell & Diebold model, EWF the Equal Weighted Forecast model 
and PCA denotes the Principal Component Analysis model. Bold denotes the model with the 
lowest root mean squared error (RMSE). 
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Table 6: 5-step-ahead   U.S.A.      
           Panel A: RW           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  7.9024 11.3425 10.6452 11.0815 12.7645 6.8942 4.9661 8.4174 9.2514 6.7175 
MAE 6.0712 8.9924 8.2650 8.0311 9.8119 5.5046 3.5289 6.6333 7.2542 5.3488 

          Panel B: AR(1)           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  7.6062* 10.8547* 10.1405* 10.3961* 12.1695* 6.7671* 4.5675* 8.1485* 8.9259* 6.4628* 
MAE 5.9822 8.6452* 8.0748** 7.6079* 9.4300* 5.4255 3.4445 6.4257** 7.0526** 5.1427* 
MCP 56.50%** 59.24%* 52.39% 58.90%* 57.19%* 54.45% 52.39% 56.16%* 54.79% 55.47%* 

          Panel C: BSB           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  6.0736* 8.5276* 8.0949* 8.0436* 9.4541* 5.3102* 3.8936* 6.4295* 7.0879* 5.1353* 
MAE 4.6559* 6.6739* 6.3137* 6.1387* 7.3698* 4.3222* 2.8101* 5.1007* 5.6921* 4.0196* 
MCP 70.20%* 78.08%* 71.57%* 67.80%* 70.54%* 67.12%* 68.49%* 72.26%* 75.00%* 71.91%* 

          Panel D: CD           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  6.0781* 8.6008* 8.1735* 8.0274* 9.4098* 5.3233* 3.8997* 6.4515* 7.1285* 5.1508* 
MAE 4.6789* 6.7002* 6.3708* 6.0888* 7.3091* 4.3195* 2.8331* 5.1125* 5.7421* 4.0414* 
MCP 69.17%* 78.42%* 70.54%* 66.78%* 71.23%* 68.15%* 67.80%* 72.60%* 71.91%* 71.23%* 

          Panel E: PCA           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  6.0328* 8.5428* 8.0255* 8.0672* 9.4239* 5.2209* 3.8943* 6.1939* 6.8467* 5.1407* 
MAE 4.6084* 6.7346* 6.3110* 6.2090* 7.3538* 4.2831* 2.8180* 4.8860* 5.4352* 4.0437* 
MCP 67.80%* 78.76%* 70.89%* 67.46%* 71.23%* 68.83%* 68.15%* 72.94%* 76.71%* 70.54%* 

          Panel F: EWF           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  6.0116* 8.5341* 8.0678* 8.0236* 9.4006* 5.2601* 3.8874* 6.3179* 6.9737* 5.1391* 
MAE 4.6009* 6.6886* 6.2957* 6.1237* 7.3173* 4.2939* 2.8125* 5.0090* 5.5980* 4.0330* 
MCP 69.17%* 79.45%* 71.57%* 67.12%* 70.89%* 68.15%* 69.17%* 72.60%* 74.65%* 70.89%* 

Table 6: Out-of-sample performance of the model specifications for each one of the average temperature series. The root mean squared prediction error (RMSE), the 
mean absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of change in the value of average temperature are reported. The null 
hypothesis is that the random walk and the model under consideration perform equally well, against the alternative that the model under consideration performs better, have 
been tested via the Modified Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two asterisks denote rejection of the null hypothesis at 1% 
and 5% significance levels, respectively. ΠΑ
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Table 7: 5-step-ahead Europe   
       Panel A: RW     
 Barcelona London Paris Rome Stockholm 

RMSE  4.7946 7.3849 7.3487 5.2622 8.1923 
MAE 3.7356 5.4734 5.8626 4.1239 6.3866 

      Panel B: AR(1)     
 Barcelona London Paris Rome Stockholm 

RMSE  4.6875** 6.9351* 7.0081* 5.1594** 7.0438* 
MAE 3.6492 5.2382* 5.6313** 4.0453 5.4994* 
MCP 53.76% 59.93%* 55.47%** 56.16%** 68.83%* 

      Panel C: BSB     
 Barcelona London Paris Rome Stockholm 

RMSE  3.8681* 6.2596* 5.8071* 4.2254* 6.4018* 
MAE 2.9784* 4.8880* 4.7675* 3.3822* 5.0757* 
MCP 67.12%* 67.80%* 72.94%* 66.43%* 68.49%* 

