
Investigation of Machine Learning-based Schemes for
the Development of Coarse-Grained Force Fields for

Organic Molecules

by

Spilios Dellis

Submitted

in partial fulfilment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

September 2023

University of Piraeus, NCSR “Demokritos”. All rights reserved.

2

Author .

II-MSc “Artificial Intelligence”
September 00, 2023

Certified by. .

George Giannakopoulos, Ph.D.
Functional Scientific Personnel (B)

Thesis Supervisor

Certified by. .

Niki Vergadou, Ph.D
Researcher (C)

Member of Examination Committee

Certified by. .

Theodoros Giannakopoulos, Ph.D.
Researcher (B)

Member of Examination Committee

4

Investigation of Machine Learning-based Schemes for the
Development of Coarse-Grained Force Fields for Organic

Molecules

By

Spilios Dellis

Submitted to the MSc “Artificial Intelligence” on
September, 2023,

in partial fulfillment of the
requirements for the MSc degree

Abstract
This master thesis presents the development of an innovative evaluation and ranking proto-
col that integrates physical insights to assess the performance of models and employs statistical
tests for validation. The protocol was applied to address a multi-objective optimization problem
related to self-adapting the weights of a Graph Convolutional Neural Network model. Specifi-
cally, the Graph Convolutional Neural Network model was designed to simulate a force field for
predicting molecular system configurations in a coarse-grained setting. The SchNet architec-
ture, a deep learning framework tailored for atomistic systems and capable of modelling quan-
tum interactions in molecules, served as the foundation for the proposed approach. The training
dataset consisted of multiple frames obtained from atomistic simulations of benzene molecules.
This research mainly focused on achieving a self-balancing of weights within the dual compo-
nents of the Graph Convolutional Neural Network model’s loss function. This self-balancing
aimed to optimize the trade-off between different objectives in the multi-objective optimization
problem, enhancing the model’s performance. To identify the most effective self-balancing
method among various alternatives, the developed protocol was employed to evaluate the per-
formance of each approach. The evaluation results revealed the most optimal self-balancing
approach for this specific multi-objective optimization problem within the context of simulat-
ing a force field for predicting coarce-grained molecular system configurations. The presented
methodology offers a valuable contribution to the field of deep learning applied to atomistic
systems and multi-objective optimization, paving the way for further advancements in molec-
ular dynamics simulations and related research.

Thesis Supervisor: Dr. George Giannakopoulos
Title: Investigation of Machine Learning-based Schemes for the Development of
Coarse-Grained Force Fields for Organic Molecules

6

Acknowledgments
I wish to extend my sincere gratitude to the many individuals whose steadfast support and
unwavering encouragement have been instrumental in bringing this master’s thesis to fruition.

Foremost, I am deeply appreciative of the exceptional guidance and mentorship provided
by my esteemed supervisor, Dr. George Giannakopoulos. His generosity in affording me the
opportunity to immerse myself in such an exhilarating field and sharing his profound knowledge
has been an enriching experience. Throughout the entirety of my research journey, his guidance
and supervision were irreplaceable, contributing immeasurably to the quality of this work.

I extend my profound appreciation to the distinguished members of my advisory commit-
tee, Dr. Niki Vergadou and Dr. Theodoros Giannakopoulos. Their invaluable insights and
constructive contributions have elevated the calibre of this thesis, leaving an indelible mark on
its development.

I am indebted to Dr. Eleonora Ricci andMr. Dimitris Gerakinis for their unwavering collab-
orative spirit, mentorship, and scholarly camaraderie. Their intellectual engagement has made
this academic expedition intellectually invigorating and deeply gratifying.

To my family, I owe a debt of gratitude for their unwavering support, unwavering belief in
my abilities, and the sacrifices they have made to ensure my success. Their enduring faith in
my pursuits has served as an enduring wellspring of motivation and determination.

I am profoundly thankful to Katerina for her extraordinary patience, understanding, and
unwavering encouragement, particularly in light of the unconventional decision to pursue an
MSc degree at this stage of my life.

Lastly, I would like to express my appreciation to Nasia because she simply is.
To all those who have played a role, regardless of its magnitude, in this academic endeavour,

your support, encouragement, and steadfast belief in my capabilities have been indispensable.
I extend my profound gratitude for your contributions to the successful culmination of this
master’s thesis.

ii

To my father...

iii

iv

Contents
Acknowledgments i

1 Introduction 1

2 Background Knowledge and Related Work 3
2.1 Molecular simulation . 3

2.1.1 Fundamentals of Molecular Dynamics 4
2.1.2 Basic Concepts . 4
2.1.3 Statistical Ensemble . 5
2.1.4 Inter-Atomic Potentials . 6
2.1.5 Calculation of Properties . 6
2.1.6 Coarse-Grained Molecular Simulations 8

2.2 Machine learning . 9
2.2.1 Artificial Neural Networks . 11
2.2.2 Convolutional Neural Networks (CNNs) 13
2.2.3 Graph Neural Networks . 13
2.2.4 Graph Convolutional Neural Network 14

2.3 Multicomponents loss functions . 14
2.3.1 Multi-Objective Optimization (MOO) 14
2.3.2 Self-balancing methods . 15

2.4 Related work . 16

3 Methodology 19
3.1 Machine learning model . 19
3.2 Experimental Setup . 20
3.3 Loss components value and gradient based approaches 22
3.4 Statistical analysis of the evaluation results 23

4 Experiments and results 25
4.1 Model transferability tests . 25

4.1.1 Temperature Transferability . 25
4.1.2 Loss hyperparameters indicative tests 28

4.2 Loss components balancing methods . 29
4.2.1 Constant Loss methods . 29
4.2.2 Efficiency of SoftAdapt and optimum predefined methods 31
4.2.3 Methods performance and technical comparison 38
4.2.4 Post hoc analysis . 40

5 Conclusions and Open Problems 45

v

vi

List of Figures

1 Molecular simulation methods at multiple length and time scales. Hierarchical
multiscale simulations utilize information extracted from the previous scale as
input for conducting molecular simulations at longer length and time scales [3]. 3

2 Geometry of a multi-layer artificial neural network (ANN) [59]. 11
3 Perceptron model. 12
4 Schematic of a PINN: A fully-connected feed-forward neural network with

space and time coordinates (x, t) as inputs, approximating a solution û (x, t).
[82]. 15

5 Illustrations of the SchNet architecture (left) and interaction blocks (right) with
atom embedding in green, interaction blocks in yellow, and property prediction
network in blue. For each parameterized layer, the number of neurons is given
[95]. 19

6 System studied: 500 molecules of liquid benzene at 300 K mapped onto one
CG bead each (light blue spheres) [17]. 21

7 Results of the coarse-grained simulations at temperature ranged between 280K
and 340K using a model trained at 300K. (a) Radial distribution function. (b)
Mean square displacement. (c) Potential energy, with a red line the mean po-
tential energy from atomistic simulation is indicated. (d) Temperature. 26

8 Results of the coarse-grained simulations at 340K using models trained at 300K
and 340K. (a) Radial distribution function. (b) Mean square displacement. (c)
Potential energy. (d) Temperature. 27

9 Results of the coarse-grained simulations at 340K using models trained at 300K
and 340K. (a) Radial distribution function. (b) Mean square displacement. (c)
Potential energy. (d) Temperature. 28

10 Results of the coarse-grained simulations using predefined self-balancing ap-
proaches. (a) Pair correlation function, the pair correlation function from the
atomistic simulation is presented with a blue line. (b) Mean Square Displace-
ment. (c) Potential Energy, the mean potential energy of the atomistic simula-
tions is presented with a blue line. (d) Temperature, the targeted temperature of
the system was 340 K. 30

11 Evolution of (a) balanced and (b) unbalanced loss components during the train-
ing of the model using the ratio approach. 31

12 Results of the coarse-grained simulations using the optimized constant weight
approach. (a) Pair correlation function, the pair correlation function from the
atomistic simulation is presented with a blue line. (b) Mean Square Displace-
ment. (c) Potential Energy, the mean potential energy of the atomistic simula-
tions is presented with a blue line. (d) Temperature, the targeted temperature of
the system was 340 K. 32

13 Results of the coarse-grained simulations using the ratio approach. (a) Pair
correlation function, the pair correlation function from the atomistic simulation
is presented with a blue line. (b) Mean Square Displacement. (c) Potential
Energy, the mean potential energy of the atomistic simulations is presented with
a blue line. (d) Temperature, the targeted temperature of the system was 340 K. 34

vii

14 Results of the coarse-grained simulations using the original variant of SoftAdapt
approach. (a) Pair correlation function, the pair correlation function from the
atomistic simulation is presented with a blue line. (b) Mean Square Displace-
ment. (c) Potential Energy, the mean potential energy of the atomistic simula-
tions is presented with a blue line. (d) Temperature, the targeted temperature of
the system was 340 K. 35

15 Results of the coarse-grained simulations using the weighted SoftAdapt ap-
proach. (a) Pair correlation function, the pair correlation function from the
atomistic simulation is presented with a blue line. (b) Mean Square Displace-
ment. (c) Potential Energy, the mean potential energy of the atomistic simula-
tions is presented with a blue line. (d) Temperature, the targeted temperature of
the system was 340 K. 36

16 Results of the coarse-grained simulations using the normalized SoftAdapt ap-
proach. (a) Pair correlation function, the pair correlation function from the
atomistic simulation is presented with a blue line. (b) Mean Square Displace-
ment. (c) Potential Energy, the mean potential energy of the atomistic simula-
tions is presented with a blue line. (d) Temperature, the targeted temperature of
the system was 340 K. 37

17 Box plots of the number of epochs for the linear scalarization constant weights
approach, the ratio approach, the original variant of SoftAdapt, the normalized
SoftAdapt, and the weighted SoftAdapt.. 38

18 Box plots of the (a) mean and (b) standard deviation of the duration of training
epoch for the constant weights approach, the ratio approach, the original variant
of SoftAdapt, the normalized SoftAdapt, and the weighted SoftAdapt. 39

19 Box plots of the (a) absolute percentage difference between the Coarse-Grained
(CG) and atomistic simulated potential energy and (b) its coefficient of variation
for the constant weights approach, the ratio approach, the original variant of
SoftAdapt, the normalized SoftAdapt, and the weighted SoftAdapt. 39

20 Box plots of the (a) mean CG simulated temperature and (b) its coefficient of
variation for the constant weights approach, the ratio approach, the original
variant of SoftAdapt, the normalized SoftAdapt, and the weighted SoftAdapt. . 40

21 Box plots of the (a) statistic and (b) p-value of K-S test for the constant weights
approach, the ratio approach, the original variant of SoftAdapt, the normalized
SoftAdapt, and the weighted SoftAdapt. 40

22 Box plots of the slope of the last 30% of the MSD function for the constant
weights approach, the ratio approach, the original variant of SoftAdapt, the nor-
malized SoftAdapt, and the weighted SoftAdapt. 41

viii

List of Tables
1 Optimized hyperparameter sets evaluated for training models at 340K 29
2 Statistical parameters extracted from the training and simulation of models us-

ing intuitive approaches for the self-adaptation of the loss terms coefficients. . . 31
3 Statistical parameters extracted from the training and simulation of models us-

ing the optimized constant weight approach for the self-adaptation of the loss
terms coefficients for different seed values. 33

4 Statistical parameters extracted from the training and simulation of models us-
ing the ratio approach for the self-adaptation of the loss terms coefficients for
different seed values. 34

5 Statistical parameters extracted from the training and simulation of models us-
ing the original variant of SoftAdapt approach for the self-adaptation of the loss
terms coefficients for different seed values. 35

6 Statistical parameters extracted from the training and simulation of models us-
ing the weighted SoftAdapt approach for the self-adaptation of the loss terms
coefficients for different seed values. 37

7 Statistical parameters extracted from the training and simulation of models us-
ing the normalized SoftAdapt approach for the self-adaptation of the loss terms
coefficients for different seed values. 38

8 Results of Kruskal-Wallis test for the different statistical parameters. 41
9 Ranking of each self-balancing method based on individual parameters. 42
10 Results of the pairwise Tukey’s test for the parameters that present p-value equal

or below 0.35 in the Kruskal-Wallis test. 43

ix

x

1 Introduction

Molecular Dynamics (MD) has emerged as a powerful tool for simulating atomistic systems,
providing researchers with an intricate understanding of materials properties at a granular level
[1]. This computational technique bridges the gap between macroscopic properties and their
microscopic origins, enabling the exploration of various phenomena that may be challenging
or even impossible to observe experimentally [2]. By applying the principles of classical me-
chanics to atomistic and molecular systems, MD simulations can model complex material be-
haviours across a range of time scales [3]. The detailed data generated through these simulations
has made them indispensable in numerous scientific disciplines, including materials science [4],
biology [5], and physics [6].

Nonetheless, MD simulations come with a set of inherent challenges. The accuracy and
reliability of these simulations greatly depend on the construction of interatomic potentials or
force fields, which govern the interactions between atoms and molecules within the system
[7]. The formulation of these potentials, a process known as parametrization, can be quite
intricate. Additionally, the computational demands associated with these simulations often limit
the temporal and spatial scales that can be probed [8].

Machine Learning (ML) has been identified as a potent tool for overcoming these challenges
[9]. Within the realm of MD, ML algorithms have been harnessed to predict force fields from
atomistic configurations, which significantly cuts down the computational costs associated with
these simulations [10]. Various ML models, including Gaussian process regression, artificial
neural networks, and deep learning models, have been adopted for this purpose, each bringing
its unique strengths and limitations to the table [11].

Nevertheless, the integration of ML in MD simulations is not without difficulties. A key is-
sue is the management of multi-component loss functions. These functions encompass multiple
terms, each representing a different physical property or constraint that the model must maintain
[12]. When these terms vary greatly in scale or significance, an imbalance may arise, potentially
skewing the learning process. The model may become overly biased towards one component
of the loss, at the expense of others, consequently diminishing its overall performance [13].

This problem has been encounter in several problems that have been addressed with ML
and has led to the evolution of self-balancing methods [14]. These strategies seek to balance
the contribution from each component to the total loss, thereby facilitating holistic learning.
Techniques range from dynamically adjusting the weights of loss components during training
[15, 16], to applying transformations that bring the components of loss to a similar scale [17,
18].

Evaluating the results of MD simulations involves a range of methodologies. A typical
approach involves comparing the simulation results with experimental data [19]. This com-
parison offers a means to validate the accuracy and reliability of the simulation. Moreover,
statistical measures such as the Root-Mean-Square Deviation (RMSD), Radial Distribution
Functions (RDF), and Mean Square Displacement (MSD) can offer further insights into the
simulation’s quality [1].

Choosing the most appropriate self-balancing approach usually depends on the specific
problem at hand. This selection process involves gauging the performance of different ap-
proaches based on various metrics, such as the accuracy of predictions and computational ef-
ficiency [20]. More advanced methods utilize statistical testing or optimization algorithms to
ascertain the optimal approach [21].

The focal point of this master’s thesis is to address the challenge of determining optimal
weights for the components of a multi-objective loss function in MLmodel training. We specif-

1

ically focus on implementing self-balancing methods for the loss function components within
the framework of a Graph Convolutional Neural Network (GCNN) scheme that has been previ-
ously developed for the description of intermolecular interactions. This scheme will be utilized
for the molecular simulation of a bulk benzene liquid system at a coarse-grained level, using a
single bead representation based on atomistic MD simulation ground truth.

The primary motivation behind this research stems from the importance of generating ac-
curate and efficient force field simulations for molecular dynamics, towards which ML-based
schemes couldmake significant contributions. The performance of GCNNmodels in simulating
force fields is heavily influenced by the choice of weights assigned to the loss function com-
ponents. As a result, there is a pressing need for self-adaptation methods that can effectively
balance these components, thereby optimizing the performance of the GCNN model.

This master’s thesis research aims to investigate the use various self-adaptation approaches
of loss component weights in the GCNNmodel and establish a robust and consistent evaluation
process for various self-adaptation approaches of loss component weights in the GCNN model.
We implemented and compared several self-adaptation methods based on physical parameters
and training efficiency metrics to achieve this.

The structure of this master’s thesis unfolds as follows: Chapter 2 provides an introduction
to the fundamental theories of Molecular Simulation (MS) and ML, along with an overview
of the relevant scientific literature. Chapter 3 details the research methodology, outlining the
adopted approach. Chapter 4 presents the experiments conducted and the corresponding re-
sults obtained. Finally, Chapter 5 offers a comprehensive discussion of the conclusions drawn
from the research findings, alongside an exploration of any unresolved issues or open questions
warranting further investigation.

2

2 Background Knowledge and Related Work

2.1 Molecular simulation
MS methods are based on the fundamental principles of statistical mechanics and provide a
powerful means for the fundamental understanding of materials and the elucidation of the mi-
croscopic mechanisms that underly their macroscopic behaviour [1]. They enable the prediction
of a wide range of properties and the unravelling of structure-performance relationships, con-
tributing to the design of new advanced materials with controlled properties [22]. Molecular
simulations involve a number of computational techniques that investigate the behaviour of ma-
terials at atomic and molecular levels in various lengths and timescales (Figure 1). This field
has seen considerable expansion in recent years, largely attributed to advancements in com-
puter hardware, software, the development of novel and more efficient scientific methods, and
the increasing necessity to comprehend complex molecular systems [2, 22, 23]. Applications of
molecular simulations span involve diverse fields of scientific and technological domains such
as chemistry, physics, materials science, biology, biochemistry, nanotechnology, environmen-
tal and biomedical engineering and many others [24].

Figure 1: Molecular simulation methods at multiple length and time scales. Hierarchical mul-
tiscale simulations utilize information extracted from the previous scale as input for conducting
molecular simulations at longer length and time scales [3].

