
UNIVERSITY OF PIRAEUS 
 

 
 

DEPARTMENT OF BANKING AND FINANCIAL MANAGEMENT  
 

M.Sc. IN FINANCIAL MANAGEMENT AND BANKING (FULL TIME) 
 
 
 
 
 
 
 

MASTER’S THESIS 
 
 

Can the Term Structure of Petroleum Futures 
be forecasted in Weekly Horizons? 

 
 
 
 

Dimitrios Michalopoulos 
 
 
 

SUPERVISOR: Dr. George Skiadopoulos 
 
 
 
 
 

COMMITTEE: 
Angelos Antzoulatos 

Nikitas Pittis 
George Skiadopoulos 



 2 

TABLE OF CONTENTS 
 
CHAPTER 1: INTRODUCTION .........................................................3 

1.1 PURPOSE .......................................................................................................3 
1.2 LITERATURE REVIEW...............................................................................4 
1.3 PETROLEUM MARKETS..........................................................................10 
1.4 TIME SERIES APPROACH .......................................................................10 
1.5 ECONOMIC APPROACH ..........................................................................11 
1.6 CONCLUSIONS...........................................................................................13 

CHAPTER 2: PETROLEUM PROPERTIES ................................... 14 
2.1 INTRODUCTION ........................................................................................14 
2.2 CRUDE OIL CHARACTERISTICS ...........................................................15 

Specific Gravity ..............................................................................................15 
Sulfur Content ................................................................................................15 
Acid Content ...................................................................................................16 

2.3 PETROLEUM MARKETS..........................................................................16 
2.4 CRUDE OIL FUTURES TRADING ...........................................................19 

NYMEX Light, Sweet Crude Oil Futures Contract ......................................19 
ICE Brent Crude Futures Contract...............................................................20 

2.5 REFINED PETROLEUM PRODUCTS AND MARKETS ........................21 
Heating oil.......................................................................................................22 
Gasoline...........................................................................................................22 

2.6 THE DATA SET...........................................................................................23 
CHAPTER 3: PRINCIPAL COMPONENTS ANALYSIS ............... 30 

3.1 PCA DESCRIPTION ...................................................................................30 
3.2 PCA RESULTS AND DISCUSSION...........................................................32 

Separate PCA .................................................................................................32 
Joint PCA........................................................................................................38 

3.3 PCA AND FORECASTING POWER .........................................................42 
Separate PCA: Regression and Results..........................................................42 
Joint PCA: Regression and Results ...............................................................50 

CHAPTER 4: ECONOMIC ANALYSIS ........................................... 56 
4.1 ECONOMIC DATA .....................................................................................56 
4.2 ECONOMIC VARIABLES AND FORECASTING POWER....................59 

Economic analysis: The regression settings and results................................60 
4.3 ECONOMIC VARIABLES MODEL ..........................................................61 
4.4 ARMA-GARCH MODELS..........................................................................67 

Specification....................................................................................................67 
Regressions and Results .................................................................................69 

CHAPTER 5: VAR MODEL .............................................................. 75 
CHAPTER 6: CONCLUSIONS.......................................................... 81 
REFERENCES .................................................................................... 84 

 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 3 

CHAPTER 1: INTRODUCTION 

1.1 PURPOSE 

 

Modeling the futures curve of various assets is a matter of extensive investigation in 

financial literature. In the following study we will examine the evolution of the term 

structure of petroleum futures. Especially, our research will be focused on crude oil, 

heating oil and gasoline futures traded on New York Mercantile Exchange (NYMEX) 

and crude oil futures traded on Intercontinental Exchange (ICE). Furthermore, we will 

use two different approaches in order to derive two models which could have 

explaining and predictive power over our data set.  

The procedure of description the oil futures term structure is a point of great interest 

because it can be used by the energy market participants who aim to use this kind of 

analysis for hedging and speculative purposes, assuming some specific trading 

strategies. In a more theoretical academic level there is also a great number of 

applications including pricing of derivatives and the valuation of parameters related to 

oil and its byproducts. So, a model suitable to describe the dynamics of future prices 

curve could have serious impact on the estimation of factors like convenience yields 

and storage costs, that are of great importance in testing already existing theories and 

the derivation of new methodologies. As far as our paper is concerned, we will try to 

estimate the weekly term structure of the petroleum futures mentioned before so as to 

offer some evidence that would be useful to the pursuit of similar purposes both on 

economic and academic environment. 
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1.2 LITERATURE REVIEW 

 

In accordance with our introduction it is widely recognized that predictive models and 

their efficient performance consist an important volume of the financial literature and 

a variety of different assets are involved in relative researches. The obtained results 

and their theoretical background often motivate a lot of applications, which provide 

meaningful information to analysts. These applications, in a more general form, have 

to do with assets pricing, trading strategies planning and risk valuation. Consequently, 

the researches try to identify the dynamics of the term structure of studied assets 

introducing different methodologies and approaches. Usually, the subsequent step is 

to check the forecasting power of a theoretically well-established model. 

Of course, it is not possible to have a full review of the literature and this is not the 

target of the forthcoming study. Instead of this we decide to present a restricted 

reference to some articles, which are representative of different methodologies or are 

somehow connected with the object of the paper. To organize better the structure of 

the review we can specify two main categories or types of forecasting models. The 

discretization of the models is related to the kind of independent variables that each 

model takes into consideration. In this section a distinction between the two 

approaches will be provided.  

The first approach is known as time series forecasting approach and involves trying to 

predict the future prices of series taking its previous values and/or previous values of 

an error term as the explanatory variables. Then, using statistic methods and some 

kind of data manipulation, the researcher tends to come out with a model assumed to 

have the necessary characteristics. These models have the advantage to be less time 

and effort consuming as far as data collection is concerned, because they demand only 

the records for the variable under consideration, but the retained from the 

mathematical procedure parameters are often of no meaning in economic terms.  

The second approach, named economic (structural) approach, identifies a relation 

between the dependent variable and some other economic or financial factors, like the 

risk free interest rate, the market’s portfolio return, commodities prices and everything 

else could influences the studied asset’s price. Significant drawbacks of these models 

are the volume of data to be handled and the identification of the appropriate causal 
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variables. 

Hereafter, a variety of individual works will be commented in a comprehensive way. 

The following researches introduce different methods which are applied on a 

spectrum of assets. 

Moving on to models based on the first approach we can start with Taylor’s (1980) 

article. He proved that the random walk model doesn’t stand for the daily returns of 

some commodities. Moreover, he introduced a price trend model which seemed to be 

more accurate in the explanation of the observed autocorrelations and the description 

of the observed returns. 

Jegadeesh (1990) used cross sectional regressions in monthly stock returns and found 

them positive or negative correlations related to monthly returns at time-varying lags. 

Then, he used his findings to consider trading strategies which were profitable. 

The monthly US stock returns were the studied asset in Conrad’s and Kaul’s (1989) 

paper. They concluded that as much as 25% of the variation in monthly portfolio 

returns could be explained by the behavior of the previous month’s returns. Similarly, 

Chelley-Steeley (2001) presented an ARMA (1,1) model which could determine up to 

15% of the variation in the monthly returns of a UK stock portfolio. The innovation of 

these two papers is the fact that the authors used weekly returns as explanatory 

variables in order to describe monthly returns. So, they were able to impose increased 

weights and, therefore, explanatory value to most recent returns.  

Models similar to the two mentioned above are simple versions of the first approach 

which have been used throughout the literature. A review of these methods was made 

by Cochrane (1999). We should note that Cochrane’s paper refers also to occasions of 

the second approach. 

Continuing with more complex models we provide some further references to 

Principal Components Analysis (PCA), which, otherwise, is one of the methodologies 

to be used in the following dissertation.  

Schwartz and Cortazar (1994) studied the curve of two copper future contracts traded 

on Commodity Exchange of New York (COMEX). They used daily futures returns 

and apply PCA on their data so as to obtain a three factor model adequate to 
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reproduce the stochastic movement of futures prices. The three factors were capable 

of capturing the 93%, 4% and 1% of the total variance of the returns, respectively. 

The first of them was fairly stable across the contracts’ maturities represents a level 

factor responsible for shifts or falls of the futures curve. The second one, 

characterized by steepness, drives the short term and long term returns to opposite 

directions. The third factor illustrates the effect of shocks that influence medium term 

futures in opposite way compared to short and long term futures. It is worth to be 

mentioned that this evidence is in line with the terminology introduced by Litterman 

and Scheinkman (1991) about the retained principal components.  

Tomalsky and Hindanov (2002) extended this work to the petroleum futures markets. 

To be more specific they used the method to describe the term structure of log returns 

of crude and heating oil futures traded on NYMEX. They come up with the same 

three factors when they performed PCA separately in crude and heating oil futures. 

These factors were again able to explain 99.89% and 99.63% of the total variance 

respectively. The joint application of the technique resulted in the derivation of four 

factors that explain 99.36% of the total variance. They also tested the seasonality 

effect on these contracts without to derive a rigorous statistical conclusion.  

Jarvinen (2003) added to these researches the cases of Brent crude oil and pulp. The 

data set is collected by monthly observations. The point where this paper is primarily 

differentiated is the use of par swap rates rather than the futures prices for the 

estimation of the forward curve through PCA. As a result of this practice, how 

Jarvinen assumes, the first three obtained factors show a more complex behavior than 

the one introduced by Litterman and Scheinkman (1991). Furthermore, these factors 

cannot explain up to 90% of the total variance either for crude oil or pulp. 

The former papers are not related to the effort of forecasting future prices but their 

main target has to do with the identification of the forward curve. A forecasting model 

has examined by Cabiddo and Fiorenzani (2004), who applied PCA on the time series 

of the prices of twelve Brent future contracts traded on ICE. The results are 

comparable to previous researches as the first three components represent level, slope 

and convexity changes, respectively, and they explain more than the 99% of the total 

variance. Something that deserves to be mentioned is the conclusions of the authors 

that there is some kind of interaction between the components, but the use of vector 

autoregressive models to exploit this evidence doesn’t improve the forecasting 
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performance of the method, at least when the research is restricted to the 

macromovements of the curve which are described by the slope, steepness and 

curvature. 

Chantziara and Skiadopoulos (2006) studied the term structure of petroleum futures 

trying also to examine the predictive power of PCA. Their data set consists of futures 

traded on NYMEX and on IPE and they found similar results in accordance with the 

existing literature and they formed some conclusions about the spillover effects 

between these markets.  

On the other hand the second approach affects the methodology of several papers 

motivating the researchers to test the presence of numerous variables for explanatory 

purposes. 

A brief categorization of this kind of models was made by Connor (1995). His study 

is associated with models designed to capture sources of predictability, like 

macroeconomic, statistical and fundamental factors, in stock returns. 

Pesaran and Timmerman (1995) examined the robustness of the evidence on 

predictability of US stock returns by simulating the decision process of an open 

minded investor who uses historically available information to select a set of 

independent economic factors. 

Min Qi (1999) extended this report using as independent variables nine economic and 

financial variables in order to examine the predictability of S&P 500 index. His major 

innovations lay on the fact that his approach allows the investor to select not only 

between different causal parameters, but also between various functional forms 

through which stock returns could be forecasted. Min Qi involves the use of neural 

networks to the derivation of his model.      

Feedforward neural networks have been incorporated by Gencay and Stengos (1998). 

Their article proposes that feedforward network models gain in predictability when 

simple buy-sell signals, based on return and volume indicators, are included in them. 

Their data panel consists of the Dow Jones Industrial Average (DIJA) daily returns.  

The second approach includes two articles written by Stock and Watson (2002a, 

2002b). These researches are based on Principal Components Analysis but they used 
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this method in a different way than the one we have already mentioned. Instead of 

applying PCA straight on their dependent variables, Stock and Watson estimated their 

principal components from a dataset of 215 and 149 monthly macroeconomic 

variables respectively. So, these variables are, substantially, their explanatory 

variables and through their decomposition they introduce models, which use the 

obtained factors so as to create forecasts for eight basic macroeconomic indicators of 

the US, in the first paper, and for the Reserve Board's Index of Industrial Production 

in the second study.   

Moving to commodity futures case we should refer to Schwartz (1997). He developed 

one, two and three factor models, where the first factor is the spot price of the 

commodity, the second factor the instantaneous dividend yield and the third factor the 

stochastic interest rates, in order to examine each model's contribution to the 

derivation of futures curve of his dependent data set. This set included weekly prices 

of future contracts on oil, copper and gold. Schwartz concluded that the two and three 

factor models outperform the one factor model for various futures maturities. 

Later, Miltersen and Schwartz (1998) developed a differentiated form of Schwartz's 

three factor model. They distinguished between futures and forwards and their 

subsequent stochastic convenience yields. They apply the new model on pricing 

options which had futures on copper as underlying asset. This discrimination of the 

parameters and also the time lag between the maturities of the options and the 

underlying futures resulted in different prices for the options. 

Clewlow and Strickland (1999) introduced a one factor model, similar with the one 

derived by Schwartz (1997). They take into account the spot price, the initial forward 

curve and the volatility function parameters and used the model to price derivatives. 

The authors described a way of pricing American and exotic energy derivatives using 

trinomial trees. 

Audet, Heiskanen, Keppo and Vehviläinen (2004) derived a model oriented to the 

identification of the term structure of electricity futures and forwards traded on Nordic 

market. Their data consisted of weekly prices from Nord Pool and they ended up with 

three applications of the model: conditional forecasting of the forward curve, when 

forecasts for the spot price is available, pricing of options on electricity forwards and 

futures, checking the accuracy of a forward curve model that uses only a finite 
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number of curve points and therefore is disable to capture all the uncertainties 

between these points. 

In 2004 Ribeiro and Hodges developed Schwartz's two factor model by ruling out 

arbitrage opportunities and considering time varying spot price and convenience yield 

volatilities. Their data set consisted of weekly observations of light crude oil futures 

traded on NYMEX and they found that their model slightly outperform Schwartz's 

one. 

More recently Khan, Khokhor and Simin (2006) contribute a model, which purpose is 

to describe the dynamics of futures on commodities term structure in order to estimate 

the correct risk premia of these various commodities. They used a data set with 

composition similar with that studied by Schwartz (1997) consisted of weekly prices 

of NYMEX futures on crude oil, copper, gold and natural gas and they derive a 

regression model with the inventory levels, the spot price and the net hedging pressure 

as explanatory variables, which examine the relationship between these factors and 

futures weekly returns. 

An interesting result as far as predictability is concerned, has been presented by 

Sadorsky (2002). He found that macroeconomic risk factors have significant 

forecasting power in petroleum future markets. Using an ARMAX-ARCH model and 

four macroeconomic indicators as causal factors he managed to capture both the 

correct sign and magnitude of monthly returns of crude oil, heating oil and unleaded 

gasoline futures traded on NYMEX. 

The major target of the following paper is to contribute a comparison between two 

aspects of the approaches mentioned above. We will use two specific articles as guide 

lines for the models that will be derived. The first model will be based on Principal 

Components Analysis in the form that is proposed in Chantziara, Skiadopoulos (2006) 

and the second model will be consistent with the parametric method introduced by 

Sadorsky (2002). The data set will be collected from futures on crude oil, heating oil 

and gasoline traded on NYMEX and crude oil futures traded on ICE, referring to the 

variables to be forecasted. For the explanatory parameters we will follow the same 

patterns as proposed by Sadorsky (2002). 

As a result of the investigation we will examine and compare the explaining and 

forecasting performance of each model. Furthermore, the data set will be obtained 
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from weekly observations so as to differentiate the sample compared to daily or 

monthly prices used in Chantziara, Skiadopoulos (2006) and Sadorsky (2002) 

respectively. Additionally, the presence of spillover effects throughout the petroleum 

markets will be testified, just like in Chantziara's etc. (2006) paper. 

 

1.3 PETROLEUM MARKETS 

 

Firstly we will derive the model inspired by Chantziara, Skiadopoulos (2006) 

approach. To continue with this research it would be helpful we provide an overview 

of the underlying commodities and their trading behaviour, aiming to offer a more 

complete understanding of the petroleum market properties. Obviously, this practice 

will be extended to a more detailed reference to the oil futures and the relative 

markets (NYMEX, ICE), including the trading and settlement procedures. 

To be more consistent with the previous literature we will present a restricted 

reference to patterns that have identified through oil and other commodity futures 

markets. This analysis will give us the opportunity later to test the results of our study 

with widely recognised properties of commodity futures and to see if they agree with 

patterns like backwardation and contango. We will also offer the theoretical 

background to check the presence of spillover effects. 

1.4 TIME SERIES APPROACH 

 

As an introduction to our parametric construction we would like to note that the data 

set will contain the future contracts which are available every time in the market and 

have classified with respect to their maturity horizon. To be more specific we will 

preserve the data obtained in Chantziara and Skiadopoulos (2006) paper. Thus, we 

will use the same generics allowing the rolling over contracts so as to keep in the 

same series futures with almost fixed maturities. These generics will be obtained from 

the first fifteen, by shortest maturities, crude oil futures traded on NYMEX (CL1 - 

CL15), the first twelve heating oil futures traded on NYMEX (HO1 – HO12), the first 

eleven gasoline futures traded on NYMEX (HU1 – HU11) and the first nine crude oil 
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futures traded on ICE (CO1 – CO9). These series will be statistically tested in order to 

estimate their correlations for the contracts with the same maturities and to identify 

their price movements. Of course, the statistical interpretation will include the test of 

stationarity, which is necessary for the application of PCA. This way we will decide if 

we can use the futures prises or we will need to take as variables futures first 

differences or returns. When we have ended up with our final data series we will 

check them in terms of normality, skewness, kurtosis, etc. 

The following section will be a general description of PCA. Main result of this 

analysis is the reduction of data's dimension. This can be done by transforming the 

correlated variables of our data panel to a new set of uncorrelated variables (principal 

components, PC's) and then dropping out the PC's which explain a very small amount 

of our original data variance.  

After that we will perform PCA both separately and jointly to our futures time series 

so as to come up with the PC's that we will keep in order to derive the regression 

models which will describe the dynamics of the term structure of our dependent 

variables. These regressions will take into account the already obtained PC's at time  

t-1, as independent variables, so as to identify their forecasting adequacy over the 

dependent variables (futures differences or returns) at time t. From the forthcoming 

results it would be crucial we form our conclusions through the comparison with 

Chantziara, Skiadopoulos (2006) results, so as to detect possible disagreements 

emerging from the use of weekly observations instead of daily. 

 

1.5 ECONOMIC APPROACH 

 

At the second part of our research we will reproduce a parametric approach similar to 

the one introduced by Sadorsky (2002). According to previous literature asset returns 

in other markets, like stock or bond, can be related to macroeconomic factors. This 

idea had been extended to commodity future markets by Bessembinder and Chan 

(1993), Baum and Barkoulas (1996), Bjornson and Carter (1997). Sadorsky's 

contribution to this methodology was the derivation of an ARMAX-ARCH model 

which was designed to face the residuals heteroskedasticity, non-normality and serial 
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correlation. This model describes the dynamics of crude oil, heating oil and unleaded 

gasoline futures on NYMEX monthly returns assuming as independent variables some 

macroeconomic factors. Sadorsky managed to construct a model which seemed to be 

reliable as far as the explanation point is concerned and also effective for predictive 

purposes over some specific time horizons. 

 Moving on, we will construct a similar model and use the same macroeconomic 

indicators as explanatory parameters. These factors are the monthly return on the 

annual dividend yield on the S&P 500 common stock portfolio, the monthly return on 

the annual yield on Moody's long term BAA-rated bond minus the yield on AAA-

rated bonds, as an interpretation of the default risk premium, the monthly return on 

the annual yield on the 90-day Treasury bill, as an estimation of the risk free interest 

rate and, as a fourth parameter, an approximation of the monthly excess return of the 

market portfolio. As a matter of fact, it would be of great importance for our study we 

use the before mentioned parameters in weekly time steps and take into consideration 

similar variables for the UK economy in order to identify spillover effects, but mainly 

to explain in amore adequate way the dynamics of crude oil futures traded on ICE. 

Consequently we need to come up with a statistical analysis of the independent 

variables. A same analysis for the futures returns will have been already done during 

the derivation of the first model in this paper, so it doesn't make sense to repeat the 

procedure and we have to check the explanatory variables for normality and 

stationarity.  

The next step will be a brief presentation of models that could be used to describe the 

dynamics of conditional futures returns using as explanatory factors the lagged 

macroeconomic variables. Then, our study will take into account the procedure 

introduced by Sadorsky and we will conclude to the most appropriate model. 

Sadorsky proposed an ARMAX-ARCH model, which resulted in properly 

specification of the residuals.  

The author tested the out-of-sample performance of this model and he discovered that 

it consistently outperforms a driftless random walk model. In addition to this, 

Sadorsky's model succeeds in forecasting returns' direction and magnitude for various 

time steps. So, we will test the performance of our model in a similar way trying to 

check its forecasting power considering its root-mean-square-error compared to 
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RMSE of a driftless random walk model and another criterion to check the model's 

ability in direction predictions. Last test for the model's efficiency will be the planning 

of a simple trading strategy, following Sadorsky's example, so as to see if this strategy 

could be profitable. Finally we will compare our findings with Sadorsky's results and 

see if his model's forecasting power is confirmed by our effort. 

 

1.6 CONCLUSIONS 

 

To conclude with the results of the research we will summarize the two models we 

derived. We will focus on each model's advantages and disadvantages in order to 

compromise with the challenging topic of explaining and forecasting the weekly 

dynamics of the term structure of petroleum futures. This way we could have the 

appropriate evidence to come up with the more effective between these two models, 

which would have been evaluated under various criteria. Our findings will be 

compared with the literature on commodity futures or other assets in general in a 

theoretical level. Finally, we will concentrate our study in the weaknesses of the 

research. Moreover, we will refer to possible extensions which could be targets of 

further investigation and will not be included in our paper.  
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CHAPTER 2: PETROLEUM PROPERTIES 

2.1 INTRODUCTION 

 
Oil is the world economy’s most important source of energy and is, therefore, critical 

to economic growth. Its value is driven by demand for petroleum products which are 

derived from the different types of crude oil through the refining process.  The largest 

sources of supply are Saudi Arabia, Russia, the United States, Iran, Mexico, China, 

and Europe’s North Sea.  

The Organization of Petroleum Exporting Countries (OPEC), an international cartel of 

oil-producing countries, is the single most important production-related entity. It 

produces about 40 percent of the world’s daily consumption of crude oil.  

Petroleum products power virtually all motor vehicles, aircraft, marine vessels, and 

trains around the globe. In total, products derived from oil, such as motor gasoline, jet 

fuel, diesel fuel, and heating oil, supply nearly 40 percent of the energy consumed by 

households, businesses, and manufacturers worldwide. Natural gas and coal, by 

comparison, each supply less than 25 percent of the world’s energy needs.  