      Panel D: CD     
 Barcelona London Paris Rome Stockholm 

RMSE  3.8292* 6.2139* 5.8117* 4.2449* 6.4154* 
MAE 2.9447* 4.8460* 4.7595* 3.3825* 5.0493* 
MCP 64.38%* 68.83%* 71.91%* 64.38%* 69.17%* 

      Panel E: PCA     
 Barcelona London Paris Rome Stockholm 

RMSE  3.7942* 6.3843* 5.7609* 4.1308* 6.3900* 
MAE 2.9545* 5.0104* 4.7441* 3.2963* 5.1027* 
MCP 67.80%* 68.15%* 71.23%* 67.46%* 68.15%* 

      Panel F: EWF     
 Barcelona London Paris Rome Stockholm 

RMSE  3.8108* 6.2713* 5.7728* 4.3858* 6.3821* 
MAE 2.9407* 4.9058* 4.7528* 3.5612* 5.0544* 
MCP 65.75%* 68.83%* 71.91%* 71.91%* 69.17%* 

      
 
 

 

 

 

 

 

 

 

 

Table 7: Out-of-sample performance of the model specifications for each one of the 
average temperature series. The root mean squared prediction error (RMSE), the mean 
absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of
change in the value of average temperature are reported. The null hypothesis is that the 
random walk and the model under consideration perform equally well, against the alternative 
that the model under consideration performs better, have been tested via the Modified 
Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two 
asterisks denote rejection of the null hypothesis at 1% and 5% significance levels, 
respectively. RW denotes the random walk model, AR(1) the autoregressive model, BSB 
denotes the Benth & Saltyte-Benth model, CD denotes the Campbell & Diebold model, 
EWF the equal weighted forecast model and PCA denotes the Principal Component Analysis 
model. 
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Table 8: 10-step-ahead   U.S.A.       
           Panel A: RW          
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  7.7860 11.4831 10.4129 12.1102 13.8476 7.5694 5.2410 9.0548 10.1253 8.1587 
MAE 5.9287 9.2061 8.2376 9.0328 10.4148 5.9736 4.0304 7.2880 8.0702 6.4352 

          Panel B: AR(1)           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  7.5455 10.9844* 9.9404** 11.2468* 13.0992* 7.4194 4.7621* 8.7201** 9.6891* 7.7005* 
MAE 5.9200 8.6411* 7.9083** 8.7219 9.8888** 5.7798 3.7383** 7.0414** 7.6988** 6.1485** 
MCP 56.16% 57.53%** 56.16% 59.58%** 60.27%* 56.16% 59.58%** 54.10% 55.47% 52.05% 

          Panel C: BSB           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  5.6216* 8.3552* 7.6630* 7.9606* 9.5132* 5.3480* 3.8653* 6.2865* 6.8330* 5.3897* 
MAE 4.2063* 6.6502* 6.1267* 6.2867* 7.4570* 4.4495* 2.8033* 4.9838* 5.4996* 4.0998* 
MCP 74.65%* 81.50%* 77.39%* 71.23%* 73.97%* 71.91%* 74.65*% 78.08*% 79.45*% 73.97%* 

          Panel D: CD           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  5.5796* 8.3471* 7.7496* 7.9136* 9.4710* 5.5198* 3.8428* 6.4024* 6.9488* 5.3980* 
MAE 4.1229* 6.6488* 6.1892* 6.2629* 7.4537* 4.5448* 2.7866* 5.1060* 5.6370* 4.1208* 
MCP 75.34%* 80.82%* 76.71%* 71.91%* 72.60*% 68.49%* 73.28%* 77.39*% 76.71*% 76.02*% 

          Panel E: PCA           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  5.5956* 8.4082* 7.5926* 7.9279* 9.3913* 5.4807* 3.9279* 6.2803* 6.7122* 5.3723* 
MAE 4.2181* 6.6338* 6.0504* 6.3019* 7.3267* 4.5239* 2.8290* 5.0352* 5.4885* 4.1187* 
MCP 75.34%* 81.50%* 74.65*% 73.97%* 71.91%* 67.80%* 72.60%* 76.71*% 77.39*% 72.60%* 

