ITANEINIXTHMIO IIEIPAIQX
XY0oAN XPNUOTOOLKOVOULKNG KUl XTUTIGTLKNG

Tpuqpoe Xtatiotikn) g kKot Ac@aiieTtikfng Emetuncg

METAIITY XIAKO ITPOI'PAMMA 2IIOYAQN
THN EPAPMOXMENH XTATIXTIKH

EOAPMOI'H MEOOAQN XTATIXTIKHX
MHXANIKHY MAOHXHX YXTHN ANAAYXH
KEIMENQN KAI EIKONQN YI'ETIAX

Iodvvnc ApPavitomovrog

AMrmiopatikn Epyacia

mov vmofAnOnke oto Tunuo ZTOTIOTIKNG Kol AGQOAIGTIKNG
Emomung tov Iavemompiov Iepaidg g LEPOS TV amaITHGEDV
Yo TNV 0okt o Tov Metamtuylakod AmmAdpatog Edikevong otny

Egpapuoouévy 2rotionikn
[Teypondg
Maptioc 2023






IIANEINIXTHMIO IIEIPAIQX
YXY0oAN XPNUOTOOLKOVOULKNGS KUl XTUTIGTLKNG

Tpuqpoe Xtatiotikng kot Ac@aiieTikfig Emetuncg

METAIITY XIAKO ITPOI'PAMMA 2IIOYAQN
THN EPAPMOXMENH XTATIXTIKH

EOPAPMOI'H MEOOAQN XTATIXTIKHX
MHXANIKHY MAOHXHX XTHN ANAAYXH
KEIMENQN KAI EIKONQN YI'ETIAX

Iodvvnc ApPavitdonovrog

AMrniopatiky Epyacia

wov vroPAnOnke oto Tunuo ZTOTIOTIKNG Kol AGQOAIGTIKNG
Emomung tov Havemomuiov Iepaidg g pEPOS TV amaitioewv
Yo TV amoKTnon Tov Metamtuylakov Amddpetog Edikevong oty

Epopuoousvy Zrationxn
[Teypoundg
Maptiog 2023



H nmopovoa Awmropatikn Epyacio eykpiOnke opdowva and tv Tpiuein E&etactikn
Emuponn mov opicOnke and ™ I'ZEX tov Tunpoatog Xtatiotikng Kot AGQAAIGTIKNG
Emomung tov IMavemiommuiov Ilepoidg otmv va’ apbu. ........ ovvedpiacn tov
ocoppova pe tov Ecotepikd Kavoviopd Agttovpyiag tov [poypaupatog Metantvytokmyv

Ynovdadv otnv Epappocpévn Xtatiotikn

Ta péin g Emrponng nrav:
- Avarinpotig Kadnyntmc Zotmprog Mrepoiung (Eniprénmv)
- KaOnyntg Baciieiog [TAaytavdkog

- Emikovpog KaOnynmg Zomproc Tacoving

H éyxpion g Aummlopotikny Epyaciog and 1o Tpunpua Xtatiotikng kot ACQAAGTIKNG
Emotqung tov Iovemotnpiov Ilepaidg dev vmodniodvel amodoyn TV yVOUOV TOV

oLYYpOaQEa.



UNIVERSITY OF PIRAEUS

School of Finance and Statistics

Department of Statistics and Insurance Science

POSTGRADUATE PROGRAM IN
APPLIED STATISTICS

STATISTICAL MACHINE LEARNING USED
IN HEALTH IMAGE AND TEXT ANALYSIS

By
loannis Arvanitopoulos

MSc Dissertation

submitted to the Department of Statistics and Insurance Science of
the University of Piraeus in partial fulfilment of the requirements

for the degree of Master of Science in Applied Statistics

Piraeus, Greece
March 2023






2TOVG TOTTOVOES LoD

2oapykic & Kopive






Evyapioticg

H rmapoboa dimiwuatiky epyacio onuatodotel v olokinpwon twv
UETATTOYLOK®DV OV OTOVOWV ue titho «Epapuocuévy Xtotiotikn» oto tunuo
2rotiotikng kot Aopoiiotikns Emiotnunc ¢ oyxoing Xpnuoatooikovoulkng rot

2tatikng tov wovematnuiov lleipoiwg.

NidbOw v oavaykn va evyopiotiow Oepud tovg xolnyntés kai 7o
O10OKTIKO TPOTOTIKO TOD TPOYPOUUOTOS, KOBMDS oD UETEPEPOY TIC KOTOAANLES
YVOOELS YLO. VO UTTOPET® VO, EKTOVIO® TNV OITAWUATIKN Hov epyacia. Eidikotepa
Oa nbecia va ekppaow éva Oepuo ko elAkpIvéS evyopiotw otov emifrAémovia
kaOnynty pov k. Xwtnpio Mrepoiun, avominpwty kaOnynty 100 TAVETIGTHUIOD
lleipoia, yio v eumiotoodvy mwov uov é&deile kota Ty avabeon NS
OVYKEKPLUEVNS EPYATIAGS, VIO TNV OPTLO. EXLTTHUOVIKY TOV Kaboonynon kabwg kai

yio v elaipetiKn ovvepyaaio mov giyoue ko’ olo to diaoTHUA OVTO.

Evyapioto mwold tnv oikoyéveia pov yia v atnpiln kot tyv evlappoven
ka@’ oAn ™ Oidpkelo. TV GTOVOOV Hov. OEA® aKOuO VO EDYAPIOTHO® TOVG

@ilovg pov yia v vrootnpiln otic voiec mov Ekava.

Aev Qo uwopovoa va mapaleiym ) cOVIPOPO Kal oppofwviacTiKid 1o,
Avoortaocia Naton, yio v 10iaitepny ooufoin kai otnpiln oe ovty pov

wpoormadbela.

Téhog evyopioted péco amo v Kopoio. uov tov avlpwmo mwov nrov
“papogc” ge oAo 1o TOlId1 TG YVAOONS KOl EKTOIOEVONS HOV, TOV TOATTOD OV

AppPavitorovio Zapyki.

Heipaiag, Maptiog 2023






Hepiinyn

H mapovoo dimdwuotixn epyocio 6toyo Exel va Kaldyel Eva ueyaAo uEPog
TV TEYVIKDOV TPO ETECEPYOTLOG OEOOUEVWV KELUEVDV KOL EIKOVWV GTOV TOUER THS
vYELAG, UE OKOTO TH PeATiwan TS amodoans TV adyopiOuwyv Katnyopiomoinons
avtwv o€ Tpokabopiouéves katnyopieg. I'ia Ty KaTNYOPLOTOINGH TOV KELUEVWDV
OOKIUGOTNKAY TOOGO TEYVIKES UNYOVIKNG uabnons oco xoir teyvikés fobiag
UNYOVIKNG puabnong. XTI TeyVIKES uUnyovikés ualnong ypnoipuomwoinOnkov oi
alyopiBuor Logistic Regression, Multinomial Naive Bayes xa: Support Vector
Machines (SVM). Ta aroteAéouata avtav ovykpiOnkay kat o alyoptOuog ue tnv
KoAvtepn amoooon Ppébnke vo eivar o SVM ue axpifeio katnyopromoinong
88.98% lrcg teyvikés Pabids  unyovikng uabnons  ypnoiwomoinfnrov
APYITEKTOVIKES  VvevpwViK®V Olktdwv  omws  Multilayer Perceptron  kai
Convolutional Neural Network (CNN). Ta anoteléouata, apov ovykpiOnkay ot
uébodor uetald tovg, édcilav mw¢ kKaldtepn KaATHYOPIOTOINGH TWV KEIUEVOV
emtoyydver to oiktvo Multilayer Perceptron ue axpifeia xornyopiomoinong
84.85%. H katnyopiromoinon eikovwv dokiuaotnke vo, emitevybei e CNNS xai
Transfer Learning. Zvyxexpiuéva éva anlo CNN kai évo npo exkmardcouévo CNN
wwoto wg VGGL6 doxiuaotnrov ue katdtepn andooon to VGGL6 mov wérvye
akpifeia katnyoproroinons 97.83%






Abstract

The current thesis aims to cover a wide range of pre-processing
techniques on text and image data on health sector, with the scope of improving
the performance of classification algorithms. For text classification, Machine
Learning algorithms such as Logistic Regression, Multinomial Naive Bayes,
and Support Vector Machines (SVM) were used and the results of them were
compared to each other. The best performing algorithm was SVM with a
classification accuracy of 88.98%. Deep Learning techniques were used as
well, for the same task. A Multilayer Perceptron and a 1-Dimentional
Convolutional Neural Network (1-D CNN) were trained and evaluated. The best
performance was achieved from the Multilayer Perceptron with a classification
accuracy of 84.85%. Image classification task was implemented using CNNs
and Transfer Learning. Specifically, a simple CNN and a pre-trained CNN
known as VGG16 were used and the best performing was the VGG16 with a
classification accuracy of 97.83%.






Table of Contents

LIST OF FIQUIES ...ttt s i
LIST OF TADIES.....eeneieeeeeeee e iii
1. INEFOAUCTION ... 1
2. Text and image classification applications on healthcare.............c.............. 3
2.1.  Applications on text classification ............ccccoeverieinenineneneeeeeeeee 3
2.2.  Applications on image classifications...........c.cceccevvveeviineecesiceereceeee, 7

3. Text Data Preprocessing steps and teChniques ..........ccevvveceveeecceceennene, 13
3.1, TOKENIZALION......ccuiiiiriirieieete ettt sttt 13
3.2, Stop Word REMOVAL ........ccooouieieiicieeceeece ettt 13
3.3, STEIMMING ...ttt sttt b ettt ese s 14
3.3.1.  POIters STEMIMEN .....ccccooiiieiiiieeeie s 14
3.3.2.  N-Gram Stemmer (Statistical Methods).........cccecevererenerienieiieinnne 15
3.3.3. Context Sensitive Stemmer (Mixed Methods).........cccceeveeveveieennnne. 15

3.4, WOrd VECTOFIZALION ......evviieiiicieietnceteee ettt 17
341, Bag Of WOKAS ...oovieeeeeceeeeeeet ettt 17
3.4.2. Term Frequency - Inverse Document Frequency Vectorization..... 18
3.4.3. Word EMbBeddingS......ccceceevuireeiieriieieie et ste et sre et 19

4, Classification AlGOrithmsS..........cccoiiieiiiiiceecee e 25
4.1.  Multinomial Naive Bayes Classifier.........ccccovvveviriesenieniereeeeeseeeene, 25
4.2, LOQIStIC REQIESSION ....c.victieeiiitieieeie ettt ettt te e sbe et s be e nas 26
4.3.  Support Vector Machings (SVM).....ccoeeevieiieieneiieseseeeee e 28
4.3.1. Binary-Class SVM .......ccoceviiieereceeeseetese et 28
4.3.2. MUILI-CIaSS SVM ..ottt 29

4.4,  Artificial Neural NETWOTKS ........ccocoviririnieieieienesese e 31
4.4.1. Perceptron ANN ...ttt st 34
4.4.2. Convolutional Neural Networks (CNN) ......cceceveveeceneeeec e 34
4.4.3. Recurrent Neural Networks (RNN) ......cccooiiiniininieeeeeeceee 37

4.4.4. Long Short-Term Memory (LSTM) .....ccovvrieienereeeceeene e 40



5.

9.

Clinical TeXt ANAIYSIS.......ccciiviiieiieieese e 43
5.1, DALASEL .....cotiieeieteeeee e e 43
5.2, Data PreproCeSSiNgG ......ccceceieereeriieierieseesresteereessesseessessessessessesssessessasssens 45
530 MOUEIING ...ttt e 47

5.3.1.  Initial EXPErIMENT ....ceouiiiiiieiieiieeerteeteeeeeee e 47
5.3.2. Dropping Categories EXPeriment .........cccccevveeeveneeveereseereeseenene 50
5.3.3. Dropping Categories and Feature Selection using X2 ..................... 56
5.3.4. Oversampling with SMOTE & Feature Selection...........cccccceueeuenee. 60
5.4. Deep Learning APProach........ccceeeirirerenenienieieeeesese et 64
5.4.1. Deep Neural NEtWOIK.......cccoooeevieiieieiesecece e 65
5.4.2. Convolutional Neural Network .........ccccceoeiirinininenineneeeeeenne 67
5.4.3. Convolutional Neural Network with Glove Embeddings................. 71
5.4.4. Text Generation for balancing minority categories ............ccoveuee... 72
5.4.5. Deep Neural Network with oversampled data...........c.ccocecvevveeeennene 77
5.4.6. Convolutional Neural Network with oversampled data................... 78
547, SUMIMAIY ..ottt sttt sttt s sbe e e 79

Chest X-rays Covid-19 Classification ..........cccoceeveveneeiececececeeeceeee, 81
6.1, DaAtasel.......cccoiiiiiiiiiiiii s 81
6.2. Data Exploration and PreproCessing ......c.ccceeeeeeeeeveeneeieeseseeseesseseennens 81
6.3.  Deep Neural NEtWOIK.......c.ccveveiiieieieceeeeste ettt sre et st evnene 83
6.4, VGGLO NEIWOIK .....cveiiviiiiiiciinictnetee et 84
8.5, SUMMANY ..ottt et e e s e e bee e s be e enee s 86

CONCIUSION ...ttt 88

APPENAIX 1ottt et te s te et esteeba e besre et e sbeeanesteernentens 89
8.1. Medical Text Classification COde..........ccceevreririnieineineiniciieseieees 89
8.2. Medical Text Classification (Deep Learning Approach) Code.............. 95
8.3. Medical Image Classification Code.........c.cceevveririerereeceseeeeie e 109

RETEIENCES ...t 119



List of Figures

Figure 1 - Brain tUMOL TYPES .......eeeeeeeeeiiiiiieeeeeeeeciitteee ettt e e e et e e e e e e s 8
Figure 2 - Roc Curve of the clasSifiCation...........cccccuueeeevieveeseiiiiessiiieeesiieeeessiea e 8
Figure 3 - Confusion Matrix of Brain tumor classification..............ccccccevveevevvuveeeenneen. 8
Figure 4 - Discriminative patch prediction..............ceeeecvveeeecieeeeeciieeeescieeeesiieeaeeenns 11
Figure 5 - Context - aware feature selection and aggregation .............cccceeevcvuveeenns 11
Figure 6 - COSING DISTANCE ..........ueeeeeieeeeiiiiieee ettt e ettt e e e e e et eaa e e e e 19
Figure 7 - A simple CBOW MOAEI...............ouveeceeeeeeeiieeeecieeeeecieeeeecieeeeseieeaessiaaaeeaans 20
Figure 8 - A SKip-Gram MOGE!.............ccoccuueeieecieeeeeeieeeeecieeeeecteeeeesteeeesetaaeessaeeaeeiaes 21
Figure 9 - Weighting function f With @ =3/4. .........ccuecvueeveeeveeseeseesieesieesieesieesisesieenns 24
Figure 10 - Sigmoid FUNCEION .......cccveeeeeeiieseeeciiie e eeiee e eeiea e esiteaeesiie e e e sieeaessvena e e 26
Figure 11 - Linear Support Vector Machine (SVM) for a 2D data. ..............ccccuuuenn... 28
Figure 12 - ONe VS ONE APPIOACH .....cccouveeeeeeiieeeeciieeeecieeeeseieaeessieaeessiaeaessinaaesaaes 30
Figure 13 - Three different classes scatter plot ............ccoceevevveeeeeeiiieeeesiiieeeesiieaeene 30
Figure 14 - ONe VS All APPIOGCH..........cccvveeeeeiieeeeeieee et eectee e e steeeesetaaeesstaaaesaaes 31
Figure 15 - human Brain's NEUION ..............cceccueeeeecieeeeecieeeeecieeeeecteeeeseaeeeeesitaeaeeaaes 31
Figure 16 - ANN ArCRILECLUIE. .....ccc..veeeeeeiieeeeee et eete e et a e st e e e seeaee s 32
Figure 17 - CONVOIULION Filter ....cccccveeeeeeiiieeeeiiie et eeiee et estte e et a e esen e 35
Figure 18 - Max and Average POOIING ............cuueeeeeueeeeeiiieeeecieeeeecieeeescieeeesciaeaaeeians 35
Figure 19 - Fully CONNECLEA QYL .......cc..eveeeeeeeeeeeeeeeeeeeee et eeciee e setea e e e siaaa e 36
Figure 20 - General CNN architecture for text classification ..............ccecvvveeevevvenennnns 37
Figure 21 - Recurrent Neural NetWOrk ...............coeeeueeeeeiiueeieeiieisesiieeeessiiieeesiiieeaeninns 38
Figure 22 - TYPES Of RNINS.........ueeeeeeeeeeeceeee et e eeeieeeeeetaeeeeteaaeessasaaessassaaessssseaeanes 39
Figure 23 - Unrolled Recurrent Neural NEtWOrk..............ccececcvueeeeecieeeesciieeeesiiieeaeainns 39
Figure 24 - FOIrget GOLe........ccccuuvveeveeeeieeciiiiiieeeeeesesiiiiteteeeessssiiisesessssssssssssanssssssnssns 40
Figure 25 - INDUL GQLE.....cccoeeueevieiieeeeeeeiiiteeee e eeeestttte e e e essssiittes e s e e ssssssssteesasesssssssnes 41
Figure 26 - Cell StAte UPAQLE............ueeeeeeeeeeeeceeeeeeeieeeeecieeeeecteeeeesteeeesstaaaessaeeaeeiaes 41
Figure 27 - OULPUL GALE......coeuuvieiieieeeeeeeciiiieete e eeeesciiitttea e e ssssiiseseeesessssssssanssesssnssans 42
Figure 28 - Distribution of medical transcription text Iengths..............ccccvvevevuveeennns 43
Figure 29 - Counts of each category in target variable .................cocveeecvveeeecvveeeanns 44
Figure 30 - NaN Values for "transcription” column................ccceeeevvveeeecveeeeeiiieeaeann, 44
Figure 31 - Counts of each category in target variable after reduction..................... 45
Figure 32 - Most frequent OCCUITING WOIS..........cccueeeeeiiieeeeciieeeesiieaeesiieeeesisieaeeenes 46

Figure 33 - Confusion Matrix of Logistic Regression (Dropped Categories experiment)

................................................................................................................................................. 55
Figure 34 - Confusion Matrix of SVM ClaSSIfier.........cccoccvvievevieeeeciiieaeesiiiaeesiieaeens 63
Figure 35 - Final medical specialties COUNTS ..........cccceeeeeceveeecciieeesiieeeesiieeeesiea e 64
Figure 36 - DNIN AICRItECLUIE .......ccceeeeeeeeeeeee ettt e et tae e e e e e essstraaaaaeesssnnnes 65




Figure 37 - Confusion Matrix Of DNN ...........cccueeieeeueeeeeiiieeeeiieeeeeiieeaesiieeaesiisseaesinns 66

Figure 38 - CNIN AICRItECEUIE.....cccccveeeeeeiee ettt setae et e s staa e eseaaee s 69
Figure 39 - Confusion Matrix Of CNIN...........ccccueeeeecieeeesiiieeeecieeeessieeeessieeesssineaesaaes 70
Figure 40 - Models performance over @POCAS ...........cceccveeeeccveeeeeiiieaeesciieeeeeiieaeeens 72
Figure 41 - LSTM model for text generation..............cceccvueeeeviueeeeeiieeeeesiieeeeesieeaeeenns 75
Figure 42 - Text categories counts after text generation .............ccccvevvevveeescvivenenanns 76
Figure 43 - Confusion Matrix of DNN on generated texts ...........ccccocuvevvvvuvveesivvenenanns 77
Figure 44 - All models performance over €POCRS ............cccceeccvueeeeevieeeesiiieeeesieeaeenne, 79
Figure 45 - Images of Normal and Covid-19 X-rQys.........cccceecvvreeeevvveeesiienaeesiienaeeannes 82
Figure 46 - DNN AIrCRItECLUIE .....ccccveeeeeeiiieeeeiie ettt setae e esia e ssitaa e sstaa e 83
Figure 47 - Receiver Operating Characteristic Curve of DNN ..........cccccovevuveevvivuveeenanns 84
Figure 48 - Confusion matrix Of DNIN............cccouueieeeueeeeeiiieeeeiieeeeecieeeescieeeessisaeaesanns 84
Figure 49 - VGG16 ArCRItECTUIE. ........cccccveeeeeeceeee et eecteeeeecteeeeeeaeeaesstaaaesssaeaesiaes 84
Figure 50 - Confusion Matrix Of VGGL6.............eeeeeeeeeeesiiieeesiieesesiieeeesiinsessiineassinns 85
Figure 51 - Receiver Operating Characteristic Curve of VGGI16 ..........ccccvuvvevecvuveaennns 86
Figure 52 - Models performance over training..............ccccueeeeveeeeesveeeesiieeeeesiienaeeennns 86
Figure 53 - Receiver Operating Characteristic of MOdels ...........ccccoveeevcvvveesivivnnannns 86




List of Tables

Table 1 - Image distribution in the BreakHis dataset............cccoccvvvvvveeeeeeeeiiiivvvenaaannn, 9
Table 2 - DenseNet Vs Popular CNNs in the multiclass breast cancer classification.. 10
Table 3 - Data description in the dataset .............cceeeecuereeecieeeeeiiieeeeciieeeeecera e e 11
Table 4 - Vocabulary inSide the COIPUS...........oueeeceeeeeecieeeeieeeeecieeeeceeeeeseaaeesreeas 18
Table 5 - CO-0CCUrANCE MALTIX.......cc.eeeroueeeniieniieeeiesiee ettt 21
Table 6 - DAta St COIUMNS ..........cooueeeeieieiieeeeeeeesee ettt 43
Table 7 - Classification report Of NB..........cc.ueeeeeceeeeeeeieeeeeceeeeeceeaeecreeaeesrtaaeeeseeas 47
Table 8 - Classification report of Logistic ReGreSSion ............ccceeecvveeeecveeeeeeiiinaeeanen 48
Table 9 - Classification report Of SVIM .........ueeeeeecieeeeeiiiieeecieeeeceeeesstaeesseea e 49
Table 10 - Summary of the “Initial EXPEriment”............cccoeevveeeeeviuveeesiiereesiiesessinnnnn 50
Table 11 - Classification report Of NB.............uueecceeeeeeeeeeeeciieeeeceeeeesieeaeeseraeessvenas 52
Table 12 - Classification report of Logistic RegresSion ...........cceccvvveeecveveessiienaeeainenn 53
Table 13 - Classification report Of SVIM .........eeeeeeveeeeeieeeeiiee et esceeaesseaa e 54
Table 14 - Summary of the "Dropping Categories Experiment"................cccccveeeunne... 54
Table 15 - Classification report Of NB.............uueeeceeeeeeeeeeeeciieeeeceeeeeceraeeseraeeesaeeas 57
Table 16 - Classification report of Logistic RegresSion ...........cceccvuveeecveveessienaesssnenn 58
Table 17 - Classification report Of SVIM .........eeeeeeveeeeeieieeeciieeeectveesceaaeseeaa e 59
Table 18 - Summary of "Dropping categories and Feature Selection" experiment.... 59
Table 19 - Categories counts before and after SMOTE ...........cccccvvuveeeciveeeeeciiraeeannnn 60
Table 20 - Classification Report of Multinomial NB...............ccccccvueveeecivveesiiereeennnnn. 61
Table 21 - Classification report of Logistic regression............cceecvvveeeecvveveeescevaeennen 61
Table 22 - Classification report Of SVIM ..........eeeeceeeeeeeeeeeeceee et teaeeeseaa e 62
Table 23 - Summary of "Oversampling with SMOTE & Feature Selection" experiment
................................................................................................................................................. 62
Table 24 - Before and After text Cleaning............cueeeecuereeecieeeeeiiieeeeciieeeseiiraeesseens 64
Table 25 - Classification report Of DNN .........cccccoiiieieiicieeceeececeee e 66
Table 26 - Text encoded into sequence Of iINtEGErS .........ccccvveeeecvcuereeciiieeeesiiereesianenn, 67
Table 27 - Padding sequences into 100 maximum length..............ccceccvvveeeecvvvaeennneen. 68
Table 28 - Classification report Of CNIN.............oocceeeeeccveeeeecieeeeecieeeeceeeeesera e e e 70
Table 29 -Classification report of CNN wih Glove Embeddings..............cccccovveenne... 71
Table 30 - Feature and Labels extraction from given text..........ccccceeevvvveeeccrvneeenneen. 74
Table 31 - Classification report of DNN on generated texts...........cccoccvvvveeeccvvveeennneen. 77
Table 32 - Classification report of CNN on generated texts ...........cccccvvvveeeccvvneeennen. 78
Table 33 - Summary of all DL @XPErimeENts.............ueeeceeeeeeeiieeeeeiireeeiiieeeeciieraeeaaenns 79
Table 34 - DAtaset DESCriPtiON .........cccueeeeeeueieeesciieeeecieeeeecteeeesitteaeeseseseessseseessasens 81
Table 35 - Final Dataset DeSCriPtioN. ..........cc.ueeeeecveeeeeiiireeeiiiieeeeiieraeesisesaessseaaeesisenas 81
Table 36 - Classification report Of DNIN ............coceeeeecceeeeeeieeeeeiieeeeeceeeeesiaa e 83




Table 37 - Classification report Of VGG16 .........c..ueeeeecuveeeeeciiieeeiiieaeecieeeeesiinaeessenns

Table 38 - Models Summary Table




1. Introduction

Text mining is the process of extracting interesting and non-trivial patterns or
knowledge from unstructured text documents. It can be viewed as an extension of data
mining or knowledge discovery from databases.

Text mining is believed to have a commercial potential higher than that of data
mining. In fact, a recent study indicated that 80% of a company’s information is
contained in text documents. Text mining, in comparison with data mining, is a much
more complex task as it involves dealing with text data that is inherently unstructured
and fuzzy. Text mining is a multidisciplinary field, involving information retrieval (IR),
text analysis, information extraction, clustering, categorization, visualization, database
technology, machine learning, and data mining.

In healthcare, clinical records are largely maintained in free-text form. For that
reason, a reliable and efficient method to extract structured information for future data
mining from free text using information extraction techniques may greatly benefit
research endeavors. As information technology and HIS (Hospital Information System)
have been developed much, EMR (Electronic Medical Record) has also been
popularized. EMR, which medical staff uses to record texts, symbols, charts, graphics,
data, and other digital information generated by HIS, refers to medical records, which
could be stored, managed, transmitted, and reproduced efficiently. With the tremendous
growth of the adoption of EMR, various sources of clinical are becoming available,
which has established EMR as an important factor for large-scale analysis of health
data.

EMR also contains medical images such as MRI (Magnetic Resonance
Imaging), X-rays, CT (Computed Tomography), sonograms etc. which are also
unstructured data and can be used for the purpose of high-precision diagnosis. The
needs for Al (Artificial Intelligence), in healthcare have established automated systems
which scan medical images and configure big data. These data in combination with
suitable techniques are used for early detection of some of the most harmful diseases
such as Alzheimer’s disease, brain tumors, breast, and lung cancer detection etc.







2. Text and image classification applications on healthcare

2.1. Applications on text classification

Data Analytics and Machine Learning (ML) have been increasingly considered
as an enabling artefact to leverage health data for competitive advantage. The use of
ML techniques and data analytics have been widely utilized to summarize, explain, and
get insights into the interrelationships underlying complex datasets in novel ways. Such
insights can play a positive role in various medical and operational aspects including
diagnosis, health monitoring and assessment, healthcare planning, and management of
hospitals and health services. However, one of the key challenges for healthcare
analytics is to deal with huge data volumes in the form of unstructured text. Examples
include nursing notes, clinical protocols, medical transcriptions, medical publications,
and many others. In this respect, the use of Text Analytics has increasingly come into
prominence to deliver benefits for health organizations in a wide range of applications.

In this section, the state-of-the-art approaches, and applications of Text
Analytics in the healthcare context is going to be explored. The review is organized into
two broad categories of Text Analytics. On one hand, the first part presents selective
studies that applied Text Mining in the context of healthcare. On the other hand, the
second part describes Text Analytics in a diversity of predictive applications to support
clinical decision making. The review is unavoidably selective rather than exhaustive.
However, it is believed that the study could adequately provide representative studies
in each category.

Text Mining consists of two phases as follows. The initial phase typically
includes the application of text refining procedures, which transform free-text
documents into another intermediate form. Subsequently, the process of knowledge
extraction, which attempts to learn patterns or insights from that intermediate form
(Tan, 1999). This section provides selective studies that applied Text Mining with
different modalities and for various purposes in the healthcare context.

Han et al. (2015), have presented a rule-based system for question retrieval.
They aimed to search for similar questions in a large corpus of questions posted on
online health forums. The system was mainly based on the RAKE algorithm (Rose et
al. 2010) to perform the automatic extraction of keywords. Additional NLP methods
were applied using the popular NLTK library.

Martinez et al. (2016), have exploited health-related online content into
actionable knowledge using Text Mining. To reach this, they developed an approach to
help monitor online user generated streams on social media. The transformed




information was extracted by an NLP-based processing pipeline which was applied on
real-time streams of social media. The system could not only extract the mention of
diseases and drugs, but also it could identify useful relationships among medications,
indications, and adverse drug reactions.

Chang et al. (2016), have worked to develop a workflow using Text Mining to
search, extract, and synthesize information about Comparative Effectiveness Research
(CER) in healthcare. They developed a pipeline based on Natural Language Processing
(NLP-based pipeline) to extract information from unstructured CER data sources. This
solution could allow for the generation of timely alerts, and the collection of systematic
reviews as well. They wused trial data from multiple sources including
ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP), and
Cite line Trial trove.

