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Περίληψη 

 

Αυτή η διατριβή διερευνά τη στρατηγική τοποθέτηση honeypots για την ενίσχυση της 

κυβερνοασφάλειας μέσω του φακού της θεωρίας παιγνίων. Ξεκινώντας με μια 

εισαγωγή στο τι είναι τα honeypots, τη σημασία τους και τα διάφορα επίπεδα 

αλληλεπίδρασης, η μελέτη εμβαθύνει σε θεμελιώδεις έννοιες της θεωρίας παιγνίων, 

συμπεριλαμβανομένων των ιδιωτών πρακτόρων, της ισορροπίας Nash και των μικτών 

στρατηγικών. Στη συνέχεια, η έρευνα προχωρά στην πρόταση ενός πλαισίου 

μοντελοποίησης για την τοποθέτηση honeypot, που ενσωματώνει θεωρητικές αρχές 

παιχνιδιών και το Common Vulnerability Scoring System (CVSS) ενσωματώνοντας τη 

δημιουργία προσαρμοσμένων μοντέλων γραφημάτων επίθεσης, κανόνων, και 

συσχετισμών. Επιπλέον αναφέρονται τεχνικές οπτικοποίησης εμπλουτίζουν την 

κατανόηση του προτεινόμενου πλαισίου. Στη συνέχεια, διερευνώνται οι βέλτιστες 

στρατηγικές κατανομής honeypot μέσω της διαμόρφωσης παιχνιδιών μηδενικού 

αθροίσματος, από την άποψη του αμυνόμενου. Παρουσιάζεται μια μεθοδική 

προσέγγιση για τη διατύπωση πινάκων απόδοσης και επίλυση μοντέλων παιχνιδιών 

χρησιμοποιώντας τη revised simplex τεχνική, γραμμικής πολυπλοκότητας. 

Ολοκληρώνοντας, ένα παράδειγμα επίδειξης απεικονίζει την πρακτική εφαρμογή του 

προτεινόμενου πλαισίου σε ένα παράδειγμα τοπολογίας με 5 υπολογιστές. 

Συμπερασματικά, αυτή η εργασία υπογραμμίζει τη σημασία της ενσωμάτωσης της 

θεωρίας παιγνίων στις στρατηγικές ασφάλειας στον κυβερνοχώρο. 



3 

 

 

 

Abstract 

 

This thesis explores the strategic deployment of honeypots for enhancing cybersecurity 

defenses through the lens of game theory. Beginning with an introduction to honeypots, 

their significance, and various interaction levels, the study delves into fundamental 

concepts of game theory, including self-interested agents, Nash equilibrium, and mixed 

strategies. The research then progresses to propose a honeypot allocation modeling 

framework, incorporating game theoretic principles and the Common Vulnerability 

Scoring System (CVSS) including discussions on creating custom attack graph models, 

rules, associations and also visualization techniques to enrich the understanding of the 

proposed framework. Subsequently, optimal honeypot allocation strategies is 

investigated through the formulation of zero-sum games, on the defender perspective. 

A methodical approach to formulating payoff matrices and solving game models using 

linear revised simplex methods is presented. Furthermore, an example demonstration 

illustrates the practical application of the proposed framework in a 5 Host topology 

scenario. In conclusion, this work underscores the importance of integrating game 

theory into cybersecurity strategies,. 
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Chapter 1: Introduction 

 

The ever-evolving nature of cyber-attacks is task which is constantly tackled by security 

professionals. Security administrators try to protect those systems by identifying all 

vulnerabilities, exploits and ways in which a machine can be compromised. While 

individual vulnerabilities might seem manageable on their own, malicious actors can 

often chain exploits together so as to bypass security measures, posing a significant 

threat that traditional security approaches and related controls often severely 

underestimate. Sophisticated cyber-attacks necessitate innovative approaches to 

safeguard digital assets. Among the arsenal of defensive measures, honeypots emerge 

as a strategic tool for cybersecurity professionals, offering insights into malicious 

activities and augmenting threat detection capabilities, when placed correctly. 

 

Chapter 2 of this work focus on an exploration of honeypots, providing a 

comprehensive overview of their role in cybersecurity defense strategies. Furthermore, 

the chapter, provides a brief introduction to honeypots, setting the stage for a more 

detailed examination of their characterization by interaction level. Understanding the 

intricacies of honeypots, from their inception to their evolution as sophisticated decoy 

systems, lays the foundation for delving deeper into their usage and why strategic 

deployment is needed. Chapter 3 delves into the realm of game theory, a discipline 

renowned for its applicability in modeling strategic interactions among rational agents. 

Self-interested agents, Nash equilibrium, and Pareto optimality are among the 

fundamental concepts that are depicted in this chapter, serving as theoretical 

background for the subsequent exploration of honeypot allocation modeling. Chapter 4 

focuses on a novel approach to honeypot deployment, informed cybersecurity risk 

assessment methodologies as occur from graphical network security models. The 

integration of the Common Vulnerability Scoring System (CVSS) and attack graph 
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modeling techniques enriches the framework, enabling a more nuanced understanding 

of the cybersecurity landscape and facilitating informed decision-making. The rest of 

the chapters delve into the practical application of the proposed framework, explaining 

the optimal honeypot allocation strategy through the lens of zero-sum games.  

 

In essence, this thesis endeavors to bridge the realms of cybersecurity and game theory, 

offering a framework for optimizing honeypot deployment and enhancing 

cybersecurity resilience. Through rigorous analysis and practical demonstrations, this 

research seeks to empower organizations with the tools and insights needed to navigate 

the complex cybersecurity landscape and safeguard their digital assets effectively. 
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Chapter 2: A Brief Introduction on Honeypots 

Honeypots are fake systems/hosts that are placed inside all types of networks, so as to 

fool intruders/attackers into thinking that they are legitimate devices with a purpose. A 

honeypot serves as a strategic tool designed to attract and potentially fall victim to 

malicious attacks. To do so, most of the times these devices imitate valuable known 

services that are often met in regular business networks and personal networks [1]. 

These services may vary from regular SSH servers to HTTP servers, monitoring 

systems, cloud servers, platform controllers, VPN servers and many more. Each one of 

the aforementioned services resides in different ports meaning that a honeypot can 

actually run multiple services at the same time. However, in order to be seen as a target 

from an attacker’s view, it must imitate a realistic host. That means no business 

networks that consider themselves to have a proper and realistic architecture will ever 

place a cloud server, and a VPN server in the same host, as it’s inevitable to preserve 

the availability in the system in case of an accident. Apart from imitating a dummy 

target that lures attackers, Honeypots are also an important tool for Forensic Analysis 

[2]. As it has been mentioned before, honeypots are particularly useful when an attack 

in not yet known to the cybersecurity world. It is feasible for a Honeypot to host 

network and forensic analysis tools, keeping logs of all the actions that are carried out 

to the host. This enables cybersecurity penetration testers, security admins, bug-hunters, 

researchers and analysts to detect and discover new attacks by analysing logs gathered 

by the honeypot.  Moreover, honeypots provide the following advantages and 

indicatively some of them are as follows: 

• A honeypot is never connected to other assets in the system. Meaning that all 

collected logs are exclusively malicious logs. 

• Honeypots are helpful defensive countermeasures that are flexible enough to 

adapt to various environments. 
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• Honeypots usually have small resources requirements.  

 

2.1: Honeypot Characterization by purpose  

[2], [3] state that honeypots can be characterized in many ways. Among them, the 

literature focuses on usage, distinguishing 2 types, namely research honeypots and 

production honeypots. 

 

2.1.1 Honeypots used for research 

A research honeypot serves the purpose of gathering insights into the activities of the 

an attacker and does not directly contribute to an organization's operational value [4]. 

Its primary objective lies in acquiring intelligence on potential threats that organizations 

might encounter, enhancing their defensive capabilities. By carefully watching the 

attackers' methodologies and attack vectors, they can achieve a deeper level of 

understanding their motives and behaviors. Deploying and maintaining research 

honeypots is a complex task, demanding considerable time and effort due to the 

extensive data they capture. 

 

Although research honeypots offer minimal direct security benefits to organizations, 

the knowledge gleaned from them can be leveraged to enhance measures for preventing, 

detecting, and responding to attacks. They play an important role in advancing research 

by providing a platform to observe cyber threats. Furthermore, research honeypots 

contribute to the development of analytical and forensic skills, occasionally leading to 

the identification of new malware. 

 

2.1.2 Honeypots used for production 

Production honeypots have as a primary functionality to protect an organization from 

attacks act as security controls that can potentially mitigate risks from incoming attacks 

[2], [5]. They deliver immediate security benefits, require fewer functionalities than 

research honeypots and are simpler to develop as they are not built with CTI gathering 

in mind. However, while they pose significant benefits in identifying attacks, such 

honeypots are limited to insights about attackers and the do not provide detailed 

information about the attacker’s identities or tools. They are typically deployed within 

production networks or and emulate real-world environments. According to [4], the 
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main scope of usage also includes the detection of zero-day vulnerabilities, acting as an 

early warning system.  

 

2.2: Honeypot Characterization by Interaction Level  

The interaction level of a honeypot is essentially the degree to which an adversary can 

access the system/host services. Three interactions levels are defined: (1) Low 

interaction, (2) Medium interaction and (3) High interaction [2], [3], [5].   

 

Table 1: Factors associated with Honeypots, based on their interaction level [1] 

 Low Interaction Mid Interaction High Interaction 

Involvement Low Mid High 

Acts as an OS No No Yes 

Risk Low Mid High 

CTI Gathering Connections on 

services 

Connections on 

services + 

Requests 

Possibly ALL 

Compromise  No No Yes 

Develop  Low High High 

Maintenance Low Low Very High 

 

2.2.1 Low Interaction Honeypots 

A low interaction Honeypot is described as a host where the interaction with the rest of 

the system is kept to the minimum, meaning that it cannot be used to launch attacks to 

an external system and is usually an ending destination for an attacker.  These 

honeypots are most likely to be a target and it is common for an attacker to easily tell 

the difference between a legitimate host and a honeypot as they do not host an operating 

system.  Mokube et al. in [5] explain that a low interaction honeypot can also be 

compared with a passive intrusion detection system (IDS), as there is no possible way 

to directly interact with the attacker. While, this option does not provide any 

implementation risks, the expected reward from using such systems is also quite 

limited. Moreover, the authors in [6], highlight that there is high usage of low 

interaction honeypots in analyzing spam and worms. 
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2.2.2 Medium Interaction Honeypots 

A medium interaction honeypot is described as a honeypot that implements a concrete 

but not full set of services but at the same time do not come with an operated system 

installed. These services are more complicated and gather cyber-threat intelligence up 

to specific level, but they can be almost immediately recognized as honeypots. Mokube 

et al. [5] highlight that medium interaction honeypots provide the attacker with a better 

illusion since they allow more interactions, leading to more cyber-threat information 

gathered. Similarly, to low interaction honeypots, the same logic is considered. While 

the usage of such systems, has a higher risk in comparison to low interaction honeypots 

[7], their usage is considered to be a more versatile and useful. 

 

2.2.3 High Interaction Honeypots 

 

A high interaction honeypot is described as a full operating system with a plethora of 

functionalities available, even functionalities that allow consequent actions to take 

place, such as launch attacks or install backdoors or applications [3]. Their goal is to 

provide an interactive system where nothing is simulated and at the same time collect 

various types of information of all available actions and not only from logs [7]. Due to 

the freedom level in high interaction honeypots being particularly high, these devices 

are highly possible to not be easily distinguished from a regular system from an 

attacker. 
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Chapter 3: Game Theory Fundamentals 

 

To set the foundation for the upcoming analysis of strategic honeypot placement, this 

chapter will provide a brief introduction to the game theory.  Game theory studies 

strategic decision-making by combining a set of disciplines such as mathematics, 

psychology, philosophy and nowadays computer science which provides an efficient 

tool for solving, evaluating, and simulating various games. Several fields seen the 

application of game theory to be an important tool for enhancing and incorporating 

reasoning and decision making in complex and multi-factor situations. Some of those 

fields are business, finance, economics, political science, psychology and since the 

early 20s cybersecurity is a field that benefits considerably from game theoretic 

approaches in many ways.  