          Panel F: EWF           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  5.5813* 8.3542* 7.6471* 7.9110* 9.4344* 5.4166* 3.8685* 6.2962* 6.8088* 5.3779* 
MAE 4.1587* 6.6334* 6.1038* 6.2714* 7.4001* 4.4965* 2.7935* 5.0267* 5.5180* 4.1042* 
MCP 76.71%* 81.50%* 76.71%* 70.54%* 73.28%* 67.80%* 73.97%* 77.39*% 78.76*% 73.28%* 

Table 8: Out-of-sample performance of the model specifications for each one of the average temperature series. The root mean squared prediction error (RMSE), the 
mean absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of change in the value of average temperature are reported. The null 
hypothesis is that the random walk and the model under consideration perform equally well, against the alternative that the model under consideration performs better, have 
been tested via the Modified Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two asterisks denote rejection of the null hypothesis at 1% 
and 5% significance levels, respectively. ΠΑ
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Table 9: 10-step-ahead  Europe   
       Panel A: RW     
 Barcelona London Paris Rome Stockholm 

RMSE  5.6578 7.9093 8.0825 5.8766 9.4979 
MAE 4.4780 6.0982 6.2979 4.7636 7.4719 

      Panel B: AR(1)     
 Barcelona London Paris Rome Stockholm 

RMSE  5.4873** 7.3353* 7.6130* 5.7455 8.9841* 
MAE 4.2853** 5.5792* 5.9918 4.6077 7.0725* 
MCP 56.16% 69.86%* 54.79% 52.73% 60.95%* 

      Panel C: BSB     
 Barcelona London Paris Rome Stockholm 

RMSE  4.2309* 6.7217* 5.9346* 4.4224* 6.9281* 
MAE 3.3398* 5.3222* 4.7815* 3.5756* 5.6639* 
MCP 70.54%* 76.71%* 69.17%* 72.60%* 72.60%* 

      Panel D: CD     
 Barcelona London Paris Rome Stockholm 

RMSE  4.1952* 6.6944* 5.9452* 4.4128* 7.0143* 
MAE 3.2550* 5.3119* 4.7895* 3.5865* 5.6906* 
MCP 70.54%* 76.71%* 68.49%* 71.23%* 71.23%* 

      Panel E: PCA     
 Barcelona London Paris Rome Stockholm 

RMSE  4.2003* 6.8832* 5.9151* 4.3858* 6.9130* 
MAE 3.3243* 5.4388* 4.7713* 3.5612* 5.6933* 
MCP 69.17%* 73.97%* 67.12%* 71.91%* 71.91%* 

      Panel F: EWF     
 Barcelona London Paris Rome Stockholm 

RMSE  4.1912* 6.7567* 5.9228* 4.3945* 6.9305* 
MAE 3.2814* 5.3404* 4.7730* 3.5676* 5.6719* 
MCP 70.54%* 75.34%* 69.17%* 72.60%* 69.86%* 

 
 

 

 

 

 

 

 

 

 

Table 9: Out-of-sample performance of the model specifications for each one of the 
average temperature series. The root mean squared prediction error (RMSE), the mean 
absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of
change in the value of average temperature are reported. The null hypothesis is that the 
random walk and the model under consideration perform equally well, against the alternative 
that the model under consideration performs better, have been tested via the Modified 
Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two 
asterisks denote rejection of the null hypothesis at 1% and 5% significance levels, 
respectively. RW denotes the random walk model, AR(1) the autoregressive model, BSB 
denotes the Benth & Saltyte-Benth model, CD denotes the Campbell & Diebold model, EWF 
the equal weighted forecast model and PCA denotes the Principal Component Analysis 
model. 
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Table 10: 15-step-ahead   U.S.A.      
           Panel A: RW           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  8.4536 11.8450 10.6347 10.8508 12.6938 9.0181 5.1903 10.6027 10.7030 8.4494 
MAE 6.2556 9.3932 8.2721 8.2000 9.8463 6.8309 3.8701 8.6015 8.6520 6.7000 

          Panel B: AR(1)           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  8.1327 11.2532** 10.1085 10.1347** 12.0761** 8.7200** 4.6983** 10.0847** 10.2236** 7.9031* 
MAE 6.2826 9.0431 8.1552 8.1186 9.6114 6.6596 3.6390 8.1532** 8.3645 6.2342* 
MCP 58.76%** 58.76%** 57.73% 55.67% 60.82%** 57.73% 57.73% 57.73% 57.73% 61.85%* 