 So the crude oil value and characteristics are of great importance for the global 

economy and it is crucial we present a brief analysis of these elements that are 

determined by two main factors: location and quality and this way the crude oil 

“markers” or “benchmarks” are introduced.     

 

Crude oil price Benchmarks were first introduced in the mid 1980's. The most widely 

used crude oil price benchmarks in the world are West Texas Intermediate (WTI), 

used primarily in the U.S; Brent, used primarily in Europe; and the Organization of 

Petroleum Exporting Countries (OPEC) market basket, used around the world. (Other 

benchmarks, like Dubai, also known as Fateh, are used in Asia.) WTI is very light and 

very sweet. This makes it ideal for producing products like low-sulfur gasoline and 
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low-sulfur diesel. Brent is not as light or as sweet as WTI but it is still a high-grade 

crude. The OPEC basket is slightly heavier and sourer than Brent.  

 
 

2.2 CRUDE OIL CHARACTERISTICS 

 

The quality of crude oil is determined by a number of characteristics that affect the 

proportions of transportation fuels and petroleum products produced when the oil is 

refined. The two most common measurements of crude oil quality are the specific 

gravity (which is measured in degrees) and the sulfur content of the oil. Acid content 

is also a factor in determining the corrosive properties of the crude oil entering the 

refinery.  

Specific Gravity  

The specific gravity is typically measured using the American Petroleum Institute 

(API) standard or the API gravity of the crude oil. The API gravity is the measure of 

the weight of crude oil in relation to the weight of water (water has an API gravity of 

10 degrees). Crude oil is characterized as heavy, intermediate, or light with respect to 

its API gravity.  

Heavy Crude: Crude oils with API gravity of 18 degrees or less is characterized as 

heavy. The oil is viscous and resistant to flow, and tends to have a lower proportion of 

volatile components. Fifty one percent of California crude oil has an average API of 

18 degrees or less.  

Intermediate Crude: Crude oils with an API greater than 18 and less than 36 degrees 

are referred to as intermediate. Forty eight percent of California crude oil has an 

average API between 18 and 36 degrees.  

Light Crude: Crude oils with an API gravity of 36 degrees or greater. Light crude oil 

produces a higher percentage of lighter, higher priced premium products.  

Sulfur Content  

Crude oil is defined as “sweet” if the sulfur content is 0.5 percent or less by weight 
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and “sour” if the sulfur content is greater than 1.0 percent. Sulfur compounds in crude 

oil are chemically bonded to hydrocarbon molecules in the oil. Additional equipment 

in the refinery is required to remove the sulfur from crude oil, intermediate 

hydrocarbon feedstocks, and finished products. Transportation fuel specifications 

require extremely low sulfur contents, usually less than 80 parts per million (ppm).  

Acid Content  

Another characteristic of crude oil is the total acid number (TAN). The TAN 

represents a composite of acids present in the oil and is measured in milligrams (mg). 

A TAN number greater than 0.5 mg is considered high. However, some acids are 

relatively inert. Thus, the TAN number does not always represent the corrosive 

properties of the crude oil. Further, different acids will react at different temperatures 

– making it difficult to pinpoint the processing units within the refinery that will be 

affected by a particular high TAN crude oil. Nonetheless, high TAN crude oils 

contain naphthenic acids, a broad group of organic acids that are usually composed of 

carboxylic acid compounds. These acids corrode the distillation unit in the refinery 

and form sludge and gum which can block pipelines and pumps entering the refinery. 

High TAN oils account for an increasing percentage of the global crude oil market. 

Crude oil with a TAN greater than 1.0 mg increased in the world market from 7.5 

percent in 1998 to 9.5 percent in 2003. 

 

2.3 PETROLEUM MARKETS 

 
The principal activities involved in moving crude oil from its source to the ultimate 

consumer are:  

Ø Production, which involves finding, extracting, and transporting crude oil;  

Ø Refining, the process by which crude oil is turned into products such as 

gasoline 

Ø Distribution and marketing, which focus on moving those products to final 

consumers  

These activities occur within a global marketplace – an extensive physical 
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infrastructure that connects buyers and sellers worldwide, all supported by an 

international financial market. It links an international network of thousands of 

producers, refiners, marketers, brokers, traders, and consumers buying and selling 

physical volumes of crude oil and petroleum products throughout this chain of 

production. The international market also includes futures and other financial 

contracts that allow buyers and sellers to efficiently insure themselves against 

significant price and other business risks, thereby minimizing the impact of price 

volatility on their operations. In sum, the global oil market comprises thousands of 

participants who help facilitate the movement of oil from where it is produced, to 

where it is refined into products, to where those products are ultimately sold to 

consumers.  

 Over the last 25 years, the global oil industry has seen a transformation in the 

contractual structures used to purchase and sell crude oil. A market structure formerly 

based on rigid long-term, commercial arrangements has been replaced by a more 

efficient one that allows buyers and sellers greater flexibility in establishing 

commercial relationships that better meet their respective needs.  

Whereas “spot” and “futures” markets have been long-established institutional 

structures for many commodities, they are relatively new to the oil industry. Their 

uses, however, have grown rapidly and are now a well-developed part of the market. 

Today it is from the spot and futures markets that the global oil market – producers, 

refiners, marketers, traders, consumers, investment banks, hedge funds, and so forth – 

receives competitively determined market signals that inform buyers and sellers on 

current and future supply and demand conditions allowing these market participants to 

form their own trading strategy in order to pursue speculative or risk hedging 

purposes.  

The term “spot markets” is used to describe transactions which involve the near-term 

purchase and sale of a commodity, such as crude oil and refined products. In the crude 

oil market, “spot” contracts typically involve delivery of crude over the coming 

month, e.g., a contract signed in June for delivery in July. Spot markets are often 

referred to as the “physical market” since they entail the buying and selling of 

physical volumes.  These markets provide the benefit of allowing buyers and sellers, 

e.g., refiners and marketers, to more easily adjust their crude supplies to reflect near-

term supply and demand conditions in both the product markets and the crude oil 
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markets.  

A futures contract, in contrast to a spot transaction, concerns the future purchase or 

sale of crude oil or petroleum products. Specifically, it is a contract that carries the 

obligation for delivery of a given quantity of crude in the future. The contract 

specifies the volume, type or grade of crude oil, the price, the future time in which the 

crude is bought or sold, and the particular location to which it is to be delivered. The 

buying and selling of futures contracts occurs on organized exchanges.  

 At present, major global petroleum futures markets include the New York Mercantile 

Exchange (NYMEX), London-based ICE Futures (formerly the International 

Petroleum Exchange) and the emerging Tokyo Commodity Exchange, of which the 

former two are the most influential. Some information for the two first markets will be 

mentioned taking into account that this study is concerned about contracts traded in 

these specific platforms. 

The NYMEX, the largest commodity exchange in the world, was established in 1872. 

It launched the first crude oil futures contract in 1983, based on West Texas 

Intermediate crude oil. By 2001, it had become the world’s highest-volume futures 

contract. Because of its excellent liquidity and price transparency, the contract is used 

as a principal international pricing benchmark. 

The leading European marketplace for regulated trading of energy contracts, the IPE 

is a London-based energy futures and options exchange. The IPE lists the benchmark 

Brent crude oil futures contract, which is relied upon for pricing an estimated two-

thirds of the world's traded oil products. The IPE offers fully electronic trading in 

futures and options on Brent crude oil and gas oil, and futures on emissions, natural 

gas, and electricity. In June 2001, the IPE became a wholly owned subsidiary of 

Intercontinental Exchange (ICE), an electronic marketplace for trading both futures 

and over-the-counter (OTC) contracts in natural gas, power, and oil founded in 1999 

and headquartered in Atlanta. In April 2005, the entire ICE portfolio of energy futures 

became fully electronic, ending the open-outcry form of trading for Brent crude 

futures, diesel futures and options that had lasted for a quarter century. The ICE is the 

world’s leading electronic and over-the-counter trading market for energy futures 

contracts, with offices in the United States, Europe and Singapore. In London, Brent 

crude is traded on both spot and futures markets. This light, sweet crude oil sourced 
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from Britain’s North Sea forms a benchmark for crude oil trade in the region and oil 

exports to Northwest Europe, the North Sea, the Mediterranean, Africa and the 

Middle East. 

 
 

2.4 CRUDE OIL FUTURES TRADING 

 
NYMEX Light, Sweet Crude Oil Futures Contract 

Crude oil began futures trading on the NYMEX in 1983. It is the most heavily traded 

futures contract based on a commodity worldwide. One NYMEX Division light, 

sweet crude oil futures contract consists of  1,000 U.S. barrels (42,000 gallons) and 

the currency used for pricing purposes is the U.S. dollar, which is used as the medium 

for most oil futures transactions. Open outcry trading is conducted from 9:00 a.m. 

until 2:30 p.m. New York time and electronic trading is conducted from 6:00 p.m. 

until 5:15 p.m. via the CME Globex® trading platform, Sunday through Friday. There 

is a 45-minute break each day between 5:15PM (current trade date) and 6:00 PM 

(next trade date). Minimum price fluctuation corresponds to $0.01 (1¢) per barrel or 

$10.00 per contract whereas maximum daily price fluctuation is $10.00 per barrel 

($10,000 per contract) for all maturities. If any contract is traded, bid, or offered at the 

limit for five minutes, trading is halted for five minutes. When trading resumes, the 

limit is expanded by $10.00 per barrel in either direction. If another halt were 

triggered, the market would continue to be expanded by $10.00 per barrel in either 

direction after each successive five-minute trading halt. The existing crude oil futures 

are listed nine years forward using the following listing schedule: consecutive months 

are listed for the current year and the next five years; in addition, the June and 

December contract months are listed beyond the sixth year. Additional months will be 

added on an annual basis after the December contract expires, so that an additional 

June and December contract would be added nine years forward, and the consecutive 

months in the sixth calendar year will be filled in. As far as the duration of the trading 

procedure for each contract is concerned we have to mention the following 

information, trading terminates at the close of business on the third business day prior 

to the 25th calendar day of the month preceding the delivery month. If the 25th 

calendar day of the month is a non-business day, trading shall cease on the third 

business day prior to the business day preceding the 25th calendar day. Settlement is 
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arranged through physical delivery in Cushing, Oklahoma. The deliverable 

commodities vary because in addition to WTI crude there are also other types of crude 

assumed to be acceptable1. All deliveries are ratable over the course of the month and 

must be initiated on or after the first calendar day and completed by the last calendar 

day of the delivery month.  

ICE Brent Crude Futures Contract 

The trading of Brent crude futures contract began in London International Petroleum 

Exchange (IPE) in 1988. Its trading unit is 1,000 net barrels (42,000 US gallons) of 

Brent crude oil and it is quoted in U.S. dollars and the trading hours in the ICE trading 

platform extend from 01:00 until 23:00 daily London time (20:00 to 18:00 New York 

time) daily, except Monday morning/Sunday evening when the opening time is 00:00 

London (local time) / 19:00 New York (EST). There is a minimum price fluctuation 

calculated up to one cent per barrel or $10 per contract, but there are no upper limits 

at daily price fluctuation. The number of the different contract maturities traded each 

day fluctuates from 61 to a maximum of 72 consecutive months. This happens 

because twelve additional contract months will be added each year on the expiry of 

the prompt December contract month. Trading ceases at the close of business on the 

business day immediately preceding the 15th day prior to the first day of the delivery 

month, if such 15th day is a banking day in London. If the 15th day is a non-banking 

day in London (including Saturday), trading terminates at the business day 

immediately preceding the first business day prior to the 15th day. ICE Brent Futures 

is a deliverable contract having as underlying asset the current pipeline export quality 

Brent blend as supplied at Sullom Voe. There is also an option to cash settle against 

the published settlement price i.e. the ICE Futures Brent Index2 price for the day 

following the last trading day of the futures contract. 

 
                                                
1 Specific domestic crudes with 0.42% sulfur by weight or less, not less than 37° API gravity nor more than 42° API gravity. The 
following domestic crude streams are deliverable: West Texas Intermediate, Low Sweet Mix, New Mexican Sweet, North Texas 
Sweet, Oklahoma Sweet, South Texas Sweet. 
Specific foreign crudes of not less than 34° API nor more than 42° API. The following foreign streams are deliverable: U.K. 
Brent, for which the seller shall receive a 30 cent per barrel discount below the final settlement price; Norwegian Oseberg Blend 
is delivered at a 55¢–per–barrel discount; Nigerian Bonny Light, Qua Iboe, and Colombian Cusiana are delivered at 15¢ 
premiums 
2 The Exchange issues, on a daily basis at 12 noon local time, the ICE Futures Brent Index which is the weighted average of the 
prices of all confirmed 21 day Brent/Forties/Oseberg (BFO) deals throughout the previous trading day for the appropriate 
delivery months. These prices are published by the independent price reporting services used by the oil industry.   
The ICE Futures Brent Index is calculated as an average of the following elements:   
i)First month trades in the 21 day BFO market. 
ii)Second month trades in the 21 day BFO market plus or minus a straight       average of the spread trades between the first and 
second months.  
iii)A straight average of all the assessments published in media reports.   
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2.5 REFINED PETROLEUM PRODUCTS AND MARKETS 

 
Crude oil needs to be refined in order to produce the gasoline and other products 

demanded by consumers. Refining a barrel of crude oil involves a series of complex 

processes. The first stage for all refineries focuses on the initial distillation in which 

the barrel of crude oil is heated and broken down into its component parts. Subsequent 

processes, often referred to as “conversion,” focus on transforming lower-valued 

products into higher-valued products by either removing impurities, such as sulfur, or 

further transforming lower-valued products, such as bunker fuel suited for ships, into 

higher-valued products, such as gasoline for automobiles. It is the size and scope of 

these various “conversion” processes that typically distinguish differences in 

refineries. As a result, different refineries will prefer different types of crude oil. 

Conceptually, the market for refined petroleum products is very similar to the crude 

oil market in that there is widespread buying, selling, and trading of products in both 

the physical market (e.g., spot market) and the futures market. And just as with crude 

oil, there are significant international flows of refined products. The United States, for 

example, imports approximately 3.5 million and exports approximately one million 

barrels per day of refined products. 

Trade in petroleum products reflects the international market’s efforts to match what 

is produced (supply) with what consumers prefer (demand). In the United States, for 

example, the majority of exports tend to involve products for which there is little or 

no domestic demand. This would include commodities produced as by-products of the 

refining process and that are no longer consumed domestically, such as petroleum 

coke; products for which there is little seasonal demand, such as heating oil sent to the 

Southern Hemisphere during our summer season; and products for which there is no 

domestic market due to environmental specifications, such as residual fuel and 

gasoline that fails regional fuel specifications. Imports, in contrast, reflect domestic 

demand for products such as gasoline and winter heating oil, i.e., products demanded 

by U.S. consumers that cannot otherwise be met by domestic refiners. 

In addition, petroleum products and futures are also traded on organized exchanges, 

such as NYMEX and the Chicago Mercantile Exchange, just like crude oil. Thus, the 

interactions of traders on organized exchanges establish transparent prices for 

petroleum products, as well as crude oil. Petroleum product deliveries in particular 
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areas will often be at prices based on those determined on an organized exchange, 

with adjustments for differences in location and the precise type of petroleum product 

being traded. 

 

This paper will focus on two specific refined petroleum products, gasoline and heating 

oil and, especially, their futures which are traded on NYMEX. So it is helpful we refer 

to the characteristics of these products and the contracts on them. 

Heating oil 

Heating oil, also known as No. 2 fuel oil, accounts for about 25% of the yield of a 

barrel of crude, the second largest "cut" after gasoline. Its NYMEX futures trading 

unit is 42,000 U.S. gallons (1,000 barrels) and price quotation is in U.S. dollars. Open 

outcry trading is conducted from 9:00 a.m. until 2:30 p.m and electronic trading is 

conducted from 6:00 p.m. until 5:15p.m. via the CME Globex® trading platform, 

Sunday through Friday. There is a 45-minute break each day between 5:15 p.m. 

(current trade date) and 6:00 p.m. (next trade date). The minimum price fluctuation is 

$0.0001 (0.01¢) per gallon ($4.20 per contract) and the maximum comes up to $0.25 

per gallon ($10,500 per contract) for all months. If any contract is traded, bid, or 

offered at the limit for five minutes, trading is halted for five minutes. When trading 

resumes, the limit is expanded by $0.25 per gallon in either direction. If another halt 

were triggered, the market would continue to be expanded by $0.25 per gallon in 

either direction after each successive five-minute trading halt. The futures maturities 

correspond to 36 consecutive months which trading ceases at the close of business on 

the last business day of the month preceding the delivery month. The settlement type 

is the physical delivery of heating oil fulfilling the industry standards for fungible No. 

2 heating oil and the delivery may only be initiated the day after the fifth business day 

and must be completed before the last business day of the delivery month. 

Gasoline 

Gasoline is the largest single volume refined product sold in the United States and 

accounts for almost half of national oil consumption. It is a highly diverse market, 

with hundreds of wholesale distributors and thousands of retail outlets, making it 

subject to intense competition and price volatility. In NYMEX gasoline futures 
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contract has a trading unit of 1,000 barrels or 42,000 U.S. gallons and it is quoted in 

U.S. dollars and cents. The open outcry trading takes place from 10:05 a.m. until 2:30 

p.m. (New York time)and the Electronic trading is conducted from 6:00 PM until 5:15 

p.m. via the CME Globex® trading platform, Sunday through Friday. There is a 45-

minute break each day between 5:15 p.m. (current trade date) and 6:00 p.m. (next 

trade date). The price fluctuation follows exactly the same procedure with the one we 

mentioned above for heating oil. There are contracts covering maturities for twelve 

consecutive months and their trading terminates at the close of business on the last 

business day of the month preceding the delivery month. The settlement type is again 

physical delivery which may only be initiated the day after the fifth business day and 

must be completed before the last business day of the delivery month. The deliverable 

asset's grade and quality specifications have to conform to industry standards for 

Phase II Complex Model Reformulated Gasoline in accordance with Colonial Pipeline 

Co. specifications for fungible A grade, 87 octane index gasoline. 

 

2.6 THE DATA SET 

 

After the description of petroleum products and markets and the reference to its 

specific futures trading we move on with the definition of our dissertation data set. 

The dataset includes the weekly settlement futures prices of the aforementioned 

contracts. These elements have been obtained using Bloomberg data platform and the 

corresponding tickers which are CL, CO, HO and HU for the NYMEX Crude oil, the 

ICE Crude oil, the NYMEX Heating oil and Gasoline respectively. Bloombberg gives 

us the possibility to roll over contracts keeping the same time to maturity thus we are 

capable of creating generic series of contracts with fixed maturities at any point in 

time. For example CL1 denotes the NYMEX Crude oil future which is the nearest to 

maturity each time, CL2 the second nearest to maturity NYMEX Crude oil future and 

so on. For the purposes of our study we didn't choose the whole spectrum of the 

existing contracts so as to exclude some illiquid futures of the long term maturities. So 

we restrict our dataset to the first fifteen generics of the NYMEX Crude oil futures 

(CL1-CL15), the first nine of the ICE Crude oil futures (CO1-CO9), the first twelve 

of the NYMEX Heating oil (HO1-HO12) and eleven of NYMEX Gasoline (HU1-

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 24 

HU11). Unfortunately, we have to say that we didn't succeed in dropping out all the 

illiquid contracts especially in the case of Gasoline which futures settlement prices 

include a lot of missing data. As we have already mentioned our data consist of 

weekly prices covering the period from 11/08/1991 to 12/29/2006. To visualise the 

term structure evolution of the aforementioned commodity futures we derive Figure 1. 

These Figures show the differences between the first shortest and the second shortest 

to maturity futures as well as between the first and the contract with the longest 

maturity that is included in our data set. Obviously, the latter one presents more 

extreme prices showing a more unstable behaviour, we can also note the changes from 

backwardation to contango and vice versa. This is a common observation among the 

two series and the "backwarded" prices are indicated by the positive prices of the 

differences whereas contango phenomenon appears with the presence of negative 

sign. 
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Figure 1: Evolution of all four commodities Term structure futures prices.  The solid line denotes the difference of thefirst shortest minus the second shortest future contract and the dotted one 
the difference of the first minus the last expiring future contract. Sample period: 8/11/1991-29/12/2006    
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Term structure of the NYMEX Heating Oil

-40
-30
-20
-10

0
10
20
30
40
50

11
/8

/9
1

11
/8

/9
2

11
/8

/9
3

11
/8

/9
4

11
/8

/9
5

11
/8

/9
6

11
/8

/9
7

11
/8

/9
8

11
/8

/9
9

11
/8

/0
0

11
/8

/0
1

11
/8

/0
2

11
/8

/0
3

11
/8

/0
4

11
/8

/0
5

11
/8

/0
6

First minus second First minus longest

Term Structure of the NYMEX Gasoline

-30

-20

-10

0

10

20

30

40

8/
21

/9
2

6/
18

/9
3

4/
15

/9
4

2/
10

/9
5

12
/8

/9
5

10
/4

/9
6

8/
1/

97

5/
29

/9
8

3/
26

/9
9

1/
21

/0
0

11
/1

7/
00

9/
14

/0
1

7/
12

/0
2

5/
9/

03

3/
5/

04

12
/3

1/
04

10
/2

8/
05

8/
25

/0
6

First minus second First minus longest
 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 26 

 
 

 

Before we move on to our analysis we had to check the series for stationarity having 

in mind that Principal Components Analysis   presupposes that we have to do with 

stationary series. In order to come up with this necessity we applied an Augmented 

Dickey-Fuller (ADF) test on the generic series of our dataset. Our findings (see Table 

1) ensure that all level series are non-stationary at the 1% significance level, as it is 

partially shown by the term structures evolution diagrams. To overcome this problem 

we create new time series using the first differences of the futures prices trying to 

keep in touch with the former bibliography (see Chantziara, Skiadopoulos 2005). 