 

3.1 Self-interested Agents and Utility Theory  

This short introduction starts with the notion of self-interested agents which is a 

common concept in game theory, describing individuals, groups or entities that 

primarily act in their own best interest and have a specific goal. A self-interested agent 

particularly prioritizes her/his interest above others and make decision based on 

maximizing their own utility in terms of some short of profit. Profit is usually 

interpreted differently and has to do with the nature of the game and the goal set. A 

self-interested agent has his/her own description of states of the world that are 

preferable, compared to others and acts based on the aforementioned description. An 

utility function of a self-interested agent can: 

• Quantify degree of preference 

• Explain the impact of uncertainty 

• Be a Decision-theoretic rationality (act towards the maximization an expected 

utility) 
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For example, the weather can be 25 degrees Celsius with a probability of 0.4 and 25 

degrees Celsius with probability of 0.3, 𝑤ℎ𝑒𝑟𝑒 𝑝(𝑤 = 24) +  𝑝(𝑤 = 25)  =  1. The 

agent is expected to have an opinion on which is the preferable temperature according 

to his tastes. 

 

The authors in [8], create the axiom of the utility function. Precisely, Von Neumann 

and Morgenstern's theorem states that under certain conditions, preferences can be 

represented by a utility function that assigns a real number to each possible outcome of 

a decision. Key conditions for that theorem are completeness, transitivity, and 

continuity of preferences, as well as the independence of irrelevant alternatives: 

• Completeness - The decision-maker can compare any two alternatives and has 

a preference for one over the other, or is indifferent between them. 

• Transitivity - If the decision-maker prefers option A over option B, and option 

B over option C, then the decision-maker also prefers option A over option C. 

• Continuity -  The decision-maker's preferences are continuous, meaning that if 

option A is preferred to option B, there exists some probability at which the 

decision-maker would be indifferent between receiving option A for sure and 

taking a gamble with a chance of receiving option B. 

• Independence of irrelevant alternatives solutions -  If the decision-maker 

prefers option A to option B, introducing a third option that is worse than A but 

better than B should not change the preference between A and B. 

Von Neumann and Morgenstern in their fundamental book of game theory distinguish 

two games: (i) Normal Form Games (NFG - also called Strategic form), (ii) Extensive 

Form Games (EFG). The first list the payoff that agents get as function of their own 

actions (e.g., Matrix Games – Prisoner Dilemma), while the latter indicate games in 

which agents move sequentially and the actions taken are represented as tree (e.g., 

Poker, Chess, …). EFG further keep track of what each agent knows when he/she makes 

each decision. 

 

A finite 𝑛 − 𝑝𝑒𝑟𝑠𝑜𝑛 NFG is defined as < 𝑁,𝐴, 𝑢 >: 

• Players: 𝑁 = {1, . . . , 𝑛} is a finite set of 𝑛, indexed by 𝑖 

• A player 𝑖, has a set of possible actions 𝐴𝑖,where: 
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 𝑎 =  (𝑎1, … , 𝑎𝑛)  ∈  𝐴 =  𝐴1 × . . . ,× 𝐴𝑛 is an action profile  

• 𝑢  is an utility of payoff function for player 𝑖: 𝑢𝑖: 𝐴 → ℝ, where: 

 𝑢 = (𝑢1, … , 𝑢𝑛) is a profile of utility functions and 𝑢𝑖(𝛼) is the payoff of 

player 𝑖 if 𝛼 is the profile of actions chosen. 

NFG are often represented by a table and are the most famous and basic games. While 

one indicative example is the Prisoners Dilemma, in this part of the Master Thesis a 

more suitable example will be described: the TCP Backoff Game of non-cooperative 

game theory.  

 

TCP Backoff Game 

The game analyzes the behavior of a competing network flows in a shared network 

environment in context of congestion control [9]. In the game, multiple TCP flows, 

represented as players, are contending for bandwidth in shared network. Each TCP flow 

has a goal of maximizing its own throughput and at the same time consider network 

congestion and fairness.  

 

Each TCP flow starts by transmitting data packets at an initial rate which is determined 

by a congestion control algorithm. While packets are successfully transmitted without 

loss the sending rate is said to increase. If a network congestion occurs, routers can drop 

packets and trigger congestion control mechanisms in the TCP protocol. While 

detecting packet loss, TCP flows react by reducing the transmission rate to avoid packet 

loss. When packet loss happens, TCP enter in a backoff state where temporarily reduces 

the transmission rate before gradually starts increasing them again and this process 

helps in the prevention of further congestion, allowing the network to slowly recover. 

When multiple TCP flows compete for bandwidth provision, they continuously adjust 

their transmission rates based on the network conditions (e.g., bandwidth availability, 

delay, packet loss). Flows that experience greater congestion may reduce their 

transmission rates is a more aggressive manner, while those with less congestion can 

instead increase their transmission rates faster. The game is depicted in the following 

example1: 

• Both TCP flows use a correct implementation give 1ms delay in the network 

 
1 Example is from the citated source, as well as the given payoffs. 
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• One Effective and One Defective implementation give 4 ms delay and 0 ms 

delay respectively 

• Both TCP flows defective results in 3 ms delay. 

The above raise the question on if packets should be sent using a correctly 

implemented TCP or an incorrect implementation? 

 

The matric below the TCP game is written in normal form: 

• Rows are the actions of player: 𝐴1 

• Columns are the actions of player: 𝐴2  

• Cells define outcomes and are depicted as tuples of utility values for each player 

𝑁 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: TCP Strategic Game 

 

In the above example, both players have a dominant strategy, which is to choose the 

effective implementation, regardless of the other player’s choice. This is because, no 

matter what the other player does, choosing the effective solution always results in a 

higher payoff for each player individually. 

 

3.2 Best Response, Nash Equilibrium, Strict Domination  

 

Nash equilibrium serves as a pivotal concept in game theory, and helps in predicting, 

analyzing, and understanding strategic interactions among rational decision-makers 

(players). John Nash in [10] defines Nash equilibrium as a profile (set) of strategies in 

which no player has an incentive to deviate from his/her chosen strategy, while taking 

Effective 

(-1, -1) (-4, 0) 

(0, -4) (-3, -3) 

Defective 

Effective 

Defective 

A    \       B 
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into account the possible actions of all the other players. Nash equilibrium is valuable 

because it offers a fundamental framework for grasping strategic decision-making 

processes. This comprehension helps in the creation of more effective and dependable 

systems across diverse domains such as cybersecurity in our case. In detail: 

 

3.2.1 Best Response (BR) 

If there was knowledge and information of what every player is going to choose, in a 

game, it would be easy to choose our own actions, as well. Let: 

 

𝑎−𝑖  = < 𝛼1,, … , 𝛼𝑖−1, 𝛼𝑖+𝑖,, … , 𝛼𝑛 >  𝑎𝑛𝑑 𝛼 = (𝛼−𝑖 , 𝛼𝑖) 

 

A strategy 𝛼𝑖 is a best response for player 𝑖 to a profile of strategies 𝛼−𝑖  ∈  𝛼−𝑖 for the 

other players if: 

𝑢𝑖(𝛼𝑖 , 𝛼−𝑖)  ≥ 𝑢𝑖(𝛼′𝑖 , 𝛼−𝑖), ∀ 𝛼′𝑖 

 

A best response of player 𝑖 to a profile of strategies of the other plays is strict best 

response if it is also the only best response. 

 

3.2.2 Nash Equilibrium (NE) 

 A profile of strategies 𝛼 ∈ 𝐴 is a pure strategy Nash Equilibrium if 𝛼𝑖 is best response 

to the set 𝛼−𝑖 ∀ 𝑖 . Meaning that 𝛼 is a NE if: 

 

𝑢𝑖(𝛼𝑖 , 𝛼−𝑖)  ≥ 𝑢𝑖(𝛼′𝑖 , 𝛼−𝑖), ∀ 𝑖, 𝛼′𝑖 

 

The difference is the definition of NE with respect to that of BR where in a pure strategy 

NE, each player's action is optimal considering the actions of other players at 

equilibrium, rather than considering all potential actions those players might take. As 

the authors in [11] state, sometimes, a player's best response to the actions of others is 

singular. When all players are playing unique best responses, it constitutes a strict NA. 

It is also highlighted that a profile of dominant strategies qualifies as a Nash 

equilibrium, but the reverse isn't always true. 
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3.2.3 Strict Domination (SD) 

Let 𝑆𝑖 𝑎𝑛𝑑 𝑆′𝑖 be two strategies for player 𝑖, and let 𝑆−𝑖 be the set of all possible strategy 

profiles for other players. 𝑆𝑖 strictly dominates 𝑆′𝑖  if: 

 

𝑢𝑖(𝑆𝑖 , 𝑆−𝑖)  > 𝑢𝑖(𝑆′𝑖 , 𝑆−𝑖), ∀ 𝑠′𝑖  ∈  𝑆′𝑖  

Only if: 

 

𝑢𝑖(𝑆𝑖 , 𝑆−𝑖)  ≥ 𝑢𝑖(𝑆′𝑖 , 𝑆−𝑖), implying weak domination 

 

A strategy profile consisting of dominant strategies for every player must be a NE. An 

equilibrium in strictly dominant strategies must be unique 

 

3.3 Pareto Optimality  

From the point of view of an outside observer, some outcomes of a game can be said to 

be better than others. It can’t be said that one player’s interests are more important than 

those of others. Sometimes players try to find the revenue that maximizes the outcome 

when it’s not known what currency is used to express the players’ payoff. For that 

reason, in [12] it is explained how an outcome 𝑜 is at least as good for every player as 

another outcome 𝑜′ and there are some players who strictly prefer 𝑜 to 𝑜′. In this case, 

it is reasonable to say that 𝑜 is better than 𝑜′. The state-of-the-art defines the previous 

case as the Pareto-domination of outcome 𝑜 to outcome 𝑜′. Thus, an outcome 𝑜 ∗ is 

Pareto-optimal if there is no other outcome that Pareto-dominates it. 

 

3.4 Mixed Strategies and Mixed Strategy NE  

There are many applications and situation in game theory, where players may not have 

complete information about their opponent’s strategies and most importantly there is 

no unique pure strategy Nash equilibrium for the participating players. Furthermore, 

pure strategies can lead to predictable behavior, which can be exploited by other players 

in order to win. For that reason, Nash and Morgenstern introduce the concept of mixed 

strategies to ensure that players can address this uncertainty by randomizing their 

actions, reflecting the lack of information and to break symmetries in games that 

contain by nature symmetrical payoffs, preventing players from exploiting predictable 
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patterns and/or symmetrical advantages [13]. In detail, the state-of-the art defines a 

mixed strategy 𝑠𝑖 for player 𝐼 as any probability distribution over the actions 𝐴𝑖.  In 

pure strategy, only one action is played with positive probability but in mixed strategies 

more than one actions are played with positive probability. The actions in mixed 

strategies are called the support of mixed strategy. 