          Panel C: BSB           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  8.1032 11.2696** 10.1143 10.0839** 12.0705** 8.6953** 4.6928** 10.0999** 10.2295** 7.8589* 
MAE 6.2334 9.0520 8.1476 8.0071 9.5521 6.6597** 3.6615 8.1654** 8.3757 6.2020* 
MCP 61.85%* 57.73% 56.70% 54.63% 58.76%** 55.67% 57.73% 58.76%** 57.73% 61.85%* 

          Panel D: CD           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  6.7109* 8.9841* 8.5423* 8.3709* 10.2715** 5.7512* 3.9765* 7.5274* 7.8896* 5.7956* 
MAE 5.2871** 7.0372* 6.9033** 6.4287* 8.1764* 4.6997* 3.0292* 6.1187* 6.4619* 4.6236* 
MCP 71.13%* 72.16%* 70.10%* 72.16%* 73.19%* 76.28%* 71.13%* 80.41%* 77.31%* 73.19%* 

          Panel E: PCA           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  7.1689** 9.2387* 8.9311** 8.6382* 10.4948* 8.2381** 3.9828* 7.9024* 8.4519* 6.6146* 
MAE 5.7354 7.3656* 7.2894 6.4998* 8.2895** 6.6939** 3.0359* 6.1459* 6.5739* 5.1852* 
MCP 62.88%* 73.19%* 64.94%* 73.19%* 70.10%* 65.97%* 68.04%* 75.25%* 71.13%* 74.22%* 

          Panel F: EWF           
 Atlanta Chicago Cincinnati Dallas Des Moines Las Vegas Los Angeles New York Philadelphia Portland 

RMSE  6.6636* 9.1672* 8.4777* 8.4040* 10.1579* 6.9530* 4.0167* 7.9289* 8.1580* 6.3700* 
MAE 5.2332* 7.1137* 6.9114* 6.5541* 7.8408* 5.4815* 3.0258* 6.2152* 6.4916* 5.0282* 
MCP 67.01%* 73.19%* 69.07%* 73.19%* 73.19%* 72.16%* 71.13%* 78.35%* 74.22%* 77.31%* 

Table 8: Out-of-sample performance of the model specifications for each one of the average temperature series. The root mean squared prediction error (RMSE), the 
mean absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of change in the value of average temperature are reported. The null 
hypothesis is that the random walk and the model under consideration perform equally well, against the alternative that the model under consideration performs better, have 
been tested via the Modified Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two asterisks denote rejection of the null hypothesis at 1% ΠΑ
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Table 11: 15-step-ahead  Europe   
       Panel A: RW     
 Barcelona London Paris Rome Stockholm 

RMSE  5.6577 8.3996 8.9352 6.8259 8.3507 
MAE 4.5778 6.5603 7.0798 5.2237 6.8381 

      Panel B: AR(1)     
 Barcelona London Paris Rome Stockholm 

RMSE  5.4526 7.6888* 8.2795* 6.6018 8.0157 
MAE 4.4162 5.8694* 6.6220** 5.1622 6.5432 
MCP 51.54% 67.01%* 55.67% 52.57% 51.54% 

      Panel C: BSB     
 Barcelona London Paris Rome Stockholm 

RMSE  5.4571 7.7552* 8.3420* 6.6273 8.0455 
MAE 4.4120 5.9606* 6.7003** 5.1282 6.5677 
MCP 49.48% 67.01%* 56.70% 53.60% 52.57% 

      Panel D: CD     
 Barcelona London Paris Rome Stockholm 

RMSE  4.0675* 6.5893* 6.2812* 4.4734* 6.4478* 
MAE 3.2559* 5.1863* 5.2950* 3.6156* 5.0819* 
MCP 75.25%* 76.28%* 73.19%* 73.19%* 69.07%* 

      Panel E: PCA     
 Barcelona London Paris Rome Stockholm 

RMSE  4.9605* 7.0445* 7.0935* 6.2253 7.5142** 
MAE 3.9386* 5.6302* 5.6786* 4.8883 6.2041 
MCP 64.94%* 74.22%* 68.04%* 61.85%* 63.91%* 

      Panel F: EWF     
 Barcelona London Paris Rome Stockholm 

RMSE  4.4493* 6.6283 6.8059* 5.4346* 6.7804* 
MAE 3.5698* 5.2653* 5.5055* 4.2244* 5.4695* 
MCP 70.10%* 75.25%* 73.19%* 70.10%* 71.13%* 