Therefore, the new obtained Augmented Dickey-Fuller (ADF) tests indicate that we 

construct stationary series at the 1% significance level (Table 1). These time series, 

which are used from now and then in this paper, are denoted by the tickers DCL, 

DCO, DHO and DHU for the first differences of NYMEX and ICE Crude oil, 

NYMEX Heating oil and Gasoline futures prices, respectively. These series summary 

statistics are reported in Table 2 and through the application of Jarque-Bera test it is 

proved that we have to do with not normally distributed time series  
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Table 1: Unit Root Tests fot he weekly futures prices (level) and their first differences. They are reported by commodity (NYMEX Crude Oil, ICE Crude Oil, Heating Oil and 
Gasoline). Sample period: 8/11/1991-29/12/2006 

Unit Root Tests 
          
  ADF test statistic   ADF test statistic 
  NYMEX Crude Oil generic contracts   NYMEX Heating Oil generic contracts 
    Level First differences    Level First differences 

  CL1 -0.50982 -29.70871   HO1 -0.44121 -24.17412 
  CL2 -0.25964 -29.15258   HO2 -0.17390 -23.92135 
  CL3 -0.05102 -28.90070   HO3 -0.01574 -23.52586 
  CL4 0.13880 -28.74740   HO4 0.06538 -22.84939 
  CL5 0.30830 -28.65841   HO5 -0.14613 -21.99653 
  CL6 0.46177 -28.65093   HO6 -0.00244 -29.08501 
  CL7 0.59832 -28.70490   HO7 0.16784 -29.23616 
  CL8 0.73415 -28.73774   HO8 0.35299 -29.74054 
  CL9 0.84330 -28.75565   HO9 0.54612 -30.24050 
  CL10 0.96137 -28.69782   HO10 0.72037 -30.43903 
  CL11 1.07461 -28.65739   HO11 0.88380 -29.87467 
  CL12 1.16544 -28.65988   HO12 1.07008 -29.62780 
  CL13 1.25568 -28.58120      
  CL14 1.33604 -28.52576      
  CL15 1.41392 -28.46684      
          
  ADF test statistic   ADF test statistic 
  ICE Crude Oil generic contracts   NYMEX Gasoline generic contracts 
   Level First differences    Level First differences 

  CO1 -0.21015 -28.37426   HU1 -1.45441 -15.62695 
  CO2 0.05817 -28.46260   HU2 -0.87789 -29.19844 
  CO3 0.26240 -28.49099   HU3 -0.98056 -28.95774 
  CO4 0.42306 -28.42729   HU4 -0.46244 -29.16088 
  CO5 0.56481 -28.46912   HU5 -0.46244 -29.16088 
  CO6 0.69786 -28.49164   HU6 0.85058 -21.63205 
  CO7 0.81487 -28.58786   HU7 1.77608 -12.34339 
  CO8 0.93778 -28.50681   HU8 0.93479 -26.65156 
  CO9 1.05226 -28.44341   HU9 1.38784 -26.69466 
       HU10 0.96270 -25.47753 
     HU11 0.62094 -23.57118 

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 28 

Table 2: Summary Statistics of the first differences of the futures prices. The elements include each expiry for each one of the four commodities (NYMEX Crude Oil, ICE 
Crude Oil, Heating Oil and Gasoline). 

Summary statistics of the first differences of the futures prices  
                
                
Sample: 11/08/1991 12/29/2006 

NYMEX Crude Oil generic contracts 
  DCL1 DCL2 DCL3 DCL4 DCL5 DCL6 DCL7 DCL8 DCL9 DCL10 DCL11 DCL12 DCL13 DCL14 DCL15 

 Mean 0.048 0.050 0.051 0.053 0.054 0.055 0.055 0.056 0.057 0.057 0.058 0.058 0.058 0.059 0.059 
 Std. Dev. 1.444 1.339 1.252 1.178 1.118 1.067 1.027 0.990 0.963 0.934 0.907 0.888 0.869 0.852 0.837 
 Skewness -0.316 -0.333 -0.311 -0.287 -0.243 -0.194 -0.156 -0.098 -0.081 -0.037 0.013 0.041 0.066 0.089 0.119 
 Kurtosis 6.579 6.241 6.277 6.535 6.782 7.022 7.237 7.452 7.573 7.736 7.951 8.071 8.286 8.487 8.687 

                
 Jarque-Bera 434.740 360.340 366.270 422.070 478.590 537.500 594.230 653.790 689.170 738.500 806.780 846.730 920.290 991.950 1066.500
 Probability 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                
                

 Observations 790 790 790 790 790 790 790 790 790 790 790 790 790 790 790 
                
                

                
Sample: 11/08/1991 12/29/2006       

ICE Crude Oil generic contracts       
  DCO1 DCO2 DCO3 DCO4 DCO5 DCO6 DCO7 DCO8 DCO9       

 Mean 0.049 0.051 0.053 0.054 0.055 0.056 0.056 0.057 0.057       
 Std. Dev. 1.307 1.205 1.136 1.083 1.040 1.003 0.974 0.945 0.919       
 Skewness -0.223 -0.185 -0.175 -0.148 -0.109 -0.076 -0.048 -0.018 0.002       
 Kurtosis 6.383 6.301 6.425 6.669 6.910 7.125 7.266 7.484 7.731       

                
 Jarque-Bera 383.237 363.210 390.149 445.974 504.793 560.902 599.307 661.960 736.878       
 Probability 0 0 0 0 0 0 0 0 0       

                
 Observations 790 790 790 790 790 790 790 790 790       
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Table 2: Summary Statistics of the first differences of the futures prices (Cont’d) 
Summary statistics of the first differences of the futures prices  

             
             

Sample: 11/08/1991 12/29/2006 

NYMEX Heating Oil generic contracts 
  DHO1 DHO2 DHO3 DHO4 DHO5 DHO6 DHO7 DHO8 DHO9 DHO10 DHO11 DHO12 

 Mean 0.114 0.120 0.127 0.134 0.140 0.145 0.149 0.152 0.155 0.157 0.160 0.163 
 Std. Dev. 4.653 4.222 3.957 3.737 3.532 3.348 3.158 2.996 2.863 2.775 2.716 2.645 
 Skewness 0.025 -0.056 -0.161 -0.206 -0.167 -0.186 -0.100 0.034 0.121 0.082 0.057 0.132 
 Kurtosis 7.516 8.227 8.875 9.202 8.530 8.451 8.507 8.653 8.615 8.403 8.364 8.486 

             
 Jarque-Bera 671.538 899.772 1139.719 1271.606 1010.218 982.790 999.503 1052.177 1039.616 961.918 947.405 992.943 
 Probability 0 0 0 0 0 0 0 0 0 0 0 0 

             
             

 Observations 790 790 790 790 790 790 790 790 790 790 790 790 
             
             

             
Sample: 11/08/1991 12/29/2006  

NYMEX Gasoline generic contracts  
  DHU1 DHU2 DHU3 DHU4 DHU5 DHU6 DHU7 DHU8 DHU9 DHU10 DHU11  

 Mean 0.113 0.132 0.107 0.126 0.126 0.165 0.175 0.152 0.172 0.165 0.166  
 Std. Dev. 5.417 4.508 4.080 3.614 3.614 3.175 3.112 3.082 2.964 3.049 2.979  
 Skewness -0.259 -0.385 -0.362 -0.389 -0.389 -0.400 -0.269 -0.402 -0.551 -0.440 -0.674  
 Kurtosis 9.041 8.172 7.621 7.939 7.939 8.377 10.290 10.247 10.320 11.692 10.417  

             
 Jarque-Bera 1210.214 895.298 712.890 809.389 809.389 942.996 1674.121 1617.078 1582.136 1974.851 1325.985  
 Probability 0 0 0 0 0 0 0 0 0 0 0  

             
             

 Observations 790 786 782 777 777 766 752 730 693 621 560  
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CHAPTER 3: PRINCIPAL COMPONENTS ANALYSIS 

In this Chapter we present the mathematical theory for the Principal Components 

Analysis, and we analyze the retained PCs interpretation compared with the previous 

literature findings. The last part of the Chapter consists of the regression definition 

and the forecasting power checking of our model.  

 

3.1 PCA DESCRIPTION 

 

Principal Components Analysis (PCA) is a technique for simplifying a dataset, by 

reducing multidimensional datasets to lower dimensions for analysis. Technically 

speaking, PCA is an orthogonal linear transformation that transforms the data to a 

new coordinate system such that the greatest variance by any projection of the data 

comes to lie on the first coordinate (called the first principal component), the second 

greatest variance on the second coordinate, and so on. The fact that PCA proposes an 

orthogonal linear transformation means that these factors are perpendicular to each 

other. PCA can be used for dimensionality reduction in a dataset of correlated 

variables because it maintains its variance-covariance structure and gives us the 

opportunity to retain those characteristics of the dataset that contribute most to its 

variance, by keeping lower-order principal components and ignoring higher-order 

ones. Such low-order components often contain the "most important" aspects of the 

data. But this is not necessarily the case, depending on the application. Moreover, 

PCA allows us to compress our data making possible the visualization of them, 

assuming a small PCs number, and the identification of some specific general patterns 

among our variables. In this dissertation, we follow Chantziara, Skiadopoulos (2005, 

2007) consideration applying PCA on the first differences of petroleum futures 

weekly prices.   

For a more formal view of the method we refer briefly to the mathematical 

background.  Considering our data set we can assume p variables which are observed 

across time steps t by t=1,…,T. So, each one variable constitutes a (T×1) vector. The 
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purpose of the PCA is to transform this data set to a new one consisting of p artificial 

variables (Principal Components - PCs hereafter) uncorrelated to each other 

reproducing the original variance-covariance structure. So, we have the folowing 

equation: 

XAZ = (1) 

 

where Z is the (T×p) matrix of principal components, X is the (T×p) matrix of the 

original variables, and A is a (p×p) matrix of coefficients called loadings. The first 

order condition of this maximization problem described as  

0)'( =− AIlXX i (2) 

il  are the Lagrange multipliers and I  is a (p×p) identity matrix. XX '  represents the 

original variance covariance matrix and make obvious that the for the equation 

solution we have just to find this matrix eigenvalues il  and eigenvectors A . Instead of 

using the variance-covariance matrix we often use the correlation matrix in order to 

standardize our variables avoiding to include the measurement units of them in our 

analysis. As far as the retained results are concerned we have to note that we obtain 

the variance of the ith PC from the ith eigenvalue and the total variance. Moreover, 

the total variance of the X  variables equals the sum of the PCs variances. 

Until now we have reproduced the original variance cvariance matrix and we have 

retained uncorrelated artificial variables from our data, but we have not yet reduce our 

data dimensionality. To do that we can simply exclude some of the retained principal 

components keeping the ones that explain the greater part of the total variance. Doing 

that we maintain r PCs which are less than the estimated p from the p number of the 

original variables (r<p). Then we come up with the following equation 

)(
'

)( rrr AZX ε+= (3) 

All matrices are defined as before, but we have reduce the number of columns from p 
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to r, )(rε  is a (T×p) matrix of residuals because now we have excluded some PCs 

responsible for some information. The remaining PCs explain a specific percentage of 

the total variance. This percentage is called communality and it is calculated from the 

loadings. The loadings show the way that a change in the corresponding PC affects 

each variable.    

As far as the determination of the retained PCs number is concerned we could refer to 

some formal or informal criteria. There are statistical base tests we can find in 

Jackson (1991) or Basilevsky (1994) which make assumptions about the original 

variables distribution and there are also rules which are simple in use but they don’t 

enjoy theoretical support. The fact that even the statistical robust methods work under 

assumptions and can give misleading results we decide to choose the PCs number 

using interpretation evidence from previous literature and considering the percentage 

of the total variance each additional factor explain.  

 
3.2 PCA RESULTS AND DISCUSSION  

 

Separate PCA 

After the extraction of stationary series from our data, we have already described, we 

perform PCA on the first differences of the weekly settlement prices separately for 

every one of the four commodities. So our data are the stationary time series DCL1-

DCL15, DCO1-DCO9, DHO1-DHO12 and DHO1-DHO11 for the time period 

11/15/1991 to 12/29/2006 on which we applied PCA using the correlation matrix 

analysis. 

Table 3 shows the descriptive statistics of the first three retained PCs for each 

commodity. As it was the case with the differences of the futures settlement prices we 

observe from the Jarque-Bera test results that their PCs are also non-normally 

distributed. 
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Table 3: Summary statistics of the first three standardized principal components obtained from the separate PCA. The results are reported by commodity (NYMEX Crude 
Oil, ICE Crude Oil, Heating Oil and Gasoline) 

Panel A: Separate PCA - Standardised PCs 
Sample: 11/08/1991 12/29/2006        
          

NYMEX Crude Oil   NYMEX Heating Oil 
 CLPC1 CLPC2 CLPC3    HOPC1 HOPC2 HOPC3 
          
 Mean 0.000 0.000 0.000    Mean 0.000 0.000 0.000 
 Std. Dev. 1 1 1    Std. Dev. 1 1 1 
 Skewness 0.443 -0.527 -0.270    Skewness 0.323 0.292 -0.260 
 Kurtosis 11.024 6.712 7.584    Kurtosis 7.823 11.047 11.659 
          
 Jarque-Bera 2145.106 490.217 701.346    Jarque-Bera 779.342 2142.643 2476.942 
 Probability 0 0 0    Probability 0 0 0 
          
 Observations 790 790 790    Observations 790 790 790 
          
          

ICE Crude Oil   NYMEX Gasoline 
 COPC1 COPC2 COPC3    HUPC1 HUPC2 HUPC3 
          
 Mean 0.000 0.000 0.000    Mean 0.000 0.000 0.000 
 Std. Dev. 1 1 1    Std. Dev. 1 1 1 
 Skewness 0.133 -0.492 0.195    Skewness -0.415 -0.525 -0.336 
 Kurtosis 8.752 7.092 5.658    Kurtosis 11.327 8.581 5.747 
          
 Jarque-Bera 1091.364 583.009 237.575    Jarque-Bera 1709.801 787.510 195.271 
 Probability 0 0 0    Probability 0 0 0 
          
 Observations 790 790 790    Observations 586 586 586 
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Table 4    shows the cumulative variance that is explained by the first four Principal 

Components. For the first three commodities we observe that there are not important 

differences between the weekly data analysis and former bibliography (see Tomalsky 

and Hindanov 2002 and Chantziara, Skiadopoulos 2005). The first three PCs explain 

more than 98.5% of the total variance while the fourth PC adds less than 1% offering 

only a marginal increase to the cumulative percentile. The slightly different result 

comes from the NYMEX Gasoline PCs. We find out that the first three components 

are now "responsible" for the 96.2% of the total variance. This disagreement has its 

justification when we look at the pairwise correlations between the different gasoline 

maturities. These are smaller compared to the other commodities. As a proof of this 

statement the correlations matrices are reported in Appendix   . Although we had this 

evidence it is not a sign of a possible inadequacy of the first three PCs, so, we 

continue our analysis using these components trying to be in accordance with the 

previous literature. Furthermore, we should refer to the fact that even in this extreme 

case the variance explained by the first three PCs sums up to a percentile greater than 

96% of the total.      

Table 4: Total percentage of variance explained by the first four principal components obtained from 
the separate PCA. Results are reported by commodity (NYMEX Crude Oil, ICE Crude Oil, Heating Oil 
and Gasoline). Sample period: 8/11/1991-29/12/2006.  

Principal components and explained Variance 

Panel A: Separate PCA 

     

Pincipal component NYMEX Crude Oil IPE Crude Oil NYMEX Heating Oil NYMEX Gasoline 

     

1 96.481 97.626 92.232 88.195 

2 99.523 99.597 96.637 93.721 

3 99.856 99.853 98.671 96.173 

4 99.939 99.913 99.482 97.361 
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Then we analyze the behaviour of the correlation loadings for the first three PCs. 

Starting with NYMEX Crude Oil in Figure 2 we can see that the first component 

affects the term structure of this contract by the same amount and to the same 

direction. We can say that it offers a parallel shift to NYMEX Crude Oil Futures first 

differences. The second PC can be mentioned as a slope factor. It corresponds to 

different reactions between short and long term futures. When the second component 

changes it influences the contracts with the seven shortest maturities in the same way 

and the next eight futures in the exactly opposite way. This influence is greater in 

absolute magnitude for the very short and very long term futures. The third 

component corresponds to a curvature effect. It moves short and long term maturities 

to one direction and mid term to another. As far as this commodity is concerned the 

shortest maturity future is in line with the latest four maturities futures from the 

fifteen of our sample. The rest contracts move to the opposite direction for a given 

change of the third PC. The fourth component shows a noisy behaviour which doesn't 

allow us to shape stable conclusions. So, as we have already mentioned, it is excluded 

from our analysis for all four commodities. 

 
 
Figure 2: NYMEX Crude Oil correlation loadings of the first three separate Principal Components. 
Sample period:8/11/1991-29/12/2006 
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Moving to ICE Crude Oil we present Figure 3 which plots its PCs correlation 

loadings. This picture has obvious similarities with the previous one. The first three 

factors represent a parallel shift, a slope and a curvature effect respectively. A 

common characteristic has to do with the steeper third PC for the short expiries 

compared to the long ones. 

 

Figure 3: ICE Crude Oil correlation loadings of the first three separate Principal Components. Sample 
period:8/11/1991-29/12/2006 
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The case of NYMEX Heating Oil is very near to the aforementioned commodities. Of 

course we should note that the first three PC's explain slightly less variance than they 

did for the Crude Oils but again it is more than 98.5% of the total (see Table 4). 

Figure 4 shows the same performance for the PCs. Again we have the first PC as a 

level factor, the second affects differently the four shortest maturity futures than the 

rest eight which expire five to twelve months from the given day and the third can be 

interpreted as a curvature factor which has more symmetrical effects because it is not 

so steep as we observed in Crudes case. 
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Figure 4: NYMEX Heating Oil correlation loadings of the first three separate Principal Components. 
Sample period:8/11/1991-29/12/2006 
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So far our results were generally in agreement with the former studies. Cortazar and 

Schwarz 1994, Clewlow and Strickland 1999b, Tomalsky and Hindanov 2002, 

Chantziara and Skiadopoulos 2005 found similar results as far as the dynamics of the 

PCs and the variance they explain are concerned. The fact that our dataset includes 

weekly prices instead of daily which was the object in Chantziara, Skiadopoulos 

paper didn't seem to influence our PCA's performance. So it would make sense to 

maintain the same evidence from the NYMEX Gasoline. Figure 5 shows a picture 

which can be regarded as similar with the other plots. Gasoline's first three PCs 

present a little more complex behaviour when we first look at their correlation 

loadings. A more comprehensive study of the findings ensures that these PCs have 

some elements in common with the other commodities' components. The first one of 

them can be interpreted as a parallel shift for all maturities and still drives the futures 

to the same direction with slightly different volumes throughout the maturities. To 

make it clear we can say that a change in the first PC moves all the contracts to the 

same direction but it affects to a greater change for mid term maturities and a smaller 

for short term maturities futures. The second factor is positive for the first five months 

expiries and negative for the next seven keeping the characteristic of being greater in 

absolute magnitude for very short or very long term maturities. It only lose its slope 
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characteristic for the forth and fifth shortest maturity contracts, which have exactly 

the same correlation loading. Finally the third factor represents again a curvature 

effect for the third PC which is omitted for the same aforementioned contracts.     

 
 
Figure 5: NYMEX Gasoline correlation loadings of the first three separate Principal Components. 
Sample period:8/11/1991-29/12/2006 
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Joint PCA 

Our next step to the PCA performance on our data is the simultaneous application of 

the method on all commodities and across the different maturities. Our target is to 

obtain PCs which are able to describe the dynamics of all four commodities and the 

joint evolution of their weekly prices term structure (see Tomalsky and Hindanov 

2002, Chantziara and Skiadopoulos 2005). 
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Table 5 shows the descriptive statistics for these PCs, whereas Table 6 informs us 

about the variance explained by the first four PCs. Easily, we can detect from the 

Jarque-Bera test that these components have a non-normal distribution. Furthermore, 

we have exclude our data listwise when we have to do with missing values in any 

commodity so as to avoid non synchronous effect in the derivation of our analysis.    

 
 
 
Table 5: Summary statistics of the first three standardized principal components obtained from the 
joint PCA. 
 

Panel B: Joint PCA - Standardised PCs 
    
Sample: 11/08/1991 12/29/2006  
    
 PC1 PC2 PC3 
    
 Mean 0.000 0.000 0.000 
 Std. Dev. 1 1 1 
 Skewness -0.103 -0.505 -0.384 
 Kurtosis 8.234 12.741 8.063 
    
 Jarque-Bera 669.926 2341.766 640.349 
 Probability 0 0 0 
    
 Observations 586 586 586 

 

 

                    

 

 
 
 
 
 
 

Table 6: Total percentage of variance explained by the first four principal components obtained from 
the joint PCA. Sample period: 1/1/1993-31/12/2003.  ΠΑ
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Table 6 shows that 

the cumulative 

variance explained 

by the first three or 

four PCs is smaller 

compared to the 

separate PCs. We 

should note that this 

amount is even 

smaller than the 

percentile explained by the Gasoline's PCs, but assuming the first three of them we 

still can explain as much as 95% of the total variance, which is a critical value often 

used as a rule of thump for the derivation of the appropriate PCs number. 

 Figure 6 plots the correlation loadings of the first three components retained from the 

joint Analysis. We can see that the first PC continues to present similar behaviour, at 

least for each one of the four commodities separately (NYMEX Crude, Heating Oil 

and Gasoline, and ICE Crude). In this case it can be interpreted as a parallel shift. In 

the shortest maturities of each one commodity we can observe lower values compared 

to the longer ones. The second PC keeps its slope interpretation and these effects are 

more intense in Heating Oil and Gasoline case. The only differentiation has to do with 

Gasoline where the slope effect shows more complex behaviour across the maturities. 

We should note the second PC moves Heating Oil and Gasoline towards the same 

direction and the rest two commodities (Crude Oils) to the opposite according to the 

quantities determined by the separate slope effects, as they are interpreted by the 

loadings. The third PC has the same slope interpretation as we mentioned for the 

second, as far as Crude Oil futures are concerned. Changes of this component provoke 

similar changes to the Crude Oils, whereas they affect in amore unstable way the two 

other commodities. Heating Oil contracts show a more complex reaction depending 

on their expiry months. This is comparable to the curvature effects of the separately 

Principal components and explained Variance 

Panel B: Joint PCA 

Pincipal 

component     

1 87.613 

2 91.450 

3 93.462 

4 95.039 
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obtained third PCs, with the differentiation of the loading getting again smaller for the 

last examined maturities. Gasoline PCs seem to be similar with the two Crudes 

presenting slope characteristics, but the last maturities give a slight curvature effect, 

because the correlation loading of the eleven month expiring contract is greater than 

the previous one.  

Figure 6: Correlation loadings of the first three joint Principal Components.  
Sample period:8/11/1991-29/12/2006 
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3.3 PCA AND FORECASTING POWER 

 

In this chapter we test the predictive power of two multivariate regression models 

which are based on our PCA results. These models try to identify the forecasting 

skills of simple regression models, when we are occupy as our independent variables 

the retained PCs we have already analyse. Obviously, we have to do with a time series 

forecasting approach because we try to predict our dependent variable using its own 

dynamics which we have summarize in a restricted amount of PCs. We move on with 

the derivation of our models. Firstly, the weekly futures prices changes are regressed 

on the twelve PCs (three for each commodity) retained by the Separate PCA. The 

second part of the chapter includes the regression of the contracts changes on the three 

PCs retained from the joint PCA. 