• Let the set of all strategies for 𝑖  be 𝑆𝑖 

• Let the set of all strategy profiles be 𝑆 =  𝑆1 × . . .× 𝑆𝑛 

To define a mixed strategy, the expected utility from decision theory is used [11], [14]: 

 

𝑢𝑖(𝑠) = ∑𝑢𝑖(𝛼)𝑃𝑟(𝛼|𝑠)

𝛼∈𝐴

 

, where: 

 

𝑃𝑟(𝛼|𝑠) =∏𝑠𝑗(𝛼𝑗)

𝑗∈𝑁

 

A mixed strategy for a player 𝑖 is a distribution 𝑠𝑖 on 𝛼𝑖, where 𝑠𝑖(𝛼𝑖) is the probability 

that 𝛼𝑖 is chosen.  A profile of mixed strategies constitutes a mixed-strategy NE if: 

  

∑𝑢𝑖(𝛼)∏𝑠𝑗(𝛼𝑗)

𝑗∈𝑁

 ≥ 

𝛼∈𝐴

∑(∏𝑠𝑗(𝛼𝑗)

𝑗≠𝑖

)𝑢𝑖(𝛼′𝑖,, 𝛼−𝑖)           , ∀ 𝑖′, 𝛼′𝑖  

𝛼∈𝐴

 

 

A set of mixed strategies forms an equilibrium when no player can improve their payoff 

by deviating from their chosen mixed strategy in response to the mixed strategies of 

other players. This implies that each player must be equally satisfied with every strategy 

they employ with a positive probability within their mixed strategy. Additionally, 

players' randomizations are done independently. However, due to the mixed strategy 

practically be probability distribution, when a strategy happens with probability equal 

to 1, then that strategy is a pure strategy. 

 

3.5 Computing a Nash Equilibrium 

The approach described in Section 5 assumes that the game is played with 2 players: an 

attacker and a defender. For that reason, this section will consider solutions for solving 
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only 2 player games. The first solution that is described here is formulated as a Linear 

Complementarity Problem (LCP) [15]pap. Precisely: 

• 𝑠𝑛:𝑚𝑖𝑥𝑒𝑑 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑒𝑠 𝑓𝑜𝑟 𝑝𝑙𝑎𝑦𝑒𝑟𝑠 𝐴1 𝑜𝑟 𝐴2 

• 𝑟𝑛: 𝑠𝑙𝑎𝑐𝑘 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 

• 𝑢𝑖: 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑎𝑦𝑜𝑓𝑓 𝑡𝑜 𝑝𝑙𝑎𝑦𝑒𝑟 1 𝑖𝑛 𝑁𝐸 

Where the player 1 expected reward can be calculated as: 

 

𝑢1
∗ = ∑ 𝑢1(𝛼1

𝑗

,
, 𝛼2

𝑘) ∙ 𝑠2
𝑘 + 𝑟1

𝑗
    , ∀ 𝑗 ∈

𝑘∈𝐴2

𝐴1 

 

And player 2 respectively: 

 

𝑢2
∗ = ∑ 𝑢2(𝛼1

𝑗

,
, 𝛼2

𝑘) ∙ 𝑠1
𝑗
+ 𝑟2

𝑘     , ∀ 𝑘 ∈

𝑗∈𝐴1

𝐴2 

 

Considering that that the probabilities sum to one: ∑ 𝑠1
𝑗
=  1𝑗∈𝐴1  𝑎𝑛𝑑 ∑ 𝑠2

𝑘 =  1𝑘∈𝐴2  

 

, where: 

𝑠1
𝑗
≥ 0, 𝑠2

𝑘 ≥ 0,   ∀ 𝑗 ∈ 𝐴1, ∀ 𝑘 ∈ 𝐴2 

𝑟1
𝑗
≥ 0, 𝑟2

𝑘 ≥ 0,   ∀ 𝑗 ∈ 𝐴1, ∀ 𝑘 ∈ 𝐴2 

𝑟1
𝑗
∙ 𝑠1

𝑗
≥ 0, 𝑟2

𝑘 ∙ 𝑠2
𝑘 ≥ 0,   ∀ 𝑗 ∈ 𝐴1, ∀ 𝑘 ∈ 𝐴2 

 

 

3.6 Maxmin and Minimax Strategies  

Maxmin and minmax are important concepts in game theory because they provide 

strategies that players can use to optimize their outcomes in competitive settings. 

Particularly, in the context of zero-sum games (Subsection 3.9) [16], where one player's 

gain is directly affected by another player's loss, the maxmin and minmax strategies 

help players minimize their maximum possible loss and maximize their minimum 

guaranteed gain, respectively. These strategies are particularly useful when players 

have incomplete information about their opponents' strategies or when they seek to 

minimize risk. 
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3.6.1 Maxmin 

A player’s 𝑖’s maxmin strategy is a strategy that maximizes 𝑖’s worst-case payoff, in 

the situation where all other players (-i) happen to play their strategies that cause the 

greatest harm to player 𝑖. The maxmin strategy for player 𝑖 is: 

 

𝑎𝑟𝑔 max
𝑠𝑖
min
𝑠−𝑖

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) 

 

And the maxmin value for player 𝑖 is defined as: 

 

max
𝑠𝑖
min
𝑠−𝑖

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖) 

 

3.6.2 Minmax 

A player’s 𝑖 minmax strategy against player −𝑖, in a 2-player game, is a strategy that 

minimizes −𝑖 ′𝑠 best case payoff and the minmax value for 𝑖 against −𝑖 is payoff. The 

minmax strategy for player 𝑖 against player −𝑖 is defined as: 

 

𝑎𝑟𝑔min
𝑠𝑖
max
𝑠−𝑖

(𝑠𝑖 , 𝑠−𝑖) 

 

And the minmax value for player 𝑖 is defined as: 

 

min
𝑠𝑖
max
𝑠−𝑖

(𝑠𝑖 , 𝑠−𝑖) 

 

3.7 Zero-Sum Games  

The game that this thesis will use a test-case is zero-sum game. A zero-sum game is a 

type of situation in game theory where one participant's gain or loss is exactly balanced 

by the losses or gains of the other participant(s). In other words, the total utility or value 

remains constant among the participants. The term "zero-sum" comes from the fact that 

when you add up the gains and losses of all players, the total sum is zero. This doesn't 

mean that there's no value created overall, but rather that any value created is simply 
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redistributed among the participating players. Von Neuman in 1928 [8], claimed and 

then proved that in any finite, two player zero-sum game, in any NE, each player 

receives a payoof that is equal to both his maxmin and minmax value.   

For a 2-player game, minimax is solvable with linear programming approaches as 

described in [16], where the payoff to player 𝑁1 in equilibrium is 𝒖𝟏
∗  and the scope is 

to minimize it, subject to: 

∑ 𝑢1(𝛼1
𝑗

,
, 𝛼2

𝑘) ∙ 𝑠2
𝑘  ≤  𝒖𝟏

∗     , ∀ 𝑗 ∈ 𝐴1
𝑘∈𝐴2

 

 

Considering that that  ∑ 𝑠2
𝑘 =  1𝑘∈𝐴2  and 𝑠2

𝑘 ≥ 0, ∀ 𝑘 ∈ 𝐴2  

 

Example: 

One of the easiest to understand examples is the Attack-defend problem but in this 

example, it has cybersecurity twist to capture the basic notion. In this game, we consider 

two players: the Defender (Player 1) and the Attacker (Player 1). The company has to 

decide how much to invest in cybersecurity defenses, while the hacker must decide 

whether to attempt a cyberattack or not. 

 

 

 

 

 

Figure 2: Example CyberAttack Strategic Game 

In the above example, we demonstrate how the defender maximizes his minimum, as 

follows: 

max
𝑠𝑖
min
𝑠−𝑖

𝑢𝑖(𝑠𝑖 , 𝑠−𝑖)

→ max
𝑠1

min
𝑠2
[𝑠1(𝐼𝐿)𝑠2(𝐴)0.6 + 𝑠1(𝐼𝐿)𝑠2(𝐴

′)0.8 + 𝑠1(𝐼𝐻)𝑠2(𝐴)0.9

+ 𝑠1(𝐼𝐻)𝑠2(𝐴
′)0.7] 

 

Attack 

(0.6, 0.4) (0.8, 0.2) 

(0.9, 0.1) (0.7, 0.3) 

No Attack 

Invest Low 

Invest High 

P1    \       P2 
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, where: 

• 𝑠1(𝐼𝐿) = prob that attacker attacks the target system 

• 𝑠2(𝐴 ) = prob that attacker attacks the target system 

 

The minimum that the defender should keep in mind is: 

 

min
𝑠2
[𝑠1(𝐼𝐿)𝑠2(𝐴)0.6 + 𝑠1(𝐼𝐿)(1 − 𝑠2(𝐴))0.8 + (1 − 𝑠1(𝐼𝐿))𝑠2(𝐴)0.9

+ (1 − 𝑠1(𝐼𝐿))(1 − 𝑠2(𝐴))0.7] 

⟹ 𝑠1(𝐼𝐿)  =  ½ ,  𝑠1(𝐼𝐻)  =  ½   

 

Similarly, if the attacker wants to minimize the defender’s maximum utility: 

 

min
𝑠𝑖
max
𝑠−𝑖

(𝑠𝑖 , 𝑠−𝑖)

→  min
𝑠1
max
𝑠2
[𝑠1(𝐼𝐿)𝑠2(𝐴)0.6 + 𝑠1(𝐼𝐿)𝑠2(𝐴

′)0.8 + 𝑠1(𝐼𝐻)𝑠2(𝐴)0.9 + 𝑠1(𝐼𝐻)𝑠2(𝐴
′)0.7]   

⟹                  . . .             ⟹ 𝑠2(𝐴)  =  1/4 ,  𝑠2(𝐴
′)  =  3/4   

 

Sorin, Sylvain, (1992), Repeated games with complete information, ch. 04, p. 71-107 

in Aumann, R.J. and Hart, S. eds., Handbook of Game Theory with Economic 

Applications, vol. 1, Elsevier. 

 

  

https://econpapers.repec.org/RePEc:eee:gamchp:1-04


25 

 

 

 

 

Chapter 4: Modeling for the Honeypot Allocation Game 

 

The application of many Cyber Deception games is considered a growing topic in the 

current state of the art of cybersecurity games. Overall, cyber deceptions games, 

whether they are expressed as game theoretic or AI models, require a formal and 

concrete modeling of the scenario which portrays their application. Modeling usually 

refers to the expression of the environmental attributes as a connected multi-layer (and 

often hierarchical) composition of entities, actions, states, and results. The previous will 

be formalized in later sections. In our case, the model operates within the scope of 

deceiving one of the entities, leading to an equilibria state in which neither actor (entity) 

can get “on top of the other”.  

 

This Chapter will initially explain how we formulate the game over attack graphs. 

Following, a brief explanation of the usage of attack graphs will be conducted. Attack 

Graphs in this specific implementation depict models that are used to conduct 

vulnerability root-cause analysis. To quantify the vulnerabilities’ capabilities on 

vulnerability attack graphs, a short introduction will be made on the CVSS metrics 

which are a widely known framework used especially in information security risk 

management. As the previous, constitute the theory needed for the creation of the attack 

graphs and the vulnerability interconnections, the rest of this chapter focuses on 

creating a custom attack graph model with a domain specific language, called Meta-

Attack Language. The model is defined on a set of rules which are described in the last 

part of this section and then we use a proposed engine to generate the attack graph 

model that will be used for the Optimal Honeypot allocation, as seen in Chapter 5.   

 

4.1 General Game Formulation 

In detail, the Cyber Deception of game of optimal Honeypot placement which is 

described in this Master Thesis is the practical implementation of  [17]which is enriched 

and applied on top of proper AG models. The described game theoretic framework is 
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applied on top of network security graphical models and specifically in attack graphs. 

Attacks graphs are widely known for being an efficient way to model and explain multi-

stage attacks. During the years multiple attack graphical models and types have been 

developed in order to accurately model different situations, environments, topologies, 

attack methods, etc.   