Brown and Marotta, (2017), another interesting application set up, was
intended to develop a set of classification models to predict the protocol and priority of
magnetic resonance imaging (MRI) brain examinations. They used the narrative
clinical information provided by clinicians. The models were trained to make
predictions on three tasks including: i) Selection of examination protocols, ii)
Evaluation of the need for contrast administration, and iii) Estimation of priority. The
dataset consisted of about 14K MRI brain examinations over the period of January 2013
to June 2015. They created three models for each prediction task, each using a different
classification algorithm (Random Forest, Support Vector machine and K-Nearest
neighbor). They got an accuracy of 82,9%, 83% and 88,2% for each task. The empirical
results largely demonstrated that the models could be effectively employed to assist the
clinical decision support in this regard.

Castro et al. (2017), in the context of radiology, have developed a system to
automate the annotation and classification of the Breast Imaging Reporting and Data
System (Bl - RADS) categories. They tried to develop an NLP system so it can
automate BI-RADS categories extraction from breast radiology reports. Specifically,
the system tackled two tasks including: w) Annotation of the BI-RADS categories, and
ii) Classification of the laterality for each BI-RADS category. The study included 2K
radiology reports collected from 18 hospitals of the University of Pittsburgh from 2003
to 2015.

Pendyala, and Figueira (2017), explored the potential of Text Mining for
automating medical diagnosis. They applied the Bag-of-Words representation to
medical documents. To simplify the text representation, the Bag-of-Words model
builds a histogram of the words, while each word count is considered as a feature




(Goldberg, 2017). As such, each document can be simply represented as a “bag” of
words, while disregarding the order, sequence, and grammar of text. Though using a
small dataset, their experiments demonstrated promising results for that application.
More recently, (van Dijk et al., 2020) applied Text Mining to EHR data to validate the
screening eligibility of trial patients. The study was based on a multi-center, and multi-
EHR systems as well. The accuracy of the Text-Ming approach was compared to the
standard process produced by research personnel. The accuracy of the automatically
extracted data was about 88.0%.

Jelodar et al. (2020), used Text Mining to extract the COVID-19 discussions
from social media. They applied topic modeling of public opinions to gain insights into
the various issues pertaining to the COVID-19 pandemic. In addition, they
implemented an LSTM recurrent neural network for sentiment classification of
COVID-19 comments. Their findings put light on the importance of using public
opinions and the appropriate techniques to understand issues surrounding COVID-19.
The model achieved an accuracy of 81,15% which was higher than that of other well-
known machine-learning algorithms for COVID-19 sentiment classification.

Tvardik et al. (2018), developed a Text-Analytics solution for the automatic
detection of medical events. The textual records included data collected from three
University hospitals based in France over the period October 2009 to December 2010.
The dataset spanned a variety of medical surgical specialties including neurosurgery,
orthopedic surgery, and digestive surgery. The system performance was compared with
standard methods. The overall sensitivity and specificity were about 84%. The study
generally confirmed the feasibility of using NLP-based methods to automate the
detection and monitoring of healthcare-associated events in hospital facilities.

Afzal et al. (2018), applied NLP for the automatic identification of Critical limb
ischemia (CLI). Critical limb ischemia is a complication of advanced peripheral artery
disease (PAD) with diagnosis based on the presence of clinical signs and symptoms.
The dataset included narrative clinical notes retrieved from the HER (Electronic Health
Record) database. They tried to extend a previous NLP algorithm for PAD by
developing and validating a sub phenotyping NLP algorithm to identify the CLI cases
from clinical notes. The model performance was validated compared to the human
abstraction of clinical notes. Specifically, a physician reviewed and interpreted the
information in the EHR data for each patient in the dataset. Overall, the method could
achieve an excellent F1-score of about 90%.




Sterling et al. (2019), utilized the bag-of-words representation of nursing triage
free-text notes which are the first text data created at the start of an emergency
department (ED) visit. The study aimed to predict the final ED deposition using three
NLP preprocessing techniques. Using a dataset of over 250K ED visits they defined the
target variable as 1: admission, transfer, or death and 2: discharged, ‘left without being
seen’ and ‘left against medical advice’. Neural network regression models were trained
to predict hospital admissions. They could achieve a promising accuracy with ROC-
AUC=0.74.

Geetal. (2019), came through with another recent study developed a framework
to realize scalable Text Analytics. The framework aimed to support real-time analytics
for decision support in a variety of domains such as healthcare for example. Deep
Learning was applied for NLP tasks including language understanding and sentiment
analysis. The framework utilized a set of open-source tools including Spark Streaming
for real-time text processing along with Zeppelin and Banana for data visualization. In
addition, an LSTM model was trained for sentiment analysis. They practically
demonstrated the functionality of the framework using a scenario with Twitter data.

Kidwai, and Nadesh (2020), discussed the application of diagnostic chatbots in
healthcare. They developed a chatbot that makes use of NLP methods to understand the
user queries. After collecting the initial symptoms, the chatbot would guide the user
through a sequence of questions towards making the appropriate diagnosis. The system
uses decision trees and follows a top-down approach to conclude the diagnosis. The
chatbot was experimented with using a medical database of about 150 diseases.

Chen et al. (2020), managed to deal with the problem of overcrowding in
emergency department (ED) which has serious issues and demands effective clinical
decision-making of patient disposition. Their study included the development of a
disposition prediction model using Deep Learning. They gathered approximately 105K
ED visits during 2017-2018. The class to be predicted a deep neural network model
was developed with word embedding. They aimed to compare ML models as they put
the DNN against a Logistic Regression model with structured data. The metric used to
measure the predictive performance in both cases was F1 score.

Arnaud et al. (2020), presented an approach based on integrating structured data
with unstructured textual notes recorded at the triage stage. The key idea was to apply
a multi-input of mixed data for training a classification model to predict hospitalization.
On one hand, a standard Multi-Layer Perceptron (MLP) model was used with the
standard set of features (i.e., numeric, and categorical). On the other hand, a
Convolutional Neural Network (CNN) was used to operate over textual data. Their




empirical results demonstrated that the classifier could achieve a very good accuracy
with ROC-AUC=~0.83.

2.2. Applications on image classifications

Image classification is the ability to assign a label to a given image of any size.
This task belongs to the subset of artificial intelligence that is well known as computer
vision. Computer vision is widely used nowadays in many different industries with very
interesting and useful applications, one of those is healthcare.

Modern hospitals hold a diverse range of imaging data for diagnosis, treatment
planning, and assessing response to treatment. There are many cases where the human
eye is not possible to detect organ damage or a type of disease that is at its earliest stage.
Medical image analysis aims to extract the most important features in health-related
images to improve clinical diagnosis. In all medical specialties there are plenty of image
processing and classification applications with most of them related to early cancer
detection.

Ali Ari and Davut Hanbay (2018), developed a system for brain tumor detection
and segmentation. They proposed a method which had three stages. At the first stage
nonlocal means and local smoothing methods were used to remove possible noises. In
the second stage, cranial magnetic resonance images were classified as benign or
malignant using extreme learning machine local receptive fields (ELM-LRF). In the
third stage the detected tumors were segmented. The dataset they have used was
comprised of sixteen patients’ images digitized at 256x256 pixels. The training set had
9 images while the testing was 7. All input images were resized to 32x32 before feeding
into the ELM-LRF. The ELM-RF had four tunable parameters: convolution filter size
r, convolution filter number K, pooling size, and C regulation coefficient. The values
of the parameters were set to 5 to be the convolution filter size, the K value was chosen
as 16 and the pooling size was chosen as 3. In addition, for identifying the most
appropriate C value, an interval search was performed among 219,278, ... , 28,210 and
the C value with the minimum fault was chosen. In the experimental studies the
classification accuracy of cranial MR images is 97.18%. Evaluated results showed that
the proposed method’s performance was better than the other recent studies in literature.
Experimental results also proved that the proposed method is effective and can be used
in computer aided brain tumor detection.




Tarig Sadad et al. (2020), developed a model for tumor detection and
classification. The dataset that they used was from Figshare source which contained
3,064 brain MRI images of size 512x512 pixels. These images were obtained from 233
patients. It contains three brain tumors: glioma, pituitary, meningioma tumor and three
distinct views: sagittal, axial, coronal views.

(a) Giloma (b) Pituitary (¢) Meningioma

Figure 1 - Brain tumor types

For phase one, brain tumor detection, a U-Net architecture was employed and
achieved a remarkable efficiency in detecting tumors in medical images. The backbone
that was applied is an ResNet50 which is comprised of an encoder and decoder. For
phase two, brain tumor classification, transfer learning and NASNet architecture were
used. NASNet comprises of CNN and Controller Recurrent Neural Network (CRNN).
They managed to achieve the highest loU score of 0.9504 for brain tumor detection and
the highest accuracy of 99.6% for the detected tumor classification.

Meningioma = 1, Glioma = 2, Pituitary =3

ROC curve
250 = 4
1 0 1 7
200 a7 wo
Y P
[ g
3 150 g 067 il
=, 1 274 0 8 P
Y 38 >
S S 04 ]
100 2 s
02 1 7
3 0 0 50 ot
. 00d v — AUC =0.99
< N 5 0.0 02 04 06 08
Predicted label False positive rate
Figure 3 - Confusion Matrix of Brain tumor classification Figure 2 - Roc Curve of the




Majid Nawaz et al. (2018), in the context of breast tumor detection, presented a
deep learning approach that was based on a Convolutional Neural Network (CNN)
model for multiclass breast cancer classification. They aimed not only to classify the
breast tumors in non-benign or malignant, but they proposed an approach that was able
to predict the subclass of the tumors like Fibroadenoma, Lobular carcinoma, etc. The
dataset used for training and testing is BreakHis dataset which contains images
collected through a clinical study from January 2014 to December 2014 that took place
in Brazil. The dataset contains 7909 colored microscopic biopsy images of benign and
malignant breast tumors in four magnifying factors.

Magnification Benign Malignant Total
40X 652 1370 1995
100X 644 1437 2081
200X 623 1390 2013
400X 588 1232 1820
Total of Images 2480 5429 7909

Table 1 - Image distribution in the BreakHis dataset

The proposed model is a convolutional neural network where the convolution
non-linear and pooling layers were replaced with dense blocks and transition layers.
This kind of CNN is known as DenseNet model. The DenseNet has three dense blocks,
and two transition layers. They used 7x7 kernels for the first convolution to detect small
variation and substance in the image and extract more important features. An average
7x7 kernel size pooling layer with stride 2 is used before the fully connected layer and
finally the softmax layer for the eight classes of breast cancer histopathological images
was configured. The weights of different layers were initialized by using a pre-trained
model on ImageNet. The last layer was fine-tuned on BreakHis cancer images dataset.
The first convolutional layer was then unfrozen, and the entire network was fine-tuned
on the BreakHis training data. The results of the model were reported in two ways: In

patient level and in image level. In patient let, N,, be the number of histopathological

images of patient P. For each patient, if N cancer images are correctly classified, the

patient score and the patient recognition rate are defined as:




N
Patient score = N 1)

p

Y. patient Score

Patient recognition rate = 1)

total patient number

In image level reporting the recognition rate is calculated in image level. Let,
N, be the number of histopathological images inside the testing set. If N,., cancer images

are correctly classified then the recognition rate in image level is:

N,
Image recognition rate = Vr 3)
t
Accuracy Model Magnification Factors
(%) ) 40x 100x 200x 400x average
LeNet [43] 46.4 47.34 | 46.5 45.2 46.36
I AlexNet [28] 86.4 75.8 72.6 84.6 79.85
o CSDCNN[30] | 928 | 939 | 934 | 929 | 9325
DenseNet 03.64 | 97.42 | 9587 | 94.67 | 95.4
(onr’s)
LeNet [43] 48.2 47.6 45.5 45.2 46.62
Patient AlexNet [28] 74.6 73.8 76.4 79.2 76
level CSDCNN[30] | 94.1 93.2 94.7 93.5 03.87
DenseNet 9423 | 97.86 | 9635 | 9524 | 96.48
(our’s)

Table 2 - DenseNet Vs Popular CNNs in the multiclass breast cancer classification

In image level the DenseNet CNN model achieved high performance with
95.4% accuracy in the multiclass breast cancer classification task when compared with
other state-of-the-art models.

XiWang, et al. (2018), proposed an approach for fast and effective classification
on whole slide lung cancer images. Their method takes advantage of a patch-based fully
convolutional network for discriminative block retrieval. The network architecture they
proposed was split into three parts. The first part is a patch-based CNN that aims to
predict the cancer likelihood from whole slide images, the second part the spatially
contextual information is considered when selecting features from these blocks and the

10


https://openreview.net/profile?email=xiwang%40cse.cuhk.edu.hk

third part the global feature descriptor is fed into a standard Random Forest for the final
whole slide image classification.

“reate training .

sample set

—

—

Tain patch-huscd Ouiput probability
CNN R B < maps,

Figure 4 - Discriminative patch prediction

s w
| I,"I!Im‘h Feature w »."D D Feature /
[+ Selection v .i\%yn_.'g.nio.n / U
409 L]
®
€
: / o ° e
1 Classifier Apc ® ® AAA
b *
* SCLC
: *
4 *
NORM
Feature

Aggregation /
L—— -

Final prediction
/ 4096
i

WSI global feature descriptor
Figure 5 - Context - aware feature selection and aggregation

The data used for the experiments were provided by Sun Yat-Sen University
Cancer Center. The dataset consists of 871 digitalized histology WSIs with lung
carcinomas and 68 healthy WSIs. The 871 WSiIs are split into three subcategories of
lung cancer, Squamous cell Carcinoma (SC), Adenocarcinoma (ADC) or Small Cell
Lung Carcinoma (SCLC). Inside this set, 59 images are commented by a group of
experienced pathologists. These 59 images comprise as D1 dataset. The rest 812 cancer
images are further split into 642 (D2) and 170 (D4) images for training and testing
accordingly. The normal images are also split into two datasets containing 53 (D3) and
15 (D4) images for training and testing respectively. The table below shows the split of

the dataset they had done.

Carcinoma SC ADC SCLC Normal

Training ‘ D1 59 21 20 18 -
‘ D2 642 267 293 82 -

D3 - - - - 53

Testing D4 170 73 77 20 15

Table 3 - Data description in the dataset

11



With these data as shown above they set 4 experiments, M1 where D1 and D3
were used for patch-based CNN training. All the patches extracted from D1 and D3
only convey the WSI-level labels. During inference, CNN scanned the training set and
output the patch-wise probabilities as well as the features from the last convolutional
layer. The M2 experiment is like M1 except that the weighted loss function is employed
during training. In M# experiment the training dataset was constructed from D1, D2
and D3 and the coarse annotation masks were not utilized during CNN training. Finally,
in M4 experiment where the training dataset was the same as in M3 with the difference
that the weighted loss function was utilized on coarse annotation regions. After the

extensive experiments, the proposed method achieved an accuracy score of 97.1%

12



3. Text Data Preprocessing steps and techniques

Text pre-processing is an essential part of any Text Mining and NLP system,
since the characters, words, and sentences identified at this stage are the fundamental
units passed to all further processing stages, from analysis and tagging components,
such as morphological analyzers and part-of-speech taggers, through applications, such
as information retrieval and machine translation systems. It is a collection of activities
in which text documents are pre-processed. Because the text data often contains some
special formats like number formats, date formats and the most common words that are
unlikely to help Text mining such as prepositions, articles, and pro-nouns can be
eliminated. Text data pre-processing is needed to reduce indexing or data file size of
the text documents as well as to improve the efficiency of the IR system. The 20%-30%
of total word counts in a particular document is composed of stop words that do not add
any value. Words of the same root or meaning, in the natural human language, are
presented in different forms with different suffixes which affect the total number of
significant words inside a document by presenting the same word with different tokens.

3.1. Tokenization

Tokenization is the process of breaking a stream of text into words, phrases,
symbols, or other meaningful elements called tokens. The aim of the tokenization is the
exploration of the words in a sentence. The list of tokens becomes input for further
processing such as parsing or text mining. Tokenization is useful both in linguistics
(where it is a form of text segmentation), and in computer science, where it forms part
of lexical analysis. Textual data is only a block of characters at the beginning. All
processes in information retrieval require the words of the data set. Hence, the
requirement for a parser is the tokenization of documents. This may sound trivial as the
text is already stored in machine-readable formats. Nevertheless, some problems are
still left, like the removal of punctuation marks. Other characters like brackets, hyphens,
etc. require processing as well. Furthermore, tokenizer can cater for consistency in the
documents. The main use of tokenization is identifying meaningful keywords. The
inconsistency can be different number and time formats. Another problem is
abbreviations and acronyms which must be transformed into a standard form.

3.2. Stop Word Removal

Many words in documents recur very frequently but are meaningless as they are
used to join words together in a sentence. It is commonly understood that stop words
do not contribute to the context or content of textual documents. Due to their high

13



frequency of occurrence, their presence in text mining presents an obstacle in
understanding the content of the documents.

Stop words are very frequently used common words like ‘and’ ‘are’, ‘this’ etc.
They are not useful in classification of documents. So, they must be removed. However,
the development of such stop words list is difficult and inconsistent between textual
sources. This process also reduces the text data and improves the system performance.
Every text document deal with these words which are not necessary for text mining
applications.

3.3. Stemming

Stemming is the process of conflating the variant forms of a word into a
common representation, the stem. For example, the words: “presentation”, “presented”,
“presenting” could all be reduced to a common representation “present”. This is a
widely used procedure in text processing for information retrieval (IR) based on the
assumption that posing a query with the term presenting implies an interest in
documents containing the words presentation and presented. Although there are some
errors when it comes to stemming. There are mainly two errors in stemming, over

stemming and stemming.

Over-stemming is when two words with different stems are stemmed to the
same root. This is also known as a false positive. Under-stemming is when two words
that should be stemmed to the same root are not. This is also known as a false negative.

Usually, stemming algorithms can be classified into three groups: truncating
methods, statistical methods, and mixed methods. Each of these groups has a typical
way of finding the stems of the word variants. Some of the stemming algorithms are

going to be analyzed below.

3.3.1. Porters Stemmer

Porters stemming algorithm is one of the most popular stemming algorithms
proposed in 1980. Many modifications and enhancements have been made and
suggested on the basic algorithm. It is based on the idea that the suffixes in the English
language (approximately 1200) are mostly made up of grouping of smaller and simpler
suffixes. It has five steps, and within each step, rules are applied until one of them
passes the conditions. If a rule is accepted, the suffix is removed consequently, and the
next step is performed. The resultant stem at the end of the fifth step is returned.

14



The rule looks like the following:
<condition> <suffix> — <new suffix>

For example, a rule (m>0) EED — EE means “if the word has at least one vowel
and consonant plus EED ending, change the ending to EE”. So “agreed” becomes
“agree” while “feed” remains unchanged. This algorithm has about 60 rules and very
easy to understand. Porter designed a detailed framework of stemming which is known
as “Snowball”. The main purpose of the framework is to allow programmers to develop
their own stemmers for other character sets or languages.

3.3.2. N-Gram Stemmer (Statistical Methods)

It is language independent stemmer. The string-similarity approach is used to
convert word inflation to its stem. N-gram is a string of n, usually adjacent, characters
extracted from a section of continuous text. N-gram is a set of n following characters
extracted from a word. The main idea behind this approach is, similar words will have
a high quantity of n-grams in common. For n equals to 2 or 3, the words extracted are
called diagrams or trigrams, respectively.

For example, the word “INTRODUCTIONS” results in the generation of the
diagrams:

*I, IN, NT, TR, RO, OD, DU, UC, CT, TI, 10, ON, NS, S* and the trigrams:

**1,*IN, INT,NTR, TRO, ROD, ODU, DUC, UCT, CTI, TIO, ION, ONS, NS*,
S**

Where "*' denotes a padding space. There is n+1 such diagram and n+2 such
trigrams in a word containing n characters. Most stemmers are language specific.
Usually, a value of 4 or 5 is selected for n. After that textual data or document is
analyzed for all the n-grams. A word root generally occurs less frequently than its
morphological form. This means a word generally has an affix associated with it. This
stemmer has an advantage that it is language independent and hence very useful in
many applications. The disadvantage is it requires huge memory and storage for
creating and storing the n grams and indexes and hence it is not a practical approach.

3.3.3. Context Sensitive Stemmer (Mixed Methods)

This is a remarkably interesting method of stemming unlike the usual method
where stemming is done before indexing a document, over here for a Web Search,
context sensitive analysis is done using statistical modeling on the query side. This
method was proposed by Funchun Peng et al. (2007).

15



Basically, for the words of the input query, the morphological variants which
would be useful for the search are predicted before the query is submitted to the search
engine. This severely reduces the number of bad expansions, which in turn reduces the
cost of additional computation and improves the precision at the same time. After the
predicted word variants of the query have been derived, a context sensitive document
matching is done for these variants. This conservative strategy serves as a safeguard
against spurious stemming, and it turns out to be very important for improving
precision. This stemming process is divided into four steps after the query is fired:

a. Candidate generation:

Over here the Porter stemmer is used to generate the stems from the query
words. This has completely no relation to the semantics of the words. For a better output
the corpus-based analysis based on distributional similarity is used. The foundation of
using distributional word similarity is that true variants tend to be used in similar
contexts. In the distributional word similarity calculation, each word is represented by
a vector of features derived from the context of the word. We use the bigrams to the left
and right of the word as its context features, by mining a huge Web corpus. The
similarity between two words is the cosine similarity between the two corresponding
feature vectors.

b. Query Segmentation and head word detection:

When the queries are long, it is important to detect the major concept of the
query. The query is broken into segments which are normally noun phrases. For each
noun phrase the most important word is detected which is the head word. Sometimes a
word is split to know the content. The mutual information of two adjacent words is
found and if it passes a threshold value, they are kept in the same segment. Finding the
headword is by using a syntactical parser.

c. Context sensitive word expansion:

The keywords words are obtained by using probability measures and it decided
which word variants would be most useful — generally they are the plural forms of the
words. This is done using the simplest and most successful approach to language
modeling, which is the one based on the n-gram model which uses the chain rule of
probability. In this step all the important headword variants are obtained. The traditional
way of using stemming for Web search, is referred to as the naive model. This is to treat
every word variant equivalent for all possible words in the query. The query
“bookstore” will be transformed into “(book OR books) (store OR stores)” when
limiting stemming to pluralization handling only, where OR is an operator that denotes
the equivalence of the left and right arguments.

16



d. Context sensitive document matching:

The context is the left or the right non-stop segments of the original word. Since
queries and documents may not represent the intent in the same way, this proximity
constraint is to allow variant occurrences within a window of some fixed size. The
smaller the window size is, the more restrictive the matching. The advantage of this
stemmer is it improves selective word expansion on the query side and conservative
word occurrence matching on the document side. The disadvantage is the processing
time and the complex nature of the stemmer. There can be errors in finding the noun
phrases in the query and the nearest words.

3.4. Word Vectorization

For as long as computers have existed, there has been the question of how to
represent data in a way that machines can understand and work with. A problem with
modeling text is that it is messy, and techniques like machine learning algorithms prefer
well defined fixed-length inputs and outputs. Machine learning algorithms cannot work
with raw text directly; the text must be converted into numbers. Specifically, vectors of
numbers. Below three of the most used techniques namely Bag of Words, tf-idf
vectorization and word embedding are presented to convert text into numeric feature
vectors.

3.4.1. Bag of Words

When dealing with text data it is necessary to understand terms like Document,
Corpus and Feature. A document is a single text data point e.g., a medical prescription.
The corpus is the collection of all the documents and the features are every unique word
inside the corpus.

A bag of words (BoW) is the text representation that describes the occurrence
of words inside a document. This representation is product of two things, a vocabulary
of known words and a measure of the presence of known words. For example, let’s say
that 2 documents exist as below:

Docl: “I like to watch football despite my wife’s disagreement.”
Doc2: “My wife does not enjoy the time | watch football.”
The corpus can be built by combining the above three documents:

Corpus = “I like to watch football despite my wife’s disagreement. My wife does not
enjoy the time I watch football.”

17



And features will be all unique words: {“I”, “like”, “to”, “watch”, “football”,

“despite”, “My”, “wife”, “disagreement”, “does”, “not”, “enjoy”, “the”, “time’’}.

In table 4 is the vocabulary of 14 words out of 19 inside the corpus.

like

—_
o
>
o
—

watch | football | despite

3
=<

wife | disagreement | does enjoy

—

>
@D

time

my

o
o

0 0

o

0

o
o

o

wife

does

not

enjoy

the

time

watch

football

Bow for
Documentl

— |O|0|FR|O|0|O(0O|O|0|O|—
O |O|0|Oo|o|o|o|o|o|o
O |O|0|0O|0O|O|Oo|o|o|o|o
— Ok |O|O|0O|O(0O|O|O
— |P|IO|O|O|O|O(O|O|O
O |O|Oo|Oo|o|o|o|o|o|o
P |O|O|O|O|O|O|o|Oo|O|F
P |O|0|0O|0O|O|O(O|O|F
O |O|Oo|Oo|o|o|o|o|o|o
P |O|O|O|O|O|o|o|—|O
P |O|0O|0O|0O|O|Oo(r|O|O|0O
[l lellellellelle}] Jlellelle)]

P |O|O|O|O|r|O|o|o|Oo|O

P |O|O|O|r|O|o(o|o|O

Table 4 - Vocabulary inside the corpus

Hence, Doc2 would look as follows as a binary vector:
doc2 =1[1,0,0,1,1,0,1,1,0,1,1,1,1,1]

3.4.2. Term Frequency - Inverse Document Frequency Vectorization

The Bag-of words is simple and works properly, but its main disadvantage is
that it treats all words equally and cannot distinguish quite common words or rare
words. Term Frequency — Inverse Document Frequency (Tf-idf) solves this problem.

Term Frequency—Inverse Document Frequency (tf-idf) is a numerical statistic
which reveals how important a word is to a document in a collection. The Tf - IDF is
often used as a weighting factor in information retrieval and text mining. The value of
tf-idf increases proportionally to the number of times a word appears in the document
but is counteracting by the frequency of the word in the corpus. This can help to control
the fact that some words are generally more common than others. Tf-IDF can be
successfully used for stop-words filtering in various subject fields including text
summarization and classification. Tf-IDF is the product of two statistics which are
termed frequency and inverse document frequency. To further distinguish them, the
number of times each term occurs in each document is counted and sums them all
together. Term Frequency (TF) is defined as the number of times a term occurs in a
document.

No.of times a word appears in a document

Tf(t,d) =

Total No.of words in a document

18




An Inverse Document Frequency (IDF) is a statistical weight used for
measuring the importance of a term in a text document collection. IDF feature is
incorporated which reduces the weight of terms that occur very frequently in the
document set and increases the weight of terms that occur rarely.

No.of total documents

IDF(t,d) =1
(t,d) = log no.of doc.,termt appears into

The more files a word appears in the smaller IDF.

Then TF-IDF is calculated for each word using the formula,
Tf —idf(t,d) = tf(t,d) »idf (¢, d)
3.4.3. Word Embeddings

Both Vectorization techniques, BoW and tf-idf work well but it fails to suggest
a relation between two words. E.g., king and queen are two related words, but these
methods fail to recreate that relation in Vectorization. Vectorization using word
embedding solves this problem.

Word embedding or word vector is an approach in NLP to map words or phrases
from a vocabulary to a corresponding vector of real numbers. It is defined as a type of
word representation that allows words with similar meaning to have a similar
representation. The process of converting words into numbers is called vectorization
and after vectorization it is needed a technique to identify similar words; such technique
is the Cosine Similarity.

Cosine similarity measures the cosine of the angle between two vectors (item1,
item2) projected in an N-dimensional vector space. The smaller the angle, the higher
the similarity. It is defined as follows:

Cosine Distance/Similarity

ltem 2
A-B X

sim(iteml,item2) = cosf = ————
||A||||B|| Item 1

~

hY
Cosine Distance

Figure 6 - Cosine Distance

19



These embeddings can be learned, or precomputed embeddings can be used.
Some of the most used embeddings are:

e Word2Vec
e Glove

3.43.1. Word2Vec

Word2Vec is a statistical method for efficiently learning a standalone word
embedding from a text corpus. It was developed by Tomas Mikolov, et al. (2013), at
Google as a response to make the neural-network-based training of the embedding more
efficient and since then has become the de facto standard for developing pre-trained
word embedding. Two different learning models were introduced that can be used as
part of the word2vec approach to learn the word embedding; they are:

e Continuous Bag-of-Words, or CBOW model
e Continuous Skip-Gram Model

CBOW model takes the context of each word as the input and tries o predict the
word corresponding to the context. More specifically, one hot encoding is used for the
input word and measures the output error compared to one hot encoding of the target
word. In the process of predicting the target word, the vector representation of the target
word is learned.

Input layer Hidden layer Output layer
X, 6 6_"/
"-.‘ O O ,"_'
X3 O O|V;
X lo ol

\‘.’.\ V- : “.’l[:
Xy

[©
[0

Figure 7 - A simple CBOW model

The input word is a one hot encoded vector of size V. The hidden layer contains
N neurons, and the output is again a V length vector with the elements being the softmax
values. Wy, is the weight matrix that maps the input x to the hidden layer while Wy
is the weight matrix that maps the hidden layer outputs to the final layer. There is no
activation like sigmoid, tanh or ReLU. The only non-linearity is the softmax
calculations in the output layer.

20



Skip-gram is a slightly different word
embedding technique in comparison to CBOW as it
does not predict the current word based on the context.
Instead, each current word is used as an input to a log-
linear classifier along with a continuous projection
layer. This way, it predicts words in a certain range
before and after the current word. This variant takes only
one word as an input and then predicts the closely
related context words. That is the reason it can
efficiently represent rare words.

Figure 8 - A Skip-Gram model

3.4.3.2. Glove

The Global Vectors for Word Representation, or GloVe, algorithm is an
extension to the word2vec method for efficiently learning word vectors, developed by
Pennington, et al. at Stanford. It is an unsupervised learning algorithm which aims to
generate word embeddings by aggregating global word co-occurrence matrices from a
given corpus. The basic idea behind the GloVe word embedding is to derive the
relationship between the words from statistics. Unlike the occurrence matrix, the co-
occurrence matrix presents how often a particular word pair occurs together. Each value
in the co-occurrence matrix represents a pair of words occurring together. GloVe
focuses on global context to create word embeddings.