Depending on the problem and phenomena under study and the scales at which these evolve
various molecular simulation methods can be applied. Classical simulations utilize classical
mechanics and force fields to depict molecular interactions and are employed to study larger
systems like proteins and materials over extended periods [1, 22]. In contrast, quantum simu-
lations rely on quantum mechanics to deliver high-precision analyses of smaller systems, such
as individual molecules [2]. Ab initio simulations for example that belong to the latter cate-
gory, employ first-principles methods to compute molecular properties. Molecular simulation
of complex chemical systems usually necessitates the implementation of hierarchical multiscale
methods [23].

MD simulations, which are the most prevalent, involve integrating equations of motion for
each atom or molecule in a system. This approach yields data on dynamic molecular behaviour,

3

including interactions, trajectories, and energies. Other simulation techniques include Monte
Carlo (MC) simulations, which use statistical sampling to explore system phase space [1].

Molecular simulations serve as potent tools for understanding intricate molecular systems,
offering insights into phenomena like protein folding and material synthesis. They are also
valuable for designing and optimizing new materials and drugs, as well as predicting molecular
behaviour under various conditions [22]. Nowadays several software packages are available
for conducting molecular simulations, such as GROMACS [25], LAMMPS [26], AMBER [27],
CHARMM[28], andNAMD [29]. Apart from runningMD simulations, some of these packages
also include tools for setting up and analyzing and visualizing simulation data [30].

2.1.1 Fundamentals of Molecular Dynamics

MD is one of the widely used molecular simulation methods that enable the study of the time-
dependent behaviour of a system of particles by integrating the equations of motion [1, 2].
Appropriate periodic boundary conditions are in many cases applied depending on the problem
at hand [22]. During an MD simulation, the positions and velocities of the particles evolve
based on a force field that describes the interactions between the particles that constitute the
specific system [23]. Macroscopic properties such as pressure, temperature, heat capacity, stress
tensor, etc., can be calculated from the microscopic information, according to the fundamental
principles of statistical mechanics. MD enable the study of the time evolution of materials and
processes provided that the representation in use allows the adequate sampling of phenomena
under study based on the relevant length and time scales that take place [31]. MD simulations
can be applied at the quantum mechanical (ab initio MD, Car-Parinnello MD), atomistic or
coarse-grained level and be performed either at equilibrium or out-of-equilibrium conditions
[32, 33].

2.1.2 Basic Concepts

Two of the basic elements of the MD simulation are (i) the interaction potential and (ii) the
equations of motion governing the dynamics of the particles. Specifically, the 2nd Newton’s
law of motion is followed. For a system of N particles Newton’s law for each atom i is written
as

Fi = miai, (2.1)

where mi is the mass of the particle i, ai its acceleration and Fi is the force acting on it due to
the interaction with the other particles of the system. Equivalent the Hamiltonian equation of
motion can be solved, where

ṗi = −∂H

∂ri
, (2.2)

ṙi = −∂H

∂pi
, (2.3)

where pi and ri are the momentum and position coordinated for the ith particle, and H is the
Hamiltonian that can be written as

H (pi, ri) =
N∑
i=1

p2i
2mi

+ V (ri) . (2.4)

4

where the V (ri) is the potential energy in the ri. The force can then be calculated as the deriva-
tive of the energy, E, with respect to the change in the particle’s position through

Fi = miai = −∇iV = −dE

dri
. (2.5)

By knowing the forces of each particle and the respective masses, the position of each particle
at a specific time can then be calculated from the acceleration; the acceleration is the time
derivative of the velocity (ai = dvi/dt) and the position is the time derivative of velocity (vi =
dri/dt).

Therefore, the outline of the procedure at each time step is that the forces on the atoms are
computed and combined with the current positions and velocities to generate the new positions
and velocities for the next time step implementing algorithms such as Verlet or velocity Verlet
and the new forces are then computed to perform the next cycle [1, 2]. The force acting on each
particle is assumed to be constant during the time interval.

There are two important properties of equations of motion that should be noted. The first is
that they are time-reversible and the second is that they conserve the Hamiltonian during equi-
librium MD simulations [1, 2, 34].

2.1.3 Statistical Ensemble

Statistical mechanics provides a framework for connecting the microscopic details of a system
to physical observables such as equilibrium thermodynamic properties, transport coefficients,
and spectra [34]. The Gibbs ensemble concept forms the foundation of statistical mechanics,
which states that many individual microscopic configurations of a large system lead to the same
macroscopic properties [23]. The macroscopic observable properties of a system can be formu-
lated in terms of ensemble averages, where statistical ensembles are usually characterized by
fixed values of thermodynamic variables such as the energy, E, the temperature, T, the pressure,
P, the volume, V, the particle number, N, or the chemical potential, µ [35].

One fundamental ensemble is called the micro-canonical ensemble and is characterized by
constant particle number N, constant volume V, and constant total energy E. This ensemble is
denoted as the NVE ensemble [2]. Other examples of statistical ensembles include the canon-
ical or NVT ensemble, the isothermal-isobaric or NPT ensemble, and the grand-canonical or
µVT ensemble [36, 37]. These thermodynamic variables that characterize an ensemble can be
regarded as experimental control parameters that specify the conditions under which an exper-
iment is performed. This is achieved through the use of thermostats and barostats [38].

Thermostats play a crucial role in maintaining a desired temperature within the system, al-
lowing for simulations in the canonical or NVT ensemble. Different thermostat algorithms,
such as Berendsen, Andersen, or Nosé-Hoover methods, are employed to regulate the sys-
tem’s temperature, ensuring that it remains in equilibrium throughout the simulation [39, 40].
Barostats, on the other hand, control the pressure within the system, enabling simulations in
the isothermal-isobaric or NPT ensemble. By utilizing barostat algorithms like Berendsen or
Parrinello-Rahmanmethods, the system’s volume or cell dimensions can be adjusted tomaintain
the desired pressure conditions [41, 42]. This is particularly crucial when studying materials
subjected to external stresses or investigating phenomena influenced by pressure variations,
such as phase transitions or structural changes. The integration of thermostats and barostats
into molecular simulations allows the exploration and replication of realistic temperature and
pressure conditions, improving the accuracy and relevance of simulation results. By controlling

5

these thermodynamic variables as experimental parameters, molecular simulations can closely
resemble experimental conditions, enabling deeper insights into the behaviour and properties
of materials across various scientific and engineering domains.

2.1.4 Inter-Atomic Potentials

The total potential energy is often calculated as the sum of non-bonded and bonded energy
contributions. Non-bonded contributions are in many cases extracted using pair potentials that
depend only on the distance between atoms to determine van der Waals and electrostatic inter-
actions. Examples of pair potentials are the Lennard-Jones potential, Coulomb potential, Morse
potential etc. [23].

Bonded contributions may include bond, bond angle, torsion and out-of-plane torsion terms.
The total energy of a molecule can then be given by [34]:

E = Ebond + Eangle + Etorsion + Eoop + Ecross + Enonbond, (2.6)

where Ebond is a pair potential, Eangle describes the energy change associated with a change in
the bond angle, Etorsion describes the energy associated with the rotation between two parts of
a molecule relative to each other, Eoop describes energy change when one part of a molecule
is out of the plane with another, Ecross are cross terms between the other interaction terms,
and Enonbond describes interaction energies which are not associated with covalent bonding, i.e.
electrostatic and van der Waal terms [34, 23].

2.1.5 Calculation of Properties

The analysis of the MD simulation results is based on the ergodic hypothesis which states that
the time average of a physical quantity A equals its ensemble average [34, 23]

⟨A⟩time = ⟨A⟩ensemble , (2.7)

where the time average can be expressed as

⟨A⟩time = lim
τ→∞

∫ t=0

τ

A
(
pN (t) , rN (t)

)
dt ≈ 1

M

M∑
t=1

A
(
pN , rN

)
, (2.8)

and the ensemble averages

⟨A⟩ensemble =

∫ ∫
dpNdrNA

(
pNrN

)
ρ
(
pNrN

)
. (2.9)

Based on the above several physical quantities of the system such as its energy, its pressure,
its pair correlation function, and its time correlation function can be calculated. The expressions
for the calculation of these quantities are followed.

Kinetic Energy In molecular simulations, the kinetic energy of particle i is calculated from
its velocity using the formula:

Ekin =
1

2
miv

2
i , (2.10)

where mi is the mass of the particle i and vi is its velocity. The total kinetic energy of the
system is then obtained by summing over all particles. Once the kinetic energy is known, the

6

system temperature can be calculated. In addition, the temperature of the system can be moni-
tored during the simulation to ensure that it remains within the desired range and to detect any
potential issues, such as energy drift or instability. Overall, the calculation of system temper-
ature is a fundamental aspect of molecular simulations and provides critical insights into the
thermodynamics and energy balance of the system.

Average temperature The calculation of average temperature is a critical aspect of molecular
simulations, as it provides insights into the thermodynamics and energy balance of the system.
In molecular simulations, the system temperature is usually calculated based on the kinetic
energy of the particles, which is related to their velocity distribution. The temperature of the
system is defined as:

T =
2

3

Ekin

Nk
, (2.11)

where Ekin is the total kinetic energy of the system, N is the number of particles, and k is the
Boltzmann constant. The factor 2

3
arises from the equipartition theorem, which states that the

average kinetic energy of each degree of freedom in a particle is 1
2
kT . For a system of particles,

the average kinetic energy per particle is 3
2
kT , leading to the above formula for temperature.

Pressure tensor

P (r, t) =
1

V

[
N∑
i=1

mivi (t) vi (t)
N∑
j>i

rij (t)Fij (t) |ri(t)=r

]
, (2.12)

where V is the volume, andmi is the mass of particle i.

Pair Correlation Function The Pair Correlation Function, g(r), is a fundamental property of
molecular systems that describes the probability of finding a particle at a certain distance from
another particle [1]. It is a key tool in analyzing and understanding the structure and dynamics of
molecular systems. In this section, we will discuss how g(r) is calculated from coarse-grained
molecular dynamics results.

In coarse-grained molecular dynamics simulations, multiple atoms are grouped together to
represent a single particle. This reduces the number of degrees of freedom in the simulation,
making it possible to study larger and more complex systems. The g(r) can be calculated from
the trajectories generated by these simulations by first calculating the centre-of-mass positions
of the particles in the system.

The g(r) is defined as the probability of finding a particle at a distance r from a reference
particle, normalized by the number of particles in the system and the volume of the system [1].
Mathematically, the g(r) is given by:

g (r) =
1

N

V

4πr2∆r
Σi,jδ (r − rij) , (2.13)

where N is the number of particles in the system, V is the volume of the system, rij is the
distance between particles i and j, and δ is the Dirac delta function. The term (V

4πr2∆r
) is a

normalization factor that accounts for the volume of the shell at distance r, and∆r is the width
of the shell.

The g(r) can be calculated using a variety of methods, including histogramming and kernel
density estimation [2]. The choice of method depends on the specific application and the quality
of the data.

7

The g(r) provides important information about the local structure and interactions in molec-
ular systems. For example, the peak position and height of the first peak in the g(r) correspond
to the average distance between particles and the strength of their interactions, respectively.
The shape of the g(r) can also provide information about the presence of ordering or clustering
in the system.

Time Correlation Function Time correlation function gives the dynamic and transport prop-
erties of the system.

K (t) = lim
t→∞

〈∣∣[A (t)− A (0)]2
∥∥〉

2t
=

∫ ∞

0

dτ
〈
Ȧ (τ) Ȧ (τ)

〉
, (2.14)

where K is the transport coefficient for the physical quantity A, such as the position of the
atoms, r(t) in which case the transport coefficient is the diffusion.

Mean Squared Displacement The MSD is a common measure used in molecular simula-
tions to quantify the dynamics and mobility of particles in a system. The MSD is defined as
the average squared displacement of particles over a given time interval and is calculated as
the difference between the positions of a particle at this interval, squared, and averaged over
all particles in the system. The MSD is a useful tool for characterizing the diffusional motion
of particles in a system, and it can provide insights into the nature of the interactions between
particles and the underlying energy landscape. In addition, the MSD can be used to estimate the
diffusion coefficient based on the Einstein relation provided that a Fickian regime is reached
that is identified from a slope equal to unity in log(MSD)-log(t) plot. Overall, the mean square
displacement is a versatile and powerful tool for analyzing the dynamics and transport prop-
erties of particles in molecular systems, and it has many applications in both theoretical and
experimental studies.

The MSD is calculated by measuring the displacement of each particle over a given time
interval, squaring the displacements, and then averaging the results over all particles in the
system. The formula for the MSD is:

MSD(t) =< |r(t+ τ)− r(t)|2 >, (2.15)

where r(t) is the position vector of a particle at time t, and < |...| > denotes the ensemble
average over all particles in the system. The time interval τ represents the lag time or time
difference between the two positions, and t+τ is the later time at which the position is measured.
TheMSD provides ameasure of the average squared displacement of a particle over time, which
can be related to the diffusion coefficient and other transport properties of the system. TheMSD
can be calculated for a range of lag times and plotted as a function of time to obtain insights
into the dynamics and mobility of particles in the system. Overall, the calculation of the mean
square displacement is a fundamental tool for studying the dynamics and transport properties of
molecular systems, and it has many applications in both theoretical and experimental studies.

2.1.6 Coarse-Grained Molecular Simulations

In CG modelling generally, the atomistic systems are represented with fewer degrees of free-
dom [43], enabling the study of phenomena at longer lengths and time scales. CG methods are
in many cases the core of multiscale modelling methods that are necessary for the molecular

8

simulation of complex chemical systems such as macromolecular ones. Coarse-GrainedMolec-
ular Dynamics (CG-MD) for example has been used to tackle the high computation cost that
the all-atomMD has CGmethods may include methods that describe the reduced representation
in molecular structures, schemes assuming atomic-scale homogeneous structures, and methods
that use field representation.

CG methods could be divided in the following categories:[44]:

1. those that describe the reduced representation in molecular structures

2. those assuming atomic-scale homogeneous structures

3. those using field representation.

In the field of soft matter, most CG models are of the first type. This type contains two
processes. CG methods, in this case, involve the determination of (i) an appropriate mapping
between the higher resolution and the lower resolution level based on the chemical system and
the problem at hand, (ii) the force field that is able to describe the interactions between the
moieties at the coarse-grained level and (iii) in many cases, the reverse mapping back to the
more detailed representation.

In general, there is no unique way to coarse-grain. The coarse-graining strategies should
reduce the number of system degrees of freedom [45], by substituting groups of atoms with
single interaction sites, while maintaining the ones that are important for the description of the
mechanisms/processes under study [3]. Therefore, the CG model used in each case is related
to the molecular system and the scientific problem under study, making the mapping to the CG
representation largely empirical. The main approach for the development of CG force fields
can fall into two categories namely top-down [46] or bottom-up approaches [47]. In the former,
the reproduction of the macroscopic properties of the molecular system is targeted while in the
latter the reproduction of microscopic properties of the molecular system, based on atomistic
simulations or experimental findings, is aimed.

2.2 Machine learning

ML is a subdomain of Artificial Intelligence (AI) that focuses on developing algorithms and
models capable of learning from data to make predictions or decisions. The growth of ML has
been substantial in recent years, fueled by the increasing availability of data and computational
resources.

Three primary types of machine learning exist, supervised learning, unsupervised learn-
ing, and reinforcement learning. Supervised learning involves training algorithms on labelled
datasets with known outputs, enabling them to make predictions on new, unlabeled data [48,
49]. In unsupervised learning, algorithms are trained on unlabeled datasets, to discover patterns
or structures in the data. Reinforcement learning entails algorithms learning to make decisions
based on feedback from their environment.

ML has been effectively applied across various fields, including image and speech recog-
nition, natural language processing, robotics, and materials design and discovery. One charac-
teristic example in the latter domain with significant progress in applications related to phar-
maceutical research, where ML has been utilized to predict drug molecule properties, identify
new drug targets, and design compounds with specific characteristics [50, 51, 52].

9

Common ML algorithms encompass Decision Trees, Support Vector Machines (SVM),
Random Forests, and Neural Networks. Deep Learning models, such as Convolutional Neu-
ral Network (CNN) and Recurrent Neural Network (RNN), are also widely employed. These
algorithms cater to a wide range of tasks, including classification, regression, and clustering.

Despite ML’s successes, challenges in its implementation remain. These include selecting
suitable algorithms and models for a specific task, collecting and preparing high-quality data,
and avoiding overfitting or underfitting the model. To address these challenges, researchers
have developed various techniques, such as cross-validation, regularization, and ensemblemeth-
ods [53, 54, 55]. One of the major open challenges in applying ML in natural sciences and
technology is to appropriately develop schemes that efficiently incorporate physical laws and
domain knowledge, a fact that is crucial due to the inherent agnostic character of the ML tech-
niques.

ML is currently investigated to be applied in numerous scientific domains, including ma-
terials science and engineering. ML has been employed in the materials informatics domain
to extract various properties, such as molecular structure, binding affinity, and solubility, or to
model reaction kinetics obtaining interesting results [50, 51]. Owing to its ability to capture
complex, nonlinear relationships between molecular features and properties, ML has the poten-
tial to complement and advance “traditional” computational methods based solely on physical
principles [53].

One application of ML in molecular simulation materials design involves predicting molec-
ular properties. ML methods can construct its incorporation in Quantitative Structure-Activity
Relationship (QSAR) models that predict the properties of new molecules based on their struc-
tural features. These models can screen extensive compound libraries for potential drug candi-
dates or optimize the properties of existing compounds [51]. For example, DeepChem has been
used to predict the activity of small molecules against various protein targets [56].