 

4.2 The Common Vulnerability Scoring System 

CVSS offers three primary advantages compared to other scoring systems. Firstly, it 

operates within an open framework, providing daily updates for existing entries as well 

as incorporating new ones. Secondly, vulnerability scores are standardized for both 

open source and commercial platforms, ensuring consistency across different systems. 

Major vulnerability databases like the National Vulnerability Database (NVD) integrate 

CVSS metrics into their feeds. Additionally, adopting a common scoring algorithm 

facilitates the establishment of a unified vulnerability management policy within 

organizations. Lastly, CVSS facilitates risk prioritization by enabling the computation 

of environmental scores (ES) for a more comprehensive understanding of overall risk. 

It achieves this through three sets of metrics: base, temporal, and environmental 

metrics. 

 

The assessment of overall risk associated with identified vulnerabilities in an IT system, 

including the likelihood of exploitation and the impact of successful exploitation, is 

quantitatively measured using industry-standard vulnerability scoring systems. These 

systems, managed by various commercial and non-commercial entities, each offer 

unique advantages. Differences exist in what they measure and the ranges of scores 

they employ. For instance, SANS Institute’s scales consider factors such as default 

configurations and server systems, while Microsoft’s system reflects the level of 

exploitation and total impact of a vulnerability [18]. FIRST notes that while these 

systems are useful, they adopt a one-size-fits-all approach by assuming constant 

vulnerability impacts across individuals and organizations [19].This section focuses 

solely on the Common Vulnerability Scoring System 3.1 standard (CVSS), which 

provides a measure of vulnerability criticality to prioritize risk mitigation efforts.  
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Nevertheless, this section will focus on the Base Score and Metrics of the CVSS, as 

Chapter 5 utilizes these metrics to fill the reward matrix that will be defined. 

 

4.2.1 Base Score Metrics 

Precisely, base metrics constitute of two sub metric groups, namely the Exploitability 

metrics and the Impact Metrics. The exploitability metrics focus on assessing the 

exploitability of a vulnerability, consider characteristics of the vulnerable component 

and how they contribute to the potential of the successful exploitation, while impact 

metrics help the understanding of the potential consequences of the vulnerability being 

exploited. 

Table 2: Exploitability Metrics and corresponding values 

Exploitability Metric  Value 

Attack Vector (AV) • Network (N) – This value indicates that the 

vulnerability can be exploited remotely over a 

network connection, without requiring any prior 

access to the target system. An attack can exploit 

the vulnerability from anywhere, provided that 

he/she can reach the target system over the 

network. 

 

• Adjacent (A) – This value indicates that the 

vulnerability can be exploited by an attacker has 

access to the same network segment as the one in 

which the target system resides. This includes 

attack in which both the attacker and the target 

are in the same wireless network or LAN. 

 

• Local (L) – This value indicates that the attacker 

has limited access to the target system. This may 

be that the attacker exploits the vulnerability by 

having access to the target system through a 

keyboard or a console or has remote access 
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through an SSH connection. This value may also 

imply that the attacker requires further actions to 

be conducted from other external entities in order 

to successfully exploit the vulnerability. 

 

• Physical (P) – This value indicates that the 

attacker has physical access to the vulnerable 

component. 

 

Attack Complexity 

(AC) 

• Low (L) – This value indicates that there are no 

particular access conditions that must be achieved 

first in order to attack the vulnerable component 

and that the exploitation has a deterministic 

nature. 

 

• High (H) – This value indicates that the attack 

relies of factors outside of the attacker’s 

immediate control, leading to a certain level of 

effort to be applied or preparation. Such effort 

may involve acquiring knowledge about the 

target environment, a preliminary exploitation, 

other types of network attacks and/or overcoming 

obstacles that are prerequisites for the exploit 

such as a race condition. 

 

Privileges Requires 

(PR) 

• None (N) – This value indicates that the attacker 

does not require to be authorized in order to 

attempt the vulnerability exploitation nor have 

any access to settings, files or rights in the 

system. 

 

• Low (L) – This value indicates that the attacker 

must have user capabilities or rights to access 
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files in the target system and is limited to only 

non-sensitive resources. 

 

• High (H) – This value indicates the attacker 

requires admin privileges or other significant 

control over files or executables and that the 

exploitation leads to getting access to most 

setting and files. 

 

User Interaction (UI) • None (N) – This value indicates that the target 

system can be exploited without any interaction 

form other users. 

 

• Required (R) – This value indicates that the 

vulnerability exploitation requires other users to 

conduct some actions before the exploitation 

takes place.  

 

 The following table maps the previous qualitative Metric Values to quantitative 

metrics, as FIRST indicates in the CVSS specification [19]: 

 

Table 3: Exploitability Metrics mapping to their quantitative values 

Exploitability Metric  Mapping to Quantitative values 

Attack Vector (AV) Network (N) →  𝟎. 𝟖𝟓  

Adjacent (A) →  𝟎. 𝟔𝟐 

Local (L) →  𝟎. 𝟓𝟓 

Physical (P) →  𝟎. 𝟐𝟎 

Attack Complexity 

(AC) 

Low (L) →  𝟎. 𝟕𝟕 

High (H) →  𝟎. 𝟒𝟒 

Privileges Requires 

(PR) 

None (N) →  𝟎. 𝟖𝟓 

Low (L) →  𝟎. 𝟔𝟐 / 𝟎. 𝟔𝟖, 𝑖𝑓 𝑺𝒄𝒐𝒑𝒆2 𝑖𝑠 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 

 
2 The Scope metric in vulnerability assessment refers to the extent to which a vulnerability in one 

component can affect resources beyond its immediate security boundaries. It evaluates potential impact 
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High (H) →  𝟎. 𝟐𝟕 / 𝟎. 𝟓𝟎, 𝑖𝑓 𝑺𝒄𝒐𝒑𝒆 𝑖𝑠 𝐶ℎ𝑎𝑛𝑔𝑒𝑑 

User Interaction (UI) None (N) →  𝟎. 𝟖𝟓 

Required (R) →  𝟎. 𝟔𝟐  

 

4.2.2 Impact Metrics 

Impact metrics like confidentiality (C), integrity (I), and availability (A) measure the 

immediate consequences of an exploit. Confidentiality relates to how much sensitive 

information could be revealed, integrity concerns the potential damage to data accuracy 

or trustworthiness, and availability deals with the accessibility of information resources 

during an attack. Higher impact levels, designated by "H" for high, "L" for low, and 

"N" for none, correspond to numerical values of 0.56, 0.22, and 0.00, respectively, 

leading to an increase in the Base Score (BS). 

 

Table 4: Impact Metric mapping to their quantitative values 

Impact Metric  Mapping to Quantitative values 

Confidentiality (C) None (N) →  𝟎. 𝟎𝟎 

Low (L) →  𝟎. 𝟐𝟐 

High (H) →  𝟎. 𝟓𝟔 

Integrity (I) None (N) →  𝟎. 𝟎𝟎 

Low (L) →  𝟎. 𝟐𝟐 

High (H) →  𝟎. 𝟓𝟔 

Availability (A) None (N) →  𝟎. 𝟎𝟎 

Low (L) →  𝟎. 𝟐𝟐 

High (H) →  𝟎. 𝟓𝟔 

 

4.2.3 Environmental Score Metrics – Security Requirements 

These metrics enable adjustments to the base and temporal severity levels of. The CVSS 

within an organization's environment, reflecting the distinct characteristics of that 

environment. Additionally, they take into account the significance of a vulnerable 

 
of a vulnerability on interconnected systems, networks, or components that may not be directly related 

but could be otherwise inderectly affected. 
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system within an infrastructure, considering factors such as the presence of security 

mechanisms and mitigation measures that could hinder or mitigate potential attacks. 

 

Chapter 5 utilizes the Security Requirements of the Environmental Metrics to define 

the defender capture reward. Security Requirements are impact metrics that are 

established by the system administrator (in this thesis’ case; the defender) in response 

to the specific needs arising within the target vulnerable system. In Chapter 6, these 

metrics are defined for the whole simulation as parameters. 

 

 4.3 Creating the Attack Graph Model 

Attack Graphs are widely used as a tool that initially heled in visualizing cyber-attacks 

in on computers or complex ICT systems. Nowadays, attack graphs fall under the 

broader category of graphical security models and the main scope of usage lies in 

providing numerous benefits such as mitigation prioritization, understanding complex 

attack patterns, conducting probabilistic vulnerability risk analysis, moving target-

based applications, intrusion response [20]. The bibliography gathers most of the 

applications under the following categories, as seen in Figure 3: 

 

 

Figure 3: Attack Graphs and their applications 

 

While there are many attack graphs representations, for this thesis we will follow the 

basic notations for creating graphical models as they have originally been described. A 

basic structure of a graph 𝐺 is represented in the form: 𝐺 = (𝑉,𝐸), which comprises of 
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vertices 𝑣 ∈ 𝑉, and edges 𝑒 𝜖 𝐸, representing relationship between nodes in the graph 

structure. Particularly in Attack Graphs, there is a more complex structure that is 

expressed in the form of 𝐺 = ({𝑉𝑝𝑟𝑒, 𝑉𝑝𝑜𝑠𝑡 , 𝑉𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑠}, 𝐸), where vertices, also referred 

as nodes, can be represented as three different types: 

• 𝑉𝑝𝑟𝑒  is a set of nodes, representing exploit pre-conditions, 

• 𝑉𝑝𝑜𝑠𝑡 is a set of nodes, representing exploit post-conditions (they can be 

interpreted as derivations of exploit-related actions): 

 𝑉𝑝𝑜𝑠𝑡 ⊆  𝑉𝑝𝑟𝑒 | ∀ 𝑣 𝜖 𝑉𝑝𝑜𝑠𝑡 ,  𝑉𝑝𝑟𝑒    

• 𝑉𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑠  is set of nodes representing the exploits that occur from existing pre-

conditions and have post-conditions as successors. 

However, as the above definition in no way defines all the different attack graph models 

out in the wild, most available works capture this idea and built on top of it. In addition, 

such models are often visually represented as acyclic graphs. Some examples are attack 

trees, topological attack graphs, state-dependency attack graphs, Bayesian attack 

graphs.  

 

State Enumeration Attack Graphs 

A state attack graph [21][22] illustrates how a system progresses from one state to 

another by exploiting vulnerabilities. Each state, which can represent a host, privilege, 

exploit, or vulnerability, is depicted as a vertex, while connections between states are 

depicted as edges. Vertices are further classified into pre-conditions and post-

conditions, delineating the stages before and after an attack. These pre and post 

conditions, along with their interconnected edges, form a directed attack graph. State-

based attack graphs proliferate exponentially by detailing all possible combinations 

required for system compromise, without considering duplicate attack paths. However, 

it is stated that such models have significant issues with scalability as the number of 

nodes (states) grows exponentially since such graphical models do not capture and 

integrate the monotonicity assumption. 
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Figure 4: State Attack Graph from [21] 

 

 

Exploit Dependency Graphs 

The authors in [22] describe a framework that manages network attack graphs and their 

complexity by conducting hierarchical aggregation of the graph elements (nodes and 

vertices). The aggregation behaves recursively and practically operates by collapsing 

non-overlapping subgraphs of the initial model into a single attack graph, thus reducing 

the final complexity of the model. The final graph model is called an Exploit 

Dependency attack graph and inherit all the information from state-enumeration graphs 

(as they are considered an improvement over the previous) [21]. Exploit Dependency 

Attack Graphs contain all the required information for network vulnerability and attack 

analysis and are also exhaustive in terms of attack paths. The specific graphical model 

captures the attack graph representation of State Enumeration Attack graphs but instead 

transition to a more exploit-oriented representation. Exploits and conditions are 

aggregated to exploits sets and condition sets and vice versa. Moreover, set of exploits 

and conditions nodes are aggregated into abstract machines-exploits sets which are 

called protection domains and these are represented a fully connected subgraph models 

which represent the exploit dependency attack graph when merged altogether. An 

indicative example of an exploit dependency graph can be seen below: 
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Figure 5: Example Exploit Dependency Attack Graph 

 

4.3.1 Meta Attack Language 

In order to create an attack graph model, we utilize the Meta Attack Language 

framework [23] which the authors introduce as a meta-domain specific language (DSL) 

for modeling infrastructures with domain-specific threats. 

