
University of Piraeus
School of Information and Communication Technologies

Department of Digital Systems

Undergraduate Program of Study/Postgraduate Program of Studies
MSc Digital Systems Security

Master Thesis

Enhancing Application Security through DevSecOps: A Comprehensive
Study on Vulnerability Detection and Management in Continuous
Integration and Continuous Delivery Pipelines

Supervisor Professor: Stefanos Gritzalis

Name-Surname E-mail Student ID.

Pagona Vourou peggy.vourou@ssl-unipi.gr mte2102

Piraeus
27/10/2023

mailto:peggy.vourou@ssl-unipi.gr

Περίληψη

Αυτή η διπλωματική εξετάζει τον συναντισμό των μεθόδων ανάπτυξης λογισμικού
και της κυβερνοασφάλειας στον τομέα του DevSecOps, ένα παράδειγμα που δίνει
προτεραιότητα στην ενσωμάτωση μέτρων ασφαλείας σε όλον τον Κύκλο Ζωής
Ανάπτυξης Λογισμικού (SDLC). Αυτό το έγγραφο εξετάζει τις δυσκολίες που
σχετίζονται με την εφαρμογή του DevSecOps, συμπεριλαμβανομένης της ανίχνευσης
και της επίλυσης των ευπαθειών, καθώς και της συνεχούς παρακολούθησης και της
αντιμετώπισης των απειλών ασφαλείας εντός των σύγχρονων αγωγών ανάπτυξης
λογισμικού.

Η αρχή του ταξιδιού περιλαμβάνει μια πρώτη εξερεύνηση του Κύκλου Ζωής
Ανάπτυξης Λογισμικού (SDLC) και μια σφαιρική ανάλυση των βασικών εννοιών που
αναφέρονται στο Agile Manifesto, τα οποία αποτελούν τη βάση για τις σύγχρονες
πρακτικές ανάπτυξης λογισμικού.

Αυτή η διατριβή επικεντρώνεται στο Application Security Pipeline για την Συνεχή
Ενσωμάτωση/Συνεχή Παράδοση (CI/CD), εξετάζοντας τον συναντισμό της
Πληροφοριακής Ασφάλειας και της Ασφάλειας Εφαρμογής. Υπογραμμίζεται η
σημαντικότητα της ασφάλειας στο πλαίσιο των διαδικασιών DevOps καθώς και οι
δυσκολίες που αντιμετωπίζουν οι επιχειρήσεις κατά την εφαρμογή των αρχών του
DevSecOps.

Επιπρόσθετα, προσφέρει μια λεπτομερή ανάλυση των ευπαθειών, επικεντρώνοντας
ειδικά στις ευπαθειές της εφαρμογής, τις ευπαθειές των εικόνων Docker και τις
ευπαθειές μέσα στο Pipeline CI/CD, εξετάζοντας διάφορες προσεγγίσεις ανίχνευσης
ευπαθειών κατά μήκος του Κύκλου Ζωής Ανάπτυξης Λογισμικού (SDLC),
συμπεριλαμβανομένης της Στατικής Ανάλυσης Κώδικα, της Δυναμικής Ανάλυσης
Κώδικα, της Ανάλυσης Σύνθεσης Λογισμικού και της Ανάλυσης Ασφάλειας
Εφαρμογής.

Η κύρια συνεισφορά αυτής της μελέτης βρίσκεται στην πρόταση και αξιολόγηση ενός
παραδείγματος Συνεχούς Διαχείρισης Ευπαθειών εντός του πλαισίου του DevSecOps.
Το έγγραφο αναλύει τις πρακτικές της Συνεχούς Αξιολόγησης, Αντιμετώπισης και
Αναφοράς Ευπαθειών, υπογραμμίζοντας τη σημασία της υιοθέτησης μιας
προακτινόμενης και επαναληπτικής μεθοδολογίας για τη διαχείριση των ευπαθειών.

Για να επικυρώσει το προτεινόμενο πλαίσιο, παρουσιάζεται μια πρακτική μελέτη
περίπτωσης χρησιμοποιώντας την εφαρμογή OWASP WebGoat. Αναλύεται η
αποτελεσματικότητα διαφόρων εργαλείων ασφαλείας, συμπεριλαμβανομένων της
SAST με το SNYK, της SAST με το SonarQube, της Ανάλυσης Ασφαλείας των
Εικόνων Docker με το Trivy και το Grype, καθώς και της DAST με το OWASP-Zap
και το Arachni. Ο στόχος είναι να αξιολογηθεί η αποτελεσματικότητα αυτών των
εργαλείων και να παρασχεθούν σημαντικές προτάσεις.

Ο στόχος αυτής της διπλωματικής είναι να δημιουργήσει μια σύνδεση μεταξύ της
ανάπτυξης λογισμικού και της κυβερνοασφάλειας, παρέχοντας χρήσιμες γνώσεις και
πρακτικές συμβουλές σε επιχειρήσεις που επιδιώκουν να ενισχύσουν τα μέτρα

1

ασφαλείας τους στο συνεχώς μεταβαλλόμενο πεδίο της σύγχρονης ανάπτυξης
λογισμικού.

2

Abstract

This thesis examines the intersection of software development methods and
cybersecurity in the domain of DevSecOps, a paradigm that prioritizes the
incorporation of security measures across the entire Software Development Lifecycle
(SDLC). This paper explores the difficulties associated with implementing
DevSecOps, including the detection and resolution of vulnerabilities, as well as the
ongoing monitoring and mitigation of security threats within contemporary software
development pipelines.

The start of the journey includes a first exploration of the Software Development
Lifecycle (SDLC) and a comprehensive analysis of the fundamental concepts outlined
in the Agile Manifesto, which serve as the foundation for contemporary software
development practices. This paper delves deeper into the examination of Continuous
Integration and Continuous Delivery (CI/CD) processes, as well as the emergence of
DevOps as a disruptive influence inside the industry.

This paper focuses on the Application Security Pipeline for Continuous
Integration/Continuous Deployment (CI/CD), examining the intersection of
Information Security and Application Security. This statement highlights the
significant importance of security in the context of DevOps processes, as well as the
difficulties that businesses have while implementing DevSecOps concepts. Also, it
provides a thorough examination of vulnerabilities, specifically emphasizing
application vulnerabilities, Docker image vulnerabilities, and vulnerabilities inside the
CI/CD pipeline, and examines different ways for detecting vulnerabilities across the
Software Development Life Cycle (SDLC). These approaches include Static Code
Analysis, Dynamic Code Analysis, Software Composition Analysis, and Container
Security Analysis.

The primary contribution of this study is to the proposal and assessment of a
Continuous Vulnerability Management paradigm within the context of DevSecOps.
The document delineates the practices of Continuous Vulnerability Evaluation,
Treatment, and Reporting, underscoring the significance of adopting a proactive and
iterative methodology towards vulnerability management.

In order to authenticate the suggested framework, a practical case study is shown
utilizing the OWASP WebGoat application. This study does a comparative
examination of several security technologies utilized in a DevSecOps pipeline. The
tools examined include SAST with SNYK, SAST with SonarQube, Container
Security with Trivy and Grype, as well as DAST with OWASP-Zap and Arachni. The
objective is to evaluate the efficiency of these tools and get valuable insights.

The objective of this thesis is to establish a connection between software development
and cybersecurity, providing useful insights and practical advice for businesses
seeking to enhance their security measures in the ever-changing realm of
contemporary software development.

3

Table of Contents

Introduction 2

Thesis Topic 2

Software Development Lifecycle (SDLC) 4

Agile Manifesto 4

Continuous Integration and Continuous Delivery 5

DevOps 6

Pipeline 7

Application Security Pipeline for CI/CD 8

Information Security 8

Application Security 8

Security meets DevOps 9
Challenges on adopting DevSecOps 10

Vulnerabilities 11
Definition 11
Application Vulnerabilities 11
Docker Image Vulnerabilities 17
Pipeline Vulnerabilities 18

Vulnerability detection approaches throughout the SDLC 20
Testing Types 20
Static Code Analysis 21
Dynamic Code Analysis 22
Software Composition Analysis 23
Container Security Analysis 24

Continuous Vulnerability Management in DevSecOps 24
Continuous Vulnerability Evaluation 25
Continuous Vulnerability Treatment 26
Continuous Vulnerability Reporting 27

Continuous Vulnerability Finding in DevSecOps – Case Study: OWASP WebGoat
Application / Tools Compare 29

Approach and all Set-up 29
Approach 29
Set Up 31

Jenkins 31

OWASP WebGoat 34

SAST using SNYK 36

SAST using SonarQube 44

Container Security using Trivy 52

Container Security using Grype 57

DAST Security using OWASP-Zap 64

DAST Security using Arachni 70

4

Tools Comparison 78

Conclusion 83

Bibliography 85

5

Table of Figures
Figure 1: DevOps 6
Figure 2: CI/CD 7
Figure 3: DevSecOps Jenkins pipeline 29
Figure 3: DevSecOps Jenkins approach 30
Figure 4: Jenkins compositionl file 32
Figure 5: Jenkins login screen 33
Figure 6: OWASP WebGoat User Interface 34
Figure 7: OWASP WebGoat Menu 35
Figure 8: OWASP WebGoat cloned via the pipeline 36
Figure 9: SAST SNYK Jenkins pipeline 37
Figure 10: SNYK Plugin 38
Figure 11: SAST SNYK Jenkins pipeline configuration 1 38
Figure 12: SAST SNYK Jenkins pipeline configuration 2 38
Figure 13: SAST SNYK Jenkins pipeline configuration 3 39
Figure 14: SAST SNYK Security Report in Jenkins Pipeline Menu 39
Figure 15: SAST SNYK Security Report Header 40
Figure 16: SAST SNYK Security Report Vulnerabilities 40
Figure 17: SAST SNYK Security Report Vulnerabilities Remediation 1 41
Figure 18: SAST SNYK Security Report Vulnerabilities Remediation 2 41
Figure 19: SAST SonarQube Jenkins pipeline 45
Figure 20: SAST SonarQube Jenkins pipeline configuration 46
Figure 21: SAST SonarQube Security Report in Jenkins Pipeline Menu 47
Figure 22: SAST SonarQube Project Status 47
Figure 23: SAST SonarQube Project Vulnerabilities and Issues of new Code 48
Figure 24: SAST SonarQube Project Vulnerabilities and Issues metrics 48
Figure 25: SAST SonarQube Project Vulnerabilities and Issues of Overall Code 49
Figure 26: SAST SonarQube Project Source Code 49
Figure 27: SCA Trivy Jenkins Pipeline 53
Figure 28: SCA Trivy Jenkins Pipeline configuration 53
Figure 29: SCA Trivy Report in Jenkins Pipeline Menu 54
Figure 30: SCA Trivy Report 55
Figure 31: SCA Grype Jenkins Pipeline 59
Figure 32: SCA Grype Jenkins Pipeline configuration 59
Figure 33: SCA Grype Report in Jenkins Pipeline Menu 60
Figure 34: SCA Grype Report 61
Figure 35: DAST OWASP-Zap Jenkins Pipeline 65
Figure 36: DAST OWASP-Zap execution bash script 65
Figure 37: DAST OWASP-Zap report download 66
Figure 38: DAST OWASP-Zap scanning report 67
Figure 39: OWASP-Zap scanning report results (Summary) 67
Figure 40: DAST OWASP-Zap scanning report results (Alert details) 68
Figure 41: DAST Arachni Jnekins Pipeline 71
Figure 42: DAST Arachni Jnekins Pipeline configuration 72
Figure 43: DAST Arachni execution bash script 72
Figure 44: DAST Arachni report summary 74
Figure 45: DAST Arachni report issues chart 74
Figure 46: DAST Arachni report issues 75
Figure 47: DAST Arachni report plugin results 75
Figure 48: DAST Arachni report sitemap 76
Figure 49: DAST Arachni report configuration 76

6

List of Tables
Table 1:Snyk tool results description 42
Table 2:Snyk tool positives and negatives 43
Table 3:SonarQube tool positives and negatives 51
Table 4:Trivy tool positives and negatives 57
Table 5:Grype tool positives and negatives 63
Table 6:OWASP-Zap tool positives and negatives 70
Table 7:Arachni tool positives and negatives 77

7

Introduction

Thesis Topic

The secure creation of software applications holds significant relevance in the current
era characterized by fast digital transformation and constantly developing
technological environments. The preservation of data and systems' confidentiality,
integrity, and availability has emerged as a paramount problem for enterprises on a
global scale. The concept of DevSecOps has emerged as a significant reaction to this
requirement, promoting the integration of security practices throughout the Software
Development Lifecycle (SDLC) in a seamless manner.

This thesis aims to investigate the convergence of software development practices and
cybersecurity in the context of DevSecOps. This analysis delves extensively into the
problems and possibilities arising from this paradigm change, with a specific
emphasis on the identification and resolution of vulnerabilities, as well as the ongoing
management of security risks within contemporary software development pipelines.

Chapter 1: Software Development Lifecycle (SDLC)

Our journey begins with an introduction to the Software Development Lifecycle
(SDLC), the foundation of software engineering. The Agile Manifesto, with its
principles of flexibility and collaboration, sets the stage for contemporary software
development practices. As we delve deeper into the Agile Manifesto, we acquire a
better understanding of the guiding values and principles of contemporary software
development methodologies.

Chapter 2: Continuous Integration and Continuous Delivery (CI/CD)

Continuous Integration and Continuous Delivery (CI/CD) are concepts that are
introduced by the dynamic nature of software development. These practices, which
are intended to expedite the development process, increase productivity, and
abbreviate release cycles, hold great promise. However, they present challenges, such
as the requirement for comprehensive security measures within the CI/CD pipelines.

Chapter 3: DevOps

This piece examines the advent of DevOps as a disruptive force in the software
development industry. Collaboration, automation, and a culture of shared
accountability are promoted by the DevOps principles. In this context, we examine
the role of DevOps in bridging the divide between development and operations, along
with its security implications.

8

Chapter 4: Application Security Pipeline for CI/CD

The development of an Application Security Pipeline for CI/CD environments is a
pivotal aspect of our investigation. The convergence of Information Security and
Application Security is discussed in this article. We underscore the importance of
security within DevOps practices and the difficulties organizations face when
attempting to effectively implement DevSecOps concepts.

Chapter 5: Vulnerabilities

Our thesis focuses heavily on vulnerabilities, a foundational concern in the context of
security. We begin by defining vulnerabilities and the potential threats they present.
Application vulnerabilities, Docker image vulnerabilities, and CI/CD pipeline
vulnerabilities are the focus of our examination.

Chapter 6: Vulnerability Detection Approaches throughout the SDLC

With vulnerabilities firmly in our sights, we investigate various methods for detecting
them throughout the Software Development Lifecycle. Included in this category are
Static Code Analysis (SAST), Dynamic Code Analysis (DAST), Software
Composition Analysis (SCA), and Container Security Analysis. Within the
development pipeline, each methodology has its own strengths and applications.

Chapter 7: Continuous Vulnerability Management in DevSecOps

The primary contribution of this thesis rests in the proposition and evaluation of a
Continuous Vulnerability Management framework within the context of DevSecOps.
We describe the Continuous Vulnerability Evaluation, Treatment, and Reporting
practices, highlighting the significance of a proactive and iterative approach to
vulnerability management.

Chapter 8: Continuous Vulnerability Finding in DevSecOps – Case Study: OWASP
WebGoat Application / Tools Compare

For the purpose of validating our proposed framework, we present a case study using
the OWASP WebGoat application. We conduct a comparative analysis of various
security tools, including SAST with SNYK, SAST with SonarQube, Container
Security with Trivy and Grype, as well as DAST with OWASP-Zap and Arachni. The
purpose of this study is to assess the efficacy of these instruments and derive valuable
insights.

Chapter 9: Conclusion

This thesis seeks to establish a connection between software development and
cybersecurity. It provides valuable insights and actionable recommendations for
organizations seeking to enhance their security measures within the dynamic
landscape of modern software development.

9

Software Development Lifecycle (SDLC)

The Software Development Life Cycle (SDLC) is a widely employed methodology
within the software industry for the purpose of effectively executing and delivering
software projects. The document outlines a comprehensive approach for the
development, administration, replacement, and enhancement of a specific software
application. The life cycle methodology provides a systematic approach to enhance
software quality and streamline the development process.

The typical software development life cycle (SDLC) model adheres to a linear and
sequential methodology, where each phase is carried out in a specified sequence prior
to progressing to the subsequent phase. However, due to the advent of Agile and
DevOps approaches, the Software Development Life Cycle (SDLC) has seen a
significant transformation, becoming a more iterative and collaborative process.

Agile Manifesto

In recent years, Agile methodology has begun to establish itself in the software
development life cycle, in contrast to the waterfall methodology that most
organizations and businesses had been accustomed to for many years.

Agile's beginnings date back to 1990, when a group of software developers began to
question the efficacy of the Waterfall method. Although Waterfall is a structured and
predictable method that simplifies project management and control, it can also be
rigid and difficult to adapt to project changes.

A group of these developers created the Agile Manifesto, a set of guidelines, values,
and ideas, in 2001 to help promote flexibility, collaboration, and rapid response to any
changes.

The principles of the Agile Manifesto, according to the “Manifesto for Agile Software
Development” [1]are the following:

● Satisfaction of the customer by delivering valuable software on time and on a
regular basis is a high priority.

● Acceptance of changing requirements, even if they come late in the
development process.

● Agile processes leverage change for the benefit of the customer's competitive
advantage.

● Delivery of a working software, from a few weeks to a few months, with a
preference for the shorter timescale.

● Throughout the project, businesspeople and developers must collaborate daily.
● Build projects around motivated people. Support and trust for a successful

completion of a task.
● Face-to-face communication as is the most efficient and effective way of

conveying information to and within a development team.
● The primary indicator of progress is functional software.

10

● Agile processes promote long-term development. Sponsors, developers, and
users should be able to keep up the pace indefinitely.

● Continuous focus on technical excellence and good design improves agility.
● Simplicity, or the art of minimizing the amount of work done, is critical.
● Self-organizing teams produce the best architectures, requirements, and

designs.
● The team reflects on how to become more effective at regular intervals, then

tunes and adjusts its behaviour accordingly.

In essence, the Agile Manifesto establishes a structural foundation for the practice of
Agile software development, prioritizing key principles such as cooperation,
adaptability, and the fulfillment of client expectations. The widespread use of this tool
throughout the software development community serves as evidence of its efficacy in
optimizing development workflows and enhancing software excellence across several
organizations.