 
 

 

Table 11: Out-of-sample performance of the model specifications for each one of the 
average temperature series. The root mean squared prediction error (RMSE), the mean 
absolute prediction error (MAE) and the mean correct prediction (MCP) of the direction of 
change in the value of average temperature are reported. The null hypothesis is that the 
random walk and the model under consideration perform equally well, against the alternative 
that the model under consideration performs better, have been tested via the Modified 
Diebold-Mariano test (for RMSE and MAE) and the ratio test (for MCP). One and two 
asterisks denote rejection of the null hypothesis at 1% and 5% significance levels, 
respectively. RW denotes the random walk model, AR(1) the autoregressive model, BSB 
denotes the Benth & Saltyte-Benth model, CD denotes the Campbell & Diebold model, 
EWF the equal weighted forecast model and PCA denotes the Principal Component Analysis 
model. 
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Table 12 
 Best Model per City 

  Panel A: U.S.A. 
 5-day 10-day 15-day 

Atlanta BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF & PCA 
Chicago BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF & PCA 

Cincinnati BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF & PCA 
Dallas BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF & PCA 

Des Moines BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF & PCA 
Las Vegas  EWF & PCA   BSB & EWF CD 

Los Angeles BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF & PCA 
New York PCA BSB & CD & EWF & PCA CD & EWF & PCA 

Philadelphia PCA BSB & EWF & PCA CD & EWF & PCA 
Portland BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD 

  Panel B: Europe 
 5-day 10-day 15-day 

Barcelona BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF 
London BSB & CD & EWF BSB & CD & EWF & PCA CD & EWF 

Paris BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD 
Rome EWF & PCA BSB & CD & EWF & PCA CD 

Stockholm BSB & CD & EWF & PCA BSB & CD & EWF & PCA CD & EWF 
Table 12: Best Model per City. Entries report the results of the horse race among the employed models, 
BSB, CD, EWF and PCA. The results are based on the Modified Diebold-Mariano statistic (5% significance 
level, one-sided test). We first test pairwise the BSB model using as benchmark models the CD, the PCA and 
the EWF models sequentially. In the same way we test the CD, PCA and EWF models by using all models 
sequentially as alternative benchmarks. Overall we calculate twelve modified Diebold-Mariano statistics for 
each city and horizon. In the case where the Null Hypothesis of Equal Forecasting Ability is not rejected in 
the respective pair of models we report both models. BSB denotes the Benth & Saltyte-Benth model, CD 
denotes the Campbell & Diebold model, EWF the Equal Weighted Forecast model and PCA denotes the 
Principal Component Analysis model. Bold denotes the model with the lowest root mean squared error 
(RMSE). 
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Table 13 
 

Descriptive Statistics for Out-of-Sample Index Forecasts  
Panel A: U.S.A. 

  CumHDD CumCDD 
 Actual CD BSB Actual CD BSB 

349.40 338.85 330.69 274.09 262.43 263.86 Atlanta (197.35) (213.84) (216.86) (171.48) (183.43) (187.51) 
779.85 800.33 800.26 138.57 108.52 109.47 

Chicago (331.16) (316.03) (318.91) (120.94) (124.72) (126.83) 
614.08 614.66 615.27 173.47 149.90 150.31 

Cincinnati (278.87) (279.94) (278.60) (146.48) (146.59) (147.94) 
250.03 233.42 230.94 429.32 432.26 428.87 

Dallas (189.91) (196.21 (196.54) (201.31) (221.40) (219.19) 
770.79 759.45 803.66 164.12 139.45 139.48 

Des Moines (357.63) (349.88) (351.38) (138.91) (148.20) (147.93) 
248.2 248.86 250.52 532.76 510.08 511.74 

Las Vegas (197.25) (197.06) (198.87) (288.05) (285.47) (285.85) 
166.62 170.92 160.96 92.71 72.34 82.09 

Los Angeles (78.83) (87.87) (83.59) (76.72) (64.37) (68.89) 
633.77 627.60 627.60 148.76 136.17 135.91 

New York (276.38) (257.18) (254.89) (137.04) (142.57) (142.27) 
603.02 589.05 584.70 200.75 182.93 184.92 

