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Περίληψη 

Η παρούσα διπλωματική εργασία στόχο έχει να καλύψει ένα μεγάλο μέρος 

των τεχνικών προ επεξεργασίας δεδομένων κειμένων και εικόνων στον τομέα της 

υγείας, με σκοπό τη βελτίωση της απόδοσης των αλγορίθμων κατηγοριοποίησης 

αυτών σε προκαθορισμένες κατηγορίες. Για την κατηγοριοποίηση των κειμένων 

δοκιμάστηκαν τόσο τεχνικές μηχανικής μάθησης όσο και τεχνικές βαθιάς 

μηχανικής μάθησης. Στις τεχνικές μηχανικές μάθησης χρησιμοποιήθηκαν οι 

αλγόριθμοι Logistic Regression, Multinomial Naïve Bayes και Support Vector 

Machines (SVM). Τα αποτελέσματα αυτών συγκρίθηκαν και ο αλγόριθμος με την 

καλύτερη απόδοση βρέθηκε να είναι ο SVM με ακρίβεια κατηγοριοποίησης 

88.98% Στις τεχνικές βαθιάς μηχανικής μάθησης χρησιμοποιηθήκαν 

αρχιτεκτονικές νευρωνικών δικτύων όπως Multilayer Perceptron και 

Convolutional Neural Network (CNN). Τα αποτελέσματα, αφού συγκρίθηκαν οι 

μέθοδοι μεταξύ τους, έδειξαν πως καλύτερη κατηγοριοποίηση των κειμένων 

επιτυγχάνει το δίκτυο Multilayer Perceptron με ακρίβεια κατηγοριοποίησης 

84.85%. Η κατηγοριοποίηση εικόνων δοκιμάστηκε να επιτευχθεί με CNNs  και 

Transfer Learning. Συγκεκριμένα ένα απλό CNN και ένα προ εκπαιδευμένο CNN 

γνωστό ως VGG16 δοκιμάστηκαν με καλύτερη απόδοση το VGG16 που πέτυχε 

ακρίβεια κατηγοριοποίησης  97.83% 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

 

 

 

 

 

  



 

 
 
 

Abstract 

The current thesis aims to cover a wide range of pre-processing 

techniques on text and image data on health sector, with the scope of improving 

the performance of classification algorithms.  For text classification, Machine 

Learning algorithms such as Logistic Regression, Multinomial Naïve Bayes, 

and Support Vector Machines (SVM) were used and the results of them were 

compared to each other. The best performing algorithm was SVM with a 

classification accuracy of 88.98%. Deep Learning techniques were used as 

well, for the same task. A Multilayer Perceptron and a 1-Dimentional 

Convolutional Neural Network (1-D CNN) were trained and evaluated. The best 

performance was achieved from the Multilayer Perceptron with a classification 

accuracy of 84.85%. Image classification task was implemented using CNNs 

and Transfer Learning. Specifically, a simple CNN and a pre-trained CNN 

known as VGG16 were used and the best performing was the VGG16 with a 

classification accuracy of 97.83%. 
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1. Introduction 

Text mining is the process of extracting interesting and non-trivial patterns or 

knowledge from unstructured text documents. It can be viewed as an extension of data 

mining or knowledge discovery from databases. 

Text mining is believed to have a commercial potential higher than that of data 

mining. In fact, a recent study indicated that 80% of a company’s information is 

contained in text documents. Text mining, in comparison with data mining, is a much 

more complex task as it involves dealing with text data that is inherently unstructured 

and fuzzy. Text mining is a multidisciplinary field, involving information retrieval (IR), 

text analysis, information extraction, clustering, categorization, visualization, database 

technology, machine learning, and data mining.  