Continuous Integration and Continuous Delivery

Continuous Integration and Continuous Delivery, also known as CI/CD, is a best
practice for DevOps and Agile. The CI/CD philosophy is a set of working principles,
and a set of practices used by application development teams to release code updates
more frequently and consistently.

Continuous delivery begins where continuous integration leaves off, automating
application delivery to selected environments such as production, development, and
testing. Continuous delivery is an automatic method of pushing code updates to these
locations.

Continuous deployment can be implemented by a competent devops team with a
strong CI/CD pipeline, in which application changes are run through the CI/CD
workflow and passing builds are distributed straight to the production environment.
Although continuous release isn't ideal for every business application, some teams
choose to send it to production on a daily or even hourly basis.

The utilization of Continuous Integration and Continuous Delivery (CI/CD) yields a
multitude of benefits for software development teams. Continuous Integration is a
development approach that involves integrating code changes made by individual
developers or teams into a centralized repository on a regular and automated basis.
The integrated code changes are then immediately evaluated to ensure that they are
appropriately merged and do not adversely affect the existing codebase. The primary
objective of this practice is to detect integration issues early on, before they escalate
into more significant challenges or cause delays in the development process. The use
of CI/CD methodologies offers several benefits to development teams throughout the
project's life cycle. For instance, developers have an opportunity to learn about new
changes and their potential impact, enabling them to plan their work better and write
code that is more reusable and easily testable. Furthermore, using automated tests
makes it easier to identify errors and issues in the code, allowing for timely evaluation
and resolution. This approach can also accelerate the development process, enabling
teams to release new features and fix bugs more quickly, thereby enhancing customer

11

satisfaction and loyalty. CI fosters collaboration and communication among
developers, as they often work together to merge code changes into a shared
repository, resolving conflicts in a timely manner. Continuous Delivery reduces the
risk of software failures and security breaches, as bugs and vulnerabilities can be
detected and resolved quickly. Lastly, by reducing manual processes and increasing
automation, organizations can save time and money on software development and
delivery.

DevOps

DevOps is a set of procedures and practices that integrates software development
(Dev) and IT operations (Ops) in order to abbreviate the system development life
cycle while providing features, patches, and upgrades frequently and consistently. It is
a mindset of cooperation, communication, and automation among software engineers
and IT workers.

According to Atlassian [2] because DevOps is an ongoing process, practitioners use
the infinity loop to demonstrate how the stages of the DevOps lifecycle connect to one
another. Even though it appears to run sequentially, the loop represents the need for
continuous cooperation and iterative development throughout the entire lifetime.

Figure 1: DevOps

There are many reasons that drive to the growing use of DevOps. First, rather than
being created as a custom system or a shrink-wrapped product, software is
increasingly being provided as a service over the Internet. This integrates processes
into the product, driving service quality demands. [3]

As stated by Jabari and et al, DevOps is associated with rapid software development.
DevOps broadens Agile's principles by offering a practical expansion to current agile
activities. DevOps, for example, can achieve agile goals such as decreasing teamwork

12

delays and extending agile principles to the entire software supply chain by focusing
on communication and collaboration between developers and administrators rather
than tools and procedures. This point of view, which emphasizes the relationship
between DevOps and agile methodologies, is not completely shared by the research
community, as explained [4].

Overall, DevOps methodology provides a variety of benefits on the SDLC. DevOps
provides improved collaboration between development and operation teams leading to
more easy adaptation of changes, faster and more efficient deliveries. Also, the
increased automation helps the team to build and deploy the project easier reducing
the risk errors and improving overall quality, and have the customers satisfied too by
finding faster resolution of issues. The greater visibility and control over the SDLC
allow more effective monitoring and management of software projects. [3]

Pipeline

A CI/CD pipeline is a set of automatic procedures that must be completed prior to
releasing a new release of software. These pipelines use automation to improve
software dissemination throughout the software creation process. [5]

CI/CD pipeline the creation, testing, production, and tracking phases of the software
development lifecycle. This leads in faster and higher-quality code creation. Although
it is possible to execute each stage of the CI/CD pipeline manually, the true
advantages of these pipelines are realized through automation. [5]

Figure 2: CI/CD

The CI step includes regularly merging code changes into a common repository. This
enables developers to test the code, detect and correct mistakes during the initial
stages of development, before they increase bigger and take longer to correct. The
code is built, tested, and validated in the CI stage using different tools and methods
such as static analysis, unit tests, and integration tests.

The CD step includes the deployment on a stage environment or on the production of
the code with all the changes that implemented under continuous integration.

Depending on the organization's rules and processes, the CD step involves deploying
the code modifications to production or staging environments. The code is packaged,
configured, and deployed using automatic scripts and tools during the CD step. This
leads to the deployment procedure being constant, dependable, and repeatable.

CI/CD pipeline is the foundation of a DevOps approach, bringing together coders and
IT operations teams to release software. As custom apps become more important in

13

how businesses distinguish themselves, the rate at which code can be published has
become a competitive differentiator. [5]

14

Application Security Pipeline for CI/CD

Information Security

Information security is the practice of safeguarding data and information assets from
illegal access, utilization, disclosure, modification, or loss. The subject matter at hand
comprises both intangible and physical assets, spanning a wide range of concerns
including network security, endpoint security, data protection, and user access
restrictions.

Information security encompasses the protection of all assets related to information,
whereas application security specifically focuses on safeguarding software
applications and the associated data they contain. Application security is a subset of
information security and a crucial element of a comprehensive information security
initiative.

Application Security

The methods and techniques used to protect software apps from possible threats and
vulnerabilities are referred to as application security. This includes safeguarding
against malicious players' illegal entry, tampering, and data stealing. Of course, the
metrics that must be implemented arise by the risk associated with the application use.
Controls and measurements can be applied to the application (its processes,
components, software, and outcomes), its data (configuration data, user data, and
organizational data), and all technology, processes, and players engaged in the
application's life cycle [6].

As is defined in “ISO/IEC 27034 – Information Security – Security techniques –
Application Security” [6]. standard, the scope of application security and the
data/processes that should be protected are the following:

● Business context: The term "business context" encompasses the
various guidelines, rules, and limitations related to the business field in
which an organization operates.

● Regulatory context: The term "regulatory context" refers to the set of
laws, rules, and established standards that begin in a particular region
or authority and have an impact on the characteristics of the
application or the way it processes data. Consider the risks associated
with adhering to various national rules in nations where the same
application is used.

● Application life cycle processes: The phases that software applications
go through from inception to retirement are referred to as application
life cycle procedures (Requirements, Design. Architecture, Coding,
Testing, Deployment, Maintenance, Support, Retirement).

● Processes involved with the application: An application's processes
relate to the numerous activities and duties required to develop, deploy,
and manage the application.

● Technological context: The technological context is the collection of
technological components and products that support an organization's
essential data and specifications.

15

● Application Specifications: Hardware, security, application, client
terminal and back-office specifications.

● Application data: Critical Application information.
● Organization and user data: Critical organization information.
● Roles and permissions: Crucial identification administration and

permissions data.

Given the rising dependence on software applications to conduct important business
tasks and the increasing complexity of cyber assaults in today's world, application
security is an essential component of any organization's cybersecurity strategy.

Security meets DevOps

DevSecOps is an approach that integrates security practices into the DevOps
methodology, which places emphasis on collaboration among development,
operations, and security teams to enhance the speed and efficiency of software
development and deployment. The increasing intricacy and frequency of cyber-attacks
and data breaches have underscored the importance of security in the field of software
development, hence demanding the adoption of DevSecOps practices.

Historically, security has been seen as a distinct entity from development and
operations, wherein security controls and evaluations are often conducted subsequent
to the creation and dissemination of software. However, this particular approach may
lead to the identification of security vulnerabilities at a later stage in the development
process, so making their resolution more challenging and expensive.

The integration of security concerns into every phase of the software development
lifecycle, including planning, coding, testing, and release, is made possible by the
adoption of DevSecOps, which incorporates security into the DevOps process. This
practice facilitates the identification and resolution of security vulnerabilities prior to
their exploitation by unauthorized individuals.

According to the article "Challenges and Solutions When Adopting DevSecOps: A
Systematic Review," [7] DevSecOps can assist organizations in improving their
security posture, increasing the speed and quality of software development, and better
aligning business objectives with IT operations.
Of course, there are many obstacles that an organization faces when adopting the
DevSecOps methodology, such as resistance to change, a lack of understanding and
comprehension of the methodology, and difficulty incorporating security into the
software development process.

The article provides a comprehensive overview of the challenges that organizations
face when implementing DevSecOps and offers various solutions to overcome these
challenges, such as developing a security culture, encouraging team collaboration, and
investing in automation and continuous monitoring tools. The writers also emphasize
the significance of evaluating the efficacy of DevSecOps efforts and constantly
refining the process to ensure that security is incorporated throughout the software
development lifecycle.

16

Challenges on adopting DevSecOps

As previously stated, the challenges associated with adopting DevSecOps include
resistance to change, a lack of awareness and understanding of the methodology,
problems in applying security into the software development process, and the need to
manage complexity and scale as DevSecOps is implemented, according to the article
"Challenges and solutions when adopting DevSecOps: A systematic review." [7].
Other obstacles include the shortage of skilled workers and the need to balance
security standards with company objectives.

In more detail the obstacles are:
● Resistance to change: This challenge refers to some people or teams within an

organization's hesitancy to embrace new methods, such as DevSecOps, due to
a dread of the unknown, a lack of confidence, or a lack of top management
buy-in. This obstacle can be surmounted by effectively conveying the
advantages of DevSecOps and involving all parties in the adoption process.

● Lack of consciousness and comprehension of the methodology: This issue
alludes to workers' dearth of information and comprehension of DevSecOps,
especially those outside of IT and security departments. Organizations can
surmount this issue by giving workers with training and education and
fostering an atmosphere of constant learning and development.

● Difficulty incorporating security into the software development process: This
issue alludes to the need to seamlessly and efficiently incorporate security into
the software development process. This problem can be solved by adopting
automation and constant monitoring tools, encouraging cooperation among
development, operations, and security teams, and employing a "shift left"
strategy to security in which security concerns are handled early in the
development process.

● Managing complexity and scale: The need to handle the complexity and scale
of DevSecOps deployments, especially in big and complicated companies, is
referred to as this issue. This challenge can be met by beginning small and
progressively growing up, employing agile methods, and ensuring that
security is incorporated throughout the software development process.

● Skilled personnel: This issue alludes to the need for skilled personnel who are
familiar with and knowledgeable about DevSecOps methods and tools.
Organizations can meet this challenge by investing in training and education
initiatives, employing experienced employees, and fostering an atmosphere of
constant learning and growth.

● Balancing security requirements with business goals: This issue alludes to the
need to balance security requirements with business goals, which is especially
important in companies with conflicting objectives. This problem can be
solved by engaging all stakeholders in the development process, ranking
security needs based on risk, and constantly assessing and refining the
DevSecOps process to guarantee alignment with business goals.

Overall, organizations can address these challenges by implementing DevSecOps
in a complete manner, which includes tackling technical, cultural, and
organizational problems as well as constantly evaluating and refining the process.
[7]

17

Vulnerabilities

Definition

“A vulnerability is a hole or a weakness in the application, which can be a design flaw
or an implementation bug, that allows an attacker to cause harm to the stakeholders of
an application. Stakeholders include the application owner, application users, and
other entities that rely on the application.” OWASP

A vulnerability within the realm of computer security pertains to a deficiency or
imperfection in a system that may be exploited by an assailant to illicitly gain entry,
engage in unlawful actions, or inflict harm upon the system. Vulnerabilities may
manifest in several components of a system, including its software, hardware, network
infrastructure, and human factors.

One of the primary approaches employed to identify vulnerabilities is through the
practice of security testing, encompassing several activities such as penetration
testing, vulnerability scanning, and code review. Once a vulnerability is identified, it
may be classified according to its severity, impact, and exploitability.

Vulnerabilities can arise due to several sources, encompassing programming errors,
design flaws, configuration inadequacies, and organizational vulnerabilities.
Additionally, it is possible for someone to gain access to a system by exploiting
third-party components or interfaces, therefore making the system vulnerable to
potential flaws present in other interconnected systems.

The act of exploiting vulnerabilities can result in several consequences, including but
not limited to the unauthorized acquisition of sensitive data, the compromising of
system integrity or accessibility, and potential financial or societal damage. Therefore,
it is imperative for organizations to acknowledge, prioritize, and rectify vulnerabilities
promptly, employing strategies like as patching, configuration hardening, and user
training. In addition, the implementation of security measures such as firewalls,
intrusion detection systems, and access restrictions can effectively mitigate the
exploitation of vulnerabilities.

Application Vulnerabilities

An application vulnerability refers to a shortcoming or fault found in a software
program that may be exploited by malicious actors to gain unauthorized access to
sensitive information, disrupt regular operations, or carry out malicious activities on
the system.

Vulnerabilities may arise due to deficiencies in program design, coding inaccuracies,
configuration issues, or the use of obsolete software frameworks. Adversaries have
the ability to exploit these vulnerabilities through the utilization of diverse techniques,
including buffer overflow, SQL injection, cross-site scripting, and other forms of
assaults.

18

The presence of issues in applications is a significant security concern for both
businesses and individuals, since these vulnerabilities may be manipulated to illicitly
obtain sensitive information, compromise the stability of systems, and inflict financial
or societal damage. In order to promptly address vulnerabilities, it is imperative to
regularly perform security testing and administer patches.

OWASP Top 10 Application Vulnerabilities 2022

The Open Web Application Security Project's OWASP Top Ten is a list of the most
important web application security threats. The list is revised on a regular basis to
represent the changing threat environment and is widely used to rank security efforts
by coders, security experts, and organizations. [8]

1. Broken access control
Unauthorized users may gain access to confidential data or perform activities
that they should not be able to perform if access control is not properly
implemented. For example, if a user gains unauthorized access to another
user's account or information, this is considered a failed access control risk.
This security risk occurs when a system or program fails to properly impose
restrictions on what resources a person can access or the activities they are
permitted to perform. Inadequate access control techniques, incorrect
configuration, or faulty logic in the software program can all contribute to this.

How to prevent this security issue?
Access control is implemented in a secure server environment, where attackers
cannot modify data. According to OWASP in order to prevent broken access
control a lot of protection methods are proposed:

● API rate restriction and controller access
● Making access denial the default setting, unless the resource is public
● Enforcing business limits within the application
● Disabling directory listings for web servers
● Reusing access control mechanisms throughout the application

2. Cryptographic failures
Cryptographic failures refer to security weaknesses that arise from the
improper implementation or use of cryptographic techniques.

How to prevent this security issue?

The prevention of cryptographic failure relies on the application's functionality
and the nature of the data that is handled. Several aspects should be considered
to protect data effectively. This includes classifying the data based on
applicable laws, regulations, or business requirements, and storing only
necessary data, which should be discarded once the task is completed.
Additionally, it is essential to encrypt all data during transmission and at rest
and avoid using outdated protocols to transfer sensitive data. These are just
some of the measures for preventing cryptographic failure, with more detailed
guidance available in OWASP reference guides.

19

3. Injection
Injection attacks are frequently used to exploit vulnerabilities in web apps, but
they can also impact other kinds of software.

There are several types of injection attacks, including:
● SQL injection: An attacker injects malicious SQL code into a program,

usually via an online form or user input area. This gives the attacker
the ability to run random SQL queries and possibly obtain access to
private data.

● In a command injection attack, an intruder injects malicious code into a
program, which is then run as a system command. This gives the
attacker the ability to run arbitrary instructions on the machine and
possibly acquire control of it.

● Cross-site scripting (XSS): A cross-site scripting attack involves an
attacker injecting malicious code into an online website, which is then
performed in the user's computer. This allows the attacker to take user
information or conduct activities on the user's behalf.

How to prevent this security issue?

In order to mitigate the risk of injection attacks, which have the potential to
exploit many software applications, including online applications, it is
imperative to incorporate effective security protocols. The recommended
security measures encompass several key aspects, such as rigorous input
validation, utilization of parameterized statements for database interactions,
adherence to the principle of least privilege to restrict access, deployment of a
web application firewall (WAF), regular application of security patches,
implementation of robust session management techniques, utilization of
Content Security Policy (CSP) headers, provision of developer education in
secure coding practices, continuous monitoring for any signs of suspicious
activities, and the establishment of a fail-safe mode or intrusion detection
system. The collaborative endeavors mentioned will serve to protect against
injection attacks and enhance the security of software applications.

4. Insecure Design
Insecure application design refers to the various flaws in the design of
software apps that make them vulnerable to various kinds of cyberattacks.
Attackers can leverage vulnerabilities in an application to obtain unauthorized
access to private data, alter or delete data, or disrupt the application's
operation.

How to prevent this security issue?

To promote a culture of security, it's important to use a secure design
methodology that evaluates potential threats and ensures that code is designed
and tested against known attack methods. This can help prevent security
breaches and minimize the risk of vulnerabilities being introduced into the
system.

20

One way to achieve this is by partnering with application security
professionals to help evaluate and design controls around privacy and security,
and by using a secure development lifecycle to ensure that security measures
are incorporated throughout the software development process.

Additionally, it's recommended to use components and design patterns that are
known to be secure and to apply threat modeling to critical areas such as
access controls, key data flows, business logic, and authentication. By doing
so, organizations can better identify and address potential security threats
before they can be exploited.

5. Security Misconfiguration
When security settings or configurations are not applied correctly or are left in
their default state, security misconfiguration happens. As a result, the
application or system is susceptible to assault, as attackers can take advantage
of these misconfigurations to obtain unauthorized access, pilfer confidential
data, or carry out other malicious activities.

How to prevent this security issue?

According to OWASP, to prevent security breaches, it's important to start with
a thorough security configuration process that can be repeated consistently
across systems, ideally through automation. This can help ensure that new
environments are secured appropriately with every deployment.

One way to achieve this is by implementing a security hardening process that
can be repeated and automated to minimize errors and ensure consistency.
Additionally, it's recommended to use only the features and components that
are necessary for the system's operation, as unused or unneeded components
can increase the attack surface and pose security risks.

Finally, deploying an automated process to review security settings across
different environments can help identify any misconfigurations or
vulnerabilities that may have been introduced. This can help ensure that
security measures are implemented consistently and effectively across the
organization's infrastructure.

6. Vulnerable and Outdated components
Vulnerable and obsolete components are software components, libraries, or
frameworks used in apps that have known security flaws or are no longer
maintained by the manufacturer, leaving them vulnerable to cyber-attacks.

How to prevent this security issue?