 

Separate PCA: Regression and Results 

 

As we have mentioned this procedure is substantially similar to a time series 

forecasting approach. The main advantage of our method is the possibility to handle a 

significantly smaller amount of causal variables. Now we have as dependent variables 

the futures differences for all four commodities across 47 different maturities in 

contract (15 for NYMEX Crude, 9 for ICE Crude, 12 for NYMEX Heating Oil and 11 

for NYMEX Gasoline). If we would like to detect a simple regression model we 

should calculate 47 regressions with 47 explanatory variables for each one of them. 

Instead of this, we use the twelve retained PCs (CLPC1-3, COPC1-3, HOPC1-3, 

HUPC1-3) as causal parameters because they explain the evolution of the term 

structures for each one commodity. Moreover, our analysis offers the advantage of 

checking for spillover effects across commodities allowing a specific contract to have 

as explanatory variable PCs that are obtained from the other commodities. Of course 

this would not be applicable if we had chosen a univariate autoregression model, for 

example, in order to reduce our parameters. 
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To be more specific we introduce the regressions we estimate and the corresponding 

parameters. These are as follows: 

∑ ∑∑∑
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(4) 

j
tDF  denotes the weekly changes of futures prices at time t . 

 Indicator j represents the different generics (CL1-CL15, CO1-CO9, HO1-HO12, 

HU1-HU11) of the contracts on the four commodities, NYMEX Crude Oil, IPE Crude 

Oil, NYMEX Heating Oil and NYMEX Gasoline respectively 

1, −tkCLPC , 1, −tkCOPC , 1, −tkHOPC  and 1, −tkHUPC  are the time series of the three per 

commodity principal components we have extracted from the PCA at time t-1 

kα , kb  and kc  are the retained from the regression coefficients 

We should also note that we detect heteroskedasticity in the regression residuals, so 

we used Newey-West standard errors, which correct both for heteroskedasticity and 

autocorrelation, to obtain our coefficients t-statistics.  

Table 7 shows the results for regressions per commodity across all maturities. The 

first column includes the dependent variables per commodity for all the corresponding 

maturities. The next thirteen columns present the constant term and the PCs 

coefficients with their t-statistics underneath them. In addition to this we have put into 

frames the coefficients which t-statistics indicate that they are statistically significant 

at the 5% significance level. The following two columns show the 2R  statistic and the 

Durbin –Watson statistic for first order serial correlation. The last one presents the 

probability estimated by the F-statistic. This element allows us to reject the null 

hypothesis that all coefficients have zero values for the confidence level we want to 

examine. In our analysis we refer to a confidence level of 5%.  
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Table 7: Forecasting Power of the Separate PCs 

NYMEX Crude Oil 
j     C a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3   R-squared     Durbin-Watson stat    Prob(F-stat) 

                    

 Coefficient 0.072 -0.221 -0.368 0.024 0.169 0.439 -0.078 -0.322 -0.242 -0.255 0.392 0.145 0.166  0.034 2.031 0.002 DCL1 
 t-Statistic 1.305 -0.786 -1.540 0.289 0.754 2.256 -1.120 -1.501 -1.564 -1.609 2.188 1.272 1.014     

                    

 Coefficient 0.075 -0.260 -0.351 -0.042 0.233 0.430 -0.036 -0.278 -0.229 -0.255 0.368 0.108 0.127  0.024 2.041 0.012 DCL2 
 t-Statistic 1.439 -0.967 -1.575 -0.530 1.071 2.340 -0.554 -1.390 -1.616 -1.702 2.184 1.018 0.807     

                    

 Coefficient 0.076 -0.252 -0.326 -0.051 0.247 0.412 -0.020 -0.257 -0.230 -0.256 0.358 0.103 0.105  0.023 2.035 0.016 DCL3 
 t-Statistic 1.540 -0.974 -1.590 -0.690 1.170 2.376 -0.322 -1.360 -1.704 -1.804 2.271 1.011 0.705     

                    

 Coefficient 0.076 -0.265 -0.315 -0.052 0.269 0.398 -0.008 -0.235 -0.222 -0.256 0.353 0.101 0.087  0.023 2.032 0.015 DCL4 
 t-Statistic 1.631 -1.068 -1.625 -0.748 1.326 2.415 -0.146 -1.300 -1.712 -1.878 2.372 1.022 0.613     

                    

 Coefficient 0.077 -0.279 -0.308 -0.053 0.283 0.383 -0.005 -0.210 -0.211 -0.251 0.347 0.096 0.072  0.024 2.031 0.013 DCL5 
 t-Statistic 1.713 -1.168 -1.671 -0.792 1.447 2.428 -0.088 -1.203 -1.675 -1.896 2.460 0.987 0.526     

                    

 Coefficient 0.077 -0.287 -0.299 -0.052 0.285 0.364 -0.005 -0.187 -0.201 -0.245 0.343 0.092 0.061  0.025 2.031 0.010 DCL6 
 t-Statistic 1.789 -1.245 -1.692 -0.819 1.513 2.398 -0.100 -1.096 -1.632 -1.886 2.550 0.961 0.454     

                    

 Coefficient 0.077 -0.296 -0.288 -0.053 0.287 0.345 -0.006 -0.162 -0.188 -0.241 0.338 0.084 0.048  0.026 2.035 0.009 DCL7 
 t-Statistic 1.854 -1.327 -1.682 -0.869 1.567 2.354 -0.127 -0.973 -1.549 -1.883 2.612 0.901 0.370     

                    

 Coefficient 0.077 -0.290 -0.275 -0.047 0.264 0.321 -0.005 -0.141 -0.182 -0.234 0.341 0.085 0.039  0.027 2.036 0.007 DCL8 
 t-Statistic 1.927 -1.340 -1.647 -0.805 1.488 2.261 -0.102 -0.859 -1.543 -1.869 2.733 0.920 0.309     

                    

 Coefficient 0.077 -0.299 -0.281 -0.059 0.277 0.325 -0.005 -0.127 -0.170 -0.226 0.322 0.075 0.034  0.028 2.032 0.006 DCL9 
 t-Statistic 1.976 -1.428 -1.747 -1.030 1.621 2.354 -0.097 -0.789 -1.449 -1.829 2.656 0.819 0.269     

                    

 Coefficient 0.078 -0.284 -0.261 -0.056 0.259 0.303 -0.005 -0.115 -0.164 -0.223 0.317 0.072 0.028  0.028 2.032 0.006 DCL10 
 t-Statistic 2.040 -1.400 -1.653 -1.013 1.564 2.250 -0.120 -0.724 -1.433 -1.848 2.720 0.804 0.229     

                    

 Coefficient 0.078 -0.274 -0.250 -0.051 0.242 0.290 -0.006 -0.104 -0.163 -0.217 0.315 0.071 0.023  0.029 2.028 0.005 DCL11 
 t-Statistic 2.096 -1.396 -1.621 -0.940 1.505 2.206 -0.143 -0.663 -1.449 -1.834 2.789 0.807 0.192     

                    

 Coefficient 0.077 -0.265 -0.244 -0.062 0.239 0.284 -0.002 -0.097 -0.157 -0.215 0.304 0.065 0.018  0.030 2.028 0.004 DCL12 
 t-Statistic 2.128 -1.382 -1.607 -1.159 1.512 2.201 -0.052 -0.630 -1.404 -1.850 2.765 0.751 0.154     

                    

 Coefficient 0.077 -0.250 -0.231 -0.064 0.228 0.274 -0.001 -0.093 -0.154 -0.214 0.297 0.063 0.014  0.031 2.025 0.004 DCL13 
 t-Statistic 2.169 -1.336 -1.544 -1.227 1.477 2.159 -0.017 -0.612 -1.399 -1.864 2.761 0.730 0.120     

                    

 Coefficient 0.077 -0.240 -0.227 -0.067 0.222 0.270 0.002 -0.089 -0.152 -0.212 0.290 0.061 0.010  0.031 2.018 0.003 DCL14 
 t-Statistic 2.199 -1.316 -1.545 -1.314 1.464 2.177 0.053 -0.594 -1.397 -1.863 2.762 0.721 0.089     

                    

 Coefficient 0.077 -0.233 -0.220 -0.069 0.219 0.264 0.004 -0.088 -0.148 -0.210 0.284 0.061 0.007  0.032 2.014 0.003 DCL15 
 t-Statistic 2.235 -1.304 -1.517 -1.385 1.471 2.164 0.084 -0.593 -1.384 -1.868 2.766 0.719 0.063     

ΠΑ
ΝΕ
ΠΙ
ΣΤ
ΗΜ
ΙΟ

 Π
ΕΙ
ΡΑ
ΙΑ



 45 

 
Table 7: Forecasting Power of the Separate PCs(Cont’d) 

Panel B: ICE Crude Oil 

j   C a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3  R-squared Durbin-Watson stat Prob(F-stat) 

                    

 Coefficient 0.080 -0.024 0.052 -0.027 -0.070 -0.041 -0.025 -0.213 -0.170 -0.176 0.375 0.088 0.117  0.025 1.994 0.301 DCO1 
 t-Statistic 1.473 -0.103 0.260 -0.344 -0.311 -0.208 -0.401 -1.206 -1.172 -1.160 2.355 0.804 0.679     

                    

 Coefficient 0.079 -0.045 0.016 -0.019 -0.029 0.031 -0.051 -0.200 -0.201 -0.204 0.375 0.088 0.102  0.030 2.002 0.149 DCO2 
 t-Statistic 1.574 -0.196 0.081 -0.264 -0.137 0.170 -0.867 -1.226 -1.507 -1.465 2.622 0.870 0.652     

                    

 Coefficient 0.078 -0.028 0.005 -0.030 -0.044 0.061 -0.054 -0.160 -0.198 -0.217 0.369 0.078 0.076  0.037 2.003 0.049 DCO3 
 t-Statistic 1.656 -0.121 0.024 -0.453 -0.224 0.362 -0.983 -1.010 -1.563 -1.628 2.693 0.798 0.511     

                    

 Coefficient 0.077 0.008 0.015 -0.033 -0.066 0.073 -0.050 -0.141 -0.189 -0.220 0.352 0.067 0.056  0.043 2.011 0.018 DCO4 
 t-Statistic 1.736 0.034 0.085 -0.523 -0.352 0.458 -0.958 -0.914 -1.550 -1.689 2.674 0.691 0.392     

                    

 Coefficient 0.077 0.008 -0.003 -0.036 -0.073 0.079 -0.040 -0.124 -0.186 -0.228 0.360 0.068 0.048  0.048 2.006 0.008 DCO5 
 t-Statistic 1.796 0.039 -0.015 -0.592 -0.405 0.516 -0.797 -0.821 -1.583 -1.807 2.842 0.723 0.349     

                    

 Coefficient 0.076 0.010 -0.014 -0.039 -0.080 0.081 -0.030 -0.108 -0.180 -0.226 0.356 0.065 0.043  0.050 2.008 0.005 DCO6 
 t-Statistic 1.837 0.050 -0.081 -0.647 -0.453 0.548 -0.617 -0.719 -1.562 -1.824 2.887 0.703 0.326     

                    

 Coefficient 0.076 0.025 -0.022 -0.044 -0.093 0.084 -0.019 -0.096 -0.169 -0.220 0.345 0.059 0.033  0.051 2.016 0.004 DCO7 
 t-Statistic 1.884 0.120 -0.129 -0.746 -0.541 0.583 -0.398 -0.638 -1.483 -1.805 2.831 0.644 0.251     

                    

 Coefficient 0.076 0.001 -0.037 -0.043 -0.083 0.084 -0.017 -0.081 -0.164 -0.223 0.354 0.065 0.031  0.054 2.012 0.002 DCO8 
 t-Statistic 1.953 0.006 -0.224 -0.757 -0.500 0.596 -0.369 -0.547 -1.470 -1.863 3.038 0.718 0.247     

                    

 Coefficient 0.075 0.006 -0.041 -0.046 -0.088 0.083 -0.011 -0.072 -0.156 -0.219 0.350 0.061 0.025  0.056 2.010 0.001 DCO9 
 t-Statistic 1.988 0.033 -0.257 -0.829 -0.542 0.608 -0.252 -0.488 -1.416 -1.867 3.085 0.695 0.199     
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Table 7: Forecasting Power of the Separate PCs(Cont’d) 
Panel C: NYMEX Heating Oil 

j   C a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3  R-squared Durbin-Watson stat Prob(F-stat) 

                    

 Coefficient 0.167 1.188 1.473 -0.014 -0.334 -0.721 -0.172 -1.281 -0.940 -1.009 0.646 0.100 0.162  0.035 2.050 0.069 DHO1 
 t-Statistic 1.000 1.261 2.074 -0.056 -0.407 -1.100 -0.718 -1.634 -1.830 -2.022 0.938 0.238 0.282     

                    

 Coefficient 0.188 0.833 1.122 0.032 -0.119 -0.497 -0.206 -1.147 -0.841 -1.083 0.750 0.180 0.091  0.033 2.048 0.093 DHO2 
 t-Statistic 1.182 0.894 1.581 0.134 -0.149 -0.796 -0.899 -1.511 -1.734 -2.205 1.126 0.420 0.165     

                    

 Coefficient 0.187 0.574 0.768 0.002 0.107 -0.238 -0.188 -1.039 -0.658 -1.051 0.725 0.192 0.056  0.030 2.040 0.155 DHO3 
 t-Statistic 1.213 0.627 1.107 0.008 0.142 -0.411 -0.858 -1.424 -1.396 -2.204 1.142 0.468 0.109     

                    

 Coefficient 0.191 0.324 0.514 0.008 0.318 -0.004 -0.174 -0.993 -0.623 -1.052 0.791 0.216 0.064  0.031 2.032 0.129 DHO4 
 t-Statistic 1.260 0.373 0.777 0.034 0.450 -0.008 -0.823 -1.438 -1.372 -2.239 1.332 0.545 0.130     

                    

 Coefficient 0.198 0.278 0.445 0.003 0.327 0.075 -0.152 -0.986 -0.668 -1.052 0.843 0.249 0.104  0.034 2.036 0.083 DHO5 
 t-Statistic 1.356 0.342 0.704 0.013 0.504 0.148 -0.750 -1.526 -1.516 -2.274 1.516 0.645 0.217     

                    

 Coefficient 0.201 0.246 0.415 0.012 0.351 0.173 -0.151 -0.933 -0.749 -1.074 0.852 0.204 0.068  0.041 2.043 0.025 DHO6 
 t-Statistic 1.458 0.323 0.693 0.056 0.600 0.361 -0.809 -1.546 -1.745 -2.347 1.617 0.548 0.148     

                    

 Coefficient 0.210 0.203 0.330 0.002 0.341 0.233 -0.141 -0.847 -0.740 -1.000 0.816 0.161 0.048  0.044 2.045 0.015 DHO7 
 t-Statistic 1.634 0.287 0.586 0.008 0.639 0.517 -0.830 -1.499 -1.787 -2.309 1.656 0.447 0.110     

                    

 Coefficient 0.223 0.097 0.209 -0.026 0.359 0.293 -0.117 -0.762 -0.705 -0.918 0.798 0.141 0.048  0.044 2.062 0.014 DHO8 
 t-Statistic 1.848 0.147 0.392 -0.148 0.721 0.690 -0.761 -1.432 -1.731 -2.264 1.704 0.407 0.116     

                    

 Coefficient 0.235 0.050 0.095 -0.053 0.359 0.307 -0.094 -0.727 -0.661 -0.818 0.770 0.132 0.090  0.043 2.064 0.018 DHO9 
 t-Statistic 2.049 0.079 0.185 -0.322 0.754 0.761 -0.664 -1.416 -1.645 -2.166 1.732 0.394 0.231     

                    

 Coefficient 0.246 0.020 0.074 -0.072 0.413 0.312 -0.089 -0.722 -0.641 -0.775 0.729 0.107 0.088  0.045 2.060 0.013 DHO10 
 t-Statistic 2.229 0.035 0.153 -0.478 0.884 0.806 -0.658 -1.438 -1.613 -2.110 1.706 0.334 0.233     

                    

 Coefficient 0.248 0.081 0.145 -0.105 0.418 0.270 -0.098 -0.723 -0.618 -0.730 0.660 0.073 0.073  0.046 2.038 0.010 DHO11 
 t-Statistic 2.325 0.147 0.322 -0.706 0.918 0.724 -0.735 -1.449 -1.583 -2.050 1.633 0.240 0.201     

                    

 Coefficient 0.244 0.149 0.192 -0.104 0.361 0.210 -0.112 -0.715 -0.586 -0.685 0.602 0.049 0.045  0.047 2.023 0.009 DHO12 
 t-Statistic 2.358 0.281 0.442 -0.699 0.814 0.577 -0.849 -1.469 -1.575 -2.015 1.575 0.172 0.131     
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Table 7: Forecasting Power of the Separate PCs(Cont’d) 

Panel D: NYMEX Gasoline 

j   C a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3  R-squared Durbin-Watson stat Prob(F-stat) 

                    

 Coefficient 0.187 0.235 0.937 -0.002 0.001 -0.089 -0.224 -0.511 -0.881 -0.634 0.627 -0.433 0.045  0.008 2.030 0.180 DHU1 
 t-Statistic 0.859 0.236 1.066 -0.006 0.002 -0.113 -0.635 -0.399 -1.313 -0.890 0.749 -0.622 0.049     

                    

 Coefficient 0.212 0.129 0.585 0.109 -0.035 -0.059 -0.245 -0.759 -0.949 -0.902 1.071 0.061 0.236  0.010 2.077 0.127 DHU2 
 t-Statistic 1.150 0.160 0.759 0.488 -0.049 -0.093 -0.853 -0.703 -1.536 -1.414 1.433 0.112 0.312     

                    

 Coefficient 0.197 0.299 0.480 0.007 -0.055 0.051 -0.192 -0.796 -0.818 -0.963 1.047 0.218 0.201  0.009 2.077 0.151 DHU3 
 t-Statistic 1.188 0.408 0.696 0.036 -0.081 0.089 -0.829 -0.922 -1.467 -1.724 1.511 0.460 0.310     

                    

 Coefficient 0.182 0.355 0.682 0.040 0.024 -0.113 -0.221 -0.799 -0.692 -0.966 0.902 0.114 0.050  0.016 2.049 0.048 DHU4 
 t-Statistic 1.237 0.517 1.023 0.229 0.039 -0.206 -1.094 -1.049 -1.454 -1.898 1.501 0.285 0.088     

                    

 Coefficient 0.182 0.355 0.682 0.040 0.024 -0.113 -0.221 -0.799 -0.692 -0.966 0.902 0.114 0.050  0.016 2.049 0.048 DHU5 
 t-Statistic 1.237 0.517 1.023 0.229 0.039 -0.206 -1.094 -1.049 -1.454 -1.898 1.501 0.285 0.088     

                    

 Coefficient 0.185 0.209 0.219 -0.162 0.291 0.257 -0.169 -0.633 -0.308 -0.569 0.485 -0.095 -0.058  0.012 1.999 0.090 DHU6 
 t-Statistic 1.444 0.343 0.403 -0.901 0.505 0.552 -0.926 -0.964 -0.703 -1.255 0.890 -0.275 -0.123     

                    

 Coefficient 0.171 0.016 0.139 -0.040 0.306 0.225 -0.129 -0.636 -0.424 -0.769 0.755 0.026 -0.017  0.013 2.030 0.089 DHU7 
 t-Statistic 1.276 0.024 0.250 -0.209 0.560 0.493 -0.767 -1.032 -1.040 -1.693 1.412 0.082 -0.038     

                    

 Coefficient 0.156 0.545 0.354 -0.142 0.118 0.205 -0.135 -0.696 -0.286 -0.761 0.458 -0.078 -0.220  0.020 1.982 0.024 DHU8 
 t-Statistic 1.192 0.799 0.649 -0.713 0.226 0.444 -0.764 -1.072 -0.753 -1.733 0.963 -0.247 -0.467     

                    

 Coefficient 0.145 0.144 0.211 -0.122 0.436 0.371 -0.149 -0.591 -0.187 -0.678 0.315 -0.205 -0.324  0.021 2.054 0.021 DHU9 
 t-Statistic 1.154 0.226 0.391 -0.631 0.795 0.808 -0.876 -0.985 -0.517 -1.546 0.643 -0.668 -0.715     

                    

 Coefficient 0.157 -0.062 -0.069 -0.143 0.351 0.492 -0.093 -0.335 -0.194 -0.699 0.547 -0.139 -0.303  0.020 2.049 0.028 DHU10 
 t-Statistic 1.237 -0.092 -0.120 -0.672 0.595 0.997 -0.546 -0.543 -0.493 -1.535 1.164 -0.423 -0.653     

                    

 Coefficient 0.175 0.216 -0.187 -0.044 -0.036 0.344 -0.020 -0.577 -0.355 -0.653 0.671 0.176 0.088  0.006 2.060 0.229 DHU11 
 t-Statistic 1.333 0.339 -0.344 -0.245 -0.072 0.738 -0.117 -0.903 -0.886 -1.494 1.379 0.582 0.186     

Results from regressing ΔFtj (j = CL1,…, CL15, CO1,…, CO9, HO1,…, HO12, HU1,…, HU11) on the twelve principal components obtained 
from the separate PCA on each one of the four commodities. Sample period: 8/11/1991-29/12/2006
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Starting with NYMEX Crude Oil we should refer to the low 2R  values (0.022-0.033) 

which are consistent with Chantziara and Skiadopoulos results for the daily changes in 

these futures prices. So we conclude that PCs have no forecasting power in this case as 

far as the mid term horizon of the weekly futures prices is concerned. The first 

differences of the weekly NYMEX Crude Oil futures settlement prices seem to have as 

statistically significant explanatory variables the second ICE Crude PC (COPC2) and the 

first NYMEX Heating Oil PC (HUPC1), from the variables examined in our study. This 

result is the same across all fifteen maturities and the coefficients have always a positive 

sign and prices fluctuating between 0.26 and 0.44 for both regressors. Of course it would 

not make sense to assume that NYMEX Crude prices are driven by changes which had 

taken place in the ICE Crude one week ago. So we can just mention the existence of 

spillover effects, which affect the evolution of the weekly term structures between these 

markets. This is the case also for Gasoline, but the persistency of the results across 

maturities is an encouraging sign regarding the model's interpretation. One more 

statistically significant factor at the 5% level is the constant term, as far as contracts 

expiring in nine months and later are concerned. This remark could be interpreted as a 

specific mean reversion of these particular contracts first differences. The F-statistics 

indicate the rejection of null hypothesis across all maturities.  