Let’s say a corpus of one document that says, “The quick brown fox jumps over
the lazy dog”. Then the co-occurrence matrix window size of1 would be as follows:

brown dog fox jumps lazy over quick the
brown 0 0 1 0 0 0 1 0
dog 0 0 0 0 1 0 0 0
fox 1 0 0 1 0 0 0 0
umps 0 0 1 0 0 1 0 0
lazy 0 1 0 0 0 0 0 1
over 0 0 0 1 0 0 0 1
quick 1 0 0 0 0 0 0 1
the 0 0 0 0 1 1 1 0

Table 5 - Co-occurance Matrix

21




Let X be the matrix of word-word co-occurrence counts with entries X;;. X;; is

the number of times word j occurs in the context of word i. Moreover, X; = Y X, 1S
the number of times any word appears in the context of word i. Finally let P;; =

P(li) = % be the probability that word j appears in the context of word i.

The idea of GloVe is to convert X into feature matrices W whose rows are
populated by w; or w;, where w;, w; € R? are the feature vectors of word i and j. Also

into matrix ¥V whose rows are populated by v, where v, € R? is a separate context
feature vector of word k.

The model in the most general form is:

Py

P

F(Wl-,Wj, vk) = (D

Where F relates W and V to X. If word k is related to both word i and j which
means that P, and P; are large, or unrelated to both word i and j which means that P,
and P, are small, then the value of F would be close to 1. On the other hand, if word
k is related to exactly one of the words i and k, which means that one of Py, andP;, is

small and the other is large, then the value of F would be far from 1. As each model,

GloVe needs a Cost Function to be defined. Since vector spaces are inherently linear
structures, the most natural way to encode the information present in ﬁi is with vector
jk

differences. Hence, you could restrict F to be:

Py

b

F(Wi - w;, vk) = (2)
To maintain the linear structure of the vectors, F will be restricted one more
time such that it now receives the dot product of its arguments,
P;
F(wi—w)™v) ==— (3)

Pik

There is nothing special abouti and j, they point to arbitrary words in the
corpus. Hence, the role of i and j in equation can be flipped to obtain:
Pir _ 1

F((w; —w)vy) = Py F((w; —wj)Tvy) @

22



The model should be invariant under this relabeling, but equation (2) is not. To
achieve invariance, F is assumed to be a group homomorphism from (R, +) to (R, X).

Hence,

% =F ((wi — wj)Tvk)

=F (WiTUk + (—W]-Tvk))
= F(w]v) x F(—w]vy)

_Fwiwy)
B F(W]-TUk)

(5)

Where F(WlTUk) = Pik =

The solution of equation (5) is:

w{ vy = log(Py,) = log(Xy) — log(X;)

Since the term log(X;) does not depend on k, it could be considered as a bias
term b; for w;. To restore exchange symmetry, a bias a;, for v, will be also added. The
final model becomes:

wl +b; + ag = log(Xy)  (7)
The model in part (7) is called the log-bilinear regression model. The optimal

values for parameters w;, vy, b; and a;, can be found using the least squares method.

A weighting function f(X;,) is introduced to compensate whenever X;; = 0
since log (X;;) is undefined at that point, and to balance out the contribution of frequent

and infrequent words to the model. The cost function of the model becomes:

vocabulary size

] = Z fXu) Wi vg + b; + ay, — logXy)?
k=1

The weighting function should obey the following properties:

1. f(0) = 0. If f is continuous function, it should vanish as x — 0 fast enough

that the lirré f(x)log?x is finite.
X—

23


https://en.wikipedia.org/wiki/Group_homomorphism

2. f(x) should be non-decreasing so that rare co-occurrences are not
overweighted.

3. f(x) should be relatively small for large values of x , so that frequent co-

occurrences are not overweighted.

One good simple choice of f is:

£(x) = {(x;ca)a if X < Xpmax

1 otherwise

Where x,,,, and a are hyperparameters.

- X,

Figure 9 - Weighting function f with a =3/4.

The performance of the model depends weakly on the cutoff, which is fixed to
Xmax = 100 for the experiments. An a = % gives a modest improvement over a linear

version with a = 1. Although only empirical motivation is offered for choosing the

3
value a at "

24



4. Classification Algorithms

In this chapter the theory behind various ML and Deep Learning (DL)
algorithms will be presented in the context of text classification.

4.1. Multinomial Naive Bayes Classifier

Multinomial NB is a probabilistic classifier which means that it is designed to
use an implicit mixture model for the generation of the documents. That is the reason
these kinds of classifiers are called generative classifiers. The naive Bayes classifier is
the simplest and most used generative classifier. Multinomial Naive Bayes algorithm
is the statistical classification algorithm which is based on the Bayes’ theorem and helps
us find the conditional probability of happening of two events based on the probabilities
of happening of each individual event. Multinomial Naive Bayes classifier works on
the concept of term frequency that means the number of times the
word occurs within a document.

The Multinomial model aims at determining the term  frequency i.e., the
number of times a term occurs in a document. The multinomial Naive Bayes Classifier
can be formulated as follows:

Assuming that there is a document ‘d’. The probability of being a document of
classc, c € {1,...,C}, is calculated as:

n

d
P(c|ld) = argmax P(c) P(tx|c)
k=1

(1)
ng:represents the number of tokens in a document

ty:represents the k'™ token in the document

where P(t,|c) represents the conditional probability that whether the term ¢,
occurs in a document of class ‘c’, and it is calculated as follows:

count(t,|c) +1
count(t.) + |V|

P(tilc) =

(2)
where count(t,|c) means the number of times the word t; is used in the
documents among class ¢ and count(t.) means the total number of tokens present in

25



the documents of class c. Furthermore 1 and |V| are added as smoothing constants
which are added to avoid setbacks in the calculation when the term does not appear at
all in the document, or the documents is empty or null. [V] is the number of tokens
inside the total vocabulary of documents.

P(c): is the prior probability of document being of class ¢ which is calculated

as taken after:

Number of documents of class c

P(c) =
() Total number of documents

(3)

The probability P(c|d) is calculated for all the classes and the maximum of it,
is the predicted class for a document.

4.2. Logistic Regression

Logistic Regression is a probability-based machine learning algorithm which is
used for classification problems.

Logistic Regression can be compared with Linear Regression model with the
difference that logistic regression uses a more complex cost function, which is known
as “Sigmoid function”. This function is a mathematical function which is used to map
the predictive values to probabilities. The sigmoid function is:

IV =15

It always gives a value of probability ranging from 0 < p < 1. The function can
take any real number and map it into a value between 0 and 1. For example, if the output
of the sigmoid function is more than 0.5 then the data point is classified as 1.

0.5

L | o | | |
o

-6 -4 -2 0 2 4 6

Figure 10 - Sigmoid Function

26



The linear regression function is:
Y = bo + b1X1 + bzXz + -+ ann
Y is the dependent variable and X, X, ..., X,, are the explanator variables.

If the sigmoid function is applied to the linear regression equation the ended p

function is:

p = 1 + ebo+b1X1+b2X2+"'+ann

Letu = bo + b1X1 + b2X2 + -+ ann,

et et
P __T1+e* :W:€"(1+€“):eu
1-p 4__€" 1 1+ev

T 14e* T Fev

m = eb0+b1X1+b2X2+"'+ann = log (ﬁ;p) == bo + b1X1 + bzXz + b + leXTl

Logistic Regression can be expressed as:

1 ( p(X)

0og 1—p(X)) =b0+b1X1+b2X2+"'+ann

Where the left side is called logit and % is called odds. The odds signify the

ratio of probability of success to probability of failure. Therefore, in Logistic
Regression, linear combination of inputs is mapped to the log(odds) — The output to be
equal to 1.

Logistic Regression in its straightforward way is a classification method for
binary target variable. When it comes to multiclass categorical target variable, there are
some techniques thar are going to be presented in the next section.

27



4.3. Support Vector Machines (SVM)

The original version of SVM is developed by Vapnik and Chervonenkis in 1963.
SVM was originally designed for binary classification tasks. The SVM problem is to
find the decision surface that maximizes the margin between the data points of the two
classes while minimizing the penalty associated with the misclassifications in the
training set.

Figure 11 - Linear Support Vector Machine (SVM) for a 2D

4.3.1. Binary-Class SVM

In the context of text classification, let d,,d,,...,d; be training examples
belonging to one class D, where D is a compact subset of RY. A set of examples
(dy,y1),(d3,y2), .., (dy,y), y; € {—1.1} are given. The optimum hyperplane,
defined by (w - x) + b = 0, is the solution of the following quadratic programming
problem:

1 2 !
m1n—||w|| +CZ &
2 i=1

(4)
s. t. yl(le+b) = 1—51
5120121,,1

The above minimization problem is equivalent to solving the following
Lagrangian dual problem:

l l l
1
max ) ai=5 ) ) aaydid

i=1 i=1 j=1

(5)

28



l

s.t. Zaiyi =0

i=1
0<agq;<C i=1,..,1
where a; ,i =1, ..., 1 are the Lagrange multiplier.

4.3.2. Multi-Class SVM

A multiple SVM (MSVM) must be created for multi-class situations as SVM
are often used for binary classification problems. Below two techniques, OVO (One vs
One) and OVA (One vs All), are going to be presented that shift traditional SVM to
multi-class SVM (MSVM).

e Onevs One (OVO)

By using this method, our multiclass classification problem is divided into
smaller binary classification problems. Thus, following the application of this
technique, binary classifiers are obtained for each pair of classes. The idea of majority
voting combined with the distance from the margin as its confidence criterion when
making a final forecast for any input is used. The major problem of this approach is that
too many SVMs must be trained.

For multi-class problems with L categories:
— Positive Samples: all the data point in class s({x;: s € y;})
— Negative Samples: all the data point in class t({x;: t € y;})
—  fs¢(x) : the decision value of this specific classifier
(Large value of f,(x) then label s has a higher probability than the
label t)
= [t = —fes(x)
— Prediction: f(x) = argmaxs(zt fs,t(x))
Let it be a classification problem with 3 classes. In the One vs One strategy, the

data points of the third class are ignored in the process of the search for the hyperplane
that divides every pair of classes.

29



X1

X2 X2

Figure 13 - Three different classes scatter plot Figure 12 - One vs One Approach

Red-Blue line tries to maximize the separation only between blue and red points
while it has nothing to do with the green points.

e OnevsAll (OVA)

In this technique N SVMs are being trained to deal with the classification
problem of N classes. For example:
— SVM;:learns "class output = 1 vs class output # 1"
— SVM,:learns "class output = 2 vs class output # 2"

—  SVMj:learns "class output = 3 vs class output # 3"
and so on.

For the prediction of a new input, each of the bult-in SVMs are used and the
predicted class is that one the SVM of which placed the prediction the furthest into the
positive region.

In this strategy, challenges like too much computation time and unbalanced data
problems must be overcome. For example, if a dataset contains a target variable in
which there are 10 classes and each of the class consists of 1000 data points, then for
any one of the SVM having two classes, one class will have 9000 points and the other
will have only 1000 data points, so the problem becomes unbalanced.

For multi-class problems with L categories:

— Positive Samples: all the points in class t({x;: t € y;})
— Negative Samples: all the points not in class t({x;: t € y;})
—  f:(x): The decision value for the t — th classifier
(Large value of f; then higher probability that x belongs in the class t)

— Prediction: argmax, f; (x)

30



In the same classification problem as before, the One vs All approach attempts
to discover hyperplanes to isolate the classes. The separation takes all points into
account and then divides them into two groups in which there is a group for the one
class points and the other group for all other points.

X1

Figure 14 - One vs All Approachw

4.4. Artificial Neural Networks
Simultaneously with Machine Learning techniques, Neural Networks have deep
impact in many classification techniques especially in applications which deal with
nontabular data like images, voice records, handwritten documents, videos provided by

traffic cameras etc.

Artificial Neural Networks (ANNS) are a simulation of human brain’s biological
neural networks as seen in Figure 14:

Dendrite

@ Nucleus
. Al
N

-

1 \
Cytoplasm §\\\_\;\
\& Terminal

Branches

Cell Body

Myelin Sheath

Figure 15 - human brain's neuron

A biological neuron consists of a cell body and two types of out-reaching
branches, axon and terminal branches. Inside the cell body nucleus contains information
about hereditary traits. Each neuron receives signals from other neurons through its

31



dendrites and transmits signals which are generated by its cell bod along the axon. At
the terminals of these strands the functional parts between two neurons called synapses
exist which release certain chemicals called neurotransmitters as the signal reaches
them. The neurotransmitters diffuse across the synaptic gap, to enhance or inhibit,
depending on the type of the synapse, the receptor neuron’s own tendency to emit
electrical impulses. The synapse’s effectiveness can be adjusted by the signals passing
through it so that the synapses can learn from the activities in which they participate.

Artificial Neural Networks work similarly like biological neural networks.
ANNSs are processors that are made up of simple processing units (neurons). They are
capable of learning experiential knowledge expressed through interunit connection
strengths and making such knowledge available for use. The major developments
behind this rise were done back in 1982 with Hopfield’s energy approach and the
backpropagation learning algorithm for multilayer perceptron which first proposed by
Werbos.

The architecture of an ANN which consists of a set of neurons and weighted
links that connect the neurons is combined with a learning algorithm that is used for
training the neural network by calculating the weights in order to model a particular
learning task correctly on training examples. A regular ANN looks like as follows:

Bias
b
( x; O——wW,;
Activation
Function
Output
lnpms< x; O >W, Z —— F %)

7
[ ¥ O——> W,
Weights

Figure 16 - ANN Architecture

X1,Xo,... , X,  are the input variables while wy,w,,...,w, are weights of
respective inputs. b is the bias which is summed with the weighted inputs to form the
net inputs. Bias and weights are both adjustable parameters of neurons which are being
adjusted using some learning rules. The output of a neuron can range from -

32



inf to +inf. Activation function which works like a mapping mechanism between the

input and output decides the final value of the target variable.

Activation function defines the output of a neuron in terms of a local
induced field. There are many activation functions. Some of them are as follows:

Hard Limit:

o %o

Binary Sigmoid Function is a logistic function
where the output values are either binary or vary from 0 to
1.

Hyper Tangent Function:

eXx—e*
Y e ter

ReLu stands for the rectified linear unit (ReLu). It is
the most used activation function in the world.it output o for

negative values of x.

4gx)

B 4

Sigmoid Function

0(2) = =

v

Hyper Tangent Function

tanh(z)

RelU Function

max(0, z)

L J

33

\J



4.4.1. Perceptron ANN

The perceptron is a single processing unit of any neural network. It is a neural
network unit that does a precise computation to detect features in the input data.
Perceptron is mainly used to classify the data into two parts. That is the reason it is also
known as Linear Binary Classifier. The training algorithm of a Perceptron ANN is as

follows:

I. Initialize weights and threshold in range [—0.5, 0.5] using a random generator.

Il. For each example X, = (x4, X, ..., x,,) inside the training dataset labeled as [;
perform the following steps:

a. calculate the following:

(D= ) wi(dx0)
i=1

b. Use the activation function to map the value of u(j) with the output
value y;.

c. Update the weights as follows:
wi(G+ 1D =w;(D+n-(; —y;) %
where 7 is the learning rate

4.4.2. Convolutional Neural Networks (CNN)

Convolutional Neural Networks, also known as CNN or ConvNet are a subtype
of neural networks, but they are distinguished from them by their extremely good
performance with image, speech, or audio signal inputs. They are developed to work as
the human brain does when it comes to recognize shapes, patterns, angles, lines, etc.
For this reason, CNN architectures do not necessarily need hand-crafted feature
extraction by humans.

A CNN architecture typically has three layers: a convolutional layer, a pooling
layer, and a fully connected layer.

The Convolutional layer is the most important layer of CNN as this layer is
responsible for detecting the most important features and as a matter of fact in this layer
is where the most computations take place. The convolutional layer performs a dot
product between two matrices, where one matrix is the set of learnable parameters
which is also known as kernel or filter, and the other is the slice of the input resulting

34



as the filter is sliding over the input. The output matrix is a convolved feature also
known as feature map. The number of pixels that the kernel slides over the input is
called stride. Usually, it is equal to 1.

Figure 17 - Convolution Filter

The Pooling Layer comes after convolution layer and applies in the feature
map. This layer is responsible for reducing the spatial size of the convolved feature to
decrease the computational power required to process the data through dimensionality
reduction. There are two types of pooling: Max Pooling and Average Pooling.

Max Pooling returns the maximum value from the portion of the image covered
by the pooling kernel. While Average pooling returns the average of all he values from
the portion of the image covered by the pooling kernel.

2118 |8 |12
12(19(9 |7
8 (10| 4
18(1219 |10
15| 9 2|12
1217 18|10
Average Pooling Max Pooling

Figure 18 - Max and Average Pooling

The pooled feature map is being converted into a flattened reshaped vector of
one row that it will be passed into the fully connected layer.

35



The Fully Connected Layer performs the task of classification based on the
features extracted through the previous layers and their different filters. It consists of
the weights and biases along with the neurons and is used to connect the neurons
between two different layers. The flattened feature map becomes the input of the neural
network. This is then passed to a fully connected layer. Before the final output is
obtained, the result is passed to an appropriate activation function. For instance, the
sigmoid activation function in the case of binary problems and softmax in the case of
multi-class problems.

Input 1st hidden 2nd hidden Output

ayar layer layer layer

Figure 19 - Fully Connected layer

Convolutional Neural Networks for NLP

When it comes to NLP tasks, such as document classification, sentiment
classification etc., the architecture of CNN is changed to 1 dimension convolutional
and pooling operations. Given a sequence of words wy.,, = wy, ... ,w, , where each is
associated with an embedding vector of dimension d, the 1D convolution of width-k is
the resulting of moving a sliding-window of size k over a sentence and applying the
same convolution filter or kernel to each window in the sequence. Considering a
window of words w;, ..., w;,, the concatenated vector of the ith window is:

_ kxd
xi = [Wi, Wip, -, Wige] €R

The convolution filter is applied to each window, resulting in scalar values r;,
each of the i-th window:

=g -u) ER

36



Embedding layer Convelutional laver Max-poaling layer Softmax

Chncen
shirt
lar
e
regular

Figure 20 - General CNN architecture for text classification

Let’s see how a 1-D CNN works. For a given sentence “Green shirt for men
regular fit” consisting of 6 words, each word is represented by a 5-dimensional word
vector, hence the sentence matrix is of 6 x 5 shape.

In the graph above there are three filter regions each of which has k
filters. Filters perform convolutions on the sentence matrix and generate feature maps.
The number of feature maps inside a region depends on the number of filters in each
region size. The total number of feature maps is r x k, where r is the number of regions,
in our example is 3. One max-pooling layer is performed over each feature map
recording the maximum value of each feature map. Thus, a univariate feature vector is
generated from all feature maps, and these features are concatenated to form a feature
vector the length of which is equal to the total number of filters
(number of filters per region size X number of region size). This feature
vector can then be fed into a fully connected layer to perform classification.

4.4.3. Recurrent Neural Networks (RNN)

Recurrent Neural Networks are a well-known Deep Learning methodology
which was initially created in the 1980s based on David Rumelhart’s work in 1996.
David Rumelhart was an American psychologist who made many contributions to the
formal analysis of human cognition, working primarily within the frameworks of
mathematical psychology, symbolic artificial intelligence, and parallel distributed
processing.

37



RNNs work on the guideline of saving the output of a specific layer and feeding
this back to the input in arrange to predict the output layer. Since of their inner memory,
RNNs can remember vital things about the input they have received, which allows them
to be exceptionally exact in predicting what’s coming next. This is why they’re the
preferred algorithm for sequential data like time series, speech, text, financial data,
audio, video, weather and much more.

The information in a Recurrent Neural Network cycles through a loop to the
middle hidden layer. The middle layer “h” which can consist of multiple hidden layers,
each of them with its own activation functions, weights, and biases, takes the processed
input from the input layer “x”. Finally, the RNN will define activation functions and
will standardize all the weights and biases in a way that each hidden layer consists of
the same parameters.

y y(t-2) y(t-1) y(t) yit+1) y(t+2)
A A A A A A
= c C C C C C
h hit-2) hit-1) hit) hit+1) hit+2)
B
B B B B B
x x(t-2) x(t-1) x(t) x(t+1) x(t+2)

Figure 21 - Recurrent Neural Network

Two inputs are used in a Recurrent Neural Network, one for the present and
another for the recent past. This is because sequential data contains important
information about what is coming next. This is why RNN can deal with problems that
other algorithms cannot handle in an efficient way. A feed-forward neural network
assigns a weight matrix to its inputs and then produces the output. RNNs apply weights
to the current and to the previous input. Furthermore, a recurrent neural network
will also tweak the weights for both gradient descent and backpropagation through
time.

Feed-forward neural networks map one input tone output while RNNs can map
one to many, many to one, many to many.

One to One RNN, also known as Vanilla Neural Network, is used for general
machine learning problems, which has a single input and a single output. One to Many

38


https://builtin.com/data-science/introduction-segmentation-correlation-time-series-modeling
https://builtin.com/data-science/gradient-descent

RNN has a single input and multiple outputs. An example of its usage | the image
caption. Many to One RNN generates a single output by receiving a sequence of inputs.
Sentiment analysis is an example where this kind of RNN can be used as a classifier of
a sentence to be positive or negative. Finally, Many to Many RNN takes a sequence of
inputs and generates a sequence of outputs. This kind of RNN is used in tasks such as
machine translation.

one to one one to many many to one many to many

— pr— p— g— — pe——  pem— ge—

A ATT A AAT

1
|
|

Figure 22 - Types of RNNs

Recurrent Neural Networks is a sequence of neural networks that are trained
one after another with backpropagation. Backpropagation is an algorithm which is used
for calculating the gradient of an error function with respect to network’s weights. This
process is done by “walking” the algorithm its way backwards through the various
layers of gradients to find the derivative of the errors with respect to the weights. As
RNN is a network with a loop inside it, the backpropagation is done on an unrolled
RNN, and it is called Backpropagation Through Time (BPTT).

1.7
& & &

Figure 23 - Unrolled Recurrent Neural Network

-
i

39



There are two significant issues of standard RNNs. Exploding gradients and
vanishing gradients. Exploding gradients are when the algorithm assigns a high
importance to the weights. This problem can be easily solved by truncating or
squashing the gradients. Vanishing gradients occur when the values of a gradient are
too small, and the model stops learning or takes way too long as a result. This was a
major problem in the 1990s and much harder to solve than the exploding gradients.
Fortunately, it was solved through the concept of LSTM by Sepp Hochreiter and
Juergen Schmidhuber.

4.4.4. Long Short-Term Memory (LSTM)

Long-Short Term Memory (LSTM) is a type of recurrent neural network but
in terms of memory is better. LSTMs are developed to avoid the long-term
dependency problem. Like all neural networks, LSTMs can have multiple hidden
layers where the relevant information is kept, and all the irrelevant information gets
discarded as it passe through every hidden layer. The main role of LSTM model is
described by a memory cell known as “cell state” which maintains its state over
time. LSTM has three main gates: Forget Gate, Input Gate and Output Gate.

Forget gate layer is a sigmoid layer which is responsible for deciding which
information is kept for calculating the cell state and which is up to be discarded. It
takes as an input h,_, which is the information from the previous cell and x, which
is the information from the current cell and outputs a number between 0 and 1 for
each number in the cell state C;_,. Number close to 1 means that the information
must be kept while a number close to 0 means that the information must be
discarded.

ft = o(Wyr - [he_q, x] + by)

Figure 24 - Forget Gate

40



The input gate is responsible for deciding which information is important
and which is not to be stored in the cell state. This is done by two layers, a sigmoid
layer called “input gate layer” which decides which values are going to be updated
and a tanh layer that creates a vector of new candidate values, C,, that could be
added to the state.

i = s(W; - [he—q, x¢] + by)

C; = tanh(W¢ * [hy—q, x] + b¢)

hi_1

Figure 25 - Input Gate

After the decisions done from the previous gates, the old cell state, C;_q, is
going to be updated into the new cell state C;. This is done by multiplying the old
state by f; and adding i, * C,. First multiplication helps in forgetting all the
information that was decided to be discarded. The second multiplication contains
the new candidate values, scaled by how much each state was decided to be updated.

Ct:ft*Ct—1+it*Ct

Ci-1

Figure 26 - Cell State Update

41



The output gate decides what the next state should be. h;_, and x, are passed
to a sigmoid layer which decides what parts of the cell state are going to be
outputted. Then the new cell state, C;, is going through a tanh layer and is

multiplied by the output of the sigmoid layer to decide what information the hidden
state should carry.

or = o(Wolhe—1, %] + by)

h; = o; * tanh(C})

hr—l iy

X [

Figure 27 - Output Gate

42



5. Clinical Text Analysis

In this chapter all text preprocessing and classification techniques are going to
be presented under the shade of a clinical text dataset with the scope of the development
of a model that classifies clinical documents with the best performance.

5.1. Dataset

The dataset that is going to be used for this purpose is mtsamples.csv gathered
from Kaggle datasets. The dataset consists of 5 columns and 4999 rows and contains
sample transcription reports for many specialties and different work types.

Column Description

description Short description of transcription

medical_specialty = Medical specialty of transcription

sample_name Transcription Title
transcription Sample medical transcription
keywords Relevant keywords from transcription

Table 6 - Data set columns

For text analytics and text classification, all columns are going to be dropped
from the dataset except column “transcription” as it contains all the text that is needed,
and column “medical_specialty” as it is the target variable that is going to be used for
the classification of the transcriptions. “transcription” column is string column and
contains various length strings with the shortest at 11 characters and the longest at
18425 characters. The distribution of the lengths of the medical transcription is shown
in the graph below.

Medical transcription text size

| }_ e ——T

1200

1000 ¢

, ( N
| y’j
“'__'Iirf .

0 2500 5000 7500 10000 12500 15000 17500
Number of words inside transcriptions

Transcription Counts
8 2 3
o (=] o
|
|

Y]
=1
o

0

Figure 28 - Distribution of medical transcription text lengths

43



Surgery

Consult - History and Phy
Cardiovascular / Pulmonary
Orthopedic

Radiology

General Medicine
Gastroenterology
Neurology

SOAP / Chart / Progress Notes
Obstetrics / Gynecology
Urology

Discharge Summary

ENT - Otolaryngology
Neurosurgery
Hematology - Oncology
Ophthalmology
Nephrology
Emergency Roam Reports
Pediatrics - Neanatal
Pain Management
Psychiatry / Psychology
Office Notes
Podiatry
Dermatology
Cosmetic [ Plastic Surgery
Dentistry
Letters

Sleep Medicine
Endocrinology

Bariatrics
IME-QME-Work Comp etc
Chiropractic
Rheumatalogy

Diets and Nutritions
Speech - Language
Autopsy

Lab Medicine - Pathology
Allergy / Immuno logy

Hospice - Palliative Care

medical_specialty - Categories counts
1103
516
72
355
273
259
230
223
166
160
158

200 400 600 800 1000

Figure 29 - Counts of each category in target variable

As it is observed from the figure above, “medical_specialty” is categorical
variable with 40 unique categories. Some of the categories are the minority as they
appear less than 50 times in the entire dataset. The most frequent category is “Surgery”
as it appears in 1103 documents out of 49909.

33 rows have NaN values in the “transcription” column although there are not

“transactions’ that contain only whitespaces or are empty strings. These rows are going
to be dropped as they do not contribute to the analysis.

transcription medical_specialty
a7 NaN Urology
116 NaN Urology
205 NaN Surgery
263 NaN Surgery
459 NaN Surgery
622 NaN Surgery
628 NaN Surgery
680 MNaM Surgery
725 NaN Surgery
ik MNaM Surgery
g79 NaN Surgery

Figure 30 - NaN Values for "transcription" column

44



5.2. Data Preprocessing

Categories with less than 50 appearances in the dataset are going to be removed,
this will reduce the medical specialty categories from 40 to 21.

medical specialty - Categories counts

Surgery

Consult - History and Phy
Cardiovascular / Pulmonary
Orthopedic

Radiclogy

General Medicine
Gastroenterology
Neurology

SOAP } Chart / Progress Notes
Urology

Obstetrics | Gynecology
Discharge Summany

ENT - Otolaryngology
Neurgsurgery
Hematology - Oncology
Ophthalmology
Nephrology

Emergency Room Reports
Pediatrics - Neonatal
Pain Management
Psychlatry / Psychology

I T T T

0 200 400 600 800 1000

Figure 31 - Counts of each category in target variable after reduction

It is obvious that the dataset is imbalanced. This might cause overfitting while
a model is getting trained. For this reason, later, oversampling and under sampling
techniques may be used to avoid overfitting.