Philadelphia (283.10) (270.12) (266.75) (160.53) (172.70) (173.99) 
524.71 519.74 521.26 76.21 58.29 59.48 

Portland (178.01) (171.83) (169.96) (83.96) (72.86) (74.15) 
Panel B: Europe 

  CumHDD CumCDD 
 Actual CD BSB Actual CD BSB 

309.157 284.35 290.24 190.17 173.47 166.52 Barcelona (163.05) (135.36) (141.27) (143.42) (152.79) (143.46) 
622.89 569.78 565.31 28.02 8.56 9.80 

London (140.64) (122.17) (121.01) (43.59) (14.75) (15.78) 
571.86 557.65 556.50 54.02 36.81 37.31 

Paris (199.29) (153.22) (152.92) (71.35) (51.48) (52.54) 
408.98 379.52 378.07 177.09 171.74 167.64 

Rome (201.96) (170.01) (166.56) (151.56) (161.66) (156.98) 
906.38 925.47 931.66 11.21 0.26 0.33 Stockholm 

(225.22) (199.04) (191.85) (22.07) (1.01) (1.26) 
 
 

 

Table 13: Descriptive Statistics. Entries report the descriptive statistics of actual and 
forecasted values for the out-of-sample period for the monthly-cumulative HDD (CumHDD) 
and CDD (CumCDD) indices for each model. In the first line we report the means of the 
aggregated monthly indices and in the second line the standard deviation of the means. 
Actual denotes the realized values, BSB denotes the Benth & Saltyte-Benth model and CD 
denotes the Campbell & Diebold model.  
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Table 14 
Accuracy Measures for Out-of-Sample Index Forecasts 

Panel A: U.S.A. 
    CumHDD CumCDD 
   CD BSB CD BSB 

RMSE 70.9695 82.1775 49.5483 64.4140 Atlanta 
MAE 55.8936 69.5223 39.0454 53.6732 

RMSE 108.8824 114.0621 58.4555 64.0806 
Chicago MAE 78.2914 82.8599 38.4136 47.0412 

RMSE 113.8036 116.6719 52.6175 77.0483 
Cincinnati 

MAE 81.0580 87.9249 39.1107 56.3042 
RMSE 74.1307 80.1074 64.5210 69.5067 

Dallas MAE 46.7473 59.4224 51.01481 58.1816 
RMSE 122.9246 130.7966 60.1441 64.4633 

Des Moines MAE 85.8205 98.1309 44.9673 51.8325 
RMSE 57.9957 64.1007 58.8996 62.6442 

Las Vegas MAE 46.2630 47.6285 41.1105 54.4406 
RMSE 39.8445 42.0901 44.3320 47.1160 

Los Angeles MAE 31.3198 33.7052 27.6602 35.1768 
RMSE 87.9198 91.9159 37.2771 42.4155 

New York MAE 60.1414 65.7332 22.2759 29.2544 
RMSE 96.2189 101.8163 49.0785 55.5301 

Philadelphia MAE 66.3705 73.4315 33.3475 43.3142 
RMSE 67.6037 58.1094 39.7201 31.8682 

Portland MAE 49.4619 47.7945 28.2733 21.4908 
Panel B: Europe 

    CumHDD CumCDD 
  CD BSB CD BSB 

RMSE 57.8036 70.1286 46.0222 45.9830 Barcelona 
MAE 43.1584 57.0803 34.0599 34.1088 

RMSE 81.0145 91.9492 40.3667 38.8639 
London MAE 59.0825 72.1307 20.2896 20.2338 

RMSE 75.7042 89.9485 54.2982 55.9755 
Paris 

MAE 56.3229 72.4141 31.5774 35.4848 
RMSE 60.9612 82.9348 35.5837 38.2636 

Rome MAE 47.0816 67.0995 26.1102 29.7207 
RMSE 100.9543 107.8050 22.7953 23.9287 Stockholm 
MAE 74.3320 86.9862 9.3014 10.8851 

 

 

 

Table 14: Accuracy measures for out-of-sample index forecasts. 
The root mean squared prediction error (RMSE) and the mean 
absolute prediction error (MAE) of the out-of-sample period for the 
monthly-cumulative HDD (CumHDD) and CDD (CumCDD) indices 
for each model are reported.  BSB denotes the Benth & Saltyte-Benth 
model and CD denotes the Campbell & Diebold model.  
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