Considering the regression on ICE Crude results we observe in Table 7  the continuing 

low 2R  values (0.024-0.056) and the persistent significance of the first Heating Oil PC, 

(HUPC1), across all maturities. These coefficients have positive sign. All other 

coefficients are statistically insignificant except from the constant term which has 

forecasting power on first differences of the expiring last ICE Crude Oil futures weekly 

prices. So, as an obvious interference, we could note the importance of HUPC1 so as to 

derive some restricted predictions of the next weeks NYMEX and ICE Crude futures 

prices. Moreover, the contract with the longest maturity seems to have the more 

statistically significant predictors we have identified all over our research.  

As we can see in Table 7 the NYMEX heating Oil case presents clear results, which 

forecasting performance is very restricted because of the low 2R  values (0.0359-0.047) 

the regression gives us. The contract with the shortest maturity seems to have two 

statistically significant predictors. The second PC of NYMEX Crude Oil (CLPC2) has 

predictive power on this with coefficient of positive sign. Another characteristic is the 

statistically significant third PC of the NYMEX Heating Oil itself (HOPC3), which 
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affects the dependent variables through a negative coefficient. This result is common for 

all Heating Oil maturities. Moving to first price differences of the four contracts (DHO9, 

DHO10, DHO11, DHO12) which expire last we observe one more statistical significant 

coefficient, which is the constant term of the calculated equation. Until now the additive 

importance of the constant term for the last maturities constitutes a common 

characteristic across the three aforementioned commodities. Same attitude is observed for 

the F-statistics, at least for ICE Crude and NYMEX Heating Oil, with p-values declining 

as we move to later expiry dates. 

The last contracts settlement price differences we use as dependent variables to run 

regressions are the NYMEX Gasoline futures. These regressions have statistically 

insignificant coefficient for all PCs, but they also come up with the lowest  2R  values 

(0.007-0.020). This picture is rather disappointing and this particular differentiation 

across Gasoline contracts should make us more critical towards the results in our effort to 

detect the PCs predictive power. This complex behaviour is repeated when we study F-

statistic p-values across various maturities. 

To conclude with the results mentioned above we have to pay attention to the small 2R  

values found throughout the four commodities. This evidence suggests the limited 

forecasting power for PCs as independent variables on the weekly futures prices, which 

happens also with daily prices (see Chantziara and Skiadopoulos 2005). Moreover, the 

number of statistically significant PCs, which is very restricted, even zero for the whole 

term structure of NYMEX Gasoline futures, denotes the insufficient predictability 

possibilities of the model. Finally, we should refer to the effects appearing in the 

NYMEX Crude regressions. These express the only clear relation between two of the 

studied commodities, but it is very disorienting to assume clear spillover effects, because 

of our specific time horizon. Something that deserves to be mentioned is the increasing 

forecasting power of our regressions as we move to longer maturities. We have already 

paid attention to the constant terms which become statistically important at the 5% level 

for the weekly differences of the later expiring futures. Of course this is not the rule in 

Gasoline case.  Something that could be an object for further investigation is the finding 

that there is no statistically significant PC in NYMEX Heating Oil regressions even 

though a Heating Oil PC (HUPC1) has important forecasting power in both NYMEX and 

ICE Crude Oil futures maturities.  
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Joint PCA: Regression and Results 

 

The next step in our analysis has to do with the testing of the joint PCs forecasting 

performance. This approach makes more obvious the advantage of the small number of 

regressors, because it summarizes the term structure of all four commodities in three 

independent variables. The weakness of the method, compared to the previous one, is 

related with the fact we cannot search for spillover effects across commodities. 

Our model's parameters are the similar with the aforementioned equation, but to be more 

specific we would like to introduce the following regression: 

++= −1,11 t
j

t PCacDF 1,22 −tPCa + 1,33 −tPCa + tu (5) 

We have the differences of the futures weekly prices at time t and the corresponding 

generics as dependent variables 

1,1 −tPC , 1,2 −tPC  and 1,3 −tPC  are the time series of the principal components that have been 

obtained from the joint PCA at time t-1. 

1α , 2α  and 3α  are the coefficients that come from the regression analysis 

We also used Newey-West standard errors again, which correct both for 

heteroskedasticity and autocorrelation, to obtain our coefficients t-statistics. 
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Table 8: Forecasting Power of the Joint PCs 

Panel A: NYMEX Crude Oil 

j   C a1 a2 a3  R-squared Durbin-Watson stat Prob(F-statistic) 
           

 Coefficient 0.062 -0.006 -0.063 0.028  -0.003 2.055 0.718 DCL1 
 t-Statistic 1.107 -0.061 -0.762 0.459     

           
 Coefficient 0.066 0.007 -0.066 0.005  -0.003 2.041 0.699 DCL2 
 t-Statistic 1.264 0.079 -0.881 0.086     

           
 Coefficient 0.068 0.023 -0.066 0.004  -0.002 2.044 0.611 DCL3 
 t-Statistic 1.376 0.268 -0.940 0.080     

           
 Coefficient 0.069 0.032 -0.063 0.005  -0.002 2.046 0.557 DCL4 
 t-Statistic 1.471 0.385 -0.942 0.094     

           
 Coefficient 0.070 0.037 -0.058 0.003  -0.001 2.050 0.533 DCL5 
 t-Statistic 1.558 0.451 -0.916 0.061     

           
 Coefficient 0.071 0.039 -0.054 0.001  -0.001 2.054 0.517 DCL6 
 t-Statistic 1.635 0.497 -0.875 0.019     

           
 Coefficient 0.072 0.040 -0.050 -0.002  -0.001 2.061 0.527 DCL7 
 t-Statistic 1.706 0.521 -0.817 -0.046     

           
 Coefficient 0.073 0.039 -0.047 -0.003  -0.001 2.062 0.535 DCL8 
 t-Statistic 1.774 0.516 -0.788 -0.065     

           
 Coefficient 0.073 0.037 -0.046 -0.006  -0.001 2.058 0.527 DCL9 
 t-Statistic 1.831 0.508 -0.797 -0.142     

           
 Coefficient 0.074 0.039 -0.044 -0.007  -0.001 2.056 0.503 DCL10 
 t-Statistic 1.896 0.554 -0.773 -0.150     

           
 Coefficient 0.074 0.040 -0.043 -0.007  -0.001 2.050 0.481 DCL11 
 t-Statistic 1.946 0.574 -0.768 -0.154     

           

 Coefficient 0.074 0.040 -0.044 -0.009  -0.001 2.047 0.450 DCL12 
 t-Statistic 1.982 0.595 -0.783 -0.212     

           

 Coefficient 0.074 0.042 -0.044 -0.010  0.000 2.039 0.411 DCL13 
 t-Statistic 2.021 0.635 -0.794 -0.230     

           

 Coefficient 0.074 0.042 -0.044 -0.010  0.000 2.029 0.382 DCL14 
 t-Statistic 2.049 0.649 -0.818 -0.247     

           

 Coefficient 0.074 0.042 -0.044 -0.011  0.000 2.021 0.368 DCL15 
 t-Statistic 2.081 0.662 -0.820 -0.257     
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Table 8: Forecasting Power of the Joint PCs (Cont'd) 

Panel B: ICE Crude Oil 

j   C a1 a2 a3  R-squared Durbin-Watson stat Prob(F-statistic) 

           
 Coefficient 0.070 0.000 0.002 -0.028  -0.005 2.004 0.966 DCO1 
 t-Statistic 1.289 -0.001 0.027 -0.516     

           
 Coefficient 0.070 0.022 -0.021 -0.019  -0.004 2.017 0.915 DCO2 
 t-Statistic 1.399 0.274 -0.277 -0.371     

           
 Coefficient 0.071 0.041 -0.025 -0.015  -0.003 2.023 0.765 DCO3 
 t-Statistic 1.514 0.535 -0.355 -0.308     

           
 Coefficient 0.072 0.056 -0.022 -0.014  -0.002 2.034 0.589 DCO4 
 t-Statistic 1.615 0.761 -0.338 -0.284     

           
 Coefficient 0.072 0.056 -0.024 -0.016  -0.001 2.036 0.530 DCO5 
 t-Statistic 1.678 0.795 -0.386 -0.342     

           
 Coefficient 0.072 0.056 -0.025 -0.017  -0.001 2.038 0.501 DCO6 
 t-Statistic 1.721 0.806 -0.407 -0.367     

           
 Coefficient 0.072 0.051 -0.025 -0.018  -0.001 2.039 0.529 DCO7 
 t-Statistic 1.771 0.761 -0.420 -0.386     

           
 Coefficient 0.072 0.051 -0.022 -0.019  -0.001 2.039 0.514 DCO8 
 t-Statistic 1.835 0.773 -0.386 -0.421     

           
 Coefficient 0.072 0.052 -0.019 -0.021  -0.001 2.035 0.483 DCO9 
 t-Statistic 1.871 0.804 -0.340 -0.475     
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Table 8: Forecasting Power of the Joint PCs (Cont'd) 

Panel C: NYMEX Heating Oil 

j   C a1 a2 a3  R-squared Durbin-Watson stat Prob(F-statistic) 
           

 Coefficient 0.142 0.241 -0.369 -0.265  0.007 2.069 0.067 DHO1 
 t-Statistic 0.840 0.738 -1.582 -1.329     

           
 Coefficient 0.165 0.198 -0.351 -0.219  0.006 2.071 0.088 DHO2 
 t-Statistic 1.031 0.607 -1.662 -1.079     

           
 Coefficient 0.169 0.193 -0.269 -0.172  0.003 2.060 0.181 DHO3 
 t-Statistic 1.089 0.615 -1.329 -0.880     

           
 Coefficient 0.174 0.222 -0.224 -0.127  0.003 2.061 0.212 DHO4 
 t-Statistic 1.144 0.752 -1.092 -0.678     

           
 Coefficient 0.181 0.242 -0.223 -0.088  0.004 2.073 0.164 DHO5 
 t-Statistic 1.233 0.865 -1.053 -0.496     

           
 Coefficient 0.186 0.274 -0.273 -0.107  0.009 2.093 0.046 DHO6 
 t-Statistic 1.348 1.039 -1.253 -0.646     

           
 Coefficient 0.196 0.265 -0.275 -0.121  0.011 2.104 0.028 DHO7 
 t-Statistic 1.532 1.063 -1.310 -0.762     

           
 Coefficient 0.210 0.237 -0.260 -0.122  0.010 2.129 0.031 DHO8 
 t-Statistic 1.755 0.992 -1.303 -0.807     

           
 Coefficient 0.221 0.205 -0.233 -0.129  0.009 2.136 0.047 DHO9 
 t-Statistic 1.953 0.893 -1.234 -0.866     

           

 Coefficient 0.233 0.203 -0.224 -0.142  0.010 2.130 0.038 DHO10 
 t-Statistic 2.124 0.929 -1.234 -0.984     

           

 Coefficient 0.237 0.227 -0.207 -0.151  0.011 2.091 0.026 DHO11 
 t-Statistic 2.202 1.106 -1.171 -1.077     

           

 Coefficient 0.233 0.212 -0.200 -0.177  0.012 2.054 0.021 DHO12 
 t-Statistic 2.196 1.093 -1.182 -1.312     
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Table  8: Forecasting Power of the Joint PCs (Cont'd) 

Panel D: NYMEX Gasoline 

j     C a1 a2 a3   R-squared     Durbin-Watson stat Prob(F-stat) 

           
 Coefficient 0.173 0.306 -0.309 -0.402  0.007 2.077 0.083807 DHU1 
 t-Statistic 0.825 0.778 -0.954 -1.402     

           
 Coefficient 0.187 0.187 -0.304 -0.203  0.003 2.116 0.205778 DHU2 
 t-Statistic 1.047 0.573 -1.185 -0.969     

           
 Coefficient 0.177 0.244 -0.224 -0.057  0.001 2.098 0.288509 DHU3 
 t-Statistic 1.103 0.799 -1.027 -0.284     

           
 Coefficient 0.165 0.247 -0.202 -0.161  0.004 2.078 0.144973 DHU4 
 t-Statistic 1.149 0.888 -1.117 -0.912     

           
 Coefficient 0.165 0.247 -0.202 -0.161  0.004 2.078 0.144973 DHU5 
 t-Statistic 1.149 0.888 -1.117 -0.912     

           
 Coefficient 0.180 0.237 -0.030 -0.211  0.004 1.982 0.149872 DHU6 
 t-Statistic 1.373 0.965 -0.188 -1.251     

           
 Coefficient 0.160 0.176 -0.105 -0.203  0.002 2.003 0.227279 DHU7 
 t-Statistic 1.164 0.735 -0.622 -1.340     

           
 Coefficient 0.155 0.256 -0.081 -0.257  0.008 1.932 0.061839 DHU8 
 t-Statistic 1.144 0.986 -0.502 -1.637     

           
 Coefficient 0.145 0.175 -0.101 -0.316  0.009 2.019 0.042742 DHU9 
 t-Statistic 1.116 0.736 -0.623 -2.068     

           
 Coefficient 0.159 0.178 -0.073 -0.257  0.005 2.009 0.117894 DHU10 
 t-Statistic 1.219 0.728 -0.418 -1.610     

           
 Coefficient 0.168 0.066 -0.109 -0.092  -0.003 2.030 0.686796 DHU11 
 t-Statistic 1.265 0.279 -0.588 -0.658     

 
Results from regressing ΔFtj (j = CL1,…, CL15, CO1,…, CO9, HO1,…, HO12, HU1,…, 
HU11) on the three principal components obtained from the joint PCA on each one of the 
four commodities. Sample period: 8/11/1991-29/12/2006 
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Table 8 presents this method's results. The first column shows the dependent variables 

per commodity for all the corresponding maturities. The next four columns present the 

constant term and the PCs coefficients with their t-statistics underneath them. We have 

put into frames the coefficients which t-statistics prove them to be statistically significant 

at the 5% significance level. The following column shows the 2R  statistic, the last two 

present the Durbin –Watson statistic for first order serial correlation and the F-statistic, 

respectively.  

The results this time are very poor. 2R  values don’t exceed 1.1% and we usually come up 

with negative values which indicate that our models are poorly fitting our data. We 

should note that we use the adjusted R-squared statistic, as we have done also for the 

separate PCs. Furthermore, the three retained PCs have no forecasting power for almost 

all contracts. The only statistical significant coefficients are the constant terms of four 

NYMEX Crude Oil and three Heating Oil regressions which dependent variables are the 

weekly price differences of the futures that have the longest maturities across the two 

commodities. Moreover, Heating Oil is the only commodity which longer maturities 

futures regressions result in some F-statistics able to reject the null hypothesis. 

Consequently, PCs obtained from the joint PCA have no forecasting power on the weekly 

futures prices we studied. Furthermore their performance is even worse than the one 

estimated by Chantziara and Skiadopoulos for the daily prices predictability. 
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CHAPTER 4: ECONOMIC ANALYSIS 

 

The second approach studied in this paper is an economic (structural) approach, which 

aims to identify the relation between the same as before dependent variables and some 

other economic or financial factors. This work is based on the methodology followed by 

Sadorsky whose article offers encouraging results as far as the forecasting power of his 

mode is concerned. Some distinct points of this research have to do with the different 

time horizon (weekly instead of monthly) and the introduction of some more variables in 

our dataset. The dependent variable, which is added in Sadorsky's data, is the first 

differences of ICE Crude Oil future settlement prices. So, there is no reason to be more 

comprehensive about our dependent variables which are already analyzed for the 

purposes of our PCA approach. On the other hand we have to write some remarks in 

order to present our explanatory parameters and this, exactly, section of the study 

follows. As a final observation we should say that we use the first differences of all the 

incorporated variables instead of Sadorsky who takes the returns of the data prices. This 

change is of little importance for the forthcoming results, but it is necessary in our effort 

to be consistent with the first part of our own analysis (PCA).      

 

4.1 ECONOMIC DATA 

 

Constructing our independent variables data set we followed Sadorsky's work and the 

variables he used as guidelines. In addition to this, the introduction of ICE Crude Oil 

futures first differences as dependent variable induced the necessity to enrich our 

explanatory data. We should take into account some economic factors indicative of the 

U.K. economy in order to search a possible relation between them and, especially, this 

specific commodity.  

Firstly, we have to find two elements representative of the U.S. and U.K. market 
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portfolios. For the fist one we picked up the S&P500 index and as an equivalent to the 

U.K. portfolio we chose the FTSE 100 index.  

 The S&P 500 contains the stocks of 500 Large-Cap corporations, most of which are 

American. The index is the most notable of the many indices owned and maintained by 

Standard & Poor's, a division of McGraw-Hill, and was introduced in 1957. All of the 

stocks in the index are those of large publicly held companies and trade on the two largest 

US stock markets, the New York Stock Exchange and Nasdaq. After the Dow Jones 

Industrial Average, the S&P 500 is the most widely watched index of large-cap US 

stocks. It is considered to be an indicator of the US economy. 

The FTSE 100 Index is a share index of the 100 most highly capitalised companies listed 

on the London Stock Exchange. The index is seen as a barometer of the British economy 

and is the leading share index in Europe. It is maintained by the FTSE Group, a now 

independent company which originated as a joint venture between the Financial Times 

and the London Stock Exchange. According to the FTSE Group's website the FTSE 100 

companies represent about 80% of the UK share market. 

We also tried to include in our predictors the dividend yields of the aforementioned 

markets. Consequently, we qualify as indicators the weekly differences of the S&P 500 

and FTSE 100 annual dividend yields (S&P500DY and FTSE100DY). These dividend 

yields represent the annual dividend levels of stock portfolios simulating the two indices 

divided by the market values of the two portfolios, estimated for each week.  

Sadorsky introduces the 90-day Treasury Bill annual yield as a benchmark for the interest 

risk free rate. Treasury bills, or T-Bills, are like zero-coupon bonds in that they do not 

pay interest prior to maturity; instead they are sold at a discount of the par value to create 

a positive yield to maturity. Treasury bills are considered to be the most risk-free 

investment for U.S. investors, so it is a suitable indicator for the U.S. economy. As far as 

U.K. conditions are concerned we have to contribute another variable which we chose to 

be the annual yield of the 90-day London Interbank Offered Rate (LIBOR).  LIBOR is a 

daily reference rate based on the interest rates at which banks offer to lend unsecured 

funds to other banks in the London wholesale money market (or interbank market). So, it 

is regarded as the premium equal to the risk free rate which banks are willing to pay so as 

to secure their assets. Of course for both rate, like all our variables, we use their weekly 

differences.  
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 As a last variable we incorporate another one of Sadorsky's factors. This the monthly 

return on the annual yield on Moody's long term BAA-rated bond minus the yield on 

AAA-rated bonds. This parameter is considered to be an interpretation of the default risk 

premium which is adequate for large companies and corporations. 

We have already present summary statistics for petroleum futures so now we only have to 

present the statistics of the economic factor's weekly differences.  

 
 
Table 9: Summary Statistics of the first differences of the economic and financial variables 

Panel E: Economic Variables 

Sample: 11/08/1991 12/29/2006      

        

 DSP500 DFTSE100 DSP500DY DFTSE100DY DTBILL DLIBOR DBAAAAA 

        

 Mean 1.298 4.641 0.000 0.000 0.000 0.000 0.000 

 Std. Dev. 22.521 100.720 0.000 0.001 0.001 0.001 0.000 

 Skewness -0.625 -0.297 0.053 -1.073 -1.983 -1.713 2.161 

 Kurtosis 9.187 5.530 5.768 12.893 20.136 18.449 30.773 

        

 Jarque-Bera 1313.023 222.547 252.835 3377.245 10195.730 8253.412 26037.020 

 Probability 0 0 0 0 0 0 0 

        

 

Observations 791 791 791 791 791 791 791 
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Table 9 shows these summary statistics for the seven causal variables and Table 10 the 

ADF tests for these series which indicate that we have to do with stationary series at the 

1% significance level.       

Table 10: Unit Root Tests for the first differences of the weekly prices of the economic and financial 
variables. Sample period: 8/11/1991-29/12/2006 
 

Panel E: Economic Variables 

ADF test statistic 

   

 First differences  

   

DSP500 -32.093  

DFTSE100 -29.482  

DSP500DY -32.750  

DFTSE100DY -28.222  

DTBILL -17.185  

DLIBOR -10.171  

DBAAAAA -25.036  

 

 

4.2 ECONOMIC VARIABLES AND FORECASTING POWER 

 

In this section we perform a multivariate regression model using as regressors the 

differences of the seven economic variables. This model tries to identify the forecasting 

skills of some economic variables in a simple regression model. The derivation of this 
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model is based on an economic (structural) approach and, as a matter of fact, it is affected 

by the major drawback of this kind of models which is connected with the choice of 

suitable causal variables. As we have already mentioned, in our case we used as guideline 

Sadorsky's article, but there is no proof that we could repeat his important results in the 

interpretation of our model.  

 

Economic analysis: The regression settings and results 

 

We move on with the presentation of our basic model starting with the regression 

equation which follows  

 

++= − )500&( 11 t
j

t DYPDSacDF )( 12 −− tAAADBAAa + )( 13 −tDTBILLa +

)500&( 14 −tPDSa + )100( 15 −tDFTSEa + )( 16 −tDLIBORa + )100( 17 −tDYDFTSEa + tu (6) 

 

j
tDF  represents the weekly changes of futures prices at time t, as before, and j stands 

again for the different generics.  

The independent variables are also differences of the weekly prices of the following 

economic indicators 

1500& −tPDS  and 1500& −tDYPDS  are the weekly difference of the S&P500 Index and 

the weekly difference of the same Index's annual dividend yield, respectively at time t-1 

1100 −tDFTSE  and 1100 −tDYDFTSE  describe variables that have been similarly 

constructed and have as subject the weekly differences of  FTSE100 Index and its annual 

dividend yield at time t-1 

1−tDTBILL  and 1−tDLIBOR  indicate the weekly differences of the two risk free interest 

rates at time t-1. 1−tDTBILL  is the weekly difference of the three month T-Bill annualised 
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rate (representative for the US risk free rate) and for the UK economy we use the 

1−tDLIBOR  (weekly difference of the 3-month LIBOR annualised rate at time t-1). 

1−− tAAADBAA  denotes the default risk premium and is calculated from the weekly 

difference of the annual yield on Moody's long term BAA-rated corporate bonds minus 

the return of the yield on AAA-rated bonds 

1a , 2a , etc. are the regression retained coefficients 

 

4.3 ECONOMIC VARIABLES MODEL 

 
To start with the examination of the forecasting skills of the factors mentioned above we 

don’t make any attempt to model our errors at this stage. We should also note that we 

detect heteroskedasticity in the regression residuals, so in this simple regression equation 

we used Newey-West standard errors, which correct both for heteroskedasticity and 

autocorrelation, to obtain our coefficients t-statistics. 