Establishing a process for managing patches can help reduce the risk of
security breaches by addressing vulnerabilities before they can be exploited.
This process should involve removing any unused or unnecessary libraries,

21

components, frameworks, documentation, and files, which can help reduce the
attack surface of the system.

Additionally, it's important to continually monitor and maintain an inventory
of both server-side and client-side components to ensure that they are up to
date and secure. It's also recommended to use only official libraries and
sources through secure links to minimize the risk of downloading malicious or
tampered-with code.

Finally, organizations should monitor for any unsupported libraries or
components that are no longer maintained or have reached their end-of-life, as
these can pose significant security risks if they contain vulnerabilities that are
not being addressed.

7. Identification and authentication failures
Identification and authentication failures refer to instances where an individual
or system is not correctly identified or authenticated, leading to unauthorized
access or activities. Identification is the process of providing a username or
other identifier to gain access to a system, while authentication is the process
of verifying that the user is who they claim to be, typically through a password
or other authentication mechanism.

How to prevent this security issue?

According to OWASP, To prevent security breaches, it's important to ensure
secure storage and retrieval of passwords. One way to achieve this is by
implementing multi-factor authentication, which adds an additional layer of
security beyond just a password.

Furthermore, it's crucial to avoid using default credentials, especially for
administrative accounts, as these are often known to attackers and can easily
be exploited. It's also recommended to limit exposure to account enumeration,
which involves using trial and error to guess valid usernames and passwords
by limiting the number of login attempts or locking out users after a certain
number of failed attempts.

By implementing these measures, organizations can help protect against
unauthorized access and reduce the likelihood of security breaches.

8. Software and data integrity failures
Software and data integrity failures refer to instances where the accuracy,
completeness, or consistency of software code or data is compromised. These
types of failures can occur due to various factors, including human error,
hardware or software malfunctions, cyber-attacks, or other external events.

How to prevent this security issue?

To prevent security breaches, it's essential to verify the authenticity and
integrity of software updates. This can be achieved by using digital signatures

22

or other verification methods that ensure the updates originate from expected
sources and are delivered without any alterations.

In addition to verifying software updates, it's important to ensure that any
third-party libraries or dependencies used in the software also come from
legitimate sources. This can help prevent the introduction of malicious code
into the system.

Another crucial step in prevention is to verify that third-party resources are
free from vulnerabilities. This can be done using automated security tools
specifically designed for the software supply chain, which can help identify
and mitigate any potential risks or vulnerabilities.

9. Security logging and monitoring failures
Security logging and monitoring failures refer to instances where an
organization fails to properly implement and maintain security logging and
monitoring processes, which can leave their information systems vulnerable to
security breaches.

How to prevent this security issue?

To prevent security breaches, the primary focus should be on setting up
security logging and monitoring capabilities across applications. Developers
should implement appropriate security controls, such as login, access control,
and server-side validation checks, and ensure that any failures are logged with
user context to identify and analyze any malicious or suspicious activities.

Moreover, it's important to generate logs in a format that can be easily read by
log management tools. Enabling monitoring and alerting mechanisms for
identifying suspicious activities is also recommended. Finally, having a
well-defined incident response and mitigation plan in place can help
organizations respond swiftly and effectively in the event of a security
incident.

10. Server-side request forgery
In a Server-Side Request Forgery (SSRF) attack, the attacker takes advantage
of the server's functionality to gain unauthorized access to resources or alter
them. The attacker's focus is on exploiting an application that can import data
from URLs or read data through URLs. They may manipulate the URLs by
either replacing them with different ones or tampering with URL path
traversal to achieve their goals.

How to prevent this security issue?

According to OWASP, SSRF can take place at both the network and
application levels. To safeguard networks, it's advisable to use network
segmentation to isolate remote resources and prevent nonessential traffic with
"deny-by-default" policies.

23

Regarding application protection, some recommended methods include
thoroughly sanitizing, validating, and filtering data inputs. Additionally,
disabling HTTP redirection at the server level and verifying that server
responses match expected results are crucial. It's essential to avoid
transmitting raw server responses to clients.

Docker Image Vulnerabilities

Docker is a containerization system that facilitates the organization and execution of
software applications in a portable and resource-efficient manner. This technology
enables software developers to create and implement programs in a uniform and
reliable manner across several computer environments, encompassing development,
testing, and production stages.

Docker containers consist of a runtime environment, an image, and the executing
processes contained within them. The runtime is responsible for managing the
resources of the container, such as the CPU, memory, and storage. The fundamental
representation encompasses the application code and its associated dependencies.
Processes refer to programs that function within a container and engage with the
image and runtime components.

According to the study of Martin et al [9] there are five docker image vulnerability
categories:

1. Improper configuration.
Docker's default setup isolates containers and limits their access to the host,
making it reasonably safe. Certain settings sent to the Docker daemon or the
command starting a container, on the other hand, might grant the host
expanded access and render it vulnerable to assaults. These options can cause
the isolation property to be broken, hence they should only be used with
trusted containers. The Center for Internet Security has developed a Docker
Benchmark that lists the settings that should and should not be used when
running containers as isolated apps using Docker. A Docker host hosting
containers may be made more secure by following these guidelines and best
practices.

2. Vulnerabilities in the image distribution, verification, decompression, storage
process.
Docker Hub's design is comparable to that of a package repository, leaving it
subject to the same vulnerabilities as package managers. These flaws involve
the processing, storage, and uncompression of potentially malicious code by
the Docker daemon with root access. Package management attacks are
conceivable if an attacker has control of a portion of the network between the
Docker host and the repository. A successful attack would allow her to make
her image downloaded on docker hosts, leading to compromised images that
can exploit vulnerabilities in the extraction process.

The article also highlights Docker-specific vulnerabilities, such as those in the
extraction process and connected to the automated build chain. The Docker

24

hub's automated builds and webhooks are critical components of this
distribution strategy. They lead to a pipeline in which each component has
complete access to the code that will be used in production. Account
hijacking, interference with network traffic, and insider assaults are examples
of compromise tactics in this architecture. The configuration adds multiple
external intermediary stages to the code route, each with its own
authentication and attack surface, increasing the overall attack surface.

3. Vulnerabilities within the images themselves
This increases the attack surface of the Docker images, especially since the
DevOps movement allows developers to package their own applications,
potentially mixing development and production environments and leaving
vulnerabilities. Additionally, outdated versions of packages are often present
in the provided images, which increases the risk of exploitation. Attacks can
come from both outside and inside the container, and if the container has an
entry point, exploitation of vulnerabilities is possible. The Docker Security
Scanning feature can help mitigate some of these risks by scanning each layer
of the image and identifying known security vulnerabilities, but it has
limitations such as being available only for private repositories and the cost of
the service.

4. Vulnerabilities related to Docker or libcontainer
The paper discusses many file-system isolation security flaws in Docker and
libcontainer, including chroot escapes, path traversals, access to special file
systems, container escalation, and privilege escalation. These vulnerabilities
have been fixed in various Docker versions; however, the report warns that
even if a container process is granted root capabilities, it may still be able to
access the full host filesystem, which might result in delayed arbitrary code
execution with root privileges. The article also discusses the use of Mandatory
Access Control (MAC) to enforce constraints on container processes but notes
that the default Apparmor policy for Docker containers, known as
"docker-default Apparmor policy," could be improved because it primarily
functions as a whitelist, granting containers full access to network devices and
file systems, with only a limited number of deny directives acting as a
blacklist.

5. Vulnerabilities related of the Linux kernel
Because containers operate on the same kernel as the host, they are vulnerable
to kernel attacks. An attacker can utilize a kernel vulnerability within a
container to break out of the container and infiltrate the host, resulting in an
isolation breach, integrity breach, and data disclosure.

Pipeline Vulnerabilities

A pipeline vulnerability is a fault or weakness in a system's data or communication
pipeline that attackers can exploit to gain unauthorized access to sensitive data or
execute destructive activities.

25

Pipeline vulnerabilities can be caused by several factors, including unsafe coding
techniques, unpatched software or operating systems, insufficient authentication
procedures, or improper network or system setup. By introducing malicious code or
instructions into the pipeline, intercepting or modifying data in transit, or obtaining
privileged access to system resources, attackers can exploit pipeline vulnerabilities.

Organizations can install safety measures like as access restrictions, encryption,
firewalls, intrusion detection and prevention systems, and frequent security audits and
testing to reduce pipeline vulnerabilities. It is also critical to keep up with the newest
security patches and upgrades for any software and systems in use, as well as to teach
personnel on secure coding standards and data protection best practices.

26

Vulnerability detection approaches throughout the SDLC

Testing Types

There are several detection vulnerability approaches that can be used throughout the
Software Development Life Cycle (SDLC) to ensure the security of software
applications.

The most common approaches are:

Threat Modeling: Threat modeling is an organized method that identifies possible
security threats and vulnerabilities, quantifies their severity, and prioritizes mitigation
measures to protect IT resources. It is a must-do for any organization that wishes to
protect its systems, apps, networks, and business processes against a wide range of
threat vectors. According to fortinet.com [10], the threat modeling process involves a
sequence of interdependent steps such as describing the issue, developing a list of
assumptions, and verifying the techniques for dealing with the risks.

Threat modeling creates a clear "line of sight" throughout a project, justifying security
efforts and allowing for informed decision-making regarding application security
threats. According to OWASP, the threat modeling method gathers, organizes, and
analyzes all information that influences an application's security, resulting in a
prioritized list of security enhancements to an application's idea, requirements, design,
or implementation. Furthermore, the threat model enables rational security decisions
to be made with all available information.

Static Code Analysis: Static code analysis is the process of examining an application's
source code without running it. This method is typically used throughout the SDLC
development process and can assist in identifying possible security flaws in the code.

Dynamic Code Analysis: The examination of dynamic code occurs while the program
is executing. This method is typically used during the SDLC testing phase and can
assist in identifying possible security vulnerabilities in the application's runtime
environment.

Penetration Testing: Manual penetration testing includes imitating an attacker's
behavior and is classified as black box testing since it does not require knowledge of
implementation specifics. This phrase refers to the analysis of the system without
knowledge of its internal state and structure. The goal of these tests is to uncover any
type of vulnerability, from minor implementation issues to major design faults. [11]

Fuzz Testing: Fuzz testing is flooding the application with enormous volumes of
random input data in order to examine its robustness to unexpected inputs. This
method is typically used throughout the SDLC testing phase and can assist in
identifying potential security issues linked to input validation and handling.

Software Composition Analysis: Software Composition Analysis (SCA) is a software
engineering practice that involves analyzing custom-built software applications to
identify any open-source software embedded within them. The purpose of this
analysis is to evaluate any potential vulnerabilities and ensure that the software

27

complies with licensing requirements. The practice has gained significance with the
growing use of open-source software, which has allowed developers to rapidly add
functionality to their proprietary software. SCA is a subset of the application security
testing (AST) tool market, specifically focused on managing the use of open-source
components.

This thesis will go through static, dynamic, and software composition analysis while
skipping over thread modelling, fuzzy testing, and penetration testing.

Static Code Analysis

According to OWASP [12], Static Code Analysis, also called as Source Code
Analysis, is often conducted at the Implementation phase of a Security Development
Lifecycle (SDL) as part of a Code Review or white-box testing. Static Code Analysis
tools are used to examine ‘static' (non-running) source code to discover possible
vulnerabilities. These technologies use a variety of approaches, such as Taint Analysis
and Data Flow Analysis, to identify potential security concerns.

ISO 27034 [13] suggests that project teams do static code analysis on their source
code as a scalable method of assessing security code and assuring compliance with
secure coding guidelines established by the security team lead and adviser. It should
be highlighted, however, that static code analysis alone may not be sufficient to
complete a thorough security examination. As a result, the security team and advisers
should be aware of the capabilities and limits of static analysis tools and, if necessary,
augment code review activities with other tools or human review. A lightweight static
analysis is performed as part of the SDL during code check-in using the IDE.

Static analysis tools may be used in CI/CD to find vulnerabilities and verify that
secure coding practices and rules are adhered to. Furthermore, these tools may be
incorporated into a developer's work environment and used to create replacement
proposals for vulnerable code with more secure code (for example, deprecated library
functions). [11].

In their 2019 article [14], Nora Tomas, Jingyeue Li, and Huang Huang emphasized
the significance of delivering working software frequently as a fundamental principle
of agile software development. To achieve this, developers need to be able to test and
verify their code quickly and effectively. Automated testing and code quality tools,
which may include static analysis tools, can provide immediate feedback on potential
errors or defects in the code, thus facilitating the attainment of this goal. Static
analysis tools can also be integrated into the build and deployment process to
automatically detect potential issues and ensure high-quality code. While the article
does not focus specifically on static analysis, it acknowledges the potential advantages
of using such tools in an agile environment.

On the other hand, Thorsten Rangnau, Remco Buijtenen, Frank Fransen and Fatih
Turkmen in their article on 2020 [15] , suggests that while static code analysis is an
important practice in DevSecOps, it is not sufficient to detect all security
vulnerabilities in a system. Static analysis can only identify vulnerabilities that can be
directly derived from source code, which is a small subset of the most common

28

vulnerabilities in web applications. The article notes that dynamic security testing,
which involves attacking a system in a manner like actual hackers, can identify a
much broader range of vulnerabilities. While there is literature available on how to
execute dynamic tests consistently and reproducibly, there is less information on how
to integrate dynamic testing into the CI/CD pipelines commonly used in DevOps.

Dynamic Code Analysis

Dynamic Code Analysis, also known as Dynamic Application Security evaluating
(DAST), is a way of evaluating an application while it is operating to uncover
potential security flaws, according to OWASP [16]. To "fuzz" the program, DAST
tools employ a database of known security vulnerabilities and malicious inputs, such
as input strings with odd lengths, negative and huge positive values, and unexpected
input data. The DAST tool notes the detected vulnerability if the program responds
negatively to a given input. DAST is often used during the testing phase of the
Software Development Lifecycle (SDLC), after the application's code has been
successfully built and deployed to a test or staging environment. DAST scans can run
numerous times per day when iterative builds occur using continuous
integration/continuous delivery (CI/CD) workflows. DAST happens following
penetration testing that do not involve internal security knowledge in many business
software security initiatives [17].

The study "Continuous Security Testing: A Case Study on Integrating Dynamic
Security Testing Tools in CI/CD Pipelines" [15] states that dynamic code analysis is
important in the continuous security testing process. Dynamic code analysis detects
security flaws that may occur from the interplay of multiple components or external
dependencies by monitoring code execution within the CI/CD pipeline. The article
explores integrating dynamic security testing tools into the CI/CD pipeline to
automate the identification of security risks throughout the software development
lifecycle. This connection provides continuous evaluation of the application's security
posture and fast remedy of vulnerabilities.
The authors emphasize the advantages of employing dynamic code analysis
approaches, such as runtime vulnerability discovery, real-time security feedback, and
increased visibility into program behaviour in a variety of contexts. Overall, the
article demonstrates how including dynamic security testing tools into CI/CD
pipelines may improve software application security.

On the other hand, according to the article "Challenges and Solutions When Adopting
DevSecOps: A Systematic Review," [7], in the context of DevSecOps (Development,
Security, and Operations), dynamic analytic tools have several drawbacks. Here's a
rundown of the points raised:

● Running software for dynamic analysis: To do the analysis, dynamic analysis
tools require the program or code to be executed. This entails creating,
installing, and configuring the software, which can be difficult in a
DevSecOps setting with regular code releases.

● Manual work and setup: Dynamic analytic tools can need extensive manual
effort to set up and run efficiently. Manual setup adds complexity and can be
time consuming.

29

● Time required for analysis: Dynamic analysis techniques, such Static
Application Security Testing (SAST) tools, often take a longer time to
perform. The analysis process can be time-consuming, which might impact the
speed and frequency of releases in a DevOps environment.

● Testing scenario constraints: Dynamic analysis tools may have limitations in
terms of the spectrum of testing scenarios they can successfully cover. The
number of vulnerabilities and testing scenarios that may be detected is
determined on the type of dynamic analysis tool employed.

These constraints make the incorporation and acceptance of dynamic analytic tools in
DevSecOps techniques difficult. In a DevOps context, the aforementioned challenges
may have an influence on the speed and frequency of software releases. Despite these
limitations, dynamic analysis methods can nevertheless detect security flaws,
emphasizing their value in the overall security evaluation of software applications.
In the final chapter of this thesis, we will look at the benefits and drawbacks of DAST
tools.

Software Composition Analysis

The technique of integrating smaller, independent things into a bigger, more
complicated object or system is known as composition in software engineering. This
is accomplished by defining classes with instance variables that refer to one or more
objects from other classes. Composition is used in both functional and object-oriented
programming. Composition is exemplified in functional programming with functions
that accept one input, "foo," and return another input, "bar," and another function that
takes "bar" as input and returns "blah." There is also a combined function that accepts
"foo" as input and returns "blah". Composition has the virtue of allowing code to be
reused without creating a "is-a" connection, which enhances encapsulation and makes
the code easier to maintain.

Composition is also utilized often in software components to generate clear,
user-friendly APIs. When a class is created, the classes it references can either
become part of the API or be hidden. If a class does not have any access modifiers, it
becomes package-private, which means that it may only be accessed within its own
package and is not part of the API. External clients can only communicate with the
software component through a public class that leverages the package-private class in
composition.

The fundamental advantage of composition is that it allows for code reuse without the
need for an is-a connection, like inheritance does. This method improves
encapsulation and makes code maintenance easier. To generate clean and user-friendly
APIs, composition is widely used in well-designed software components. When
creating a class, you have the option of exposing the referenced classes as part of the
API or keeping them concealed. If a class does not have any access modifiers, it
becomes package-private, which means it may only be accessed within its own
package and is not part of the API. External clients of your software component are
ignorant of this class and can only communicate with it through a public class that
uses composition to integrate the package-private class. [18]

30

The process of identifying and managing open source and third-party components
used in software systems is referred to as software composition analysis (SCA). It
entails examining the software's dependencies for known security flaws, licensing
difficulties, or obsolete versions. SCA tools help to automate this process and deliver
information to developers and organizations for them to manage possible hazards
linked with the components utilized in their program.

The combination of Software Composition Analysis and DevSecOps places security
at the center of software development. Organizations may proactively identify and
mitigate possible risks associated with the usage of third-party components by
introducing SCA into the DevSecOps pipeline, ensuring that their software
applications are safe and comply with licensing requirements. This integration fosters
a security culture and helps developers to create more secure and dependable
applications.