There are several rapidly growing intersections of machine learning, materials informatics
and molecular simulations which include the utilization of molecular simulation data to develop
materials informatics schemes, the development of ML methods for the interpretation and post-
processing of molecular simulation results, the implementation of ML methods for analytical
force fields parametrizations as well as for the study of rare events and rate-limited processes
such as in protein folding [55].

One of the potential applications ofML that is currently explored is its integration molecular
simulation via its utilization in the development of force fields. Traditional classical force fields,
utilize predefined functional forms to describe interactions between particles (e.g. atoms or
groups of atoms). However, these functional forms lack the flexibility required to accurately
capture intricate interactions and capture complex energy hypersurfaces andmany-body effects.
ML methods can be used to learn interactions directly from data [52]. For instance, SchNet
has been utilized to develop a deep neural network-based force field for organic molecules,
accurately predicting molecular energies and forces [56]. Despite some interesting results that
have appeared in the literate in the recent few years, there are still several challenges and pitfalls
that have to be addressed in order to be able to develop and use ML-based force fields for the
conduction of meaningful (atomistic or coarse-grained) molecular simulations of bulk material
systems [18, 57]. This remains a very challenging task even for simple chemical systems in the
bulk.

Additionally, despite ML’s potential in this field, several general obstacles such as develop-
ing more interpretable ML models, choosing appropriate descriptors, preserving physical laws
and symmetries and constructing adequate loss functions that will enable the identification of a
successful training process which is crucial and is currently missing.

10

Figure 2: Geometry of a multi-layer artificial neural network (ANN) [59].

One application of ML in molecular simulations is the development of force fields. Tradi-
tional force fields, such as CHARMM and AMBER, utilize simple functional forms to describe
interactions between atoms or groups of atoms. However, these functional forms lack the flex-
ibility required to accurately capture intricate interactions like non-covalent interactions or po-
larization effects. ML methods can learn force fields directly from data, enabling more precise
and efficient simulations [52]. For instance, SchNet has been utilized to develop a deep neural
network-based force field for organic molecules, accurately predicting molecular energies and
forces [56].

Another application of ML in molecular simulations involves predicting molecular prop-
erties. ML methods can construct QSAR models that predict the properties of new molecules
based on their structural features. These models can screen extensive compound libraries for
potential drug candidates or optimize the properties of existing compounds [51]. For exam-
ple, DeepChem has been used to predict the activity of small molecules against various protein
targets [56].

In addition to force field development and property prediction, ML has been applied to
other challenges in molecular simulations, such as structure determination, molecular dynamics
simulations, and protein folding [55]. However, despite ML’s potential in this field, several
obstacles persist. These include developing more interpretable ML models, integrating ML
with existing simulation methods, and generating high-quality training data [54].

2.2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a machine learning method, in which specific tasks
are learned to be performed by analyzing training examples. The neural networks, inspired by
the brain function principle 1, which has a high number of processing nodes that are densely
interconnected. The number of processing nodes can range from one up to several million with
the upper limit set by the level of abundance of processing resources.

A schematic representation of a simplified ANN geometry is presented in Figure 2. The
ANN can be represented as a network of nodes with direct links. Each node corresponds to an

1This is a very loose comparison for the easy illustration of the Artificial Neural Network (ANN). The literature
supports that the mammal’s brain is so advanced that its processing power cannot be compared even with that of
the most advanced computer [58].

11

artificial neuron. The direction of the information in the ANN is indicated by the edge of the
links.

As the Perceptron is the simplest ANN (Figure 3) can be a simplified introduction to the
working principles of the ANN nodes.

Figure 3: Perceptron model.

The Perceptron has two layers, the input layer and the output layer, that are directly con-
nected to each other and can be described by:

y = σ(WTX), (2.16)

whereX represents vector [X1, X2,, 1],W represents vector [W1,W2,, b], and σ represents
activation function. Thus the output of the Perceptron is the result of the activation function
when its input is the input vector multiplied with some weights. The target of the training of
the Perceptron is to find the optimum values of these weights to describe the training examples.
The training algorithm for the Perceptron follows the steps below.

1. InitialiseW

2. while True

(a) Error = 0

(b) for (x, y) in (x(i), y(i)(i = 1, .., N)

i. ifWTX < 0:
A. W+ = yx

B. Error +=1

(c) if Error == 0

i. break

The limitation of the structure of Perceptron sets boundaries in its practical applications.
The original Perceptron can only deal with linear separable problems, whereas for linearly non-
separable problems, the algorithm will oscillate in the calculation process. Although, the Per-
ceptron can also be considered as the building block of ANN.

12

2.2.2 Convolutional Neural Networks (CNNs)

CNNs have recently revolutionized computer vision tasks, including image analysis and recog-
nition, and are increasingly being applied in other domains such as natural language processing
[60]. The architecture of a typical CNN consists of multiple layers, each designed to perform a
specific function [53]. There are three main types of layers in a CNN: convolutional, pooling,
and fully connected [61].

Convolutional layers are the key building blocks of CNNs. They apply a set of learnable
filters to the input image, generating feature maps that capture different aspects of the image.
During the convolution process, the filters slide over the input image and compute the dot prod-
uct of the filter weights and the corresponding pixel values. The resulting feature map repre-
sents the activations of the filter at each location in the input image. Convolutional layers can be
followed by activation functions such as Rectified Linear Unit (ReLU), which introduce nonlin-
earity into the network, and normalization layers such as batch normalization, which improve
the stability and performance of the network.

Pooling layers reduce the spatial dimensions of the feature maps produced by the convolu-
tional layers while retaining the most critical information. The most common type of pooling
is max pooling, which partitions each feature map into non-overlapping rectangular regions
and computes the maximum value within each region. Other types of pooling include average
pooling and L2 pooling.

Fully connected layers are similar to those in traditional neural networks and are typically
used at the end of the CNN to produce the final output. They connect every neuron in one layer
to every neuron in the next layer, and their weights are learned during training.

CNNs are trained using backpropagation, which involves computing the gradient of a loss
function concerning the weights of the network and updating the weights using an optimization
algorithm such as Stochastic Gradient Descent (SGD). The loss function is typically a mea-
sure of the difference between the predicted output of the network and the true output and is
minimized during training.

CNNs have been applied to a wide range of applications, including image classification
[62], object detection [63], segmentation [64], and synthesis [65], as well as natural languages
processing tasks such as sentiment analysis [66] and machine translation [67]. Their ability to
automatically learn features from raw data has significantly improved performance on a wide
range of computer vision tasks. As the field of deep learning continues to evolve, it is likely
that CNNs will continue to play an important role in many applications [53].

2.2.3 Graph Neural Networks

GraphNeural Network (GNNs) are a type of neural network designed to process graph-structured
data [68]. A graph is a set of vertices (or nodes) connected by edges and is a commonly used
data structure in a variety of fields, including social networks [69], biology [70], chemistry [71],
and recommendation systems [72].

GNNs aim to learn useful representations of graph-structured data by aggregating informa-
tion from the local neighbourhoods of each node [68]. The basic idea is to propagate information
through the edges of the graph, using a series of neural network layers. At each layer, a node ag-
gregates information from its neighbours, typically by taking a weighted sum of their features.
This information is then passed through a nonlinear activation function and used to update the
node’s own feature representation.

Several variations of GNNs have been proposed, including Graph Convolutional Networks
(GCNs) [73], Graph Attention Networks (GATs) [74], and GraphSAGE [75]. GCNs use a

13

convolutional operation to aggregate information from neighbouring nodes, while GATs use
attention mechanisms to weigh the importance of each neighbour. GraphSAGE is a general
framework that allows for flexible neighbourhood aggregation strategies.

GNNs have been shown to be effective for a wide range of tasks, including node classifica-
tion, link prediction, and graph classification. They have also been applied to real-world [76],
and social network analysis [77].

2.2.4 Graph Convolutional Neural Network

GCNN are an efficient variance of CNN on graphs. GCNN stack layers of learnable first-order
spectral filters followed by nonlinear activation function to learn graphs representations [78].

The GCNN falls into two categories, the spectral-based and the spatial-based [79]. In the
first one, the graph convolutions are defined by introducing filters from the perspective of graph
signal processing, and the graph convolution operation is interpreted as removing noise from the
graph signal [80]. In the second one, graph convolutions are defined by information propagation
[79].

2.3 Multicomponents loss functions
Inmachine learningmodel training, optimizing an objective function that is defined as aweighted
linear combination of multiple losses is a common problem [81]. The performance of the final
model can be highly dependent on the choice of weights assigned to each loss. Traditionally,
the optimal set of weights is determined by setting them as hyperparameters2 and conduct an ex-
haustive grid search3, which can be computationally expensive. However, in recent years, sev-
eral weight adaptation methods have been proposed that can be applied during network training.
In the following section, we will provide a description of Multi-Objective Optimization (MOO)
and a brief overview of the most widely used weight adaptation methods in physical problems.

2.3.1 Multi-Objective Optimization (MOO)

MOO targets simultaneous optimisation of a set of k > 1, that can potentially be conflicting
objectives [83]:

L (θ) = (L1 (θ) , ...,Lk (θ))
T , (2.17)

which can be turned into a single objective through linear scalarization:

L (θ) =
k∑

i=1

λiLi (θ) , λi ∈ R>0. (2.18)

Many problems in engineering, natural sciences, or economics can be formulated as multi-
objective optimizations and generally requires trade-offs to satisfy all objectives to a certain
degree simultaneously. The solution of MOO models is usually expressed as a set of Pareto

2In machine learning, hyperparameters are parameters that are set before the learning process begins and re-
main fixed throughout the training process [82]. They determine the behaviour and performance of the learning
algorithm rather than being learned from the data itself

3Grid search is a technique used in hyperparameter optimization to systematically explore a predefined set of
hyperparameter combinations for a machine learning model. It is a brute-force method that exhaustively searches
the entire hyperparameter space by evaluating the model’s performance for each combination.

14

optima, representing these optimal trade-offs between given criteria according to the following
definition [84].

Definition 2.1. A solution θ̂ ∈ Ω Pareto dominates solution θ (denoted θ̂ ≺ θ if and only if
Li

(
θ̂
)
≤ Li (θ), ∀i ∈ 1, ...,m and ∃j ∈ 1, ...,m such that Lj

(
θ̂
)
< Lij (θ).

Definition 2.2. A solution θ̂ ∈ Ω is said to be Pareto optimal if ∀θ ∈ Ω, θ̂ ⪯ θ. The set of all
Pareto optimal points is called the Pareto set and the image of the Pareto set in the loss space is
called the Pareto front.

Theoretically, a Pareto optimal solution θ is independent of the scalarization [85]. However,
when using neural networks for MOO, the solution space becomes highly non-convex. Thus,
although neural networks are universal function approximators [86], they are not guaranteed to
find the globally optimal solution through gradient-based optimization. Scaling the loss space,
therefore, provides the option of guiding the gradients into having an a priori deemed desirable
property. However, manually finding optimal λi requires a laborious grid search and becomes
intractable as k gets large. Furthermore, one might want to let λi evolve over time. This raises
the need for an automated scheme to dynamically choose the scalings of λi.

2.3.2 Self-balancing methods

Three widespread loss self-balancing methods are the Learning Rate Annealing [87] from the
field of Physics-Informed Neural Networks (PINN) [88] and the GradNorm [15] and SoftAdapt
[16] originating from Computer Vision.

Learning Rate Annealing The Learning Rate Annealing method, proposed by Wang et al.
[87], addresses the imbalance of the different loss terms in PINN used for finding the unknown,
underlying function able to solve parameterised Partial Differential Equation (PDE), through
adaptively scaling the loss using gradient statistics. In such cases, the loss components are the
LΩ, the LΓi

, the LΥi
, and the LΨ and maps to the governing equation, the boundary conditions,

the initial conditions, and the data (Figure 4).

Figure 4: Schematic of a PINN: A fully-connected feed-forward neural network with space
and time coordinates (x, t) as inputs, approximating a solution û (x, t). [82].

15

Following the above description the implementation of the Learning Rate Annealing leads
to the calculation of the coefficient of the ith loss component at the t epoch through:

λ̂i (t) =
max{|∇θLΩ(t)|}

|∇θL{Γ,Υ}i (t)|
, i ∈ {1, ..., k}

λi (t) = αλi (t− 1) + (1− α)λ̂i (t) .
(2.19)

where
∣∣∇θL{Γ,Υ}i (t)

∣∣ is themean of the gradient w.r.t the parameter θ andα is a hyperparameter.
With this method, whenever the maximum value of

∣∣∇θL{Γ}i (t)
∣∣ grows considerably larger

than the average value in
∣∣∇θL{Γ,Υ} (t)

∣∣, the scalings λ̂i (t) correct for this discrepancy such
that all gradients have similar magnitudes. Additionally, exponential decay is used in order to
smoothen the balancing and avoid drastic changes in the loss space between optimisation steps.

GrandNorm In the case of GrandNorm method the loss coefficients are trainable [15] . The
update of the loss coefficients is performed by a separate optimiser and is such that all the terms
improve at the same relative rate with respect to their initial loss [15]. The loss function of this
optimizer is expressed as

L (λ; t) =
k∑

i=1

∣∣∣G(i)
θ (t)−Gθ (t)× [ri (t)]

α
∣∣∣
1

(2.20)

where G(i)
θ = G

(i)
θ ∥∇θλiLi (t)∥2 is the L2 norm of the gradient w.r.t. the network parameter θ

for the ith loss coefficient, Gθ (t) =
1
k

∑k
i=1 G

(i)
θ is the average of all gradient norms, ri (t) =

Li (t) /(Li (0)·L (t)) defines the rate at which term i improved so far, and α is a hyperparameter
representing the strength of the restoring force which pulls tasks back to a common training rate.
The final loss for the update of the network parameter is then simply linear scalarization using
the updated coefficients:

L (λ; t) =
k∑

i=1

λiLi (t) . (2.21)

SoftAdapt In SoftAdapt method as in GrandNorm the similar relative rate of progress of the
different terms is targeted [16]. Although, in this case, only the previous time step is taken into
account. The loss coefficients are calculated as

λi (t) =
exp (T (Li (t)− Li (t− 1)))∑k
j=1 exp (T (Lj (t)− Lj (t− 1)))

. (2.22)

2.4 Related work
The study of existing methodologies for the balancing of loss coefficients in deep learning
models—particularly in relation to molecular dynamics and physical issues—inevitably war-
rants the creation of a robust framework for comparison. Manual tuning, grid search, random
search, Bayesian optimization, and multi-task learning are among the techniques currently em-
ployed [89, 90, 91, 84]. Each approach has its own unique benefits and potential drawbacks.

For example, manual tuning, albeit simple, can be a laborious and potentially suboptimal
process due to its reliance on human intuition and trial-and-error. Automated techniques like

16

Bayesian optimization and multi-task learning offer streamlined processes, yet they might ne-
cessitate greater computational resources and meticulous execution to yield optimal results.

Despite the availability of these methods, there remains a critical need to establish a more
robust, quantitative, and reproducible methodology for comparing various loss coefficient bal-
ancing techniques—one that is application-agnostic. This necessity stems from the requirement
to extrapolate comparisons across a wide spectrum of applications, thus ensuring the replica-
bility of outcomes. Crucially, a robust comparative methodology should offer transparent sta-
tistical figures of merit, allowing the performance of distinct approaches to be evaluated based
on tangible physical parameters.

Existing methods tend to rely on model-specific metrics such as accuracy or loss. How-
ever, these metrics may not always correspond to physically meaningful outcomes. Thus, the
adoption of a method that employs physical parameters as key figures of merit allows for a
more direct appraisal of a model’s applicability to physical problems. For instance, in the realm
of molecular dynamics simulations, the comparison could hinge on figures of merit such as
the predicted potential energy surface, forces, or the long-term stability of the system being
simulated [92].

Therefore, the formulation of a robust, quantitative, and reproducible comparative method-
ology that uses physical parameters as figures of merit stands to significantly contribute to the
rigorous assessment and selection of the most suitable loss coefficient balancing approach for
deep learning models in molecular dynamics and physical problems.

The primary objective of this research endeavour is to formulate a robust and repeatable
methodology, capable of automating the pre-screening of insufficiently trained models, while
also quantifying the performance of more promising models. This is pursued to establish ob-
jective and reliable benchmarks for assessing various models, particularly within the realms of
molecular dynamics and physical problems, where accurate and precise model predictions are
paramount.

To illustrate this concept, we have employed self-balancing techniques for the components
of a multi-objective loss function during the training of a GCNN model. The model was de-
signed to describe coarse-grained interactions - an area of molecular dynamics where striking a
balance among various loss components is crucial for generating accurate and meaningful pre-
dictions. The loss function in this instance is composed of two components. The first component
targets the training on the obtained coarse-grained forces of coarse-grained benzene particles
in a single bead representation. The second component focuses on the intermolecular poten-
tial energy of the system, with respect to the ground truth values ascertained from atomistic
simulations of the bulk benzene liquid system [93].

These examples serve as tangible explorations into developing an automated, rigorousmethod
for model pre-screening and performance quantification. The insights gained from these en-
deavours, particularly with respect to the balancing of loss coefficients, are pivotal in refining
our proposed methodology. The ultimate goal is to create a universally applicable approach for
evaluating deep learning models used in molecular dynamics and physical problems. Further
details on the model and the training datasets used in this research are provided in Sections 3.1
and ??, respectively.

17

18

3 Methodology
This research addresses the problem of balancing loss coefficients in multi-component func-
tions of ML architectures. Imbalanced loss terms during model training can lead to gradient
pathologies and performance failure [82]. Although several self-balancing approaches have
been proposed (Section 3.3), a robust and efficient method for determining the optimal ap-
proach is lacking. This research aims to develop a methodology to identify the most suitable
self-balancing approach, improvingmodel performance and providing insights for handling loss
coefficient imbalances in ML architectures. By addressing this problem, the thesis contributes
to enhancing the training process and overall accuracy of ML models.

