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Abstract

One of the most fundamental components of cryptography is the Shamir’s Secret Sharing
Scheme (SSSS) that enables the distribution of a secret among multiple parties in a secure
manner. An integral aspect of SSS involves the reconstruction of the original secret through
interpolation techniques, which remain crucial for maintaining the scheme’s effectiveness. The
main focus of this thesis is the evaluation of various interpolation methods within the context
of SSSS. The primary objective is to comprehensively assess the performance and suitability
of distinct interpolation methods, elucidating their respective strengths and weaknesses. By
conducting a series of meticulous experiments and analyses, this study examines the behavior
of interpolation methods under different scenarios. The findings reveal that the optimal choice
of an interpolation method hinges on the specific characteristics of each use case, emphasizing
the need for a judicious selection process.
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Chapter 1

Introduction

The early days of asymmetric cryptography took place during the late 1970s, which was
characterized by the introduction of the Diffie-Hellman Key Exchange protocol [1]. The in-
troduction of asymmetric cryptography marked a significant advancement in the field, as it
effectively addressed the challenge of distributing a single symmetric key to all participants
within a cryptosystem. The goal was accomplished by the possession of a distinct set of keys
by each party, consisting of a private key and a public key. In the same year, the widely recog-
nized RSA cryptosystem was introduced, enabling users to encrypt and transmit messages in
a secure manner [2]. Alongside the advancement of both technology and technical resources,
there has been a growing demand for larger cryptographic keys in order to enhance security. As
a result, the efficiency of encrypting and decrypting messages using public-key cryptography
has been undermined.

In order to address the problem at hand, hybrid cryptosystems were developed, wherein a
combination of symmetric and asymmetric cryptography techniques were employed to achieve
different goals. The encryption and decryption procedures were executed using symmetric al-
gorithms, such as AES and DES whereas the distribution of the symmetric master key was
accomplished through the utilization of asymmetric key-sharing protocols, such as Diffie-
Hellman. Modern technologies, including the SSL protocol, also employ this approach. In
1979, Adi Shamir, a renowned cryptographer, introduced a novel scheme for distributing se-
crets [3], which was considered an alternative to the Diffie-Hellman cryptographic protocol.
The Shamir Secret Sharing scheme is based upon the principles of threshold cryptography,
wherein the core idea focuses on the notion that the generation of a secret remains undisclosed
unless a quorum of the parties acts together to combine their knowledge. The secret is dis-
tributed through what we call shares, and the quorum can reveal it using interpolation.

The objective of this thesis is to conduct a comprehensive analysis of several interpo-
lation methods and evaluate their performance, with the aim of drawing conclusions on the
most preferable solution for secret sharing. This assessment is conducted using experimental
procedures, wherein each approach is executed with varying parameters and qualities. This
document is accompanied by a GitHub repository [4] that includes all the source files utilized
in the development of the experiments and the interpolation methods. The main contribution
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of this thesis is to present a complete practical and theoretical overview of the available options
for achieving efficient interpolation in the Shamir Secret Sharing scheme.
The present thesis is organized in the following manner:

• The first chapter includes the necessary mathematical background knowledge for inter-
preting the experiments.

• The second chapter provides an overview of the various interpolation methods that will
be examined, along with an examination of their respective characteristics and potential
optimization techniques.

• After establishing a solid foundation of fundamental knowledge, chapter three is devoted
to the experiments, which serve as the main topic of this thesis. Each use case is assigned
its own section, with the findings presented as diagrams and tables.

• In the fourth and last chapter, a discussion takes place, providing a concise overview
of the obtained results, presenting the derived conclusions, and putting forward possible
directions for further research.
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Chapter 2

Preliminaries

Before diving deeper into the concepts of secret sharing, polynomial interpolation and
key distribution, some background knowledge is necessary. This chapter will provide an intro-
duction to the definitions and notation that will be utilized in subsequent chapters. A unique
aspect of this thesis, in comparison to other relevant resources, is the inclusion of SageMath
code blocks beside each definition. This feature enhances the reader’s understanding and com-
prehension of each subject. The main motivation for this aspect lies in the notion that an
in-depth understanding of a subject is best achieved when one possesses both theoretical and
practical knowledge.

2.1 Finite Fields

Let us examine the set of real numbers, denoted as R. How many elements does it
contain? The answer is quite simple; infinitely many. For each given real number n, it is
always possible to find n + 1. Therefore, it may be concluded that the set of real numbers R
has an infinite cardinality.

On the other hand, a finite field, which is also known as a Galois Field or GF, is a set with
finite cardinality.From now on, the term "order" shall be used to refer to the cardinality of a set.
A fundamental example of a finite field is GF (p) (or Fp), which represents the set of integers
modulo p, where p denotes a prime number.

Birkhoff and Mac Lane (1977)

Theorem 2.1. Every finite field has prime power order. [5]

This implies that the order of a finite field can be either a prime number p or a power of a prime
pn.

Finite fields consist of two fundamental operations: addition and multiplication. Addi-
tive groups are generated through the application of addition, while multiplicative groups are
formed through the application of multiplication. In the subsequent sections of this thesis, our

https://github.com/sagemath/sage
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focus will solely be on multiplicative groups. Specifically, we will refer to the multiplicative
group of integers modulo n as Z×

n . Multiplicative groups do not contain the element 0 as the

inverse
1
0 = 0−1 does not exist. As a result, the order of the multiplicative group of Fp is p − 1.

sage: F = GF(101)

sage: F(0)^(-1)

ZeroDivisionError: inverse of Mod(0, 101) does not exist

Additive Inverse

Definition 1. The additive inverse of an element x ∈ Fp is an element −x such that
x + (−x) = 0 (mod p).

Multiplicative Inverse

Definition 2. The multiplicative inverse of an element x ∈ Fp is an element x−1 such
that xx−1 = 1 (mod p).

Keep in mind that x−1 is just notation and does not represent the fraction
1
x

as it would

not be an element of Fp. For example, let the field F101 and suppose we want to calculate 31−1.
We are looking for a number s.t. when multiplied by 31 we get 1, the identity element. By
applying any method of our choice, we get that 31−1 mod 101 = 88 which can be verified with
Sage.

sage: F = GF(101)

sage: F(31)^(-1)

88

sage: 31 * 88 % 101 == 1

True

2.1.1 Order of field elements

Apart from the order of Fp, the elements of it have also their own order which is defined
as follows. For simplicity, we will denote the order of an element x as |x|.

Additive Order of an element

Definition 3. The additive order of an element x ∈ Fp is the smallest number k ∈ Fp

such that xk ≡ 0 (mod p)
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Multiplicative Order of an element

Definition 4. The multiplicative order of an element x ∈ Fp is the smallest number
k ∈ Fp such that xk ≡ 1 (mod p)

For example, suppose we want to find the multiplicative order of 13 ∈ F2803. By using
any method of our choice, we get that |13| = 934.

sage: p = 2803

sage: F = GF(p)

sage: F(13).multiplicative_order()

934

sage: pow(13, 934, p) == 1

True

2.1.2 Lagrange’s Theorem

The most naive approach to calculate |13| is to compute 13k ∀ k ∈ [1, p − 1] until 1 is found.

p = 2803

F = GF(p)

for k in range(1, p):

if pow(13, k, p) == 1:

print(k)

break

Listing 1: Finding the order of an element with the naive approach.

Output:

934

Nevertheless, this approach does not scale for higher values of p. A slightly optimized
approach utilizes Lagrange’s Theorem that is defined below.

Lagrange’s Theorem (1770-71)

Theorem 2.2. If G is a finite group and H is a subgroup of G, then the order of H
divides the order of G. [6]

In simple words, it states that the order of every element of a group G divides |G|. Thus,
|13| should be a divisor of |F2803| = 2802. The divisors are : [1, 2, 3, 6, 467, 934, 1401, 2802].
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131 (mod 2803) = 13
132 (mod 2803) = 169
133 (mod 2803) = 2197
136 (mod 2803) = 43

13467 (mod 2803) = 2802
13934 (mod 2803) = 1 (repeats from now on)
13935 (mod 2803) = 13 (131)
13936 (mod 2803) = 169 (132)
13937 (mod 2803) = 2197 (133)
13938 (mod 2803) = 531 (134)

divs = divisors(p-1)

for div in divs:

if pow(13, div, p) == 1:

print(div)

break

Listing 2: Finding the order of an element using Lagrange’s Theorem.

Output:

934

The proposed method involves verifying if 13 raised to each divisor yields a result of 1,
which is significantly more efficient compared to the conventional approach. The time com-
plexity depends entirely on finding the divisors of p − 1.

2.1.3 Group Generators and Cyclic Groups

As previously discussed, |x|, where x ∈ Fp, is the number of unique elements that x can
generate raised to the elements of the group 1, 2, 3, ..., p − 1. For example, |13| can generate
934 distinct elements in F2803. Following the computation of 13934, a recurring pattern of the
same 934 values will be observed. Therefore, it may be stated that the element 13 generates a
total of 934 elements within the group.

The elements that generate all p − 1 elements of the group, are called generators or
primitive roots and the groups generated by a generator are called cyclic groups. The order
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of generators is always equal to p − 1. For example, g = 7 is a generator of F11 because it
generates the entire Z×

11.

71 (mod 11) = 7
72 (mod 11) = 5
73 (mod 11) = 2
74 (mod 11) = 3
75 (mod 11) = 10
76 (mod 11) = 4
77 (mod 11) = 6
78 (mod 11) = 9
79 (mod 11) = 8

710 (mod 11) = 1

Thus, |7| = 11 − 1 = 10. Similarly, we show that g = 3 is not a generator of Z11.