Container Security Analysis

Container security is a critical component of DevSecOps, necessitating constant
security monitoring across development, test, and production environments. A new
approach to the basic visibility, detection, and investigation procedures is required to
protect containerized applications in a DevSecOps architecture [19]. Here are some
methods to consider for DevSecOps container security analysis:

● Encourage developers, operations, and security teams to work together to
ensure security is integrated in the software development process, with the
objective of making it visible and automated [20].

● Improve productivity and security across the software development life cycle
by introducing established procedures, extensive documentation, and
agreed-upon automated processes [20].

● Integrate the multiple platforms, technologies, and procedures needed for
application development, deployment, and operations to create a coherent and
cohesive system known as DevSecOps [20].

● Utilize Kubernetes information like as labels and annotations to discover and
categorize security insights automatically, allowing automated security
detection inside the Kubernetes environment [19].

● For DevSecOps projects, use a common analytics platform that gives
integrated insights across the whole tool chain and technology stacks, enabling
for thorough analysis and monitoring [19].

● Improve the discovery, categorization, and resolution of security issues in
apps, configurations, and container images by implementing effective
vulnerability and configuration management strategies [19].

Vulnerability scanners for container images can be used to build secure
container-based CI/CD operations as mentioned in the last chapter of this thesis.

Continuous Vulnerability Management in DevSecOps

31

Continuous Vulnerability Evaluation

In DevSecOps, vulnerability evaluation plays a crucial role in ensuring the security of
software and systems throughout the development lifecycle.

According to Challenges and solutions wen adopting DevSecOps [7], several
challenges can arise in the process of a continuous vulnerability evaluation. First, it is
not commonly used, owing to practitioners' failure to do periodic vulnerability checks
and team members' lack of information about continuous vulnerability assessment.
Furthermore, the lack of a consistent technique for incorporating security measures
into a DevOps pipeline blocks progress.

Another obstacle that hinders the integration of security and DevOps processes is the
lack of compatibility between the two. This is mostly since security testing sometimes
requires substantial human involvement and can be a time-consuming process, which
contradicts the requirement for rapid software releases. The increasing intricacy,
vulnerabilities, and dependence on external elements pose significant difficulties in
ensuring security assurance. Consequently, software engineers often encounter
challenges in balancing the speed of software releases with ensuring complete
security. Similarly, corporations perceive the ongoing adoption of DevOps practices
and the achievement of comprehensive security assurance as conflicting strategies.

In addition, the fast-paced nature of continuous deployments makes it difficult to
thoroughly verify security requirements before software is shipped to the production
environment. As a result, practical assessments of security requirements often go
unperformed. This situation may be attributed to a lack of suitable tools and methods
to carry out the assessment process effectively. The absence of appropriate resources
contributes to the difficulty in conducting rapid security requirement assessments in a
DevSecOps setting.

Organizations can implement continuous vulnerability evaluation inside a DevSecOps
environment by following the suggested best practices mentioned:

● Developer-centric approach: Make sure that security tools and solutions
emphasize the needs of developers by being user-friendly, simply
understandable, and seamlessly integrated into their existing processes. This
technique encourages developers to actively participate in the vulnerability
evaluation process.

● Prioritization of vulnerabilities: Use a tool that can analyze vulnerabilities
depending on their level of risk, resulting in more accurate results and fewer
false positives. This technique encourages greater adoption and enables for
concentrated efforts to fix significant vulnerabilities.

● Use automation to speed up vulnerability detection and repair methods.
Organizations may incorporate security technologies smoothly into their
development and CI/CD pipelines by introducing automation, hence speeding
the vulnerability evaluation process.

● Collaboration and knowledge sharing: Foster collaboration among developers,
operations, and security teams. Breaking down silos encourages effective
communication, facilitates sharing of knowledge and insights, and enables
joint efforts to identify and resolve vulnerabilities throughout the software
development lifecycle.

32

● Continuous monitoring: Stay vigilant by keeping up to date with the latest
vulnerabilities, tools, and fixes. Constantly monitoring for emerging security
threats and seamlessly integrating appropriate measures into processes ensures
an up-to-date security posture.

● Adoption of modern DevSecOps tools: Consider implementing interactive
application security testing (IAST) as an alternative to traditional vulnerability
scanning tools such as static application security testing (SAST) and dynamic
application security testing (DAST). IAST provides real-time vulnerability
management, goes beyond code analysis, and offers a broader perspective for
comprehensive evaluation.

By embracing these best practices, organizations can improve the effectiveness and
efficiency of continuous vulnerability evaluation in their DevSecOps initiatives. By
prioritizing developers, utilizing automation, fostering collaboration, maintaining
vigilance, and adopting modern tools, organizations can enhance their overall security
posture and effectively mitigate potential risks.

Continuous Vulnerability Treatment

Continuous Vulnerability Treatment in DevSecOps is a crucial aspect but it comes
with its own set of challenges.

Tool-related challenges: Automation is a crucial necessity in DevSecOps, and
businesses confront obstacles in acquiring and integrating several solutions that can
enable continuous and consistent security measures. To avoid and mitigate security
vulnerabilities throughout the development lifecycle, it is critical to ensure
interoperability between security measures and the tools and techniques used in
DevOps operations. [21]

Shift-left security: Shift-left security is the practice of incorporating security controls
at every level of the application and infrastructure life cycles. This allows for the early
detection and remediation of vulnerabilities, limiting the possibility of attackers
exploiting them in production systems. Shift-left security demands a mentality and
procedure shift, which may be difficult for enterprises to implement. [22]

Continuous security assessment: The process of incorporating vulnerability detection
and patching into the release cycle. This approach aids in the rapid identification and
remediation of common vulnerabilities and exposures (CVE), narrowing the window
of opportunity for threat actors to exploit flaws in production systems. Implementing
and maintaining appropriate continuous security assessment methods, on the other
hand, might be difficult. [23]

People-related factors: While less studied, people-related factors play a crucial role in
the successful adoption of DevSecOps. Organizations face challenges in developing a
collaborative culture that fosters the fusion of development, security, and operations
teams. Additionally, continuously developing new concepts and tools to support
DevSecOps practices requires ongoing learning and skill development within the
workforce. [7]

33

Organizations can overcome security challenges by adopting specific strategies.
Firstly, they should automate security controls within the CI/CD pipeline to ensure
consistent application of security measures throughout the software development
lifecycle. This involves integrating compliance checks, vulnerability scans, and other
security controls based on predefined policies triggered by various pipeline events.
Secondly, organizations should take a product-agnostic approach by implementing a
holistic security framework. This framework should cover critical dimensions of
DevSecOps, including culture, continuous security traceability, real-time monitoring
of the pipeline's security posture, and meaningful metrics for monitoring.
Additionally, organizations can benefit from using a DevSecOps cyber range platform
to practice security investigations and automate continuous security. Lastly, access to
up-to-date threat intelligence information is vital, enabling organizations to stay
informed about the latest tactics, techniques, and procedures used by attackers to
exploit applications and infrastructure components. [22]

Continuous Vulnerability Reporting

Vulnerability reporting in a DevSecOps continuous pipeline presents several
challenges. Firstly, the fast pace of software updates and deployments makes it
difficult to identify vulnerabilities in a timely manner. Continuous monitoring and
scanning of software components throughout the pipeline are essential to address this
challenge.

Secondly, automated scanning tools used to identify security flaws can produce
inaccurate results, leading to false positives and false negatives. To minimize
inaccuracies, organizations must invest in fine-tuning and validating these tools.

Integrating vulnerability reporting into an existing DevSecOps pipeline can be
complex, requiring seamless integration with various tools and processes such as code
repositories, build systems, deployment pipelines, and issue tracking systems.
Ensuring smooth data flow and compatibility between different tools and processes
can be a challenge.

As the scope of the pipeline expands in relation to larger projects or heightened
development velocity, the quantity of vulnerabilities and security findings might
become excessively burdensome. Effectively managing a substantial influx of
vulnerability reports necessitates the implementation of strong procedures and
automation to efficiently handle the heightened workload.

Prioritization and remediation of vulnerabilities is another challenge. With numerous
reports, accurately prioritizing vulnerabilities becomes crucial. Organizations must
establish a clear risk-based prioritization framework to address the most critical
vulnerabilities first.

Effective collaboration and communication among developers, security teams, and
operations teams are essential for addressing vulnerabilities efficiently. However,
achieving smooth collaboration can be challenging due to different perspectives and
priorities. Establishing effective communication channels and fostering a culture of
security collaboration is necessary.

34

In conclusion, it is imperative that vulnerability reporting be not treated as a singular
occurrence, but rather as an ongoing process, with continual monitoring being of
utmost importance. The proactive identification and remediation of vulnerabilities
may be facilitated by the implementation of frequent vulnerability scans and the
integration of vulnerability management into the DevSecOps pipeline.

35

Continuous Vulnerability Finding in DevSecOps – Case Study:
OWASP WebGoat Application / Tools Compare

Approach and all Set-up

Figure 3: DevSecOps Jenkins pipeline

Approach
As previously mentioned, tools play a critical role in the continuous vulnerability
management process in DevSecOps. They help identify, assess and remediate
vulnerabilities in an automated and efficient manner. However, there can be
challenges associated with these tools.

One significant challenge is the integration of various security tools into the
DevSecOps pipeline. Integrating tools with different interfaces, formats, or
compatibility issues can impede the seamless incorporation of these tools into the
existing CI/CD workflow. This can lead to delays, manual efforts, and potential gaps
in vulnerability detection and treatment.

Another challenge lies in the accuracy of vulnerability scanning tools, which may
produce false positives or false negatives. False positives can result in wasted time
and resources spent on investigating non-existent vulnerabilities, while false negatives
may leave security risks undetected. Striking the right balance between sensitivity and
specificity in the tools is crucial to minimize false results.

As the DevSecOps pipeline scales and handles larger codebases and deployments, the
performance and scalability of vulnerability treatment tools become critical. These
tools need to handle increased volume and complexity without causing bottlenecks or
compromising the speed of software delivery.

Furthermore, selecting and maintaining suitable tools for vulnerability treatment can
be a challenge. With numerous options available, organizations must carefully
evaluate the strengths, weaknesses, and costs of different tools. Regular monitoring,
updates, and customization of tools are essential to ensure their effectiveness in
detecting and treating vulnerabilities over time.

36

In this thesis, we are going to use an existing project named “OWASP WebGoat
Application” by OWASP, in order to compare multiple tools for a continuous
vulnerability management in a DevSecOps environment. A pipeline has been set up
to coordinate the flow of the application.

Figure 4: DevSecOps Jenkins approach

As can be seen from the image, a basic pipeline has been created using Jenkins, which
in turn invokes other pipelines for security testing of the application. Jenkins has been
installed on a Linux machine, which we will refer to as the Jenkins machine.

In the second step, an external pipeline is invoked, which utilizes the SNYK tool.
SNYK performs static code analysis for security checks and generates a report.
The third step calls an external pipeline that uses the SonarQube tool. SonarQube
performs static code analysis for code quality checks, including security aspects, and
generates a report. Both static analysis tools are installed in the same environment, on
the application-server-1.

In the fourth step, the application is built into a Docker virtual environment and
uploaded to DockerHub.

In the fifth and sixth steps, two external pipelines are invoked, which use the Grype
and Trivy tools respectively. These tools perform vulnerability scanning on the
Docker image and generate reports with the detected vulnerabilities.

The next step involves deploying the application to the "application-server-1" using
the Docker image that was previously created.

In the last two steps, external pipelines are called, which utilize the OWASP ZAP and
Arachni tools respectively. These tools perform dynamic security analysis on the
already installed application on the "application-server-1" and generate reports with
any identified vulnerabilities. The purpose of this pipeline is to present a

37

comprehensive DevSecOps pipeline for an application but primarily to execute and
compare tools of the same type.

All the tools will be further presented in this specific chapter and compared at the end
based on certain criteria.

Set Up
To create the pipeline, three virtual machines (VMs) were installed from scratch.
These VMs use the Linux operating system with Ubuntu 18.04 version. They were
installed in the VirtualBox environment, which was set up on Unix software. In more
detail:

VM1 - Jenkins Machine:
This VM was set up for the installation and use of the Jenkins server.
An image of Jenkins was installed on VM1, and it was deployed.

VM2 - Application-server-1:
This VM was set up for the installation and use of SNYK, SonarQube, ZAP, and
Arachni tools.

Additionally, a Jenkins’s agent 1 named "ubuntu" was set up on this VM to serve
parallel pipelines.

VM3 - Application-server-2:
This VM was set up for the installation and use of Grype and Trivy tools.
Additionally, a Jenkins’s agent named "ubuntu2" was set up on this VM to serve
parallel pipelines.

Jenkins

Jenkins is an open-source automation platform that enables project continuous
integration and delivery. It is a robust program that can handle any type of build or
continuous integration and is compatible with a variety of testing and deployment
systems. Organizations may use Jenkins to automate the software development
process and include development life-cycle operations such as build, document, test,
package, stage, deploy static analysis, and much more [5].

Jenkins's widespread adoption, with over 147,000 active installations and over 1
million users worldwide, and its interconnectivity with over 1,000 plugins that allow
it to integrate with most development, testing, and deployment tools [6], are two of
the features that set it apart from other Continuous Integration tools.

Using pipelines, Jenkins provides a simple approach to build up a continuous
integration or continuous delivery environment for practically any combination of
languages and source code repositories, as well as automate other normal

1 In the context of Jenkins, agents, also known as Jenkins slaves, are worker nodes that perform tasks as
part of a Jenkins build or automation process. These agents are separate machines or computing
environments that can be connected to a Jenkins master, allowing distributed execution of jobs and
providing scalability for Jenkins-based Continuous Integration (CI) and Continuous Deployment (CD)
pipelines.

38

development chores. Jenkins can also easily distribute work over many computers,
allowing for speedier builds, testing, and deployments across various platforms [7].

Jenkins uses pipelines to create a Continuous Integration or Continuous Delivery
(CI/CD) environment for nearly any combination of languages and source code
repositories, as well as to automate other normal development operations. Jenkins'
plugin design allows it to be expanded, allowing practically limitless possibilities for
what Jenkins can achieve.

Jenkins' online interface, which includes on-the-fly error checks and built-in
assistance, makes it simple to set up and configure. Jenkins connects with virtually
every tool in the continuous integration and continuous delivery toolchain, thanks to
hundreds of plugins in the Update Center.

To summarize, Jenkins is a strong automation tool that enables continuous integration
and continuous delivery of projects independent of platform. It supports any type of
build or continuous integration and is compatible with a variety of testing and
deployment systems. Organizations may use Jenkins to automate the software
development process and include development life-cycle operations such as build,
document, test, package, stage, deploy static analysis, and much more. Jenkins uses
plugins to perform Continuous Integration and can be simply set up and managed
using its web interface, which features on-the-fly error checks and built-in assistance.

For the purposes of our thesis project, we have successfully installed and run Jenkins
within a Docker container on a virtual machine (VM). This installation process was
initiated by creating a YAML (YAML Ain't Markup Language) configuration file for
Docker Compose, providing a structured and human-readable format for defining our
Jenkins container's settings and dependencies.

Figure 5: Jenkins compositionl file

Here's a breakdown of what this file does:
● version: '3.3': This indicates the version of the Docker Compose file format

being used.
● services: This section defines a Docker service named "jenkins."

39

● image: jenkins/jenkins:lts: This specifies the Docker image to use for the
Jenkins service. It uses the LTS (Long Term Support) version of the official
Jenkins image from Docker Hub.

● privileged: true: This setting allows the Jenkins container to run in a privileged
mode, which grants it additional privileges and access to the host system.

● user: root: It runs the Jenkins container with the root user. This is sometimes
necessary when working with Docker-in-Docker (DinD) setups or when you
need elevated privileges within the container.

● ports: This section defines port mappings, exposing ports from the Jenkins
container to the host system. It maps:

o Port 8080 in the container to port 80 on the host. Port 8443 in the
container to port 443 on the host.

o Port 50000 in the container to port 50000 on the host. Port 50000 is
commonly used for Jenkins agent connections.

● container_name: jenkins: This sets a custom name for the Jenkins container.
● volumes: This section specifies volumes to be mounted inside the container. It

maps:
o /home/jenkins/docker-jenkins/jenkins_data on the host to

/var/jenkins_home inside the container. This is where Jenkins stores its
data, configurations, and plugins, allowing you to persist Jenkins data
even if the container is destroyed.

o /var/run/docker.sock on the host to /var/run/docker.sock inside the
container. This allows the Jenkins container to interact with the Docker
daemon on the host, enabling Jenkins to create and manage other
Docker containers (useful for Jenkins pipelines that involve
Docker-based builds).

After configuring our YAML file to define the Jenkins Docker container and its
associated settings, we executed the command docker-compose up -d within the same
directory as the YAML file. This command initiated the deployment of the Jenkins
container, and as a result, Jenkins is now up and running on our system.

Figure 6: Jenkins login screen

The pipelines implemented in this Jenkins are going to be described later in this
thesis.

40

OWASP WebGoat

Figure 7: OWASP WebGoat User Interface

OWASP created WebGoat, a purposefully unsafe online application. It is intended to
assist developers and security experts in understanding and preventing common web
application vulnerabilities. WebGoat offers a hands-on learning environment in which
users may engage with numerous susceptible elements and practice exploiting and
correcting security problems.

41

Figure 8: OWASP WebGoat Menu

Individuals get the opportunity to gain practical knowledge and skills in identifying
and taking advantage of security weaknesses, including but not limited to cross-site
scripting (XSS), SQL injection, authentication bypass, insecure session management,
and several others, through the utilization of WebGoat. The curriculum offers a
diverse range of courses and tasks that specifically target a multitude of security
vulnerabilities commonly seen in online applications.

WebGoat is a freely available open-source initiative that may be obtained and
implemented on personal computing devices. The software is implemented using the
Java programming language and functions on a web server, so enabling accessibility
through a web browser. The software application has a user-friendly interface that
facilitates users in navigating the various courses, accessing explanatory materials,
and engaging with the assigned assignments.

It is important to acknowledge that WebGoat is designed exclusively for educational
purposes and should be employed just in limited scenarios or by those possessing
legitimate authorization. The major objective of this initiative is to augment one's
understanding of web application security and promote the use of secure coding
methods.

42

In the context of this thesis, WebGoat has been employed as a subject for
comprehensive testing through the implemented pipelines. As the initial step within
the pipeline, the WebGoat Application code repository is replicated into our Jenkins
workspace, situated on VM1 - the Jenkins Machine.