3.1 Machine learning model
The machine learning model used in this work is based on the SchNet, [94, 95] and modified to
develop CGMachine Learned potentials for bulk organic systems using liquid benzene as a test
system and implementing a strategy that includes a force-matching scheme [93]. A schematic
illustration of the SchNet model is presented in Figure 5.

Figure 5: Illustrations of the SchNet architecture (left) and interaction blocks (right) with atom
embedding in green, interaction blocks in yellow, and property prediction network in blue. For
each parameterized layer, the number of neurons is given [95].

In this model, each particle is represented through a vector, which is initialized to distinguish
between the particle’s chemical identities (embedding layer). The feature is then updated in
each neural network layer depending on the chemical environment, by performing continuous
convolutions across the particle neighbourhood and optimizing the convolutional filter weights
during the training (convolutional layers). Afterwards, a fully connected section is included
(readout layers). A sequence of continuous convolution layers and readout layers constitutes a
SchNet “block”. Multiple blocks can be utilized in series to define the full network architecture.

The output found at the end of the blocks can be interpreted as a learned feature represen-
tation, which encodes the many-body information from the particle neighbourhood required to
predict the target property. Finally, a fully connected (dense) section transforms the fingerprints
into the final scalar output, which is interpreted as a per-particle energy contribution. This lo-
cal decomposition ensures invariance of the ML potential architecture to the total number of

19

atoms. All energy contributions are summed to obtain the total energy (
∑

i Ûi), which is then
differentiated with respect to the positions of the particles to predict the force acting on each
particle. These are the target properties for the network training.

For the single bead CG representation for each benzene molecule, the network optimization
is performed by minimizing a loss function consisting of two terms. The one term corresponds
to the mean squared difference between the predicted forces and the forces associated with the
MD trajectory considered as input and the second one is related to the intermolecular energy of
the system. The second term was necessary to be included in the loss as no meaningful ML-
based models could be extracted for a wide hyperparameters search in the case that only forces
were taken into account during training for this system in which only intermolecular interactions
were present at the CG level [17]. The loss function is formulated as

L = LF +LU =

(
∇ri

(∑
i

Ûi + Uex

)
− F (ri)

)2

+λ

((∑
i

Ûi + Uex

)
− Uint

)2

, (3.1)

In the loss function a regularization term, related to non-bonded repulsion terms, imposes
excluded volume effects. The purpose of including such a constraint term is to ensure that the
energy of the system will be driven to infinity if nonphysical states occur that are not within the
training data. In particular, an excluded volume energy term based on the pairwise distances
between the moieties is considered:

Uex =
N∑
i=1

N∑
j=i

(
σ

∥xi − xj∥

)nex

, (3.2)

where σ and nex are hyperparameters of the model, for which suitable values must be identified.
This term is added to the total energy predicted by the GCNN, prior to differentiation.

3.2 Experimental Setup
Dataset Atomistic MD simulations had already been performed on three independent fully
atomistic liquid benzene systems containing 500 molecules each, at 300 K and 340 K (Figure
6) that have served as training data for the models. The systems were initially equilibrated
through a 1 ns NPT simulation, and then a 4 ns NVT run at the average equilibrium density was
conducted. The first ns of the run were discarded, and, after that, 20000 configurations, saved
every 1 ps, were retained for each system, and constituted the training data for the force field
development. The first 9000 of them were used in the training of the model. Each benzene
molecule was mapped into a single CG site. This choice allows the study of the application
of the ML method to a CG system that contains only intermolecular interactions, which are
the most complex to represent and the ones for which the expressive power of a Neural Net-
work (NN) model could provide a greater advantage compared to traditional CG models. NVT
CG simulations with the ML potentials had already been conducted at 300 K using the ASE
integrator [96] to validate the extracted ML-based and to optimize accordingly the hyperpa-
rameter set to used [17]. Details on the methodology and full set of hyperparameters can be
found in Ref [17].

Model Evaluation For the assessment of the performance of each model, the potential en-
ergy, mean square displacement, pair correlation function, and temperature calculated from

20

Figure 6: System studied: 500 molecules of liquid benzene at 300 Kmapped onto one CG bead
each (light blue spheres) [17].

simulation results were monitored and compared against the atomistic simulation results. De-
tails about these physical parameters and method of calculation are presented in Section 2.1.5.
Statistical parameters of these results are extracted for comparison and evaluation purposes.

The statistical parameters that are used are:

• the absolute percentage difference between the mean value of the coarse-grained and the
atomistic simulated potential energy of the system.

• The coefficient of variation of the coarse-grained simulated potential energy of the system

• The mean coarse-grained simulated temperature of the system

• The coefficient of variation of the coarse-grained simulated temperature of the system

• The statistic and p-value of Kolmogorov–Smirnov test between the coarse-grained and
atomistic simulated pair correlation functions.

• The slope of the last 30 % of the mean square displacement of the curve.

The above parameters were selected such as the performance of the model can be quanti-
fied and the conclusion on its succession derived without the need of exhausting visualization
of the results. Specifically, the second and fourth parameters indicate the stability of the simula-
tion results through the calculation of the Coefficient of Variation (CV) of CG potential energy
and temperature, the absence of which is related to model failure. In the same spirit, the last
parameter assesses the state of a system with a slope reaching 0 indicating an unstable simu-
lation that resulted in unphysical states of systems with no CG particle mobility. If these first
levels are determined as successful, then both the first and third parameters are measured to
indicate the validity of the results as the values of the mean potential energy and temperature
from coarse-grain simulations via comparison with the atomistic simulations results. The fifth
parameter indicates the similarity between the coarse-grained and atomistic simulated pair cor-
relation functions. This is evaluated employing Kolmogorov-Smirnov (K-S) test. Additional
parameters indicating the efficiency of the training process are also used for the model evalu-
ation. These parameters are the number of epochs in the training and the time of each training
epoch.

In the above two statistical analysis methods are employed, namely coefficient of variation
and Kolmogorov-Smirnov test. We elaborate on these twomethods in the following paragraphs.

21

Coefficient of variation The coefficient of variation is a useful statistical measure that quanti-
fies the relative variability of a dataset. It is particularly valuable when comparing the dispersion
of datasets with different units of measurement or differing magnitudes. It is defined as the ratio
of the standard deviation (σ) to the mean (μ) of a dataset, usually expressed as a percentage (eq.
3.3).

CV = 100 · σ
µ
. (3.3)

The coefficient of variation provides insights into the relative variability of a dataset. A
higher CV value indicates a larger degree of dispersion or variability relative to the mean, while
a lower CV value signifies a smaller degree of dispersion.

Kolmogorov-Smirnov test TheKolmogorov-Smirnov test is a non parametric statisticalmethod
for assessing the goodness-of-fit between two probability distributions or testing the null hy-
pothesis that a sample is drawn from a specific distribution [97]. It is based on the comparison of
the Empirical Cumulative Distribution Function (ECDF) of a sample with either another ECDF
from a different sample (two-sample K-S test) or a theoretical Cumulative Distribution Func-
tion (CDF) from a reference distribution (one-sample K-S test). The test statistic is the maxi-
mum absolute difference between the two compared CDFs. The K-S test yields a test statistic
(D) and a p-value. The null hypothesis states that the sample data are drawn from the refer-
ence distribution (one-sample K-S test) or that the two samples come from the same underlying
distribution (two-sample K-S test). If the p-value is smaller than a predetermined significance
level (e.g., 0.05), the null hypothesis is rejected, indicating that the sample data do not follow
the reference distribution or that the two samples have different underlying distributions.

3.3 Loss components value and gradient based approaches
In the framework of the present thesis, different self-balancing approaches based on the values
loss components and three variations of a self-balancingmethod based on the gradient of the loss
components, namely SoftAdapt, were employed as alternatives to the constant loss components
balancing. In the three value-based approaches, the loss term coefficients are calculated by the
ratio of their values in the previous epochs, their overall maximum values and their maximum
values of the latest N epochs are used.

Mathematically, some indicative predefined approaches for a loss function consisting of k
terms can be expressed as:

λi (t) =
Li(t−1)
Lk(t−1)

, i = 1, .., k − 1 ratio,
λi (t) =

1
max([Li(1),...,Li(t−1)])

, i = 1, .., k overall max,
λi (t) =

1
max([Li(t−N),...,Li(t−1)])

, i = 1, .., k N previous,
(3.4)

where the λi (t) is the coefficient of the ith loss term coefficient that is used in the tth epoch.
In the case of the ratio approach, the coefficients of all the loss terms are normalized regarding
a selected one, whereas in the other two cases, no information regarding the value of the loss
term is shared for the calculation of the coefficients.

The SoftAdapt family of methods that were also employed in this research was developed by
A. Ali Heydari et al. [16] to address the problem of the weighting of the multi-part loss functions
and implemented in image reconstruction and synthetic data generation. The methods, inspired
by Softmax, adaptively update the weights of the linear combination of individual objective

22

functions, depending on the performance of each part and the collective loss function as a whole.
SoftAdapt evaluates the performance by approximating the rate of change of each loss function
over a short history, which indicates if it has been increasing or decreasing. SoftAdapt then
compares the individual rates of change and determines how visible each objective function
should be to the optimizer. The SoftAdapt family consists of three methods, the original variant,
the weighted, and the normalized.

Mathematically, the three methods are described as:

λi (t) =
exp(βsi(t)))∑k

j=1 exp(βsj(t)))
, i = 1, .., k Original Variant,

λi (t) =
Li(t) exp(βsi(t)))∑k

j=1 Lj(t) exp(βsj(t)))
, i = 1, .., k Loss Weighted,

λi (t) =
exp

(
β

(
si∑m

l=1|sj|

)
(t))

)
∑k

j=1 exp

(
β

(
si∑m

l=1|sj|

)
(t))

) , i = 1, .., k Loss Normalized.

(3.5)

In eq. 3.5 the si (t) is the recent rate of change of the ith loss term (e.g. si (t) = Li (t)−Li (t− 1)
or a more accurate finite difference approximation), and β is a tunable hyper-parameter. If
β > 0 is used, SoftAdapt will assign more weight to the worst performing component of the
loss function (i.e. the component with most positive rate of change), β < 0 favours the best-
performing losses (most negative rate of change) and by using β = 0 gives equal weights
(classic SoftAdapt method). The default value of the β hyperparameter according to the authors
is 0.1. In the normalized version of the SoftAdapt the si (t) is normalized before using it.

3.4 Statistical analysis of the evaluation results
In order to evaluate and compare the efficacy of various self-adaptation approaches for bal-
ancing the coefficients of loss terms, a systematic procedure was employed. Multiple models
were trained for each self-adaptation approach using different initial conditions, defined by
varying seed values. This resulted in the creation of distinct populations of models for each
self-adaptation approach.

Each model was then evaluated based on statistical parameters described in Section 3.2.
These parameters serve as a quantitative measure of the model’s performance, capturing various
characteristics of their behaviour.

Following the evaluation of individual models, a comparative analysis of the populations
of models was conducted. This involved performing a Kruskal-Wallis test on the statistical
parameters of each model population.

The Kruskal-Wallis test, a non-parametric statistical test, is used to compare the medians of
two or more independent groups. It serves as a non-parametric equivalent to the one-way analy-
sis of variance (ANOVA), but unlike ANOVA, it does not assume a normal distribution of data,
making it a more flexible choice when dealing with data distributions that deviate from normal-
ity. However, the test does require that samples within groups are independent and identically
distributed.

The null hypothesis of the Kruskal-Wallis test posits that all samples originate from the same
distribution or from distributions with the same median. Should the p-value yielded by the test
fall below the significance level (typically 0.05), the null hypothesis is rejected. This indicates
a significant difference between at least two of the groups.

After identifying the statistical parameters that differ significantly between models using
the Kruskal-Wallis test, a post hoc test was conducted to discern which models differ and to
what extent. This helps in establishing a ranking among the different approaches.

23

The post hoc test employed in this study is Tukey’s range test, also known as Tukey’s Honest
Significant Difference (HSD) test. This statistical method, often paired with ANOVA, helps
identify means that are significantly different from each other. While ANOVA determines if a
significant difference exists among groups, it does not specify which groups differ significantly.
This is where Tukey’s range test becomes instrumental. It compares all possible pairs of means,
particularly useful when variances are assumed equal across groups.

24

4 Experiments and results
The research objective is to establish a robust and consistent evaluation process for various
approaches to the self-adaptation of loss component weights in the GCNN model, as it is out-
lined in Section 1. The primary goal is to answer the scientific question posed in the study by
investigating whether the proposed method, as described in Section 3.1, can fulfil the set tar-
get. To achieve this, a sequence of experiments was conducted. Initially, an optimized model
with a constant linear scalarization loss coefficients balancing method was utilized to assess its
transferability. The results of these experiments are presented in Section 4.1. Subsequently,
different self-balancing methods were implemented during the training process of the model,
and their performance was evaluated using the proposed method. The evaluation method in-
corporates specific statistical parameters, as defined in Section ??, to gauge the performance of
each approach. The overall aim of the research is to comprehensively evaluate the effectiveness
of various loss coefficient self-balance methods in the GCNN model. By performing a series
of experiments and employing the proposed evaluation process, the study seeks to provide a
robust and consistent assessment of the performance of each method.

4.1 Model transferability tests
Model transferability refers to the ability of a model trained on atomistic molecular simulation
results to be effectively utilized in CG simulations under different conditions. Experiments
targeting the evaluation of the transferability of the model when applied to CG simulations
at temperatures different from those in the training dataset were performed. The study con-
sists of two main stages. Firstly, the performance of a model trained at a specific temperature
is assessed in CG simulations conducted at various temperatures. This evaluation allows for
an understanding of how well the model performs when extrapolated to different temperature
regimes. The results of this stage are presented in Section 4.1.1. Following that, the study in-
vestigates whether the hyperparameters of the loss function (as described in Section 3.1), which
have been optimized for the training process using a dataset of a specific temperature, can be
successfully applied to the training process using a dataset of a different temperature. This
analysis aims to determine if the hyperparameters can be effectively transferred and used in a
generalized manner. The findings of this investigation are presented in Section 4.1.2. By con-
ducting these stages of analysis, the research sheds light on the model’s transferability in CG
simulations across different temperature conditions and explores the applicability of optimized
hyperparameters in training processes with varying temperature datasets. The results provide
valuable insights into the model’s robustness and potential for generalization.

4.1.1 Temperature Transferability

Initially, the temperature transferability of a trained model was evaluated. Two routes of evalu-
ation were followed. In the first one, a model trained using a dataset derived from the atomistic
molecular dynamic simulation at 300 K was used for CG simulations at temperatures ranging
between 280 and 340 K. In the second one, the influence of the training temperature in the CG
simulation at 340 K was investigated.

The simulation results indicate that the trained model produces consistent results when it
is used for CG simulations at different temperatures to the one of the training. The pair cor-
relation functions, g(r), calculated from the simulation results at different temperatures are
presented in Figure 7a. Their lineshapes are approximately the same, and this is also indicated

25

(a) (b)

(c) (d)

Figure 7: Results of the coarse-grained simulations at temperature ranged between 280K and
340K using a model trained at 300K. (a) Radial distribution function. (b) Mean square displace-
ment. (c) Potential energy, with a red line the mean potential energy from atomistic simulation
is indicated. (d) Temperature.

26

by the p-value of the Kruskal-Wallis test, which is 0.9955. Although, two small peaks at ap-
proximately 3.2 and 3.5 Å, that are not expected, are presented in all cases. The intensity of
the peaks decreases as the simulation temperature increases. The expected behaviour is also
presented in the mean square displacement (Figure 7b) with an increase in the simulation tem-
perature leading to higher values; particles’ mobility increases with increased temperature. In
the case of coarse-grained simulated potential energy (Figure 7c) it has a lower fluctuation with
the increase of simulation temperature; a lower standard deviation is observed as the simula-
tion temperature increases. Specifically, the mean value of the coarse-grained simulated po-
tential energy is -1452.5(±231.3) kcal/mol, -1365.0(±177.3) kcal/mol, -1300.2(±159.4) kcal/-
mol, and -1207.0(±87.5) kcal/mol for simulation at 280K, 300K, 320K, and 340K, respec-
tively. The mean total potential energy from atomistic simulations for 300K and 340K are
-1099.7(±17.3) kcal/mol, and -906.2(±18.5) kcal/mol, respectively. Comparing these with the
mean total energy from coarse-grained simulations at the relative temperatures shows that in
both cases the latter are significantly lower. Finally, the coarse-grained simulated temperatures
are 279.8(±25.3)K, 299.91(±24.85)K, 319.6(±26.6)K, and 340.4(±27.3)K, which are very
close to the targeted ones and with approximately same fluctuation.

The influence of the training temperature in the simulation results was also evaluated by
comparing the simulation results using a model trained at the same and different temperatures.
Specifically, trained models at 300K and 340K were used for simulations at 340K. The hyper-
parameters in the training of both models were the same.

(a) (b)

(c) (d)

Figure 8: Results of the coarse-grained simulations at 340K using models trained at 300K and
340K. (a) Radial distribution function. (b) Mean square displacement. (c) Potential energy. (d)
Temperature.