31 (mod 11) = 3
32 (mod 11) = 9
33 (mod 11) = 5
34 (mod 11) = 4
35 (mod 11) = 1
36 (mod 11) = 3
37 (mod 11) = 9
38 (mod 11) = 5
39 (mod 11) = 4

310 (mod 11) = 1

3 generates only five elements so |3| = 5.
Again, we can find generators or check whether an element is a generator more quickly

by making use of Lagrange’s Theorem. If an element g is a generator, then we know that p−1 is
the first number for which gp−1 ≡ 1 (mod p). We could do the optimization using the divisors
of p−1 but we will present an alternative method that involves working with the distinct factors
of p − 1, denoted as f0, f1, f2, and so on.

Considering the previous example, suppose we want to find a generator of F2803. Factor-
ing 2802 yields the distinct factors [2, 3, 467]. According to Lagrange’s Theorem, the possible
order of any element can be one of these factors or any product of those. If an element g is a
generator, then gk ̸= 1 ∀ k ̸= p − 1. Now, instead of calculating the divisors, we could raise
g to the powers of 2802

2 = 3 · 467, 2802
3 = 2 · 467 and 2802

467 = 2 · 3 and check whether g is a
generator by asserting that the result is > 1.
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Starting off with g = 2,

2 2802
2 = 21401 = 2802 (mod 2803)

2 2802
3 = 2934 = 2389 (mod 2803)

2 2802
467 = 26 = 64 (mod 2803)

Notice that no power of 2, other than 22802, yields 1. This means that we found a generator
immediately with our first try. The following Sage script outputs all the generators of F2803.

p = 2803

factors = [2, 3, 467]

for g in range(2, p-1):

if all(pow(g, (p-1)//f, p) != 1 for f in factors):

print(g)

Listing 3: Finding all generators of F2803

Output:

2

11

12

18

20

21

29

...

2797

2799

2.2 Roots of Unity

This section is essential in understanding the motivation behind the Fast (FFT) and the Dis-
crete Fourier Transform (DFT). Later on, we will examine how FFT works and how it utilizes
the properties of the roots of unity and the primitive roots of unity to optimize polynomial
interpolation. These properties will be described below.

2.2.1 The set C

Generally, the nth root of unity is a number ω such that,

ωn = 1
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For example, suppose we are working in C and we want to find the 4th roots of unity.
This is equivalent to solving the following equation,

ω4 = 1

,
After reordering, we get,

(ω2 − 1)(ω2 + 1) = 0
(ω − 1)(ω + 1)(ω2 + 1) = 0

The solutions are {1, −1, i, −i}, where i =
√

−1. These are also the 4th roots of unity in C.

Primitive nth root of unity

Definition 5. A primitive nth root of unity is a number ω that is solution of the equation
ωn = 1 but not a solution of ωm = 1, for all 0 < m < n.

Taking the example above, let’s see whether the 4th roots of unity we found above are
primitive 4th roots of unity.

For m = 1, we get the trivial solution {1}. This means that 1 is not a primitive 4th root
of unity. Next, for m = 2,

ω2 = 1
(ω − 1)(ω + 1) = 0

We find that the solutions are {1, −1}. Therefore neither 1 nor −1 are 4th primitive roots
of unity. Finally, for m = 3,

ω3 = 1
(ω − 1)(ω2 + ω + 1) = 0

We find that the solutions are {1, −1+i
√

3
2 , −1+i

√
3

2 }.
We conclude that only i and −i are 4th primitive roots of unity as they are not solutions of the
above equations.

2.2.2 The set Fp

It turns out that nth roots of unity do not exist only in the set C but also in finite fields Fp. Let
n, p > 1. It is trivial to prove this theorem with the help of Lagrange’s theorem. If the primitive
nth root of unity exists, it can be calculated as:

ω = g
p−1

n (mod p)

where g is a primitive root (generator) of Fp.
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From the previous subsection we know that nth roots of unity satisfy ωn = 1 which is easy to
show:

ωn = g
p−1

n
n = gp−1 = 1 (mod p)

Primitive nth roots of unity can be a convenient way to specify elements of a group that have
order n. Consider the following example. We will set p to be a safe prime. Recall that a safe
prime p is a prime number written in the form 2q + 1, where q is another prime number. The
reason for such a choice is the ease of factorization of p−1. Let the safe prime p = 2∗11+1 =
23. Then |F23| = 23 − 1 = 22. Thus we know that the order of any element in this group will
be 2, 11 or 22. In fact, the only elements that can have order 2 are 1 and p − 1 = 22 since
12 = 1 (mod 23) and (23 − 1)2 = (−1)2 = 1 (mod 23). Equivalently, the only elements that
are 2-nd primitive roots of unity are 1 and −1.

p = 23

for i in range(1, p):

if pow(i, 2, p) == 1:

print(i)

Listing 4: Finding the 2nd roots of unity.

Output:

1

22

Based on the factors of p−1, we deduce that there can be only 2nd, 11th and 22th primitive
roots of unity. Let us consider the task of determining a primitive 11th root of unity, which may
also be expressed as finding an element inside F23 with order 11. The first step is to find a
generator of the group. For an element g to be considered a generator, we require g2 ̸= 1 and
g11 ̸= 1 (all operations are performed modulo 23).

Starting with g = 2.

21 = 2
211 = 1

The order of g = 2 is 11 so it is not a generator.
We continue with g = 3.

31 = 3
311 = 1
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Next, g = 5.

51 = 5
511 = 22
522 = 1

We found that g = 5 is a generator because its order is p − 1 = 22. A primitive 11th root of
unity can be calculated as follows:

ω = g
22
11 = g2 = 52 = 25 = 2 (mod 23)

The order of the element 2 is 11 which means that it can generate a subgroup of F23 that
consists of 11 elements in total. These elements are also primitive 11th roots of unity. Below
we list them,

{21, 22, 23, 24, 25, 26, 27, 28, 29, 210} = {2, 4, 8, 16, 9, 18, 13, 3, 6, 12}

2.2.3 Properties

This section will demonstrate the symmetric features of the (primitive) nth roots of unity in
finite fields, which are connected to their periodicity. The experiments and findings will be
provided specifically for n being a power of two. It is important to acknowledge that a primitive
nth root of unity ω ∈ Fp has an order of n, indicating that it forms a subgroup with an order
of n. As an illustration, the 2nd roots of unity constitute a subgroup with a cardinality of 2, so
indicating the existence of two 2nd roots of unity in total.

To start with, the following planes are presented which show the 2nd, 4th and 8th roots of
unity.
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Figure 2.1: The primitive 2nd roots of unity.

Figure 2.2: The primitive 4th roots of unity.
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Figure 2.3: The primitive 8th roots of unity.

As we work in finite fields,
√

−1 is equivalent to
√

p − 1.
The 4th roots of unity will be used as an example to explain the distances between roots of

unity. From ω0, we land to the next root of unity ω1 by moving 2π
4 = π

2
1 radians on the circle.

In general, ωi is the point that corresponds to the radian
2πi

4 = iπ

2 on the circle. Similarly, for

the 8th roots of unity, ωi is the point that corresponds to the radian
2πi

8 = iπ

4 on the circle.

Generally, for an nth root of unity ω, we get ωi by moving
2πi

n
radians on the circle.

Taking the 8th roots of unity as an example, it holds that ω0 = −ω4, ω1 = −ω5, ω2 = −ω6 and
ω3 = −ω7. Generally, when n = 2k it holds that:

ωi = ωi+ n
2 (mod p)

for 0 ≤ i < n
2 . If i > n, then ωi can be reduced by ωi (mod n).

At a high level, this feature is preserved due to the cancellation of the common factor
of 2 between the numerator and denominator, resulting in the emergence of periodicity. If n

is not a power of two, the previously mentioned relation may not apply since the denominator
is not divided by the numerator’s factor of 2. The aforementioned property may be succinctly
expressed using the below code snippet.

n = 8

q = 50411

p = 403289 # n * q + 1

F = GF(p)

1There is an analogy between 2π and the order of Fp as both values indicate that a full circle was performed.
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g = 3 # generator

omega = F(pow(g, (p-1)//n, p)) # 8th root of unity

print(all([omega**i == omega**(i+n//2)] for i in range(n//2)))

True

Another property that is already mentioned, by calculating ω a subgroup of order n is
constructed. The elements of this subgroup are ω0, ω1, . . . , ωn−1 with each of them being an
nth root of unity too.

2.3 Polynomial Evaluation and Interpolation

Although polynomial evaluation and polynomial interpolation may appear similar, they are
fundamentally different from each other.

2.3.1 From Evaluation to Interpolation

The utilisation of polynomial interpolation is of significant importance in secret sharing sys-
tems, and the subsequent chapters feature experiments that are all centred around the interpola-
tion of polynomials utilising different methodologies. Although the fundamental notion stays
unchanged, interpolation can be defined within the specific context of cryptography, as is the
case in our study.

Data interpolation is a widely applicable technique that may be utilised in several do-
mains, including the real numbers (R), rational numbers (Q), finite fields (Fp), and others. In
the field of cryptography, our focus will mostly be on interpolation performed over finite fields,
as these fields are frequently used in cryptographic protocols, like Shamir Secret Sharing.

Polynomial Interpolation

Definition 6. Let the set of n + 1 data points (x1, y1), . . . , (xn+1, yn+1) with each xi

being unique and xi, yi ∈ Fp. The process of determining the n-degree polynomial F

such that F (xi) = yi is called polynomial interpolation.

In simple words, determining a polynomial F is equivalent to determining its coefficients
a0, . . . , an−1 ∈ Fp such that F (x) = anxn + an−1x

n−1 + an−2x
n−2 + . . . + a0. [7]

Knowing the polynomial F , the following theorem ensures that it is the only one that
interpolates the specific data points. [8] More formally:
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Uniqueness of the interpolating polynomial

Theorem 2.3. Given a set of n+1 points (x1, y1), . . . , (xn+1, yn+1) with each xi being
unique, there exists a unique n-degree polynomial that interpolates these points.