Figure 9: OWASP WebGoat cloned via the pipeline

The primary objective of this process is to subject the WebGoat Application to
rigorous scrutiny through Static Code Analysis, utilizing a suite of Static Application
Security Testing (SAST) tools. Ultimately, the results obtained from these analyses
will be subjected to a comparative evaluation.

Furthermore, as part of our comparative analysis of tools for Docker image scanning,
we intend to incorporate the WebGoat Docker container in subsequent pipeline stages.
This endeavour will facilitate an assessment of various Docker image scanning tools
to enhance the overall security posture of the WebGoat Application.

SAST using SNYK

“Snyk is a developer security platform. Integrating directly into development tools,
workflows, and automation pipelines, Snyk makes it easy for teams to find, prioritize,
and fix security vulnerabilities in code, dependencies, containers, and infrastructure as
code. Supported by industry-leading application and security intelligence, Snyk puts
security expertise in any developer’s toolkit.” [24]

43

Snyk embarked on its journey with a bold mission: to fundamentally change the way
we approach software security. Through unwavering dedication to this goal, Snyk has
emerged as a pioneer in the industry, reshaping how businesses view and manage
vulnerabilities within their software applications and code repositories.

At the core of Snyk's acclaim lies its extensive array of features, strategically crafted
to address security challenges from all perspectives. These capabilities encompass:

● Vulnerability Scanning and Analysis: Snyk employs cutting-edge techniques,
including static and dynamic analysis, to identify vulnerabilities in code,
dependencies, and container images. This holistic approach enables
organizations to detect and mitigate risks at every layer of their software stack.

● Dependency Management: Snyk is renowned for its prowess in managing
open-source dependencies. It scans and monitors third-party libraries and
components, empowering developers to make informed choices and remediate
vulnerabilities seamlessly.

● DevSecOps Integration: Snyk understands the pivotal role of security in the
DevOps and DevSecOps paradigms. It seamlessly integrates into development
pipelines, facilitating the early detection and remediation of vulnerabilities.
This not only accelerates development but also bolsters security practices.

For the specific diploma thesis, the Snyk tool played a pivotal role in conducting a
comprehensive static code analysis on the codebase of the WebGoat repository. In
order to streamline this process, we implemented an autonomous and parallel
pipeline, which seamlessly integrates with the primary pipeline responsible for the
static code analysis, leveraging the capabilities of Snyk.

Figure 10: SAST SNYK Jenkins pipeline

To enable the execution of the Snyk tool within the pipeline, we deployed the Snyk
Security plugin within our Jenkins environment. This plugin serves as the bridge,
allowing us to establish a direct connection with the Snyk tool using a straightforward
authentication token. This authentication token is provided by Snyk itself upon
creating an account with the platform. By harnessing this token, the pipeline
commences by performing a checkout of the WebGoat code from the Git repository,

44

thereby ensuring that it is working with the latest version of the codebase.
Subsequently, it proceeds to undertake a thorough and in-depth static analysis of the
specified codebase.

Figure 11: SNYK Plugin

Figure 12: SAST SNYK Jenkins pipeline configuration 1

Figure 13: SAST SNYK Jenkins pipeline configuration 2

45

Upon the completion of the code analysis phase, we've configured the pipeline to
generate a comprehensive report. This report serves as a valuable document,
encapsulating vital information such as the timestamp of its creation, the specific path
where the analysis was conducted, and, of course, a detailed account of the identified
findings.

Figure 14: SAST SNYK Jenkins pipeline configuration 3

Figure 15: SAST SNYK Security Report in Jenkins Pipeline Menu

46

The report is meticulously structured, categorizing the vulnerabilities discovered into
distinct severity levels. The initial section is dedicated to critical vulnerabilities,
followed by high, medium, and ultimately, low-severity vulnerabilities. This clear
delineation allows for a prioritized approach to addressing potential issues within the
codebase.

Figure 16: SAST SNYK Security Report Header

For each identified vulnerability, in addition to its severity level, we provide a wealth
of information, including details about the package and module in which it was
located, the precise path within the module where the issue was identified, a
comprehensive description of the vulnerability itself, and a succinct overview of its
significance. Furthermore, we include information on when the vulnerability was
initially detected, the recommended remediation steps, and any other references or
mentions made regarding the vulnerability.

Figure 17: SAST SNYK Security Report Vulnerabilities

Finally, for those seeking to delve deeper into the intricacies of a specific
vulnerability, we facilitate easy access to further information. A convenient link to
additional details is thoughtfully provided at the conclusion of each section dedicated

47

to an individual vulnerability. This approach ensures that stakeholders have access to
all the necessary information needed to understand, address, and mitigate potential
security risks within the codebase effectively.

Figure 18: SAST SNYK Security Report Vulnerabilities Remediation 1

Figure 19: SAST SNYK Security Report Vulnerabilities Remediation 2

In essence, the integration of the Snyk tool and the meticulous pipeline configuration
have not only streamlined the static code analysis process but have also facilitated a
comprehensive reporting system that empowers our team to make informed decisions
regarding code quality and security.

Overall, in the table below is described what the Snyk tool typically provides as part
of its static code analysis results:

48

Attribute Description

Vulnerability ID A unique identifier for the discovered vulnerability.

Severity
The level of severity assigned to the vulnerability (e.g.,

critical, high, medium, low).

Package
The software package or library containing the

vulnerability.

Module
The specific module or component within the package

where the vulnerability was found.

Path
The detailed file path or location within the module where

the vulnerability exists.

Description
A textual description of the vulnerability, providing context

and details about the issue.

Remediation
Recommendations or steps to address and fix the

vulnerability.

References
Any additional references, links, or resources related to the

vulnerability

Table 1:Snyk tool results description

Furthermore, the configuration process using the plugin proved to be straightforward,
and the exporting of the report within Jenkins was highly facilitative. Additionally, the
scanning process itself demonstrated remarkable efficiency, completing in a mere 5
minutes.

The seamless integration of the SNYK tool, made possible through the user-friendly
plugin, greatly expedited the setup and execution of the static code analysis. This
efficiency not only saved valuable time but also enhanced the overall productivity of
the development workflow. Incorporating such tools into our development pipeline
not only contributes to improved code quality and security but also streamlines the
development process itself.

This, in turn, allows a team to focus more on proactive development and addressing
identified vulnerabilities swiftly. As we continually refine our development practices,
the integration of tools like SNYK remains an essential component of our
commitment to delivering secure and high-quality software solutions. The rapid scan

49

times and ease of configuration provided by the SNYK tool, as well as its seamless
integration with Jenkins, have proven to be invaluable assets in our pursuit of
software excellence.

Here's a table summarizing both the positive and negative aspects of using the SNYK
tool for static code analysis:
Aspect Positive Negative

Ease of
Integration

- Seamless integration with Jenkins
using the Snyk Security plugin.

- Initial setup might require some
configuration, but this is a
one-time effort.

Efficiency
- Rapid code analysis, completing
scans in a short time (e.g., 5 minutes).

- Efficiency may vary depending
on the size and complexity of the
codebase.

Security Insights
- Provides valuable security insights by
identifying vulnerabilities.

- Some false positives or
negatives may occur, requiring
manual review.

Severity
Classification

- Categorizes vulnerabilities by
severity (e.g., critical, high, medium).

- Severity classification may not
always align perfectly with
specific project needs.

Detailed
Reporting

- Generates comprehensive reports
with detailed information about
vulnerabilities.

- Reports can be lengthy and
may require thorough analysis to
prioritize and address issues.

Authentication

- Easy authentication using a provided
token for direct integration with
SNYK.

- Token management and
security are essential to prevent
unauthorized access.

Ease of Use
- User-friendly interface for
configuring and managing scans.

- Configuration may require
some familiarity with Jenkins
and SNYK settings.

Integration
Flexibility

- Integrates with various CI/CD
pipelines, enhancing DevSecOps
practices.

- Compatibility with other
CI/CD tools might require
additional configuration or
scripting.

Continuous
Monitoring

- Supports ongoing security monitoring
with scheduled scans.

- Frequent scans may generate a
high volume of reports,
necessitating effective
management.

GitHub
Compatibility

- Compatible with GitHub repositories,
a widely used platform for source code
hosting.

- In case of GitHub SSH issues,
additional troubleshooting may
be necessary.

Learning Curve

- Relatively straightforward for those
familiar with CI/CD and security
practices.

- New users may require time to
learn the tool's capabilities and
nuances.

Community and
Support

- Active community and support
resources for troubleshooting and
guidance.

- Support may vary, and
resolution times for issues may
depend on the level of service
chosen.

50

Aspect Positive Negative

Cost

- Offers both free and paid plans,
allowing flexibility based on project
requirements.

- Costs may increase for
large-scale or complex projects
with additional features or
services.

Table 2:Snyk tool positives and negatives

SAST using SonarQube

SonarQube, previously known as "Sonar," was initially developed by SonarSource in
2007 as an open-source platform for continuous inspection of code quality [25]. It has
since evolved to encompass a wider range of software quality management, including
security analysis [25]. SonarQube gained significant recognition and a dedicated user
community, establishing SonarSource as a prominent player in the software quality
and security field [25].

Some key points about SonarQube:

● SonarQube is an open-source platform for continuous inspection of code
quality [25].

● It performs automatic reviews with static analysis of code to detect bugs, code
smells, and security vulnerabilities across multiple programming languages
[25].

● SonarQube offers reports on various aspects of code quality, including
duplicated code, coding standards, unit tests, code coverage, code complexity,
comments, bugs, and security recommendations [25].

● It provides metrics history and evolution graphs to track the progress of code
quality over time [25].

● SonarQube integrates with popular build tools like Maven, Ant, Gradle, and
MSBuild, as well as continuous integration tools such as Jenkins and Bamboo
[25].

● It supports a wide range of programming languages, including Java, C#, C,
C++, JavaScript, Python, Go, Swift, PHP, and many more [25].

● SonarQube can be extended with plugins and integrates with development
environments like Eclipse, Visual Studio, Visual Studio Code, and IntelliJ
IDEA through SonarLint plugins [25].

● It offers both a free community edition under the GNU Lesser General Public
License and commercial editions with additional features and support [25].

● SonarQube has a concept of quality gates that define the criteria for code
quality. A passing quality gate indicates that the code meets the defined
standards, while a failing quality gate indicates issues that need to be
addressed [26].

● SonarQube provides feedback through its user interface, email notifications,
and decorations on pull or merge requests (in commercial editions) [26].

● Developers can obtain in-depth guidance on identified issues, including why
each issue is a problem and how to fix it [26].

Overall, SonarQube is a comprehensive code quality and security analysis tool that
helps developers maintain clean, reliable, and maintainable code throughout the

51

development process [26]. It offers a wide range of features, supports multiple
programming languages, and integrates with popular development tools and
environments [25] [26].

The SonarQube application has been successfully deployed on VM2, also known as
'appserver,' using a Docker container. It is currently operational and accessible
through port 9000. To facilitate static code analysis, we have integrated Jenkins with
SonarQube on VM2, employing a dedicated Jenkins plugin called 'SonarQube
Scanner.' This integration allows Jenkins to establish a connection with SonarQube,
which is running on port 9000 on VM2. Through this connection, Jenkins can
transmit the source code to SonarQube for comprehensive static analysis.

Figure 20: SAST SonarQube Jenkins pipeline

As evident from the previous image, it is necessary to declare the SonarQube server,
which is the server running within a Docker container on VM2, as an environment
variable in the "Configure System" page of Jenkins. Specifically, the following
information needs to be specified: the server's name and the URL at which it is
accessible. In order to ensure seamless integration and effective communication
between Jenkins and SonarQube, these server details must be accurately provided
within the Jenkins configuration. This step is crucial for enabling Jenkins to connect
with and utilize the SonarQube server for code analysis and related tasks.

Subsequently, a parallel pipeline was created using the core pipeline. This parallel
pipeline is responsible for sending the code of the WebGoat application to the
SonarQube server for static analysis. In this workflow, the core pipeline is effectively
orchestrating the code analysis process by coordinating the transfer of code to the
SonarQube server. This ensures that the code undergoes comprehensive static
analysis, helping to identify and address potential issues and vulnerabilities in the
WebGoat application. This parallel approach to code analysis can significantly
enhance code quality and security within the project.

52

Figure 21: SAST SonarQube Jenkins pipeline configuration

In order to achieve this, as depicted in the image, it was necessary to declare the
properties within the configuration of the pipeline. These properties are required by
SonarQube to perform static code analysis. These properties typically include:

● sonar.projectKey: This is a unique identifier for your project in SonarQube. It
helps distinguish different projects within SonarQube.

● sonar.projectName: This property specifies the name of your project in
SonarQube.

● sonar.projectVersion: It indicates the version of your project. You can use this
to track changes or versions of your project in SonarQube.

● sonar.language: This property specifies the primary programming language
used in your project. In this case, it's set to Java.

● sonar.exclusions: This property is used to specify file or directory patterns that
should be excluded from the SonarQube analysis. In your configuration, it
excludes all TypeScript files (.ts files).

● sonar.login and sonar.password: These properties are used for authentication
when connecting to SonarQube. In your configuration, the login is set to
"admin," but the password is empty, which means you likely need to provide
the actual password for authentication.

● sonar.projectBaseDir: This property sets the base directory for your project.
It's the root directory where SonarQube should start its analysis.

● sonar.java.binaries: This property should specify the location of the compiled
Java binaries (class files) of your project. This is necessary for SonarQube to
analyze your Java code.

Furthermore, the "-X" argument was added to the additional arguments. This was
done to enable detailed logging in the Jenkins output. This allows anyone reviewing
the Jenkins output to access comprehensive log information.

After the pipeline was successfully executed, one can observe the creation of a
SonarQube report.This report provides a detailed analysis of the codebase,
highlighting issues, code quality metrics, and security vulnerabilities. It serves as a

53

valuable resource for developers and teams to understand the state of their codebase
and take appropriate actions to improve code quality and security.

Figure 22: SAST SonarQube Security Report in Jenkins Pipeline Menu

This specific SonarQube report serves as a hyperlink that directs users to the
SonarQube server's webpage, displaying the results of the particular code analysis. As
depicted in the image, SonarQube provides a comprehensive breakdown of what's
wrong with the project's code. Depending on the rules and criteria set by the user, the
project can either pass or fail the analysis.

This detailed analysis report is a valuable resource for developers and teams to gain
insights into code quality issues, security vulnerabilities, and compliance with coding
standards. It allows for informed decision-making and facilitates the process of
improving and maintaining the project's codebase.

Figure 23: SAST SonarQube Project Status

54

Figure 24: SAST SonarQube Project Vulnerabilities and Issues of new Code

In the scenario where builds occur continuously in a CI/CD environment, SonarQube
has the capability to maintain statistics and also view metrics specifically for the new
code. SonarQube's ability to retain statistics and focus on metrics for the new code is
instrumental in ensuring code quality and security throughout the development
lifecycle. This feature allows development teams to continuously monitor and assess
the impact of changes introduced with each build. It facilitates the identification of
issues and the enforcement of coding standards, ultimately contributing to the ongoing
improvement of code quality and the reduction of technical debt. By concentrating on
the new code, teams can efficiently prioritize their efforts and address code quality
concerns in a streamlined manner.

Figure 25: SAST SonarQube Project Vulnerabilities and Issues metrics

55

Figure 26: SAST SonarQube Project Vulnerabilities and Issues of Overall Code

Figure 27: SAST SonarQube Project Source Code

The configuration for establishing a connection between Jenkins and SonarQube was
straightforward and well-documented on both SonarQube and Jenkins web pages. It's
important to highlight that SonarQube provides highly detailed reports, enabling the
development team to thoroughly review code issues and propose improvements
through a centralized platform. This centralized platform fosters collaboration among
team members, allowing them to engage in discussions, share insights, and
collectively work towards enhancing code quality and security. With access to
comprehensive reports and a unified environment for code analysis, the team can
make informed decisions and continuously strive to improve the overall quality of
their codebase.

SonarQube is a valuable tool for code quality analysis, it's important to be aware of
potential negatives or challenges that I met during the configuration and reviewing the
specific tool:

● False Positives: SonarQube may sometimes report issues that are not actual
problems in the code, leading to false positives. Developers may waste time
investigating and fixing non-issues.

56

● Overwhelming Feedback: If not properly configured, SonarQube can generate
many issues, overwhelming developers with too much feedback to address.
This can lead to frustration and decreased productivity.

● Performance Impact: Running SonarQube analysis on large codebases can be
time-consuming and resource-intensive, potentially slowing down the
development process. For WebGoat analysis it was needed at least 30 minutes.

● Learning Curve: It is needed a lot of time to learn how to interpret SonarQube
reports and understand the various rules and metrics it uses, which can be a
learning curve.

This table summarizes both the positive aspects and considerations when using
SonarQube for code quality analysis and static code analysis.

Aspect Positive Aspects Negative Aspects

Code Quality Analysis

Provides comprehensive code quality
analysis with a focus on
maintainability, reliability, and
efficiency.

Some complex code
patterns may lead to false
positives or false negatives
in the analysis.

Security Analysis
Offers security analysis for common
vulnerabilities such as OWASP Top
10, ensuring safer code practices.

May not cover all security
vulnerabilities, and
additional security tools
may be needed.

Custom Rules
Supports custom code quality and
security rules creation, allowing
organizations to tailor checks.

Creating and maintaining
custom rules can be
time-consuming and
require expertise.

Integration
Integrates seamlessly with various
development environments, CI/CD
pipelines, and IDEs.

Setting up and configuring
integrations can be
complex and
time-consuming.

Interactive Dashboards
Offers interactive and customizable
dashboards for code quality and
security metrics.

Navigating the UI and
interpreting complex
reports may require
training for some users.

Scalability Scales well to analyze large and
complex codebases.

Requires sufficient
hardware resources for
large codebases and
analysis configurations.

**Support for Multiple
Languages**

Supports multiple programming
languages, including Java, JavaScript,
Python, C#, and more.

Analysis results and
features may vary in depth
and support across different
programming languages.

Continuous
Monitoring

Provides continuous code quality and
security monitoring to catch issues
early in the development

Setting up and maintaining
continuous monitoring
workflows can be
challenging.

57

Aspect Positive Aspects Negative Aspects

Community and
Ecosystem

Benefits from an active community
and ecosystem with plugins,
extensions, and support.

Some advanced features
may require a paid license.

Cost (Community
Edition)

Offers a free Community Edition with
basic features

Advanced features and
support require a paid
license.

Table 3:SonarQube tool positives and negatives

58

Container Security using Trivy

Trivy is an open-source security tool developed by Aqua Security. It is a
comprehensive and versatile security scanner that focuses on vulnerability scanning in
containerized environments [1], [27]. Trivy stands for "Tri" as in triple and "vy" as in
vulnerability [1]. It has gained significant attention and adoption within the industry
due to its reliability, frequent updates, and comprehensive vulnerability scanning
capabilities [1].