27

In Figure 8 the results of the coarse-grained simulations at 340K using models trained at
300K and 340K are presented. The radial distribution function (Figure 8a) presents a smoother
lineshape when the model trained in the lower temperature was used, although there is a small
shoulder at approximately 3 Å that vanished when the model trained at 340K was used. The
training temperature seems to also affect the simulated mean square displacement (Figure 8b),
which should be the same as the simulation temperature is the same, in both cases. Using a
trained at 300 K model results in lower mean square displacement over time compared to that
when a model trained at 340K was used. In the case of coarse-grained simulated potential
energy (Figure 8c) using a model trained at 340 K results in to mean value closer to that of the
atomistic simulations and with significantly decreased fluctuation. Specifically, the mean value
of the total potential energy from atomistic simulations for 340K is -906.2(±18.5) kcal/mol
whereas the coarse-grained simulated total potential energy is -1207.0(±87.5) kcal/mol and -
910.0(±9.1) kcal/mol, for models trained at 300 and 340 K, respectively. Finally, in both cases,
the coarse-grained simulation temperature is close to the targeted one although using the model
trained at 300 K results in higher fluctuation compared to when the model trained at 340K is
used. The coarse-grained temperature when the model is trained at 300K is 340.4(±27.3)K and
when the model is trained at 340K is 340.0(±17.6)K.

4.1.2 Loss hyperparameters indicative tests

(a) (b)

(c) (d)

Figure 9: Results of the coarse-grained simulations at 340K using models trained at 300K and
340K. (a) Radial distribution function. (b) Mean square displacement. (c) Potential energy. (d)
Temperature.

As it has been mentioned in Section 3.1 the model has three hyperparameters included in the

28

loss function, the distance and the exponent parameters in the excluded volume (eq. 3.2), and
the coefficient λ of the energy loss component. Three sets of hyperparameters that are related
to the loss function had been optimized for training and simulation at 300 K by grid search of
a high hyperparameter space in previous research efforts. Their use for training a model at 340
K was evaluated by performing experiments using them. The loss-related hyperparameter sets
are presented in Table 1

Table 1: Optimized hyperparameter sets evaluated for training models at 340K

σex nex λ

Group A 5 5 1
Group B 5 6 1
Group C 5 7 0.1

The simulation results using the models trained at 340K and using the three different hy-
perparameter sets are presented in Figure 9. All three sets of hyperparameters result to pair
correlation functions with the same lineshape (Figure 9a). Although, the hyperparameters of
Group A result in high fluctuation of temperature, a significant decrease in the potential en-
ergy after approximately 20 ps, and not expected behaviour of the MSD curve. Between the
hyperparameters of Group B and Group C, the latter presents potential energy closer to that cal-
culated from atomistic simulations and a lower fluctuation in the temperature. The MSD curve
is approximately the same for Group B and Group C.

4.2 Loss components balancing methods
This section presents the results of the investigation into the performance of the proposed
method for evaluating different approaches to self-balancing loss coefficients. The experiments
conducted for this purpose involved the implementation of various self-balancing approaches,
including linear scalarization, ratio, and normalization of loss components. Additionally, the
experiments considered the maximum values of the loss components from the current epoch
and the values from the 5, 10, and 100 previous epochs. Furthermore, three versions of Soft-
Adapt were also tested. Multiple experiments were performed for each approach, starting from
different initial conditions (seed values). To evaluate the performance of each approach, the sta-
tistical parameters described in Section3.2 were calculated based on the experimental results.
These statistical parameters were then utilized in the proposed evaluation method, as outlined
in Section 3.4. By conducting these experiments and utilizing the proposed evaluation method,
the study provides insights into the effectiveness of different self-balancing approaches for loss
coefficients. The statistical parameters derived from the results contribute to a comprehensive
evaluation and comparison of each approach’s performance.

4.2.1 Constant Loss methods

The physical parameters of the system simulated from models trained using predefined self-
adaptation methods are displayed in Figure 10. As shown, when the maximum value of the loss
terms is utilized for calculating the coefficients of the loss terms, the simulation results exhibit
high fluctuations in the case of both CG simulated potential energy and temperature (Figure 10c
and d), while the slope of their MSD function (Figure 10b) decreases. However, in the case of
the ratio approach, the simulated parameters are consistent with those obtained using optimized
linear scalarization loss term coefficients.

29

(a) (b)

(c) (d)

Figure 10: Results of the coarse-grained simulations using predefined self-balancing ap-
proaches. (a) Pair correlation function, the pair correlation function from the atomistic sim-
ulation is presented with a blue line. (b) Mean Square Displacement. (c) Potential Energy, the
mean potential energy of the atomistic simulations is presented with a blue line. (d) Tempera-
ture, the targeted temperature of the system was 340 K.

These observations are further supported by the statistical parameters derived from the CG
simulation results, as described in Section 3.2. As demonstrated in Table 2, the ratio method
yields results comparable to those obtained with optimized linear scalarization one with con-
stant weights, except for the number of epochs needed for the model’s complete training. Con-
versely, in all instances where the maximum value of loss terms was employed for balancing
the loss terms, high CV values are calculated for both the CG simulated potential energy and
temperature.

The evolution of the loss terms during the model training using the ratio method provides
insights into the mechanism of balancing the loss terms. As shown in Figure 11a, the bal-
anced energy loss term exhibits unusual behaviour, with an initial sharp decrease in the first
few epochs, followed by a gradual increase, and then another sharp decrease. A clearer un-
derstanding of the balanced energy loss term’s evolution is provided by the inset of Figure 11a,
which displays the last 10 % of training epochs in a magnified view. It becomes evident that the
balanced energy loss term oscillates between a high value and approximately zero, suggesting
that the model is optimized for one of the loss components in each epoch. In epochs where the
balanced energy loss term has a high value, it has a greater influence on the total loss compared
to the energy grad loss term. Conversely, when its value reaches approximately zero, the en-
ergy grad loss term dominates the loss function. The progression of the unbalanced loss terms

30

Table 2: Statistical parameters extracted from the training and simulation of models using in-
tuitive approaches for the self-adaptation of the loss terms coefficients.

Name Nep
<tep>
(s)

σtep
(s)

ΔU
(%)

CVUCG

(%)
<T>
(K)

CVT
(%)

K-S
D

K-S
p-value

MSD
slope

5previous 626 128.4 1.0 34.5 9.9 339.7 128.7 0.16 1.4·10−11 0.073
10previous 624 128.6 0.9 36.2 9.6 338.6 132.5 0.17 5.0·10−13 0.061
100previous 365 128.3 1.0 6.5 3.9 336.4 100.4 0.08 2.8·10−3 0.1
overallmax 377 128.7 1.0 8.4 1.6 341 85.2 0.153 1.3·10−10 0.13
ratio 555 128.7 0.8 2.3 1.0 340.1 4.7 0.144 1.9·10−9 0.145
constant 375 128.1 0.9 0.5 1.0 340.0 5.2 0.172 2.5·10−13 0.143

indicates that the model’s learning ability increases throughout the training period, as their sum
consistently decreases.

(a) (b)

Figure 11: Evolution of (a) balanced and (b) unbalanced loss components during the training
of the model using the ratio approach.

4.2.2 Efficiency of SoftAdapt and optimum predefined methods

Based on the findings discussed in Section 4.2.1, it can be concluded that among the predefined
self-adaptation methods, only the ratio approach yielded CG simulation results as good as the
optimized linear scalarization method with constant weights which remains the best-performing
approach in relation the prediction of properties in comparison to the atomistic simulations
ground truth. To further investigate the performance of the ratio approach, it was compared
with the three variations of the SoftAdapt method and the constant weight linear scalarization
method by conducting multiple experiments with different initial states, specifically varying
initialization seed numbers. This approach allowed for the development of a population for
each method, thereby increasing the confidence in the derived statistical parameters for each
technique. Five different seeds were utilized in the experiments, with each seed being shared
across all the methods under comparison.

Optimized linear scalarization constant weights approach Figure 12 displays the benzene
liquid properties calculated from the simulation results, using models trained by employing the

31

constant weight approach. As shown in Figure 12a, the pair correlation function’s lineshape is
almost identical for all seed values, except for the fourth seed. In this particular case, the pair
correlation function exhibits a peak at approximately 3 Å, which does not have a clear physical
explanation. Additionally, in all instances, the pair correlation function’s peak appears at lower
r values compared to those from atomistic simulations.

(a) (b)

(c) (d)

Figure 12: Results of the coarse-grained simulations using the optimized constant weight ap-
proach. (a) Pair correlation function, the pair correlation function from the atomistic simulation
is presented with a blue line. (b) Mean Square Displacement. (c) Potential Energy, the mean
potential energy of the atomistic simulations is presented with a blue line. (d) Temperature, the
targeted temperature of the system was 340 K.

The pair correlation functions do not exhibit the same smoothness as those from atomistic
simulations, and they lack the damped oscillatory form observed in the reference function for r
values higher than 7.5 Å. In terms of the MSD function, the model trained with the fourth seed
demonstrates behaviour resembling a frozen system, which is distinct from all other cases, as
depicted in Figure 12b. The failure of the model trained with the fourth seed is also apparent
in the CG potential energy; while all other models result in potential energy values close to
those of atomistic simulations and remain stable over time, the fourth seed model produces a
lower simulated potential energy with significant oscillations throughout the simulation period.
Ultimately, the simulated temperature of the system oscillates around the target value for all
cases.

The behaviours illustrated in the diagrams of Figure 12 can be quantified using the statistical
parameters described in Section 3.2 (Figure 3. The absolute percentage difference between the
mean potential energy from atomistic and CG simulations ranges between 0.36% and 1.44%

32

for all cases, except for the fourth seed, where the difference increases to approximately 16%.
The CVUCG also rises from 1% to 4.1%. Conversely, the mean temperature remains close to 340
K in all cases, with low fluctuations (CVT of approximately 5%). The K-S test indicates that
none of the models results in a pair correlation function that is statistically similar to that from
atomistic simulation. Lastly, all models require approximately 400 training epochs, with each
epoch lasting 129 seconds.

Table 3: Statistical parameters extracted from the training and simulation of models using the
optimized constant weight approach for the self-adaptation of the loss terms coefficients for
different seed values.

Nep
<tep>
(s)

σtep
(s)

ΔU
(%)

CVUCG

(%)
<T>
(K)

CVT
(%)

K-S
D

K-S
p-value

MSD
slope

seed I 375 129.1 0.9 0.46 1.0 340.0 5.2 0.17 2.48·10−13 0.143
seed II 416 128.5 0.9 1.44 1.0 340.1 5.3 0.23 5.3·10−24 0.154
seed III 375 129.1 0.9 0.45 1.0 340.0 5.5 0.18 4.3·10−14 0.143
seed IV 415 127.9 1.0 16.09 4.1 340.0 4.2 0.11 1.69·10−5 0.098
seed V 375 129.1 0.8 0.36 1.0 340.0 6.3 0.19 1.08·10−15 0.140

Ratio approach The CG-simulated physical parameters using models where the ratio ap-
proach is employed for self-balancing of the loss terms are presented in Figure 13. The pair
correlation functions derived from these models are strikingly similar to those derived from
models trained using the optimized constant weight approach. In this case, the pair correla-
tion functions lack the damped oscillatory behaviour observed in the atomistic simulation for r
values above 7.5 Å and exhibit multiple peaks instead of a smooth lineshape.

Regarding the MSD, all models except the one of seed IV exhibit the expected behaviour.
The latter indicates a frozen system. Interestingly, this is the same seed that yields peculiar
results in the optimized constant weight approach. The failure of the seed IV model is also
apparent in the CG simulated potential energy and temperature. For this model, the CG simu-
lated potential energy is significantly lower than the atomistic simulated potential energy, and
the temperature exhibits high oscillations. In contrast, for all other models, the CG simulated
potential energy is significantly closer to that of the atomistic simulated potential energy, with
low oscillations.

The statistical parameters extracted from thesemodels also indicate similar behaviour (Table
4). All models, except for the seed IVmodel, present an absolute percentage difference between
the mean CG and atomistic simulated potential energy of approximately 2.5%. For the seed IV
model, this parameter is 45.3%. Using seed IV also results in an increase of CVUCG to 4.8%
from approximately 1%. Moreover, it leads to an increase in the oscillation of temperature
over simulation time from approximately 5% to 87%. The dissimilarity between the CG and
atomistic simulated pair correlation functions is also highlighted by the significantly low p-
value of the K-S test. Lastly, training the model using the ratio approach for self-balancing of
the loss terms requires between 364 and 555 epochs of approximately 128 seconds each.

SoftAdapt Original Variant Figure 14 displays the CG-simulated parameters from models
employing the original variant of the SoftAdapt approach. The lineshapes of the CG-simulated
pair correlation functions differ significantly from those of the atomistic simulations. This dif-
ference is also highlighted by the low p-value of the K-S test (Table 5). Conversely, the line-

33

(a) (b)

(c) (d)

Figure 13: Results of the coarse-grained simulations using the ratio approach. (a) Pair corre-
lation function, the pair correlation function from the atomistic simulation is presented with a
blue line. (b) Mean Square Displacement. (c) Potential Energy, the mean potential energy of
the atomistic simulations is presented with a blue line. (d) Temperature, the targeted tempera-
ture of the system was 340 K.

Table 4: Statistical parameters extracted from the training and simulation of models using the
ratio approach for the self-adaptation of the loss terms coefficients for different seed values.

Nep
<tep>
(s)

σtep
(s)

ΔU
(%)

CVUCG

(%)
<T>
(K)

CVT
(%)

K-S
D

K-S
p-value

MSD
slope

seed I 555 128.7 0.8 2.6 1.0 340.1 4.7 0.144 1.86·10−9 0.145
seed II 555 128.7 0.8 2.4 1.0 340.2 5.2 0.164 3.74·10−12 0.124
seed III 554 128.7 0.8 2.4 1.0 340.2 4.8 0.163 5.21·10−12 0.139
seed IV 312 128.1 1.2 45.3 4.8 339.9 87.0 0.149 4.25·10−10 0.043
seed V 364 128.4 1.0 2.2 1.2 339.9 5.9 0.178 2.98·10−14 0.136

shapes of the MSD functions exhibit the expected form (Figure 14b), and the slope of their last
30% of timesteps closely aligns with the results from models using optimized constant weights.

Moreover, the CG-simulated potential energy remains relatively constant for all seeds, al-
though their mean value is lower than that of atomistic simulations. As shown in Table 5, the
absolute percentage difference ranges between 1.7% and 10.7%. The CG-simulated temper-
ature has a mean value of 340K for all cases, with an oscillation of approximately 5%. The
models require around 600 epochs (between 557 and 638) with a duration of 116 seconds each.

34

(a) (b)

(c) (d)

Figure 14: Results of the coarse-grained simulations using the original variant of SoftAdapt
approach. (a) Pair correlation function, the pair correlation function from the atomistic simu-
lation is presented with a blue line. (b) Mean Square Displacement. (c) Potential Energy, the
mean potential energy of the atomistic simulations is presented with a blue line. (d) Tempera-
ture, the targeted temperature of the system was 340 K.

Table 5: Statistical parameters extracted from the training and simulation of models using the
original variant of SoftAdapt approach for the self-adaptation of the loss terms coefficients for
different seed values.

Nep
<tep>
(s)

σtep
(s)

ΔU
(%)

CVUCG

(%)
<T>
(K)

CVT
(%)

K-S
D

K-S
p-value

MSD
slope

seed I 580 116.1 0.5 10.7 1.3 340.0 4.5 0.103 4.87·10−5 0.116
seed II 637 117.5 0.5 5.9 1.2 339.9 4.3 0.186 1.57·10−15 0.111
seed III 638 115.3 0.4 1.7 1.1 339.9 4.9 0.186 1.57·10−15 0.124
seed IV 557 115.9 0.6 6.8 1.4 340.2 3.8 0.122 6.67·10−7 0.105
seed V 580 116.2 0.6 1.9 0.9 339.9 5.9 0.127 1.91·10−7 0.129

Weighted SoftAdapt Figure 15 displays the CG-simulated physical parameters derived from
models where the weighted variation of SoftAdapt has been employed for self-balancing the loss
term coefficients. The CG pair correlation functions show significant differences compared to
the atomistic simulations (Figure 15a), which is also indicated by the low p-values of the K-S
tests (Table 6).

The MSD function lineshapes have the expected form, and the slopes of their latter parts are
approximately the same as those in the optimized constant weight case. Furthermore, while the

35

(a) (b)

(c) (d)

Figure 15: Results of the coarse-grained simulations using the weighted SoftAdapt approach.
(a) Pair correlation function, the pair correlation function from the atomistic simulation is pre-
sented with a blue line. (b) Mean Square Displacement. (c) Potential Energy, the mean potential
energy of the atomistic simulations is presented with a blue line. (d) Temperature, the targeted
temperature of the system was 340 K.

CG potential energy exhibits low oscillation in all cases, with a coefficient of variance lower
than 1.6% in each instance, the mean values are slightly different.

A good agreement between themean simulated temperature and the target value is observed,
with low oscillation in all cases, except for the seed I case where the simulated temperature ex-
hibits high oscillation over the simulation time (Figure 15). Lastly, the number of epochs needed
ranges from 550 to 1500, with four out of five models requiring fewer than 725 epochs.

Normalized SoftAdapt The CG-simulated physical parameters using models with the nor-
malized SoftAdapt approach indicate that this method leads to worse results than the original
variant of SoftAdapt. The CG-simulated pair correlation functions show a significant differ-
ence compared to those from atomistic simulations, as illustrated in Figure 16a and Table 8.
Moreover, the lineshape of most CG-simulated MSD functions exhibits low slope values (16b).

While the simulated temperature of the system has a mean value close to 340K, it displays
high oscillation for all cases, with its coefficient of variation being higher than 46%, except for
the seed IV model, which presents a small oscillation and a coefficient of variation of 4.5%.
Conversely, the CG potential energy mean values are close to the atomistic simulated ones in

36

Table 6: Statistical parameters extracted from the training and simulation of models using the
weighted SoftAdapt approach for the self-adaptation of the loss terms coefficients for different
seed values.