Let’s look at an example. We will use the following SageMath script.

# initialize GF(p) and the corresponding polynomial ring

p = 331

PR = PolynomialRing(GF(p), 'x')

points = [(72, 123), (64, 224), (289, 247), (139, 66), (297, 180), (137,

260), (32, 322), (271, 211), (282, 293), (199, 223)]↪→

F = PR.lagrange_polynomial(points)

for (x,y) in points:

# verify that F(x) = y

assert F(x) == y

Listing 5: A basic example of polynomial interpolation.

The code above terminates successfully with no error so the interpolation worked suc-
cessfully. The function lagrange_polynomial interpolates the given points using the Lagrange’s
Interpolation Method which will be described in the next chapter. For now, consider it as a
method that calculates the interpolating polynomial from a given set of points.

The interpolated polynomial is:

F (x) = 177x9 + 171x8 + 24x7 + 36x6 + 85x5 + 221x4 + 122x3 + 325x2 + 146x + 68

and we could represent it using just the list of its coefficients:

[68, 146, 325, 122, 221, 85, 36, 24, 171, 177]

2.4 Shamir Secret Sharing

After establishing the foundational information necessary for comprehending secret shar-
ing schemes and interpolation methods, we can now delve into a more detailed examination of
these concepts. The central focus of this thesis is to the optimisation and comparative analysis
of different interpolation algorithms. It is important to comprehend the use of interpolation in
cryptography and the reason for doing such comparisons. One widely utilised application is
the Shamir Secret Sharing Scheme (SSSS). To enhance clarity, we shall denote it as SSS. In
reality, SSS is a (k, n)-threshold scheme (see Chapter 1) so we know the following:

– There is a secret s that is distributed among n users.
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– The secret can be computed by any subset of k ≤ n users.

– No group of k − 1 users is enough to compute the secret.

Consider the last statement above and recall that the interpolating polynomial of degree
k − 1 can be determined by at least k points. This is the key point to understand the security of
SSS. At least k users are needed to determine a (k − 1)-degree polynomial.

2.4.1 Initialization

The dealer, who is considered to be a reliable entity, performs the subsequent procedures to
initialise the Shamir secret sharing scheme.

– Selects a random prime number p so that all operations are performed in the field Fp.

– It generates a (k − 1)-degree polynomial P with k coefficients ai ∈ Fp.

P (x) =
k−1∑
i=0

aix
i = a0 + a1x + a2x

2 + ... + ak−1x
k−1 (mod p)

The secret s can be represented as the constant term a0.

2.4.2 Secret Distribution

The secret is distributed via shares. A share is just a tuple (i, P (i)). From now on, we will
denote the share (i, P (i)) as (xi, yi). Next, the dealer performs the following:

– The dealer sends the shares (xi, yi) ∀ 1 ≤ i ≤ n to each one of the n users.

To prevent the user from obtaining the secret represented by the constant term a0, the
value of i is initialised to 1 and not to 0. While the distribution of a total of n shares occurred, it
is important to note that only k shares are required for the purpose of polynomial interpolation.

2.4.3 Interpolation

The secret a0 can be obtained by the k users through the exchange of their shares. Polynomial
interpolation, as previously mentioned, offers a viable approach to achieve this objective. In
conventional practise, the Lagrange interpolation technique has been commonly employed.
However, this thesis aims to investigate, analyse, and evaluate other interpolation methods,
with the objective of optimising their performance.
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2.4.4 A numerical example

Initialization Phase

First thing is to define the threshold. Let us consider a cryptosystem with a total of n = 10
participants. In order to access the secret s, it is required that a minimum of k = 6 persons are
involved. The interpolation process can be performed by any subset of users consisting of 6, 7,
8, 9, or 10 individuals.

Once the system has been established, the trustworthy dealer proceeds to choose a random
prime number, say p = 101 and selects the value s = 39 as the secret. Then, it generates a
5-degree polynomial with the coefficients being elements of F101. The polynomial P (x) is
expressed as:

P (x) = 39 + 71x + 24x2 + 67x3 + 82x4 + 13x5

Notice that s is the constant term a0 of P .

Distribution Phase

The dealer distributes the shares (xi, yi) to the n users.

(x1, y1) = (1, 94)
(x2, y2) = (2, 16)
(x3, y3) = (3, 59)
(x4, y4) = (4, 10)
(x5, y5) = (5, 42)
(x6, y6) = (6, 52)
(x7, y7) = (7, 9)
(x8, y8) = (8, 100)
(x9, y9) = (9, 68)

(x10, y10) = (10, 65)

Any subset of k = 6 is enough to obtain the secret. Below you can see some of these subsets.

{n1, n2, n3, n4, n5, n6}
{n2, n9, n3, n4, n1, n8}
{n5, n8, n1, n9, n7, n2}

We will randomly choose the second subset for the interpolation phase.

Interpolation phase

Thus the users from the second subgroup gather their shares and proceed to the polynomial in-
terpolation phase in which they will eventually reveal the constant term a0 and obtain the secret.
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The task is to recover the polynomial P that interpolates the points {(2, 16), (9, 68), (3, 59),
(4, 10), (1, 94), (8, 100)}. Similarly to [6], we apply the Lagrange interpolation method us-
ing the SageMath software. In the next chapter, we will dive deeper into the internals of this
method.

sage: PR = PolynomialRing(GF(101), 'x')

sage: points = [(2, 16), (9, 68), (3, 59), (4, 10), (1, 94), (8, 100)]

sage: PR.lagrange_polynomial(points)

13*x^5 + 82*x^4 + 67*x^3 + 24*x^2 + 71*x + 39

Listing 6: An example of an interpolating polynomial.

Users computed the correct polynomial and they are able to obtain the secret a0 = s = 39.
We can see that if we try to interpolate fewer shares the reconstructed polynomial is

completely different.

sage: PR.lagrange_polynomial(points[1:])

3*x^4 + 45*x^3 + 50*x^2 + 37*x + 60

Five shares result in a 4-degree polynomial to be interpolated while P is of degree 5.
However, by including more shares in the interpolation the reconstructed polynomial is still the
same.

sage: PR.lagrange_polynomial(points + [(5, 42])

13*x^5 + 82*x^4 + 67*x^3 + 24*x^2 + 71*x + 39

The picture below shows the process of how Shamir Secret Sharing works at a high level.
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Figure 2.4: The Shamir Secret Sharing Scheme
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Chapter 3

Polynomial Interpolation Methods

This chapter will provide a description of several interpolation methods. The purpose is to
facilitate a comparison of their space and time complexity, as well as their overall performance,
in subsequent sections of this thesis.

3.1 From a Linear Algebra Perspective

It is essential to firstly understand the algebraic nature of polynomials so that the concept
of interpolation is easier to digest. Let’s see what we get when we substitute the shares
{(x1, y1), (x2, y2), (x3, y3), ..., (x11, y11)} into the polynomial P (x) = a0 + a1x + a2x

2 +
... + a10x

10 (mod p).

a0 + a1x1 + a2x
2
1 + ... + a10x

10
1 = y1

a0 + a1x2 + a2x
2
2 + ... + a10x

10
2 = y2

a0 + a1x3 + a2x
2
3 + ... + a10x

10
3 = y3

...

a0 + a1x11 + a2x
2
11 + ... + a10x

10
11 = y11

With the help of linear algebra, we can write these equations using matrices and vectors.

1 x1 x2
1 · · · x10

1

1 x2 x2
2 · · · x10

2

1 x3 x2
3 · · · x10

3
...

...
... . . . ...

1 x11 x2
11 · · · x10

11


·



a0

a1

a2
...

a10


=



y1

y2

y3
...

y11


This is a linear system of equations with the 11 coefficients a0, a1, ..., a10 being unknown.

To ensure the existence of a distinct solution for this system, it is necessary to have a minimum
of 11 linear equations that incorporate the variables in question. Each share represents a differ-
ent relation and the number of shares corresponds to the number of the unknown variables in
the system. As a result, we are certain that there will be a unique solution for the system.
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Thinking about it algebraically, it should now make more sense why fewer shares would
not result in the correct interpolated polynomial.

Solving this system is equivalent to solving for the coefficient vector. To solve for this
vector, recall that the equation Ax = B has solution x = A−1B, where x is the unknown vector
and A, B the known matrices. Thus, we can solve for the coefficient vector with techniques
like Gaussian Elimination as follows:



a0

a1

a2
...

a10


=



1 x1 x2
1 · · · x10

1

1 x2 x2
2 · · · x10

2

1 x3 x2
3 · · · x10

3
...

...
... . . . ...

1 x11 x2
11 · · · x10

11



−1

·



y1

y2

y3
...

y11



3.1.1 The Vandermonde Matrix

It is worth to mention that a matrix of the form:



1 x1 x2
1 · · · x10

1

1 x2 x2
2 · · · x10

2

1 x3 x2
3 · · · x10

3
...

...
... . . . ...

1 x11 x2
11 · · · x10

11



is also known as a Vandermonde matrix and is characterised by the property that the ith row of
such matrices represents a geometric progression of xi. Returning to the interpolation problem,
the computation of the coefficient vector involves the multiplication of the vector yi with the
inverse of the Vandermonde Matrix, which is created from the elements xi.

3.1.2 Example

Let us examine an illustrative case. Consider a scenario where there are 11 parties who are each
given a single share. These shares are intended to be used to rebuild a 10-degree polynomial,
denoted as P , with the ultimate goal of obtaining a secret value, denoted as s. All mathematical
operations are performed within the finite field mathbbF829.

{(1, 718), (2, 329), (3, 216), (4, 225), (5, 184), (6, 662), (7, 174), (8, 632), (9, 264), (10, 555), (11, 117)}

We will apply the algebraic method to compute the unknown coefficient vector. Thus, we
calculate the following:
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a0

a1

a2
...

a10


=



1 1 12 · · · 110

1 2 22 · · · 210

1 3 32 · · · 310

...
...