Trivy is a comprehensive and versatile security scanner that originated from the
security-conscious landscape of containerization, where Docker and other container
technologies were gaining popularity for packaging and deploying applications [27].
Aqua Security, a cybersecurity firm specializing in container security solutions,
recognized the potential security challenges in containerized environments and
initiated the development of Trivy [27]. Trivy was first made available to the public in
open-source form, aligning with the industry's inclination towards collaborative
security practices [27].

Trivy is a specialized vulnerability scanner that is tailored explicitly for container
images and filesystems. It is designed to address security concerns that arise when
using containers [28]. Trivy scans container images, including their components such
as packages and libraries, to identify known vulnerabilities. By doing so, it equips
developers, DevOps teams, and security professionals with the means to identify and
remediate security weaknesses before they can be exploited [28].

Features and Capabilities:
Trivy boasts a robust set of features and capabilities that contribute to its effectiveness
as a container security scanner: Container Image Scanning: Trivy excels in scanning
container images, encompassing both base images and application images. It inspects
every layer of the image, assessing each component for vulnerabilities. Filesystem
Scanning: In addition to image scanning, Trivy can analyze the filesystems within
containers. This capability is particularly valuable for identifying vulnerabilities
within running containers, where traditional image scanning may not suffice. Image
Format Support: Trivy exhibits versatility by offering support for a variety of
container image formats, including Docker images and OCI (Open Container
Initiative) images. This compatibility ensures its applicability across different
containerization technologies.

Vulnerability Database:
One of Trivy's foundational strengths lies in its reliance on an extensive and
frequently updated vulnerability database. This database, curated and maintained by
Aqua Security and the open-source community, plays a pivotal role in the tool's
ability to identify security flaws accurately.

For the specific thesis project, Trivy was employed to conduct a vulnerability
assessment on the WebGoat container. The objective of this endeavor was to
systematically evaluate the security posture of the WebGoat container by identifying
potential vulnerabilities within its components. The methodology employed involved
retrieving the WebGoat container from the Docker Hub repository and subjecting it to

59

a comprehensive security scan using the Trivy tool. This process was integrated into
the overarching project workflow, wherein the central pipeline initiated the execution
of a parallel pipeline, denoted as "Trivy." The "Trivy" pipeline was designed to
orchestrate and facilitate the scanning process. Within this context, Trivy played a
pivotal role in enhancing the security assurance of the WebGoat container, ensuring
that any known vulnerabilities were diligently identified. This proactive approach
aligns with contemporary best practices in container security, fortifying the overall
resilience of containerized applications in a rapidly evolving cybersecurity landscape.

Figure 28: SCA Trivy Jenkins Pipeline

The pipeline has been internally configured within the Jenkins environment through
the utilization of the following Groovy script:

Figure 29: SCA Trivy Jenkins Pipeline configuration

60

As depicted in the image, Trivy is executed on the server labeled "appserver2"
running the Ubuntu operating system (referred to as "ubuntu2"). The process involves
several key steps:

● Image Handling: Trivy begins by evaluating the presence of a specified
container image. If the image exists, Trivy initiates its removal to ensure a
clean slate for subsequent operations.

● Image Retrieval: Subsequently, Trivy proceeds to download the designated
container image anew from the Docker Hub repository. This step guarantees
the use of the latest version of the image for the scanning process.

● Template Download: In preparation for the post-scanning phase, Trivy
downloads an HTML template. This template serves as the foundation for
generating a comprehensive report of the scanning results.

● Scanning Process: Trivy commences the scanning of the container image. The
scanning process leverages the extensive vulnerability database maintained by
Trivy to identify security vulnerabilities within the image's components.

● Report Generation: Upon completion of the scanning process, Trivy utilizes
the downloaded HTML template to dynamically generate a detailed report
summarizing the scanning results. This report is a reflection of the
vulnerabilities discovered in the container image, sourced from Trivy's
vulnerability database.

● Integration with Jenkins: The generated report is subsequently integrated into
the Jenkins environment. This entails the publication of the report on the
Jenkins platform, allowing for easy accessibility and review by relevant
stakeholders.

As previously mentioned, the report detailing the identified vulnerabilities is made
available on the Jenkins platform and is denoted as "Trivy Scan."

Figure 30: SCA Trivy Report in Jenkins Pipeline Menu

61

Figure 31: SCA Trivy Report

The "Trivy Scan" report is generated in HTML format and comprises several columns
of essential information for comprehensive vulnerability assessment. These columns
include:

1. Package: This column lists the specific software packages or libraries within
the container image that have been assessed for vulnerabilities.

2. Vulnerability ID: Each vulnerability detected is associated with a unique
identification code or Vulnerability ID. This facilitates precise tracking and
reference for remediation efforts.

3. Severity: The severity level of each identified vulnerability is indicated,
allowing stakeholders to prioritize remediation actions based on the potential
impact of the vulnerability. Severity levels typically range from Critical to
Low.

4. Installed Version: This column specifies the currently installed version of the
software package or library that is affected by the vulnerability.

5. Fixed Version: The "Fixed Version" column provides information on the
recommended or available fixed version of the software package or library.
This assists in determining the necessary updates or patches to address the
vulnerabilities.

6. Links: Links to relevant external resources or documentation may be included
in this column. These links can provide additional context, details, or
mitigation guidance for each identified vulnerability.

The structured presentation of this information in HTML format ensures clarity and
accessibility, enabling stakeholders to efficiently assess, prioritize, and address
security vulnerabilities within the containerized environment. This proactive approach
aligns with best practices in container security, ultimately contributing to the overall
robustness of containerized applications.

The scanning of the image was completed within a timeframe of 50 seconds. It's
important to note, however, that the scanning duration can vary significantly

62

depending on the size of the image under evaluation. Additionally, the resulting report
unveiled a substantial number of vulnerabilities, which naturally stem from the
vulnerability database embedded within Trivy. For this reason, users are advised to
regularly update the Trivy database to ensure the accuracy of the results.

The integration and configuration of Trivy within the CI/CD pipeline were executed
with ease and expediency. This streamlined process underscores the tool's
user-friendliness and its seamless compatibility with existing development and
deployment workflows.

The variable scanning times, contingent upon image size, highlight the tool's
adaptability to different container environments. Users can benefit from Trivy's rapid
scanning capabilities for smaller images while appreciating its thoroughness for
larger, more complex containers. Regular database updates serve as a proactive
measure to uphold the precision of security assessments.

Furthermore, the effortless integration and configuration of Trivy emphasize its value
in facilitating efficient DevSecOps practices. This ease of use enables organizations to
swiftly incorporate robust container security scanning into their automated CI/CD
pipelines, fortifying their overall security posture.

This table summarizes both the positive aspects and considerations when using Trivy
for the container analysis.

Aspect Positive Negative

Functionality Effectively scans container images and
filesystems for vulnerabilities.

Limited to scanning
vulnerabilities in known
software packages and
libraries.

Vulnerability
Database

Maintains an extensive and frequently
updated vulnerability database.

Reliance on a centralized
database, which may not
cover all possible
vulnerabilities.

Container
Support

Supports various container image formats,
including Docker and OCI images.

Focuses primarily on
containerized
applications, potentially
excluding other assets.

Severity
Assessment

Assigns severity levels to vulnerabilities,
aiding in prioritization.

Severity assessment is
based on available data
and may not reflect
real-world risk.

Customization Allows for custom policies to tailor
scanning to specific requirements.

Customization may
require in-depth
knowledge and could
lead to false negatives.

Integration
Seamlessly integrates with CI/CD
pipelines, promoting automation and
DevSecOps practices.

Requires effort to
configure and integrate
into existing workflows.

63

Aspect Positive Negative

Open Source
Being open-source, Trivy is freely
available and transparent for code
inspection and modification.

Community-supported
software may have
varying levels of support
and documentation.

Report
Generation

Generates detailed HTML reports
summarizing vulnerabilities for easy
analysis.

The quality of the report
may depend on the
accuracy of the
vulnerability database.

Resource Usage Generally lightweight and doesn't impose
a significant resource burden during scans.

Resource usage may
vary depending on the
size and complexity of
container images.

Continuous
Updates

Frequent updates to the vulnerability
database ensure coverage of the latest
threats.

Users must actively
update the Trivy
database to maintain its
effectiveness.

Customization Allows for custom policies to tailor
scanning to specific requirements.

Customization may
require in-depth
knowledge and could
lead to false negatives.

Integration
Seamlessly integrates with CI/CD
pipelines, promoting automation and
DevSecOps practices.

Requires effort to
configure and integrate
into existing workflows.

Table 4:Trivy tool positives and negatives

Container Security using Grype

Grype is an open-source tool primarily developed by Aqua Security for scanning
vulnerabilities. It targets security issues in container images and filesystems. The tool
was conceived in response to the growing popularity of containerization technologies,
such as Docker and Kubernetes, and the subsequent need for specialized tools to
evaluate the security of containerized applications. Grype is a part of Aqua Security's
suite of container security tools [29].

Being an open-source tool, Grype's source code is freely accessible for anyone to use,
modify, and contribute to. This open-source nature encourages community
participation and allows users to tailor the tool to fit their specific needs github.com.

When Grype performs a scan, it uses a vulnerability database stored on the local
filesystem. This database is constructed by pulling data from a variety of publicly
available vulnerability data sources. By default, Grype manages this database and
checks for new updates to ensure that every scan uses the most recent vulnerability
information. However, this behavior can be configured [30].

64

Grype requires updated vulnerability information to provide accurate matches. If the
local database has not been built within the last 5 days, it will fail execution by
default. However, this staleness check can be configured or disabled [30].

In offline or air-gapped environments, Grype can be configured not to perform a
network call over the Internet to check for a new database on each run. As long as the
vulnerability database and metadata files are placed in the cache directory for the
expected schema version, Grype can operate without network access [30].

Grype also provides shell completion through its CLI implementation. The
completion code for a shell can be generated by running one of the commands
provided [30].

Features and Capabilities:
Grype, the open-source vulnerability scanner for container images and filesystems
developed by Aqua Security, offers a comprehensive set of features and capabilities to
bolster container security. It boasts compatibility with a variety of container image
formats, including Docker and OCI images, making it adaptable to diverse
containerization technologies and platforms. Grype seamlessly integrates into CI/CD
pipelines, container registries, and scanning tools, enabling automated vulnerability
assessment throughout the development and deployment lifecycle. Notably, it
supports offline scanning, facilitating assessments in environments with limited
internet connectivity. Organizations benefit from Grype's flexibility to define custom
scanning policies and rules, aligning security practices with specific compliance
requirements. Furthermore, Grype produces detailed reports for identified
vulnerabilities, equipping users with vital information, including CVE details, severity
levels, and recommended remediation steps, to prioritize and rectify security issues
effectively.

Vulnerability Database:
As it is already mentioned, Grype, the open-source vulnerability scanner for container
images and filesystems, relies on external vulnerability databases like the National
Vulnerability Database (NVD), Linux distribution databases, open-source
vulnerability databases, and commercial feeds to identify known security
vulnerabilities. It doesn't maintain its own database but rather leverages these
established sources for accurate and up-to-date vulnerability information. Grype's
strength lies in its ability to cross-reference these databases, simplifying the process of
pinpointing and addressing security risks in containerized environments, benefiting
users by ensuring container security through access to comprehensive vulnerability
data.

In this particular thesis project, Grype was employed via a pipeline to perform
security scanning on the OWASP WebGoat container. The primary objective of this
scanning process is to identify vulnerabilities present within the container and, if
possible, to propose solutions for mitigating these vulnerabilities.

Configuring Grype was relatively straightforward for this purpose. The only
requirements were the installation of Grype on the appserver2 and the creation of a

65

dedicated pipeline. This pipeline is responsible for invoking Grype, updating its
vulnerability database, and conducting a thorough scan of the WebGoat container.

Figure 32: SCA Grype Jenkins Pipeline

The pipeline has been internally configured within the Jenkins environment through
the utilization of the following Groovy script:

Figure 33: SCA Grype Jenkins Pipeline configuration

As depicted in the image, this pipeline script consists of stages that perform various
tasks, including deleting an image if it exists and running a vulnerability scan using
Grype on a Docker image.

Let's break down the script:

● Agent: The pipeline is configured to run on an agent labeled as 'ubuntu2.'
Agents are nodes or machines where Jenkins runs jobs or tasks.

66

● Stages:
o Delete image if exists: This stage is responsible for some form of

deletion, but the actual command for deletion is not present in the
provided script. It currently echoes "Deletion stage," which is more of
a placeholder comment.

o Run Vulnerability Scan: In this stage, several steps are executed:
▪ It creates a directory named 'reports' if it doesn't already exist

using the mkdir -p command.
▪ Copies a template file named 'htmlGrype.tmpl' from a specific

location to the current workspace.
▪ Runs a Grype vulnerability scan on the Docker image

'webgoat/goatandwolf:latest' and saves the scan result in HTML
format using the specified template. The results are stored in
the 'reports/grype.html' file.

▪ Publishes the HTML report generated by Grype using the
Jenkins HTML Publisher plugin. This step makes the Grype
scan report available in the Jenkins job's build artifacts.

As previously mentioned, the report detailing the identified vulnerabilities is made
available on the Jenkins platform and is denoted as "Grype Scan."

Figure 34: SCA Grype Report in Jenkins Pipeline Menu

67

Figure 35: SCA Grype Report

The "Grype Scan" report is produced in HTML format and serves as a vital resource
for conducting a thorough vulnerability assessment. This comprehensive report
consists of several columns, each containing crucial information for evaluating the
security of containerized software components. These columns are as follows:

1. NAME: This column displays the name of the software component being
assessed. It helps identify the specific component that may be susceptible to
vulnerabilities.

2. INSTALLED: The "INSTALLED" column provides details about the installed
version of the software component within the container image. Understanding
the installed version is essential for determining whether updates or patches
are required.

3. TYPE: In the "TYPE" column, you'll find information regarding the
classification or type of the software component. This categorization aids in
assessing the significance of the vulnerability.

4. VULNERABILITY: This column lists the name of the identified vulnerability
associated with the software component. Knowing the specific vulnerability is
crucial for assessing its potential impact and mitigation steps.

5. SEVERITY: The "SEVERITY" column assigns a severity level to the
vulnerability. Severity levels can range from low to critical and help prioritize
remediation efforts based on the potential risk.

6. DESCRIPTION: Within the "DESCRIPTION" column, you'll find a concise
description of the identified vulnerability. This description offers insights into
the nature of the security issue.

7. STATE: The "STATE" column indicates the current status or state of the
vulnerability. It provides information about whether the vulnerability is active
or has been addressed.

8. FIXED IN: The "FIXED IN" column specifies the version in which the
vulnerability has been resolved or fixed. This information is critical for

68

determining the appropriate action to take, such as updating to a secure
version.

By examining these columns in the "Grype Scan" report, security professionals and
administrators can gain a comprehensive understanding of the security posture of
containerized software components and take informed steps to mitigate potential
risks.

The scanning of the image is completed within an average duration of 5 minutes. It's
noteworthy to mention that the scanning duration is directly proportional to the size of
the image being scanned. In other words, the scanning process aligns with the image's
dimensions, ensuring an efficient and proportional assessment.

It's worth noting that Grype doesn't require an internet connection to operate. Once it
has been installed on the host system, it can run independently without the need for
network connectivity. This offline capability enhances its flexibility, allowing it to
perform vulnerability scanning even in isolated or air-gapped environments where
internet access may be restricted or unavailable.

As previously mentioned, the scanning for vulnerabilities is conducted based on the
Grype vulnerability database. It's important to clarify that this database is generated
by external sources and is not an integral part of the tool itself. Therefore, to ensure
reliable results, it is imperative for the user to regularly update this database. By
keeping the vulnerability database up-to-date, users can maintain the accuracy and
effectiveness of the scanning process, enhancing the overall security assessment of the
containerized environment.

The integration of Grype into the pipeline was a relatively straightforward process. It
involved creating a dedicated mini-pipeline within Jenkins, through which the Grype
tool is invoked, and seamlessly linking it with the larger OWASP WebGoat pipeline.
Furthermore, the resulting report is quite legible and user-friendly. One valuable
addition, currently absent but worth considering, would be information on how to
resolve or mitigate the identified vulnerabilities. Including guidance on addressing
vulnerabilities would enhance the utility of the report, providing a comprehensive
solution for security concerns.

The table below provides a concise overview of Grype's strengths and potential
limitations, helping users assess its suitability for container security needs and
environments.

Aspect Positive Aspects Negative Aspects

Functionality
Effectively scans container images and
filesystems for vulnerabilities.

Limited to scanning
vulnerabilities in known
software packages and
libraries.

Vulnerability
Database

Maintains an extensive and frequently
updated vulnerability database.

Reliance on a centralized
database, which may not
cover all possible
vulnerabilities.

69

Aspect Positive Aspects Negative Aspects

Container
Support

Supports various container image formats,
including Docker and OCI images.

Focuses primarily on
containerized
applications, potentially
excluding other assets.

Severity
Assessment

Assigns severity levels to vulnerabilities,
aiding in prioritization.

Severity assessment is
based on available data
and may not reflect
real-world risk.

Customization
Allows for custom policies to tailor
scanning to specific requirements.

Customization may
require in-depth
knowledge and could lead
to false negatives.

Integration

Seamlessly integrates with CI/CD
pipelines, promoting automation and
DevSecOps practices.

Requires effort to
configure and integrate
into existing workflows.

Open Source

Being open-source, gRYPE is freely
available and transparent for code
inspection and modification.

Community-supported
software may have
varying levels of support
and documentation.

Report
Generation

Generates detailed reports summarizing
vulnerabilities for easy analysis.

The quality of the report
may depend on the
accuracy of the
vulnerability database.

Resource Usage
Generally lightweight and doesn't impose
a significant resource burden during scans.

Resource usage may vary
depending on the size and
complexity of container
images.

Continuous
Updates

Frequent updates to the vulnerability
database ensure coverage of the latest
threats.

Users must actively
update the gRYPE
database to maintain its
effectiveness.

Table 5:Grype tool positives and negatives

70

DAST Security using OWASP-Zap

The Open Web Application Security Project (OWASP) Zed Attack Proxy (ZAP) is a
no-cost, open-source DAST tool made specifically for scanning websites for
vulnerabilities. In the OWASP community, it is one of the most active projects and is
managed by The Software Security Project (SSP).