A random row of the dataset consists of two fields, the free text of the
transcription and the category in which the transcription belongs to.

index fext category
2-D M-MODE: |, 1. Left atrial enlargement with left afrial diameter of 4.7 cm.,2. Normal size right and left ventricle. 3. Normal LV systolic function with left ventricular ejection fraction of 51%.,4. Normal LV diastolic function. 5. Cardiovascular/
0 No pericardial effusion.,8. Normal morphelogy of aortic valve, mitral valve, fricuspid valve, and pulmonary valve.,7. PA systolic pressure is 38 mmHg. DOPPLER: | 1. Mild mitral and fricuspid regurgitation. 2. Trace aorfic and P
Y
pulmonary regurgitation.
1. The left veniricular cavity size and wall thickness appear normal. The wall motion and left ventricular systolic function appears hyperdynamic with estimated ejection fraction of 70% to 75%. There is near-cavity obliteration
ceen. There also appears 1o be increased left ventricular outflow tract gradient at the mid cavity level consistent with hyperdynamic left ventricular systolic function. There is abnarmal left ventricular relaxation pattern seen as
well a5 elevated left atrial pressures seen by Doppler examination. 2. The left atrium appears mildy dilated. 3. The right atrium and right ventricle appear normal. 4. The aortic root appears normal. 5. The aortic valve appears
1 calcified with mild aorfic valve stenosis, calculated aortic valve area is 1.3 cm square with a maximum instantaneous gradient of 34 and a mean gradient of 19 mm. 6. There is mitral annular calcification extending to leaflets Cardiovascular /
and supportive structures with thickening of mitral valve leaflets with mild mitral regurgitation.,7. The tricuspid valve appears normal with trace tricuspid requrgitation with moderate pulmanary artery hypertension. Estimated Pulmanary
pulmenary artery systolic pressure is 49 mmHg. Estimated right atrial pressure of 10 mmHg.,8. The pulmonary valve appears normal with trace pulmonary insufficiency. 9. There is no pericardial effusion or infracardiac mass
seen., 0. There is a color Doppler suggestive of a patent foramen ovale with lipomatous hypertrophy of the interatrial septum., 1. The study was somewhat iechnically imited and hence subtle abnormalities could be missed
from the study,,
2-0 ECHOCARDIOGRAM Multiple views of the heart and great vessels reveal normal infracardiac and great vessel relationships. Cardiac function is normal. There s no significant chamber enlargement or hypertrophy. There
3 iz no pericardial effusion or vegetations seen. Dappler interrogation, including colar flaw imaging, reveals systemic venous retum to the right atrium with nermal tricuspid inflow. Pulmenary outflow is nermal at the valve. Cardiovascular /

Pulmanary venous return is to the left atrium. The interatrial septum is intact. Mitral inflow and ascending aorta flow are normal. The aortic valve is trileaflet. The coronary arteries appear to be normal in their origins. The aortic  Pulmonary
arch is left-sided and patent with normal descending aorta pulsatility.

45



The free text of the transcription is a string that contains punctuations, numbers
and words that are very common in all the transcription provided through the dataset,
those words are called stop words. In the next steps each transcription row will be
cleaned which means that all the punctuations, alphanumeric characters and stop words
are going to be removed.

index text category
0 left atrial enlargement left atrial diameter normal size right left normal Iv systolic function left ventricular ejection fraction normal Iv diastolic pericardial normal morphaology aortic  Cardiovascular /
walve mitral valve tricuspid valve pulmonary pa systolic pressure doppler mild mitral tricuspid trace aoriic pulmonary regurgitation Pulmonary

left ventricular cavity size wall thickness appear normal wall motion left ventricular systolic function appears hyperdynamic estimated ejection fraction obliteration seen also
appears increased left ventricular outflow tract gradient mid cavity level consistent hyperdynamic left ventricular systolic funciion abnormal left ventricular relaxation pattern seen
well elevated left atrial pressures seen doppler left atrium appears mildly right atrium right veniricle appear aortic root appears aoriic valve appears calcified mild aoric valve
stenosis calculated aortic valve area cm square maximum instantaneous gradient mean gradient mitral annular calcificafion extending leaflets supporiive structures thickening
mitral valve leaflets mild mitral tricuspid valve appears normal trace tricuspid regurgitation moderate pulmonary artery hypertension estimated pulmonary artery systolic pressure
mmhg estimated right atrial pressure pulmonary valve appears normal trace pulmonary pericardial effusion intracardiac mass color doppler suggestive patent foramen ovale

lipomatous hypertrophy interatrial study somewhat technically limited hence subtle abnormalities could missed

echocardiogram multiple views heart great vessels reveal normal intracardiac great vessel relationships cardiac function normal significant chamber enlargement hypertrophy
pericardial effusion vegetations seen doppler interrogation including coler flow imaging reveals systemic venous return right atrium normal tricuspid inflow pulmonary outflow
normal valve pulmonary venous return left atrium interatrial septum intact mitral inflow ascending aorta flow normal aortic valve trileaflet coronary arteries appear normal origins

aortic arch patent normal descending aoria pulsatility

Nr of unique words is

The text field now looks cleaner as all the punctuation, alphanumeric characters
and stop words are removed. There are 13716 unique words inside the cleaned
transcription column and the 20 most frequent words are:

13716

28 most used words

patient
right
left
histori
use
place
procedur
normal
well
pain
medic
remov
note
time
incis
perfarm
oper
also
posit
blood

22289
18318
1aa77
8664
3361
7922
7338
6444
5444
48592
4453
4364
4319
4315
4121
3945
3924
3923
3771
3675

Most Frequent occuring words - Top 20

patient 22289
nght 10318
left 10077
histori 8664
1] 8361
place 922
procedur 7338
normal 6444
well 5440
e pain | 4892
B medic 4453
remov 4364
note 4319
time 4315
incis 4121
perform 3945
oper 3924
also 3923
posit 771
biood 3678
6 5000 100‘00 ISIjOD 20600

freq

Figure 32 - Most frequent occurring words

46

Cardiovascular /
Pulmonary

Cardiovascular/
Pulmonary



5.3. Modeling
5.3.1. Initial Experiment
All the three algorithms (Logistic Regression, SVM and Multinomial

Naive

Bayes) will be fitted and evaluated with the preprocessed data. The parameters of each
model and vectorization algorithms, as well, are decided by applying grid search with
cross validation through pipeline. All the experiments will be tracked using MLflow

opensource platform.

5.3.1.1. Multinomial Naive Bayes:

The corpus is vectorized using Tfidf Vectorizer with ngram range set to (1,2)

and with use of idf term.

label precision recall fl-score support

Cardiovascular / Pulmonary | 49.06%  35.14%  40.94%
Neurology 33.33% 26.67% 29.63%

Urology | 100.00% 3.23% 6.25%

General Medicine 0.00% 0.00% 0.00%
Surgery | 45.83% 80.73% 58.47%

SOAP / Chart / Progress Notes | 0.00% 0.00% 0.00%
Radiology 33.33% 32.73% 33.03%

Psychiatry / Psychology 0.00% 0.00% 0.00%
Pediatrics - Neonatal |  0.00% 0.00% 0.00%
Pain Management 0.00% 0.00% 0.00%
Orthopedic 26.19% 15.49% 19.47%
Ophthalmology 0.00% 0.00% 0.00%
Obstetrics / Gynecology | 37.50%  9.68% 15.38%
Neurosurgery 0.00% 0.00% 0.00%
Nephrology =~ 0.00%  0.00% 0.00%

Hematology - Oncology | 0.00%  0.00% 0.00%
Gastroenterology 35.29% 13.33% 19.35%

ENT - Otolaryngology 0.00% 0.00% 0.00%
Emergency Room Reports | 0.00% 0.00% 0.00%
Discharge Summary 20.00% 4.55% 7.41%
Consult - History and Phy. | 28.93%  89.32%  43.71%

accuracy 37.61%
macro avg 19.50% 14.80% 13.03% 920
weighted avg 30.53% 37.61% 28.82% 920

Table 7 - Classification report of NB

47

74
45
31
52
218
33
55
10
14
12
71
17
31
19
16
18
45
19
15
22
103



From table 7, can be observed that the initial Multinomial Naive Bayes classifier
achieved poor results trying to classify each specialty into the correct label. With an
accuracy of 37.61% and extremely imbalanced data, the classifier predicted correctly
80.73% of true “Surgery” specialty, and 89.32% of true “Consult History and Phy.”
specialty. All the other labels had less than 50% recall.

5.3.1.2.  Logistic Regression:
Again, the corpus is vectorized using Tfidf Vectorizer with ngram range set to
(1,2) and without use of idf term as grid search decided those to be the optimal

parameters.

label precision recall fl-score support

Cardiovascular / Pulmonary | 37.74%  27.03%  31.50% 74
Neurology 31.58% 26.67% 28.92% 45
Urology | 25.00%  3.23%  5.71% 31
General Medicine 13.33% 7.69% 9.76% 52
Surgery | 43.52% 77.06% 55.63% 218
SOAP / Chart / Progress Notes | 35.48%  33.33%  34.38% 33
Radiology | 32.35%  40.00%  35.77% 55
Psychiatry / Psychology 0.00% 0.00% 0.00% 10
Pediatrics - Neonatal | 33.33%  7.14%  11.76% 14
Pain Management 50.00% 33.33% 40.00% 12
Orthopedic 18.75% 12.68% 15.13% 71
Ophthalmology = 40.00%  11.76%  18.18% 17
Obstetrics / Gynecology 25.00% 3.23% 5.71% 31
Neurosurgery 0.00% 0.00% 0.00% 19
Nephrology 0.00% 0.00% 0.00% 16
Hematology - Oncology 0.00% 0.00% 0.00% 18
Gastroenterology | 9:09% 2.22%  3.57% 45
ENT - Otolaryngology | 100.00% 5.26% 10.00% 19
Emergency Room Reports | 0.00% 0.00% 0.00% 15
Discharge Summary 39.02% 72.73% 50.79% 22
Consult - History and Phy. 34.76% 63.11% 44.83% 103
accuracy 36.74%
macro avg 27.09% 20.31% 19.13% 920
weighted avg 31.22% 36.74% 30.26% 920

Table 8 - Classification report of Logistic Regression

48



From table 8, can be observed that the initial Logistic Regression classifier
achieved poor results as well as Multinomial Naive Bayes, trying to classify each
specialty into the correct label. With an accuracy of 36.74% and extremely imbalanced
data, the classifier predicted correctly 77.06% of true “Surgery” specialty, 72.73% of
true “Discharge Summary” specialty and 62.11% of true “Consult History and Phy.”
specialty. All the other labels had less than 50% recall.

5.3.1.3.  Support Vector Machines

As the other two algorithms, SVM trained with the corpus vectorized again with
ngram range at (1,2) and without idf term.

label precision recall fl-score support
Cardiovascular / Pulmonary | 33.93% 25.68% 29.23% 74
Neurology | 26.19%  24.44% 25.29% 45
Urology |  0.00% 0.00% 0.00% 31
General Medicine |  12.90% 7.69% 9.64% 52
Surgery | 4137%  69.27% 51.80% 218
SOAP / Chart / Progress Notes |  32.14% 27.27% 29.51% 33
Radiology | 23.73%  25.45% 24.56% 55
Psychiatry / Psychology |  33.33% 10.00% 15.38% 10
Pediatrics - Neonatal | 11.11% 7.14% 8.70% 14
Pain Management 60.00% 75.00% 66.67% 12
Orthopedic 13.46% 9.86% 11.38% 71
Ophthalmology | 14.29% 5.88% 8.33% 17
Obstetrics / Gynecology | 0.00% 0.00% 0.00% 31
Neurosurgery 0.00% 0.00% 0.00% 19
Nephrology 0.00% 0.00% 0.00% 16
Hematology - Oncology 0.00% 0.00% 0.00% 18
Gastroenterology 0.00% 0.00% 0.00% 45
ENT - Otolaryngology | 16.67% 5.26% 8.00% 19
Emergency Room Reports 0.00% 0.00% 0.00% 15
Discharge Summary | 34.15% 63.64% 44.44% 22
Consult - History and Phy. | 32.34% 52.43% 40.00% 103
accuracy 32.17%
macroavg | 18.36%  19.48% 17.76% 920
weighted avg | 24.51% 32.17% 26.84% 920

Table 9 - Classification report of SVM

49



Specialties like “Surgery”, ‘“Pain Management”, “Discharge Summary” and
“Consult-History and Phy.” achieved a recall of more than 50%, which means that
support vector machines could predict more than 50% of the true labels of them.
Although model accuracy remains at a low level.

5.3.1.4. Experiment Summary

Model Accuracy  Precision Recall  f-1-score
Multinomial NB ‘ 37.61% 30.53% 37.61%  28.82%
Logistic Regression ‘ 36.74% 31.22% 36.74%  30.26%
SVM ‘ 32.17% 24.51% 32.17%  26.84%

Table 10 - Summary of the “Initial Experiment”

The best performance is that of Multinomial Naive Bayes classifier with an
accuracy of 37.61%, precision weighted average 30.53%, recall weighted average
37.61% and fl-score weighted average 28.82%. Although the results are extremely
poor.

5.3.2. Dropping Categories Experiment

From the previous experiment, the results were too poor so some domain
knowledge will be applied to improve the results. As mentioned in the previous
experiment, the “surgery” specialty is a superset inside of which are more specialties
included, also some other specialties like “SOAP / Chart / Progress Notes”, “Discharge
Summary” etc. overlap with other specialties. Rows of those specialties will be
removed. Additionally, two specialties will be combined int one. More specifically,
“Neurosurgery” will be transformed into “Neurology” and “Nephrology” will be

transformed into “Urology”.

50



medical specialty - Reduced Categories

Cardiovascular | Pulmonary
Orthopedic

Meurology

Radiology

General Medicine

Urology

Gastroenterclogy
Obstetrics / Gynecology
ENT - Otolaryngology
Hematolegy - Oncology

Ophthalmology

Pediatrics - Neonatal

Psychiatry [ Psychology 53

0 5 100 150 200 %0 300 50

Figure 32 - Reduced Categories of specialties

After dropping and merging categories, the dataset contains 2583 documents of
13 categories. The most frequent category is “Cardiovascular/Pulmonary” with 371
appearances and the least frequent is “Psychiatry/Psychology” with 53 appearances in
the dataset.

51



5.3.2.1.  Multinomial Naive Bayes:
The corpus is vectorized using Tfidf Vectorizer with ngram range set to (1,1)

and the use of idf term.

label precision recall fl-score support
Cardiovascular / Pulmonary | 71.88%  62.16%  66.67% 74
Neurology | 56.36%  49.21%  52.54% 63
Urology | 75.56%  72.34%  73.91% 47
General Medicine | 37.90%  90.38%  53.41% 52
Radiology | 31.91%  27.27%  29.41% 55
Psychiatry / Psychology | 75.00%  81.82%  78.26% 11
Pediatrics - Neonatal | 50.00%  14.29%  22.22% 14
Orthopedic | 72.06%  69.01%  70.50% 71
Ophthalmology | 100.00%  70.59%  82.76% 17
Obstetrics / Gynecology | 73.33%  70.97%  72.13% 31
Hematology - Oncology | 28.57%  22.22% 25.00% 18
Gastroenterology | 96.55%  62.22%  75.68% 45
ENT - Otolaryngology | 84.62%  57.89%  68.75% 19

accuracy 59.96%

macro avg = 65.67%  57.72%  59.33% 517
weighted avg | 64.27%  59.96%  60.14% 517

Table 11 - Classification report of NB

The results are quite better than the initial experiment with a model accuracy
close to 60%. It is remarkable that the “Ophthalmology” category reached a precision
of 100% which means that all the documents that were predicted as “Ophthalmology”
were actually, “Ophthalmology”. Some categories like “Pediatrics - Neonatal” and

“Radiology” still do not perform as expected with an f-1 score less than 50%.

5.3.2.2.  Logistic Regression:

Again, the corpus is vectorized using Tfidf Vectorizer with ngram range set to
(1,1) and with the use of idf term as Grid Search decided as best parameters. Fitting

Logistic Regression model with “newton-cg” set as solver and “12” as penalty

parameters:

52



label precision recall fl-score support

Cardiovascular / Pulmonary | 69.23%  72.97%  71.05% 74

Neurology @ 58.57% 65.08% 61.65% 63

Urology = 72.92%  7447%  73.68% 47

General Medicine | 47.25% 82.69% 60.14% 52

Radiology | 22.45%  20.00%  21.15% 55

Psychiatry / Psychology | 80.00% 36.36% 50.00% 11

Pediatrics - Neonatal | 50.00% 7.14% 12.50% 14

Orthopedic | 71.05% 76.06% 73.47% 71

Ophthalmology | 100.00%  70.59% 82.76% 17

Obstetrics / Gynecology |  77.78% 67.74% 72.41% 31

Hematology - Oncology | 20.00% 11.11% 14.29% 18

Gastroenterology | 94.12%  71.11%  81.01% 45

ENT - Otolaryngology | 93.33% 73.68% 82.35% 19
accuracy 62.67%

macro avg 65.90% 56.08% 58.19% 517

weighted avg | 63.90% 62.67% 61.81% 517

Table 12 - Classification report of Logistic Regression

As shown from table 12, the Logistic Regression classifier achieved an accuracy
of 62.67% which is better than Multinomial Naive Bayes classifier. The same problem
with “Pediatrics — Neonatal” and “Radiology” categories occurs also with Logistic
Regression.

53



5.3.2.3.  Support Vector Machines

label precision recall fl-score support

Cardiovascular / Pulmonary | 64.10% 67.57%  65.79% 74
Neurology | 56.72% 60.32%  58.46% 63

Urology | 69.39% 72.34% 70.83% 47

General Medicine | 45.88% 75.00% 56.93% 52
Radiology | 27.78% 27.27%  27.52% 55
Psychiatry/Psycho/ogy 80.00% 36.36% 50.00% 11
Pediatrics - Neonatal | 60.00% 21.43% 31.58% 14
Orthopedic | 72.86% 71.83% 72.34% 71
Ophthalmology | 92.86% 76.47%  83.87% 17

Obstetrics / Gynecology | 86.36% 61.29% 71.70% 31

Hematology - Oncology | 33.33% 33.33% 33.33% 18
Gastroenterology | 93.94% 68.89%  79.49% 45

ENT - Otolaryngology | 88.24% 78.95% 83.33% 19

accuracy | 61.51%
macro avg 67.03% 57.77% 60.40% 517

weighted avg | 64.11% 61.51% 61.69% 517

Table 13 - Classification report of SVM

The accuracy of Support Vector Machines is 61.51%, slightly less than Logistic
Regression’s. The category of “Pediatrics -Neonatal” has a recall of 21.43% which is
better than the previous models but still very poor.

5.3.2.4. Experiment Summary

Model Accuracy  Precision Recall F1
Multinomial NB ‘ 59.96% 64.27% 59.96%  60.14%
Logistic Regression ‘ 62.67% 63.90% 62.67% 61.81%
SVM ‘ 61.51% 64.11% 61.51% 61.69%

Table 14 - Summary of the "Dropping Categories Experiment"”

The best performance with this experiment is Logistic Regression’s classifier
with an accuracy of 62.67%, precision weighted average 63.90%, recall weighted
average 62.67% and f1-score weighted average 61.81%. The results are pretty good but
there are some issues that must be solved. All three models fail to identify correctly
labels like “Radiology”, “Psychiatry / Psychology”, “Pediatrics - Neonatal” and
“Hematology - Oncology”.

54



Confusion Matrix of LogisticRegression

Cardiovascular / Pulmonary 5 0 0 0 0 0 0 0 0
50
Neurology 10 1 0 8 0 0 0 0 0
Urology 4 0 0 1 o] o] 0 1 0
General Medicine 0 0 1 2 0 0 0 0 0 40
Radiology 16 11 5] 0 10 0 0 7 0 4 2 0 0
" Psychiatry / Psychology 0 2 1 2 1 4 0 1 o] o] 0 0 0
k] 30
a
L Pediatrics - Neonatal 1 0 2 8 0 0 0 0 4] 4] 1 1 1
]
2
= Orthopedic 0 11 0 1 5 0 0 0 0 0 0 0
-20
Ophthalmology 0 1 1 1 1 0 0 0 12 Q 1 0 0
Obstetrics / Gynecology 1 1 0 2 5 0 0 1 0 20 1 0 0
Hematology - Oncology 0 1 2 8 2 0 0 2 0 1 2 0 0 “10

Gastroenterology 0 0 3 6 2 0 0 1 0 0 2 0

ENT - Otolaryngology 0 0 0 2 1 0 0 2 0 0 1 13
-0
> > > 1} > > ® iel > > > > >
© =J =J = o = + 5 o =g j=d =d =t
c o k=] ("] o ° © @ o ° o k=] °
5 o o o o 5]
s ¢ 2 % 2 g2 s 5 8 g g =t @8
£ = =) o 5] Q < = [ = a c
S ] = T > =4 ] o c o o =
> = 4 i = < = c
o o] o ! o < I6) ' ] ©
~ — wv < > [e] =
— (7] - %) -~ s [=]
] c > = o n g‘ o o
© o g s o a o o o
2 [G] © .0 = El U] '
[0l 3 T + © [
© v] o 4 z
> > o i £ w
2 & g £
° [¢]
©
(9]

Predicted labels

Figure 33 - Confusion Matrix of Logistic Regression (Dropped Categories experiment)
In general, the results are pretty good with the SVM classifier as they appear to
be from the confusion matrix. The diagonal is full of correctly predicted documents but
still there are documents that are being misclassified to some labels like “General

Medicine” and “Radiology” mainly.

55



5.3.3. Dropping Categories and Feature Selection using X?

In this experiment, feature selection will be implemented with scope of
dimensionality reduction. X2 test will be used to test the independence between each
feature and the target variable. All the features out of 2500 with p-value more than 0.05
will be dropped. After selecting most relevant features using X? test, the modeling data
frame know includes only 1024 features. Below are the 10 most significant features of
each category:

# Cardiovascular / Pulmonary:
. selected features: 127
. top features: coronari,arteri,atrial,ventricular,pulmonari,circumflex,acrtic,main,bronchoscop,chest

# Meurclogy:
. selected features: 185
. top features: dura,brain,tempor,subdur,csf,frontal,mri,hydrocephalu,sensori,metor

# Urclogy:
. selected features: &8
. top features: bladder,prostat,urethra,renal,ureter,va,peni,kidney,inguin,testi

# General Medicine:
. selected features: 128
. top features: neg,histori,scund,tender,subject,mg,cough,throat,regular,diabet

# Radiclogy:
. selected features: &3
. top features: imag,exam,fetal,mci,comparison,contrast,ct,axial,mild,signal

# Psychiatry / Psychology:
. selected features: 1es
. top features: axi,suicid,ideat,behavior,psychiatr,disord,substanc,depress,hallucin,mental

# Pediatrics - Meonatal:
. selected features: 49
. top features: mom,feed,babi,child,infant, immun,ocunc,ductu,dad,otiti

# orthopedic:
. selected features: 166
. top features: tourniquet,carpal,knee,tendon,screw,joint,fractur,medial,cement,metatars

# ophthalmology:
. selected features: &5
. top features: cataract,chamber,eye,intraccular,len,lid,limbu,phaccemulsif,scleral,viscoelast

# Obstetrics / Gynecology:
. selected features: 187
. top features: cervix,uterin,uteru,vagin,fallopian,deliveri,ovari,fetal,placenta,pelvic

# Hematology - Oncology:
. selected features: 28
. top features: carcinema,chemotherapi,breast,squamou,cancer,cell,basal,ncde,cycl,margin

# Gastroenterology:
. selected features: 89
. top features: colon,cecum,scope,polyp,gallbladd,stomach,colonoscopl,esophagu,rectum,colonoscop

# ENT - Otolaryngology:
. selected features: 57
. top features: ademoid,ear,nasal,tensil,otiti,nasopharynx,myringotemi,media,tonsillar,turbin

56



5.3.3.1.  Multinomial Naive Bayes:

Multinomial Naive Bayes classifier fitted with alpha parameter set to 0.01 while
the corpus vectorized using ngram range of (1,1) and the use of idf term.

label precision recall fl-score support

Cardiovascular / Pulmonary | 68.00%  68.92%  68.46% 74

Neurology | 61.82%  53.97%  57.63% 63

Urology | 71.43%  74.47%  72.92% 47

General Medicine | 38.79%  86.54%  53.57% 52

Radiology = 21.88% 12.73% 16.09% 55

Psychiatry / Psychology | 83.33%  90.91%  86.96% 11

Pediatrics - Neonatal | 33.33% 7.14% 11.76% 14

Orthopedic | 74.67%  78.87%  76.71% 71

Ophthalmology | 100.00%  76.47%  86.67% 17

Obstetrics / Gynecology | 73.33%  70.97%  72.13% 31

Hematology - Oncology | 25.00%  16.67%  20.00% 18

Gastroenterology | 93.10%  60.00%  72.97% 45

ENT - Otolaryngology | 81.25%  68.42%  74.29% 19
accuracy 61.32%

macro avg | 63.53%  58.93%  59.24% 517

weighted avg | 62.56% 61.32% 60.21% 517

Table 15 - Classification report of NB
The accuracy of Multinomial Naive Bayes classifier improved from 59.96% to
61.32%. The model deals good with categories like “Urology”, “Psychiatry /
Psychology”, “Orthopedic”, “Ophthalmology”, “Obstetrics / Gynecology”,
“Gastroenterology” and “ENT - Otolaryngology” reaching an f-1 score more than 70%.

57



5.3.3.2.  Logistic Regression:
Again, the corpus is vectorized using Tfidf Vectorizer with ngram range set to
(1,1) and with the use of idf term as Grid Search decided as best parameters. Fitting
Logistic Regression model with “newton-cg” set as solver and “12” as penalty

parameters, the classification report is as follows:

label precision recall fl-score support

Cardiovascular / Pulmonary | 69.14%  75.68%  72.26% 74

Neurology 59.02% 57.14% 58.06% 63

Urology 73.47% 76.60% 75.00% 47

General Medicine 48.24% 78.85% 59.85% 52

Radiology | 23.91% 20.00% 21.78% 55

Psychiatry/Psycho/ogy 85.71% 54.55% 66.67% 11

Pediatrics - Neonatal 50.00% 7.14% 12.50% 14

Orthopedic | 67.47% 78.87% 72.73% 71

Ophthalmology | 100.00%  76.47% 86.67% 17

Obstetricg/Gyneco/ogy 84.62% 70.97% 77.19% 31

Hematology - Oncology | 30.77% 22.22% 25.81% 18

Gastroenterology 91.43% 71.11% 80.00% 45

ENT - Otolaryngology 87.50% 73.68% 80.00% 19
accuracy 63.44%

macro avg 67.02% 58.71% 60.66% 517

weighted avg 64.21% 63.44% 62.60% 517

Table 16 - Classification report of Logistic Regression

Results are much better with Logistic Regression than Multinomial NB. The
model achieved a slight increase of accuracy from 62.67% to 63.44%. Although again
is visible that the model can correctly identify many categories, 7 out of 13 categories
have f-1 score more than 70%.

58



5.3.3.3.  Support Vector Machines

label precision recall fl-score support

Cardiovascular / Pulmonary | 65.06%  72.97%  68.79% 74

Neurology | 5873%  5873%  58.73% 63

Urology | 70.00%  74.47%  72.16% 47

General Medicine | 46.59%  78.85%  58.57% 52

Radiology &= 26.53% 23.64% 25.00% 55

Psychiatry / Psychology | 75.00%  54.55%  63.16% 11

Pediatrics - Neonatal | 75.00%  21.43%  33.33% 14

Orthopedic | 72.86%  71.83%  72.34% 71

Ophthalmology | 9333%  82.35%  87.50% 17

Obstetrics / Gynecology | 86.36%  61.29%  71.70% 31

Hematology - Oncology | 25.00%  22.22%  23.53% 18

Gastroenterology | 93.75%  66.67%  77.92% 45

ENT - Otolaryngology | 88.24%  78.95%  83.33% 19
accuracy 62.28%

macro avg | 67.42% 59.07% 61.24% 517

weighted avg | 64.49%  62.28%  62.14% 517

Table 17 - Classification report of SVM

5.3.3.4. Experiment Summary

Model Accuracy  Precision Recall  fi-score
Multinomial NB ‘ 61.32% 62.56% 61.32%  60.21%
Logistic Regression ‘ 63.44% 64.21% 63.44%  62.60%
SVM ‘ 62.28% 64.49% 62.28%  62.14%

Table 18 - Summary of "Dropping categories and Feature Selection" experiment

The best performance with this experiment is, again, Logistic Regression’s
classifier with an accuracy of 63.64%, precision weighted average 64.51%, recall
weighted average 63.64% and f1-score weighted average 62.91%. The results are pretty
good but there are some issues that must be solved. There is enough noise added mainly
from categories like “General Medicine” and “Radiology”. During the next experiment
those categories will be dropped and an oversampling technique that handles
imbalanced training datasets, will be presented as a way of improvement of
classification models.

59



5.3.4. Oversampling with SMOTE & Feature Selection

In this experiment, “General Medicine” and “Radiology” category will be
dropped as they add a lot of noise to the dataset. Also, the problem of imbalanced
categories will be handled. The new dataset will be fed into SMOTE (Synthetic
Minority Oversampling Technique) algorithm to be resampled. SMOTE aims to
balance class distribution by randomly increasing minority class examples by
replicating them. It generates virtual training records by linear interpolation for the
minority class. These synthetic training records are generated by randomly selecting
one or more of the k-nearest neighbors for each example in the minority class.

The initial number of records before oversampling was 2051 while after

oversampling that number turned to 4081.

Category Counts before SMOTE  Counts after SMOTE
Cardiovascular / Pulmonary 371 371
Orthopedic 355 371
Neurology 317 371
Urology 237 371
Gastroenterology 224 371
Obstetrics / Gynecology 155 371
ENT - Otolaryngology 96 371
Hematology- Oncology 90 371
Ophthalmology 83 371
Pediatrics - Neonatal 70 371
Psychiatry / Psychology 53 371

Table 19 - Categories counts before and after SMOTE

5.3.4.1.  Multinomial Naive Bayes:

Naive Bayes classifier fitted on Tfidf vectorized texts with ngram range (1,1),

X2 test for feature selection ended up with 941 features out of 2500.

Dropping “General Medicine” and “Radiology” category combined with
oversampling to generate artificial data points, proved to be an efficient technique as
the accuracy of the model increased to 85.68%. The classifier seems to recognize

documents from all the categories properly.