... . . . ...
1 11 112 · · · 1110



−1

·



718
329
216

...
117


We will use Sage to calculate the coefficient vector. Luckily, it comes with a handy

function that computes the Vandermonde matrix given the vector (x1, x2, x3, ..., x11).

sage: p = 829

sage: shares = [(1, 718), (2, 329), (3, 216), (4, 225), (5, 184), (6,

662), (7, 174), (8, 632), (9, 264), (10, 555), (11, 117)]↪→

sage: A = Matrix.vandermonde([x for x, _ in shares], GF(p))

sage: A

[ 1 1 1 1 1 1 1 1 1 1 1]

[ 1 2 4 8 16 32 64 128 256 512 195]

[ 1 3 9 27 81 243 729 529 758 616 190]

[ 1 4 16 64 256 195 780 633 45 180 720]

[ 1 5 25 125 625 638 703 199 166 1 5]

[ 1 6 36 216 467 315 232 563 62 372 574]

[ 1 7 49 343 743 227 760 346 764 374 131]

[ 1 8 64 512 780 437 180 611 743 141 299]

[ 1 9 81 729 758 190 52 468 67 603 453]

[ 1 10 100 171 52 520 226 602 217 512 146]

[ 1 11 121 502 548 225 817 697 206 608 56]

sage: B = vector([y for _, y in shares], GF(p))

sage: A^(-1) * B

(417, 590, 472, 566, 650, 175, 318, 709, 209, 295, 462)

Listing 7: Interpolation using Gaussian Elimination and the Vandermonde Matrix.

We managed to reconstruct the polynomial:

P (x) = 417+590x+472x2+566x3+650x4+175x5+318x6+709x7+209x8+295x9+462x10

and consequently the secret a0 = s = 417.

3.2 Lagrange Interpolation

This approach is one of the most popular and commonly used techniques for data in-
terpolation. The polynomial representation in the Lagrange method differs from that of the
algebraic approach that discussed in the preceding section, however the interpolating polyno-
mials are equivalent in both cases. We will refer to the polynomial interpolated by the Lagrange
method as the Lagrange Polynomial.
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Let the set of n points {(x1, y1), (x2, y2), ..., (xn, yn)}. Then the n − 1-degree Lagrange
polynomial is given by the following formula:

L(x) = y1l1(x) + y2l2(x) + ... + ynln(x) =
n∑

i=1
yili(x) (3.1)

where li(x) is the i-th element of the Lagrange Basis Polynomials:

B = {l1(x), l2(x), ..., ln(x)}

The first few li are given by the following formulas:

l1(x) = (x − x2)(x − x3) . . . (x − xn)
(x1 − x2)(x1 − x3) . . . (x1 − xn) =

n∏
j=2

x − xj

x1 − xj

l2(x) = (x − x1)(x − x3) . . . (x − xn)
(x2 − x1)(x2 − x3) . . . (x2 − xn) =

n∏
j=1, j ̸=2

x − xj

x2 − xj

In the general case, li(x) can be computed as follows [8]:

li(x) = (x − x1)(x − x2) . . . (x − xi−1)(x − xi+1) . . . (x − xn)
(xi − x1)(xi − x2) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn) =

n∏
j=1, j ̸=i

x − xj

xi − xj

(3.2)

At this point, it’s necessary to define two base cases for the Lagrange basis polynomials
so that we can explain why the formulas above work.

li(xj) =

 1 , i = j

0 , i ̸= j

li(xj) is also known as the Kronecker Delta function δij .
For the interpolating polynomial P , the shares (xi, yi) must satisfy P (xi) = yi. Thus the

Lagrange polynomial L interpolates the data because:

L(xj) =
n∑

i=1
yili(xj) =

n∑
i=1

yiδij = yj

For example:

L(x1) =
n∑

i=1
yiδi1 = y1δ11 + y2δ21 + ... + ynδn1 = y1 ∗ 1 + y2 ∗ 0 + ... + yn ∗ 0 = y1

L(x2) =
n∑

i=1
yiδi2 = y1δ12 + y2δ22 + ... + ynδn2 = y1 ∗ 0 + y2 ∗ 1 + ... + yn ∗ 0 = y2

The division operation required for determining li is the most computationally intensive
component of Lagrange interpolation. As a means of optimisation, it is possible to enhance the
computational efficiency by performing the multiplication of the numerator and denominator
separately, followed by a singular division operation, rather than doing n divisions individually.
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def L(i, X):

Lpoly = 1

for j in range(len(X)):

if j != i:

numer = x - X[j]

denom = X[i] - X[j]

Lpoly *= (numer / denom)

return Lpoly

Listing 8: Unoptimized calculation of Lagrange Basis polynomial.

The next section provides a concise overview of the optimisation process. The initial
code snippet demonstrates the computation of li without optimisation, accompanied with the
total time needed for the interpolation process.

This function finishes in the following time (seconds):

25.76

The next code snippet shows the same results but for the optimized calculation of li.

def L(i, X):

numer = 1

denom = 1

for j in range(len(X)):

if j != i:

numer *= (x - X[j])

denom *= (X[i] - X[j])

return numer / denom

Listing 9: Optimized calculation of Lagrange Basis polynomial.

19.12

3.2.1 Example with a small-degree polynomial

Suppose the dealer of the secret sharing scheme constructs the following polynomial
defined over F89:

P (x) = 27x4 + 52x3 + 71x2 + 75x + 73

The dealer distributes the shares to the users (1, 31), (2, 20), (3, 78), (4, 1), (5, 55) and
they want to obtain the secret 73 using the Lagrange interpolation method. First, the Lagrange
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basis polynomials have to be calculated. Based on (3.2) we get: 1

l1(x) = (x − 2)(x − 3)(x − 4)(x − 5)
(1 − 2)(1 − 3)(1 − 4)(1 − 5) = 26x4 + 81x3 + 66x2 + x + 5

l2(x) = (x − 1)(x − 3)(x − 4)(x − 5)
(2 − 1)(2 − 3)(2 − 4)(2 − 5) = 74x4 + 17x3 + 5x2 + 3x + 79

Similarly, we calculate l3, l4, l5.

l3(x) = 67x4 + 86x3 + 79x2 + 25x + 10
l4(x) = 74x4 + 76x3 + 8x2 + 25x + 84
l5(x) = 26x4 + 7x3 + 20x2 + 35x + 1

Notice that the computation of li(x) requires polynomial division in the final step. Thus
the Lagrange polynomial can be calculated as:

L(x) =
n∑

i=1
yili(x) = 27x4 + 52x3 + 71x2 + 75x + 73

3.2.2 Efficient constant term reconstruction

After providing an explanation of the inner workings of Lagrange interpolation, it is now
imperative to shift our attention towards the practical application in secret sharing schemes.
The primary objective of this method is for users to obtain the shared secret by combining
their individual shares. In reality, their sole interest is in the constant term a0 = P (0) of
the polynomial, leading them to disregard the remaining coefficients. Therefore, instead of
evaluating the function L(x), the function is evaluated at x = 0, denoted as L(0).

L(0) =
n∑

i=1
yili(0)

where li(0) are now defined as:

l1(0) = (0 − 2)(0 − 3)(0 − 4)(0 − 5)
(1 − 2)(1 − 3)(1 − 4)(1 − 5) = 5

l2(0) = (0 − 1)(0 − 3)(0 − 4)(0 − 5)
(2 − 1)(2 − 3)(2 − 4)(2 − 5) = 79

and so on.
It is seen that the values of li(0) are obtained by the division of constants, resulting in a

constant value. This demonstrates that this technique is considerably more efficient compared
to the conventional approach of computing the Lagrange basis polynomials, which involves
polynomial division. Therefore, it may be concluded:

L(0) =
n∑

i=1
yili(0) = 31 ∗ 5 + 20 ∗ 79 + 78 ∗ 10 + 1 ∗ 84 + 55 ∗ 1 = 73

1Since we work in Fp, division is equivalent to multiplication with the multiplicative inverse and negative
numbers −k are equivalent to −k (mod p).
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which is indeed the shared secret.
Generally, the computation of the Lagrange basis polynomials requires the application

of the distributive property in the numerator which corresponds to 2d multiplications, where
d the degree of the polynomial. For the efficient approach, it is reduced just to d constant
multiplications.

3.3 Improved and Barycentric Lagrange Interpolation

As the names imply, these methods are similar to the Lagrange Interpolation method but
optimized so that they scale for larger values of n.

Normally, the Lagrange method exhibits a computational complexity of O(n2) opera-
tions for determining the basis polynomials li and evaluating the polynomial. This character-
istic renders the approach suboptimal for computational tasks and practical implementations.
Furthermore, the addition of every new point necessitates the complete recomputation of all n2

processes. We are looking for different representations of the Lagrange polynomial, aiming at
improving the computational efficiency of Lagrange method.

3.3.1 Improved Lagrange Interpolation

Recall how the Lagrange Basis polynomial li is defined:

li(x) =
n∏

j=1, j ̸=i

x − xj

xi − xj

Let l(x) be the numerator of li but with the i-th term included in the product.

l(x) =
n∏

j=1
(x − xj)

Then the numerator of li can be rewritten as:

li(x) = l(x)
x − xi

Let the new definition of the weight to be defined as the inverse of the denominator of li:

wi = 1
n∏

j=1,j ̸=i

(xi − xj)

Finally, the i-th Lagrange polynomial li can be rewritten as:

li(x) = l(x)
x − xi

wi

By substituting the above into the Lagrange polynomial (3.1) we get:

L(x) =
n∑

i=1
yili(x) =

n∑
i=1

yi
l(x)

x − xi

wi



3.3 Improved and Barycentric Lagrange Interpolation 33

The value l(x) is independent of the sum counter i and therefore can be brought outside of the
sum:

L(x) = l(x)
n∑

i=1

wi

x − xi

yi (3.3)

This method requires O(n2) operations to precompute the weights wj and then O(n) for
the evaluation of L which is a major improvement compared to the O(n2) operations for calcu-
lating lj using the standard Lagrange form. The polynomial l can also be precomputed in O(n)
operations independently from the sum which produces the dominant operational complexity.