 

MAL Combines elements of UML classes and object diagrams with probabilistic 

attack-defense graphs. The language uses Assets which can be thought as grouping of 

classes that contain instances and represent objects. Assets can also be interpreted as 

set of nodes in an attack graph. Those subgraphs (Assets) relate to other subgraphs via 

Associations. Associations define relationships that are similar to class diagrams and 

feature roles and multiplicities. Furthermore, the language incorporates the subgraph 

logic behind Assets in the form of attack steps, following at the same time the formal 

definition of attack graphs from the bibliography. A MAL DSL enables the encoding 

of attack tress in assets.  
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Assets and Associations are defined in a “.mal” file which must follow a specific 

syntax. To compile a .mal file, the MAL compiler3 must be used. The compiles uses 

Maven4 to download all supplementary packages and but is easily accessible from the 

Github repository. In our case, we use the compiler without any modifications. More 

details are described in in the next section.. 

 

To showcase the language structure, the exampleLang5  is presented below: 

Table 5: ExampleLang syntax - Association Rules and Assets 

/* 

 * Copyright 2020-2022 Foreseeti AB <https://foreseeti.com> 

 * 

 * Licensed under the Apache License, Version 2.0 (the "License"); 

 * you may not use this file except in compliance with the License. 

 * You may obtain a copy of the License at 

 * 

 *     https://www.apache.org/licenses/LICENSE-2.0 

 * 

 * Unless required by applicable law or agreed to in writing, software 

 * distributed under the License is distributed on an "AS IS" BASIS, 

 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 

 * See the License for the specific language governing permissions and 

 * limitations under the License. 

 */ 

#id: "org.mal-lang.examplelang" 

#version: "1.0.0" 

 

category System { 

  asset Network { 

    | access 

      -> hosts.connect 

  } 

  asset Host { 

    | connect 

 
3 https://github.com/mal-lang/malcompiler 
4 https://maven.apache.org 
5 https://github.com/mal-lang/exampleLang/blob/master/src/main/mal/exampleLang.mal 
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      -> access 

    | authenticate 

      -> access 

    | guessPassword 

      -> guessedPassword 

    | guessedPassword 

      -> authenticate 

    & access 

  } 

  asset User { 

    | attemptPhishing 

      -> phish 

    | phish 

      -> passwords.obtain 

  } 

  asset Password { 

    | obtain 

      -> host.authenticate 

  } 

} 

associations { 

  Network [networks] * <-- NetworkAccess --> * [hosts] Host 

  Host [host] 1 <-- Credentials --> * [passwords] Password 

  User [user] 1 <-- Credentials --> * [passwords] Password 

} 

 

The above example starts by defining the category of the assets. The category 

practically acts as a wrapper to the assets that will be used together and also specifies 

which assets can be connected with the associations. In the exampleLang example, 

there are four assets: i) Network, ii) Host, iii) User and iv) Password. Each asset is 

operated as an attack path or a subgraph and the existing vertex within can show 

transitions other assets. For example, the Network asset contains a vertex “access” 

which, when created, initiates a connection with the “connect” node of the Host asset. 

Each vertex is characterized by a logical operator; “|” for the the “OR” logical operation 

and “&” for the AND logical operation.  
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• The OR logical operator allows connections to that node when at least one 

precondition is created from another asset. 

• The AND logical operator allows connections to that node when all 

preconditions are met from either the same asset and/or when other assets are 

present. The present assets must lead to that specific node in the AND node, as 

well. Consider the example in Host -> & access. In that case, to create a node 

“access” with the AND logical operator, both nodes “connect” & 

“authenticate” must be present in the current asset. 

 

As it has already been mentioned, each association in the Associations part of the code 

represent allowed connections between nodes. To define an association, the Class 

(Name) of the association exist in title case and have arrows towards the entities to be 

connected. The first present association explains that a “NetworkAccess” type 

connection is allowed between the “Network” and the “Host” assets. To do so, the 

associations define the variable which is shown in the square brackets for each of the 

assets and this variable name must also be present in the asset description when a 

connection is initiated to an another asset (e.g. “hosts.Connect”). To define the 

connection between assets, MAL uses “*” and “1” character to express associations 

relationships. Allowed relationships are one-to-one, many-to-many and one-to-many. 

The aforementioned process must be done for all associations in order to be able to 

further develop the MAL graph. 
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Figure 6: Indicative MAL Attack Graph in Neo4J 

 

4.3.2 ViolenceLang 

The attack model aims to capture a higher level of abstraction comparing to the original 

capabilities of MAL. For that reason, it is preferred to restrict the number of nodes in 

each asset and restrict the dynamic nature of the MAL framework. Such an approach is 

followed due to the reason that nodes and particularly the edges in Attack Graphs can 

scale exponentially while the number of hosts get bigger. However, the information 

depicted by the attack graph is expected to satisfy the needs of the models as the states 

described in the graph are going to represent the states a root-cause vulnerability 

analysis. Assets contain more than one vertex, in cases where the same action is 

described differently. For example, to capture the existence of different privileges, we 

define under the Privileges asset, both the rootPrivilegeEscalation and the 

UserPrivilegeEscalation vertices.  

 

The following table shows the used assets used for building the core of the 

ViolenceLang: 

Table 6: violenceLang Assets Definition 

 

    asset Scan 

    { 
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        & attemptReconnaiscance 

          -> vulns.vulnerabilityExists 

    } 

 

    asset Vulnerability 

    { 

        | vulnerabilityExists 

          -> lexploits.localExploit, 

             nexploits.networkExploit, 

             aexploits.adjacentExploit 

    } 

 

    asset Network 

    { 

        & networkExploit 

          -> privesc.userPrivilegeEscalation, 

             privesc.rootPrivilegesEscalation      

    } 

 

    asset Adjacent 

    { 

        & adjacentExploit 

          -> privesc.rootPrivilegesEscalation 

    } 

 

    asset Local 

    { 

        & localExploit 

          -> privesc.rootPrivilegesEscalation, 

             insufs.insuficientAttack, 

             ddosattacks.denialOfServiceAttack 

    } 

 

    asset Denial 

    { 

        & denialOfServiceAttack 
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    } 

 

    asset Privileges 

    { 

        | rootPrivilegesEscalation 

          -> compromises.hostCompromise 

        | userPrivilegeEscalation 

          -> lexploits.localExploit 

    } 

 

    asset Host 

    { 

        & hostCompromise 

          -> accesses.hostIsAccessible 

    } 

 

    asset Unsuccesfull 

    { 

        | insuficientAttack 

          -> mulattacks.complexAttack 

    } 

 

    asset Chain 

    { 

        & complexAttack 

          -> privesc.rootPrivilegesEscalation 

    } 

 

    asset Access 

    { 

        | hostIsAccessible 

          -> aexploits.adjacentExploit, 

             scans.attemptReconnaiscance 

    } 

 

    asset Internet 
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    { 

        # connectedToTheInternet 

          -> nexploits.networkExploit 

    } 

 

The following table shows the associations used for building the core of the 

violenceLang: 

 

Table 7: violenceLang Association Rules 

associations { 

        Scan [scans] 1 <-- ReconInit --> * [vulns] Vulnerability 

            user info: "Reconnaissance -- Vulnerability Exists" 

 

        Vulnerability [vulns] * <-- AvL --> 1 [lexploits] Local 

            user info: "Vulnerability Exists -- Local Exploit" 

        Vulnerability [vulns] * <-- AvN --> 1 [nexploits] Network  

            user info: "Vulnerability Exists -- Network Exploit" 

        Vulnerability [vulns] * <-- AvA --> 1 [aexploits] Adjacent  

            user info: "Vulnerability Exists -- Adjacent Exploit" 

             

        Local [lexploits] * <-- AcHl --> 1 [insufs] Unsuccesfull  

            user info: "Local Exploit -- Insufficient Attack" 

        Local [lexploits] * <-- VaHL --> 1 [ddosattacks] Denial  

            user info: "Local Exploit -- Insufficient Attack" 

 

        Adjacent [aexploits] * <-- VcHA --> 1 [privesc] Privileges  

            user info: "Adjacent Network Exploit -- Root Privilege Escalation" 

 

        Network [nexploits] * <-- ViHN --> 1 [privesc] Privileges  

            user info: "Network Exploit -- USER PRIV/ ROOT PRIV" 

        Local [lexploits] * <-- ViHLN --> 1 [privesc] Privileges  

            user info: "Local Exploit -- Root Privilegae Escalation" 

 

        Privileges [privesc] * <-- Standard --> 1 [compromises] Host 

            user info: "Root Privilege Escalation -- Host Compromise" 
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        Unsuccesfull [insufs] * <-- Complex --> 1 [mulattacks] Chain 

            user info: "Insufficient Attack -- Complex Attack" 

 

        Host [compromises] 1 <-- Reachability --> * [accesses] Access 

            user info: "Host Compromise -- HostIsAccessible *** ON NEW HOST *****" 

 

        Access [accesses] 1 <-- DoReconOnReachableHost --> 1 [scans] Scan 

            user info: "HostIsAccessible -- Reconnaisscance" 

        Access [accesses] 1 <-- CanExploit--> * [aexploits] Adjacent 

            user info: "HostIsAccessible -- Adjacent Network Exploit" 

 

        Internet [globalconnections] 1 <-- HasInternet --> * [nexploits] Network  

            user info: "Connected to the internet -- Network Exploit" 

 

        Chain [scans] 1 <-- multistage --> * [privesc] Privileges 

            user info: "Connected to the internet -- Network Exploit" 

} 

 

The allowed associations between assets for the current graph environment can be seen 

in Figure 7. 

 

 

Figure 7: Association between assets in the violenceLang 
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4.2.3 Meta Attack Language Attack Graph Model Creation and Visualization 

The generation of the MAL attack graph is a multi-step process. The high-level 

architecture that describes this process is depicted in Figure 8. In detail, to generate the 

Attack Graph model, a “. mal” file must be created according to the language described 

in Section 4.2.2. The previous compiles the MAL specification into “.java” source code 

files. When the compilation of the specification is finished, a .mar file (org.mal-

lang.ViolenceLang-1.0.0.mar) is created in the local directory in which the command 

was executed.  

 

 

Figure 8: High-level overview of the MAL framework 

 

The generated file is then fed to the Graph Generator module which utilizes the mal-

toolbox6 python library given by the mal-lang GitHub repository7. From the mal-

toolbox module, the generator makes use of the Attack-Graph-MAL-Module which 

facilitates the generation and the analysis of attack graphs from MAL instance models. 

Specifically, the “generate_graph” function is used, which creates nodes for each attack 

step, given the instance module and the language specification. Node attributes such as 

children, parents and assets aid in referencing related nodes and associating attack steps 

with model objects. The mal-toolbox further allows the porting of the final graphical 

model to a neo4j8 representation. Moreover, the generator outputs the attack graph in 

JSON format. 

 

To create an attack graph based on the desirable infrastructure definitions, the generator 

uses a simple JSON file which defines the topology and the captured vulnerabilities for 

each host.  

 
6 https://github.com/mal-lang/mal-toolbox 
7 https://github.com/mal-lang 
8 https://neo4j.com 
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Table 8: Custom Example Input file for the MAL attack graph generator 

{ 

    "configOrigins":"custom_example", 

    "totalNumberOfHosts": N, 

    "hosts":[ 

        { 

            "id":1, 

            "hostname": "Host 1", 

            "vulnerabilities": [ 

            { 

                "cve":"CVE-XXXX-XXXXX", 

                "cvss":"CVSS:3.1/AV:X/AC:X/PR:X/UI:X/S:X/C:X/I:X/A:X" 

            }, 

            { 

                 . . .  