Nep
<tep>
(s)

σtep
(s)

ΔU
(%)

CVUCG

(%)
<T>
(K)

CVT
(%)

K-S
D

K-S
p-value

MSD
slope

seed I 618 116.2 0.6 2.6 1.6 341.3 80.4 0.171 3.51·10−13 0.129
seed II 725 115.7 0.8 6.2 1.2 340.0 4.1 0.182 6.95·10−15 0.105
seed III 1500 115.1 0.7 1.9 0.9 339.9 9.4 0.164 3.74·10−12 0.141
seed IV 568 115.2 0.7 4.7 1.5 339.7 4.0 0.137 1.34·10−8 0.115
seed V 550 116.7 0.7 1.2 1.0 340.0 7.0 0.13 8.80·10−8 0.131

(a) (b)

(c) (d)

Figure 16: Results of the coarse-grained simulations using the normalized SoftAdapt approach.
(a) Pair correlation function, the pair correlation function from the atomistic simulation is pre-
sented with a blue line. (b) Mean Square Displacement. (c) Potential Energy, the mean potential
energy of the atomistic simulations is presented with a blue line. (d) Temperature, the targeted
temperature of the system was 340 K.

all cases, except for the seed II case, where a lower value of approximately 31% is observed.

The models also require significantly more epochs for training, with four out of five cases
needing more than 1000 epochs.

37

Table 7: Statistical parameters extracted from the training and simulation of models using the
normalized SoftAdapt approach for the self-adaptation of the loss terms coefficients for different
seed values.

Nep
<tep>
(s)

σtep
(s)

ΔU
(%)

CVUCG

(%)
<T>
(K)

CVT
(%)

K-S
D

K-S
p-value

MSD
slope

seed I 1449 115.3 0.7 2.3 1.2 339.8 53.9 0.152 1.71·10−10 0.097
seed II 610 116.0 0.5 0.5 1.1 340.0 4.5 0.191 2.33·10−16 0.137
seed III 1497 115.4 0.6 31.0 2.5 340.0 46.9 0.099 1.1·10−4 0.069
seed IV 1302 116.2 0.7 4.6 1.5 340.8 84.3 0.134 3.04·10−8 0.085
seed V 1083 115.9 0.6 2.3 1.7 341.3 91.0 0.122 6.67·10−7 0.089

4.2.3 Methods performance and technical comparison

In the context of evaluating self-balancing approaches, box plots of different statistical parame-
ters play a critical role. A box plot, also known as a box-and-whisker plot, is a graphical method
that provides a five-number summary of a dataset. This summary includes the minimum, the
first quartile (Q1), the median, the third quartile (Q3), and the maximum. The “box” in a box
plot represents the interquartile range, that is, the distance between Q1 and Q3, thus enclosing
the middle 50% of the data. The line within the box shows the median of the dataset. The
“whiskers” that extend from the box denote the variability beyond the lower and upper quar-
tiles, thereby providing a complete view of the dispersion of the data. Outliers, if present, are
usually depicted as individual points lying beyond the whiskers. Box plots can be drawn either
vertically or horizontally and are particularly useful for comparing one or more datasets. They
are essential tools for identifying outliers, measuring variability, and detecting symmetry in the
data, and they offer considerable value when comparing samples from different populations.
Despite the limited populations within each approach, certain preliminary conclusions can be
derived.

As illustrated in Figure 17, there appears to be a noticeable difference in the required number
of epochs for model training across varying self-balancing approaches. The constant weight
approach, for instance, demands the least number of epochs, while the normalized version of
SoftAdapt requires the most.

Figure 17: Box plots of the number of epochs for the linear scalarization constant weights
approach, the ratio approach, the original variant of SoftAdapt, the normalized SoftAdapt, and
the weighted SoftAdapt..

The self-balancing methods incorporated within the model seem to influence not only the
duration but also the stability of the training epochs (Figures 19a and b). All the SoftAdapt vari-

38

(a) (b)

Figure 18: Box plots of the (a) mean and (b) standard deviation of the duration of training
epoch for the constant weights approach, the ratio approach, the original variant of SoftAdapt,
the normalized SoftAdapt, and the weighted SoftAdapt.

ants require less time per epoch, and the time required is notably more consistent compared to
the constant weight and ratio approaches. This difference of approximately 10 seconds attempts
to offset the larger number of epochs needed for the SoftAdapt methods.

(a) (b)

Figure 19: Box plots of the (a) absolute percentage difference between the CG and atom-
istic simulated potential energy and (b) its coefficient of variation for the constant weights ap-
proach, the ratio approach, the original variant of SoftAdapt, the normalized SoftAdapt, and the
weighted SoftAdapt.

When considering the absolute difference between the mean CG and atomistic simulated
potential energies, no substantial difference is discerned between the approaches (Figure 19a).
The constant weight and ratio approaches appear to have a lower mean value compared to the
SoftAdapt methods, but the presence of an outlier in both cases, coupled with a small population
size, complicates the drawing of clear conclusions. This complexity also surfaces in the case
of the CVUCG , where despite the lower mean value and dispersion for the constant weight and
ratio approaches, outliers are present in both instances of cloud interpretation (Figure 19b).

All methods deliver a simulated temperature close to the expected value, with similar dis-
persion if outliers are accounted for (Figure 20a). However, the box plots of the CVT parameter
indicate that the normalized version of SoftAdapt exhibits significantly higher oscillations in
the simulated temperature relative to the other methods (Figure 20b).

39

(a) (b)

Figure 20: Box plots of the (a) mean CG simulated temperature and (b) its coefficient of vari-
ation for the constant weights approach, the ratio approach, the original variant of SoftAdapt,
the normalized SoftAdapt, and the weighted SoftAdapt.

(a) (b)

Figure 21: Box plots of the (a) statistic and (b) p-value of K-S test for the constant weights
approach, the ratio approach, the original variant of SoftAdapt, the normalized SoftAdapt, and
the weighted SoftAdapt.

In the case of the K-S test results, no notable difference between the self-balancing methods
is observed. Both the statistic and p-value parameters display similar behavior across the various
approaches (Figure 21). Lastly, a significant difference between the self-balancing methods
emerges in the MSD slope parameter. The constant weight approach results in the highest MSD
slope, while the normalized version of SoftAdapt yields the lowest.

4.2.4 Post hoc analysis

A robust, repeatable, and quantifiable comparison of the performance of various self-balancing
methods, as against the boxplots used in Section 4.2.3, is achieved using the methodology out-
lined in Section 3.4. This approach employs the Kruskal-Wallis test, a non-parametric statistical
test, to identify statistical parameters where at least one approach exhibits a distinct behavior
compared to the others. Subsequently, Tukey’s test, a post-hoc analysis, is utilized to pinpoint
the differing methods and quantify the extent of these differences.

The results derived from the Kruskal-Wallis test are encapsulated in Table 5. If we adopt a
more lenient p-value of 0.1, it becomes evident that the null hypothesis of the Kruskal-Wallis

40

Figure 22: Box plots of the slope of the last 30% of the MSD function for the constant weights
approach, the ratio approach, the original variant of SoftAdapt, the normalized SoftAdapt, and
the weighted SoftAdapt.

test is dismissed for several parameters. These include the total number of epochs, the mean
iteration time, the standard deviation of iteration time, and the MSD slope parameters.

This result implies that, for these specific parameters, the mean value of at least one method
is statistically significantly different from the others. This finding aligns with the observations
made from the box plots of the statistical parameters presented in Section 4.2.3.

By employing this two-step statistical process, the Kruskal-Wallis test followed by Tukey’s
test, we are better equipped to discern subtle differences between methods and obtain a more
nuanced understanding of the comparative performance of different self-balancing approaches.

Table 8: Results of Kruskal-Wallis test for the different statistical parameters.

Nep <tep> σtep ΔU CVUCG <T> CVT
K-S
D

K-S
p-value

MSD
slope

statistic 17.78 17.79 19.61 4.45 4.31 2.80 6.57 2.88 2.88 8.37
p-value 0.0014 0.0014 0.0006 0.35 0.35 0.59 0.16 0.58 0.58 0.079

The limited number of experiments carried out for each approach, along with the simulation
results of potential energy and temperature discussed in Section 4.2, suggest a higher threshold
should be adopted when selecting parameters for Tukey’s test. Therefore, a value of 0.35 is
used in this instance, extending the scope of Tukey’s test to the absolute difference between the
mean CG and atomistic simulated potential energies, and the coefficient of variation for the CG
simulated potential energy and temperature.

The results of the pairwise Tukey’s test for these parameters are compiled in Table 10. The
“rejected” column in the table corresponds to the null hypothesis’ rejection for this test, again
utilizing a significance level of 0.35.

Leveraging the outcomes fromTukey’s test, a ranking system can be created for the different
self-balancing approaches. This ranking system aggregates the ranks of each method across
different parameters, with each method then ranked based on their respective total scores. In
terms of the total number of epochs parameter, the constant weight approach aligns closely
with the ratio approach and the original variance of SoftAdapt, while requiring fewer epochs
compared to the normalized andweighted versions of SoftAdapt. The latter of these two appears
to demand fewer epochs.

For the mean iteration time parameter, no significant difference is evident among the Sof-
tAdapt methods or between the constant weight and ratio methods. Moreover, the SoftAdapt

41

group requires less time per epoch than the constant weight and ratio group. The same trend is
observed concerning the standard deviation of the time per epoch. For the absolute difference
between the CG and atomistic simulated potential energy, all methods can be deemed equiv-
alent. With respect to the coefficient of variance of the simulated temperature parameter, all
methods, barring the normalized SoftAdapt, are analogous. They also all demonstrate a lower
CVT compared to the normalized SoftAdapt.

Lastly, for theMSD slope parameters, all methods, with the exception of the constant weight
method, can be considered equal. All these methods also have lower mean values compared to
the constant weight method.

Given the above comparisons, the self-balancing methods can be ranked as follows:

1. Weighted SoftAdapt

2. Constant Weights

3. Ratio/Original SoftAdapt

4. Normalized SoftAdapt

The ranking of the self-balancing method is based on the ranking of each method on each
specific parameter presented in Table 9.

Table 9: Ranking of each self-balancing method based on individual parameters.

Method Nep <tep> σtep ΔU CVUCG <T> CVT
K-S
D

K-S
p-value

MSD
slope

Total
score

Constant Weights 1 1 4 2 2 1 1 3 1 3 19
Ratio 2 1 3 5 3 1 2 2 1 1 21
Original SoftAdapt 3 1 3 4 3 1 2 2 1 1 21
Weighted SoftAdapt 4 1 2 1 1 1 2 2 1 2 17
Normalized SoftAdapt 5 1 1 3 2 1 3 1 1 4 22

These findings highlight that, even without any optimization of the weighted version of
SoftAdapt’s hyperparameters, it can deliver superior results compared to the optimized con-
stant weights approach.

42

Table 10: Results of the pairwise Tukey’s test for the parameters that present p-value equal or below 0.35 in the Kruskal-Wallis test.

Group A Group B Total epochs Iteration time s_itertime DU CVT MSD slope

meandiff p-adj reject meandiff p-adj reject meandiff p-adj reject meandiff p-adj reject meandiff p-adj reject meandiff p-adj reject

constant ratio 77.0 0.9874 False -0.2504 0.9551 False 0.014 0.9992 False 7.2407 0.8313 False 16.2367 0.8732 False -0.0184 0.7769 False
constant norm SOA 797.0 0.0005 True -12.9724 0.0 True -0.2943 0.006 True 4.3809 0.9679 False 50.8303 0.0515 True -0.0402 0.1266 True
constant SOA 207.2 0.6824 False -12.5234 0.0 True -0.3805 0.0 True 1.6274 0.9993 False -0.6384 1.0 False -0.0187 0.7696 False
constant weight SOA 401.0 0.1178 True -12.9432 0.0 True -0.2206 0.0097 True -0.4135 1.0 False 15.7006 0.8859 False -0.0114 0.9508 False
ratio norm SOA 720.0 0.0015 True -12.722 0.0 True -0.3083 0.0003 True -2.8598 0.9934 False 34.5936 0.2896 True -0.0218 0.6569 False
ratio SOA 130.2 0.9183 False -12.273 0.0 True -0.3946 0.0 True -5.6132 0.9244 False -16.8752 0.8572 False -0.0002 1.0 False
ratio weight SOA 324.0 0.2734 True -12.6928 0.0 True -0.2347 0.0057 True -7.6132 0.8019 False -0.5362 1.0 False 0.007 0.9917 False
norm SOA SOA -589.8 0.0097 True 0.449 0.7247 False -0.0862 0.5932 False -2.7534 0.9943 False -51.468 0.0477 True 0.0216 0.665 False
norm SOA weight SOA -396.0 0.125 True 0.0292 1.0 False 0.0737 0.7204 False -4.7943 0.9559 False -35.1297 0.2759 True 0.0288 0.3998 False
SOA weight SOA 193.8 0.7319 False -0.4198 0.7699 False 0.1599 0.0855 True -2.0409 0.9982 False 16.339 0.8707 False 0.0072 0.9907 False

43

44

5 Conclusions and Open Problems

This investigation set out to devise a robust, reproducible framework capable of automating
the process of pre-screening undertrained models and quantifying the performance of more
promising candidates, a fundamental step in the quest to advance deep learning technologies.
This objective is tackled via the creation of an evaluation and ranking protocol that takes into
account the anticipated behavior of a model grounded on physical insights, and subsequently
gauges its performance employing statistical tests. The methodology put forth here offers an
opportunity to rank proposed methods based on quantified parameters. It presents a powerful
tool that can sieve out suboptimal models early in the process, hence, saving valuable compu-
tational resources and time. Concurrently, it quantifies the performance of promising models
with a statistical rigour that adds a layer of reliability and objectivity to the selection process. In
essence, the proposed framework enables more efficient and effective identification of potential
deep learning models for applications in molecular dynamics and physical problems, thereby
providing a significant contribution to the field and setting a new standard in the evaluation
process of these technologies. This, in turn, guides future research by highlighting areas of im-
provement and challenges that remain in the quest for the most accurate and computationally
efficient models.

he developed methodology was implemented to discern the most effective among multi-
ple self-balancing methods for a MOO problem. This problem was contextualized within the
domain of self-adapting the weights associated with the two components of the loss function
for a GCNN model. This particular GCNN model was tasked with simulating a force field for
predicting the configurations of a CG molecular system. The underlying model used for this
problemwas rooted in the SchNet architecture, a deep learning framework specifically designed
for atomistic systems. The SchNet architecture is noted for its capacity to model quantum in-
teractions in molecules, making it suitable for tasks involving molecular dynamics. The dataset
employed for the training process comprised multiple frames drawn from atomistic simulations
of benzene molecules. The problem at hand involved the self-adjustment of the weights of the
dual components of the GCNN model’s loss function. This self-balancing of weights aimed
to optimize the trade-off between the different objectives in the multi-objective optimization
problem. Using the developed method, the performance of various self-balancing methods was
evaluated in this context, revealing the most optimal approach for this specific problem.

The evaluation method developed in this study was applied to various self-adaptation ap-
proaches based on the loss components’ value or gradient. These encompassed the linear scalar-
ization constant weight approach, the ratio approach, and three distinct variations of SoftAdapt:
original, weighted, and normalized. Under the constant weight approach, the weights attributed
to the two loss terms remained fixed throughout the entire model training process. These con-
stant weights had been previously optimized by training the model on a dataset derived from
the atomistic simulation at a temperature lower than that employed in the current study. A sub-
sequent investigation into the transferability of the optimized weights and the model’s other
hyperparameters revealed that the optimized weights be effectively transferred. On the other
hand, the ratio approach established the weights of the loss terms based on the values of the
loss terms from the previous training epoch. An examination of the loss components’ values as
they evolved during the training process revealed a pattern in which each termwould alternately
dominate the loss function. Lastly, the SoftAdapt approaches utilized the change ratio of the
loss components to calculate their respective weights, with the objective being to enhance all
the loss terms at a uniform rate. In order to apply the developed evaluation method to com-
pare these different approaches, multiple models were trained using each of the self-adaptive

45

methods. To ensure the robustness of the comparison, each training sequence was initiated with
different seed values, thereby providing a diverse set of training scenarios for each approach.

For the rigorous evaluation of the models under consideration, a comprehensive set of per-
formance metrics was established. The selection of these evaluation parameters was conducted
with an eye towards capturing a holistic picture of each model’s performance and predictive
capabilities. The first three parameters pertain directly to the model training process. They are:
(1) The total number of training epochs required by each model: This measures the efficiency
of the training process, with fewer epochs indicating a more streamlined training sequence. (2)
The mean duration of each epoch: This gives an indication of how long, on average, each round
of training takes. A shorter mean epoch duration signals a more efficient model. (3) The stan-
dard deviation of the epoch duration: This evaluates the consistency of the training process. A
lower standard deviation indicates a more consistent, and thus reliable, training process. The re-
maining evaluation parameters focus on the predictive performance of the model, specifically
its ability to simulate a CG molecular system. These parameters are (4) The absolute differ-
ence between the mean CG and simulated potential energies: This measures how accurately the
model predicts potential energy. A smaller difference implies a closer match to the true poten-
tial energy. (5) The CG simulated temperature: This evaluates the model’s ability to accurately
predict the system’s temperature. (6) The coefficient of variation of the CG simulated poten-
tial energy and temperature: This assesses the variability of the model’s predictions in terms
of both potential energy and temperature. Lower coefficients suggest more stable and reliable
predictions. (7) The statistic and p-value of the Kolmogorov-Smirnov test between the CG and
atomistic simulated pair correlation function: This evaluates the similarity between the CG and
atomistic simulations. A lower statistic and higher p-value indicate a greater similarity. (8) The
slope of the last 30% of the MSD function: This captures how effectively the model predicts the
movement of particles over time. In essence, an ideal model would demonstrate a lower num-
ber of epochs, shorter epoch durations, and a lower standard deviation of the epoch duration. It
would also exhibit minimal differences between the mean CG and simulated potential energies,
an accurate simulation of CG temperature, low coefficients of variation for the potential energy
and temperature, a low statistic and high p-value in the Kolmogorov-Smirnov test, and a high
value on the MSD slope.