Table 11 presents this regression results per commodity and across the different 

maturities. The first column shows again our dependent variables and the next eight 

columns show the coefficients and the corresponding t-statistics of the constant term and 

the seven economic variables. The last three columns contain the 2R  statistic, the Durbin 

–Watson statistic for first order serial correlation and the F-statistic, respectively.  

NYMEX Crude Oil regressions give very low 2R  values (0.002-0.010) which is a 

common characteristic among all four commodities and indicates that our model doesn't 

present forecasting power. On the other hand we observe that there are some statistically 

significant factors. These are the T-Bill rate and the S&P 500 for almost all contract 

maturities, the FTSE 100 Index for the six futures which expire the next ten to fifteen 

months and the constant terms for the last two maturities (DCL14, DCL15). Furthermore, 

this commodity is the only one which majority of regressions give us F-statistics high 

enough to reject the null hypothesis at the 5% significance level.  
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                  Table 11: Forecasting Power of the Economic Variables 

Panel A: NYMEX Crude Oil 

Independent Variables  S&P500DY 
BAA-
AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY     

j   C a1 a2 a3 a4 a5 a6 a7  
R-

squared Durbin-Watson stat Prob(F-stat) 
               

 Coefficient 0.052 -18.487 -84.851 100.637 -0.007 0.001 10.916 72.613  0.002 2.132 0.262 DCL1 
 t-Statistic 1.128 -0.121 -0.632 2.049 -2.025 1.240 0.308 0.658     

               
 Coefficient 0.054 36.492 -102.187 104.910 -0.007 0.002 18.270 46.539  0.006 2.100 0.098 DCL2 
 t-Statistic 1.248 0.265 -0.858 2.368 -2.271 1.501 0.540 0.458     

               
 Coefficient 0.056 39.120 -108.075 103.670 -0.007 0.002 19.536 48.115  0.009 2.084 0.051 DCL3 
 t-Statistic 1.341 0.313 -0.996 2.535 -2.463 1.703 0.627 0.518     

               
 Coefficient 0.057 43.169 -121.779 96.852 -0.007 0.002 19.978 49.069  0.010 2.074 0.037 DCL4 
 t-Statistic 1.429 0.378 -1.204 2.538 -2.562 1.831 0.699 0.572     

               
 Coefficient 0.058 44.954 -125.137 89.798 -0.006 0.002 20.723 45.113  0.010 2.069 0.034 DCL5 
 t-Statistic 1.512 0.426 -1.313 2.492 -2.608 1.875 0.785 0.559     

               
 Coefficient 0.058 45.870 -125.292 84.680 -0.006 0.001 19.926 44.270  0.010 2.068 0.033 DCL6 
 t-Statistic 1.586 0.466 -1.381 2.460 -2.642 1.914 0.813 0.579     

               
 Coefficient 0.059 41.392 -120.684 79.505 -0.006 0.001 19.566 41.488  0.010 2.071 0.033 DCL7 
 t-Statistic 1.660 0.447 -1.389 2.414 -2.709 1.945 0.846 0.568     

               
 Coefficient 0.060 43.080 -118.949 75.296 -0.005 0.001 17.281 43.288  0.010 2.072 0.042 DCL8 
 t-Statistic 1.721 0.496 -1.412 2.361 -2.660 1.936 0.806 0.621     

               
 Coefficient 0.061 37.531 -112.346 70.796 -0.006 0.001 18.775 36.185  0.010 2.072 0.038 DCL9 
 t-Statistic 1.791 0.454 -1.392 2.304 -2.802 1.949 0.902 0.536     

               
 Coefficient 0.061 35.227 -106.665 66.941 -0.006 0.001 18.735 35.461  0.010 2.067 0.040 DCL10 
 t-Statistic 1.852 0.447 -1.365 2.238 -2.830 1.968 0.945 0.544     

               
 Coefficient 0.061 40.557 -102.203 64.140 -0.005 0.001 16.443 37.732  0.009 2.064 0.050 DCL11 
 t-Statistic 1.902 0.539 -1.346 2.181 -2.772 1.984 0.874 0.602     

               
 Coefficient 0.062 41.545 -95.398 59.833 -0.005 0.001 16.991 36.654  0.009 2.063 0.045 DCL12 
 t-Statistic 1.955 0.573 -1.287 2.092 -2.867 2.060 0.921 0.598     

               
 Coefficient 0.062 41.455 -91.319 56.541 -0.005 0.001 16.616 33.439  0.009 2.057 0.050 DCL13 
 t-Statistic 1.996 0.592 -1.261 2.024 -2.874 2.043 0.926 0.559     

               
 Coefficient 0.062 43.370 -87.008 53.492 -0.005 0.001 16.351 30.558  0.009 2.052 0.056 DCL14 
 t-Statistic 2.034 0.642 -1.226 1.948 -2.859 2.033 0.931 0.522     

               
 Coefficient 0.062 42.991 -82.980 51.035 -0.005 0.001 16.089 28.896  0.008 2.047 0.063 DCL15 
 t-Statistic 2.070 0.659 -1.193 1.890 -2.853 2.032 0.930 0.503     
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        Table 11: Forecasting Power of the Economic Variables (Cont'd) 

Panel B: ICE Crude Oil 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY     

j     C a1 a2 a3 a4 a5 a6 a7   R-squared     Durbin-Watson stat Prob(F-stat) 

               

 Coefficient 0.052 21.303 -115.319 105.493 -0.006 0.002 8.789 52.046  0.005 2.055 0.133 DCO1 
 t-Statistic 1.154 0.167 -1.034 2.562 -1.817 1.469 0.272 0.524     

               

 Coefficient 0.054 5.239 -101.156 97.999 -0.006 0.001 12.426 44.420  0.007 2.062 0.087 DCO2 
 t-Statistic 1.288 0.046 -0.987 2.520 -2.230 1.560 0.419 0.477     

               

 Coefficient 0.055 14.454 -105.100 99.670 -0.005 0.001 15.017 38.910  0.008 2.065 0.067 DCO3 
 t-Statistic 1.395 0.140 -1.085 2.821 -2.163 1.574 0.540 0.453     

               

 Coefficient 0.057 18.233 -107.248 100.420 -0.005 0.001 15.142 29.197  0.009 2.058 0.045 DCO4 
 t-Statistic 1.503 0.191 -1.180 2.987 -2.331 1.538 0.571 0.363     

               

 Coefficient 0.058 18.455 -111.010 89.410 -0.005 0.001 15.460 42.544  0.008 2.062 0.059 DCO5 
 t-Statistic 1.570 0.207 -1.264 2.749 -2.325 1.693 0.642 0.554     

               

 Coefficient 0.058 19.687 -110.846 83.787 -0.005 0.001 13.221 40.312  0.008 2.063 0.065 DCO6 
 t-Statistic 1.639 0.235 -1.305 2.669 -2.363 1.720 0.587 0.552     

               

 Coefficient 0.059 18.799 -112.490 80.573 -0.005 0.001 14.627 37.327  0.008 2.068 0.070 DCO7 
 t-Statistic 1.713 0.237 -1.362 2.650 -2.358 1.700 0.678 0.534     

               

 Coefficient 0.060 19.264 -112.645 74.221 -0.005 0.001 14.938 35.372  0.007 2.063 0.085 DCO8 
 t-Statistic 1.774 0.255 -1.406 2.524 -2.355 1.694 0.732 0.525     

               

 Coefficient 0.060 8.658 -104.444 71.085 -0.004 0.001 12.446 40.874  0.006 2.058 0.106 DCO9 
 t-Statistic 1.819 0.120 -1.351 2.483 -2.323 1.725 0.640 0.636     
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             Table 11: Forecasting Power of the Economic Variables (Cont'd) 
Panel C: NYMEX Heating Oil 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY     
j     C a1 a2 a3 a4 a5 a6 a7   R-squared     Durbin-Watson stat Prob(F-stat) 
               

 Coefficient 0.119 -41.736 -760.581 222.256 -0.020 0.004 13.225 -127.670  0.004 2.120 0.197 DHO1 
 t-Statistic 0.846 -0.094 -1.422 1.771 -1.710 1.188 0.117 -0.364     

               

 Coefficient 0.130 111.061 -704.624 203.312 -0.022 0.005 36.955 23.742  0.006 2.113 0.108 DHO2 
 t-Statistic 0.989 0.274 -1.510 1.510 -2.324 1.575 0.373 0.077     

               

 Coefficient 0.138 207.348 -674.463 203.563 -0.021 0.005 44.676 87.697  0.007 2.092 0.081 DHO3 
 t-Statistic 1.086 0.559 -1.591 1.551 -2.307 1.640 0.480 0.296     

               

 Coefficient 0.147 225.991 -658.537 217.669 -0.020 0.005 50.148 93.589  0.008 2.078 0.064 DHO4 
 t-Statistic 1.176 0.671 -1.700 1.774 -2.284 1.592 0.577 0.332     

               

 Coefficient 0.151 169.746 -670.665 235.140 -0.018 0.004 41.335 92.494  0.009 2.081 0.055 DHO5 
 t-Statistic 1.239 0.546 -1.902 2.074 -2.233 1.538 0.522 0.352     

               

 Coefficient 0.154 152.706 -631.297 230.134 -0.016 0.004 25.779 75.409  0.007 2.093 0.075 DHO6 
 t-Statistic 1.308 0.532 -1.920 2.171 -2.151 1.471 0.356 0.311     

               

 Coefficient 0.155 91.492 -524.283 211.229 -0.014 0.003 1.665 83.316  0.005 2.104 0.148 DHO7 
 t-Statistic 1.375 0.344 -1.752 2.136 -2.033 1.447 0.024 0.372     

               

 Coefficient 0.157 25.778 -412.598 186.281 -0.013 0.003 -8.705 94.855  0.003 2.138 0.229 DHO8 
 t-Statistic 1.473 0.104 -1.534 2.068 -2.076 1.516 -0.135 0.456     

               

 Coefficient 0.160 19.812 -340.115 173.996 -0.012 0.003 -14.373 82.371  0.002 2.173 0.279 DHO9 
 t-Statistic 1.604 0.084 -1.380 2.049 -2.084 1.479 -0.236 0.423     

               

 Coefficient 0.161 39.234 -320.219 166.917 -0.012 0.003 -17.648 54.960  0.002 2.189 0.289 DHO10 
 t-Statistic 1.704 0.177 -1.352 2.031 -1.999 1.432 -0.304 0.298     

               

 Coefficient 0.163 59.677 -338.786 156.847 -0.012 0.003 -9.174 71.106  0.003 2.154 0.235 DHO11 
 t-Statistic 1.791 0.281 -1.456 1.967 -2.018 1.573 -0.163 0.381     

               
 Coefficient 0.166 74.351 -329.662 141.837 -0.010 0.003 2.975 110.076  0.002 2.135 0.281 DHO12 
 t-Statistic 1.880 0.357 -1.438 1.795 -1.867 1.619 0.055 0.582     
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          Table 11: Forecasting Power of the Economic Variables (Cont'd) 
Panel D: NYMEX Gasoline 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY     
j     C a1 a2 a3 a4 a5 a6 a7   R-squared     Durbin-Watson stat     Prob(F-stat) 
               

 Coefficient 0.118 -11.082 -480.568 102.298 -0.025 0.005 -61.037 65.414  -0.001 2.121 0.523 DHU1 
 t-Statistic 0.649 -0.024 -0.836 0.585 -2.063 1.421 -0.494 0.174     

               
 Coefficient 0.136 82.539 -270.608 167.812 -0.020 0.004 -37.874 -40.393  0.000 2.101 0.447 DHU2 
 t-Statistic 0.847 0.200 -0.611 1.049 -2.007 1.309 -0.355 -0.127     

               
 Coefficient 0.108 -167.010 -94.920 158.099 -0.019 0.004 -13.609 56.780  0.000 2.089 0.431 DHU3 
 t-Statistic 0.753 -0.453 -0.266 1.231 -2.102 1.539 -0.149 0.195     

               
 Coefficient 0.131 -68.175 -64.204 126.232 -0.014 0.003 35.996 43.726  -0.003 2.113 0.676 DHU4 
 t-Statistic 1.048 -0.217 -0.209 1.010 -1.740 1.286 0.429 0.172     

               
 Coefficient 0.131 -68.175 -64.204 126.232 -0.014 0.003 35.996 43.726  -0.003 2.113 0.676 DHU5 
 t-Statistic 1.048 -0.217 -0.209 1.010 -1.740 1.286 0.429 0.172     

               
 Coefficient 0.166 151.893 -77.080 152.370 -0.015 0.005 5.124 138.373  0.003 2.068 0.210 DHU6 
 t-Statistic 1.607 0.542 -0.294 1.299 -1.996 1.898 0.068 0.573     

               
 Coefficient 0.184 90.039 -332.106 176.586 -0.013 0.003 49.578 92.038  0.002 2.070 0.319 DHU7 
 t-Statistic 1.717 0.334 -1.258 1.509 -1.898 1.341 0.675 0.412     

               
 Coefficient 0.166 129.052 -410.016 159.021 -0.014 0.003 55.534 79.807  0.002 2.015 0.290 DHU8 
 t-Statistic 1.520 0.466 -1.462 1.381 -1.917 1.120 0.727 0.331     

               
 Coefficient 0.187 93.477 -294.680 162.576 -0.015 0.002 62.073 82.146  0.003 2.080 0.248 DHU9 
 t-Statistic 1.697 0.372 -1.147 1.366 -2.348 1.382 0.853 0.403     

               
 Coefficient 0.181 107.411 -353.611 187.005 -0.015 0.003 63.090 118.601  0.003 2.103 0.248 DHU10 
 t-Statistic 1.541 0.398 -1.302 1.531 -2.260 1.433 0.737 0.480     

               
 Coefficient 0.176 140.845 -419.331 177.075 -0.016 0.003 62.586 179.792  0.005 2.065 0.192 DHU11 
 t-Statistic 1.382 0.476 -1.326 1.453 -2.349 1.636 0.703 0.798     

Results from regressing ΔFtj (j = CL1,…, CL15, CO1,…, CO9, HO1,…, HO12, HU1,…, HU11) on the first differences of the seven economic 
and financial factors weekly prices. Sample period: 8/11/1991-29/12/2006
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Moving on to ICE Crude we retain similar results with low 2R  values, they don't even 

reach 1%. The similarities continue to exist as far as the significant regressors are 

concerned. So, T-Bill rate and S&P 500 seem to have some predictability on all but the 

first one contract. Major difference lies on the low F-statistic values, which indicate non 

zero coefficient only for the future expiring in four months.  

Exactly the same picture appears in NYMEX Heating Oil futures first differences. The 
2R  statistic fluctuates between 0.2% and 0.9% proving the poor forecasting power of our 

model, whereas the statistically significant parameters consist of the same variables (T-

Bill and S&P 500) in the case of Heating Oil.  

The Gasoline results are more disappointing. The 2R  values remain below 0.5% for all 

regressions and they often become negative. The coefficients show also disappointing 

results and only the S&P 500 weekly differences shows predictability on seven futures 

series. Assuming the last two commodities we should refer to the fact that F-statistic 

ensures the null Hypothesis (that all coeficients are statistically insignificant at the 5% 

level) across the regressions of all maturities. 

To sum up these regression results we can refer to the previous literature. Our research is 

made in a weekly horizon, instead of monthly as it was Sadorsky's case, but in general we 

come up with the same findings. We ensured that a simple multivariate regression model 

using economic variables as independent variables has no explanatory or forecasting 

power on petroleum futures first differences, but we also extended the former conclusions 

demonstrating that the inclusion of more regressors cannot improve this model's 

performance. Moreover, the introduction of the U.K. economic factors didn't offer any 

enhancement of the predictability and not a single one of them was statistically 

significant as a predictor of the ICE Crude or any other commodity price differences at 

the 5% significance level. To conclude with this model analysis, we showed that we have 

to seek for a different regression model instead of enriching this one with more 

explanatory variables. 
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4.4 ARMA-GARCH MODELS 

 

As an extension of the aforementioned analysis we try to enhance our model by making it 

more accurate so as to correct our residuals serial autocorrelation and the ARCH effects 

that are observed in our regressions. To face these difficulties in the previous analysis we 

derive the equations using the Newey-West heteroskedasticity and autocorrelation 

consistent covariance matrix, now we introduce ARMA-GARCH models in order to 

include autoregressive factors in our residuals distribution and to estimate the residuals 

conditional variance. The rest independent variables remain constant as before in the 

simple regression settings with the economic factors.   

 

Specification 

 

To be more consistent with our forthcoming regressions we present a brief description of 

an ARMA-GARCH model.  

The Autoregressive Moving Average (ARMA_ part of the model has to do with the 

autoregressive characteristics we use to model our residuals. First of all we assume that 

our regression is of the form: 

ttt XbR ε+= −1* (7) 

tR
denotes our dependent variable and 1* −tXb  our independent variable 1−tX  along with 

the estimated coefficient b . As we can observe tR
 is defined at time t whereas the 

regressor is retained one time step before at time t-1. This is the case also for our data. Of 

course we have more than one independent variables, but this is not the matter for the 

time being. τε  represents the error term which distribution we would like to model. The 

first tool is the autoregressive, or AR, term. Each AR term denotes a lagged 

autoregressive factor in our error equation. An AR(1) model uses only the first-order 

term, but in favour of our analysis we use also higher-order AR terms.  So, an AR(p) 
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model can be described by the following equation: 

tptpttt u++++= −−− ερερερε ....2211 (8) 

The ρ  terms denote the coefficients and of course there is no constant term because the 

error mean still is zero. tu  is the error term of our residuals regression. 

The next part is the MA, or moving average term. A moving average forecasting model 

uses lagged values of tu  to improve the current estimation of the main error regression 

term, τε . So our error equation for a MA(q) model is: 

qtptttt uuuu −−− ++++= θθθε ....2211 (9) 

The autoregressive and moving average specifications can be combined to form an 

ARMA(p, q) specification: 

tptpttt u++++= −−− ερερερε ....2211 qtptt uuu −−− ++++ θθθ ....2211 (10) 

The GARCH part of the suggested models has to do with the estimation of the residuals 

variance. Assuming that this variance is τh  we can present the following equation for the 

conditional variance of a GARCH(m, n) model: 

2

1

2

1
mtj

m

j
nti

n

i
th −

=
−

=
∑∑ ++= σβεαω

(11) 

As we can see ω  stands for a constant term and we also have a term (
2

nt−ε
) for  volatility 

from the previous period, measured as the lags of the squared residuals (the ARCH term). 

The last factor is the GARCH term which estimates the last period's variance effect. 
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Regressions and Results 

Moving on to the specific regressions we have to note that our effort is to find ARMA-

GARCH models fitted well on each future we examine. We choose this approach in order 

to have the most appropriate model for each contract's weekly differences and to avoid 

misleading generalizations across futures on the same commodities or with similar 

periods to maturity. As a critical value so as to decide the order of our models we use the 

Schwarz information criteria we obtained from the examination of a variety of cases. 

Table 12 comes up with the usual statistics we include in the former approaches, but there 

are two additional columns indicating the orders of the ARMA-GARCH model which 

was qualified for each contract differences. To be more specific, Table   shows our 

dependent variables in the first column and the next eight columns show the coefficients 

and the corresponding z-statistics of the constant term and the seven economic variables, 

then we have the ARMA and the GARCH order we preferred for each commodity future. 

The last three columns contain the 2R  statistic, the Durbin –Watson statistic for first 

order serial correlation and the F statistic, respectively. 

Moving on to the examination of our results we start with NYMEX Crude Oil. Taking 

into account the very low or even negative values of the retained adjusted 2R  we should 

be seriously questioned about the improvement of our models, because their, this way, 

estimated forecasting power declines. On the other hand, the number of statistically 

significant regressors remains almost constant and we cannot ignore that all the ARMA 

terms included are statistically significant at the 5% level. Like in the simple regression 

case the S&P 500 Index is still significant, but now we have the default risk premium 

(BAA-AAA) as an additional factor. T-Bill is important only for the sixth shortest to 

maturity contract. The last disappointing result comes from the fact that all F-statistics 

ensure the null hypothesis for all coefficients to be equal to zero. 