 

                Vuln 2, Vuln 3, …, Vuln N 

                 . . .  

 

            } 

            ], 

            "connections":[{ 

                "source": 1, 

                "destination": N 

            }, 

            { 

                "source": 1, 

                "destination": N-x 

            }] 

        }, 

           . . .  

          Host 2, Host 3, …, Host N 

           . . .  

     ]  

} 
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The nature and the impact of the exploitation is portrayed from the CVSS string9 of 

each CVE10. Meaning that in order to assess the exploitability of the vulnerabilities as 

a whole, a decomposition of the CVSS string is being conducted, breaking down the 

string into its constituent parts. The Base Score provides fundamental attributes of the 

vulnerability, such as exploitability and impact metrics. Metrics like Access Vector 

(AV), Access Complexity (AC), and Authentication (Au) gauge the ease of exploiting 

the vulnerability. A lower score indicates easier exploitation, while a higher score 

means more challenging exploitation conditions. The generator also takes into account 

the Impact metrics and specifically Confidentiality (C), Integrity (I), and Availability 

(A) to understand the severity of the vulnerability's consequences. Higher scores 

indicate more severe impacts on confidentiality, integrity, and availability, respectively. 

At the current development state, the MAL specification considers only vulnerability 

exploitations and not any other networks or host related attacks, such as credential 

brute-forcing, Man-in-the-Middle, DNS Spoofing, etc… 

 

A 3-host example attack graph is presented in Table 9 and follow the MAL 

Specification of Section 4.2.2. Each color indicates the different type of vertex 

according to the specification. 

 

Table 9: Custom 3-host Example Input for the MAL attack graph generator 

{ 

    "configOrigins":"custom_example", 

    "totalNumberOfHosts": 3, 

    "hosts":[ 

        { 

            "id":1, 

            "hostname": "Host 1", 

            "vulnerabilities": [ 

            { 

                "cve":"CVE-2024-21851", 

                "cvss":"CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H" 

            }, 

 
9 https://www.first.org/cvss/v3.1/specification-document 
10 https://cve.mitre.org 
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            { 

                "cve":"CVE-2024-23109", 

                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H" 

            }, 

            { 

                "cve":"CVE-2021-34527", 

                "cvss":"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 

            } 

            ], 

            "connections":[{ 

                "source" : 1, 

                "destination": 3 

            }, 

            { 

                "source" : 1, 

                "destination": 2 

            }] 

        }, 

       { 

            "id":2, 

            "hostname": "Host 2", 

            "vulnerabilities": [ 

            { 

                "cve":"CVE-2021-44228", 

                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H" 

            }, 

            { 

                "cve":"CVE-2021-27190", 

                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 

            }, 

            { 

                "cve":"CVE-2021-26084", 

                "cvss":"CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H" 

            } 

            ], 

            "connections":[ 
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            { 

                "source" : 2, 

                "destination": 3 

            } 

            ] 

        }, 

        { 

            "id":3, 

            "hostname": "Host 3", 

            "vulnerabilities": [ 

            { 

                "cve":"CVE-2024-21851", 

                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 

            }, 

            { 

                "cve":"CVE-2024-23109", 

                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:L/A:H" 

            }, 

            { 

                "cve":"CVE-2021-34527", 

                "cvss":"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 

            } 

            ], 

            "connections":[] 

        } 

 

    ]  

} 
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The following Figure presents the Attack Threat Correlation graph in Neo4j representation. This graph indicates all the allowed connection between 

created assets and the subgraph formation. 

 

 

Figure 9: Attack Threat Correlation Graph 
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The following figure presents the Vulnerability Attack graph in Neo4j representation. This graph showcases the fully exploitable test network. 

Each small neighborhood that is formed in the attack graph is a host and the non-dense nodes indicate accessibility paths from each subgraph to 

another. The red-colored node represents the attacker entry point, and the rest of the big nodes represent ending points in the directed graph. Ending 

point signal that the attacker can no longer progress with her/his attacks. On the side of the Figure, the labels show the different created assets for 

each distinct host in the topology.  

 

 

Figure 10: Example 5-Host Attack Graph 
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Chapter 5. Optimal Honeypot Allocation 

 

5.1 Game Definition 

This work considers the Attack Graph as defined in Chapter 4 for representing the 

attacker-defender game. In comparison to the original work in [17], this model takes 

into account multiple vulnerabilities that reside in many hosts, rather than assuming 

that each host in the target network has an exclusive vulnerability.  

 

In contrast, to the original paper, where each node is assigned a weight 𝒘𝒏, that 

indicates the importance of the host to the network administrator, this work assigns the 

weight 𝒘𝒏 to a subgraph that represent a network machine. The network machine 

subgraph can potentially have the sets of edges and nodes were defined in Chapter 4 – 

Section 4.2. The nodes of a Host with higher importance are considered valuable asset 

to the network that contains important features and critical information, thus 

constituting a highly attractive target for an attacker. The attacker is a player who 

intends to maximize his expected reward by carefully selecting a victim host among the 

set of all reachable hosts.  

 

A reachable considered a host which can logically by traversed and there exists a 

feasible attack path from the attacker’s starting point. The attacker starting point as seen 

in Figure 10, is the red-colored node. For a host to be reachable, there must exist a host 

compromise chain from each host to another, creating a logical traversal towards attack 

goals. In the game, there is the assumption that the attacker has insider information 

regarding the importance of each subgraph (host) similar to the original work. 

 

The defender has no full nor partial information about the attacker’s whereabouts, so as 

to think of a realistic threat model, where the attacker is a sophisticated actor. However, 
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the defender has access to the vulnerability attack graph mapping of his/her network 

and has complete knowledge on possible vulnerability-exploitation chains and paths 

that can happen in his system. 

 

5.2 The Zero-Sum Game   

For the game definition, this work follows the notation of the original work, slightly 

adjusted to match that of Chapter 3. 

 

The Honeypot allocation game is defined as a two-player zero-sums strategic game 

𝑍 =  (𝑁,𝐴, 𝑅), where: 

• 𝑁 = {1,2} is the set of players. Player 1 is the network defender and player 2 is 

the network attacker. 

• 𝐴 =  𝐴1 × 𝐴2 is action space of the game, where 𝐴1 is the action space of the 

network defender and 𝐴2  is the action space of the network attacker. The action 

profile is denoted by the tuple (𝑎1, 𝑎2), being the joint action taken by the two 

players and determines their expected utility. 

• 𝑅 = {𝑅1, 𝑅2}, where 𝑅1  +  𝑅2 = 0 𝑎𝑛𝑑 𝑅:𝐴 →  ℝ
2 is the reward function for 

both players. 

 

5.2.1 The Defender 

The defender deploys a group of 𝑘 honeypots along the attacker path to obstruct the 

attacker from reaching his/her target goals and to manipulate his/her actions. These 

honeypots represent with false vulnerabilities. When the attacker interacts with one of 

the honeypots, the defender gains knowledge of their current location and may gather 

valuable insights. This thesis’s focus lies on maximizing the defender's benefit derived 

from tracking the attacker in each instance of the game over the attack path. 

  

Assuming the attacker initiates their attack from a captured node, the defender is faced 

with the option to deploy a single honeypot and thus must determine the optimal edge 

on which to place it. Given the uncertainty surrounding the attacker's precise location 

over the graph, the defender must also consider the option of taking no action to avoid 

incurring allocation costs.  
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5.2.2 The Attacker 

The attacker tries to determine which host to target for his attack. The original model 

considers node instead, but the proposed change in the thesis consider that an attack 

plan will be based on multiple vulnerabilities. An Attacker must choose whether to 

exploit a vulnerability among one of all available “access available” edges. However, 

in order to not be detected from defensive security controls, the attacker has an expected 

cost which is associated with attempting each attack. This attack cost reflects the risk 

of detection with the attack action. As a result, the attacker may opt to avoid taking this 

cost, meaning that backing-off is also a viable choice.  

 

5.3 Payoff Matrix Formulation 

The network administrator is assumed to have a fixed cost for placing a honeypot each 

time over an “access available” edge in the attack graph. The honeypot placement host 

is denoted as 𝑷𝑪. The expected cost of initiating a stealth attack by the attacker is 

denoted as 𝑨𝑪.  

 

If the defender has placed honeypot on the same edge the attacker exploits, the defender 

gains a capturing reward. Otherwise, if the attacker exploits the other safe edge, the 

attacker gains a successful attack reward. The defender capture reward is denoted as 

𝑪𝒂𝒑 and the attacker’s reward when conducting a successful attack is denoted as 𝑬𝒔𝒄.  

 

As in the original work [17], the players’ rewards are weighted by the importance fixed 

value 𝑤𝑛 and: 

 

∑ 𝑤𝑛
𝑛 ∈ 𝑁

=  1 

 

, where 𝑁 is the number of hosts considered in the game. The reward matrix is defined 

as follows: 
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𝑅𝑎
𝑛(𝑎1, 𝑎2)  =  

{
 

 
−𝑃𝐶 + 𝐴𝐶 + 𝐶𝑎𝑝 ∙ 𝑤𝑛  ; 𝛼1 = 𝑒𝛼,𝑣, 𝛼2 = 𝜐     ∀𝜐 ∈ 𝑉 

−𝑃𝐶 + 𝐴𝐶 − 𝐸𝑠𝑐 ∙ 𝑤𝑛  ; 𝛼1 = 𝑒𝛼,𝑣, 𝛼2 = 𝑢     ∀ 𝑢 ≠ 𝜐 ∈ 𝑉

−𝑃𝐶   ;
0  ;

𝛼1 = 𝑒𝛼,𝑣, 𝛼2 = 0     ∀ 𝜐 ∈ 𝑉

𝛼1 = 0,𝛼2 = 0 }
 

 
 

 

, where 𝛼1 = 0 and 𝛼2  = 0 indicate that the defender is not taking any action and the 

attacker decided to back-off respectively and 𝑢, 𝜐 ∈ 𝑉 are nodes forming an edge in the 

subgraph of each network.   

 

Due to the game being a zero-sum game, the attacker’s payoff matrix is: 

 

𝑅2  =  −𝑅1 − 1 

 

The metric values of the reward matrix are defined as follows (the values are 

normalized to be in the range of [0, 10]: 

• 𝐴𝑐  =  
∑ 𝐴𝑉×𝐴𝐶×𝑃𝑅×𝑈𝐼 𝑣 ∈ 𝑉𝑁

 × 21.10

𝑉𝑁
  

 

• 𝐸𝑠𝑐  =  
∑ 1−[(1−𝐶)×(1−𝐼)×(1−𝐴)]×10.988 𝑣 ∈ 𝑉𝑁

𝑉𝑁
 

 

 

• 𝑃𝑐 =   [1, 10] , defined by the defender 

 

• 𝐶𝑎𝑝 =  
∑ 1−[(1−𝑅𝐶)×(1−𝑅𝐼)×(1−𝑅𝐴)]× 𝜈 𝑣 ∈ 𝑉𝑁

𝑉𝑁
  

 

, where 𝑉𝑁  ∈  𝑉 is the set of vulnerabilities on Host 𝑛 and 𝜈 ∈ ℝ is a normalization 

factor based on the defender’s choice of quantitative value allocation for Confidentiality 

Requirements, Integrity Requirements and Availability Requirements on target system. 