60



label precision recall fl-score support

Cardiovascular / Pulmonary | 87.88%  77.33%  82.27% 75

Neurology | 77.61%  7027%  73.76% 74

Urology | 91.18% 83.78% 87.32% 74

Psychiatry / Psychology | 92.50%  100.00%  96.10% 74

Pediatrics - Neonatal | 74.71% 86.67% 80.25% 75

Orthopedic | 75.29% 86.49% 80.50% 74

Ophthalmology | 97.33% 98.65% 97.99% 74

Obstetrics / Gynecology | 98.36% 81.08% 88.89% 74

Hematology - Oncology | 70.33% 86.49% 77.58% 74

Gastroenterology | 90.91% 80.00% 85.11% 75

ENT - Otolaryngology | 95.77% 91.89% 93.79% 74
accuracy 85.68%

macro avg 86.53% 85.70% 85.78% 817

weighted avg A 86.53% 85.68% 85.77% 817

Table 20 - Classification Report of Multinomial NB

5.3.4.2.  Logistic Regression:

Logistic Regression classifier trained with “12” penalty and “newton-cg” solver.
The vectorized corpus’s ngram range was set at (1,1) and the selected features were
922.

label precision recall fl-score support

Cardiovascular / Pulmonary | 87.50%  84.00%  85.71% 75

Neurology | 76.47%  70.27%  73.24% 74

Urology = 91.30%  85.14%  88.11% 74

Psychiatry / Psychology | 92.50%  100.00%  96.10% 74

Pediatrics - Neonatal | 79.75%  84.00%  81.82% 75

Orthopedic = 75.90%  85.14%  80.25% 74

Ophthalmology | 96.05%  98.65%  97.33% 74

Obstetrics / Gynecology | 97.10%  90.54%  93.71% 74

Hematology - Oncology | 86.49%  86.49%  86.49% 74

Gastroenterology | 90.79%  92.00%  91.39% 75

ENT - Otolaryngology . 97.18%  93.24%  95.17% 74
accuracy 88.13%

macro avg | 88.28% 88.13% 88.12% 817

weighted avg = 88.27%  88.13%  88.11% 817

Table 21 - Classification report of Logistic regression

61



The model archives an accuracy of 87.88% which is way better than the
equivalent model of the previous experiment.

5.3.4.3.  Support Vector Machines

label precision recall fl-score support

Cardiovascular / Pulmonary | 91.30%  84.00%  87.50% 75

Neurology | 75.76%  67.57%  71.43% 74

Urology = 94.20%  87.84%  90.91% 74

Psychiatry / Psychology | 93.67%  100.00%  96.73% 74

Pediatrics - Neonatal | 86.42%  93.33%  89.74% 75

Orthopedic = 73.86%  87.84%  80.25% 74

Ophthalmology | 97.30%  97.30%  97.30% 74

Obstetrics / Gynecology | 92.11%  94.59%  93.33% 74

Hematology - Oncology | 86.11%  83.78%  84.93% 74

Gastroenterology | 91.67%  88.00%  89.80% 75

ENT - Otolaryngology | 98.59%  94.59%  96.55% 74
accuracy 88.98%

macroavg | 89.18%  88.99%  88.95% 817

weighted avg | 89.18%  88.98%  88.95% 817

Table 22 - Classification report of SVM

5.3.4.4. Experiment Summary

Model Accuracy Precision Recall F1
Multinomial NB ‘ 85.07% 86.07% 85.07%  85.21%
Logistic Regression ‘ 88.13% 88.27% 88.13%  88.11%
SVM ‘ 88.98% 89.18% 88.98%  88.95%

Table 23 - Summary of "Oversampling with SMOTE & Feature Selection" experiment

62



The best performance with this experiment is of SVM classifier with an
accuracy of 88.98%, precision weighted average 89.18%, recall weighted average
88.98% and f1-score weighted average 88.95%. The results of this experiment were
undoubtedly good enough. Categories like “Cardiovascular / Pulmonary”, “Psychiatry
/ Psychology”, “Orthopedics”, “Ophthalmology”, “Obstetrics / Gynecology” and “ENT
- Otolaryngology” have f1-score more than 80%, some of them are even more than 90%
which means that SVM classifier does a perfect separation between each of them and

the others.
Confusion Matrix of SVC

Cardiovascular / Pulmonary
Neurology

Urology

Psychiatry / Psychology
Pediatrics - Neonatal

Orthopedic

True labels

Ophthalmology -30
Obstetrics / Gynecology
-20
Hematology - Oncology

Gastroenterology -10

1 o] 0 o] 2 o] 0 0 1 0

ENT - Otolaryngology

Cardiovascular / Pulmonary
Neurology

Urology

Psychiatry / Psychology
Pediatrics - Neonatal
Orthopedic
Ophthalmology
Obstetrics / Gynecology
Hematology - Oncology
Gastroenterology

ENT - Otolaryngology

Predicted labels

Figure 34 - Confusion Matrix of SVM classifier

63



5.4. Deep Learning Approach
In this section, deep learning algorithms and techniques will be presented as a
way of text preprocessing and classification. All the gained knowledge from the
previous section will be used during the preprocessing steps. The target variable finally
consists of 11 unique categories to be predicted.

medical_specialty - Categories counts

Cardiovascular [ Pulmonary 7

Orthopedic

at
]
w

Neurology

Urology

¥

[

Gastroenterology

=)
in
v

Obstetrics / Gynecology

ENT - Otolaryngology

L

&

Hematelegy - Oncology

]

Ophthalmalogy

2

Pediatrics - Neanatal

Psychiatry | Psychalogy 53

1
]

50 100 150 200 250

Figure 35 - Final medical specialties counts

Text before cleaning Text after cleaning

2-D M-MODE: , ,1. Left atrial left atrial enlargement left atrial

enlargement with left atrial diameter of 4.7
cm.,2. Normal size right and left
ventricle.,3. Normal LV systolic function
with left ventricular ejection fraction of
51%.,4. Normal LV diastolic function.,5.
No pericardial effusion.,6. Normal
morphology of aortic valve, mitral valve,
tricuspid valve, and pulmonary valve.,7. PA
systolic pressure is 36 mmHg.,DOPPLER: ,
1. Mild  mitral and tricuspid
regurgitation.,2. Trace aortic and pulmonary
regurgitation.

diameter normal size right left normal v
systolic function left ventricular ejection
fraction normal Iv diastolic pericardial
normal morphology aortic valve mitral valve
tricuspid valve pulmonary pa systolic
pressure doppler mild mitral tricuspid trace
aortic pulmonary regurgitation

Table 24 - Before and After text cleaning

64




From Table 24, easily can be observed that all punctuation, stop words and non-
alphabetical characters removed from each document while simultaneously, instead of
using the porter stemmer to stem them the tokens inside each document were
lemmatized and transformed into lowercase.

5.4.1. Deep Neural Network

The corpus of total 2051 documents vectorized using Tf-idf vectorizer with
5000 maximum features. The training sample consists of 1640 documents and 5000
features while the test set consists of 411 documents and 5000 features.

Network Achitecture

The input layer of the neural network consists of 5000 nodes. Four layers of 512
nodes followed by one dropout layer of 0.25 dropping rate form the hidden layers.
Finally, the output layer comprised of 11 nodes and softmax activation function
completes the architecture of the neural network. The total trainable parameters are
3,616,779.

Z| = ~[~ I~ [~ —~~ ]~ —
I=a= == b ~]~ o ~[ =~ il -~ ~ o ~[=~ o e
=R =] o a9
2|2 gla Ak & Ak SIS @ |5 ala @[5 &la @ | o A=
glg Gk glg e glg @ glg ol gle S gl glg
5|58 3 c|e v |8 < g s|8 @ | @ 5|8 | o |5 s |2
Sle R R 2| 2| g 2|2 2|
z|z HE Z|2 |8 A 5|38 2|2 5|8 2|2 5|8 2|2 g|e
= |gl2 |2 2l2 2l Zlz

= = |E FE s E =8 ul|E =g
o . ES o ES o E] o ] o E] =]
A e &£ £]8 & & =k &g 2|2 &l & 2|2 2l g 5| &
SE—mE|a—™F O—bug—bz O—bcu.g-—b: D—bag—b: D—bag—b: s—»E|3
il =1 SR 5] =] =] =]

2|2 =13 =8 =12 =10
- (o] (3] =

H - g B g E 5 = M z o 5|2
2l A E gl - |8 8. ~ |8 Bl o |8 gl < | g gl 28
oo 3 Y T - N 1 - - ] 0 R 34 O U A - B O B B - R
Bl ® = — | & T e T 1 & T I e T 8= =2

| | 5l e < |y g0 o | g 5|0 o | g =0 o | g | o =
=2 =y EX ] 2|8 ER] g8 ERNS] g & ER] g8 5L z
I =1 22 =] - =] AR =) A0S =) =l s o el e
T 2|2 g la Z| g ala EA Y- g|a 5|8 gla =g gla Slg
=B =3 5 “la 19 “la 5 1A 5 “1a 5 &lg
EREE] =10 = = = = = T
S a a a a a A
=]

Figure 36 - DNN Architecture

65



Model Evaluation

label precision recall fl-score support
Cardiovascular / Pulmonary | 91.36%  81.32%  86.05% 91
Neurology | 73.08% 65.52% 69.09% 58
Urology | 84.00% 85.71% 84.85% 49
Psychiatry / Psychology 66.67% 15.38% 25.00% 13
Pediatrics - Neonatal | 100.00% 7.14% 13.33% 14
Orthopedic | 72.62% 88.41% 79.74% 69
Ophthalmology 72.22% 86.67% 78.79% 15
Obstetrics/Gyneco/ogy 87.88% 90.63% 89.23% 32
Hematology - Oncology 28.13% 60.00% 38.30% 15
Gastroenterology 76.32% 78.38% 77.33% 37
ENT - Otolaryngology 78.95% 83.33% 81.08% 18

accuracy 76.16%

macro avg 75.56% 67.50% 65.71% 411
weighted avg 79.09% 76.16% 75.28% 411

Table 25 - Classification report of DNN

The accuracy of the DNN is 76.16%. The remarkable note is that the network

Cortovascuor | Pmonry ;

Neurolegy 1
Uralagy 0 0
Psychiatry / Psychology O 6
Pediatrics - Neonatal

Orthepedic 1 6

True labels

Ophthalmology 0 0

Obstetries { Gynecolagy 0 0

Hematology - Oncology 2 0

Gastroenterology 1 0

ENT - Otolaryngolagy

Neurology =

Cardiovascular / Pulmonary  ~

3

0

Urclegy o

Figure 37

Confusion Matrix of DNN

[ [:}

0 0

] 0

Psychiatry / Psychology o
Pediatrics - Neonatal o

Orthopedic

ecology o

Ophthalmology -

Obstetrics / Gyn

Predicted labels

- Confusion Matrix of DNN

Hematology - Oncology

nterolagy  ©

Gastroe

o o N

e

=
=}

ENT - Otolaryngology

0

could not correctly predict most of the true labels of “Pediatrics — Neonatal” and
“Psychiatry / Psychology” categories inside the test set. This is also visible from Figure
36. The diagonal cells of confusion matrix corresponding to those categories containl
and 2 correctly classified documents, respectively.

66



5.4.2. Convolutional Neural Network

Preprocessing

To use Convolutional Neural Networks for text classification some extra
preprocessing is required. After tokenizing the documents, the ended up vocabulary
size is 16,513 unique tokens. These tokens need to be presented as sequence of integers.

Natural Language Text Text encoded into sequence of integers

left atrial enlargement left atrial diameter
normal size right left normal Iv systolic [3,342,1543, 3,342,966, 7, 224,
function left ventricular ejection fraction | 2, 3, 7, 1326, 752, 451, 3, 255, 886, 853,
normal Iv diastolic pericardial normal | 7, 1326, 2492, 1293, 7, 3439, 331, 308,
morphology aortic valve mitral valve | 913, 308, 1567, 308, 150, 3551, 752, 49,
tricuspid valve pulmonary pa systolic | 2031, 91, 913, 1567, 1878, 331, 150,
pressure doppler mild mitral tricuspid | 1327]

trace aortic pulmonary regurgitation

Table 26 - Text encoded into sequence of integers

The word “left” is represented by the number 3 while the word “artial” by the
number 342 and so on. All the corpus is being encoded into lists of encoded texts. As
different texts have different lengths of words, the lists of encoded documents are also
of different lengths. A deep learning model will often want input of uniform size which
means that the documents of different lengths will raise a problem. All the documents
must be of the same pre-defined length, this means that the longer documents must
become shorter, and the shorter documents must become longer by adding a pre-defined
numeric value (usually 0), This is going to be resolved using padding. Deciding the
maximum length of each encoded document to be 100 and the padding value to be 0,
the padded encoded documents will be as the example | the table below.

67



Before Padding After Padding

[3, 342, 1543, 3, 342, 966, 7, 224,
2, 3,7, 1326, 752, 451, 3, 255, 886, 853,
7, 1326, 2492, 1293, 7, 3439, 331, 308
913, 308, 1567, 308, 150, 3551, 752, 49,
2031, 91, 913, 1567, 1878, 331, 150
1327]

[3, 342, 1543, 3, 342, 966, 7, 224,
2,3,7,1326, 752, 451, 3, 255, 886, 853,
7, 1326, 2492, 1293, 7, 3439, 331, 308,
913, 308, 1567, 308, 150, 3551, 752, 49,
2031, 91, 913, 1567, 1878, 331, 150,
1327,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
00000000000000,0,H-0,
00000000000000,0,0,
0,000000,00,0,0,0]

[3, 255, 326, 224, 192, 1999, 675,
7,192, 364, 3, 255, 752, 451, 410, 8449,
218, 886, 853, 6298, 95, 15, 410, 304, 3,
255, 2944, 940, 1527, 532, 326, 72, 316,
8449, 3, 255, 752, 451, 523, 3, 255, 8450,
1429, 95, 8, 262, 3, 342, 49, 95, 2031, 3,
1061, 410, 954, 2, 1061, 2, 579, 675, 331,
441, 410, 331, 308, 410, 1789, 91, 331,
308, 185, 1790, 331, 308, 30, 71, 5865
1405, 12108, 1527, 1568, 1527, 913,
1718, 1051, 778, 3087, 3173, 587, 1273,
913, 308, 3087, 91, 913, 1567, 308, 410,
7, 1878, 1567, 1327, 361, 150, 20, 398,
218, 150, 20, 752, 49, 541, 218, 2, 342,
49, 150, 308, 410, 7, 1878, 150, 1293,
648, 3088, 83, 1791, 2031, 1569, 596
717, 5187, 7440, 1544, 6799, 296, 747,
4129, 829, 5495, 2537, 496, 191, 3821]

[8, 262, 3, 342, 49, 95, 2031, 3,
1061, 410, 954, 2, 1061, 2, 579, 675, 331,
441, 410, 331, 308, 410, 1789, 91, 331,
308, 185, 1790, 331, 308, 30, 71, 5865
1405, 12108, 1527, 1568, 1527, 913,
1718, 1051, 778, 3087, 3173, 587, 1273,
913, 308, 3087, 91, 913, 1567, 308, 410,
7, 1878, 1567, 1327, 361, 150, 20, 398,
218, 150, 20, 752, 49, 541, 218, 2, 342,
49, 150, 308, 410, 7, 1878, 150, 1293,
648, 3088, 83, 1791, 2031, 1569, 596,
717, 5187, 7440, 1544, 6799, 296, 747,
4129, 829, 5495, 2537, 496, 191, 3821]

Table 27 - Padding sequences into 100 maximum length

The input of the model is going to be each of these encoded documents of 100
length. Each token represented by an integer is going to be transformed into a vector of
a specific size. The values of the vectors are real numbers called weights and are
assigned throughout an embedding layer which assign numbers close to each other
depending on the similarity of the tokens. The actual input of the CNN is an array of
(200, vector size) shape. The vector size of the embedding layer chosen for the model
is 300.

68



Network Achitecture

As mentioned above the first layer of the CNN model is an embedding layer
with input size 100 and the output size is an array of size (100,300). Following the
embedding layer, a 1-dimensional convolution layer with 80 filters ss assigned to the
model architecture. Each filter’s kernel size is 5. A Global Max-Pooling layer is
assigned to the convolution and one dense layer with 64 nodes and 0.2 dropping rate
dropout layer follows.

Embedding_Layer input | input: | [(None, 100)]

InputLayer output: | [(None, 100)]

 J
Embedding_Layer | input: (None, 100)

Embedding output: | (None, 100, 300)

 J
1-D_Convoluion | input: | (None, 100, 300)

ConvlD | relu | output: (None, 96, 80)

Y
Global Max_Pooling | input: | (None, 96, 80)

GlobalMaxPoolinglD | output: (None, 80)

Y
Dense input: | (None, 80)

Dense | relu | output: | (None, 64)

Y
Dropout | input: | (None, 64)

Dropout | output: | (None, 64)

Y
Output_Layer input: | (None, 64)

Dense | softmax | output: | (None, 11)

Figure 38 - CNN Architecture

69



Model Evaluation

label precision recall fl-score support

Cardiovascular / Pulmonary | 74.76%  84.62%  79.38% 91

Neurology 64.29% 46.55% 54.00% 58

Urology | 70.69% 83.67% 76.64% 49

Psychiatry/ Psychology | 100.00% 46.15% 63.16% 13

Pediatrics - Neonatal 50.00% 28.57% 36.36% 14

Orthopedic | 65.82% 75.36% 70.27% 69

Ophthalmology A 100.00%  80.00% 88.89% 15

Obstetrics/Gyneco/ogy 88.24% 93.75% 90.91% 32

Hematology - Oncology 33.33% 33.33% 33.33% 15

Gastroenterology 60.00% 64.86% 62.34% 37

ENT - Otolaryngology 78.57% 61.11% 68.75% 18
accuracy 70.32%

macro avg 71.43% 63.45% 65.82% 411

weighted avg 70.55% 70.32% 69.53% 411

Table 28 - Classification report of CNN

The CNN model’s predictions are less accurate than DNN’s. Although The
CNN model can correctly predict some more of the documents that belong to “Pediatric
- Neonatal” category.

Confusion Matrix of CNN

Urclagy 2 L] 0 [) 2 [ 2 1 1 0 60
Psychiatry / Psychalogy 1 2 ] 6 ] 1 o 0 0 3 0
50
Pediatrics - Neonatal 2 3 2 0 a 1 o o o 1 1
w
o
= . a0
L} Orthopedic 2 10 2 0 0 a 0 2 1 0
w
S
=
Ophthalmology 1 0 ° 0 ° 1 12 0 o 1 0
-30
Obstetrics / Gynecalogy 0 0 ° 0 0 0 a 30 1 1 0
-20
Hematology - Oncology 3 0 2 0 ° 1 a 1 5 2 1

Gastroenterology 5

o
@
B

8

]

ENT - Otolaryngology 2

Neurology
Urclogy
Orthoped
Ophthalmology
logy o
Gastroenterology

cular / Pulmon:
Pediatrics - Neonatal ~

Hematology - Oncology
ENT - Otolaryngology

rdiovas
Psychiatry / Psychology o
Obstetrics / Gynecol

Predicted labels

Figure 39 - Confusion Matrix of CNN

70



5.4.3. Convolutional Neural Network with Glove Embeddings

label precision recall fl-score support
Cardiovascular / Pulmonary | 81.32%  81.32% 81.32% 91
Neurology 52.24% 60.34% 56.00% 58
Urology 63.08% 83.67% 71.93% 49
Psychiatry/Psycho/ogy 100.00% 46.15% 63.16% 13
Pediatrics - Neonatal | 42.86%  21.43% 28.57% 14
Orthopedic | 71.23%  75.36% 73.24% 69
Ophthalmology 92.31% 80.00% 85.71% 15
Obstetrics/Gyneco/ogy 85.29% 90.63% 87.88% 32
Hematology - Oncology 28.57% 26.67% 27.59% 15
Gastroenterology 80.00% 64.86% 71.64% 37
ENT - Otolaryngology 90.91% 55.56% 68.97% 18

accuracy 70.56%
macro avg 71.62% 62.36% 65.09% 411
weighted avg 71.71% 70.56% 70.20% 411

Table 29 -Classification report of CNN wih Glove Embeddings

Using pre-trained Glove word vectors as embedding layer in CNN did not bring
any significant change in the overall classification. However, CNN with pre-trained
Glove embedding dealt with some categories in a more successful way. Categories like
“Cardiovascular / Pulmonary”, “Neurology”, “Orthopedic”, “Gastroenterology”,
“Gastroenterology” and “ENT - Otolaryngology” got higher f-1 score than the CNN
without pre-trained Glove embeddings.

71



CNN Vs DNN Validation Accuracy over epochs

—

=
~

o o
[© -

Validation Accuracy
o ©o o
W B
O\

— CNN accuracy: 0.70
—— DNN accuracy: 0.76
CNN with Glovee accuracy: 0.71

6 8 10 12
Epochs

CNN Vs DNN Validation Loss over epochs

—— CNN loss: 1.10
—— DNN loss: 0.96
CNN with Glovee loss: 0.93

N
o

Validation Loss
[l e S o
[ I~ s « ]

=
o

’\_-
N
4

6 8 10 12
Epochs

(=]
~J

Figure 40 - Models performance over epochs

The best performing model, according to validation loss and validation accuracy
(Figure 40), is of the Deep neural network which was trained over 6 epochs add
achieved an accuracy of 0.76 and validation loss 0.96.

5.4.4. Text Generation for balancing minority categories

In this section one LSTM model is going to be presented as a technique for
artificial test generation. With this method the data imbalance problem is going to be
resolved.

For the generation of artificial texts, extra preprocessing steps are required to
prepare the input of the model. The model will take as an input a sequence of 15 tokens,
and it will try to predict the next token. The features and the labels will be extracted
from the texts in a recurrent way. An algorithm will walk through each text and will
extract the first 15 tokens as features and the 16th feature as label. This will be done for
all consecutive 15-length tokens as shown above:

72



For example, the following sentence represent a text:

“Natural language processing refers to the branch of computer science and
more specifically, the branch of artificial intelligence or Al concerned with giving
computers the ability to understand text and spoken words as human beings can”

Features

Labels

Natural language processing refers to
the branch of computer science and more
specifically, the branch”

of

refers to the
science and more

language processing
branch of computer
specifically, the branch of

artificial

processing refers to the branch of
computer science and more specifically, the
branch of artificial

intelligence

refers to the branch of computer science
and more specifically, the branch of artificial
intelligence

or

to the branch of computer science and
more specifically, the branch of artificial
intelligence or

Al

the branch of computer science and
more specifically, the branch of artificial
intelligence or Al

concerned

branch of computer science and more
specifically, the branch of artificial intelligence
or Al concerned

with

of computer science and more
specifically, the branch of artificial intelligence
or Al concerned with

giving

computer science and more specifically,
the branch of artificial intelligence or Al
concerned with giving

computers

science and more specifically, the
branch of artificial intelligence or Al concerned
with giving computers

the

and more specifically, the branch of
artificial intelligence or Al concerned with giving
computers the

ability

more specifically, the branch of
artificial intelligence or Al concerned with giving

computers the ability

to

73



specifically, the branch of artificial understand
intelligence or Al concerned with giving
computers the ability to

the branch of artificial intelligence or Al text
concerned with giving computers the ability to
understand

branch of artificial intelligence or Al and

concerned with giving computers the ability to
understand text

of artificial intelligence or Al concerned spoken
with giving computers the ability to understand
text and

artificial intelligence or Al concerned words

with giving computers the ability to understand
text and spoken

intelligence or Al concerned with giving as
computers the ability to understand text and
spoken words

or Al concerned with giving computers human
the ability to understand text and spoken words
as

Al concerned with giving computers the beings
ability to understand text and spoken words as
human

concerned with giving computers the can

ability to understand text and spoken words as
human beings

Table 30 - Feature and Labels extraction from given text.

This will be applied to all texts after they have been cleaned and all the
preprocessing steps are done. Short texts, those that contain less than 30 words, are not
going to be included in the process of feature and label creation.

After the creation of the features and the labels, the tokens will be encoded into
integers and the data are going to be fed into the LSTM model.

74



input_1 input: | [(None, 15)]

InputLayer | output: | [(None, 15)]

embedding | input: (None, 15)
Embedding | output: | (None, 15, 300)

o

,

Figure 41 - LSTM model for text generation

Istm_2 input: | (None, 15, 300) bidirectional(lstm) input: | (None, 15, 300)
LSTM | tanh | output: | (None, 15, 128) Bidirectional(LSTM) | output: | (None, 15, 256)
Istm_3 input: | (None, 15, 128) Istm_1 input: | (None, 15, 256)
LSTM l tanh | output: | (None, 15, 128) LSTM ] tanh | output: | (None, 15, 128)
attention | input: | [(None, 15, 128), (None, 15, 128)]
Attention | output: (None, 15, 128)
concatenate | input: | [(None, 15, 128), (None, 15, 128)]
Concatenate | output: (None, 15, 256)
Y
flatten | input: | (None, 15, 256)
Flatten | output: | (None, 3840)
Y
dense input: | (None, 3840)
Dense | softmax | output: | (None, 3960)

After training the model with the created features and labels, text generation
process will take place.

The lengths of the generated texts are going to be randomly selected from 50 to
150 words maximum. After defining the length of the generated text, an encoded text
is randomly selected from the corpus and a sequence of 15 consecutive words inside of
it is extracted from any random position. This 15 word sequence is going to be the
starting point for generating the artificial text. The model that was trained before, is

75




going to be called as many times as the length of generated text is defined. The model
will take as an input the 15 sequences that randomly were selected and will predict the
16th word. That 16th word constitutes the first word of the artificial text. During the
next iteration, the first element of the 15-length sequence is dropped and the 16th
element that was predicted in the previous iteration is being assigned to the sequence,
know the new 15-length sequence is being fed into the model and again the 16th is
predicted and assigned next to the first prediction and so on. This process keeps going
until the maximum generated text length is reached.

The process mentioned above generates one artificial text. To handle the
problem of imbalanced categories, the corpus is going to be split into 11 sub corpuses
each for the 11lunique categories. Then the LSTM model is going to be trained with
each of the subcategories. Having the model trained on each subcategory a repeating
structure will generate N artificial texts of random length between 50 to 150 words.

Categories counts after Text Generation

Cardiovascular { Pulmonary

Crithopedic

Hematology - Oncology

Lrology

Psychiatry / Psychology

Ophthalmalogy

Gastroenterology

Neurology

ENT - Otalaryngalogy

Obstetrics / Gynecology

Pediatrics - Neonatal

0 50 100 150 200 %0 00 =0

Figure 42 - Text categories counts after text generation

76



5.4.5. Deep Neural Network with oversampled data

label precision recall fl-score support

Cardiovascular / Pulmonary | 89.53% 85.56%  87.50% 90
Neurology | 77.14% 62.07%  68.79% 87

Urology | 90.00% 83.51% 86.63% 97

Psychiatry/ Psychology | 79.38% 90.59% 84.62% 85
Pediatrics - Neonatal | 89-19% 86.84% 88.00% 76
Orthopedic | 67.31% 90.91% 77.35% 77
Ophthalmology | 88.33% 74.65% 80.92% 71
Obstetrics / Gynecology | 90.80% 94.05% 92.40% 84
Hematology - Oncology | 89.55% 83.33% 86.33% 72
Gastroenterology 82.47% 90.91% 86.49% 88

ENT - Otolaryngology | 96.20% 90.48% 93.25% 84

accuracy | 34.85%
macro avg | 85.45% 84.81% 84.75% 911

weighted avg @ 85.50% 84.85% 84.81% 911

Table 31 - Classification report of DNN on generated texts

The DNN which was fitted on the mixed dataset which includes the artificial
texts that were generated using the LSTM model, seems to perform well reaching an
accuracy almost 85%. The weighted average of F-1 scores is 84.81. The categories that
did not perform well during the previous experiments such as “Neurology”, “Pediatrics
- Neonatal” etc., are now well performing categories. This is because of the extra
training and testing samples that were created after the oversampling of the dataset. The
testing samples increased from 411 to 911, this is an increase of 122% by the initial
testing samples.

Orthopedic 1

True labels

Ophthalmology ~ ©

Obstetrics / Gynecology ~ ©

Hematology - Oncology 1

Gastroenterology 1

ENT - Otalaryngology

ogy =
y

Neurology ™
Uology =

Psychiatry / Psychology o
ENT - Otolaryngology

Hematalogy - Oncol

Predicted labels

Figure 43 - Confusion Matrix of DNN on generated texts

77



The improvement is also visible from the confusion matrix as the diagonal
includes almost all the data points. Very few misclassifications are spotted and those
are for the categories of ‘“Neurology”, “Psychiatry - Psychology” and
“Ophthalmology”. Many categories that suffered from misclassification seem to have
dealt with this as more texts were generated to support the classification. One good

example is the category of “Pediatrics — Neonatal”.

5.4.6. Convolutional Neural Network with oversampled data

label precision recall fl-score support

Cardiovascular / Pulmonary | 83.58%  62.22%  71.34% 90

Neurology = 66.20% 54.02% 59.49% 87

Urology | 81.00% 83.51% 82.23% 97

Psychiatry / Psychology | 63.89% 81.18% 71.50% 85

Pediatrics - Neonatal | 64.84% 77.63% 70.66% 76

Orthopedic | 62.92%  72.73%  67.47% 77

Ophthalmology | 71.15%  52.11%  60.16% 71

Obstetrics / Gynecology | 89.29% 89.29% 89.29% 84

Hematology - Oncology | 60.44% 76.39% 67.48% 72

Gastroenterology | 84.42% 73.86% 78.79% 88

ENT - Otolaryngology | 88.89% 85.71% 87.27% 84
accuracy 73.77%

macroavg | 7424%  73.51%  73.24% 911

weighted avg = 74.80% 73.77% 73.67% 911

Table 32 - Classification report of CNN on generated texts

The Convolutional Neural Network did not perform that well in comparison
with the Deep Neural Network. The oversampling of the dataset had no impact on the
overall model’s accuracy. The F-1 scores of some categories such as “Pediatrics
Neonatal”, “Neurology”, “Obstetrics / Gynecology”, “ENT - Otolaryngology” and
“Hematology - Oncology” improved but the others remained the same or did not
improve. This is visible also from the following confusion matrix. Many more

misclassifications are visible from almost all the categories.