ICE Crude regressions give us worse results. All but one 2R  values are negative declaring 

that the models are rather mispecified which is proved by the presence of only two 

statistically significant factors. One of them is derived from the regression of the future 

expiring in four months, which offers also the only one positive adjusted 2R  value. Again 

F-statistics suggest zero value for all retained coefficients. So, it is again very ambiguous 

to be satisfied from the statistical significance of the ARMA terms and the eradication of 

the ARCH effects. 
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               Table 12: Forecasting Power of the Economic Variables  tested by ARMA-GARCH models 
Panel A: NYMEX Crude Oil 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY      
j     C a1 a2 a3 a4 a5 a6 a7 ARMA GARCH R-squared     Durbin-Watson stat Prob(F-stat) 
                

 Coefficient 0.030 110.630 -173.075 37.877 -0.004 0.001 37.652 12.324 (6,0) (1,1) 0.000 2.141 0.473 DCL1 
 z-Statistic 0.971 1.174 -1.495 1.187 -1.546 0.900 1.497 0.142      

                
 Coefficient 0.030 80.628 -203.526 41.771 -0.004 0.001 38.596 46.182 (6,0) (1,1) 0.007 2.107 0.131 DCL2 
 z-Statistic 1.153 1.022 -2.047 1.554 -2.029 1.847 1.836 0.637      

                
 Coefficient 0.015 90.055 -172.429 40.574 -0.005 0.001 27.747 36.487 (6,0) (1,1) 0.009 2.085 0.089 DCL3 
 z-Statistic 0.622 1.216 -1.784 1.563 -2.138 1.920 1.401 0.525      

                
 Coefficient 0.001 20.380 -206.147 39.141 -0.003 0.001 26.436 -7.328 (6,0) (1,1) 0.006 2.074 0.152 DCL4 
 z-Statistic 0.032 0.321 -2.520 1.759 -1.593 1.588 1.630 -0.135      

                
 Coefficient 0.012 48.845 -144.645 37.566 -0.004 0.001 20.467 -10.070 (6,0) (1,1) 0.009 2.059 0.080 DCL5 
 z-Statistic 0.630 0.827 -1.874 1.855 -2.152 1.447 1.428 -0.198      

                
 Coefficient 0.008 46.247 -132.150 42.254 -0.004 0.001 13.933 -23.232 (6,0) (1,1) 0.008 2.055 0.095 DCL6 
 z-Statistic 0.441 0.827 -1.813 2.344 -2.109 1.227 1.062 -0.508      

                
 Coefficient 0.012 26.544 -134.350 33.865 -0.003 0.001 14.805 7.721 (6,0) (1,1) 0.008 2.059 0.099 DCL7 
 z-Statistic 0.673 0.518 -1.985 1.685 -2.153 1.483 1.152 0.158      

                
 Coefficient 0.011 25.637 -133.692 33.876 -0.003 0.001 12.922 2.883 (6,0) (1,1) 0.007 2.059 0.119 DCL8 
 z-Statistic 0.681 0.530 -2.090 1.814 -2.027 1.327 1.050 0.064      

                
 Coefficient 0.011 18.721 -127.998 31.254 -0.003 0.001 12.044 -2.124 (6,0) (1,1) 0.007 2.058 0.124 DCL9 
 z-Statistic 0.683 0.399 -2.044 1.741 -2.177 1.306 1.009 -0.050      

                
 Coefficient 0.010 15.654 -123.828 29.547 -0.003 0.000 12.199 -6.896 (6,0) (1,1) 0.006 2.052 0.148 DCL10 
 z-Statistic 0.659 0.346 -2.039 1.710 -2.166 1.214 1.045 -0.171      

                
 Coefficient 0.009 18.545 -119.486 28.539 -0.003 0.000 10.733 -8.454 (6,0) (1,1) 0.006 2.048 0.164 DCL11 
 z-Statistic 0.649 0.430 -2.035 1.765 -2.047 1.095 0.926 -0.219      

                
 Coefficient 0.007 -8.801 -83.121 20.728 -0.003 0.001 11.204 5.851 (4,1) (1,1) -0.014 1.848 1.000 DCL12 
 z-Statistic 0.450 -0.189 -1.391 1.217 -1.978 1.432 0.913 0.134      

                
 Coefficient 0.007 -8.485 -83.158 18.633 -0.003 0.000 10.233 2.441 (4,1) (1,1) -0.017 1.828 0.990 DCL13 
 z-Statistic 0.459 -0.189 -1.439 1.123 -1.976 1.373 0.857 0.058      

                
 Coefficient 0.008 17.011 -113.979 17.219 -0.003 0.000 10.759 -8.168 (6,1) (1,1) -0.006 1.810 0.848 DCL14 
 z-Statistic 0.718 0.425 -2.129 1.125 -2.002 1.211 0.959 -0.223      

                
 Coefficient 0.008 16.081 -111.875 14.306 -0.002 0.000 10.975 -8.340 (6,1) (1,1) -0.009 1.795 0.947 DCL15 
 z-Statistic 0.732 0.412 -2.154 0.955 -1.990 1.184 0.996 -0.233      
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   Table 12: Forecasting Power of the Economic Variables  tested by ARMA-GARCH models (Cont'd) 

Panel B: ICE Crude Oil 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY      

j     C a1 a2 a3 a4 a5 a6 a7 ARMA GARCH R-squared     Durbin-Watson stat Prob(F-stat) 

                

 Coefficient 0.018 142.695 -174.360 22.533 -0.003 0.001 24.566 58.273 (6,6) (1,2) -0.008 2.047 0.925 DCO1 
 z-Statistic 0.664 1.943 -1.827 0.868 -1.330 1.515 1.150 0.776      

                

 Coefficient 0.012 84.096 -175.146 28.983 -0.003 0.001 21.424 27.624 (6,6) (1,2) -0.006 2.051 0.827 DCO2 
 z-Statistic 0.496 1.223 -1.989 1.167 -1.731 1.383 1.043 0.405      

                

 Coefficient 0.017 55.183 -128.292 32.934 -0.003 0.001 20.586 23.809 (6,6) (1,2) -0.003 2.050 0.649 DCO3 
 z-Statistic 0.729 0.867 -1.517 1.431 -1.596 1.312 1.109 0.380      

                

 Coefficient 0.015 33.563 -92.088 41.105 -0.003 0.001 21.130 20.766 (6,6) (1,1) 0.000 2.043 0.426 DCO4 
 z-Statistic 0.701 0.566 -1.153 1.959 -1.962 1.503 1.248 0.378      

                
 Coefficient 0.016 30.976 -99.115 31.754 -0.003 0.001 14.939 18.769 (6,6) (1,1) -0.001 2.044 0.513 DCO5 
 z-Statistic 0.783 0.550 -1.332 1.610 -1.755 1.521 0.927 0.372      

                

 Coefficient 0.013 31.603 -98.392 26.935 -0.003 0.001 10.534 10.394 (6,6) (1,1) -0.001 2.042 0.532 DCO6 
 z-Statistic 0.716 0.615 -1.472 1.507 -1.854 1.432 0.705 0.227      

                
 Coefficient 0.006 -30.275 -83.255 23.653 -0.002 0.000 10.949 16.965 (6,6) (1,1) -0.004 2.040 0.699 DCO7 
 z-Statistic 0.314 -0.587 -1.120 1.200 -1.682 1.067 0.578 0.319      

                
 Coefficient 0.011 9.968 -95.553 24.674 -0.002 0.000 11.371 5.124 (6,6) (1,1) -0.002 2.041 0.590 DCO8 
 z-Statistic 0.636 0.204 -1.526 1.439 -1.744 1.209 0.815 0.121      

                

 Coefficient 0.004 -33.026 -77.864 21.826 -0.003 0.001 9.309 30.772 (6,6) (1,1) -0.005 2.032 0.766 DCO9 
 z-Statistic 0.248 -0.719 -1.311 1.439 -1.916 1.503 0.764 0.702      
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Table 12: Forecasting Power of the Economic Variables  tested by ARMA-GARCH models (Cont'd) 
Panel C: NYMEX Heating Oil 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY      
j     C a1 a2 a3 a4 a5 a6 a7 ARMA GARCH R-squared     Durbin-Watson stat     Prob(F-sta) 
                

 Coefficient 0.014 90.555 -621.628 36.436 -0.013 0.002 52.034 -68.543 (1,1) (1,1) 0.013 1.969 0.032 DHO1 
 z-Statistic 0.235 0.332 -1.980 0.338 -1.891 1.191 0.755 -0.307      

                
 Coefficient 0.023 143.191 -562.289 61.576 -0.012 0.002 50.289 -102.407 (6,6) (1,1) -0.005 2.102 0.746 DHO2 
 z-Statistic 0.306 0.606 -2.110 0.719 -1.993 0.803 0.830 -0.507      

                
 Coefficient 0.023 230.790 -588.200 79.052 -0.010 0.001 49.888 -60.190 (6,6) (1,1) -0.006 2.073 0.854 DHO3 
 z-Statistic 0.330 1.165 -2.503 1.052 -1.735 0.771 0.946 -0.315      

                
 Coefficient 0.025 278.329 -684.288 61.560 -0.009 0.002 61.313 -9.994 (6,6) (1,1) -0.006 2.058 0.848 DHO4 
 z-Statistic 0.385 1.686 -3.082 0.804 -1.613 0.913 1.245 -0.055      

                
 Coefficient 0.026 25.725 -582.932 53.354 -0.007 0.001 36.774 -36.995 (6,6) (1,1) -0.006 2.060 0.814 DHO5 
 z-Statistic 0.408 0.158 -2.901 0.809 -1.306 0.538 0.721 -0.205      

                
 Coefficient 0.026 -4.552 -492.410 62.378 -0.005 0.000 15.580 -70.631 (6,6) (1,1) -0.006 2.070 0.841 DHO6 
 z-Statistic 0.450 -0.029 -2.641 1.045 -1.100 0.255 0.338 -0.430      

                
 Coefficient 0.022 -34.719 -382.382 62.648 -0.005 0.000 -5.949 -80.204 (6,6) (1,1) -0.006 2.078 0.841 DHO7 
 z-Statistic 0.409 -0.232 -2.085 1.202 -1.118 0.167 -0.154 -0.597      

                
 Coefficient 0.032 -85.095 -378.601 44.337 -0.005 0.001 -10.585 1.326 (6,6) (1,1) -0.006 2.119 0.831 DHO8 
 z-Statistic 0.594 -0.564 -2.020 0.821 -1.314 0.652 -0.268 0.010      

                
 Coefficient 0.025 -84.879 -308.546 38.903 -0.005 0.000 -17.090 -54.515 (6,6) (1,1) -0.008 2.152 0.917 DHO9 
 z-Statistic 0.491 -0.574 -1.714 0.760 -1.368 0.312 -0.460 -0.446      

                
 Coefficient 0.022 -97.474 -253.065 40.064 -0.005 0.000 -24.096 -65.542 (6,6) (1,1) -0.009 2.169 0.966 DHO10 
 z-Statistic 0.449 -0.681 -1.417 0.807 -1.282 0.324 -0.669 -0.563      

                
 Coefficient 0.035 58.806 -402.126 15.720 -0.004 0.000 -4.985 -18.589 (1,1) (3,1) -0.027 1.788 0.837 DHO11 
 z-Statistic 1.104 0.402 -2.884 0.337 -1.094 0.091 -0.161 -0.140      

                
 Coefficient -0.063 59.015 -238.272 -1.989 0.001 0.000 26.550 -34.101 (0,1) (3,1) -0.045 1.686 0.786 DHO12 
 z-Statistic -2.352 0.439 -2.464 -0.046 0.264 -0.287 0.909 -0.325      
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Table 12: Forecasting Power of the Economic Variables  tested by ARMA-GARCH models (Cont'd) 
Panel D: NYMEX Gasoline 

Independent Variables   S&P500DY BAA-AAA T-Bill S&P500 FTSE100 LIBOR FTSE100DY      
j     C a1 a2 a3 a4 a5 a6 a7 ARMA GARCH R-squared     Durbin-Watson stat Prob(F-stat) 
                

 Coefficient 0.119 173.206 398.161 21.923 -0.007 0.003 -10.975 22.240 (6,6) (1,2) -0.001 1.967 0.476 DHU1 
 z-Statistic 1.081 0.681 1.335 0.191 -1.060 1.147 -0.109 0.085      

                
 Coefficient 0.014 -327.754 75.529 -115.448 -0.012 0.004 -11.930 186.404 (6,6) (1,1) 0.008 1.954 0.175 DHU2 
 z-Statistic 0.160 -1.356 0.227 -1.201 -2.568 2.606 -0.105 0.816      

                
 Coefficient 0.068 -238.659 66.731 -124.531 -0.012 0.004 90.540 193.801 (6,6) (1,1) 0.001 1.886 0.408 DHU3 
 z-Statistic 0.719 -0.945 0.191 -1.281 -2.581 2.493 0.703 0.739      

                
 Coefficient 0.076 -225.491 -148.532 -64.088 -0.009 0.004 41.567 312.163 (6,6) (1,1) -0.004 2.018 0.635 DHU4 
 z-Statistic 0.926 -1.025 -0.473 -0.678 -1.855 2.555 0.412 1.336      

                
 Coefficient 0.016 -501.264 -156.838 -114.443 -0.002 0.002 -85.263 235.844 (6,6) (1,1) -0.010 2.136 0.909 DHU5 
 z-Statistic 0.172 -2.439 -0.542 -1.097 -0.419 1.099 -0.928 1.022      

                
 Coefficient -0.018 -306.452 157.491 -85.909 -0.003 0.002 -5.362 160.293 (6,6) (1,3) -0.009 2.104 0.833 DHU6 
 z-Statistic -0.217 -1.494 0.540 -1.019 -0.725 1.494 -0.062 0.719      

                
 Coefficient 0.034 -325.182 56.199 -128.239 -0.002 0.001 -2.682 185.932 (4,4) (1,1) -0.008 2.074 0.811 DHU7 
 z-Statistic 0.478 -1.660 0.190 -1.407 -0.564 0.875 -0.025 0.835      

                

 Coefficient 0.022 -464.224 251.295 -93.284 -0.005 0.001 -6.972 138.343 (4,4) (1,1) -0.003 2.055 0.601 DHU8 
 z-Statistic 0.340 -2.123 0.976 -1.111 -1.297 0.928 -0.072 0.646      

                

 Coefficient 0.085 -223.910 331.213 12.395 -0.007 0.003 -28.206 254.006 (6,6) (1,2) -0.013 2.051 0.955 DHU9 
 z-Statistic 1.118 -0.886 1.470 0.132 -1.769 2.029 -0.294 1.258      

                
 Coefficient 0.059 387.950 33.379 -118.636 0.003 0.001 -77.544 70.705 (6,6) (1,1) -0.006 1.977 0.718 DHU10 
 z-Statistic 0.427 1.181 0.106 -0.785 0.407 0.439 -0.586 0.212      

                
 Coefficient -0.041 81.183 -606.835 -139.031 0.007 0.000 -98.471 -311.806 (2,2) (1,5) -0.028 2.094 1.000 DHU11 
 z-Statistic -0.420 0.309 -1.989 -1.242 0.996 -0.163 -1.207 -1.414      

Results from regressing ΔFtj (j = CL1,…, CL15, CO1,…, CO9, HO1,…, HO12, HU1,…, HU11) on the first differences of the seven economic 
and financial factors weekly prices using ARMA-GARCH regression models. Sample period: 8/11/1991-29/12/2006
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The picture remains disappointing when we look at NYMEX Heating Oil results. The 

negative 2R  values constitute a general phenomenon again with the only one exception 

of the first contract. The default risk premium (BAA-AAA) takes the place of S&P 500 

and T-Bill as valid explanatory variables in cooperation with the proposed ARMA terms, 

whereas F-statistic insists to qualify zero coefficients values. 

Our last commodity, NYMEX Gasoline, is the only one that the ARMA-GARCH models 

results are comparable with the previous findings. Unfortunately, this is not because of an 

impressive performance of this specific approach, but it is due to the same very poor 

results we had obtained from our previous efforts. We continue to observe negative 2R  

values and the F-statistics correspond to zero coefficients values. Moreover, the 

statistically important factors show extreme instability and their set contains four 

different variables (S&P 500, S&P 500DY, BAA-AAA and FTSE100). 

The aforementioned findings indicate an inadequate model poorly fitting in our data set 

with no predictive skills. These remarks can be by far worse if we try to get them in a 

comparison with former literature. Sadorsky derived a similar model using similar 

explanatory variables and he managed to present some results which indicate 

forecastability over three different contracts of the shortest maturities in a monthly time 

horizon. Our research cannot be characterised by equivalent conclusions as far as the 

weekly time interval is concerned. Of course, we should remind that the negative 2R  

values cannot be the reason to exclude a model by themselves, especially in our case 

because we have to do with ARCH models which can result in negative 2R . 

Consequently, the final valuation of this model will be done in the out of sample section 

of this paper, where we can shape more stable opinion about the forecasting 

performances of all models mentioned before. 
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CHAPTER 5: VAR MODEL 

As a last approach in order to identify predictability across the petroleum futures term 

structure we take into consideration a Vector Autoregression (VAR) model. Obviously, 

this approach is an alternative of the two PCA methods giving the fact that we have to do 

again with a time series forecasting approach which uses as explanatory factors the lags 

of the dependent variables. To be more specific our model occupies only the first lagged 

values of the weekly differences of contracts which represent the various maturities of the 

futures on the same commodity as our dependent variable belongs. So, the VAR equation 

has the following form: 

l
t

l
t

lll
t uDFcDF +Φ+= −1 (12) 

The only substantial differentiation from previous equations, as far as the variables 

representation is concerned, has to do with the fact that the equation terms consist of 

vectors and matrices. So, 

l
tDF  denotes a (J*1) vector of the weekly changes of futures prices at time t. Indicator j 

represents as before the different generics (CL1-CL15, CO1-CO9, HO1-HO12, HU1-

HU11) of the contracts, whereas l  refers to commodities NYMEX Crude Oil, IPE Crude 

Oil, NYMEX Heating Oil and NYMEX Gasoline, so as to determine four different 

vectors and the corresponding VAR equations. 

Furthermore,
lΦ  is the J*J matrix of coefficients of the l  commodity to be estimated, 

lc  and 
l
tu
 are J*1 vectors of constant terms and errors, respectively. Error terms may be 

contemporaneously correlated but are uncorrelated with their own lagged values and 

uncorrelated with all of the right-hand side variables. 

The results for each commodity are presented in Table 13. The first three commodities 

come up with results very similar to separate PCA model results. The adjusted R-squared 

values are very low indicating no forecasting power across the maturities even though t- 

and F-statistics confirm the null hypothesis for all ICE Crude regressions. NYMEX 

Crude and Heating Oil futures have statistically significant coefficients, but  2R  values 

remain lower than 2.5%.  
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Table 13: Forecasting Power of the Vector Autoreggresion model (Cont'd) 
Panel A: NYMEX Crude Oil 

                
 DCL1 DCL2 DCL3 DCL4 DCL5 DCL6 DCL7 DCL8 DCL9 DCL10 DCL11 DCL12 DCL13 DCL14 DCL15 
                

C 0.053 0.054 0.054 0.055 0.055 0.056 0.056 0.057 0.057 0.057 0.058 0.058 0.058 0.058 0.058 
 [ 1.02886] [ 1.13653] [ 1.22417] [ 1.31464] [ 1.39701] [ 1.46950] [ 1.54040] [ 1.61148] [ 1.66856] [ 1.73029] [ 1.78949] [ 1.83448] [ 1.87767] [ 1.91837] [ 1.95729] 
                

DCL1(-1) -0.547 -0.216 -0.227 -0.208 -0.189 -0.170 -0.149 -0.131 -0.107 -0.096 -0.085 -0.062 -0.049 -0.036 -0.026 
 [-2.63210] [-1.11652] [-1.25505] [-1.22435] [-1.17468] [-1.10141] [-1.00765] [-0.91939] [-0.76655] [-0.71179] [-0.65022] [-0.48104] [-0.39398] [-0.29608] [-0.21581] 
                

DCL2(-1) 1.112 0.470 0.649 0.515 0.470 0.459 0.409 0.422 0.333 0.328 0.358 0.302 0.299 0.287 0.271 
 [ 1.30655] [ 0.59356] [ 0.87727] [ 0.73966] [ 0.71201] [ 0.72713] [ 0.67378] [ 0.72142] [ 0.58461] [ 0.59381] [ 0.66836] [ 0.57544] [ 0.58396] [ 0.57132] [ 0.54838] 
                

DCL3(-1) -0.340 0.179 -0.140 0.037 -0.218 -0.446 -0.507 -0.725 -0.641 -0.749 -0.945 -0.941 -1.038 -1.124 -1.162 
 [-0.16142] [ 0.09133] [-0.07623] [ 0.02141] [-0.13348] [-0.28551] [-0.33744] [-0.50096] [-0.45518] [-0.54876] [-0.71201] [-0.72477] [-0.81756] [-0.90283] [-0.95016] 
                

DCL4(-1) -4.749 -5.092 -4.380 -3.919 -2.897 -2.337 -1.980 -1.486 -1.368 -1.079 -0.751 -0.641 -0.444 -0.260 -0.117 
 [-1.36016] [-1.56961] [-1.44357] [-1.37273] [-1.06965] [-0.90327] [-0.79558] [-0.61977] [-0.58585] [-0.47668] [-0.34171] [-0.29817] [-0.21135] [-0.12619] [-0.05794] 
                

DCL5(-1) 8.607 8.707 7.614 6.841 5.844 5.626 5.150 4.709 4.437 4.160 4.000 3.872 3.723 3.631 3.460 
 [ 1.95875] [ 2.13259] [ 1.99414] [ 1.90423] [ 1.71434] [ 1.72820] [ 1.64450] [ 1.56050] [ 1.51054] [ 1.46116] [ 1.44574] [ 1.43069] [ 1.40662] [ 1.39858] [ 1.35763] 
                

DCL6(-1) 1.285 1.121 1.452 1.313 1.254 0.783 1.091 0.929 0.977 1.048 0.854 0.907 0.923 0.805 0.842 
 [ 0.26859] [ 0.25228] [ 0.34933] [ 0.33571] [ 0.33784] [ 0.22099] [ 0.32017] [ 0.28266] [ 0.30542] [ 0.33805] [ 0.28338] [ 0.30768] [ 0.32052] [ 0.28486] [ 0.30331] 
                

DCL7(-1) -6.580 -6.291 -5.955 -5.469 -5.088 -4.677 -4.788 -4.085 -4.162 -4.229 -3.999 -4.058 -4.003 -3.831 -3.757 
 [-1.69096] [-1.74004] [-1.76089] [-1.71921] [-1.68559] [-1.62242] [-1.72664] [-1.52848] [-1.59992] [-1.67722] [-1.63185] [-1.69316] [-1.70817] [-1.66626] [-1.66465] 
                

DCL8(-1) -0.714 -0.863 -1.143 -1.330 -1.431 -1.521 -1.547 -2.084 -1.477 -1.487 -1.567 -1.446 -1.443 -1.435 -1.445 
 [-0.31352] [-0.40775] [-0.57753] [-0.71383] [-0.80971] [-0.90125] [-0.95256] [-1.33198] [-0.96943] [-1.00727] [-1.09259] [-1.03023] [-1.05143] [-1.06649] [-1.09379] 
                

DCL9(-1) 1.414 1.653 1.752 1.880 1.955 1.935 2.011 2.020 1.442 1.802 1.787 1.729 1.708 1.583 1.524 
 [ 0.48969] [ 0.61615] [ 0.69831] [ 0.79653] [ 0.87281] [ 0.90490] [ 0.97742] [ 1.01898] [ 0.74703] [ 0.96327] [ 0.98297] [ 0.97258] [ 0.98230] [ 0.92830] [ 0.91016] 
                

DCL10(-1) 3.425 2.935 2.786 2.464 2.198 1.994 1.697 1.607 1.722 1.312 1.474 1.362 1.218 1.190 1.138 
 [ 0.83698] [ 0.77198] [ 0.78359] [ 0.73664] [ 0.69247] [ 0.65767] [ 0.58207] [ 0.57195] [ 0.62934] [ 0.49492] [ 0.57220] [ 0.54041] [ 0.49423] [ 0.49206] [ 0.47968] 
                

DCL11(-1) 1.159 1.745 2.152 2.458 2.597 2.665 2.729 2.793 2.570 2.528 2.173 2.444 2.419 2.402 2.371 
 [ 0.32686] [ 0.52956] [ 0.69809] [ 0.84769] [ 0.94367] [ 1.01416] [ 1.07961] [ 1.14636] [ 1.08388] [ 1.09982] [ 0.97278] [ 1.11881] [ 1.13249] [ 1.14629] [ 1.15252] 
                