ZAP can be classified as a "man-in-the-middle proxy." The intermediary entity is
situated in the intermediary position, positioned between the browser utilized by the
tester and the web application being tested. Its primary function is to intercept and
scrutinize the communications that are sent between these two entities. The system
has the capability to make necessary modifications to these messages prior to
transmitting them to the intended recipient. The utilization of proxy capability proves
to be advantageous in discerning the behavioral patterns of an application when
subjected to altered inputs, hence aiding in the detection of plausible security flaws.
[31]

The ZAP tool offers a wide range of capabilities that cater to individuals with varying
degrees of expertise, including those who are new to security testing as well as
seasoned security testing professionals. The software provides compatibility with
several prominent operating systems and Docker, hence offering flexibility in terms of
operating system selection. A diverse range of supplementary features may be
accessed through various add-ons in the ZAP Marketplace, which can be conveniently
accessed from inside the ZAP client. [31]

The key elements of ZAP encompass:

● The ZAP tool offers spidering functionality, which involves the use of spiders
to systematically explore online applications. These spiders analyze the
HTML content of web application answers in order to identify and uncover
linkages inside the application. In the context of AJAX applications, it is
probable that ZAP's AJAX spider would exhibit more efficacy due to its
ability to investigate the web application by activating browsers, which then
go via the created links. [31]

● The ZAP tool does passive scanning by analyzing all requests and answers
that are proxied through it, with the purpose of detecting any possible
vulnerabilities. Additionally, the system provides support for active scanning,
a technique that aims to identify vulnerabilities by employing established
attack methods on the designated targets. Nevertheless, it is imperative to
restrict the utilization of active scanning only to authorized targets, since it has
the potential to jeopardize the security of these targets. [31]

● The Heads Up Display (HUD) is a novel user interface that enables direct
access to ZAP functionality within a web browser. Zaproxy.org is a highly
beneficial tool for those who are new to online security, as well as for
experienced penetration testers. It enables the latter group to concentrate on
assessing an application's performance while simultaneously offering crucial
security information and functionality. [31]

● Automation: The utilization of ZAP as a tool in the context of automation is
highly advantageous, as it offers support for a diverse array of alternatives.
[31]

71

The present thesis project used the OWASP tool "ZAP" to do dynamic analysis on the
OWASP WebGoat application. A distinct pipeline was established, referred to as the
auxiliary pipeline of OWASP WebGoat, and executed on the Ubuntu2 agent.

Figure 36: DAST OWASP-Zap Jenkins Pipeline

The pipeline has been setup to execute a Bash script for the purpose of doing dynamic
analysis on the application.

Figure 37: DAST OWASP-Zap execution bash script

The provided script is written in the Bash programming language.
The command executed is "docker run -v $(pwd):/zap/wrk/:rw -t
owasp/zap2docker-stable zap-baseline.py -t". Please provide the URL
"http://192.168.2.15:8080/WebGoat/" to generate an HTML report.

In order to analyze the given instructions, let us proceed with a detailed examination:

● The command "docker run" is utilized to initiate the execution of a Docker
container.

72

● The specified portion of the command facilitates the mounting of the present
working directory, obtained through the $(pwd) command, onto the /zap/wrk/
directory within the Docker container. This enables the seamless transfer of
files between the local system and the container. This functionality enables the
container to do read and write operations on files within the local directory.
The option "rw" signifies that the volume is mounted with read-write
capabilities.

● The use of the "-t" option results in the allocation of a pseudo-TTY terminal
within the container.

● The OWASP/ZAP2DOCKER-STABLE repository is being referred to. The
Docker image now being executed is identified by the name and encompasses
the OWASP ZAP framework.

● The script being executed is zap-baseline.py, which pertains to ZAP. The
provided script serves as a fundamental tool for doing security testing.

● The user provided a URL: "http://192.168.2.15:8080/WebGoat/". The
provided information indicates the desired Uniform Resource Locator (URL)
of the online application that is intended to be subjected to scanning. In this
particular scenario, the task involves doing a scan on a web application that is
being hosted at the following URL: http://192.168.2.15:8080/WebGoat/.

● The "report_html" option in ZAP allows the user to choose the format and
location of the produced report. In this particular instance, an HTML report is
being generated and assigned the filename "report_html".

Upon execution of the command, the OWASP ZAP Docker container will launch and
proceed to do a baseline security scan on the designated web application, which can
be accessed through the URL http://192.168.2.15:8080/WebGoat/. Subsequently, an
HTML report titled "report_html" will be generated. The report will encompass
details on security vulnerabilities that were identified during the scanning process.

In order to perform this command, it is necessary to ensure that two conditions are
met: 1) the application is actively running, and 2) the Docker container containing the
ZAP tool is installed on the computer.

73

Figure 38: DAST OWASP-Zap report download

The ZAP report is created within the workspace of appserver2, where the execution of
the ZAP report takes place. In order to access the report, individuals have the option
to either choose the single file or alternatively opt to download the complete zip
folder. When the report is accessed using Jenkins, it is observed that the content is
shown in plain text format, lacking any visual formatting. This is attributed to the
report being an independent file that does not include the associated CSS files
necessary for style.

Figure 39: DAST OWASP-Zap scanning report

Conversely, when the report is accessed using the user's file explorer subsequent to
downloading the data as a compressed archive to their own computer, it exhibits
enhanced visual appeal, rendering it more engaging and facilitating effortless
comprehension.

74

Figure 40: OWASP-Zap scanning report results (Summary)

Figure 41: DAST OWASP-Zap scanning report results (Alert details)

The report has introductory details, including general information, the title of the
scanned page, the date of the scan, and the version of the zap tool employed.
Subsequently, it demonstrates:

1. Briefly, in a table, the number of alerts found according to their risk level.
2. A table with the alerts that were found, their level, and how many times they

appeared in the application.
3. Details for each alert. The details for each alert include:

1. The severity of the Alert and its name.
2. Description: A description of the alert.

75

3. URL: The Uniform Resource Locator (URL) that the tool accessed and
the specific location where this warning was detected. The URL
section includes:

1. Method:Information on the method employed, such as GET,
POST, or DELETE.

2. Parameter: The parameters that were received by the URL.
3. Attack: The term "attack" encompasses a range of malevolent

behaviors or security weaknesses.
4. Evidence: The "Evidence" section presents the following

HTML code as substantiation for a certain configuration or
element found within a web application or webpage. Within the
realm of web security assessment or analysis, this particular
evidence has significant importance in the identification of
possible vulnerabilities, comprehension of web page structure,
and determination of data transmission mechanisms between
the client and server.

5. Other info: Additional details on the URL.
4. Instances: Instances refer to the frequency with which a particular

warning has occurred. It pertains to the number of times this alert has
been observed or recorded.

5. Solution: The alert is accompanied with a proposed solution.
6. Reference: A hyperlink that provides the user with valuable

information pertaining to the alert.
7. CWE id: The CWE id is a distinct identification that is allocated to a

particular software or cybersecurity flaw or vulnerability within the
framework of the Common flaw Enumeration (CWE) protocol.

8. WASC id: Each WASC id corresponds to a distinct category of online
application security issue, such as cross-site scripting (XSS), SQL
injection, or cross-site request forgery (CSRF). These identifiers are
often employed by security practitioners, scholars, and institutions to
denote and analyze web application security risks in a consistent
fashion.

9. Plugin id: The term "Plugin id" denotes the unique identification linked
to a particular security plugin or rule.

Additionally, the alerts are arranged in a descending sequence based on the level of
risk.

The process of integrating the ZAP tool with Jenkins was uncomplicated, achieved by
utilizing a script that directed to the pre-existing installation of Docker ZAP on the
Ubuntu2 computer. In order to upgrade the ZAP tool, it is necessary for the user to
uninstall the existing Docker instance and thereafter obtain a different version.

The duration of the dynamic analysis conducted with the ZAP tool is estimated to be
around 10 minutes.

The report exhibits a high level of readability when being downloaded into the user's
PC. Accessing the report provided by Jenkins is feasible, although it may not be as
enjoyable.

76

Here's a table summarizing various aspects, both positive and negative, of using the
ZAP tool for dynamic analysis:

Aspect Positive Aspects Negative Aspects
Vulnerability
Detection

Effectively identifies web
application vulnerabilities

Potential for false positives
that require manual review

Ease of Integration
Straightforward integration with
Jenkins and Docker

Upgrading the ZAP tool may
require Docker cleanup

Analysis Duration

Dynamic analysis completes
relatively quickly (around 10
mins)

Analysis time may vary based
on application complexity

Reporting
Structured and detailed reports
with plugin IDs

Jenkins-based report viewing
may be less user-friendly

Security
Assessment

Provides insights into the security
posture of web apps

Relies on existing knowledge
of web application security

Customization
Configurable for specific testing
and scanning parameters

Requires expertise for
fine-tuning and optimal results

Compatibility
Supports a wide range of web
technologies and frameworks

May require updates for
compatibility with new tech

Scripting and
Automation

Offers scripting capabilities for
automation and CI/CD

Scripting complexity may
vary depending on use case

Resource Usage
Moderately resource-efficient
during scanning

Resource utilization may
increase with complex apps

Open Source
ZAP is open-source, fostering a
supportive community

Limited official support,
community-dependent

Table 6:OWASP-Zap tool positives and negatives

DAST Security using Arachni

Arachni is an online application security scanner framework that is open-source and
high-performance. Its primary purpose is to aid in the evaluation of web application
security. The primary purpose of its creation was to serve as an educational exercise
and a tool for conducting targeted security tests on online applications, with the aim
of identifying, categorizing, and documenting security vulnerabilities. Over the course
of its development, the infrastructure has seen significant advancements, resulting in a
robust system that can effectively conduct security audits for web applications and do
common data scraping tasks with a high level of reliability. [32]

Arachni is frequently employed as a tool for Dynamic Application Security Testing
(DAST). The Dynamic Application Security Testing (DAST) method is a form of
black-box application testing that enables the testing of applications in real-time
operational conditions. In the context of application testing using Dynamic
Application Security Testing (DAST), it is not necessary to possess access to the
source code in order to identify vulnerabilities. The activity being referred to is often
known as a penetration test, which involves the identification of vulnerabilities and
misconfigurations in an application's external environment, as seen by a potential
attacker. [33]

77

The capabilities of Arachni encompass:
● Rapid identification of vulnerabilities in web applications.
● The system provides support for a range of report export formats, including

PDF, text, JSON, XML, YAML, and others.
● The system is designed to accommodate a variety of technologies, such as

HTML5, DOM manipulation, AJAX, and JavaScript.
● Incorporating the flexibility to modify the limits of page count, DOM depth,

directory depth, and redirect inside the system.
● The process of auditing include the examination of many elements such as

links, forms, user-interface inputs, cookies, headers, JSON request data, link
templates, and other relevant components.

● The process of incorporating and providing assistance for intricate web
applications. [34]

Arachni has a high degree of scalability and modularity, enabling its utilization as a
rudimentary command-line scanning tool or its configuration as a robust scanning
grid for conducting extensive application security testing procedures on a wide scale.
Additionally, it possesses an intelligent, self-adaptive capacity. The tool enhances its
performance through a process of self-training by analyzing and assimilating
information from HTTP replies. This iterative learning approach leads to improved
accuracy in evaluations and reduces the occurrence of false-positive outcomes. [35]

Nevertheless, it is important to acknowledge that the tool's most recent update
occurred in 2017, and subsequent to that, no official information pertaining to any
further updates has been made available. This factor has the potential to impact the
efficacy of the system in addressing contemporary vulnerabilities and advancements
in web technology. [34]

In summary, Arachni is a robust Dynamic Application Security Testing (DAST)
solution that facilitates comprehensive security assessments of online applications.
The extensive array of features and capabilities of this program renders it a significant
asset in the identification and mitigation of potential security issues. Nevertheless, the
absence of latest updates necessitates users to augment it with additional tools or
methodologies in order to guarantee thorough security coverage.

The present thesis employed the Arachni tool to conduct dynamic analysis on the
OWASP WebGoat application using the Jenkins platform. A supplementary pipeline
was developed, which is triggered by the primary OWASP WebGoat pipeline and
executes the Arachni tool.

78

Figure 42: DAST Arachni Jnekins Pipeline

The incorporation of Arachni into Jenkins for the purpose of dynamic application
security testing (DAST) within the framework of the OWASP WebGoat application
represents a noteworthy advancement in bolstering the security stance of online
applications. An automated and scalable strategy has been built by integrating the
Arachni tool into the OWASP WebGoat pipeline through the creation of an external
pipeline. This integration allows for the easy identification and resolution of security
issues.

The process of integrating with Jenkins was quite uncomplicated. The pipeline was
set to execute on vm-1, which serves as the application server.

79

Figure 43: DAST Arachni Jnekins Pipeline configuration

Furthermore, the execution of ARACHNI was facilitated by the utilization of a Bash
script. The provided script is written in the Bash programming language.

Figure 44: DAST Arachni execution bash script

/home/appserver/arachni-1.5.1-0.5.12/bin/arachni
http://192.168.2.23:8080/WebGoat/ --report-save-path=${BUILD_TAG}.afr
/home/appserver/arachni-1.5.1-0.5.12/bin/arachni_reporter ${BUILD_TAG}.afr
--reporter=html:outfile=${BUILD_TAG}.zip
unzip ${BUILD_TAG}.zip
The integration process was well managed, and a Bash script was employed to
automate the execution of ARACHNI within the Jenkins pipeline. The provided script
aims to optimize the procedure of doing a comprehensive scan on the OWASP
WebGoat application in order to identify potential security flaws.

The following is an analysis of the script's functionality:

80

● The initiation of ARACHNI is achieved by invoking the ARACHNI
executable, which is situated in the directory path
/home/appserver/arachni-1.5.1-0.5.12/bin/arachni.

● The provided information designates the specific URL that is to be scanned,
which is http://192.168.2.23:8080/WebGoat/.

● The ARACHNI report is saved with the file name ${BUILD_TAG}.afr, where
${BUILD_TAG} is an environment variable in the Jenkins system that serves
as a distinct identifier for each individual Jenkins build.

● Once the ARACHNI scan has concluded, the script proceeds to build an
HTML report by utilizing the arachni_reporter command. The input AFR file
is specified, which holds the scan results, and the output file is designated as
${BUILD_TAG}.zip. The present HTML report offers a complete and
thorough examination of the security results.

Ultimately, the script decompresses the HTML report that has been prepared, so
enabling its accessibility for subsequent study or distribution. The utilization of this
automated procedure not only expedites the evaluation of security measures but also
guarantees uniformity and the ability to replicate the outcomes.

The pipeline's execution time of 2 hours and 10 minutes highlights the thoroughness
and completeness of the security testing procedure. During this period, Arachni
conducted a thorough and comprehensive scan of the OWASP WebGoat application,
extensively scrutinizing several aspects in search of probable vulnerabilities.

The produced report assumes a key role as an essential artifact upon the successful
completion of the pipeline. This report presents the facts and insights obtained after a
thorough scan, offering a full picture of the security status of the application. The
object in question serves as a concrete manifestation of the meticulousness and
accuracy utilized in the identification and evaluation of possible hazards.

The report may be found within the Jenkins workspace, where the tool was ran.
Regrettably, the report lacks readability when accessible via the Jenkins user
interface, as it lacks essential .css files and fonts necessary for enhancing
user-friendliness and visual aesthetics. In contrast, when a person downloads the
report as a compressed file and accesses the .html file locally, they are able to observe
the report in its entirety, including the full range of colors and images it presents.

81

Figure 45: DAST Arachni report summary

The above visual representation illustrates that the Arachni report encompasses five
distinct tabs, which afford the user the ability to traverse through and collect pertinent
information pertaining to the identified faults and vulnerabilities inside the
application. The initial tab presents a concise overview encompassing relevant details
such as the application's URL, the date of the scan, and three further sub-tabs.

Figure 46: DAST Arachni report issues chart

The charts present a visual representation of various concerns categorized by kind,
trustworthiness, and severity. Additionally, they depict the distribution of severities,
components, and levels of trust.

82

The identified concerns have been classified into three categories based on their
severity: high, medium, and low.

The purpose of this inquiry is to determine the specific concerns that are included in
the OWASP Top Ten list.

The second tab is dedicated to addressing the various issues, with sub-tabs organized
based on the level of vulnerability and distinguishing between trusted and untrusted
issues.

Figure 47: DAST Arachni report issues

The third tab, which is specifically designated for plugin findings, plays a vital role in
the Arachni report by offering significant information about the security status of the
web application that was scanned. This section provides a comprehensive analysis of
the URLs included inside the application, focusing on their safety status and
highlighting any security vulnerabilities.

Figure 48: DAST Arachni report plugin results

83

The sitemap, which is included in the fourth tab of the Arachni report, plays a crucial
role in comprehending the architecture and navigation routes of the online application
that was subjected to scanning. The sitemap functions as a graphical depiction of the
application's structure, presenting a hierarchical overview of URLs, folders, and their
interconnectedness.

Figure 49: DAST Arachni report sitemap

The last section of the Arachni report is the configuration tab, which offers customers
a comprehensive overview of the factors and settings that dictated the scanning
procedure.

Figure 50: DAST Arachni report configuration

This structure facilitates users in effectively investigating and comprehending the
security discoveries within the application, classifying them based on severity,
trustworthiness, and pertinence to the OWASP Top Ten list. The report's
user-friendliness is especially apparent when seen in a localized context, as it

84

combines visual elements such as colors and charts that improve the overall
comprehension of the vulnerabilities identified throughout the scanning process.

Presented below is a tabular representation that succinctly outlines the advantageous
and disadvantageous attributes of the Arachni tool, which is utilized for the purpose of
conducting web application security screening:

Aspect Positive Aspects Negative Aspects

Comprehensive
Scanning

Scans for a wide range of
vulnerabilities, including XSS, SQL
injection, and more.

High false-positive rate
can lead to
time-consuming manual
verification.

Automation
Supports automation and integration
with CI/CD pipelines for continuous
scanning.

Initial configuration and
setup can be complex.

Customization
Offers customization of scan profiles
and reporting options to suit specific
needs.

Extensive customization
may require expertise.

Reporting
Generates detailed and structured
reports, including HTML, JSON, and
others.

Reports can be
overwhelming for large
scans.

Interactive Reports Provides interactive HTML reports with
clickable links and detailed information.

The volume of
information may be
challenging to navigate
for less experienced
users.

Vulnerability
Severity

Categorizes vulnerabilities by severity,
helping prioritize remediation efforts.