78



5.4.7. Summary

Model Accuracy Precision Recall  f-1score
DNN 76.16% 79.09% 76.16%  75.28%
CNN 70.32% 70.55% 70.32%  69.53%
CNN-Glovee 70.56% 71.71% 70.56%  70.20%
DNN-Oversampled 84.85% 85.50% 84.85% 84.81%
CNN-Glovee-Oversampled | 73.77% 74.80% 73.77%  73.67%

Table 33 - Summary of all DL experiments

The best performing model is the deep neural network that was fitted on the
dataset that also included the artificial text data which were generated from the LSTM
model. That model has an accuracy of 84.85%. The weighted average of the precision
is 85.5%, the recall is 84.85% and of F-1 score is 84.81%. Considering that the target
variable is a multiclass category, The performance of the model is very satisfactory.

CNN Vs DNN Validation Accuracy over epochs

08
—

S
g
2 0.6
o
< — CNN accuracy: 0.70
% 0.4 —— DNN accuracy: 0.76
= CNN with Glovee accuracy: 0.71
= —— CNN with Glovee on Generated text: 0.74

0.2 —— DNN on Generated text: 0.85

0 2 4 6 8 10 12
Epochs
CNN Vs DNN Validation Loss over epochs
2.0 —— CNN loss: 1.10
—— DNN loss: 0.96

0 CNN with Glovee loss: 0.93
g15 —— CNN with Glovee on Generated text: 0.80
=
2 —— DNN on Generated text: 0.52
g =
1.0 ™~

o5 o~

0 2 4 6 8 10 12

Epochs

Figure 44 - All models performance over epochs

79



Figure 43 shows the validation accuracy and loss, over the epochs, for each one
of all the DL models. All the models except the candidate perform almost in the same
way. The candidate model has a validation loss of 0.52 which is almost half of the
others validation loss.

80



6. Chest X-rays Covid-19 Classification

In this chapter image classification techniques will be presented as a way to
detect Covid-19 infection by analyzing human chest x-rays.

6.1. Dataset
The used dataset was extracted from Kaggle and refers to chest x-rays which
were collected from publicly released GitHub repository by the University of Montreal
professors. The dataset consists of a total of 317 images belonging to three classes,

“Normal”, “Covid-19” and “Viral Pneumonia”.

Trainset Testset Totals

Normal 70 20 90
Covid-19 111 26 137

Viral Pneumonia | 70 20 90
Totals 251 66 317

Table 34 - Dataset Description

For the current analysis the “Viral Pneumonia” images were not taken into
consideration, and they have been dropped. The classification task turned into binary
classification.

Trainset Testset Totals

Normal \ 70 20 90
Covid-19 \ 111 26 137
Totals \ 181 46 227

Table 35 - Final Dataset Description

6.2. Data Exploration and Preprocessing

The images that were extracted from the source seem to be well separated
between the classes although the x-ray images are of different sizes.

81


https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset

Normal Chest X-rays

Covid-19 Chest X-rays

o

Figure 45 - Images of Normal and Covid-19 X-rays

Deep learning requires all the inputs to be of the same size. For that reason and
for less complexity and computational time, al the images resized to 224x224 pixel
images. The ended up training and testing samples converted into 4 dimensional arrays
of (181, 224, 224, 3) and (46, 224, 224, 3) shape respectively. The 1st dimension refers
to the number of samples, the 2nd, and the 3rd to the image size while the 4th dimension
refers to the three color channels of each pixel.




6.3. Deep Neural Network
To train a deep neural network with images, transformed to n dimensional array,
the input must be reshaped into two - dimensional array where the first dimension is
the number of samples and the second is the product of the total pixels and the color
channels. Hence, the training set which is of (181, 224, 224, 3) shape will be reshaped
into (181, 150528) and the test set into (46, 150528).

The multilayer perceptron, between input layer and output layer, contains 6
hidden layers each of them followed by a dropout layer with 10% drop out percentage,
as shown in figure 46:

ole | @ . g g pai ¢ ol @ glg o' ERE: P g|g gl 2|2
= EH B BRI P GE GE GE oE e BR REl REOEE
SlE| g B |BE 1A B Bl BlE B [BlE 1BE BlE BLED B
g[S NE - L1 — 1 L= L 12
Figure 46 - DNN Architecture

label precision recall fl-score support

Normal | 94.44%  85.00%  89.47% 20

Covid-19 = 89.29%  96.15%  92.59% 26

accuracy 91.30%
macro avg 91.87% 90.58% 91.03% 46
weighted avg 91.53% 91.30% 91.24% 46

Table 36 - Classification report of DNN

The accuracy of the model is 91.30% which means that, approximately, 9 out
of 10 chest x-rays are classified correctly. It is important to detect correctly as many
Covid-19 cases as possible. If positive is set to be the presence of Covid-19 infection,
it is important to minimize False Negative cases. Hence, the metric that is more
important is the sensitivity or recall of the model to predict Covid-19 cases. The model
has a recall of 91.30% which means that it was able to detect 96.15% of the x-rays with
covid infection.

83



True labels

Covid-19

Confusion Matrix of DNN

20 ROC Curve DNN Model

Lo
o /,-‘
-
15 0.8 ”’1’
l’#
-
: 0.6 e
p
g e
. g 0.4 PPtas
i ol AUC = 0.990
0.2 el
-
5 ”’
’I
0o b7
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
Normal Covid-19
Predicted labels
Figure 48 - Confusion matrix of DNN Figure 47 - Receiver Operating Characteristic Curve of DNN

6.4.VGG16 Network
VGG16, also known as OxfordNet, is a Convolutional Neural Network
architecture developed by Visual Geometry Group of Oxford University. The model
that was proposed by Andrew Zisserman and Karen Simonyan (2013) and published in
a paper called “Very Deep Convolutional Networks for Large-Scale Image
Recognition” was trained on ImageNet database which contains more than 14 million
images of total 1000 classes. VGG16 can achieve a test accuracy of 92.7%.

@ InputLayrexr ' ConvZD ' MaxPooling2n - &lobalAveragePooling2n ' Dense

Figure 49 - VGG16 Architecture

The model architecture as shown in Figure 49, consists of 16 weighted layers
of which, thirteen are Convolution layers and three Dense layers. Also, it has five Max
Pooling layers which sum up 21 layers in total. The input of the network is of size
224224 with 3 RGB channels image. The Convolutional layer uses 3x3 convolution

84



filters with stride 1 and the same max pooling layer of 2x2 filter of stride 2. In this
experiment the pre-trained VGG16 will be used with the difference of adding 3 more
dense layers at the output of it. This technique is known as Transfer Learning. Transfer
Learning is a Machine Learning technique where a pre-trained model is used as the
starting point of the training of another model. This optimization task promises rapid
progress while training the second model and can achieve significantly higher
performance than training from scratch a model with small amount of data. Transfer
Learning is very common nowadays as most image and NLP are not implemented from
scratch anymore.

label precision recall fl-score  support

Normal | 95.24% 100.00%  97.44% 20
Covid-19 | 100.00%  96.15%  98.11% 26
accuracy 97.83%

macro avg | 97.62% 98.03%  97.80% 46
weighted avg =~ 97.93% 97.83%  97.83% 46

Table 37 - Classification report of VGG16

Confusion Matrix of VGG16

20

!

True labels

-10

Covid-19

Normal Covid-19
Predicted labels

Figure 50 - Confusion Matrix of VGG16

85



The model accuracy is 97.83% which is very good. The recall of the Covid-19
class is 96.15% which means that the model can identify almost all of the x-rays of

infected patients.

ROC Curve VGG16 Model

10 ’,
”’
-
e
08 ”
”’
’J
2 -~
]
3 08 -
@ -
=] ”
5
£ ’1’
@ pa
£ P
. AUC = 1.000
,”
02 -~
-
-
-
-
-
-~
-
00 -~
oo 02 04 06 [ 10

Fal=e Positive Rata

Figure 51 - Receiver Operating Characteristic Curve of VGG16

6.5. Summary

The best performance is achieved from the VGG16 model with the following

performance metrics:

Model accuracy Precision Recall F-1 Score
DNN |91.30%  91.53%  91.30% 91.24%
VGG16 | 97.83% 97.93% 97.83% 97.83%

Table 38 - Models Summary Table

ROC Curves for DNN and VGG16

1.0 T =
r”
-
rd
-
0.8 0ie
-
e
g e
2 0.6 prd
] Pie
= Cd
(] -
€04 -7
E el
-
=
-
-~
0.2 ’4’
-
Pt —— DNN = 0.990
-
00 b° — VGG16 = 1.000
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate

Figure 53 - Receiver Operating Characteristic of models

DNN Vs VGG16 Validation Accuracy over epochs

— DNN accuracy: 0.91
—— VGG16 accuracy: 0.98

0 2 a2 6 8

DNN Vs VGG16 Validation Loss over epachs.

— DNN loss: 0.20
— VGGIE loss: 0.34

Figure 52 - Models performance over training

86



In Figure 52 the validation loss and accuracy for both models are presented over
the epochs. Validation loss of VGG16 is 0.34 while the validation accuracy is 0.98 in
just two epochs training. This is normal as the weights of the VGG16 were not trained
from scratch, but the pre-trained weights were used.

87



7. Conclusion

The aim of this thesis was to develop Machine Learning and Deep Learning
models to classify medical text documents and medical images as well, into pre-defined
categories. The purpose is to present a concrete solution which, combined with the
medical staff, would transform that time consuming task into a handy and time saving
one.

During the analysis a dataset of 4999 total medical transcriptions belonging to
40 distinct categories was taken as a starting point. The dataset is quite noisy, and the
categories are imbalanced over the transcriptions. A lot of medical transcriptions
overlap across the categories. After all the text cleaning, vectorization and SMOTE
algorithm for data balancing, three Machine Learning algorithms were tested and
evaluated over multiple experiments. SVM algorithm that achieved a classification
accuracy of 88.98% and 0.89 f-1 score brought the best classification performance.

Many categories were dropped as overlapped medical specialties. This action
reduced the number of unique classes increasing the performance of the algorithms
despite the loss of significant number of documents. The same classification is proposed
to be split into two different classifications in the future. One primary classification
algorithm that classifies the text documents into a medical specialty and a secondary
that classifies each medical specialty’s document into a subspecialty.

A model to recognize and classify chest X-rays into two categories was
presented, in the context of image classification. The images were discretized into two
categories. Patients with normal chest X-rays and patients whose lungs were infected
with Covid-19 virus. The task was carried out using two neural network architectures.
A Multilayer Perceptron which achieved an accuracy of 91.3% and 0.96 recall of the
positive class (Covid-19). The results were quite good, but the best performance
achieved from a pre-trained CNN, also known as VGG16 network, which achieved an
accuracy of 98.03% and 0.96 recall of the positive class.

This task can go one step further in the future, in the context of computer vision,
by splitting it into two tasks. After the classification of the Covid-19 cases one
secondary model could recognize the type and the level of the damage that has been
caused by the infection to the patient.

88



8. Appendix
8.1. Medical Text Classification Code

Imports

# Ipip install matplotlib==3.5.3 --guiet
# Ipip install pyngrok --quiet
# Ipip install mlflow --quiet

import pandas as pd
import numpy as np

import seaborn as sns
import matplotlib.pyplot as plt
import datetime

import os
os.chdir("drive/MyDrive/Github/Medical Text_and_Image Classification_wv1™)

import warnings
warnings.filterwarnings(“ignore™)

from functions.preprocessing import clean_transcription

from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from functions.utils impert get_target_variable_mapping
from functions.modeling.modeling import produce_model

from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import MultinomialNB

pd.set_option(‘display.max_rows', 188)
pd.set_option(“display.max_columns", 10@)

Notebook parameters

export=True
verbose = True

# Folders
export_folder = 'Run_{}'.format(str(datetime.datetime.now()).replace(’ *," ")[:19])

# Export directory
export_directory = "./exports/'+export_folder

if export:
if not os.path.exists(export_directory):
os.makedirs(export_directory)

89



In

In

In

In

Impot And Explore the dataset

data = pd.read_csv("Data/mtsamples.csv”,delimiter=",",index_col=0)
data.head()

print(“dataset_rows: ", data.shape[@])
print(“dataset_columns: *, data.shape[1])
print(“column Names: ", list(data.columns))

# Dropping unnecessary columns
data = data.drop(['description’, 'sample name®', ‘keywords' ], axis=1)[["transcription’
data

medical_specialty - Visualization of categories counts

# plt.figure(figsize=(26,15))

# ax = sns.barplot(x=data[ 'medical_specialty’].value counts().values,

# y=data[ 'medical_specialty’].value_counts().index,
# palette="viridis™)

# for i in ax.containers:

# ax.bar_Label (1i,)

# plLt.title( "medical_ specialty - Categories counts”,fontsize=30)
# plLt.show()

Data Preprocessing

H

# Dropping rows with NaN transcription
data = data.dropna(subset=[ "transcription”]).reset_index(drop=True)

H

# text_lengths = [len(x) for x in data[ 'transcription’]]

# text lengths = [len(x) for x in data[ "transcription’]]

# figure, (ax_box, ax _hist) = plt.subplots(2, sharex=True, figsize=(12,18), gridspec }

# sns.boxplot(text_Lengths,ax=ax_box, color="#A3C6D3")

# sns.histplot(text_Llengths, bins=58, binwidth=1008, kde=True, ax=ax_hist, color="#A3(
# plt.suptitle( 'Medical transcription text size', fontsize=20)

# plt.xLabel( ‘Number of words inside transcriptions”, fontsize=25)

# plt.ylabel( 'Transcription Counts', fontsize=25)

# plt.xticks(fontsize=28)

# plt.yticks(fontsize=28)

# figure.tight Layout()

# # Rename of columns
# data = data.rename(columns = {"transcription”: "text",
# “medical_specialty”:"category”})

90



# # Keeping only categories with more than 50 appearances in the dataset
# category counts = data.groupby(by="category”)[ ‘category’].count()
# filtered categories = category counts[category counts>58]

# data = data.loc[data[ "category"].isin(list(filtered categories.index))].reset index|

plt.figure(figsize=(10,7))

ax = sns.barplot(x=data[ ' category'].value_counts().values,
y=data[ 'category'].value counts().index,
palette="viridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title("medical_specialty - Categories counts”,fontsize=28)
plt.show()

target_variable_mapping, inverse_target_variable mapping = get_target_variable_mapping

# Getting the cleaned and stemmed text into List of tokens
data["text"] = data["text"].apply(lambda x: clean_transcription(x,stemming_method="pot
data[ "text"]

nested_list_of_words = []

for i in range(len(data["text™])):
text_words = data["text"][i].split()
nested_list_of words.append(text_words)

#ALL the words from texts
flat_stemmed_list = [item for sublist in nested_list of words for item in sublist]

#5umming up the unique words in the texts
unique_words = pd.Series(flat_stemmed_list).value_counts()

print('Nr of unique words is : ',unique_words.shape[@])
print(“====== = === ")
print('2@ most used words in the dataset are: ')
print(“====== = === ")

unique_words.head(28)

frequent_words = pd.DataFrame(unique_words)
frequent_words.reset_index(inplace=True)
frequent_words.columns = [‘word", " "freq']

plt.figure(figsize=(14,7))
ax = sns.barplot(x=frequent_words[ freq'][:20],
y=frequent_words[ "word'][:28],

palette="viridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title("Most Frequent occuring words - Top 28",fontsize=28)
plt.show()

91



Initial_Experiment

# Defning the corpus of the transcriptions
corpus = data[ "text’]
corpus

# produce_model (dataset=data,
labels=target_variable_mapping,
inverse_labels = inverse_target_variable mapping,
random_state=18,
test_size=0.2,
vectorizer=TfidfVectorizer(),
classifier=SVC(),
feature_selection=Nene,
dim_red=False,
verbose=verbose,
export_dir=export_directory

)

Experiment Il (Droping Overlaping labels)

data[ ‘category'] = data['category'].apply(lambda x:x.strip())

#Leaving out specialty of Surgery and other overlaping categories
labels_to_drop = ["Surgery', 'Consult - History and Phy.', 'SOAP / Chart / Progress MNc
"Emergency Room Reports', 'Pain Management']

data = data.loc[~data['category'].isin(labels_to_drop)]

# Replacing 'Neurosurgery' category with ‘Neurology”®
mask = data['category’ ]=='Neurosurgery’
data.loc[mask, "category'] = "Neurology'

# Replacing 'Nephrology' category with '"Urology’
mask = data['category’ ]=='Nephrology’
data.loc[mask, "category’'] = "Urology’

data = data.reset_index(drop=True)

print(f'The new dataset is of shape: {data.shape}')
data[ 'category’].value_counts()

target_variable_mapping, inverse_target_variable mapping = get_target_variable mapping

plt.figure(figsize=(16,7))

ax = sns.barplot(x=data['category'].value counts().values,
y=data[ ' category'].value_counts().index,
palette="viridis™)

for i in ax.containers:

ax.bar_label(i,)

plt.title("medical_specialty - Reduced Categories \n" ,fontsize=28@)
plt.show()

92



nested list_of words = []

for i in range(len(data["text™])):
text_words = data["text"][i].split()
nested_list of words.append(text_words)

#ALL the words from texts
flat_stemmed_list = [item for sublist in nested_list of words for item in sublist]

#Summing up the unique words in the texts
unique_words = pd.Series(flat_stemmed_list).value_ counts()

print(’'Nr of unique words is : ' ,unique_words.shape[8])
print("==== ==")
print(’2@ most used words in the dataset are: ")
print(“==== ==")

unique_words.head(28)

frequent_words = pd.DataFrame(unique_words)
frequent_words.reset_index(inplace=True)
frequent_words.columns = ['word', 'freq']

plt.figure(figsize=(14,7))

ax = sns.barplot(x=frequent_words[ freq"][:20],
y=frequent_words[ ‘word"][:20],
palette="viridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title("Most Frequent occuring words - Top 28",fontsize=28)
plt.show()

selected_features = produce_model(dataset=data,
labels=target_variable_mapping,
inverse_labels=inverse_target_variable_mapping,
random_state=10,
test_size=0.2,
vectorizer=TfidfVectorizer(),
classifier=SVC(),
feature_selection= 'chi2’,
dim_red=False,
verbose=verbose,
export_dir=export_directory

)

Experiment Ill Oversamplening with SMOTE

#Removing General Medicine and Radiology Catgory documents

data = data[~data['category’].isin(['General Medicine®, 'Radiology'])]
data = data.reset_index(drop=True)
print(f'The new dataset is of shape: {data.shape}')

93



plt.figure(figsize=(10,7))

ax = sns.barplot(x=data[ ' category’].value_counts().values,
y=data[ 'category'].value_counts().index,
palette="viridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title("medical specialty Counts Before SMOTE Oversampling \n" ,fontsize=28)
plt.show()

nested_list_of words = []

for i in range(len(data["text"])):
text_words = data["text"][i].split()
nested_list_of_words.append(text_words)

#ALL the words from texts
flat_stemmed_list = [item for sublist in nested list _of words for item in sublist]

#Summing up the unique words in the texts
unique_words = pd.Series(flat_stemmed_list).value_counts()

print('Nr of unique words is : ',unique_words.shape[8])
")

print('2@ most used words in the dataset are: ")

print(“=================== ")

unique_words.head(28)

frequent_words = pd.DataFrame(unique_words)
frequent_words.reset_index(inplace=True)
frequent_words.columns = [“word', 'freq"]

plt.figure(figsize=(14,7))

ax = sns.barplot(x=frequent_words[ 'freq ][:20],
y=frequent_words[ "word"][:20],
palette="viridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title("Most Frequent occuring words - Top 20" ,fontsize=28)
plt.show()

target_variable_mapping, inverse_target_wvariable_mapping = get_target_variable_mapping

model = produce_model(dataset=data,
labels=target_wvariable_mapping,
inverse_labels=inverse_target_wariable mapping,
random_state=18,
test_size=0.2,
vectorizer=TfidfVectorizer(),
classifier=SVC(),
oversampling=True,
feature_selection= 'chil’,
dim_red=False,
verbose=verbose,
export_dir=export_directory

)

94



8.2. Medical Text Classification (Deep Learning Approach) Code

Ipip install matplotlib==3.5.3 --guiet
Ipip install pyngrok --guiet

Ipip install miflow --guiet

Ipip install keras preprocessing

4 W W h

import pandas as pd
import numpy as np

import random

import datetime

from time import strftime
from functools import partial
from tgdm.auto import tgdm

import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.feature_extraction.text import Tfidfvectorizer
from tensorflow.keras.preprocessing.text import Tokenizer
from keras_preprocessing.sequence import pad_sequences
from keras.models import Seguential

from keras import layers, Model
from keras.callbacks import EarlyStopping, ModelCheckpoint

from keras.utils.vis_utils import plot_model
from sklearn.model_selection import train_test_split

from keras.metrics import Recall, Precision, AUC

import os
os.chdir("drive /MyDrive/Github/Medical_Text_and_Image Classification_wvi1™)

from functions.preprocessing import clean_transcription, get_features_labels, split_d:
from functions.utils import get_target_wvariable mapping, get_tensorboard
from functions.model_evaluation import plot_confusion_matrix

from functions.modeling import generate_text

from sklearn.metrics import classification_report,confusion_matrix

Notebook parameters

log_dir = "tensorboard_logs/’

vocab _size = 2588
export=True

95



gtgdm = partial(tqdm, position=8, leave=True)

# Folders
export_folder = "Run_{} .format(str{datetime.datetime.now()).replace(” ", '_")[:19])

# Export directory
export_directory = °./exports/" +export_folder

if export:
if not os.path.exists{export_directory):
os.makedirs{export_directory)

Import And Explore the dataset

data = pd.read_csv{ Data/mtsamples.csv™,delimiter=", " ,index_col=a8)
data.head()

# Dropping unpecessary columns
data = data.drop([ description”, "sample_name', "keywords" ], axis=1)[["transcription’
data

Data Preprocessing

data = data.dropna(subset=["transcription™]).reset_index{drop=True)

# Rename of columns
data = data.rename{columns = {"transcription”:"text”,
"medical_specialty”:"category™})

# Keeping only categories with more than 58 agppegrances in the dotaset
category_counts = data.groupby(by="category”)[ category’].count()
filtered_categories = category_counts[category_counts»sa]

data = data.loc[data["category™].isin{list{filtered_categories.index)}].reset_index(dr
data[ "category’] = data[ 'category”].apply(lambda x:x.strip())

# Replacing 'Neurosurgery' category with “Neurclogy”®
mask = data[ ' category’]=="Neurosurgery”
data.loc[mask, "category’] = "Neurology’

# Replacing 'Nephrology' caotegory with "Urology’
mask = data[  category’]=="Nephrology’
data.loc[mask, "category'] = "Urology’

data = data.reset_index{drop=True)
print{f’'The new dataset is of shape: {data.shape}’)
data[ 'category”].value_counts()}

#Leaving out specialty of Surgery and other overlaping categories
labels_to_drop = ['Surgery’, 'General Medicine®, "Consult - History amd Phy.", "S0aP |
'Emergency Room Reports’, "Pain Management®, "Radiology’]

data = data.loc[~data[ category’].isin(labels_to_drop)]

96



plt.figure({figsize=(18,7))

ax = sns.barplot(x=data[ category’].value_counts(}.values,
y=data[ category’].value_counts().index,
palette="wiridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title( "medical_specialty - Categories counts “n",fontsize=2@)
plt.show()

# Getting the cleaned and Llemmotized text into List of tokens
data[ "text"] = data["text™].apply(lambda x: clean_transcription(x,stemming_method =
data[ "text"]

target_variable_mapping, inverse_target_variable_mapping = get_target_variable_mapping
docs = data[ "text’].te_list()

¥ = docs
¥ np.arrayi{data] 'category”].map(target_variable mapping))

Models

Deep Neural Network

¥_train, X_test , y_train, y_test = train_test split(x, v , test_size = 8.2, random_si

vectorizer = Tfidfvectorizer(max_features=580a)

¥_train = vectorizer.fit_transform{X_train).toarray()

¥_test = vectorizer.transform(x_test).toarray()

print("tf-idf with",str{mp.array(%_train).shape[1]), features™)
print(X_train.shape)

print(X_test.shape)

dropout = .25
node = 512 # number of nodes

# metrics = [Recall(),Precision{), AULC()]
dnn = Sequential()

dnn.add(layers.Dense{node ,input_dim=5888, activation="relu’  name="Input_laysr'))
dnn.add{layers.Dropout (dropout, name='Dropout_layer_1'))
dnn.add{layers.Dense{mode,input_dim=node, activation="relu’, name="hidden_1"})
dnn.add{layers.Dropout (dropout, name='Dropout_layer_2'))
dnn.add{layers.Dense{mode,input_dim=node, activation="relu’, name="hidden_2'})
dnn.add{layers.Dropout (dropout, name='Dropout_layer_3'))
dnn.add{layers.Dense{mnode,input_dim=node, activation="relu’, name="hidden_3"})
dnn.add{layers.Dropout (dropout, mame='Dropout_layer_4°)]
dnn.add{layers.Dense(node,input_dim=node, activatiom="relu’, name="hidden_4"'})
dnn.add({layers.Dropout (dropout, mame='Dropout_layer_ "))
dnn.add({layers.Dense(len({np.unique(y)}), activation="softmax’', mame='oOutput_layer'})

dnn.compile(loss="sparse_categorical_crossentropy”,
optimizer="adam",
metrics=[ "accuracy’])

dnn. summary ()

97



Eitime

dnn_history = dnn.fit({x_train,
y_train,
epochs=6,
batch_size = 18a,
callbacks=[get_tensorboard( "DNN" )],
validation_data=(X_test,y_test))

dnn_loss, dnn_accuracy = dnn.evaluate(X_train, y_train, verbose=False)
print{"Training accuracy: {:.4f}".format{dnn_accuracy))

dnn_loss, dnn_accuracy = dan.evaluate(x_test, y_test, verbose=False)
print{"Testing Accuracy: {:.4f}".Fformat({dnn_accuracy))

# Making Predictions
y_pred = dnn.predict{x_test)
y_pred_classes = y_pred.argmax(axis=-1)

# Classification Report
print{classification_report({list(y_test),list{y_pred_classes)}})

# Saving the classification report inte xlsx file

clf_report = pd.DataFrame{classification_report({list(y_test), list{y_pred_classes), m
clf_report = clf_report.renams(columns={"index”:"label’})

clf_report_labels = clf report.iloc[:pd.Series(y).nunigue()]

clf_report_metrics = clf_report.iloc[pd.Series(y).nunigue():]
clf_report_labels['label’] = c¢lf_report_labels[ label’].astype(int).map(inverse_targei
clf_report = pd.concat([clf_report_labels,clf_report_metrics])
clf_report.to_excel(export_directory+’ /classification_report_dnn_model.xlsx',index=Fal

# Ploting the confusion matrix of the classification
plot_confusion_matrix{list(y_test),list({y_pred_classes),labels=target_variable_mapping

plot_model{dnn, to_file=export_directory+” /dnn_model_plot.png", show_shapes=True, shoy

Convolutional Neural Network

tokenizer = Tokenizer()
tokenizer.fit_on_texts(docs)

vocab_size = len(tokenizer.word_index) + 1
vocab_size

encoded_docs = tokenizer.texts to sequences{docs)

encoded_docs_padded = pad sequences(encoded_docs, padding="post’, maxlen=18&)
print{encoded_docs_padded[a, :])

¥_train, ¥_test , y_train, y_test = train_test_split(encoded_docs_padded, y , test_si:

XXtime
embedding_dim = 388
cnn = Sequential({name="CHN_model’)
cnn.add({layers.Embedding{vocab_size, embedding_dim, input_length=186, name='Embedding_
cnn.add({layers.ConviD({8a, 5, activation="relu’, name="1-D_Convoluion®})
cnn.add({layers.GlobalMaxPoolinglD(name="Global_ Max_Pooling” )}
cnn.add{layers.Dense( 64, activation="relu’, name="Dense”})
cnn.add{layers.Dropout(@.35, seed=18,name="Dropout” )}
cnn.add{layers.bense{len{np.unique(y)}), activation="softmax’, name= "output_Layer’})
cnn.compile{optimizer="adam",

loss="sparse_categorical crossentropy’,

metrics=[ "accuracy”])
Chn. summary ()

98



EXtime
cnn_history = can.fit({X_train,
y_train,
epochs=6,
batch_size = Mone,
callbacks=[EarlyStopping(monitor="val_loss’ ,patience=3), get_ter
validation_data=(¥_test,y_test))

cnn_loss, can_accuracy = can.evaluate(X_train, y_train, verbose=False)
print{"Training Accuracy: {:.af}".format{cnn_accuracy))

cnn_loss, can_accuracy = can.evaluate(x_test, y_test, verbose=False)
print{"Testing Accuracy: {:.af}".format{cnn_accuracy))

# Mgking Predictions
y_pred = cnn.predict(X_test)
y_pred_classes = y_pred.argmax(axis=-1)

# Classification Report
print{classification_report(list(y_test),list(y_pred_classes)}))

# saving the classification report into xlsx file

clf_report = pd.pataFrame(classification_report{list(y_test), list({y_pred_classes), m
clf_report = clf_report.rename(columns={'index”: label’})

clf_report_labels = clf_report.iloc[:pd.Series(y).nunigue()]

clf_report_metrics = clf_report.iloc[pd.Series(y).nunique():]

clf_report_labels[ label’'] = clf_report_labels[ ' label’].astype(int).map(inverse_targel
clf_report = pd.concat([clf_report_labels,clf report_metrics])
clf_report.to_excel(export_directory+'/classification_report_cnn_model.xlsx’,index=Fal

# Ploting the confusion matrix of the classification
plot_confusion_matrix(list(y_test),list(y_pred_classes),labels=target_variable_mapping

plot_model{cnn, to_file=export_directory+" fcnn_model_plot.png’, show_shapes=True, show

Convolutional Neural Network with Pre-trained
Glovee

tokenizer = Tokenizer()
tokenizer.fit_on_texts(docs)

vocab_size = len(tokenizer.word_index) + 1

word_index = tokenizer.word_index
encoded_docs = tokenizer.texts_to_sequences(docs)

encoded_docs_padded = pad_sequences(encoded_docs, padding="post”, maxlen=1oa)
print{encoded_docs_padded[a, :])