The formula (3.3) is also known as the Improved Lagrange Interpolation formula. [9]

3.3.2 Barycentric Lagrange Interpolation

The Barycentric Lagrange Interpolation formula is similar to the improved interpolation
formula but contains more improvements and more specifically, it avoids the evaluation of l(x).
For any x, it holds that:

n∑
i=1

li(x) = 1

because the constant function B(x) = 1 is the unique polynomial that interpolates the points
{(x1, 1), (x2, 1), (x3, 1), ..., (xn, 1)}. Thus, the formula (3.6) can be simplified by setting

L(x) = L(x)
B(x) .

L(x) =
l(x)

n∑
i=1

wi

x − xi

yi

l(x)
n∑

i=1

wi

x − xi

where the denominator is the Lagrange interpolating polynomial for the polynomial B. Can-
celling out the polynomials l we get:

L(x) =

n∑
i=1

wi

x − xi

yi

n∑
i=1

wi

x − xi

(3.4)

This is known as the true form of the Barycentric Interpolation formula.
It is trivial to observe that the numerator and the denominator look really similar. Indeed,

the numerator’s value may also be utilised to calculate the denominator, so significantly reduc-
ing the computing complexity. It is significant to observe that the difficulty of including a new
node xn+1 in the interpolation is influenced by the following factors:

– The computation of the n weights, w1, w2, ..., wn. These weights have to be divided with
xi − xn+1 which leads to O(n) operations totally.
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– The computation of the new weight wn+1 which requires another O(n) operations.

Therefore, the total update cost for the Barycentric interpolation is O(n) while the cost for the
standard Lagrange method is O(n2). [9]

3.3.3 A numerical example

Having explained how the Barycentric Interpolation formula is derived, an example with a
small-degree polynomial will be shown. Let the polynomial:

P (x) = 97x4 + 86x3 + 111x2 + x + 88

and five shares : {(1, 109), (2, 34), (3, 35), (4, 9), (5, 126)} defined over F137. Assuming the
polynomial is unknown, we will interpolate these points using the Barycentric method that
was presented above. Since all computations will be performed in finite fields, multiplication
with the inverse replaces division. Our first step should be the computation of the weights wi.
Starting off with w1 we get:

w1 = 1
(x1 − x2)(x1 − x3)(x1 − x4)(x1 − x5)

= 1
(1 − 2)(1 − 3)(1 − 4)(1 − 5) = 1

24 = 40

Next, w2 can be calculated as:

w2 = 1
(x2 − x1)(x2 − x3)(x2 − x4)(x2 − x5)

= 1
−6 = 114

Similarly, we calculate the rest weights and finally:

w1 = 40
w2 = 114
w3 = 103
w4 = 114
w5 = 40

Now, by looking at (3.7) we can see that the sum
n∑

i=1

wi

x − xi

appears in both the numerator

and the denominator. Therefore we can compute the numerator and reuse the inverse of the
denominator of the resulting fraction to compute the denominator of (3.7). So:

5∑
i=1

wi

x − xi

yi = w1y1

x − 1 + w2y2

x − 2 + · · · + w5y5

x − 5 = 97x4 + 86x3 + 111x2 + x + 88
x5 + 122x4 + 85x3 + 49x2 + 17

This quantity can be used as the numerator of (3.4). Notice that the numerator is the inter-
polating polynomial P . That is because the denominators of the compound fraction cancel
out:

P (x) =

97x4 + 86x3 + 111x2 + x + 88
x5 + 122x4 + 85x3 + 49x2 + 17

1
x5 + 122x4 + 85x3 + 49x2 + 17

= 97x4 + 86x3 + 111x2 + x + 88

Therefore we ended up with the interpolating polynomial P .
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3.4 Newton Interpolation

Another contribution to the field of polynomial interpolation is attributed to Isaac Newton.
After the so-called Lagrange Interpolating Polynomial, we will discuss about the Newton In-
terpolating Polynomials.

Given n + 1 points {(x0, y0), (x1, y1), ..., (xn, yn)}2, the n-degree Newton interpolating
polynomial N is calculated as follows:

N(x) =
n∑

i=0
dini(x)

where ni(x) is also known as the i-th Newton basis polynomial and is given by the following
product:

ni(x) =
i−1∏
j=0

(x − xj)

with n0(x) = 1.
It is observed that N may be expressed as a linear combination of the basis polynomi-

als ni with their coefficients being di
3. The computation of these coefficients is accomplished

by a technique referred to as divided differences. Although the Newton and Lagrange inter-
polation methods may appear similar at first glance, it is important to note that they possess
distinct characteristics and should be selected based on their suitability for a certain use case.
In subsequent analysis, we will explore the significant benefit the divided differences provide
to the Newton technique in particular applications. First, let’s describe how does the divided
differences method work.

3.4.1 The Divided Differences method

Let’s rewrite the polynomial N with the basis polynomials expanded. [8]

N(x) = d0 + d1(x − x0) + d2(x − x0)(x − x1) + · · · + dn(x − x0)(x − x1) . . . (x − xn)
(3.5)

We know that the shares (xi, yi) satisfy N(xi) = yi. Thus, by substituting to (3.3) we have:

N(x0) = d0 = y0

N(x1) = d0 + d1(x1 − x0) = y1

Notice that we can solve for d1 using the last equation:

d1 = y1 − d0

x1 − x0
= y1 − y0

x1 − x0

2Setting the share index to 0 does not necessarily imply that x0 = 0. It denotes the first share.
3di have nothing to do with the polynomial coefficients.
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We calculate d2 in a similar manner:

N(x2) = d0 + d1(x2 − x0) + d2(x2 − x0)(x2 − x1) = y2

With some rearrangement, we get:

d2 =
y2−y1
x2−x1

− y1−y0
x1−x0

x2 − x0
(3.6)

Notice how each value di is written in terms of di−1. This observation is fundamental
to understand the advantage of the Newton method that will be discussed later. The divided
differences method is characterized by a recursive behavior so we can generalize the formula
for dn as:

dn =
yn−yn−1
xn−xn−1

− dn−1

xn − x0
(3.7)

For a more formal definition, let D[x0, x1] be the divided differences table computed over x0

and x1.:
D[x0, x1] = y1 − y0

x1 − x0

Thus we can rewrite (3.4) using the recursive formula below.

D[x0, x1, x2] = D[x1, x2] − D[x0, x1]
x2 − x0

and more generally:

D[x0, x1, x2, . . . , xn] = D[x1, x2, . . . , xn] − D[x0, x1, . . . , xn−1]
xn − x0

3.4.2 Faster computation for new shares

As mentioned above, to compute the Newton polynomial, one have to calculate the di-
vided differences d0, d1, . . . , dn between the shares (xi, yi). From the relation (3.5), we know
that dn can be written in terms of dn−1. Equivalently, the divided difference dn+1 is expressed
in terms of dn which means that instead of performing two recursive steps in the numerator,
one can reuse the n previously computed divided differences for computing the n + 1-th di-
vided difference. By doing that, the only thing left to be calculated is D[x1, x2, . . . , xn] as
D[x0, x1, . . . , xn−1] is pre-computed.

Speaking in a cryptographic context and more specifically in the context of SSS, suppose
ten users want to interpolate their shares to obtain the secret. They compute the divided differ-
ences d0, d1, , . . . , d9 and successfully reconstruct N(x). Suddenly, a new user joins the secret
sharing scheme and wants to know the secret too. Normally, the eleven users would have to
compute the divided differences all over again but due to the properties of divided differences,
this is not mandatory. With the new addition, the divided differences d0, d1, , . . . , d9 remain
unchanged and the new divided difference d10 can be calculated based on those.
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In contrast, by looking at the calculation of the Lagrange Basis Polynomial li (3.2) it’s
clear that with the addition of new shares, the basis polynomials have to be recomputed all over
again which is something that makes Newton interpolation more suitable whenever newAs
previously stated, in order to compute the Newton polynomial, it is necessary to calculate the
divided differences d0, d1, . . . , dn based on the given data points (xi, yi). Based on equation
(3.7), we know that the expression for dn may be expressed in terms of dn−1. Similarly, the
divided difference dn+1 can be formulated in relation to dn, so allowing for the reuse of the n

previously calculated divided differences in the computation of the n + 1-th divided difference,
instead of executing two recursive steps in the numerator. After performing the aforemen-
tioned steps, the only remaining calculation is the determination of D[x1, x2, . . . , xn], since
D[x0, x1, . . . , xn−1] has already been computed in prior.

In the cryptography field, particularly within the framework of Secret Sharing Schemes
(SSS), let us consider a scenario where 10 users seek to collectively reconstruct their individual
shares in order to gain the secret. The divided differences d0, d1, . . . , d9 are computed and used
to correctly rebuild the function N(x). Assumt that at some point, an additional participant
enrols in the secret sharing protocol and wants to obtain the secret too. Typically, the compu-
tation of divided differences would need to be repeated for each of the eleven users. However,
due to the inherent characteristics of divided differences, this is not mandatory. After the intro-
duction of the new addition, the divided differences d0, d1, . . . , d9 remain unaltered, while the
computation of the new divided difference d10 may be derived from these existing values.

In contrast, upon examining the computation of the Lagrange Basis Polynomial li (3.2), it
becomes evident that the introduction of new shares necessitates the recomputation of the basis
polynomials from scratch. This characteristic renders Newton interpolation more appropriate
in scenarios where new parties join the secret sharing scheme. users join the secret sharing
scheme.