DCL12(-1) -8.605 -9.139 -9.882 -10.166 -10.220 -9.979 -9.712 -9.552 -9.036 -8.733 -8.522 -8.688 -8.256 -8.110 -7.939 
 [-1.44222] [-1.64839] [-1.90595] [-2.08397] [-2.20786] [-2.25742] [-2.28395] [-2.33104] [-2.26534] [-2.25884] [-2.26819] [-2.36419] [-2.29743] [-2.30078] [-2.29385] 
                

DCL13(-1) -2.105 -1.109 0.180 1.034 1.596 1.792 1.967 2.169 1.970 1.946 2.086 2.083 1.781 1.984 1.955 
 [-0.29467] [-0.16708] [ 0.02902] [ 0.17697] [ 0.28793] [ 0.33857] [ 0.38628] [ 0.44207] [ 0.41248] [ 0.42035] [ 0.46371] [ 0.47329] [ 0.41376] [ 0.47007] [ 0.47177] 
                

DCL14(-1) 5.522 4.398 3.584 3.137 2.837 2.730 2.606 2.673 2.479 2.505 2.582 2.449 2.389 2.014 2.096 
 [ 0.74076] [ 0.63500] [ 0.55323] [ 0.51465] [ 0.49048] [ 0.49422] [ 0.49049] [ 0.52202] [ 0.49743] [ 0.51855] [ 0.54995] [ 0.53333] [ 0.53206] [ 0.45735] [ 0.48479] 
                

DCL15(-1) 1.066 1.461 1.533 1.399 1.290 1.150 1.031 0.753 0.874 0.760 0.572 0.708 0.796 0.925 0.814 
 [ 0.25235] [ 0.37210] [ 0.41751] [ 0.40512] [ 0.39346] [ 0.36733] [ 0.34255] [ 0.25952] [ 0.30932] [ 0.27771] [ 0.21513] [ 0.27219] [ 0.31300] [ 0.37056] [ 0.33212] 
                

R-squared 0.022 0.018 0.018 0.018 0.017 0.017 0.019 0.018 0.017 0.018 0.017 0.019 0.020 0.020 0.021 
F-statistic 2.196 1.953 1.973 1.958 1.932 1.932 1.997 1.952 1.903 1.946 1.915 2.035 2.094 2.094 2.113 
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                                                     Table 13: Forecasting Power of the Vector Autoreggresion model (Cont'd) 
Panel B: ICE Crude Oil 

          
 DCO1 DCO2 DCO3 DCO4 DCO5 DCO6 DCO7 DCO8 DCO9 
          

C 0.055 0.057 0.057 0.058 0.058 0.059 0.059 0.060 0.060 
 [ 1.18056] [ 1.31168] [ 1.40501] [ 1.49808] [ 1.56791] [ 1.63507] [ 1.70736] [ 1.76745] [ 1.83551] 
          

DCO1(-1) -0.139 0.111 0.088 0.081 0.085 0.080 0.070 0.065 0.056 
 [-0.62435] [ 0.54215] [ 0.45544] [ 0.44147] [ 0.48169] [ 0.46833] [ 0.42336] [ 0.40158] [ 0.35540] 
          

DCO2(-1) 0.069 -0.214 0.188 0.165 0.193 0.200 0.225 0.247 0.262 
 [ 0.11246] [-0.38056] [ 0.35380] [ 0.32677] [ 0.39733] [ 0.42751] [ 0.49540] [ 0.56077] [ 0.61043] 
          

DCO3(-1) 1.410 1.175 0.596 0.909 0.646 0.519 0.449 0.369 0.327 
 [ 1.33512] [ 1.20720] [ 0.65043] [ 1.04320] [ 0.77079] [ 0.64163] [ 0.57212] [ 0.48436] [ 0.44139] 
          

DCO4(-1) -0.901 -0.710 -0.516 -0.836 -0.278 -0.225 -0.241 -0.224 -0.254 
 [-1.07734] [-0.92160] [-0.71080] [-1.21057] [-0.41836] [-0.35202] [-0.38717] [-0.37080] [-0.43296] 
          

DCO5(-1) -0.843 -0.621 -0.643 -0.610 -1.026 -0.568 -0.653 -0.655 -0.540 
 [-0.55731] [-0.44580] [-0.49007] [-0.48904] [-0.85579] [-0.49047] [-0.58169] [-0.60060] [-0.50873] 
          

DCO6(-1) 0.651 0.356 0.133 0.000 -0.010 -0.472 0.042 0.005 -0.167 
 [ 0.41484] [ 0.24606] [ 0.09788] [-0.00018] [-0.00778] [-0.39354] [ 0.03634] [ 0.00432] [-0.15154] 
          

DCO7(-1) -0.702 -0.657 -0.565 -0.540 -0.514 -0.542 -1.018 -0.539 -0.383 
 [-0.81785] [-0.82990] [-0.75876] [-0.76241] [-0.75411] [-0.82412] [-1.59551] [-0.86994] [-0.63533] 
          

DCO8(-1) -0.163 -0.045 0.032 0.164 0.249 0.290 0.542 -0.018 0.241 
 [-0.13127] [-0.03960] [ 0.02974] [ 0.16061] [ 0.25331] [ 0.30534] [ 0.58921] [-0.02029] [ 0.27692] 
          

DCO9(-1) 0.546 0.541 0.640 0.630 0.625 0.694 0.557 0.726 0.433 
 [ 0.62278] [ 0.66940] [ 0.84151] [ 0.87092] [ 0.89892] [ 1.03370] [ 0.85492] [ 1.14766] [ 0.70317] 

          
R-squared -0.002 -0.002 0.000 0.005 0.004 0.004 0.005 0.003 0.001 
F-statistic 0.782 0.808 1.043 1.415 1.351 1.340 1.441 1.224 1.098 
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                       Table 13: Forecasting Power of the Vector Autoreggresion model (Cont'd) 
Panel C: NYMEX Heating Oil 

             
 DHO1 DHO2 DHO3 DHO4 DHO5 DHO6 DHO7 DHO8 DHO9 DHO10 DHO11 DHO12 
             

C 0.124 0.131 0.139 0.144 0.149 0.153 0.156 0.161 0.165 0.167 0.167 0.171 
 [ 0.74829] [ 0.87360] [ 0.98722] [ 1.08764] [ 1.19113] [ 1.28716] [ 1.39788] [ 1.51762] [ 1.63087] [ 1.70132] [ 1.74176] [ 1.83371] 
             

DHO1(-1) -0.173 0.026 0.082 0.139 0.170 0.189 0.173 0.137 0.104 0.065 0.039 0.025 
 [-1.00186] [ 0.16370] [ 0.55895] [ 1.00612] [ 1.29614] [ 1.52925] [ 1.48114] [ 1.24246] [ 0.98723] [ 0.63114] [ 0.38470] [ 0.25629] 
             

DHO2(-1) 0.517 0.060 0.080 -0.081 -0.165 -0.203 -0.141 -0.032 0.074 0.159 0.167 0.117 
 [ 0.87198] [ 0.11119] [ 0.15948] [-0.17018] [-0.36684] [-0.47595] [-0.35029] [-0.08389] [ 0.20405] [ 0.45187] [ 0.48516] [ 0.34842] 
             

DHO3(-1) -0.980 -0.570 -0.623 -0.341 -0.342 -0.399 -0.501 -0.591 -0.654 -0.646 -0.576 -0.447 
 [-0.94090] [-0.60283] [-0.70247] [-0.40774] [-0.43261] [-0.53306] [-0.70994] [-0.88329] [-1.02578] [-1.04522] [-0.94986] [-0.75754] 
             

DHO4(-1) 1.513 1.435 1.354 1.012 1.096 1.098 1.046 0.984 0.890 0.718 0.578 0.503 
 [ 1.25277] [ 1.30925] [ 1.31705] [ 1.04225] [ 1.19518] [ 1.26487] [ 1.27985] [ 1.26972] [ 1.20303] [ 1.00101] [ 0.82352] [ 0.73551] 
             

DHO5(-1) -1.032 -1.380 -1.283 -1.114 -1.171 -1.000 -0.764 -0.609 -0.449 -0.288 -0.159 -0.189 
 [-0.87032] [-1.28199] [-1.27183] [-1.16876] [-1.30163] [-1.17391] [-0.95193] [-0.80101] [-0.61797] [-0.40899] [-0.23073] [-0.28204] 
             

DHO6(-1) -1.144 -0.768 -0.695 -0.511 -0.440 -0.672 -0.870 -0.952 -1.039 -1.019 -1.041 -0.940 
 [-0.88829] [-0.65639] [-0.63389] [-0.49379] [-0.44996] [-0.72598] [-0.99749] [-1.15121] [-1.31745] [-1.33309] [-1.38885] [-1.28898] 
             

DHO7(-1) 2.588 2.616 2.506 2.250 2.161 2.301 2.335 2.335 2.344 2.183 2.104 1.933 
 [ 1.80433] [ 2.00926] [ 2.05326] [ 1.95170] [ 1.98433] [ 2.23268] [ 2.40481] [ 2.53699] [ 2.66846] [ 2.56339] [ 2.52193] [ 2.38132] 
             

DHO8(-1) -1.907 -1.986 -1.991 -1.892 -1.768 -1.733 -1.625 -1.583 -1.503 -1.332 -1.237 -0.991 
 [-1.36378] [-1.56424] [-1.67299] [-1.68332] [-1.66473] [-1.72480] [-1.71668] [-1.76367] [-1.75468] [-1.60472] [-1.52096] [-1.25161] 
             

DHO9(-1) 1.752 1.492 1.465 1.405 1.257 1.172 1.032 0.910 0.752 0.665 0.625 0.476 
 [ 1.46699] [ 1.37637] [ 1.44195] [ 1.46427] [ 1.38648] [ 1.36578] [ 1.27648] [ 1.18780] [ 1.02777] [ 0.93775] [ 0.90045] [ 0.70458] 
             

DHO10(-1) -1.960 -1.700 -1.620 -1.556 -1.475 -1.459 -1.353 -1.189 -1.076 -1.055 -1.058 -1.186 
 [-1.64593] [-1.57288] [-1.59902] [-1.62652] [-1.63226] [-1.70575] [-1.67875] [-1.55601] [-1.47660] [-1.49284] [-1.52877] [-1.76074] 
             

DHO11(-1) -0.263 -0.089 -0.018 0.022 0.075 0.139 0.107 0.030 0.034 0.040 0.071 0.360 
 [-0.23575] [-0.08810] [-0.01880] [ 0.02459] [ 0.08901] [ 0.17282] [ 0.14159] [ 0.04149] [ 0.04925] [ 0.06031] [ 0.10979] [ 0.56902] 
             

DHO12(-1) 1.026 0.793 0.675 0.610 0.552 0.519 0.512 0.507 0.468 0.458 0.445 0.290 
 [ 1.76935] [ 1.50761] [ 1.36940] [ 1.31035] [ 1.25375] [ 1.24701] [ 1.30581] [ 1.36264] [ 1.31894] [ 1.33167] [ 1.31898] [ 0.88281] 
             

R-squared 0.014 0.013 0.013 0.013 0.014 0.017 0.020 0.021 0.023 0.023 0.022 0.022 
 F-statistic 1.948 1.893 1.856 1.842 1.932 2.146 2.315 2.412 2.565 2.562 2.447 2.500 
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                                               Table 13: Forecasting Power of the Vector Autoreggresion model (Cont'd) 

Panel D: NYMEX Gasoline 
            
 DHU1 DHU2 DHU3 DHU4 DHU5 DHU6 DHU7 DHU8 DHU9 DHU10 DHU11 
            

C 0.040 0.039 0.094 0.073 0.204 0.178 0.205 0.160 0.158 0.198 0.193 
 [ 0.48199] [ 0.48495] [ 1.00317] [ 0.87848] [ 1.06692] [ 1.05341] [ 1.36855] [ 1.20444] [ 1.17946] [ 1.15834] [ 1.17311] 
            

DHU1(-1) -0.425 -0.313 -0.175 -0.098 -0.214 -0.063 -0.036 -0.063 -0.144 -0.104 -0.362 
 [-8.41048] [-6.34127] [-3.02236] [-1.92318] [-1.82724] [-0.60335] [-0.38846] [-0.76719] [-1.74505] [-0.99394] [-3.57642] 
            

DHU2(-1) 0.198 -0.142 0.039 0.079 -0.262 0.137 -0.262 -0.259 -0.245 -0.239 -0.103 
 [ 2.52294] [-1.84308] [ 0.43836] [ 1.00170] [-1.43447] [ 0.84492] [-1.82883] [-2.03609] [-1.90662] [-1.46131] [-0.65227] 
            

DHU3(-1) 0.069 0.283 0.086 -0.167 0.283 -0.438 0.235 0.269 0.313 0.318 0.395 
 [ 0.91824] [ 3.87383] [ 1.00573] [-2.21871] [ 1.63145] [-2.85068] [ 1.72962] [ 2.22430] [ 2.57101] [ 2.04549] [ 2.64459] 
            

DHU4(-1) 0.149 0.122 0.016 0.064 0.005 0.222 -0.100 -0.058 -0.016 -0.023 -0.016 
 [ 2.61583] [ 2.19866] [ 0.24015] [ 1.10809] [ 0.03877] [ 1.89413] [-0.97046] [-0.63406] [-0.16946] [-0.19070] [-0.14027] 
            

DHU5(-1) 0.166 0.118 0.068 -0.062 0.056 0.193 0.183 0.136 0.166 0.134 0.193 
 [ 3.39004] [ 2.45577] [ 1.22098] [-1.26300] [ 0.49163] [ 1.90639] [ 2.05416] [ 1.70793] [ 2.06881] [ 1.31377] [ 1.96377] 
            

DHU6(-1) -0.270 0.191 0.260 0.293 -0.400 -0.579 -0.571 -0.518 -0.457 -0.337 -0.369 
 [-3.41032] [ 2.46319] [ 2.86962] [ 3.66297] [-2.17208] [-3.54738] [-3.95552] [-4.03372] [-3.53395] [-2.04309] [-2.32846] 
            

DHU7(-1) 0.376 -0.204 0.066 0.117 0.052 -0.190 -0.011 0.130 0.010 0.051 0.389 
 [ 4.59909] [-2.54857] [ 0.70629] [ 1.41643] [ 0.27618] [-1.12959] [-0.07130] [ 0.97986] [ 0.07554] [ 0.30036] [ 2.37297] 
            

DHU8(-1) -0.186 0.041 -0.115 -0.027 0.365 0.504 0.329 -0.002 0.163 0.013 -0.325 
 [-1.97416] [ 0.44717] [-1.06417] [-0.27862] [ 1.66288] [ 2.59021] [ 1.91210] [-0.01475] [ 1.06090] [ 0.06780] [-1.71783] 
            

DHU9(-1) 0.061 0.000 -0.175 -0.085 -0.297 -0.132 -0.098 0.045 -0.106 0.127 0.071 
 [ 0.87895] [ 0.00668] [-2.21872] [-1.21573] [-1.85442] [-0.92920] [-0.77821] [ 0.40271] [-0.93908] [ 0.88383] [ 0.51265] 
            

DHU10(-1) 0.325 0.266 0.254 0.149 0.177 0.230 0.199 0.187 0.173 -0.068 0.103 
 [ 8.07064] [ 6.74265] [ 5.50210] [ 3.64975] [ 1.89227] [ 2.77068] [ 2.71298] [ 2.85651] [ 2.63188] [-0.81232] [ 1.27147] 
            

DHU11(-1) 0.369 0.335 0.323 0.315 0.119 0.040 0.107 0.157 0.171 0.108 -0.091 
 [ 8.93342] [ 8.30625] [ 6.83903] [ 7.57113] [ 1.23836] [ 0.47242] [ 1.42455] [ 2.33933] [ 2.53948] [ 1.26340] [-1.10225] 
            

R-squared 0.718 0.673 0.576 0.601 0.066 0.116 0.109 0.137 0.127 0.001 0.062 
F-statistic 135.966 110.058 73.027 80.931 4.726 7.951 7.513 9.411 8.745 1.056 4.528 

Results from regressing ΔFtj (j = CL1,…, CL15, CO1,…, CO9, HO1,…, HO12, HU1,…, HU11) on on each commodity contracts first lagged weekly 
price difference (VAR(1) model). Sample period: 8/11/1991-29/12/2006
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On the other hand we face surprisingly different results considering NYMEX Gasoline. 

Gasoline futures lagged values seem to have extremely high forecasting power on the 

four shortest maturities contracts affecting in a quite impressive way 2R  values. These 

are as high as 70% for the shortest maturity and decline as we move to later expiring 

contracts, but 2R  values continue to present predictive skills for the most regressions. 

Running some univariate regressions we discovered particular forecasting power of the 

longest maturity contract. We have to remind that this specific future had the most 

missing values in its data set. As a result, the most observations we excluded listwise 

were due to this contract's illiquidity. Taking that into account and the fact that PCA 

results were very poor for this commodity, we assume that recent unexpected results were 

only a coincidence or even a malcalculation during the listwise prices rejection 

procedure.  

To conclude we can take for granted that term structure dynamics of our first three 

petroleum futures (Crudes and Heating Oil) cannot be forecasted. VAR model provokes 

some doubts regarding Gasoline contracts, but still there is a great chance of default in 

these specific results. So, it may be necessary to repeat the research after carefully 

reconsideration of the data set. At the moment, we will try to declare the general 

spectrum of our models advantages and drawbacks through testing their out of sample 

performance. 
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CHAPTER 6: CONCLUSIONS 

 
Forecasting assets prices is one of the most usual aspects of finance literature. In this 

study we tried to derive some evidence connected with predictability on petroleum 

futures. To do that we follow former papers so as to construct our data set and to choose 

our forecasting models. So, we used as guidelines Chantziara, Skiadopoulos 2006, 2007 

and Sadorsky 2002 articles. The main differentiations of the present effort have to do 

with the separate models we considered and the time horizon we determined for our data 

observations. To achieve our fist target we focus on two different approaches widely used 

in literature. For the second one we used weekly price differences instead of daily or 

monthly that had already ivestigated.  

Firstly, motivated by Chantziara Skiadopoulos work we estimate a time series model 

based on PCA analysis. Of course the method was introduced earlier in papers like Stock 

and Watson 2002, but our model and the proposed regression settings are similar to 

Chantziara, Skiadopoulos. So, we performed PCA separately on each one of our 

commodities and jointly on them. Regarding the retained Principal Components number 

and behaviour, we come up with findings consistent with former literature. We ensured 

that PCs can explain the dynamics of petroleum futures term structure so what it was left 

was to identify if they could forecast its evolution. We estimate multiple regressions with 

the PCs first lagged values as regressors, but results were rather disappointing staying in 

line with previous findings for daily oil futures prices. Low 2R  values were a common 

factor for the majority of the contracts and even though there were some statistically 

significant PCs, especially in the separate analysis, these were not enough to improve our 

forecasting results.  

The economic (stuctural) models were influenced by Sadorsky and we were hoping to 

extend his findings in weekly time steps. We have to note that Sadorsky found a 

predictable pattern across some petroleum futures of the shortest maturities using 

monthly returns. To implement this goal we introduced some additional economic and 

financial factors as possible explanatory and forecasting variables. After the definition of 

our equations we derive two groups of regressions. The first one consisted of a simple 

multivariate regression model (Economic variable model) which we tried to enhance later 

by including ARMA and GARCH terms (ARMA-GARCH model). Unfortunately, the 

results were very poor failing to be comparable with Sadorsky's ARMAX-ARCH model. 
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Again we come up with particularly low 2R  values, but something that deserves to 

mention is that evaluations present the ARMA-GARCH models to be worse than simpler 

ones despite the fact that they describe better the residuals distributions. 

As a last model we introduced a Vector Autoregressive model with the first lagged value 

of the same commodity futures as regressors. This one has the role of a benchmark for 

our previously obtained findings and in general it proves the poor forecasting power of 

the most sophisticated of our models. The PCA or economic analysis had only marginal 

advantages compared to the VAR model. On the contrary, this last model came up with 

surprisingly good results as far as some Gasoline contracts are concerned. On the other 

hand, this unique and non stable result provokes some skepticism about the robustness of 

our evidence. As a matter of fact we cannot be very optimistic for the real forecasting 

skills of a VAR(1) model. 

The findings of this dissertation should be compared with two different categories of the 

former literature. The PCA results support the already existing studies regarding the PCs 

and the opinion that the evolution petroleum futures term structure cannot be forecasted. 

The retained three first PCs explain up to 95% of the total dependent variables variance 

and their correlation loadings present the same level, slope and curvature characteristics. 

These are common elements in the commodity futures term structure described by PCA 

models (see Schwartz and Cortazar 1994, Tomalsky and Hindanov 2002). The poor 

forecasting power of PCs is another result in line with previous evidence. We have 

already referred to Chantziara, Skiadopoulos work and there is also a similar result in 

Cabiddo and Fiorenzani (2004) at least when the research is restricted to the 

macromovements of the Brent futures curve which are described by the slope, steepness 

and curvature.  

The second category of articles are those which contribute structural models to the 

bibliography. Derivation of this kind of models is a usual phenomenon across several 

assets and financial variables and we can note Stock and Watson (2002a, 2002b), Ribeiro 

and Hodges (2004) or Khan, Khokhor and Simin (2006). On the otherhand, the present 

paper is directly connected with Sadorsky 2002 article and its theoretical framework. 

Mainly, we tried to re-estimate this model using different time hotizon and a more 

convenient set of independent variables. As a result, we reproduced poor results in the 

first section of this approach and despite the fact we tested a variety of ARMA-GARCH 

models across all futures maturities we failed to discover forecasting patterns analogous 
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to Sadorsky's conclusions. As we have remarked VAR model wasn't a straight priority of 

this dissertation so these results were used only for comparative purposes.   

To end up with this study we would like to indicate some inefficiencies or matters for 

further investigation. We examined ARMA-GARCH structures in the economic variables 

model, but there is still the question whether this kind of errors specification could 

improve the PCA performance. Of course these models predictability should be tested in 

even longer time steps, if we take into account former studies on different assets which 

verify the presence of predictability for longer horizons. The slightly increasing 

predictive skills of our PCA regressions as we moved to longer maturity contracts is also 

an evidence towards this specific direction. The economic variable models should be re-

estimated using monthly observations so as to conclude if our results are directly 

contradictive to Sadorsky ones or if the poor fitting of our models is due to the choice of 

weekly time horizon. Moreover, it would be crucial these models be tested out of sample 

so as to check their performance using not only the regression outputs but also some 

typical metrics which could give us the opportunity compare them considering their out 

of sample predictive evaluation. In addition to this, it could be derived some explanation 

why the VAR model clearly outperforms the rest as far as the four shortest maturities of 

NYMEX Gasoline futures are concerned. Finally, it would be crucial to identify the 

performance of more complex models, like neural networks or other non-linear 

approaches. 
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