The findings derived from the Kruskal-Wallis test reveal that the various self-balancing ap-
proaches diverge specifically in relation to five factors. These include the cumulative number
of training epochs, the coefficient of variance of the simulated temperature, the average dura-
tion of each training epoch, the standard deviation of the duration of each epoch, as well as
the slope of the MSD. These conclusions corroborate the insights obtained from the box plot
visualizations of the parameters. The consistency between these two analyses strengthens the
reliability of these findings, providing a solid basis for the comparison of the different self-
balancing methods. By revealing areas of divergence among the methods, the Kruskal-Wallis
test outcomes play an instrumental role in guiding the subsequent stages of analysis, including
the application of Tukey’s test for pairwise comparisons.

Subsequent to the Kruskal-Wallis test, a pairwise Tukey’s test was implemented to conduct
a comparative analysis between the distinct self-balancing approaches based on the selected pa-
rameters. Through this statistical method, it was possible to rank these different methods based
on their overall performance. In accordance with the results from Tukey’s test, the Weighted
SoftAdapt method proved to be the most efficient approach. Following in the ranking were the
Constant Weight approach and the Weighted SoftAdapt approach. They were classified as the
second-best methods in terms of overall efficiency. The Ratio Approach was ranked third, to-
gether with the Original SoftAdapt whereas the Normalized SoftAdapt approach ranked at the

46

bottom. In light of these findings, it appears that the SoftAdapt method is a strong candidate for
further investigation. Its ability to deliver superior performance without specific hyperparame-
ter optimization suggests there might be more untapped potential for improvement within this
method. With additional research and perhaps fine-tuning of its hyperparameters, the perfor-
mance of the Original SoftAdapt method may be further optimized, potentially leading to even
more efficient and effective model training.

Following the aforementioned results, several areas have been highlighted for further ex-
ploration. Firstly, the validation of these findings through an increased number of experiments
emerges as a primary focus. By expanding the data set through additional trials, we can in-
crease the robustness of the statistical analyses and strengthen the reliability of the conclusions
drawn. This larger dataset would allow for a more detailed examination of trends and variances,
thereby enriching the insights derived from our study. Secondly, refining the evaluation param-
eters warrants consideration. Existing parameters could be enhanced by integrating additional
physical information, thereby encapsulating a more holistic perspective of the model’s perfor-
mance. Furthermore, assigning varying levels of significance to each parameter could introduce
an element of weighting, which may reflect the real-world relevance or importance of each pa-
rameter more accurately. This augmentation would allow for a more nuanced understanding
and could potentially improve the quality of conclusions drawn from the method, providing
a more precise measure of the model’s effectiveness. Lastly, an exploration into other self-
adaptation approaches should be undertaken. Given the performance of the SoftAdapt methods
in our study, further investigation into alternative approaches may reveal additional or even
more effective strategies for optimizing the balance of the loss function.

In summary, the primary achievement of this research is the establishment of a novel and ef-
ficient framework to streamline the evaluation of various methodologies and approaches in the
context of neural network models. This framework incorporates and leverages well-regarded
statistical tools, effectively synthesizing empirical data and expert insights to draw robust, high-
fidelity conclusions. By introducing a standard procedure for comparison, this method offers
a significant reduction in the complexity and variability often associated with the evaluation
process of different hyperparameters, methods, or approaches. It provides a uniform metric for
comparison, thereby mitigating the inconsistencies arising from ad-hoc or disparate evaluation
procedures. Furthermore, this approach not only refines the evaluation process but also fosters
an environment conducive to knowledge-sharing and collaborative exploration. The method
allows for the integration of expert insights in a structured and quantitative way, enabling a
deeper understanding of the underlying processes and fostering a more nuanced interpretation
of results. Through these advancements, the developed method represents a significant leap
forward in our ability to systematically analyze, compare, and understand the performance of
neural network models, a step that is crucial for their further refinement and application. Ulti-
mately, the effectiveness of this approach lies in its ability to streamline the evaluation process,
thereby promoting the more rapid development, refinement, and implementation of neural net-
work models. Its application not only provides a more robust and standardized comparison but
also guides future research directions and facilitates the process of knowledge synthesis and
decision-making.

However, a few open problems persist. The possibility of improving the performance of
the SoftAdapt method via hyperparameter fine-tuning remains unexplored. Moreover, the ap-
plication of the evaluation and ranking methodology to other types of neural networks is yet to
be tested. The development of an automated system that can perform this task with minimal
human intervention also presents a challenge for future research.

47

48

References
[1] Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. 2nd ed. Ox-

ford, UK: Oxford University Press, 2017. DOI: 10.1093/oso/9780198803195.001.
0001.

[2] Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms
to applications. 2nd ed. San Diego, CA: Academic Press, 2002. DOI: 10.1016/B978-
0-12-267351-1.X5000-7.

[3] Niki Vergadou and Doros N. Theodorou. “Molecular modeling investigations of sorption
and diffusion of small molecules in Glassy polymers”. In:Membranes 9.8 (2019). ISSN:
20770375. DOI: 10.3390/membranes9080098.

[4] Martin Steinhauser and Stefan Hiermaier. “A Review of Computational Methods in Ma-
terials Science: Examples from Shock-Wave and Polymer Physics”. In: International
Journal of Molecular Sciences 10 (12 Dec. 2009), pp. 5135–5216. ISSN: 1422-0067.
DOI: 10.3390/ijms10125135.

[5] Martin Karplus and Gregory A. Petsko. “Molecular dynamics simulations in biology”.
In: Nature 347 (6294 Oct. 1990), pp. 631–639. ISSN: 0028-0836. DOI: 10 . 1038 /
347631a0.

[6] Steve Plimpton. “Fast Parallel Algorithms for Short-Range Molecular Dynamics”. In:
Journal of Computational Physics 117.1 (1995), pp. 1–19. ISSN: 00219991. DOI: 10.
1006/jcph.1995.1039. arXiv: 1712.04707.

[7] Albert P. Bartók et al. “Gaussian approximation potentials: The accuracy of quantum
mechanics, without the electrons”. In: Physical Review Letters 104.13 (2010), pp. 1–4.
ISSN: 00319007. DOI: 10.1103/PhysRevLett.104.136403. arXiv: 0910.1019.

[8] Kristof T. Schütt et al. “Quantum-chemical insights from deep tensor neural networks”.
In: Nature Communications 8 (2017), pp. 6–13. ISSN: 20411723. DOI: 10 . 1038 /
ncomms13890. arXiv: 1609.08259.

[9] Jörg Behler andMichele Parrinello. “Generalized neural-network representation of high-
dimensional potential-energy surfaces”. In: Physical Review Letters 98.14 (2007), pp. 1–
4. ISSN: 00319007. DOI: 10.1103/PhysRevLett.98.146401.

[10] Stefan Chmiela et al. “Machine learning of accurate energy-conserving molecular force
fields”. In: Science Advances 3 (5May 2017). ISSN: 2375-2548. DOI: 10.1126/sciadv.
1603015.

[11] Linfeng Zhang et al. “Deep Potential Molecular Dynamics: A Scalable Model with the
Accuracy of Quantum Mechanics”. In: Physical Review Letters 120.14 (2018). ISSN:
10797114. DOI: 10.1103/PhysRevLett.120.143001. arXiv: 1707.09571.

[12] Justin S. Smith et al. “Less is more: Sampling chemical space with active learning”.
In: Journal of Chemical Physics 148.24 (2018). ISSN: 00219606. DOI: 10.1063/1.
5023802. eprint: 1801.09319.

[13] David Fooshee et al. “Deep learning for chemical reaction prediction”. In: Molecular
Systems Design and Engineering 3.3 (2018), pp. 442–452. ISSN: 20589689. DOI: 10.
1039/c7me00107j.

[14] Peter Broecker et al. “Machine learning quantum phases of matter beyond the fermion
sign problem”. In: Scientific Reports 7.1 (2017), pp. 1–10. ISSN: 20452322. DOI: 10.
1038/s41598-017-09098-0. arXiv: 1608.07848.

49

https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1093/oso/9780198803195.001.0001
https://doi.org/10.1016/B978-0-12-267351-1.X5000-7
https://doi.org/10.1016/B978-0-12-267351-1.X5000-7
https://doi.org/10.3390/membranes9080098
https://doi.org/10.3390/ijms10125135
https://doi.org/10.1038/347631a0
https://doi.org/10.1038/347631a0
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1006/jcph.1995.1039
https://arxiv.org/abs/1712.04707
https://doi.org/10.1103/PhysRevLett.104.136403
https://arxiv.org/abs/0910.1019
https://doi.org/10.1038/ncomms13890
https://doi.org/10.1038/ncomms13890
https://arxiv.org/abs/1609.08259
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1126/sciadv.1603015
https://doi.org/10.1103/PhysRevLett.120.143001
https://arxiv.org/abs/1707.09571
https://doi.org/10.1063/1.5023802
https://doi.org/10.1063/1.5023802
1801.09319
https://doi.org/10.1039/c7me00107j
https://doi.org/10.1039/c7me00107j
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1038/s41598-017-09098-0
https://arxiv.org/abs/1608.07848

[15] Zhao Chen et al. “GradNorm: Gradient normalization for adaptive loss balancing in deep
multitask networks”. In: 35th International Conference on Machine Learning, ICML
2018 2 (2018), pp. 1240–1251. arXiv: 1711.02257.

[16] A. Ali Heydari, Craig A. Thompson, and Asif Mehmood. “SoftAdapt: Techniques for
Adaptive LossWeighting ofNeural NetworkswithMulti-Part Loss Functions”. In: (2019).
DOI: 10.48550/arXiv.1912.12355.

[17] Eleonora Ricci et al. “DevelopingMachine-Learned Potentials for Coarse-GrainedMolec-
ular Simulations: Challenges and Pitfalls”. In: ACM, Sept. 2022, pp. 1–6. ISBN: 9781450395977.
DOI: 10.1145/3549737.3549793.

[18] Eleonora Ricci and Niki Vergadou. “IntegratingMachine Learning in the Coarse-Grained
Molecular Simulation of Polymers”. In: The Journal of Physical Chemistry B 127.11
(2023), pp. 2302–2322. ISSN: 1520-6106. DOI: 10.1021/acs.jpcb.2c06354.

[19] In Chul Yeh andMax L. Berkowitz. “Ewald summation for systems with slab geometry”.
In: Journal of Chemical Physics 111.7 (1999), pp. 3155–3162. ISSN: 00219606. DOI:
10.1063/1.479595.

[20] Ilya Sutskever et al. “On the importance of initialization and momentum in deep learn-
ing”. In: Proceedings of the 30th International Conference on Machine Learning. Ed.
by Sanjoy Dasgupta and David McAllester. Vol. 28. Proceedings of Machine Learning
Research 3. Atlanta, Georgia, USA: PMLR, 2013, pp. 1139–1147.

[21] James Bergstra et al. “Hyperopt: A Python library for model selection and hyperparame-
ter optimization”. In:Computational Science andDiscovery 8.1 (2015). ISSN: 17494699.
DOI: 10.1088/1749-4699/8/1/014008.

[22] Andrew R Leach. Molecular modelling: principles and applications. 2nd ed. Harlow,
UK: Prentice Hall, 2001. DOI: 10.1021/jm970383k.

[23] Mark E. Tuckerman. Statistical Mechanics: Theory and Molecular Simulation. By Mark
E. Tuckerman. Oxford University Press, 2010. DOI: 10.1002/anie.201105752.

[24] D. C. Rapaport. The Art ofMolecular Dynamics Simulation. Cambridge University Press,
Apr. 2004. ISBN: 9780521825689. DOI: 10.1017/CBO9780511816581.

[25] Mark JamesAbraham et al. “GROMACS:High-performancemolecular simulations through
multi-level parallelism from laptops to supercomputers”. In: SoftwareX 1-2 (Sept. 2015),
pp. 19–25. ISSN: 23527110. DOI: 10.1016/j.softx.2015.06.001.

[26] Aidan P. Thompson et al. “LAMMPS - a flexible simulation tool for particle-based mate-
rials modeling at the atomic, meso, and continuum scales”. In: Computer Physics Com-
munications 271 (Feb. 2022), p. 108171. ISSN: 00104655. DOI: 10.1016/j.cpc.
2021.108171.

[27] Romelia Salomon-Ferrer, David A. Case, and Ross C. Walker. “An overview of the Am-
ber biomolecular simulation package”. In: Wiley Interdisciplinary Reviews: Computa-
tional Molecular Science 3 (2 Mar. 2013), pp. 198–210. ISSN: 17590876. DOI: 10 .
1002/wcms.1121.

[28] “CHARMM:The biomolecular simulation program”. In: Journal of Computational Chem-
istry 30 (10 July 2009), pp. 1545–1614. ISSN: 0192-8651. DOI: 10.1002/jcc.21287.

[29] “Scalable molecular dynamics on CPU and GPU architectures with NAMD”. In: The
Journal of Chemical Physics 153 (4 July 2020), p. 044130. ISSN: 0021-9606. DOI: 10.
1063/5.0014475.

50

https://arxiv.org/abs/1711.02257
https://doi.org/10.48550/arXiv.1912.12355
https://doi.org/10.1145/3549737.3549793
https://doi.org/10.1021/acs.jpcb.2c06354
https://doi.org/10.1063/1.479595
https://doi.org/10.1088/1749-4699/8/1/014008
https://doi.org/10.1021/jm970383k
https://doi.org/10.1002/anie.201105752
https://doi.org/10.1017/CBO9780511816581
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1002/wcms.1121
https://doi.org/10.1002/jcc.21287
https://doi.org/10.1063/5.0014475
https://doi.org/10.1063/5.0014475

[30] Erik Lindahl, Berk Hess, and David van der Spoel. “GROMACS 5.0: a high-throughput
and highly parallel open source molecular simulation toolkit”. In: Bioinformatics 33.14
(2017), pp. 2020–2022. DOI: 10.1093/bioinformatics/btt055.

[31] MartinKarplus and J. AndrewMcCammon. “Molecular dynamics simulations of biomolecules”.
In: Nature Structural Biology 9 (9 Sept. 2002), pp. 646–652. ISSN: 10728368. DOI:
10.1038/nsb0902-646.

[32] R. Car and M. Parrinello. “Unified Approach for Molecular Dynamics and Density-
Functional Theory”. In: Physical Review Letters 55 (22 Nov. 1985), pp. 2471–2474.
ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.55.2471.

[33] Siewert J.Marrink et al. “TheMARTINI Force Field: CoarseGrainedModel for Biomolec-
ular Simulations”. In: The Journal of Physical Chemistry B 111 (27 July 2007), pp. 7812–
7824. ISSN: 1520-6106. DOI: 10.1021/jp071097f.

[34] H. Fehske, R. Schneider, and A.Weiße, eds. Computational Many-Particle Physics. Lec-
ture Notes in Physics. Vol. 739. Lecture Notes in Physics. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008. DOI: 10.1007/978-3-540-74686-7.

[35] MehranKardar. “Statistical Physics of Particles”. In: Statistical Physics of Particles (June
2007). DOI: 10.1017/CBO9780511815898.

[36] John D Chodera and Frank Noé. “Markov state models of biomolecular conformational
dynamics”. In: Current Opinion in Structural Biology 25 (Apr. 2014), pp. 135–144.
ISSN: 0959440X. DOI: 10.1016/j.sbi.2014.04.002.

[37] Ben Leimkuhler and Charles Matthews. Molecular Dynamics. Vol. 39. Springer Inter-
national Publishing, 2015. ISBN: 978-3-319-16374-1. DOI: 10.1007/978- 3- 319-
16375-8.

[38] Efrem Braun et al. “Best Practices for Foundations in Molecular Simulations [Article
v1.0]”. In: Living Journal of Computational Molecular Science 1.1 (2019), pp. 1–28.
DOI: 10.33011/livecoms.1.1.5957.

[39] H. J. C. Berendsen et al. “Molecular dynamics with coupling to an external bath”. In: The
Journal of Chemical Physics 81 (8 Oct. 1984), pp. 3684–3690. ISSN: 0021-9606. DOI:
10.1063/1.448118.

[40] Hans C. Andersen. “Molecular dynamics simulations at constant pressure and/or tem-
perature”. In: The Journal of Chemical Physics 72 (4 1980), pp. 2384–2393. ISSN:
00219606. DOI: 10.1063/1.439486.

[41] Shūichi Nosé. “A molecular dynamics method for simulations in the canonical ensem-
ble”. In: Molecular Physics 52 (2 June 1984), pp. 255–268. ISSN: 0026-8976. DOI:
10.1080/00268978400101201.

[42] M. Parrinello andA. Rahman. “Crystal Structure and Pair Potentials: AMolecular-Dynamics
Study”. In: Physical Review Letters 45 (14 1980), pp. 1196–1199. ISSN: 0031-9007.
DOI: 10.1103/PhysRevLett.45.1196.