3.4.3 A simple example

Suppose the dealer of the secret sharing scheme constructs the following polynomial
defined over F179:

P (x) = 62x5 + 55x4 + 14x3 + 93x2 + 165x + 16

The dealer distributes the shares to the users (1, 47), (2, 114), (3, 125), (4, 78), (5, 162), (6, 142)
and they want to obtain the secret 16 using the Newton interpolation method. The first step is
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to calculate the divided differences d0, d1, d2, d3, d4, d5. 4

d0 = N(x0) = y0 = 47

d1 = y1 − d0

x1 − x0
= 114 − 47

2 − 1 = 67

d2 =
y2−y1
x2−x1

− d1

x2 − x0
=

125−114
2−1 − 67

3 − 1 = −56
2 = 151

Similarly we compute the rest divided differences.

d3 = 119
d4 = 90
d5 = 62

Now we calculate the Newton polynomial as:

N(x) = 47 + 67(x − 1) + 151(x − 1)(x − 2) + · · · + 62(x − 1)(x − 2)(x − 3)(x − 4)(x − 5)

We can use Sage to do some algebra and derive the final form of N .

sage: p = 179

sage: P.<x> = PolynomialRing(GF(p))

sage: 47 + 67*(x-1) + 151*(x-1)*(x-2) + 119*(x-1)*(x-2)*(x-3) +

90*(x-1)*(x-2)*(x-3)*(x-4) + 62*(x-1)*(x-2)*(x-3)*(x-4)*(x-5)↪→

62*x^5 + 55*x^4 + 14*x^3 + 93*x^2 + 165*x + 16

Listing 10: Computation of the Newton polynomial.

Indeed, we can verify that N(x) = P (x) thus the users obtain the secret s = 16.

3.5 Discrete and Fast Fourier Transform in Finite Fields

As already discussed, the purpose of this thesis is to compare the performance of the
interpolation methods described in this chapter. Prior to conducting any experiment, it is cru-
cial to provide a concise overview of the backdrop for each algorithm. The final technique
mentioned in the enumeration is interpolation through the use of the Fast Fourier Transform
(FFT), which is a derivative of the Discrete Fourier Transform (DFT). Complex numbers are
frequently employed as the values in Fast Fourier Transform (FFT) and Discrete Fourier Trans-
form (DFT). This thesis aims to explore the generalisation of the aforementioned approaches
and their application to rings and finite fields. A comprehensive understanding of the founda-
tional concepts discussed in the previous chapter is necessary for comprehending this particular
section.

4Again, we work in Fp so division is equivalent to multiplication with the multiplicative inverse and negative
numbers −k are equivalent to −k (mod p).
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3.5.1 Discrete Fourier Transform over Finite Fields

Until now, we represent shares as the tuple (xi, yi), where xi is an integer and yi =
P (xi). Usually, xi is the ID of each shareholder so it increases by one each time. Then, as
already discussed, the sequence of {y0, y1, . . . , yn−1} is used to compute the interpolating
polynomial. As the name implies, the Fourier Transform methods transform this sequence to
another sequence and more specifically to:

{F0, F1, . . . , Fn−1}

where Fi = P (ωi) and ω ∈ Fp is a primitive nth root of unity. Therefore the polynomial is now
computed by the shares:

(ωi, P (ωi)) = (ωi, Fi)

Speaking with linear algebra terms, recall the Vandermonde matrix that was formed by
x0, x1, . . . , xn−1. [10] [11]


y0

y1
...

yn−1

 =


1 x0 x2

0 · · · xn−1
0

1 x1 x2
1 · · · xn−1

1
...

...
... . . . ...

1 xn−1 x2
n−1 · · · xn−1

n−1

 ·


a0

a1
...

an−1


DFT transforms the above linear relation to the following using:

F0

F1
...

Fn−1

 =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

...
...

... . . . ...
1 ωn−1 ω2(n−1) · · · ω(n−1)2

 ·


a0

a1
...

an−1


Notice that in the transformed relation, xi = ωi. We shall call the Vandermonde matrix of
1, ω, ω2, . . . , ωn−1, the DFT matrix. Alternatively, we can write this algebraically as:

Fk =
n−1∑
i=0

aiω
ki

With some rearrangement, we deduce the inverse DFT (IDFT) formula which aims at
recomputing the coefficients ai.

ai = 1
n

n−1∑
k=0

Fkω−ik

This formula follows from the symmetric properties of the primitive nth roots of unity
that were discussed in section 2.2.3. In fact, the existence of these properties is what makes
the Fast Fourier Transform interpolation faster than the rest methods and most essentially the
core motivation behind Fourier Transform. Equivalently, IDFT can be represented using matrix
multiplication too.



40 Polynomial Interpolation Methods


a0

a1
...

an−1

 = 1
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

...
...

... . . . ...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

 ·


F0

F1
...

Fn−1


Similarly to the DFT matrix, we will denote the matrix with the inverse powers of ω as the
IDFT matrix.[11]

3.5.2 Fast Fourier Transform over Finite Fields

One can notice that computing IDFT matrix, is similar to computing the Vandermonde matrix
that was presented at section 3.1.1 which requires O(n2) operations.

The DFT method can in fact be calculated faster, making it a Fast Fourier Transform. The
trick for this is based on the symmetric properties of the nth roots of unity and the algorithm
presented by Cooley and Tukey (CT) in their paper. [10].

Cooley & Tukey Algorithm

The use of this algorithm reduces the complexity from O(n2) to O(nlogn) operations. The core
idea is that it reduces the initial DFT problem to smaller DFT problems of half size, recursively
using divide-and-conquer. [12] For the sake of demonstration and showcasing the algorithm’s
optimal performance, this section will choose the number of shares n to be a power of two;
n = 2k. 5 The same method can be generalized for other values of n too, such as n = pk or
n = p1p2p3 . . . pk but these choices don’t highlight the big advantage of the CT algorithm. Let
the following polynomial P .

P (x) =
n−1∑
i=0

aix
i

P can be splitted into two polynomials; one with the even-indexed coefficients of P , say P0,
and one with the odd-indexed coefficients, say P1.

P (x) = (a0 + a2x
2 + . . . an−2x

n−2) + (a1x + a3x
3 + . . . + an−1x

n−1)

P (x) =
n
2 −1∑
i=0

a2ix
2i +

n
2 −1∑
i=0

a2i+1x
2i+1

P (x) =
n
2 −1∑
i=0

a2i(x2)i + x

n
2 −1∑
i=0

a2i+1(x2)i

Notice that the first sum operand is the (n/2)-degree polynomial P0 evaluated at x2 and
the other operand is the (n/2)-degree polynomial P1 evaluated at x2. Therefore we get that P

can be expressed as:

P (x) = P0(x2) + xP1(x2) (3.8)

5Sometimes we might refer to the number of shares as the size of the FFT.
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We repeat this procedure for each of P0 and P1 until the FFT size is 1 and cannot be
splitted furthermore. Below there is a symbolic example when n = 8.

Figure 3.1: CT Algorithm - The Polynomial Divide-and-Conquer Part for n = 8.

Notice that by substituting x2 into the two polynomials of layer 2 and multiplying the
right-branch polynomial by x, we get the polynomial P of layer 1. Similarly, this relation
holds at every layer (see (3.8)).

Therefore the original problem of evaluating P at ωi 6, has been reduced to evaluating
the layer 2 polynomials at (ωi)2 = ω2i.

Suppose we want to evaluate the original polynomial at ωi; that is: P (ωi) = a0 + a1ω
i +

a2ω
2i + . . . + a7ω

7i. Let’s see how (3.8) can be utilized to recursively reduce the evaluation
problem into smaller-sized FFTs.

P (ωi) = P0(ω2i) + ωiP1(ω2i) (layer 1)

To evaluate P0 and P1 at ω2i we compute:

P (ω2i) = P0(ω4i) + ω2iP1(ω4i) (layer 2) (3.9)

Notice how polynomials in layer 2 are reduced to degree n/2. Finally, to evaluate P0 and P1 at
ω4i we compute:

P (ω4i) = P0(ω8i) + ω4iP1(ω8i) (layer 3) (3.10)

6The original problem is the computation of the Fourier Transformed shares (ωi, (P (ωi)). The FFT size at
layer 1 is 8 while the FFT size for each polynomial in the 2nd layer is 4 and so on.



42 Polynomial Interpolation Methods

Evaluating the smaller-sized FFTs recursively and substituting the evaluations into the polyno-
mial of the above layer, we eventually obtain the shares of the original polynomial.

{(ω0, P (ω0)), (ω1, P (ω1)), . . . , (ω7, P (ω7))}

3.5.3 A numerical example

In this section, only the polynomial evaluation step will be performed. The polynomial interpo-
lation part will be shown in the next section in which we will discuss about Inverse Fast Fourier
Transform (IFFT).

Let the safe prime p = 23 ∗ 29 + 1 = 233. Consider the finite field Fp with generator
g = 3. Suppose we have the polynomial:

P (x) = 25 + 180x + 118x2 + 193x3 + 144x4 + 78x5 + 230x6 + 157x7

and we want to calculate the n = 8 shares (ω0, P (ω0)), (ω1, P (ω1)), . . . , (ω7, P (ω7)), where
ω = g

p−1
n (mod p) = 329 (mod 233) = 221 is an 8th primitive root of unity. The naive O(n2)

approach is to substitute each power of omega into P . However, the FFT approach will be
followed that computes these shares in O(nlog2n) time. First, the polynomial is splitted as
shown in Figure 3.1. Below, some layers will be evaluated to understand how the recursive
algorithm works. Starting with layer 4, the 0-degree polynomial P (x) = ai is constant and it
evaluates to ai. Thus,

a0 ⇒ P (ω8∗0) = 25
a4 ⇒ P (ω8∗0) = 144

...

a7 ⇒ P (ω8∗0) = 157

Now, in layer 3, the FFT size is 2 so we will evaluate the polynomials in the left branch at two
powers of ω: ω4∗0 = 1 and ω4∗1 = ω4 = 232. 7

[25, 144] ⇒ P (ω4∗0) = P0(ω8∗0) + ω4∗0P1(ω8∗0) = 25 + 144 = 169
[25, 144] ⇒ P (ω4∗1) = P0(ω8∗1) + ω4∗1P1(ω8∗1) = 25 − 144 = 114 8

[118, 230] ⇒ P (ω4∗0) = . . . = 118 + 230 = 115
[118, 230] ⇒ P (ω4∗1) = . . . = 118 − 230 = 121

...