Vulnerability
categorization may not
always align with an
organization's risk
assessment.

Community
Support

Active open-source community for
updates, plugins, and bug fixes.

Limited official support
compared to paid tools.

Web Crawling Uses a crawler to discover and scan
pages.

May not handle complex
or dynamic content well.

Authentication
Support

Can handle login forms and sessions for
authenticated scans.

Configuring
authentication can be
challenging for complex
authentication
mechanisms.

Resource Intensive Can be resource-intensive, especially for
large and complex web applications.

Large scans may require
substantial computing
resources and time.

Table 7:Arachni tool positives and negatives

85

Tools Comparison

Comparison of SAST Tools SonarQube and SNYK

This analysis aims to examine the two used Static Application Security Testing
(SAST) tools, SonarQube and SNYK, highlighting their respective merits and
limitations. SonarQube is renowned for its extensive analysis of code quality and its
ability to customize rules that enhance maintainability, dependability, and efficiency.
In contrast, SNYK prioritizes security analysis, efficiently detecting vulnerabilities
and classifying them based on their level of seriousness.

Code Quality Analysis: SonarQube provides a complete analysis of code quality,
prioritizing the aspects of maintainability, dependability, and efficiency. On the
contrary, SNYK places greater emphasis on security analysis and may not offer an
extensive evaluation of code quality.

Security Analysis: The security analysis capabilities of SonarQube encompass the
identification and mitigation of common vulnerabilities, namely those outlined in the
OWASP Top 10. By utilizing SonarQube, developers may adopt safer coding
practices. In contrast, SNYK primarily emphasizes efficient identification of
vulnerabilities through its security analysis features.

Custom Rules: The SonarQube tool offers the ability to create custom rules for code
quality and security, enabling businesses to customize their inspections according to
their own needs. In contrast, SNYK does not provide an equivalent degree of
customisation in terms of code quality and security standards.

Integration: SonarQube has a high degree of compatibility with diverse development
environments, continuous integration/continuous deployment pipelines, and integrated
development environments. SNYK exhibits effective integration capabilities, albeit
necessitating preliminary configuration, a task normally undertaken only once.

Interactive Dashboards: SonarQube provides users with interactive and configurable
dashboards that display code quality and security metrics. However, effectively
utilizing these dashboards and comprehending the information presented may need a
certain level of training and familiarity with the user interface. While SNYK does
offer user-friendly dashboards, it may not give an equivalent level of code quality
analysis.

Scalability: SonarQube has strong scalability in its capacity to analyze extensive and
intricate codebases, albeit necessitating adequate hardware resources. However, it
should be noted that SNYK has the potential to be effective in its code analysis.
Nevertheless, it is important to consider that the scalability of SNYK may differ
depending on the complexity of the codebase.

Support for Multiple Languages: SonarQube offers support for a wide range of
programming languages, hence offering users increased freedom in their choice of
language. While SNYK prioritizes security analysis across many programming
languages, it may not provide a same level of code quality analysis for all supported
languages.

86

Continuous Monitoring: Continuous monitoring is a crucial aspect of software
development, as it enables the timely identification of code quality and security
concerns. SonarQube, a widely used tool, offers this capability by providing ongoing
monitoring throughout the development process. However, it is worth noting that
setting up SonarQube may present some challenges. SNYK provides continuous
security monitoring through the implementation of scheduled scans, albeit the
regularity of these scans may result in a substantial influx of generated reports.

Cost: SonarQube provides a free Community Edition that encompasses fundamental
functions, but more sophisticated features and support necessitate purchase. SNYK
offers a range of pricing options, including both complimentary and premium plans,
therefore accommodating diverse project needs and allowing for more adaptability.
The expenses associated with large-scale or intricate projects may escalate due to the
inclusion of supplementary features or services.

In summary, SonarQube has exceptional proficiency in delivering thorough code
quality analysis, allowing for customization, and offering support for a wide range of
programming languages. In contrast, SNYK places greater emphasis on the
optimization of security analysis, seamless integration, and compatibility with
GitHub. The selection of tools should be based on the project's individual objectives,
taking into consideration factors such as the importance placed on code quality,
security analysis, and integration demands.

Comparison of Security Container Analysis Tools Grype and Trivy

Grype and Trivy are two tools specifically developed to augment container security
through the identification of vulnerabilities present in container images and
filesystems. This analysis will examine the fundamental characteristics and factors to
be considered when comparing Grype and Trivy, elucidating their individual merits
and constraints.

Functionality: Both Grype and Trivy demonstrate efficient capabilities in doing
vulnerability scans on container images and filesystems.
Both methods are restricted to conducting scans for vulnerabilities in established
software packages and libraries.

Vulnerability Database: The Vulnerability Database is a comprehensive repository
of information pertaining to vulnerabilities in various software systems and
applications.

Container Support: Grype and Trivy support various container image formats,
including Docker and OCI images.
Both approaches largely prioritize containerized apps, possibly disregarding other
assets.

87

Severity Assessment: The evaluation of severity in both tools is reliant on the data
that is accessible and may not consistently provide an accurate representation of risk
in real-world scenarios.

Customization: Both Grype and Trivy offer the capability to create custom rules in
order to adapt the scanning process to meet unique requirements.
The process of customization necessitates a comprehensive understanding and has the
potential to result in inaccurate bad outcomes in both tools.

Integration: Grype and Trivy exhibit a high level of compatibility with continuous
integration and continuous deployment (CI/CD) pipelines, hence facilitating the
automation of processes and the adoption of DevSecOps methodologies.
Both of these tasks necessitate exerting effort in order to properly install and
seamlessly incorporate them into pre-existing operations.

Open Source: Both Grype and Trivy are open-source software, which means that
they are openly accessible and allow for code examination and change.
The quality of support and documentation for tools in community-supported software
might vary.

Report Generation: Both tools have the capability to create comprehensive reports
that provide a concise overview of vulnerabilities, facilitating convenient
examination. The correctness of the vulnerability database may have an impact on the
quality of the report generated by both Grype and Trivy.

Resource Utilization: Both tools are often characterized by their low weight and
minimal impact on system resources during scanning processes.
The utilization of resources in both tools is subject to variation according on the
dimensions and intricacy of container pictures.

Continuous Updates: Both Grype and Trivy regularly update their vulnerability
databases to assure comprehensive coverage of the most recent security threats.
In order to ensure the continued efficacy of both technologies, it is imperative for
users to actively engage in the process of updating the databases.

In brief, Grype and Trivy exhibit several commonalities with respect to their
functionality, database management, container compatibility, severity evaluation,
customization options, integration capabilities, open-source characteristics, report
production, resource utilization, and ongoing upgrades. The selection between these
options may ultimately be determined by certain criteria and preferences inside one's
container security protocols.

Comparison of DAST Tools Arachni and OWASP-ZAP

The Arachni vulnerability detection tool distinguishes itself by doing comprehensive
scans to identify a diverse array of vulnerabilities, encompassing prevalent security
risks such as Cross-Site Scripting (XSS) and SQL injection. Nevertheless, it is
important to acknowledge that Arachni has the potential to produce false positives,

88

indicating the possibility of identifying issues as vulnerabilities when they are not,
hence necessitating manual verification.

In contrast, OWASP ZAP demonstrates a high level of efficacy in detecting
vulnerabilities within online applications, therefore establishing itself as a dependable
option for doing security scans. Similar to Arachni, it is possible for this tool to
generate false positives, which would require a manual review process.

Integration Capabilities: Arachni possesses the ability to automate processes and
can be seamlessly included into Continuous Integration/Continuous Delivery (CI/CD)
pipelines. However, several users perceive the initial setup and configuration as
intricate, posing a potential obstacle for individuals who are new to the system.

OWASP ZAP is renowned for its seamless integration capabilities with widely
adopted solutions such as Jenkins and Docker. The process of establishing and
integrating the system with your current infrastructure is pretty uncomplicated.
Nevertheless, the process of updating ZAP may include some cleansing procedures,
which might be perceived as a disadvantage.

Customization: Arachni provides a wide range of customization options for
configuring scan profiles and generating reports. Individuals have the ability to
customize the tool according to their own needs and preferences. Nevertheless, the
exploration of customisation at a profound level may necessitate a certain degree of
knowledge, hence posing a problem for individuals with limited experience.

The OWASP ZAP tool possesses the capability to be customized according to unique
testing settings, hence enabling users to modify its functionality to align with their
individual requirements. However, in order to get best outcomes with ZAP, it may be
necessary to possess a comprehensive comprehension of web application security,
rendering it more ideal for those who possess knowledge in this domain.

Arachni is capable of generating comprehensive and organized reports in several
forms, such as HTML and JSON. Although these reports offer extensive insights, they
can become daunting when dealing with huge scans. Therefore, it is crucial to
properly navigate through the data.

The ZAP tool offers comprehensive and organized results that include plugin IDs,
facilitating the identification of vulnerabilities. Nevertheless, several users perceive
the report viewing interface in Jenkins to possess a relatively lower level of
user-friendliness, hence potentially constituting a slight disadvantage.

The concept of vulnerability refers to the state or condition of being susceptible to
harm.

Severity: The categorization of vulnerabilities by Arachni assists businesses in
prioritizing the resolution of issues based on their severity. This enables organizations
to choose which vulnerabilities should be addressed first. This particular characteristic
facilitates the implementation of effective remedial actions. Nevertheless, it is crucial
to acknowledge that the classification of severity may not consistently correspond
precisely with an organization's evaluation of risk.

89

The OWASP ZAP tool provides valuable information into the security stance of
online applications, aiding users in gaining a deeper understanding of their
vulnerabilities. Nevertheless, its value is contingent upon the user's pre-existing
understanding of web application security, rendering it particularly beneficial for
individuals who possess competence in this domain.

Community Support: Both Arachni and OWASP ZAP derive advantages from the
presence of vibrant open-source communities that actively contribute to the
development of updates, plugins, and bug patches. However, it is vital to consider that
the extent of government support for these tools may be restricted in comparison to
paid options.

Resource Usage: The utilization of resources by Arachni can be significant,
particularly in the context of scanning online applications that are both extensive in
size and intricate in nature. In resource-constrained situations, the completion of scans
may necessitate significant computational resources and time, hence posing a
potential challenge for users. The resource efficiency of OWASP ZAP is reasonable
during scanning operations. However, when dealing with complicated applications or
larger-scale testing, the use of resources may rise.

Open-source tools, such as Arachni and OWASP ZAP, are characterized by their
availability for unrestricted usage and the transparency of their source code, allowing
users to review and modify them as desired. The open-source nature of these
technologies cultivates inclusive communities that offer many resources to users.

In brief, Arachni demonstrates proficiency in conducting thorough scans and offering
customization options, but perhaps accompanied by a greater likelihood of false
positives and an initial learning curve. The OWASP ZAP tool is renowned for its
seamless integration capabilities, efficient dynamic analysis functionality, and
well-organized reporting system. However, it is important to note that there is a
possibility of false positives and a certain level of skill is necessary for its effective
utilization. The selection between these options should be in accordance with one's
particular requirements, level of proficiency, and concerns regarding infrastructure.

90

Conclusion

This thesis explores the complexities of a multidimensional journey within the
domain of DevSecOps, where the integration of software development and
cybersecurity is of utmost importance. The primary objective of this research was to
examine the implementation and incorporation of security protocols throughout the
Software Development Lifecycle (SDLC), within an environment that is progressively
shaped using DevOps methodologies.

The investigation began with acquiring a thorough comprehension of the Software
Development Lifecycle, supported by a full examination of the Agile Manifesto,
which serves as the fundamental principle of contemporary software development.
ultimately, we proceeded to explore the realm of Continuous Integration and
Continuous Delivery (CI/CD) methodologies, ultimately encountering the
transformative impact of DevOps. The major focus of this thesis is the Application
Security Pipeline for Continuous Integration/Continuous Deployment (CI/CD), which
is an area that combines Information Security and Application Security. This
highlights the significant importance of security inside the DevOps framework.

As we proceeded farther, our attention was drawn to the weaknesses that became
more prominent. The present study conducted a comprehensive analysis of several
methodologies employed in the identification of vulnerabilities across the Software
Development Life Cycle (SDLC). The study examined Static Code Analysis,
Dynamic Code Analysis, Software Composition Analysis, and Container Security
Analysis, which provided distinct perspectives on the security status of the scrutinized
programs.

The central focus of this study revolves around the proposition and assessment of a
Continuous Vulnerability Management framework within the context of DevSecOps.
This study has presented an analysis of the practices involved in Continuous
Vulnerability Evaluation, Treatment, and Reporting, emphasizing the need of using
proactive and iterative approaches to vulnerability management.

In the pursuit of genuineness and verification, a comprehensive practical case study
was conducted utilizing the OWASP WebGoat program. A comprehensive evaluation
was conducted on various security technologies as part of a DevSecOps pipeline.
These technologies included Static Application Security Testing (SAST) tools such as
SNYK and SonarQube, Container Security Analysis tools like Grype and Trivy, as
well as Dynamic Application Security Testing (DAST) tools including OWASP-Zap
and Arachni. The objective of this study was to assess the effectiveness of these
technologies, providing a substantial amount of valuable insights and data.

In summary, this thesis has effectively shown a significant correlation between
software development and cybersecurity, providing valuable perspectives and
recommendations for businesses seeking to strengthen their security protocols in the
ever-evolving landscape of modern software development. The comprehensive
methodology employed, which encompasses the entirety of the Software
Development Lifecycle and incorporates the fundamental principles of DevSecOps,
serves as a demonstration of the dedication to constructing software systems that are

91

both safe and resilient. The ongoing evolution of the digital ecosystem has prompted
enterprises to seek significant insights and guidance from this research, which may
help them succeed in a safe, DevOps-driven environment.

92

Bibliography

[1] “Aqua Security,” [Online]. Available: https://aquasecurity.github.io/trivy/dev/.
[2] Atlassian, “What Is DevOps?,” [Online]. Available:

https://www.atlassian.com/devops. [Accessed 2023].
[3] D. Spinellis, “ieeexplore,” 2016. [Online]. Available:

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7458759.
[4] R. Jabbari, N. Bin All, B. Tanveer and K. Petersen, “What is DevOps?:A

Systematic Mapping Study on Definitions and Practices.,” 2016.
[5] Red Hat, “What is a CI/CD pipeline?,” 11 May 2022. [Online]. Available:

https://www.redhat.com/en/topics/devops/what-cicd-pipeline. [Accessed 2023].
[6] I. Ltd, Iso/iec 27034:2011+ -information technology -security techniques -

application security.
[7] R. N. Rajapaske, M. Zahedi, M. Ali Babar and H. Shen, “Challenges and

Solutions When Adopting DevSecOps: A Systematic Review,” Information and
Software Technology, 2022.

[8] OWASP, “OWASP top Ten,” [Online]. Available:
https://owasp.org/www-project-top-ten/.

[9] A. Martin, S. Raponi, T. Combe and R. Di Pietro, “Docker
ecosystem–vulnerability analysis,” Computer Communications.

[10] FORTINET, “FORTINET,” [Online]. Available:
https://www.fortinet.com/resources/cyberglossary/threat-modeling. [Accessed
2023].

[11] “Secure Software Technologies,” in Information and System Security in the
Cyberspace, NewTech Pub, 2021.

[12] OWASP, “OWASP,” [Online]. Available:
https://owasp.org/www-community/controls/Static_Code_Analysis. [Accessed
2023].

[13] ISECT LTD, “Iso/iec 27034:2011+ - information technology - security
techniques - application security (all except part 4 published),” [Online].
Available: https://www. iso27001security.com/html/27034.html.

[14] T. Nora, L. Jingyue and H. Huang, “An Empirical Study on Culture,
Automation, Measurement, and Sharing of DevSecOps,” IEEE, 3 June 2019.

[15] T. Rangnau, R. v. Buijtenen, F. Fransen and F. Turkmen, “Continuous Security
Testing: A Case Study on Integrating Dynamic Security Testing Tools in CI/CD
Pipelines,” IEEE, 2020.

[16] OWASP, “OWASP,” [Online]. Available:
https://owasp.org/www-community/Source_Code_Analysis_Tools.

[17] OWASP, “Checkpoint,” [Online]. Available:
https://www.checkpoint.com/cyber-hub/cloud-security/what-is-dynamic-code-an
alysis/.

[18] Stackify, “Stackify,” [Online]. Available:
https://stackify.com/oop-concepts-composition/.

[19] Helpnetsecurity, “Helpnetsecurity,” [Online]. Available:
https://www.helpnetsecurity.com/2020/01/22/container-security-continuous-secu
rity/.

[20] RedHat, “A comprehensive DevSecOps solution,” [Online]. Available:
https://www.redhat.com/en/partners/devsecops.

93

[21] zscaler, “zscaler,” 18 May 2022. [Online]. Available:
https://www.zscaler.com/blogs/product-insights/top-challenges-faced-organizatio
ns-implementing-devsecops. [Accessed 2023].

[22] CISCO, “CISCO - DevSecOps - Addressing Security Challenges in a Fast
Evolving Landscape White Paper,” 18 March 2021. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/devse
cops-addressing-security-challenges.html. [Accessed 2023].

[23] IBM, “What is DevSecOps?,” [Online]. Available:
https://www.ibm.com/topics/devsecops. [Accessed 2023].

[24] snyk, “snyk,” [Online]. Available: https://snyk.io/about/. [Accessed September
2023].

[25] “wikipedia,” [Online]. Available: https://en.wikipedia.org/wiki/SonarQube.
[26] SonarQube. [Online]. Available: https://docs.sonarsource.com/sonarqube/latest/.
[27] “GitHub,” [Online]. Available: https://github.com/aquasecurity/trivy.
[28] “How-To-Geek,” [Online]. Available:

https://www.howtogeek.com/devops/how-to-use-trivy-to-find-vulnerabilities-in-
docker-containers/.

[29] “Aqua Security,” [Online]. Available:
https://www.aquasec.com/products/open-source-projects/.

[30] Github.com. [Online]. Available: https://github.com/anchore/grype.
[31] ZAP, “ZAP,” [Online]. Available: https://www.zaproxy.org/getting-started/.
[32] “InfoSsc,” [Online]. Available:

https://resources.infosecinstitute.com/topics/application-security/web-application
-testing-with-arachni/.

[33] “comparitech,” [Online].
[34] “Network Admin Tools,” [Online]. Available:

https://www.comparitech.com/net-admin/what-is-dast/.
[35] “UpGuard,” [Online].
[36] OWASP, “OWASP,” [Online]. Available:

https://owasp.org/www-community/Threat_Modeling. [Accessed 2023].

94