¥_train, X_test , y_train, y _test = train_test_split(encoded docs_padded, y , test_si:

99



word_wvectors={}
f = open( 'Glovee/glove.6B.388d.txt", encoding="utfs")
for line in tqdm(f):
values = line.split()
word = values[@]
coefs = np.asarray(values[1:], dtype="float3z")
word_vectors[word] = coefs
f.close()
print{ Loaded %s word vectors.” % len{word vectors))

embedding_dim=308
vocabulary_size=len(word_index)+1

embedding_matrix = np.zeros(({vocabulary_size, embedding_dim)}

for word, i in tgdm(word_index.items()):
if ir=vocabulary_size:
continue
try:
embedding_vector = word_vectors[word]
embedding_matrix[i] = embedding_vector
except:
continue

Eitime
embedding_dim = 388
cnn_glovee = Sequential({mame="CHN_with_Glowvee_ Embediings')
cnn_glovee.add(layers.Embedding{vocab_size, embedding_dim, input_length=188, weights=|
cnn_glovee.add(layers.Dropout{@.2, seed=18, name="Droput_1")})
cnn_glovee.add(layers.ConvliD(88, 5, activation="relu’, name="1-D_cConwvolution_1"})
cnn_glovee.add(layers.Dropout{8.2, seed=18, name="Droput_2"}}
cnn_glovee.add(layers.GlobalMaxPoolinglD({name="Global_Max_Pooling"))
cnn_glovee.add(layers.Dense(32, activation='relu’, name="Dense_layer_1'))
cnn_glovee.add(layers.Dropout(@.28, seed=18, name='Droput_4'})
cnn_glovee.add(layers.dense(len{np.unigue(y)), activation='"softmax’ 6 name="output_Layer
cnn_glovee.compile{optimizer="adam’,

loss="sparse_categorical_crossentropy’,

metrics=["accuracy'])
cnn_glovee . summary( }

100



Xitime

cnn_glovee_history = cnn_glovee.fit(X_train,
y_train,
epochs=25,
batch_size = Mone,
callbacks=[EarlyStopping(monitor="val_loss’',patier
validation_data=(X_test,y_test))

cnn_glovee_loss, cnn_glovee_accuracy = cnn_glovee.evaluate(X_train, y_train, verbose=f
print{"Training Accuracy: {:.4f}".format{cnn_glovee_accuracy))
cnn_glovee_loss, cnn_glovee_accuracy = cnn_glovee.evaluate(X_test, y_test, verbose=Fal
print({"Testing accuracy: {:.4f}".format({cnn_glovee_accuracy))

# Making Predictions
y_pred = cnn_glovee.predict(X_test)
y_pred_classes = y_pred.argmax(axis=-1)

# Classification Report
print{classification_report({list(y_test),list({y_pred classes}))

# Sgving the classification report into xlsx file

clf_report = pd.DataFrame{classification_report{list(y_test), list{y_pred_classes), m
clf_report = clf_report.rename(columns={'inmdex":"'label’})

clf_report_labels = clf report.iloc[:pd.Series(y).nunigque()]

clf_report_metrics = clf_report.iloc[pd.Series(y).nunigue():]
clf_report_labels['label'] = clf_report_labels[ label’].astype(int).map(inverse_targei
clf_report = pd.concat([clf_report_labels,clf report_metrics])
clf_report.to_excel(export_directory+’ /classification_report_cnn_Glovees emb_model.xls:

# Ploting the confusion matrix of the classification
plot_confusion_matrix{list(y_test),list{y_pred_classes),labels=target_variable_mapping

plot_model{cnn, to_file=export_directory+’ fcnn_Glovee_emb_model_plot.png’, show_shape:

fig, ax = plt.subplots(2z,figsize=(15,12})

11 = ax[e].plot{cnn_history.history[ val_accuracy”], color='#588608°", linewidth=3, lal
12 = ax[@].plot{dnn_history.history[ val_accuracy”], color="#297878", linewidth=3, lal
13 = ax[@].plot{cnn_glovee_history.history[ val_accuracy'], color="#edc58d", linewidtt
ax[e].set_title( CMN vz DNN validation Accuracy ower epochs ‘n',fontsize=28)
ax[e].set_xlabel("Epochs”,fontsize=15)
ax[e].set_ylabel("validation Accuracy”,fontsize=15)
ax[e].legend([11, 12, 13], labels= [ CNMW accuracy: {@:.2f} .format{cnn_accuracy),
"DMM accuracy: {@:.2f}".format{dnn_accuracy),
"CHM with Glovee accuracy: {@:.2f}" .format{cnn_glc

14 = ax[1].plot{cnn_history.history[ val_loss’], color="#588886° , linewidth=3, label='

15 = ax[1].plot{dnn_history.history[ 'val_loss"], color="#207878°, linewidth=3, label='
16 = ax[1].plot{cnn_glovee_history.history[ 'wval_loss"], color="#edc58d', linewidth=3,
ax[1].set_title( CHNN Vs DWM validation Loss owver epochs “n' ,fontsize=2@)
ax[1].set_xlabel({"Epochs”,fontsize=15)
ax[1].set_ylabel("walidation Loss™,Tontsize=15})
ax[1].legend({[14, 15, 16], labels= ["CHNW loss: {@&:.2f}".format({cnn_loss),
"DMM loss: {@:.2f}  .format{dnn_loss),
"CNN with Glovee loss: {@:.2f}".format{cnn_glovee_
plt.subplots_adjust( bottom=8.1,
top=8.9,
Wspace=@.7,
hspace=8.7])

plt.savefig(export_directory+' /Models_Performance.png’)

101



In [

In [

In [46]

In [

[

Text Generation for minority classes

# daota[ "category " ].value_counts()

# mask = daotaf "‘cotegory’'] == ‘vrology”
# wrology_txt = dato.loc[mask, ‘text'].te_Llist()

# mask = daotaf ‘category’'] == ‘castroenterology”
# gastroenterology_txt = dota.loc[mosk, “text”].to List({)

# mask = daotaf ‘cotegory’'] == ‘obstetrics / Gynecology’
# obstetrics_gynecology_txt = doto.loc[mask, “text']J.to list()

# mask = daotaf ‘category’'] == "ENT - Otolaryngology’
# ent_otolaryngology_txt = dato.loc[mask, ‘text’'].te_List()

# mask = dotaf ‘cotegory’] == "Hemaotology - Oncology”
# hemotology oncology txt = dota. loc[maosk, "text’].to List{)

# mask = daotaf ‘category’'] == "ophthalmology”
# ophthalmology_txt = daota.loc[maesk, “text’'].te List()

# mask = dotaf ‘cotegory’'] == ‘Pedigtrics - Neonatal”’
# pedigtrics_neonatol txt = dota.loc[maosk, "text’].to List{)

# mask = daotaf ‘category’'] == ‘Psychiatry / Psychology’
# psychiatry psychology_txt = doto.loc[mask, “text']J.to list()

# category = “oOphtholmology”
# texts = psychigtry_psychology txt

+

gfl = get_features_Llaobels(15,texts)

features = gfi[ "features”]

Labels = gfi[ Labels"]

num_words = gffl[ “num_words "]

word ildx = gfi[ ‘word idx ]
new_seguences = gfl[ "new_sequences ']

# H W W o

4

embedding_dim=388
# vocabulary size=len{word idx)+1

# embedding matrix = npp.zeros{(num_words, embedding dim))

# for word, i in tgdm{word idx.items{)):

7 if ir=vocabulary size:

# continue

7 try:

& embedding_vector = word vectors[word]

7 embedding_maotrix[i] = embeddirg vector

# except:

# continue

# X_train, X test, y train, y_test = split dataset{fegtures=fectures,
& labels=Labels,

7 num_words=num_words,
& troining_size=8.7)

102



LSTM model for text generation
embedding_dim = 388

embedding_matrix = np.zeros({num_words, embedding_dim))

for word, i in tgdm{word_idx.items({)):
if ir=num_words:
continue
try:
embedding_vector = word_vectors[word]
embedding_matrix[i] = embedding_wvector
except:
continue

# Definition of model architecture
check_point = ModelCheckpoint(filepath=os.getowd() ,monitor="val_loss", wverbose=1, save
early_stoping = Earlystopping(monitor="val_loss’, mode="min", patience=2)

® = layers.Input(shape={15,))

embedding = layers.Embedding{input_dim=num_words,
output_dim=embedding_matrix.shape[1],
weights=[embedding_matrix],
traimable=False)(x)

encoder = layers.Bidirectional (layers.LSTM{128, return_sequences=True, dropout=8.1, r¢
encoder = layers.LS5TM(128, return_sequences=True, dropout=8.1, recurrent_dropout=6.1}|
decoder = layers.LS5TM(128, recurrent_dropout=9.35, dropout=6.3, return_sequences=True]

decoder = layers.L5TM{128, recurrent_dropout=8.35, dropout=8.3, return_sequences=True]
attention = layers.attention()([encoder, decoder])

decoder_concat_input = layers.Concatenate()([decoder, attention])

flatten = layers.Flatten()(decoder_concat_input)

y = layers.Dense(num_words, activation="softmax")(flatten)

model = Model(inputs=x, outputs=y)
model.compile(
optimizer="adam”,
loss="categorical_crossentropy”,
metrics=["accuracy”])

plot_model (model, to file=export_directory+’ /lstm_text_generator.png’, show_shapes=Tr

model.fit{x_train,
y_train,
epochs=1,
callbacks=[check_point, early_stoping],
validation_data=(%_test,y_test))

103



generated_text = []
for i in tgdm{range(25@,),leave=True):

gen_text = generate_text(model, new_sequences)
generated_text.append(gen_text)

generated_text_df [" ".join{i) for i in generated_text]

generated_text_df = pd.DataFrame(generated_text_df, columns = ["text"])
generated_text_df[ 'category’] = category
generated_text_df.to_csv(f"generated_data/generated_text_glove_3@a{category}.csv™, im

Glovee - LSTM Generated Data Experiments

# Loading all the generagted datasets into ane
import glob

file_path="generated_data’
files = glob.glob{file path + “/*.csv™)

generated_data = pd.DataFrame()
content = []

for file name in files:
print{file_name]

df = pd.read_csv(file name, index_col=None})
content . append (df)

generated data = pd.concat{content).sample(frac=1).reset_index{drop=True)

generated data[ generated'] = 1
display(generated data)

generated_data = generated_data.loc[generated data[ ' category”]!="Radiology’]

data_all = pd.concat{[data,generated_data],axis=8)
data_all[ "generated’] = data_all[ generated’].fillna(a)

target_variable_mapping, inverse_target_variable_mapping = get_target_variable_mapping
¥ = data_all[ "text'].to_list()
y = np.array(data_all[ category’ ].map(target_variable mapping))

¥_generated = generated_data[ text’].te_list()
y_generated = np.array(generated_data[ category’].map({target_variable_mapping))

plt.figure(figsize=(18,7))

ax = sns.barplot(x=data_all[ category'].value_counts().values,
y=data_all[ "category’].value_counts().index,
palette="viridis")

for i in ax.containers:
ax.bar_label(i,)

plt.title("Categories counts after Text Generation\n™,fomntsize=28)
plt.show()

104



DNN

X_train, X_test , y train, y_test = train_test split(x, y , test_size =

vectorizer = Tfidfvectorizer(max_features=258a)

¥_train = vectorizer.fit_transform{x_train).toarray()

X%_test = vectorizer.transform{¥_test].toarray()

print("tf-idf with”,str{np.array(x_train).shape[1]), features™)
print("x-train shape is: ", X_train.shape)

print("x-test shape is: ", X_test.shape)

vectorizer = Tfidfvectorizer(max_features=2588)
¥_generated_vectorized = vectorizer.fit_transform(X_generated).toarray()

print("x_generated shape is: ", X_penerated_vectorized.shape)

X%_train = np.concatenate({¥_train, X¥_generated_vectorized), axis=@)
y_train = np.concatenate({y_train,y_generated),axis=@)

print(X_train.shape)
print(y_train.shape)

dropout = 8.25
node = 512 # number of nodes

# metrics = [Recall(),Precision{), AUC({)]
dnn = Sequential()

dnn.add(layers.Dense{mnode, input_dim=X_train.shape[1], activation='relu’,
dnn.add(layers.Dropout (dropout, name='Dropout_layer_1'))
dnn.add(layers.Dense{node, input_dim=node, activatiom="relu’, name="hidde
dnn.add(layers.Dropout (dropout, name="Dropout_layer_2'))
dnn.add(layers.Dense{mode, input_dim=node, activation='relu’, name="hidde
dnn.add(layers.Dropout (dropout, name='Dropout_layer_3'))
dnn.add(layers.Dense{mode,input_dim=node, activation='relu’, name="hidde
dnn.add{layers.Dropout(dropout, name="Dropout_layer_4'))
dnn.add(layers.Dense{mnode, input_dim=node, activation='relu’, name="hidde
dnn.add(layers.Dropout (dropout, name="Dropout_layer_5'))
dnn.add(layers.Dense{len{np.unique(y}), activation='softmax’, name='oOutp

dnn.compile(loss="sparse_categorical_crossentropy”,
optimizer="adam",
metrics=["accuracy’])

dnn. summary( )

@.25, random_:

name='Input_l:
n_1'})
n_z'))
n_3'})
n_a'))

ut_layer'})

105



Eitime

dnn_gen_history = dnn.fit(x_train,
y_train,
epochs=2,
batch_size = None,
callbacks=[get_tensorboard( DNN_gen" )],
validation_data={X_test,y_test))

dnn_gen_loss, dnn_gen_accuracy =
print{"Training Accuracy: {:.4af}"
dnn_gen_loss, dnn_gen_accuracy =

dnn.evaluate(X_train, y_train, verbose=False)
. format {dnn_gen_accuracy))
dnn.evaluate(X_test, y_test, wverbose=False)

print{"Testing Accuracy: {:.4f}".format({dnn_gen_accuracy)})
# Moking Predictions

y_pred = dan.predict(x_test)

y_pred_classes = y_pred.argmax(axis=-1)

# Classification Report
print{classification_report(list(y_test),list(y_pred_classes}))
# Sawing the classification report inte xlsx file

clf_report = pd.DataFrame(classification_report({list(y_test), list(y_pred_classes), m
clf_report = clf _report.rename(columns={"index”: ' label’})

clf_report_labels clf report.iloc[:pd.Series(y).nunique()]

clf_report_metrics clf_report.iloc[pd.Series(y) .nunigue(]):]
clf_report_labels['label”] clf_report_labels[ "label”].astype(int).map(inverse_targel
clf_report pd.concat([clf_report_labels,clf report metrics])
clf_report.to_excel(export_directory+' /classification_report_dnn_gen_model.xlsx” ,index

# Ploting the confusion matrix of the classification

plot_confusion_matrix(list(y_test),list(y_pred_classes),labels=target_variable_mapping

plot_model{dnn, to_file=export_directory+" /dnn_gen_model_plot.png”, show_shapes=True,

¥_train, X_test , y_train, y_test = train_test_split(x, y , test_size = #.25, random_:

tokenizer = Tokenizer()
tokenizer.fit_on_texts(X)

vocab_size = len(tokenizer.word_index) + 1
print{ vocabulary size is: ", wocab _size)

word_index = tokenizer.word_index
encoded_docs_train tokenizer.texts_to_sequences(X_train)
encoded_docs_test = tokenizer.texts_to_sequences(x_test)

encoded_docs_padded_train pad_sequences(encoded_docs_train, padding='post’, maxlen=1
encoded_docs_padded_test = pad_sequences(encoded_docs_test, padding="post’, maxlen=184

embedding_dim=30&
vocabulary_size=len(word_index]}+1

embedding_matrix np.zeros( {vocabulary_size, embedding_dim)}

for word, i in tgdm(word_index.items()):
if ir=vocabulary_size:

continue
try:
embedding_vector = word_vectors[word]
embedding_matrix[i] = embedding_vector
except:
continue

106



Eitime
embedding_dim = 388
cnn_glovee = Sequential({mame="CHN_with_gGlovee_Embediings’)
cnn_glovee.add(layers.Embedding (vocab_size, embedding_dim, input_length=188, weights=|
cnn_glovee.add(layers.Dropout(@.2, seed=18, name="Droput_1"))
cnn_glovee.add(layers.ConwvlD({B8, 5, activation="relu’, name="1-D Convolution_1"})
cnn_glovee.add(layers.Dropout(@.2, seed=18, name="Droput_2"))
cnn_glovee.add(layers.GlobalMaxPoolinglD({name="Global_Max_Pooling”]})
cnn_glovee.add(layers.Dense(32, activation="relu’', mame='Dense_layer_1'}]
cnn_glovee.add(layers.Dropout(@.28, seed=18, name='Droput_4'})
cnn_glovee.add(layers.Dense(len{np.unique(y) ), activation="softmax’ ,name="0output_Layer
cnn_glovee.compile(optimizer="adam",

loss="sparse_categorical_crossentropy’,

metrics=["accuracy’])
cnn_glovee. summary ()

EXtime

cnn_glovee_gen_history = cnn_glovee.fit{encoded_docs_padded_train,
y_train,
epochs=25,

batch_size = Mone,

callbacks=[EarlySstopping(monitor="val_loss’ ,patier
validation_data=(encoded_docs_padded_test,y_test)]

cnn_glovee_gen_loss, cnn_glovee gen_accuracy = can_glovee.evaluate(encoded docs_paddec
print{"Training Accuracy: {:.4f}".format{cnn_glovee_gen_accuracy))
cnn_glovee_gen_loss, cnn_glovee gen_accuracy = can_glovee.evaluate(encoded docs_padde:
print({"Testing Accuracy: {:.4f}".format{cnn_glovee_gen_accuracy))

# Making Predictions
y_pred = can_glovee.predict(encoded_docs_padded_test)
y_pred classes = y_pred.argmax(axis=-1)

# Classification Repoart
print{classification_report(list(y_test),list(y_pred _classes)))

# Saving the classification report into xlsx file

clf_report = pd.DataFrame(classification_report({list(y_test), list{y_pred_classes), m
clf_report = clf_report.rename(columns={"index”:'label'})

c1f_report_labels = clf report.iloc[:pd.Series(y).nunigue()]

clf_report_metrics = clf_report.iloc[pd.Series(y).nunigue():]
clf_report_labels['label’'] = clf_report_labels[ label’].astype(int).map(inverse_targel
clf_report = pd.concat([clf_report_labels,clf_report_metrics])
clf_report.to_excel{export_directory+'/classification_report_cnn_gen_Glovee_emb_model,

# Ploting the confusion matrix of the classification
plot_confusion_matrix(list(y_test},list{y_pred_classes),labels=target_variable_mapping

plot_model{cnn, to file-export_directory+’ /cnn_gen_Gloves_emb_model_plot.png®, show_ sk

107



fig, ax = plt.subplots(2,figsize=(15,12))

11 = ax[@].plot{cnn_history.history[ 'val_accuracy’], color="#58@888', linewidth=3, lal
1z = ax[@].plot{dnn_history.history[ val_accuracy’], color="#297878', linewidth=3, lal
13 = ax[@].plot{cnn_glovee history.history['val_accuracy'], color="#edcS58d", linewidtt
1a = ax[@].plot{cnn_glovee gen_history.history[ "val_accuracy’], color="#aco@ed', lines
15 = ax[@].plot{dnn_gen_history.history[ 'val_accuracy’], color="#8858ae", linewidth=3,

ax[@].set_title( CMN vs DMN validation aAccuracy over epochs ‘“n',fontsize=2a)

ax[@].set_xlabel({"Epochs",fontsize=15)

ax[@].set_ylabel{"validation accuracy”,fontsize=15)

ax[@].legend([11, 12, 13], labels= ["CHM accuracy: {@:.2f}".format{cnn_accuracy),
"DMM accuracy: {@:.2f}" .format{dnn_accuracy),
"CNMN with Glovee accuracy: {@:.2f} .format{cnn_glc
"CHM with Glovees on Generated text: {@:.2f}".form:
"DNM on Generated text: {@:.2f}".format{dnn_gen_a«

16 = ax[1].plot{onn_history.history[ val_loss'], color="#560888° , linewidth=3, label='
17 = ax[1].plot{dnn_history.history[ 'val_loss'], color="#297878", linewidth=3, label='
18 = ax[1].plot{cnn_glovee history.history['val_loss’], color='#edc58d’, linewidth=3,
19 = ax[1].plot{cnn_glovee gen_history.history[ "val_loss'], color="#aceesd’, linewidtt
118 = ax[1].plot{dnn_gen_history.history[ " val_loss"], color="#8858ae’, linewidth=3, 1:

ax[1].set_title{ CMN vs DWN validation Loss over epochs “n',fontsize=28)
ax[1].set_xlabel({"Epochs”,fontsize=15)
ax[1].set_ylabel("validation Loss™,fomtsize=15)
ax[1].legend({[14, 15, 16], labels= ["CNW loss: {@:.2f} .format{cnn_loss),
"DNM loss: {@:.2f}" .format(dnn_loss),
"CNH with Glowvee loss: {@:.2f} " .format{cnn_glovee
"CHH with Glovee on Generated text: {@:.2f} .form:
"DNM on Generated text: {@:.2f}° .format({dnn_gen_lc
plt.subplots_adjust( bottom=8.1,
top=08.9,
Wspace=8.7,
hspace=8.7)

plt.savefig(export_directory+' /Models_performance_all.png” )

108



8.3. Medical Image Classification Code

Imports

# Ipip instoll visualkeraos

import pandas as pd
import numpy as np

import random
import datetime
import cv2
import os
import glob

from sklearn.metrics import classification_report,confusion_matrix, roc_curve, roc_aw

import tensorflow as tf
from tensorflow.keras.callbacks import EarlyStopping

from keras.preprocessing.image import ImageDataGenerator
from keras.utils import array_to_img

from tensorflow.keras.applications.vgglé import VGG16

import os
os.chdir("drive/MyDrive/aithub/Medical_Text_and_Image Classificatiom_wi™)

from functions.model_ewvaluation import plot_confusion_matrix
# from functions.utils import get temsorboard

import visualkeras
import matplotlib.pyplot as plt

from keras.utils.vis_wutils import plot_model
# from ann_wvisuvglizer.visuglize import amn_viz

Constants

log_dir = "tensorboard_logs/’
export = True
image_augmentation = False

data = "Covid® # ‘Covid' oar ‘oll”’

if data == "all":

train_dir = "/content/drive/MyDrive/Github/Medical_Text_and_Image_classificatiom_wily

test_dir = " fcontent/drive/MyDrive/Github/Medical_Text_and_Image Classification_wi/L
else:

train_dir = "/content/drive/MyDrive/Github/Medical_Text_and_Image_classificatiom_wily

test_dir = " fcontent/drive/MyDrive/Github/Medical_Text_and_Image Classification_wi/L

image_width = 224

109



image_height = 224
color_channels = 3

image_pixels = image_width*image_height
total_imputs = image_pixels*color_channels

log_dir = "tensorboard_logs/’

# Folders
export_folder = "Run_{} .format({str{datetime.datetime.now()).replace(” °, _")[:19])

# Export directory
export_directory = °./exports/ +export_folder

if export:

if not os.path.exists({export_directory):
os.makedirs{export_directory)

Image Data Loading

train_covid_dir = train_dir + "/Covid”
train_normal_dir = train_dir + "/Normal’
train_pneumonia_dir = train_dir + "/viral Pneumonia’

test_covid_dir = test_dir + "/Covid®
test_normal_dir = test_dir + '/Normal’
test_pneumonia_dir = test_dir + "/viral Pneumonia’

# Loading Images
dir = train_covid_dir
data_path = os.path.join{dir, ' *g")
files = glob.glob({data_path)
train_cowid = []
for 1 in files:
img = cv2.imread(f1)
train_covid.append(img)

dir = train_normal_dir
data_path = os.path.join{dir, ' *g")
files = glob.glob({data_path)
train_mormal = []
for 1 in files:
img = cv2.imread(f1)
train_normal.append(img)

dir = test_covid_dir
data_path = os.path.join{dir, ' *g")
files = glob.glob({data_path)
test_covid = []
for 1 in files:
img = cw2.imread(f1)
test_covid.append(img)

110



dir = test_normal_dir
data_path = os.path.join{dir," *g"}
files = glob.glob(data_path)
test_normal = []
for f1 in files:
img = cvZ.imread({f1)
test_normal.append(img)

if data == "all’":

dir = test_pneumonia_dir
data_path = os.path.join{dir, " *g")
files = glob.glob({data_path)
test_pneumonia = []
for f1 in files:
img = cv2.imread(f1)
test_pneumonia.append(img)

dir = train_pneumonia_dir
data_path = os.path.join{dir, *g")
files = glob.glob(data_path)
train_pneumonia = []
for 1 in files:
img = cv2.imread(f1)
train_pneumonia.append(img)

if data == "all’":

train_all = train_normal + train_covid + train_pneumonia
test_all = test_mormal + test_covid + test_pneumonia

else:

train_all = train_normal + train_covid
test_all = test_mormal + test_covid

Data Exploration

fig, axes = plt.subplots(2,3,figsize=(15,7))
plt.suptitle("MNormal Chest X-rays™, fontsize=18, y=8.95)

for i, ax in enumerate(axes.rawvel(]):

ax

plt.subplot({2, 3, i + 1)
ax = plt.imshow(test_normal[i])
plt.xticks({[])

plt.yticks({[])

plt.show()

fig, axes = plt.subplots(2,3,figsize=(15,7))
plt.suptitle("Covid-19 Chest X-rays™, fomntsize=18, y=8.95)

111



for i, ax in enumerate(axes.ravel()):
ax = plt.subplot{2z, 3, 1 + 1)
ax = plt.imshow(train_covid[i])
plt.xticks{[])
plt.yticks({[])

plt.show()

if data == "all":

fig, axes = plt.subplots({2,3,Tigsize=(15,7})
plt.suptitle("viral Pneumonia Chest X-rays", fontsize=13, y=8.95)

for i, ax in enumerate(axes.ravel()):

ax plt.subplot({z, 3, i + 1)

ax plt.imshow(train_pneumoniali])
plt.xticks([])

plt.yticks([])

plt.show()

Preprocessing

# Defining the target wvariable

y_train_normal = list{np.full{lem(train_mormal),a@})
y_test_normal = list({mp.full{len{test_normal),a))
y_train_covid = list({mp.full{len{train_covid),1))
y_test_covid = list({np.full({len{test covid},1})

if data == "all":

y_train_pneumonia = list({np.full{len{train_cowvid),2))
y_test_pneumonia = list{np.full({len(test_covid),2)}

target_variable_mapping = {'Normal’: @,
"Covid-19": 1,
‘Wiral Pneumonia’: 2

1

else:
target_variable_mapping = {'Normal’: @,

"Covid-19": 1

}

inverse_target_variable mapping = {value : key for key, value in target_variable_mappi

y_train_all = y_train_normal + y_train_covid #+ y_ troin_pneumoniag
y_test all = y_test normal + y_test_cowid #+ y_test_pneumoniao

train_data = list({zip{train_all,y_train_all))
random. shuffle(train_data)

112



X_train_all, y_train_all = zip(*train_data)

test_data = list({zip(test_all,y_test_all))
random. shuffle(test_data)
¥_test_all, y_test_all = zip(*test_data)

y_train_all = np.array(y_train_all)
y_test_all = mp.array(y_test_all)

# Function that resizes agll the imoges ito imoges of 224x224 pixels
def image_resize(image,
new_dim = [None, MNone)

1

img = cvZ.resize(image,
dsize=new_dim,
interpolation=cv2.INTER_CUBIC)
return img

# Resizing all the images

¥_train_all_resized = [image_resize(img, new_dim=(image width, image_height))} for img
¥_train_all_resized = np.asarray(¥_train_all_resized).reshape((len{X¥_train_all_resize:

¥_test_all_resized = [image_resize(img, new_dim={image_width, image_height)) for img i
¥_test_all_resized = np.asarray(¥_test_all_resized).reshape((len(x_test_all_ resized),

# Scaling the data

X%_train_all_resized, X¥_test_all_resized = X¥_train_all_resized/255.8, X¥_test_all_resize

# Reshaping the datao

¥%_train_all_resized_dnn = X_train_all_resized.reshape(X_train_all_resized.shape[&],tol
¥_test_all_resized_dnn = X_test_all_resized.reshape(X_test_all_resized.shape[@],total_

¥_train_all_resized_dnn.shape

DNN

dnn = tf.keras.models.Sequential([

tf.keras.layers.Dense(256, input_dim=total_imputs, activation="relu"},

tf.keras.layers.Dropout(@.18, seed=18),
tf.keras.layers.Dense(128,activation="relu’ ),
tf.keras.layers.Dropout(8.18, seed=18),
tf.keras.layers.Dense(64, activation="relu’),
tf.keras.layers.Dropout(@8.18, seed=18),
tf.keras.layers.Dense(32, activation="relu’),
tf.keras.layers.Dropout(@.18, seed=18),
tf.keras.layers.Dense(16, activation="relu’),
tf.keras.layers.Dropout(@.18, seed=18),
tf.keras.layers.Dense(8, activation="relu’},
tf.keras.layers.Dropout(@.18, seed=18),

113



if data=="all":
dnn.add(tf.keras.layers.Dense(3, activation="softax’))

dnn.compile{optimizer=tf.keras.optimizers.adam(),
loss="sparse_categorical_crossentropy”,
metrics=["accuracy”])
else:
dnn.add{tf.keras.layers.Dense{l, activation="sigmoid'})

dnn.compile(optimizer=tf.keras.optimizers.adam(},
loss="binary_crossentropy ",
metrics=["accuracy'])

dnn. summary ()

dnn_history = dnn.fit(
X_train_all_resized_dnn,
y_train_all,
epochs=18,
wvalidation_data=({X¥_test_all_resized_dnn, y_test_all)