FFT size being 2 means that we need to evaluate the polynomials at two shares; [169, 114]
for the polynomial [25, 144] and [115, 121] for the polynomial [118, 230]. Similarly, we proceed

7The formula (3.10) is used here.
8Due to the symmetric properties of the primitive nth roots of unity we know that:

ωi = −ω
n
2 +i (mod p)
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with layer 2. The size of the FFT is 4 so the polynomial in the left branch will be evaluated at
four powers of ω: ω2∗0, ω2∗1 = 144, ω2∗2 = 232 and ω2∗3 = 1:9

[25, 118, 144, 230] ⇒ P (ω2∗0) = P0(ω0) + ω0P1(ω0) = 169 + 115 = 51
[25, 118, 144, 230] ⇒ P (ω2∗1) = P0(ω4) + ω2P1(ω4) = 114 + 144 ∗ 121 = 63
[25, 118, 144, 230] ⇒ P (ω2∗2) = P0(ω8) + ω4P1(ω8) = 169 − 115 = 54
[25, 118, 144, 230] ⇒ P (ω2∗3) = P0(ω12) + ω6P1(ω12) = P0(ω4) − ω2P1(ω4) =

= 114 − 144 ∗ 121 = 165

Thus the evaluations of the polynomial [25, 118, 144, 230] are:

P (ω0) = 51
P (ω2) = 63
P (ω4) = 54
P (ω6) = 165

By doing the same for the right branch, we can finally evaluate the original polynomial at the
powers of ωi and therefore compute the shares:

(1, 193), (221, 7), (144, 87), (136, 91), (232, 142), (12, 119), (89, 21), (97, 6)

The following SageMath code proves that these shares are valid.

sage: [(omega**i, P(omega**i)) for i in range(n)]

[(1, 193),

(221, 7),

(144, 87),

(136, 91),

(232, 142),

(12, 119),

(89, 21),

(97, 6)]

Listing 11: Computation of the FFT shares using the root of unity ω.

Therefore by setting i = 4 and n = 8, we get that:

ω4 = −ω4+4 = −ω8 = −1 (mod p)

9The formula (3.9) is used here.
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Note that at the original polynomial P , the evaluations P (ω0) and P (ω4) are symmetric.
So as P (ω1) and P (ω5) and so on. Therefore iterating n/2 times and performing 2 evaluations
each time is enough since the rest powers of ω are related to the first n/2. In the first iteration,
P (ω0) with P (ω4) will be computed, in the second, P (ω1) with P (ω5), in the third, P (ω2) with
P (ω6) and in the last, P (ω3) with P (ω7).

3.5.4 Inverse Fast Fourier Transform

The Inverse Fourier Transform is the problem of determining the left hand side coefficient
vector of the following relation:


a0

a1
...

an−1

 = 1
n


1 1 1 · · · 1
1 ω−1 ω−2 · · · ω−(n−1)

...
...

... . . . ...
1 ω−(n−1) ω−2(n−1) · · · ω−(n−1)2

 ·


F0

F1
...

Fn−1


The algorithm is similar to that of the standard Fourier Transform but now the Vander-

monde matrix consists of negative powers of ω so the task is to apply the FFT that was described
above but this time evaluating at negative powers. As a final step, IFFT divides the inner product
of each multiplied vector with n to obtain the coefficients. Continuing our previous example,
we attempt to reconstruct the original polynomial P that made up the shares:

(1, 193), (221, 7), (144, 87), (136, 91), (232, 142), (12, 119), (89, 21), (97, 6)

First, the following polynomial is formed:

S(x) = 193 + 7x + 87x2 + 91x3 + 142x4 + 119x5 + 21x6 + 6x7

The coefficient of xi equals to the evaluation of P at ωi.

Then the process is similar to that one for computing the shares; the Cooley-Tukey algo-
rithm is applied with the only difference being the evaluation at negative powers of ω. More
specifically, polynomials at layer 4 are now evaluated at ω−8i, layer 3 at ω−4i, layer 2 at ω−2i

and layer 1 at ω−i. At the end of the FFT, we should be left with the following evaluations:

{200, 42, 12, 146, 220, 158, 209, 91}

However these are not our original coefficients, we still have to divide by n. Doing that,
we get:

{25, 180, 118, 193, 144, 178, 230, 157}

which are indeed the coefficients of the original polynomial P . The values above can be verified
with the following SageMath code.
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sage: F = GF(p)

sage: PR.<x> = PolynomialRing(F)

sage: shares = [193, 7, 87, 91, 142, 119, 21, 6]

sage: S = PR(shares)

sage: evals = [S(omega**(-i)) for i in range(n)] ; evals

[200, 42, 12, 146, 220, 158, 209, 91]

sage: coeffs = [ev / n for ev in evals] ; coeffs

[25, 180, 118, 193, 144, 78, 230, 157]

Listing 12: IFFT - Proof of Correctness.

3.5.5 Time Complexity Analysis

Let T (n) be a function that calculates the time the FFT method takes to interpolate n shares.
We will try to compute the time complexity of the FFT method.

From Fig. (3.1), we see that at each layer, the original problem is splitted into two
subproblems of size

n

2 . Moreover, each layer, requires n−1 additions and n−1 multiplications
but to make calculations easier, we round to n. That is; T can be written recursively as:

T (n) = 2 · T (n

2 ) + 2 · n (3.11)

At the second call of the algorithm, the problem is splitted in two subproblems of size n
2 .

By substituting n with n
2 , we compute T (n

2 ) as:

T (n

2 ) = 2 · T (n

4 ) + n

and substitute it back to (3.11):

T (n) = 2 · (2 · T (n

4 ) + n) + 2 · n =

= 22 · T ( n

22 ) + 2 · 2 · n

Similarly, for the third call:

T (n) = 23 · T ( n

23 ) + 2 · 3 · n

After k calls, the algorithm will have reached the bottom layer (in our case layer 4) in which the
time cost to solve the FFT is constant (i.e. T (1)). Therefore we deduce that

n

2k
→ 1. Solving

for k we get 2k = n ⇒ k = log2(n). Then, after k calls, we have:

T (n) = 2k · T (1) + 2 · k · n =
= n · T (1) + 2 · log2(n) · n =
= O(2 · n · log2(n) + n) =
= O(n · log2(n))

This completes the proof of the FFT time complexity. It is important to note that dividing a
problem in halves per call, is an indicator that the algorithm has logarithmic nature.
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Chapter 4

Experiments and Results

After analysing the necessary mathematical foundations, this section will present all the
aforementioned information implemented with Python using SageMath 9.8. This paper will
primarily focus on presenting a selection of experiments and their corresponding results related
to interpolation methods. These experiments aim to demonstrate the impact of various factors
on the effectiveness and performance of each approach. The rationale for this contribution
stems from the dearth of existing literature on the subject when considering its integration with
secret sharing schemes.

In conclusion, in our GitHub repository, we present code that calculates FFT for n =
2k, 3k. The algorithm can be extended to cases when n is a power of any prime number, i.e.
n = pk but it is out of the scope of this thesis so we skip it. More specifically, the experiments
conducted and the respective findings will be structured and presented as follows:

• The efficiency and the performance of the FFT method will be measured and compared to
unoptimized standard Lagrange, Newton and Barycentric Lagrange for increasing num-
ber of shares. Due to computational overhead, results of standard Lagrange will be pre-
sented seperately with smaller number of shares without loss of generality.

• The Newton’s method will be compared to the Barycentric Lagrange’s under the context
of adding new shares to the Shamir Secret Sharing scheme. The choice of these two
methods rises from their capability of precomputing some values for n users which can
be reused when a new user is added to the scheme. The FFT method won’t be tested
here cause of its limitations regarding the number of shares n. Also, standard Lagrange
is omitted since it has no precomputation advantages and the basis polynomials have to
be recomputed each time from scratch.

• Finally, we utilize the optimized formulas of the standard Lagrange, Newton, Barycentric
and compare them to FFT. In secret sharing schemes, using interpolation to interpolate
the entire polynomial is not efficient as all the coefficients except for the constant term
a0 remain unused. This use case shows the efficiency of each algorithm when only a0 is
reconstructed.
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The source code for reproducing the results of the following experiments, can be found in our
GitHub. [4]

4.1 Domain Parameters

Since these interpolation methods will be applied to SSS over finite fields, we have to define the
finite field we will work with. The domain parameters are some fixed system-wide parameters
that will be used for all the experiments. Due to the limitations of FFT, the parameters are
affected as following:

• The first step is to construct the finite field Fp. As FFT does not work with a random p,
we need to construct it manually. To compute the primitive nth roots of unity, the division
p−1

n
has to be an integer, or in other words, n must divide p − 1. We select p to be a safe

prime of the form p = nmaxq + 1, where q is a random 28-bit prime number. We set
the value nmax = 2100 as an upper bound as in our use cases, n will never be that large.
Therefore the value of p is:

p = 2100 ∗ 135783853 + 1 = 172126482756751667503106328023403593729

The size of p is arbitrary as it does not affect the performance of the interpolation meth-
ods.

• Another important domain parameter that is crucial mostly for FFT is the group generator
g. We can find g using any method that was described in the previous sections. Let g = 3.