[43] Soumil Y. Joshi and Sanket A. Deshmukh. “A review of advancements in coarse-grained
molecular dynamics simulations”. In: Molecular Simulation 47.10-11 (2021), pp. 786–
803. DOI: 10.1080/08927022.2020.1828583.

[44] Youping Chen et al. “Assessment of atomistic coarse-graining methods”. In: Interna-
tional Journal of Engineering Science 49.12 (2011), pp. 1337–1349. DOI: 10.1016/j.
ijengsci.2011.03.018.

51

https://doi.org/10.1093/bioinformatics/btt055
https://doi.org/10.1038/nsb0902-646
https://doi.org/10.1103/PhysRevLett.55.2471
https://doi.org/10.1021/jp071097f
https://doi.org/10.1007/978-3-540-74686-7
https://doi.org/10.1017/CBO9780511815898
https://doi.org/10.1016/j.sbi.2014.04.002
https://doi.org/10.1007/978-3-319-16375-8
https://doi.org/10.1007/978-3-319-16375-8
https://doi.org/10.33011/livecoms.1.1.5957
https://doi.org/10.1063/1.448118
https://doi.org/10.1063/1.439486
https://doi.org/10.1080/00268978400101201
https://doi.org/10.1103/PhysRevLett.45.1196
https://doi.org/10.1080/08927022.2020.1828583
https://doi.org/10.1016/j.ijengsci.2011.03.018
https://doi.org/10.1016/j.ijengsci.2011.03.018

[45] Ali Gooneie, Stephan Schuschnigg, and Clemens Holzer. “A review of multiscale com-
putational methods in polymeric materials”. In: Polymers 9.1 (2017). ISSN: 20734360.
DOI: 10.3390/polym9010016.

[46] B. M. Mognetti et al. “Coarse-grained models for fluids and their mixtures: Comparison
of Monte Carlo studies of their phase behavior with perturbation theory and experiment”.
In: Journal of Chemical Physics 130.4 (2009). ISSN: 00219606. DOI: 10.1063/1.
3050353. arXiv: 0812.0331.

[47] Emiliano Brini et al. “Systematic coarse-graining methods for soft matter simulations-a
review”. In: Soft Matter 9.7 (2013), pp. 2108–2119. DOI: 10.1039/c2sm27201f.

[48] Yaser S Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning from data.
Vol. 4. AMLBook New York, 2012.

[49] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.Deep Learning. MIT Press, 2016.
[50] Garrett B Goh, Nathan O Hodas, and Abhinav Vishnu. “Deep learning for computational

chemistry”. In: Journal of computational chemistry 38.16 (2017), pp. 1291–1307. DOI:
10.1002/jcc.24764.

[51] Junshui Ma et al. “Deep neural nets as a method for quantitative structure-activity rela-
tionships”. In: Journal of chemical information and modeling 55.2 (2015), pp. 263–274.
DOI: 10.1021/ci500747n.

[52] Izhar Wallach, Michael Dzamba, and Abraham Heifets. “AtomNet: A Deep Convolu-
tional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery”.
In: CoRR abs/1510.02855 (2015). arXiv: 1510.02855.

[53] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
[54] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learn-

ing: data mining, inference, and prediction. Springer Science & Business Media, 2009.
[55] Michael I Jordan and Tom M Mitchell. “Machine learning: Trends, perspectives, and

prospects”. In: Science 349.6245 (2015), pp. 255–260. DOI: 10.1126/science.aaa8415.
[56] Zhenqin Wu et al. “MoleculeNet: a benchmark for molecular machine learning”. In:

Chemical Science 9.2 (2018), pp. 513–530. ISSN: 2041-6520. DOI: 10.1039/C7SC02664A.
arXiv: 1703.00564.

[57] Xiang Fu et al. “Forces are not Enough: Benchmark and Critical Evaluation for Machine
Learning Force Fields with Molecular Simulations”. In: (2022), pp. 1–25. arXiv: 2210.
07237. URL: http://arxiv.org/abs/2210.07237.

[58] A San Solomon et al. “Neuron the memory unit of the brain”. In: Journal of Computer
Engineering 17.4 (2015), pp. 48–61.

[59] Zaheer Allam. “Achieving Neuroplasticity in Artificial Neural Networks through Smart
Cities”. In: Smart Cities 2.2 (2019), pp. 118–134. ISSN: 2624-6511. DOI: 10.3390/
smartcities2020009.

[60] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with
deep convolutional neural networks”. In:Communications of the ACM 60.6 (2017), pp. 84–
90. ISSN: 0001-0782. DOI: 10.1145/3065386.

[61] Mohammad Mustafa Taye. “Theoretical Understanding of Convolutional Neural Net-
work: Concepts, Architectures, Applications, Future Directions”. In: Computation 11.3
(2023), p. 52. DOI: 10.3390/computation11030052.

52

https://doi.org/10.3390/polym9010016
https://doi.org/10.1063/1.3050353
https://doi.org/10.1063/1.3050353
https://arxiv.org/abs/0812.0331
https://doi.org/10.1039/c2sm27201f
https://doi.org/10.1002/jcc.24764
https://doi.org/10.1021/ci500747n
https://arxiv.org/abs/1510.02855
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1039/C7SC02664A
https://arxiv.org/abs/1703.00564
https://arxiv.org/abs/2210.07237
https://arxiv.org/abs/2210.07237
http://arxiv.org/abs/2210.07237
https://doi.org/10.3390/smartcities2020009
https://doi.org/10.3390/smartcities2020009
https://doi.org/10.1145/3065386
https://doi.org/10.3390/computation11030052

[62] Nadia Jmour, Sehla Zayen, and Afef Abdelkrim. “Convolutional neural networks for im-
age classification”. In: 2018 International Conference on Advanced Systems and Elec-
tric Technologies, ICASET2018 (2018), pp. 397–402. DOI: 10.1109/ASET.2018.
8379889.

[63] Neha Sharma, Vibhor Jain, and Anju Mishra. “An Analysis of Convolutional Neural
Networks for ImageClassification”. In:Procedia Computer Science 132 (2018), pp. 377–
384. DOI: 10.1016/j.procs.2018.05.198.

[64] Farhana Sultana, Abu Sufian, and Paramartha Dutta. “Evolution of Image Segmentation
using Deep Convolutional Neural Network: A Survey”. In: Knowledge-Based Systems
201-202 (2020), p. 106062. DOI: 10.1016/j.knosys.2020.106062. eprint: 2001.
04074.

[65] Linwei Zhu et al. “Convolutional Neural Network-Based Synthesized View Quality En-
hancement for 3D Video Coding”. In: IEEE Transactions on Image Processing 27.11
(2018), pp. 5365–5377. DOI: 10.1109/TIP.2018.2858022.

[66] Shiyang Liao et al. “CNN for situations understanding based on sentiment analysis of
twitter data”. In: Procedia Computer Science 111 (2017), pp. 376–381. DOI: 10.1016/
j.procs.2017.06.037.

[67] Jiajun Zhang and Chengqing Zong. “Deep Neural Networks in Machine Translation: An
Overview”. In: IEEE Intelligent Systems 30.5 (2015), pp. 16–25. DOI: 10.1109/MIS.
2015.69.

[68] Jie Zhou et al. “Graph neural networks: A review of methods and applications”. In: AI
Open 1 (2020), pp. 57–81. DOI: 10.1016/j.aiopen.2021.01.001.

[69] Qiaoyu Tan, Ninghao Liu, and Xia Hu. “Deep Representation Learning for Social Net-
work Analysis”. In: Frontiers in Big Data 2 (2019), pp. 1–10. DOI: 10.3389/fdata.
2019.00002.

[70] Xiao Meng Zhang et al. “Graph Neural Networks and Their Current Applications in
Bioinformatics”. In: Frontiers in Genetics 12 (2021), pp. 1–22. ISSN: 16648021. DOI:
10.3389/fgene.2021.690049.

[71] Patrick Reiser et al. “Graph neural networks for materials science and chemistry”. In:
CommunicationsMaterials (2022), pp. 1–18. ISSN: 26624443. DOI: 10.1038/s43246-
022-00315-6.

[72] Shiwen Wu et al. “Graph Neural Networks in Recommender Systems: A Survey”. In:
ACM Computing Surveys 55.5 (2022). DOI: 10.1145/3535101. arXiv: 2011.02260.

[73] Thomas N Kipf and Max Welling. “Semi-supervised classification with graph convolu-
tional networks”. In: arXiv preprint arXiv:1609.02907 (2016).

[74] Petar Veličković et al. “GraphAttentionNetworks”. In: 2018. arXiv: 1710.10903 [stat.ML].
[75] William L. Hamilton, Rex Ying, and Jure Leskovec. “Inductive Representation Learning

on Large Graphs”. In: 2018. arXiv: 1706.02216 [cs.SI].
[76] Rex Ying et al. “Graph convolutional neural networks for web-scale recommender sys-

tems”. In: Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2018, pp. 974–983. ISBN: 9781450355520. DOI: 10 .
1145/3219819.3219890. arXiv: 1806.01973.

53

https://doi.org/10.1109/ASET.2018.8379889
https://doi.org/10.1109/ASET.2018.8379889
https://doi.org/10.1016/j.procs.2018.05.198
https://doi.org/10.1016/j.knosys.2020.106062
2001.04074
2001.04074
https://doi.org/10.1109/TIP.2018.2858022
https://doi.org/10.1016/j.procs.2017.06.037
https://doi.org/10.1016/j.procs.2017.06.037
https://doi.org/10.1109/MIS.2015.69
https://doi.org/10.1109/MIS.2015.69
https://doi.org/10.1016/j.aiopen.2021.01.001
https://doi.org/10.3389/fdata.2019.00002
https://doi.org/10.3389/fdata.2019.00002
https://doi.org/10.3389/fgene.2021.690049
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1038/s43246-022-00315-6
https://doi.org/10.1145/3535101
https://arxiv.org/abs/2011.02260
https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1706.02216
https://doi.org/10.1145/3219819.3219890
https://doi.org/10.1145/3219819.3219890
https://arxiv.org/abs/1806.01973

[77] Guohao Li et al. “DeepGCNs: Can GCNs Go as Deep as CNNs?” In: Proceedings of the
IEEE International Conference on Computer Vision 2019-Octob (2019), pp. 9266–9275.
ISSN: 15505499. DOI: 10.1109/ICCV.2019.00936. arXiv: 1904.03751.

[78] Felix Wu et al. “Simplifying Graph Convolutional Networks”. In: Proceedings of the
36th International Conference on Machine Learning. PMLR, 2019, pp. 6861–6871.

[79] Zonghan Wu et al. “A Comprehensive Survey on Graph Neural Networks”. In: IEEE
Transactions on Neural Networks and Learning Systems 32.1 (2021), pp. 4–24. ISSN:
2162-237X. DOI: 10.1109/TNNLS.2020.2978386. arXiv: 1901.00596.

[80] David I. Shuman et al. “The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains”. In: IEEE Signal
Processing Magazine 30.3 (2013), pp. 83–98. ISSN: 10535888. DOI: 10.1109/MSP.
2012.2235192. arXiv: 1211.0053.

[81] Zixue Xiang et al. “Self-adaptive loss balanced Physics-informed neural networks”. In:
Neurocomputing 496 (2022), pp. 11–34. ISSN: 18728286. DOI: 10.1016/j.neucom.
2022.05.015.

[82] Rafael Bischof andMichael Kraus. “Multi-Objective Loss Balancing for Physics-Informed
Deep Learning”. In: Neurocomputing 496.2020 (2021), pp. 11–34. ISSN: 09252312.
DOI: 10.13140/RG.2.2.20057.24169. arXiv: 2110.09813.

[83] D.F Jones, S.K Mirrazavi, and M Tamiz. “Multi-objective meta-heuristics: An overview
of the current state-of-the-art”. In: European Journal of Operational Research 137.1
(2002), pp. 1–9. ISSN: 03772217. DOI: 10.1016/S0377-2217(01)00123-0.

[84] Ozan Sener and Vladlen Koltun. “Multi-task learning as multi-objective optimization”.
In: Advances in Neural Information Processing Systems 2018-Decem.NeurIPS (2018),
pp. 527–538. ISSN: 10495258. arXiv: 1810.04650.

[85] Michael Ruchte and Josif Grabocka. “Scalable Pareto Front Approximation for Deep
Multi-Objective Learning”. In: Proceedings - IEEE International Conference on Data
Mining, ICDM 2021-Decem (2021), pp. 1306–1311. ISSN: 15504786. DOI: 10.1109/
ICDM51629.2021.00162. arXiv: 2103.13392.

[86] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward networks”. In:
Neural Networks 3.5 (1990), pp. 551–560. ISSN: 08936080. DOI: 10.1016/0893-
6080(90)90005-6.

[87] Sifan Wang, Yujun Teng, and Paris Perdikaris. “Understanding and Mitigating Gradient
Flow Pathologies in Physics-Informed Neural Networks”. In: SIAM Journal on Scientific
Computing 43.5 (2021), A3055–A3081. ISSN: 1064-8275. DOI: 10.1137/20M1318043.
arXiv: 2001.04536.

[88] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378.October (2019),
pp. 686–707. ISSN: 10902716. DOI: 10.1016/j.jcp.2018.10.045.

[89] Yoshua Bengio. “Practical Recommendations for Gradient-Based Training of Deep Ar-
chitectures”. In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 7700 LECTU. 2012,
pp. 437–478. ISBN: 9783642352881. DOI: 10.1007/978-3-642-35289-8_26. arXiv:
1206.5533.

54

https://doi.org/10.1109/ICCV.2019.00936
https://arxiv.org/abs/1904.03751
https://doi.org/10.1109/TNNLS.2020.2978386
https://arxiv.org/abs/1901.00596
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
https://arxiv.org/abs/1211.0053
https://doi.org/10.1016/j.neucom.2022.05.015
https://doi.org/10.1016/j.neucom.2022.05.015
https://doi.org/10.13140/RG.2.2.20057.24169
https://arxiv.org/abs/2110.09813
https://doi.org/10.1016/S0377-2217(01)00123-0
https://arxiv.org/abs/1810.04650
https://doi.org/10.1109/ICDM51629.2021.00162
https://doi.org/10.1109/ICDM51629.2021.00162
https://arxiv.org/abs/2103.13392
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1016/0893-6080(90)90005-6
https://doi.org/10.1137/20M1318043
https://arxiv.org/abs/2001.04536
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1007/978-3-642-35289-8_26
https://arxiv.org/abs/1206.5533

[90] James Bergstra and Yoshua Bengio. “Random search for hyper-parameter optimization”.
In: Journal of Machine Learning Research 13 (2012), pp. 281–305. ISSN: 15324435.

[91] Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. “Practical Bayesian optimization of
machine learning algorithms”. In: Advances in Neural Information Processing Systems.
Vol. 4. 2012, pp. 2951–2959. ISBN: 9781627480031. arXiv: 1206.2944.

[92] Stefan Chmiela et al. “Towards exact molecular dynamics simulations with machine-
learned force fields”. In: Nature Communications 9.1 (2018), p. 3887. ISSN: 2041-1723.
DOI: 10.1038/s41467-018-06169-2. arXiv: 1802.09238.

[93] Eleonora Ricci et al. “Molecular Simulations and Mechanistic Analysis of the Effect of
CO2Sorption on Thermodynamics, Structure, and Local Dynamics of Molten Atactic
Polystyrene”. In:Macromolecules 53 (10 2020), pp. 3669–3689. ISSN: 15205835. DOI:
10.1021/acs.macromol.0c00323.

[94] K. T. Schütt et al. “SchNet: A continuous-filter convolutional neural network for mod-
eling quantum interactions”. In: Advances in Neural Information Processing Systems
2017-Decem (1 2017), pp. 992–1002. ISSN: 10495258.

[95] K. T. Schütt et al. “SchNet - A deep learning architecture for molecules and materials”.
In: Journal of Chemical Physics 148 (24 2018). ISSN: 00219606. DOI: 10.1063/1.
5019779.

[96] Ask Hjorth Larsen et al. “The atomic simulation environment—a Python library for
working with atoms”. In: Journal of Physics: CondensedMatter 29.27 (2017), p. 273002.
DOI: 10.1088/1361-648X/aa680e.

[97] “Kolmogorov–Smirnov Test”. In: The Concise Encyclopedia of Statistics. New York,
NY: Springer NewYork, 2008, pp. 283–287. ISBN: 978-0-387-32833-1. DOI: 10.1007/
978-0-387-32833-1_214.

55

https://arxiv.org/abs/1206.2944
https://doi.org/10.1038/s41467-018-06169-2
https://arxiv.org/abs/1802.09238
https://doi.org/10.1021/acs.macromol.0c00323
https://doi.org/10.1063/1.5019779
https://doi.org/10.1063/1.5019779
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214

56

	Acknowledgments
	Introduction
	Background Knowledge and Related Work
	Molecular simulation
	Fundamentals of Molecular Dynamics
	Basic Concepts
	Statistical Ensemble
	Inter-Atomic Potentials
	Calculation of Properties
	Coarse-Grained Molecular Simulations

	Machine learning
	Artificial Neural Networks
	Convolutional Neural Networks (CNNs)
	Graph Neural Networks
	Graph Convolutional Neural Network

	Multicomponents loss functions
	Multi-Objective Optimization (MOO)
	Self-balancing methods

	Related work

	Methodology
	Machine learning model
	Experimental Setup
	Loss components value and gradient based approaches
	Statistical analysis of the evaluation results

	Experiments and results
	Model transferability tests
	Temperature Transferability
	Loss hyperparameters indicative tests

	Loss components balancing methods
	Constant Loss methods
	Efficiency of SoftAdapt and optimum predefined methods
	Methods performance and technical comparison
	Post hoc analysis

	Conclusions and Open Problems