 

 5.4 A Revised Simplex Method Solver 

To solve the zero-sum game, the method mentioned in Chapter 3 is implemented into 

code and to efficiently solve the minmax: the Revised Simplex solver for Linear 

Programming from the scipy.optimize Python package [24][25]. Below the 

implemented function is expressed in pseudo-code. The input is the payoff matrix as 

created from Section 3.7, regardless of the dimensionality feature. The solver used has 
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no restrictions to the dimension of the array, but it is logical to assume that due to the 

inherent complexity of the linear solver, while the size of columns and rows is getting 

bigger, the algorithm is getting considerably slow. 

 

Table 10: Pseudocode for the Linear Solver process 

Step Action 

  

Input: 

• Payoff matrix 

 

Output: 

• Optimal mixed strategy for Player 1 

• Optimal mixed strategy for Player 2 

• Value of the zero-sum game 

 

1 Determine the number of strategies for each player by getting the number of 

rows in the payoff matrix 

2 Define the objective function `c` to minimize the negative of the artificial 

variable (-v) appended to an array of zeros 

3 Create inequality constraints `A_ub`: 

3.1 For each strategy of Player 2, add constraint: 

        𝒔𝒖𝒎(𝑷𝒍𝒂𝒚𝒆𝒓 𝟏 𝒔𝒕𝒓𝒂𝒕𝒆𝒈𝒚 ∗  𝒑𝒂𝒚𝒐𝒇𝒇) −  𝒗 ≤  𝟎 

3.2 Define A_ub by concatenating the negative of the payoff matrix and 

an additional column of ones representing -v 

4 Define the right-hand side of the inequality constraints ̀ b_ub` as a zero vector 

5 Define the equality constraints `A_eq`: 

5.1 Ensure that the sum of probabilities is equal to 1 

5.2 Create `A_eq` by appending a row of ones so as to represent the sum 

of probabilities and a zero-representing v 

6 Define the right-hand side of the equality constraint `b_eq` as in Step 1 

7 Define bounds for each variable 

7.1 Each strategy probability is [0,1] 

7.2 v is unbounded 
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8 Solve the linear program using the Revised Simplex solver of scipy.optimize 

9 Extract optimal strategies for Player 1 from the result 

10 Compute value of the game as the negative of the last variable in the result 

(Zero-sum) 

11 Solve the dual problem to find the optimal strategy for Player 2 

11.1 Negate the coefficients and transpose the payoff matrix 

11.2 Use the Revised Simplex solver as in Step 8 

12 Exrtact optimal strategies for player 2 from the result 

13 Return the optimal mixed strategies for both players and the value of the game 

 

The linear solver linprog takes as arguments the following variables (the names of the 

of the class constructor are written as specified from the documentation of the library 

[25]: 

• c: 1-D Array representing the co-efficient of the linear objective function that is 

going to be minimized. 

• A_ub: 2-D Array representing the inequality constraint matrix 

• b_ub: 1-D Array representing the constraint vector 

• A_eq: 2-D Array representing the equaility constraint matrix 

• b_eq: 1-D Array representing the constraint vector 

• bounds: A Sequence of (min, max) tuples for each element, defining the 

minimum and the maximum values of that decision variable. 

• Revised Simplex (method):  A string that is used for selecting the algorithm to 

solve the standard form problem. 

 

5.5 Inherent Complexity 

The complexity of solving the linear programs for both players increases linearly with 

the number of strategies they can choose at an individual node, which typically remains 

small compared to the overall network size. This is mostly achieved, due to the 

modelling and the rules defined in the attack graph model. This allows for efficient 

computation of optimal defense and attack strategies, ensuring Nash equilibrium. 

Nevertheless, it must also be noted that when there is a significant number of 

vulnerabilities residing on host, the complexity is not affected due to the formulation 
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of global variables that capture all the exploitations. When the defender simultaneously 

allocates multiple honeypots to cover a set of edges, denoted by 'l', the complexity of 

the linear program for such scenarios grows exponentially with 'l'.  
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Chapter 6: An Example Demonstration 

 

In this chapter, an example attack graph is created, in which the methodology presented 

in Chapter 5 is tested out. The attack graph assets can be seen in the Appendix of the 

Thesis. The attack graph defined is based on the 3-host example attack graph of Chapter 

4 and is as lightly changed version of it with changes made by hand in the previous 

.json file. The topology is as follows: 

{ 
    "configOrigins":"custom_example", 
    "totalNumberOfHosts": 5, 
    "hosts":[ 
        { 
            "id":1, 
            "hostname": "Host 1", 
            "vulnerabilities": [ 
            { 
                "cve":"CVE-2024-21851", 
                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2024-23109", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2021-34527", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            } 
            ], 
            "connections":[{ 
                "source" : 1, 
                "destination": 3 
            }, 
            { 
                "source" : 1, 
                "destination": 2 
            }] 
        }, 
       { 
            "id":2, 
            "hostname": "Host 2", 
            "vulnerabilities": [ 
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            { 
                "cve":"CVE-2021-44228", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2021-27190", 
                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2021-26084", 
                "cvss":"CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:C/C:H/I:H/A:H" 
            } 
            ], 
            "connections":[ 
            { 
                "source" : 2, 
                "destination": 3 
            } 
            ] 
        }, 
        { 
            "id":3, 
            "hostname": "Host 3", 
            "vulnerabilities": [ 
            { 
                "cve":"CVE-2024-21851", 
                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:L/A:H" 
            }, 
            { 
                "cve":"CVE-2024-23109", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2021-34527", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            } 
            ], 
            "connections":[ 
            { 
                "source" : 3, 
                "destination" : 4 
            } 
            ] 
        }, 
        { 
            "id":4, 
            "hostname": "Host 4", 
            "vulnerabilities": [ 
            { 
                "cve":"CVE-2024-21851", 
                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2024-23109", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 



59 

 

                "cve":"CVE-2021-34527", 
                "cvss":"CVSS:3.1/AV:N/AC:H/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            } 
            ], 
            "connections":[ 
                { 
                    "source" : 4, 
                    "destination" : 1 
                }, 
                { 
                    "source" : 4, 
                    "destination" : 5 
                } 
            ] 
        }, 
        { 
            "id":5, 
            "hostname": "Host 5", 
            "vulnerabilities": [ 
            { 
                "cve":"CVE-2024-21851", 
                "cvss":"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2024-23109", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H" 
            }, 
            { 
                "cve":"CVE-2021-34527", 
                "cvss":"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H" 
            } 
            ], 
            "connections":[ 
 
            ] 
        } 
 
    ]  
} 
 

 

As it may noticed, some vulnerabilities appear more than one time, but this has been 

implemented this way for practical reasons. However, the corresponding CVSS string 

of each vulnerability has minor adjustments to capture the dynamic nature of the attack 

graph and showcase more attack examples. Indicatively, exploits in Host 1 can be 

exploited both on network level, local level and adjacent level. According to the 

integrity violation to the system exploits can lead to user or root privilege rights 

accordingly. However, in Host 3 an exploit can lead to user privileges and the attacker 

can exploit his way via other local exploit in order to get root privileges on the target 

system. This is practically represented by node 27 which represents a network 
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exploitation that leads to user privileges. Upon having user privileges in Host 3, the 

attacker is able to exploit the target system with vulnerability on node 23 which does a 

high integrity violation to the system, thus leading to root rights. In this example, the 

attacker’s goal is defined as the compromise of Host 5. 

 

The attack graph model is shown below in 2 parts due to the lengthy representation of 

the graph-viz library. The red nodes indicate vulnerabilities while the blue nodes 

indicate privileges acquired. 
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Figure 11: 5-Host Topology in Graph-viz Representation 
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In the demonstration in this example, the required modified confidentiality, modified 

integrity, and modified availability for the defender are defined as follows: 

• 𝑵𝒐𝒏𝒆 =  𝟎. 𝟐𝟎 

• 𝑳𝒐𝒘 =  𝟎. 𝟓𝟎 

• 𝑯𝒊𝒈𝒉 =  𝟎. 𝟖𝟎 

 

The placement cost for the attacker is statically set to 𝑷𝒄  = 𝟓. 

 

These values, as mentioned in Chapter 4, are a subject that can be changed, considering 

how the defender values the metrics and the systems itself. For example, in a scenario 

in which we consider the modified Confidentiality to matter the most, the values for 

High and Low can change to be greater than the originals or to those defined in this 

example. 

 

Following, the dimension of the matrices of the zero-sum game that is played in this 

example, are equivalent to the Hosts connections in the attack graph, plus 1 for the 

action of doing no actions. For example, upon compromising Host 1, the attacker can 

choose between Host 2 and Host 5. In this simple scenario, the matrix is as follows: 

 

Importance of Host 2 & Host 5 is 𝒘𝟐  = 𝟎. 𝟒 𝒂𝒏𝒅 𝒘𝟓 = 𝟎. 𝟔 , respectively.  

 

D \ A Attack H1 -> H2 Attack H1 -> H5 Do Nothing 

Defend H2 7.6076 −4.207 −5.00 

Defend H5 −1.6115 6.0818 −5.00 

Do Nothing 3.3884 2.6226 0 

 

The logs from the python application are as follows: 

Honeypot placement cost: 4 
{'AV': 0.85, 'AC': 0.77, 'PR': 0.85, 'UI': 0.85, 'C': 0.56, 'I': 0.56, 'A': 0.56, 'RC': 0.5, 'RI': 0.5, 'RA': 0.5} 
{'AV': 0.55, 'AC': 0.77, 'PR': 0.62, 'UI': 0.85, 'C': 0.56, 'I': 0.56, 'A': 0.56, 'RC': 0.5, 'RI': 0.5, 'RA': 0.5} 
{'AV': 0.55, 'AC': 0.77, 'PR': 0.85, 'UI': 0.85, 'C': 0.56, 'I': 0.56, 'A': 0.56, 'RC': 0.8, 'RI': 0.2, 'RA': 0.5} 
 
AC =  7.047677816666667 
esc =  9.14816 
cap =  8.9 
 
5.607677816666667 3.3884138166666666 -1.6115861833333334 
 
 
{'AV': 0.55, 'AC': 0.77, 'PR': 0.62, 'UI': 0.85, 'C': 0.56, 'I': 0.56, 'A': 0.56, 'RC': 0.2, 'RI': 0.2, 'RA': 0.2} 
{'AV': 0.85, 'AC': 0.77, 'PR': 0.85, 'UI': 0.85, 'C': 0.56, 'I': 0.56, 'A': 0.56, 'RC': 0.8, 'RI': 0.8, 'RA': 0.8} 
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{'AV': 0.85, 'AC': 0.44, 'PR': 0.62, 'UI': 0.85, 'C': 0.56, 'I': 0.56, 'A': 0.56, 'RC': 0.8, 'RI': 0.2, 'RA': 0.5} 
 
AC =  6.281883208333333 
esc =  9.14816 
cap =  8.0 
 
6.081883208333334 -4.207012791666667 0.7929872083333329 
 
 
 
Value of the game: -2.024222042352073 
Optimal mixed strategy for player A: [0.5274171 0.4725829 0.       ] 
 

 

The provided mixed strategy for the Defender is: 

 

 [𝟎. 𝟓𝟐𝟕𝟒𝟏𝟕𝟏      , 𝟎. 𝟒𝟕𝟐𝟓𝟖𝟐𝟗,          𝟎] 

 

The value of each element represents the probability with which the defender should 

choose Defending Host 2, Defending Host 5 or Do Nothing.  

 

Precisely: 

• For the first action: Defender should choose it with a probability of 

approximately 𝟓𝟐. 𝟕𝟒% 

• For the second action: Defender should choose it with a probability of 

approximately 𝟒𝟕. 𝟐𝟔% 

• For the third action: Defender should choose it with a probability of 𝟎% 

 

With the probabilities summing up to 1, the mixed strategy from the solver is a valid 

mixed strategy. 