In each use case, a 128-bit AES key will be set as the constant term of the polynomial
and will be treated as the secret s. The task is to distribute this secret among the users of the
secret-sharing scheme so that eventually they all agree on the same key.

4.2 Comparing FFT against unoptimized Lagrange and
Newton

4.2.1 Setting up the environment

Regarding the first use case, due to the FFT limitations, we must adjust some additional settings.

• The number of shares n should be a power of two. More specifically, we set nmin = 27

and nmax = 213 as these choices highlight the differences in performance better.

• The same value for ω cannot be used for each different n as then, the Cooley-Tukey
algorithm would require slight modifications which is not preferred for our purposes.
This issue could be solved if the roots of unity were precomputed but in this use case we
work with the unoptimized versions of each algorithm.
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• For the same reason as above, for each value of n, the interpolating polynomial’s degree
should be n − 1.

As a result, we cannot fix the interpolating polynomial and an arbitrary (n − 1)-degree polyno-
mial has to be generated for each n.

Method \ n 128 256 512 1024 2048 4096 8192
Newton 0.0363 0.1922 0.4111 1.7848 6.3193 25.5859 124.896
Barycentric 0.1241 0.334 0.8126 2.2027 6.9594 26.1571 123.0452
FFT 0.0032 0.0045 0.0133 0.0288 0.0527 0.1269 0.2577

Table 4.1: Performance of FFT and unoptimized Newton, Barycentric.

Each table cell represents how many seconds taken for the interpolation to finish.

Figure 4.1: Unoptimized Newton, Barycentric and FFT diagram.

The diagram shows that before n = 4096, Newton and Barycentric perform almost iden-
tically but then Newton’s time complexity starts to increase rapidly. These results justify the
theoretical complexities which were discussed above. The difference between O(nlog2(n))
and O(n2) has become clear as the graph of the FFT is logarithmic and closer to constant O(1)
and its rate of change is infinitesimal.

For the standard Lagrange, we set nmin = 100 and nmax = 1000 and increase n by 100
in each iteration. Since there are no FFT limitations, we can fix the 5-degree polynomial:
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F(x) = 104158290628876048247996085110926603262*x^5 +

50953375824930380892852433872041453101*x^4 +

91690056412895084559284774872259205543*x^3 +

133245948441180022800446128944610045462*x^2 +

74612904901391537960311108055132647625*x +

41286979313026075155646421774560708912

↪→

↪→

↪→

↪→

↪→

The results are shown below.

n Interpolation Time (s)
100 0.4622
200 2.0773
300 5.6790
400 10.2764
500 19.4573
600 27.8461
700 41.8228
800 61.8564
900 84.2031

1000 110.2638

Table 4.2: Performance of unoptimized standard Lagrange.

As one can see, by the time n = 1000, Lagrange already takes about 2 minutes to finish
while the other algorithms take at most 4 seconds.

Figure 4.2: Unoptimized Standard Lagrange diagram.
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4.3 Evaluating Newton and Barycentric Lagrange perfor-
mance for new shares

The motive of doing this comparative analysis is to determine the most suitable interpolation
method for implementation in a practical secret sharing application. To provide more clarifica-
tion, let us consider an application that use secret sharing as a means of enabling key exchange.
This application is originally composed of a total of 100 users. The Newton and Barycentric
techniques utilise precomputed divided differences and weights of length 100. These precom-
puted values are utilised for each new user added to the system, eliminating the necessity of
recalculating everything from scratch.

To illustrate the concept, we assign a value of n = 3000 to the variable representing
the number of shares. The precomputed values are saved and subsequently augmented with
a fresh share until n = 3010. Let us consider the scenario in which no values have been
precomputed. Presented below are the outcomes of the Newton and Barycentric methods when
divided differences and weights are not precomputed. It should be noted that the optimized
version of these methods is utilized, which focuses on recovering only the constant term a0

rather than the entire polynomial.

Method \ n 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
Newton 7.2775 8.8466 8.9825 10.1798 9.3954 9.9933 10.0459 9.8957 10.6419 9.408 10.0066
Barycentric 3.7977 4.2422 3.8622 3.8829 4.0821 3.9942 3.9467 4.0356 4.1143 3.9807 4.0146

Table 4.3: Performance of Newton and Barycentric without precomputed values.

The diagram is presented below.

Figure 4.3: Newton and Barycentric without precomputed values.
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While both methods perform significantly better than standard Lagrange, Barycentric is
clearly faster - something that was expected after our discussions in the previous chapter. Now,
let us see the results of Newton and Barycentric with the same number of shares and when
precomputed values are used.

Method \ n 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
Newton 7.5535 0.0995 0.1071 0.0905 0.1031 0.1095 0.1163 0.0928 0.1035 0.0929 0.1121
Barycentric 3.8343 0.0097 0.0099 0.0098 0.0104 0.6093 0.0097 0.0096 0.0102 0.0096 0.0098

Table 4.4: Performance of Newton and Barycentric with precomputed values.

The diagram is presented below.

Figure 4.4: Newton and Barycentric with precomputed values.

The peak of both methods occurs at the first value of n. The interpolation with n + 1
shares makes use of the precomputed n values, the n + 2 shares make use of the precomputed
n + 1 and so on. The difference in performance is enormous with Barycentric still having a
lead over Newton. It is safe to conclude that in any case, it is preferable to apply Barycentric
interpolation for a secret sharing application that has gradually increasing number of users.

4.4 Comparing FFT against optimized Lagrange and New-
ton

The final use case tests the performance of the aforementioned methods when they are opti-
mized to interpolate only the constant term, instead of the entire polynomial. Based on the
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results, we are able to discuss and come to conclusions regarding the choice of the right inter-
polation method for the secret sharing. Again, FFT is part of the case so we set nmin = 29 and
nmax = 214.

Method \ n 512 1024 2048 4096 8192 16384
Standard Lagrange 0.7805 1.9506 7.8885 32.4151 146.6758 588.1504
Newton 0.3668 1.5633 5.8963 23.9422 108.0476 580.7062
Barycentric 0.159 0.6072 2.4219 10.3676 45.716 163.3128
FFT 0.0152 0.0266 0.0541 0.1152 0.2332 0.5194

Table 4.5: Performance of FFT and optimized standard Lagrange, Newton and Barycentric.

Figure 4.5: Optimized methods performance.

As expected, the complexity of the FFT method dominates the rest with a significant
difference.
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Chapter 5

Discussion

Having done a benchmarking analysis, it is possible to draw reliable conclusions on the
most suitable interpolation method for each specific application. The response depends on the
specifics of the application. In the scenario when the number of shares remains constant, it is
possible to establish a fixed value that is a power of two and consistently apply the Fast Fourier
Transform (FFT) algorithm. However, if the number of shares increases, the FFT approach
becomes inapplicable, and alternative approaches such as Optimised Newton and optimised
Barycentric Lagrange should be applied. In any case, the complexity of the standard Lagrange
method increases rapidly, making it inappropriate for larger applications where many users
have to interact or chat with each other.

In summary, the first and third use cases demonstrate the significant difference between
the O(n log n) Fast Fourier Transform (FFT) algorithm and the remaining O(n2) techniques.
Nevertheless, it should be noted that the FFT method may not necessarily be the most optimal
approach to use. The Cooley-Tukey algorithm’s applicability to the second use case is limited
by its constraints on the number of shares. The use of the Fast Fourier Transform (FFT) when
the value of n is an arbitrary integer, rather than a prime power, has not been studied in this
thesis. There are other methods as well such as the Prime Factor Algorithm (PFA, also known
as Good Thomas Algorithm) that applies FFT using the Chinese Remainder Theorem when
n = n1n2n3 . . . with ni being coprime. Additionally, there exist Rader’s method and the split-
radix algorithm, which are both very scalable and versatile while maintaining equivalent speed
to the Cooley-Tukey algorithm. However, due to their high level of implementation complexity,
it is not advisable to use them for secret sharing applications.

Furthermore, the inclusion of a comprehensive, generic Fast Fourier Transform (FFT)
implementation capable of accommodating any arbitrary value of n is a potential field of inves-
tigation for future work, as this thesis does not primarily focus on the FFT algorithm. However,
the repository of this thesis contains SageMath implementations for the case when n = 2k and
3k. Last but not least, by comprehending the cyclical characteristics of roots of unity, one may
deduce their behaviour for powers of other prime numbers as well.
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Chapter 6

Conclusion

In conclusion, this thesis has endeavored to synthesize and highlight its primary contributions.
Foremost among these is the comprehensive evaluation of interpolation methods, which repre-
sents the central focus of this work. In addition to this significant contribution, we recognize
an auxiliary but noteworthy facet: the provision of accompanying code snippets aimed at en-
hancing the practical understanding of the discussed concepts.

The impetus for this research stemmed from a personal aspiration to create a compre-
hensive reference, explaining cryptographic concepts not just in theoretical terms but also in
practical implementation. This thesis has presented a unique opportunity to fulfill this need. As
previously mentioned, the culmination of this endeavor will be the availability of source code
that implements all of the discussed interpolation methods.

Furthermore, this work has undertaken an examination of some interpolation techniques,
delving into the intricacies of their inner workings. The subsequent presentation of results
from various use cases was carefully designed to accentuate critical factors influencing the
performance of each method.

Looking forward, there exist promising avenues for future research. One notable prospect
involves an in-depth experimental evaluation of the Fast Fourier Transform (FFT) method,
which serves as the foundation for several related algorithms. Evaluating these methods within
the context of a Secret Sharing scheme, such as Shamir’s Secret Sharing (SSS), would be a
valuable direction for future investigations. Finally, as an additional research aspect, there
are FFT techniques, like the Radix-2 FFT, which offer a more generalized approach than the
Cooley-Tukey algorithm without sacrificing speed and performance. The development and
integration of a versatile FFT algorithm within secret sharing schemes have the potential to
significantly enhance their efficiency and computational speed.
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