)

dnn_loss, dnn_accuracy = dnn.evaluate(X_train_all_ resized dnn, y_train_all, verbose=F:
print{"Training Accuracy: {:.4f}".format{dnn_accuracy))
dnn_loss, dnn_accuracy = dnn.evaluate(X_test_all_resized_dnmn, y_test_all, wverbose=Fal:
print{"Testing Accuracy: {:.4f}".format{dnn_accuracy))

# Making Predictions
y_pred_proba_dnn = dnn.predict(X_test_all_resized dnn)
y_pred_classes = np.where(y_pred_proba_dnn»8.5,1,8)

# Classification Report
print{classification_report(y_test_all, y pred classes))

# Sawing the classification report into xlsx file

clf_report = pd.pataFrame{classification_report(y_test_all, y_pred_classes, output_dic
clf_report = clf_report.rename(columns={'index": label’})

clf_report_labels = clf_report.iloc[:pd.Series(y_test_all).nunique()]
clf_report_metrics = clf_report.iloc[pd.Series(y_test_all).nunique():]
clf_report_labels['label’] = clf_report_labels[ label’].astype(int).map(inverse_targel
clf_report = pd.concat([clf_report_labels,clf report_metrics])
clf_report.to_excel({export_directory+' /classification_report_dnn_model.xlsx’,index=Fal

# Ploting Roc curve
fpr_dnn, tpr_dnn, _ = roc_curve(y_test_all, y_pred_proba_dnn)
auc_dnn = roc_auc_score(y_test_all, y_pred_proba_dnn)

plt.figure(figsize=(12,7))

plt.grid()
plt.plot(fpr_dnn, tpr_dnm, linewidth = 3, color = '"#acoeéd’', label="aucC = {:.3T} .Tor
plt.plot(fpr_dnn, fpr_dnm, linestyle="--", linewidth = 3, color="black'}

plt.text(®.58,8.3,'a0C = {:.3f} .format({auc_dnn), fontsize=25)
plt.ylabel( True Positive Rate”, fontsize=12)

plt.xlabel( False Positive Rate’, fontsize=12)

plt.title{ 'ROC Curve DNN Model ‘n° ,fontsize = 15)
plt.savefig(export_directory + "/ROC_curve_DNM.png' )

114



plt.show()

# Ploting the confusion matrix of the classification
plot_confusion_matrix(y_test_all,
y_pred_classes,
labels=target_wvariable mapping.keys(],
model_name="DNN' ,
export_dir=export_directory)

plot_model (dnn, to_file=export_directory+" /dnn_model_plot.png’, show_shapes=True, shos

VGG16

base_model = woGl6(weights="imagenet’, include_top=False,
input_shape=({image_width, image_height,color_channels))

# freeze extraction Layers
base_model.trainable = False

# odd custom top Layers

¥ = base_model.output

® = tf.keras.layers.GlobalaveragePooling2D( )(x)

# x = tf.keras. layers.Dense(1824 , octivation="relu’){x)
# ¥ = tf.keras. layers.Dense(512 , octivation="relu’)(x)
® = tf.keras.layers.Dense(256 , activation="relu’)({x)

¥ = tf.keras.layers.Dense(128 , activation="relu’)({x)

predictions = tf.keras.layers.Dense(l, activation="sigmoid”)(x)
vgelé = tf.keras.Model(inputs=base_model.input, outputs-predictions)

# confirm unfrozen Layers
for layer in vgglée.layers:
if layer.trainable==True:
print{layer)

vEE16.compile(
loss="binary_crossentropy’,
optimizer=tf.keras.optimizers.adam(learning_rate=8.881),
metrics=["accuracy"’]

)

veelé_history = vegle.fit(
¥_train_all_resized,
y_train_all,
epochs = 2,
validation_data = (¥_test_all_resized,y_test_all),
callbacks=[Earlystopping{monitor="val_loss", patience=2, wverbose=1)])

veel6_loss, vggl6e accuracy = veEglé.evaluate(X_train_all resized, y_train_all, verbose:
print("Training accuracy: {:.4f}".format(vegls_accuracy))

veggl6_loss, vggle accuracy = vEglé.evaluate(X_test_all_resized, y_test_all, verbose=F:
print("Testing accuracy: {:.4f}".format(vegls_accuracy))
visualkeras.layered_view(vgglé, legend=True)

115



# Moking predictions
y_pred_proba_veglé = vegglé.predict(x_test_all_resized)
y_pred_classes = np.where(y_pred_proba_vgglé6»8.5,1,8).reshape(y_test_all.shape[&])

# Classification report

print{classification_report(y_test_all,
y_pred_classes
n

# Sgving the classification report into xlsx file

clf_report = pd.pataFrame(classification_report{y_test_all, y pred_classes, output_dic
clf_report = cl1f_report.rename(columns={"index":'label’})

clf_report_labels = clf report.ilec[:pd.5eries(y_test_all).nunique()]
clf_report_metrics = clf_report.iloc[pd.Series(y_test_all).nunique():]
clf_report_labels[ label'] = clf_report_labels[ label’].astype(int).map(inverse_targel
clf_report = pd.concat([clf_report_labels,clf report_metrics])
clf_report.to_excel{export_directory+'/classification_report_vgglé_model.xlsx’ ,index=F§

# Ploting Roc cCurve
fpr_vegls, tpr_vggle, _ = roc_curve(y_test_all, y_pred proba vgglée)
auc_vegls = roc_auc_score(y_test_all, y_pred_proba_vggle)

plt.figure(figsize=(12,7))

plt.grid()
plt.plot({fpr_veegls, tpr_veggls, linewidth = 3, color = "#297878', label="vaeGls = {:.3f]
plt.plot{fpr_vegls, fpr_vggls, linestyle="--', linewidth = 3, color="black')

plt.text(@.58,8.3, auc = {:.3f} .format(auc_wvgegl6), Tontsize=25)
plt.ylabel({ True Positive Rate”, fontsize=12}

plt.xlabel( False Positive Rate’, fontsize=12)

plt.title({ 'ROC Curve WGG16 Model “n~,fontsize = 15)
plt.savefig(export_directory + '/ROC_curve VWGG16.png" )

plt.show()

# Confusion maotrix

plot_confusion_matrix(y_test_all,
y_pred_classes,
labels=target_variable_mapping.keys(],
model_name="WGG16",
export_dir=export_directory)

plot_model({vggls, to file-export_directory+' /vegglé_model plot.png”, show_shapes=True,
visualkeras.layered view(vggls, legend=True, to file—export_directory+'/veGle_model_pl

fig, ax = plt.subplots(2,figsize=(15,12))

11 = ax[@].plot{dnn_history.history[ val_accuracy’], color="#ace@sd’, linewidth=3, lal
1z = ax[@].plot{vgels_history.history[ val_accuracy'], color="#207878", linewidth=3, I

ax[@].set_title{ DNN Vs wGG16 Validation Accuracy over epochs “in',fontsize=28)
ax[@].set_xlabel("Epochs” ,fontsize=15)

ax[@].set_ylabel("validation Accuracy”,fontsize=15)

ax[@].legend([11, 12], labels= ['DHWN accuracy: {@:.2f}".format{dnn_accuracy),

"WiGGEle accuracy: {@:.2f}  .Tormat(vgglé_accuracy)],
loc="lower right"})

13 = ax[1].plot{dnn_history.history[ val_loss’'], color="#acoeed , linewidth=3, label='

116



14 = ax[1].plot({vgel6_history.history[ "val_loss'], color="#297878", linewidth=3, label

ax[1].set_title( DNN vs WGG16 validation Loss over epochs “n°,fontsize=2@)
ax[1].set_xlabel("Epochs”,fontsize=15)
ax[1].set_ylabel{"validation Loss™,fontsize=15)
ax[1].legemnd{[13, 14], labels= ['DMN loss: {@:.2f}".format({dnn_loss),
"woGle loss: {@:.2f} .format({veggle_loss)],
loc="upper right’)

plt.subplots_adjust( bottom=8.1,
top=8.9,
wspace=8.7,
hspace=8.7)

plt.savefig({export_directory+’ /Models_Performance_all.png”)

plt.figure(figsize=({12,7))

plt.grid()}

plt.plot(fpr_dnn, tpr_dnn, linewidth = 3, color = "#acoedd' , label="DWN = {:.3T} .fom
plt.plot(fpr_vegls, tpr_vegegl6, linewidth = 3, color = '#29787E8', label="vGEls = {:.3f]
plt.plot(fpr_vggls,fpr_vggls, linestyle="--", linewidth = 3, color="black"})
plt.ylabel({ True Positive Rate’, fontsize=12)

plt.xlabel( False Positive Rate’, fontsize=12)

plt.title{ 'rROC Curves for DNM and wiG16 ‘n',fontsize = 15)

plt.legend()

plt.savefig({export_directory + '/ROC_curve_common.png”)

plt.show()

117



118



9. References

[1] Ah-hwee Tan “Text Mining: The state of the art and the challenges (1999)”

[2] Xiaohua Zhou and Hyoil Han College of Information Science and
Technology Drexel University Philadelphia and lIsaac Chankai, Ann
Prestrud and Ari Brooks

[3] Mahmoud Elbattah, Emilien Arnaud, Maxime Gignon and Gilles Dequen,
he Role of Text Analytics in Healthcare: A Review of Recent Developments
and Applications”

[4] Han, J., Nandan, N., & Sun, A. (2015). Did You Know? A Rule-Based
Approach to Finding Similar Questions on Online Health Forums. In
Proceedings of the 2015 International Conference on_ Healthcare
Informatics, pp. 513-514). IEEE.

[5] Martinez, P., Martinez, J. L., Sequra-Bedmar, |., Moreno-Schneider, J.,
Luna, A., & Revert, R. (2016). Turning user generated health-related
content _into _actionable knowledge through text analytics services.
Computers in Industry, 78, 43-56.

[6] Chang, M., Chang, M., Reed, J. Z., Milward, D., Xu, J. J., & Cornell, W.
D. (2016). Developing timely insights into comparative effectiveness
research with a text-mining pipeline. Drug Discovery Today, 21(3), 473-
480.

[7] Brown, A. D., & Marotta, T. R. (2017). A natural language processing-
based model to automate MRI brain protocol selection and prioritization.
Academic Radioloqgy, 24(2), 160-166.

[8] Castro, S. M., Tsevtlin, E., Medvedeva, O., Mitchell, K., Visweswaran, S.,
Bekhuis, T., & Jacobson, R. S. (2017). Automated annotation and
classification of BI-RADS assessment from radiology reports. Journal of
Biomedicasl Informatics, 69, 177-187.

[9] Pendyvala, V. S., & Figueira, S. (2017). Automated medical diagnosis from
clinical data. In Proceedings of the IEEE Third International Conference
on Big Data Computing Service and Applications (BigDataService), pp.
185-190. IEEE.

[10] Jelodar, H., Wang, Y., Orji, R., & Huang, H. (2020). Deep sentiment
classification and topic discovery on novel coronavirus or covid-19 online
discussions: NLP using Istm recurrent neural network approach. IEEE
Journal of Biomedical and Health Informatics, vol. 24, no. 10, pp. 2733-
2742

[11] Tvardik, N., Kergourlay, I., Bittar, A., Segond, F., Darmoni, S., &
Metzger, M. H. (2018). Accuracy of using natural language processing
methods for identifying healthcare-associated infections. International
Journal of Medical Informatics, 117, 96-102.

[12] Afzal, N., Mallipeddi, V. P., Sohn, S., Liu, H., Chaudhry, R., Scott,
C.G., .. & Arruda-Olson, A. M. (2018). Natural language processing of

119


http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.132.6973
https://www.researchgate.net/publication/28674298_Approaches_to_text_mining_for_clinical_medical_records
https://www.researchgate.net/publication/28674298_Approaches_to_text_mining_for_clinical_medical_records
https://www.researchgate.net/publication/28674298_Approaches_to_text_mining_for_clinical_medical_records
https://www.researchgate.net/publication/349382219_The_Role_of_Text_Analytics_in_Healthcare_A_Review_of_Recent_Developments_and_Applications/link/6059ecb492851cd8ce618210/download
https://www.researchgate.net/publication/349382219_The_Role_of_Text_Analytics_in_Healthcare_A_Review_of_Recent_Developments_and_Applications/link/6059ecb492851cd8ce618210/download
https://www.researchgate.net/publication/349382219_The_Role_of_Text_Analytics_in_Healthcare_A_Review_of_Recent_Developments_and_Applications/link/6059ecb492851cd8ce618210/download
https://ieeexplore.ieee.org/abstract/document/7349756
https://ieeexplore.ieee.org/abstract/document/7349756
https://ieeexplore.ieee.org/abstract/document/7349756
https://ieeexplore.ieee.org/abstract/document/7349756
https://dl.acm.org/doi/abs/10.1016/j.compind.2015.10.006
https://dl.acm.org/doi/abs/10.1016/j.compind.2015.10.006
https://dl.acm.org/doi/abs/10.1016/j.compind.2015.10.006
https://dl.acm.org/doi/abs/10.1016/j.compind.2015.10.006
https://pubmed.ncbi.nlm.nih.gov/26854423/
https://pubmed.ncbi.nlm.nih.gov/26854423/
https://pubmed.ncbi.nlm.nih.gov/26854423/
https://pubmed.ncbi.nlm.nih.gov/26854423/
https://pubmed.ncbi.nlm.nih.gov/27889399/
https://pubmed.ncbi.nlm.nih.gov/27889399/
https://pubmed.ncbi.nlm.nih.gov/27889399/
https://pubmed.ncbi.nlm.nih.gov/28428140/
https://pubmed.ncbi.nlm.nih.gov/28428140/
https://pubmed.ncbi.nlm.nih.gov/28428140/
https://pubmed.ncbi.nlm.nih.gov/28428140/
https://scholarworks.sjsu.edu/faculty_rsca/573/
https://scholarworks.sjsu.edu/faculty_rsca/573/
https://scholarworks.sjsu.edu/faculty_rsca/573/
https://scholarworks.sjsu.edu/faculty_rsca/573/
https://pubmed.ncbi.nlm.nih.gov/32750931/
https://pubmed.ncbi.nlm.nih.gov/32750931/
https://pubmed.ncbi.nlm.nih.gov/32750931/
https://pubmed.ncbi.nlm.nih.gov/32750931/
https://pubmed.ncbi.nlm.nih.gov/32750931/
https://pubmed.ncbi.nlm.nih.gov/30032970/
https://pubmed.ncbi.nlm.nih.gov/30032970/
https://pubmed.ncbi.nlm.nih.gov/30032970/
https://pubmed.ncbi.nlm.nih.gov/30032970/
https://pubmed.ncbi.nlm.nih.gov/29425639/
https://pubmed.ncbi.nlm.nih.gov/29425639/

clinical notes for identification of critical limb ischemia. International
Journal of Medical Informatics, 111, 83-89.

[13] Sterling, N. W., Patzer, R. E., Di, M., & Schrager, J. D. (2019).
Prediction of emergency department patient disposition based on natural
lanquage processing of triage notes. International Journal of Medical
Informatics, 129, 184-188.

[14] Ge, S., Isah, H., Zulkernine, F., & Khan, S. (2019). A scalable
framework for multilevel streaming data analytics using deep learning. In
Proceedings of the IEEE 43rd Annual Computer Software and
Applications Conference (COMPSAC), Vol. 2, pp. 189-194). IEEE.

[15] Kidwai, B., & Nadesh, R. K. (2020). Design _and development of
diagnostic Chabot for supporting primary health care systems. Procedia
Computer Science, 167, 75-84.

[16] Chen,C.H. Hsieh,J.G.,Cheng,S. L., Lin, Y.L., Lin, P.H., &Jena,
J. H. (2020). Emergency department disposition prediction using a deep
neural network with integrated clinical narratives and structured data.
International Journal of Medical Informatics, 104146.

[17] Arnaud, E., Elbattah, M., Gignon, G. & Dequen, G. (2020). Deep
learning to predict hospitalization at triage: Integration of structured data
and _unstructured text. In Proceedings of the 2020 IEEE International
Conference on Big Data (Big Data).

[18] Mohan, Vijayarani. (2015). Preprocessing Techniques for Text
Mining - An Overview.

[19] Porter, M.F. (1980), "*An algorithm for suffix stripping'’, Program:
electronic library and information systems, VVol. 14 No. 3, pp. 130-137.

[20] Fuchun Peng, Nawaaz Ahmed, Xin Li, and Yumao Lu. 2007.
Context sensitive stemming for web search. In Proceedings of the 30th
annual _international ACM SIGIR conference on_Research and
development in _information retrieval (SIGIR '07). Association for
Computing Machinery, New York, NY, USA, 639-646.

[21] G. Singh, B. Kumar, L. Gaur and A. Tyagi, ""Comparison between
Multinomial and Bernoulli Naive Bayes for Text Classification," 2019
International Conference on Automation, Computational and Technology
Management (ICACTM), 2019, pp. 593-596, doi:
10.1109/ICACTM.2019.8776800.

[22] Al 2004: Advances in Artificial Intelligence

[23] Z. Wang, X. Sun, D. Zhang and X. Li, ""An Optimal SVM-Based
Text Classification Algorithm," 2006 International Conference on
Machine Learning and Cybernetics, 2006, pp. 1378-1381, doi:
10.1109/ICML.C.2006.258708.

[24] Goyal C. Published On May 18, 2021 and Last Modified On October
26th, 2021. Multiclass _Classification Using SVM. Retrieved from

120


https://pubmed.ncbi.nlm.nih.gov/29425639/
https://pubmed.ncbi.nlm.nih.gov/29425639/
https://pubmed.ncbi.nlm.nih.gov/31445253/
https://pubmed.ncbi.nlm.nih.gov/31445253/
https://pubmed.ncbi.nlm.nih.gov/31445253/
https://pubmed.ncbi.nlm.nih.gov/31445253/
https://d.docs.live.net/39cfc8d8694f6bb9/Υπολογιστής/Διπλωματική%20Αρβανιτόπουλος/Ge,%20S.,%20Isah,%20H.,%20Zulkernine,%20F.,%20&%20Khan,%20S.%20(2019).%20A%20scalable%20framework%20for%20multilevel%20streaming%20data%20analytics%20using%20deep%20learning.%20In%20Proceedings%20of%20the%20IEEE%2043rd%20Annual%20Computer%20Software%20and%20Applications%20Conference%20(COMPSAC),%20Vol.%202,%20pp.%20189-194).%20IEEE.
https://d.docs.live.net/39cfc8d8694f6bb9/Υπολογιστής/Διπλωματική%20Αρβανιτόπουλος/Ge,%20S.,%20Isah,%20H.,%20Zulkernine,%20F.,%20&%20Khan,%20S.%20(2019).%20A%20scalable%20framework%20for%20multilevel%20streaming%20data%20analytics%20using%20deep%20learning.%20In%20Proceedings%20of%20the%20IEEE%2043rd%20Annual%20Computer%20Software%20and%20Applications%20Conference%20(COMPSAC),%20Vol.%202,%20pp.%20189-194).%20IEEE.
https://d.docs.live.net/39cfc8d8694f6bb9/Υπολογιστής/Διπλωματική%20Αρβανιτόπουλος/Ge,%20S.,%20Isah,%20H.,%20Zulkernine,%20F.,%20&%20Khan,%20S.%20(2019).%20A%20scalable%20framework%20for%20multilevel%20streaming%20data%20analytics%20using%20deep%20learning.%20In%20Proceedings%20of%20the%20IEEE%2043rd%20Annual%20Computer%20Software%20and%20Applications%20Conference%20(COMPSAC),%20Vol.%202,%20pp.%20189-194).%20IEEE.
https://d.docs.live.net/39cfc8d8694f6bb9/Υπολογιστής/Διπλωματική%20Αρβανιτόπουλος/Ge,%20S.,%20Isah,%20H.,%20Zulkernine,%20F.,%20&%20Khan,%20S.%20(2019).%20A%20scalable%20framework%20for%20multilevel%20streaming%20data%20analytics%20using%20deep%20learning.%20In%20Proceedings%20of%20the%20IEEE%2043rd%20Annual%20Computer%20Software%20and%20Applications%20Conference%20(COMPSAC),%20Vol.%202,%20pp.%20189-194).%20IEEE.
https://www.sciencedirect.com/science/article/pii/S1877050920306499
https://www.sciencedirect.com/science/article/pii/S1877050920306499
https://www.sciencedirect.com/science/article/pii/S1877050920306499
https://pubmed.ncbi.nlm.nih.gov/32387818/
https://pubmed.ncbi.nlm.nih.gov/32387818/
https://pubmed.ncbi.nlm.nih.gov/32387818/
https://pubmed.ncbi.nlm.nih.gov/32387818/
https://www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Texthttps:/www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Text
https://www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Texthttps:/www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Text
https://www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Texthttps:/www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Text
https://www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Texthttps:/www.researchgate.net/publication/350199947_Deep_Learning_to_Predict_Hospitalization_at_Triage_Integration_of_Structured_Data_and_Unstructured_Text
https://www.researchgate.net/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-_An_Overview
https://www.researchgate.net/publication/339529230_Preprocessing_Techniques_for_Text_Mining_-_An_Overview
https://www.emerald.com/insight/content/doi/10.1108/eb046814/full/html
https://www.emerald.com/insight/content/doi/10.1108/eb046814/full/html
https://dl.acm.org/doi/10.1145/1277741.1277851
https://dl.acm.org/doi/10.1145/1277741.1277851
https://dl.acm.org/doi/10.1145/1277741.1277851
https://dl.acm.org/doi/10.1145/1277741.1277851
https://dl.acm.org/doi/10.1145/1277741.1277851
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776800
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776800
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776800
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776800
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8776800
https://link.springer.com/content/pdf/10.1007/b104336.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4028279
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4028279
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4028279
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4028279

https://www.analyticsvidhya.com/blog/2021/05/multiclass-classification-
using-svm/

[25] AGGARWAL, Charu C., et al. Neural networks and deep
learning. Springer, 2018, 10: 978-3.
[26] Ali_A. Published on December 9, 2019, and Last Modified on

February 6, 2023. Building Neural Network (NN) Models in R. Retrieved
from https://www.datacamp.com/tutorial/neural-network-models-r

[27] https://www.javatpoint.com/single-layer-perceptron-in-tensorflow

[28] https://en.wikipedia.org/wiki/Perceptron

[29] arXiv:1511.08458

[30] Sluijmers M. Published on July 30, 2020, and Last Modified on
September 9, 2020. Convolutional neural network text classification with
risk assessment. Retrieved from https://machine-learning-

company.nl/en/technical/convolutional-neural-network-text-classification-
with-risk-assessment-eng/

[31] Brownlee J. Published on October 9, 2017, and Last Modified on
August 7, 2019. A Gentle Introduction to the Bag-of-Words
Model.Retrieved from https://machinelearningmastery.com/gentle-
introduction-bag-words-model/

[32] Thushan G. Published on May 5, 2019, and Last Modified on July
25, 2022. Intuitive Guide to Understanding GloVe Embeddings. Retrieved
from_https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-
understanding-glove-embeddings-b13b4f19c010

[33] Prabhu. (2019, November 11). Understanding NLP Word
Embeddings Text Vectorization. Retrieved from
https://towardsdatascience.com/understanding-nlp-word-embeddings-
text-vectorization-1a23744f7223

[34] Brownlee J. Published on October 9, 2017, and Last Modified on
August 7, 2019. What Are Word Embeddings for Text? Retrieved from
https://machinelearningmastery.com/what-are-word-embeddings/

[35] Uzila A. Published on September 12, 2022, and Last Modified on
November 26, 2022. GloVe and fastText Clearly Explained: Extracting
Features from Text Data. Retrieved from
https://levelup.gitconnected.com/glove-and-fasttext-clearly-explained-
extracting-features-from-text-data-1d227ab017b2

[36] Donges N. Published on July 29, 2021 an Last Modified on February
28, 2023. A Guide to Recurrent Neural Networks: Understanding RNN and
LSTM Networks. Retrieved from https://builtin.com/data-
science/recurrent-neural-networks-and-Istm

[37] Biswal A. Published on April 24, 2020 and Last Modified on
February 14, 2023. Recurrent Neural Network (RNN) Tutorial: Types,

121


https://www.analyticsvidhya.com/blog/2021/05/multiclass-classification-using-svm/
https://www.analyticsvidhya.com/blog/2021/05/multiclass-classification-using-svm/
https://link.springer.com/content/pdf/10.1007/978-3-319-94463-0.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-94463-0.pdf
https://www.datacamp.com/tutorial/neural-network-models-r
https://www.javatpoint.com/single-layer-perceptron-in-tensorflow
https://en.wikipedia.org/wiki/Perceptron
https://arxiv.org/abs/1511.08458
https://machine-learning-company.nl/en/technical/convolutional-neural-network-text-classification-with-risk-assessment-eng/
https://machine-learning-company.nl/en/technical/convolutional-neural-network-text-classification-with-risk-assessment-eng/
https://machine-learning-company.nl/en/technical/convolutional-neural-network-text-classification-with-risk-assessment-eng/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://machinelearningmastery.com/gentle-introduction-bag-words-model/
https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010
https://towardsdatascience.com/light-on-math-ml-intuitive-guide-to-understanding-glove-embeddings-b13b4f19c010
https://towardsdatascience.com/understanding-nlp-word-embeddings-text-vectorization-1a23744f7223
https://towardsdatascience.com/understanding-nlp-word-embeddings-text-vectorization-1a23744f7223
https://machinelearningmastery.com/what-are-word-embeddings/
https://levelup.gitconnected.com/glove-and-fasttext-clearly-explained-extracting-features-from-text-data-1d227ab017b2
https://levelup.gitconnected.com/glove-and-fasttext-clearly-explained-extracting-features-from-text-data-1d227ab017b2
https://builtin.com/data-science/recurrent-neural-networks-and-lstm
https://builtin.com/data-science/recurrent-neural-networks-and-lstm

Examples, LSTM and More. Retrieved from
https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn

[38] Olah _C. (2015, August 27). Understanding LSTM Networks.
Retrieved from https://colah.github.io/posts/2015-08-Understanding-
LSTMs/

[39] Shekhar S. Published On June 14, 2021 and Last Modified On June
30, 2021. LSTM for Text Classification in_ Python Retrieved from
https://www.analyticsvidhya.com/blog/2021/06/Istm-for-text-
classification/

[40] A. Kumar, J. Kim, D. Lyndon, M. Fulham and D. Feng, ""An
Ensemble of Fine-Tuned Convolutional Neural Networks for Medical
Image Classification,” in IEEE Journal of Biomedical and Health
Informatics, vol. 21, no. 1, pp. 31-40, Jan. 2017, doi:
10.1109/JBH1.2016.2635663.

[41] ARI, ALI and HANBAY, DAVUT (2018) "Deep learning based
brain tumor classification and detection system,' Turkish Journal of
Electrical Engineering and Computer Sciences: VVol. 26: No. 5, Article 9.

[42] Sadad, T, Rehman, A, Munir, A, et al. Brain tumor detection and
multi-classification using advanced deep learning techniques. Microsc Res
Tech. 2021: 84: 1296— 1308.

[43] Nawaz, M., Sewissy, A. A., & Soliman, T. H. A. (2018). Multi-class
breast cancer classification using deep learning convolutional neural
network. International Journal of Advanced Computer Science and
Applications, 9(6) doi:https://doi.org/10.14569/1JACSA.2018.090645

[44] Wang, Xi, Hao Chen, Caixia Gan, Huangjing Lin, Qi Dou, Qitao
Huang, Muyan Cai, and Pheng-Ann Heng. ""Weakly supervised learning
for whole slide lung cancer image classification." (2018).

[45] Robini G. Published on September we, 2021 and Last Modified on
January 5, 2022. Everything you need to know about VGG16. Retrieved
from https://medium.com/@mygqgreatlearning/everything-you-need-to-
know-about-vgg16-7315defb5918

[46] Datagen (2022, November 02). Understanding VGG16: Concepts,
Architecture, and Performance. Retrieved from
https://datagen.tech/quides/computer-vision/vggl6/

122


https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.analyticsvidhya.com/blog/2021/06/lstm-for-text-classification/
https://www.analyticsvidhya.com/blog/2021/06/lstm-for-text-classification/
https://ieeexplore.ieee.org/document/7769199
https://ieeexplore.ieee.org/document/7769199
https://ieeexplore.ieee.org/document/7769199
https://ieeexplore.ieee.org/document/7769199
https://ieeexplore.ieee.org/document/7769199
https://journals.tubitak.gov.tr/elektrik/vol26/iss5/9/?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol26%2Fiss5%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://journals.tubitak.gov.tr/elektrik/vol26/iss5/9/?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol26%2Fiss5%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://journals.tubitak.gov.tr/elektrik/vol26/iss5/9/?utm_source=journals.tubitak.gov.tr%2Felektrik%2Fvol26%2Fiss5%2F9&utm_medium=PDF&utm_campaign=PDFCoverPages
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23688?casa_token=X-5vawHBjVkAAAAA:Ww66SVPwOG5PfW8SgNYG93xRCkfX81hwLhekTECIsWG5zdRguxT92_IJhGY5psiWJnJuTQdQBR3r
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23688?casa_token=X-5vawHBjVkAAAAA:Ww66SVPwOG5PfW8SgNYG93xRCkfX81hwLhekTECIsWG5zdRguxT92_IJhGY5psiWJnJuTQdQBR3r
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/jemt.23688?casa_token=X-5vawHBjVkAAAAA:Ww66SVPwOG5PfW8SgNYG93xRCkfX81hwLhekTECIsWG5zdRguxT92_IJhGY5psiWJnJuTQdQBR3r
https://www.proquest.com/docview/2656413352?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/2656413352?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/2656413352?pq-origsite=gscholar&fromopenview=true
https://www.proquest.com/docview/2656413352?pq-origsite=gscholar&fromopenview=true
https://openreview.net/forum?id=SJwod1hjz
https://openreview.net/forum?id=SJwod1hjz
https://openreview.net/forum?id=SJwod1hjz
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918
https://medium.com/@mygreatlearning/everything-you-need-to-know-about-vgg16-7315defb5918
https://datagen.tech/guides/computer-vision/vgg16/