 

The value of the game being equal to -2.024222 for the Defender is generated as the 

multiplication of the mixed strategy with the payoff matrix of the game. In the context 

of zero-sum games, where defender’s gain is directly offset by the attacker's loss, the 

sign of the value of the game doesn't inherently indicate whether it's good or bad 

decision rather than reflecting the perspective of the player for whom the value is 

calculated. That means that in our case, where the Defender has a negative value, on 

average, the defender can expect to lose that amount when playing the game optimally 
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which in our case is directly affected from the high placement cost (𝑃𝑐 = 5) allocated 

in the simulation parameters.  

 

In zero-sum games, the overall value is neither increased nor decreased; it simply 

transfers between the players. Therefore, the sign of the value of the game is relative to 

the perspective of the player being analyzed. 
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Conclusion 

 

This thesis studied the dynamic landscape of cyber threats and game theoretic 

approaches for strengthening cybersecurity defenses from the scope of cyber deception, 

focusing particularly on the strategic deployment of honeypots as a pivotal defensive 

measure. Leveraging the concepts of honeypots and that of game theory, this work took 

an already existing framework for optimizing honeypot deployment and enhanced it in 

many ways aiming to establish a more concrete and detailed model and define solid 

cybersecurity quantitative metrics that validate the previous work.  

 

A detailed introduction to honeypots and game theory essentials was given in order to 

cover the require knowledge for properly understanding the studied game and to also 

answer questions like “Why is this framework useful?”and “How does it work?”.  

 

The foundation of this work lies in the cybersecurity modelling described in Chapter 4. 

The original work presented a simple attack graph model that represents a set of 

interconnect hosts. However, an attack graph according to the bibliography is not 

represented as a topological graph. Nevertheless, this work enriched the idea of using 

attack graphs and created a custom implementation of an attack graph called MAL 

attack graph. The created attack graph was based on the MAL DSL, which incorporates 

a set of specific rules for assets and associations, so as to develop dynamic models with 

strict graph forms that capture specific attributes. This work contributed to the previous 

with the development of violenceLang, a MAL which encapsulates the notion of exploit 

dependency graphs on MAL defined assets. MAL associations consider the CVSS 

string in order to derive exploit related information for generating the final attack graph 

model. In this case, we don’t not only develop attack graphs that include more than one 

vulnerability in each host but further allow the representation of corresponding 

interdependencies.  
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The second contribution of this work was to automate all the previous and apply the 

game from https://www.microsoft.com/en-us/msrc/security-update-severity-rating-

system[17]. The initial framework did not provide the formulas for calculating the 

quantitative values of the defender-attacker reward matrix. Not only, this thesis 

provides formulas for playing the game with a more realistic approach but also gives a 

degree of freedom to the defender to parametrize his/her preferences and requirements 

in the proposed framework. In addition, formulas consider possible discovered 

vulnerability and exploitation interdependencies, with respect to the modelling 

mentioned in Chapter 4.  To address the coding of the simulation, a detailed pseudocode 

is provided that explains how the theory of Chapter 2, can be easily computed with 

Python for any 𝑛 × 𝑛 matrix, allowed by given complexity restrictions. An example of 

the optimal honeypot allocation game is played for a decision-making instance on a 5-

host custom MAL attack graph. Furthermore, the simulation is also used for explaining 

how each of the parameters of the defender affect the mixed strategy outcome of the 

game. 

 

While this work, does not provide a particularly sophisticated framework, it serves as 

the basis for establishing a feasible formal modeling, showcasing an indicative example 

which can be enriched in many ways. Having finished this thesis, the next steps include 

to turn the zero-sum game into a Bayesian repeated game and capture the uncertainty 

of players and the imperfect information about both the defender and the attacker 

preferences. This uncertainty will be captured using probability distributions over 

possible types or strategies for both players and aims to assume that the game is played 

over multiple rounds. The already defined attack graph language can be easily adjusted 

to transform the graph into a Markov Chain, so as tto study how each player’s belief is 

affected by previous actions. 
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Appendix 

 

Assets of the attack graph in JSON format as created from the attack graphs 

engine: 

"assets": { 
      "0": { 
        "name": "Has Access to Host 1", 
        "metaconcept": "Access", 
        "eid": "0", 
        "defenses": {} 
      }, 
      "1": { 
        "name": "Reconnaisance Host 1", 
        "metaconcept": "Scan", 
        "eid": "1", 
        "defenses": {} 
      }, 
      "2": { 
        "name": "CVE-2024-21851", 
        "metaconcept": "Vulnerability", 
        "eid": "2", 
        "defenses": {} 
      }, 
      "3": { 
        "name": "Local Exploit", 
        "metaconcept": "Local", 
        "eid": "3", 
        "defenses": {} 
      }, 
      "4": { 
        "name": "Root on Host:Host 1", 
        "metaconcept": "Privileges", 
        "eid": "4", 
        "defenses": {} 
      }, 
      "5": { 
        "name": "Host Compromise :Host 1", 
        "metaconcept": "Host", 
        "eid": "5", 
        "defenses": {} 
      }, 
      "6": { 
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        "name": "CVE-2024-23109", 
        "metaconcept": "Vulnerability", 
        "eid": "6", 
        "defenses": {} 
      }, 
      "7": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "7", 
        "defenses": {} 
      }, 
      "8": { 
        "name": "User Privilege Escalation", 
        "metaconcept": "Privileges", 
        "eid": "8", 
        "defenses": {} 
      }, 
      "9": { 
        "name": "CVE-2021-34527", 
        "metaconcept": "Vulnerability", 
        "eid": "9", 
        "defenses": {} 
      }, 
      "10": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "10", 
        "defenses": {} 
      }, 
      "11": { 
        "name": "Has Access to Host 2", 
        "metaconcept": "Access", 
        "eid": "11", 
        "defenses": {} 
      }, 
      "12": { 
        "name": "Reconnaisance Host 2", 
        "metaconcept": "Scan", 
        "eid": "12", 
        "defenses": {} 
      }, 
      "13": { 
        "name": "CVE-2021-44228", 
        "metaconcept": "Vulnerability", 
        "eid": "13", 
        "defenses": {} 
      }, 
      "14": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "14", 
        "defenses": {} 
      }, 
      "15": { 
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        "name": "Root on Host:Host 2", 
        "metaconcept": "Privileges", 
        "eid": "15", 
        "defenses": {} 
      }, 
      "16": { 
        "name": "Host Compromise :Host 2", 
        "metaconcept": "Host", 
        "eid": "16", 
        "defenses": {} 
      }, 
      "17": { 
        "name": "User Privilege Escalation", 
        "metaconcept": "Privileges", 
        "eid": "17", 
        "defenses": {} 
      }, 
      "18": { 
        "name": "CVE-2021-27190", 
        "metaconcept": "Vulnerability", 
        "eid": "18", 
        "defenses": {} 
      }, 
      "19": { 
        "name": "Local Exploit", 
        "metaconcept": "Local", 
        "eid": "19", 
        "defenses": {} 
      }, 
      "20": { 
        "name": "CVE-2021-26084", 
        "metaconcept": "Vulnerability", 
        "eid": "20", 
        "defenses": {} 
      }, 
      "21": { 
        "name": "Has Access to Host 3", 
        "metaconcept": "Access", 
        "eid": "21", 
        "defenses": {} 
      }, 
      "22": { 
        "name": "Reconnaisance Host 3", 
        "metaconcept": "Scan", 
        "eid": "22", 
        "defenses": {} 
      }, 
      "23": { 
        "name": "CVE-2024-21851", 
        "metaconcept": "Vulnerability", 
        "eid": "23", 
        "defenses": {} 
      }, 
      "24": { 
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        "name": "Local Exploit", 
        "metaconcept": "Local", 
        "eid": "24", 
        "defenses": {} 
      }, 
      "25": { 
        "name": "Root on Host:Host 3", 
        "metaconcept": "Privileges", 
        "eid": "25", 
        "defenses": {} 
      }, 
      "26": { 
        "name": "Host Compromise :Host 3", 
        "metaconcept": "Host", 
        "eid": "26", 
        "defenses": {} 
      }, 
      "27": { 
        "name": "CVE-2024-23109", 
        "metaconcept": "Vulnerability", 
        "eid": "27", 
        "defenses": {} 
      }, 
      "28": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "28", 
        "defenses": {} 
      }, 
      "29": { 
        "name": "User Privilege Escalation", 
        "metaconcept": "Privileges", 
        "eid": "29", 
        "defenses": {} 
      }, 
      "30": { 
        "name": "CVE-2021-34527", 
        "metaconcept": "Vulnerability", 
        "eid": "30", 
        "defenses": {} 
      }, 
      "31": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "31", 
        "defenses": {} 
      }, 
      "32": { 
        "name": "Has Access to Host 4", 
        "metaconcept": "Access", 
        "eid": "32", 
        "defenses": {} 
      }, 
      "33": { 
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        "name": "Reconnaisance Host 4", 
        "metaconcept": "Scan", 
        "eid": "33", 
        "defenses": {} 
      }, 
      "34": { 
        "name": "CVE-2024-21851", 
        "metaconcept": "Vulnerability", 
        "eid": "34", 
        "defenses": {} 
      }, 
      "35": { 
        "name": "Local Exploit", 
        "metaconcept": "Local", 
        "eid": "35", 
        "defenses": {} 
      }, 
      "36": { 
        "name": "Root on Host:Host 4", 
        "metaconcept": "Privileges", 
        "eid": "36", 
        "defenses": {} 
      }, 
      "37": { 
        "name": "Host Compromise :Host 4", 
        "metaconcept": "Host", 
        "eid": "37", 
        "defenses": {} 
      }, 
      "38": { 
        "name": "CVE-2024-23109", 
        "metaconcept": "Vulnerability", 
        "eid": "38", 
        "defenses": {} 
      }, 
      "39": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "39", 
        "defenses": {} 
      }, 
      "40": { 
        "name": "User Privilege Escalation", 
        "metaconcept": "Privileges", 
        "eid": "40", 
        "defenses": {} 
      }, 
      "41": { 
        "name": "CVE-2021-34527", 
        "metaconcept": "Vulnerability", 
        "eid": "41", 
        "defenses": {} 
      }, 
      "42": { 
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        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "42", 
        "defenses": {} 
      }, 
      "43": { 
        "name": "Has Access to Host 5", 
        "metaconcept": "Access", 
        "eid": "43", 
        "defenses": {} 
      }, 
      "44": { 
        "name": "Reconnaisance Host 5", 
        "metaconcept": "Scan", 
        "eid": "44", 
        "defenses": {} 
      }, 
      "45": { 
        "name": "CVE-2024-21851", 
        "metaconcept": "Vulnerability", 
        "eid": "45", 
        "defenses": {} 
      }, 
      "46": { 
        "name": "Local Exploit", 
        "metaconcept": "Local", 
        "eid": "46", 
        "defenses": {} 
      }, 
      "47": { 
        "name": "Root on Host:Host 5", 
        "metaconcept": "Privileges", 
        "eid": "47", 
        "defenses": {} 
      }, 
      "48": { 
        "name": "Host Compromise :Host 5", 
        "metaconcept": "Host", 
        "eid": "48", 
        "defenses": {} 
      }, 
      "49": { 
        "name": "CVE-2024-23109", 
        "metaconcept": "Vulnerability", 
        "eid": "49", 
        "defenses": {} 
      }, 
      "50": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "50", 
        "defenses": {} 
      }, 
      "51": { 
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        "name": "User Privilege Escalation", 
        "metaconcept": "Privileges", 
        "eid": "51", 
        "defenses": {} 
      }, 
      "52": { 
        "name": "CVE-2021-34527", 
        "metaconcept": "Vulnerability", 
        "eid": "52", 
        "defenses": {} 
      }, 
      "53": { 
        "name": "Network Exploit", 
        "metaconcept": "Network", 
        "eid": "53", 
        "defenses": {} 
      } 
    } 
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