In healthcare, clinical records are largely maintained in free-text form. For that 

reason, a reliable and efficient method to extract structured information for future data 

mining from free text using information extraction techniques may greatly benefit 

research endeavors. As information technology and HIS (Hospital Information System) 

have been developed much, EMR (Electronic Medical Record) has also been 

popularized. EMR, which medical staff uses to record texts, symbols, charts, graphics, 

data, and other digital information generated by HIS, refers to medical records, which 

could be stored, managed, transmitted, and reproduced efficiently. With the tremendous 

growth of the adoption of EMR, various sources of clinical are becoming available, 

which has established EMR as an important factor for large-scale analysis of health 

data. 

EMR also contains medical images such as MRI (Magnetic Resonance 

Imaging), X-rays, CT (Computed Tomography), sonograms etc. which are also 

unstructured data and can be used for the purpose of high-precision diagnosis. The 

needs for AI (Artificial Intelligence), in healthcare have established automated systems 

which scan medical images and configure big data. These data in combination with 

suitable techniques are used for early detection of some of the most harmful diseases 

such as Alzheimer’s disease, brain tumors, breast, and lung cancer detection etc. 
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2. Text and image classification applications on healthcare  

2.1. Applications on text classification 

Data Analytics and Machine Learning (ML) have been increasingly considered 

as an enabling artefact to leverage health data for competitive advantage. The use of 

ML techniques and data analytics have been widely utilized to summarize, explain, and 

get insights into the interrelationships underlying complex datasets in novel ways. Such 

insights can play a positive role in various medical and operational aspects including 

diagnosis, health monitoring and assessment, healthcare planning, and management of 

hospitals and health services. However, one of the key challenges for healthcare 

analytics is to deal with huge data volumes in the form of unstructured text. Examples 

include nursing notes, clinical protocols, medical transcriptions, medical publications, 

and many others. In this respect, the use of Text Analytics has increasingly come into 

prominence to deliver benefits for health organizations in a wide range of applications. 

In this section, the state-of-the-art approaches, and applications of Text 

Analytics in the healthcare context is going to be explored. The review is organized into 

two broad categories of Text Analytics. On one hand, the first part presents selective 

studies that applied Text Mining in the context of healthcare. On the other hand, the 

second part describes Text Analytics in a diversity of predictive applications to support 

clinical decision making. The review is unavoidably selective rather than exhaustive. 

However, it is believed that the study could adequately provide representative studies 

in each category. 

Text Mining consists of two phases as follows. The initial phase typically 

includes the application of text refining procedures, which transform free-text 

documents into another intermediate form. Subsequently, the process of knowledge 

extraction, which attempts to learn patterns or insights from that intermediate form 

(Tan, 1999). This section provides selective studies that applied Text Mining with 

different modalities and for various purposes in the healthcare context. 

Han et al. (2015), have presented a rule-based system for question retrieval. 

They aimed to search for similar questions in a large corpus of questions posted on 

online health forums. The system was mainly based on the RAKE algorithm (Rose et 

al.  2010) to perform the automatic extraction of keywords. Additional NLP methods 

were applied using the popular NLTK library. 

Martínez et al. (2016), have exploited health-related online content into 

actionable knowledge using Text Mining. To reach this, they developed an approach to 

help monitor online user generated streams on social media. The transformed 
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information was extracted by an NLP-based processing pipeline which was applied on 

real-time streams of social media. The system could not only extract the mention of 

diseases and drugs, but also it could identify useful relationships among medications, 

indications, and adverse drug reactions. 

Chang et al. (2016), have worked to develop a workflow using Text Mining to 

search, extract, and synthesize information about Comparative Effectiveness Research 

(CER) in healthcare. They developed a pipeline based on Natural Language Processing 

(NLP-based pipeline) to extract information from unstructured CER data sources. This 

solution could allow for the generation of timely alerts, and the collection of systematic 

reviews as well. They used trial data from multiple sources including 

ClinicalTrials.gov, WHO International Clinical Trials Registry Platform (ICTRP), and 

Cite line Trial trove. 

 Brown and Marotta, (2017), another interesting application set up, was 

intended to develop a set of classification models to predict the protocol and priority of 

magnetic resonance imaging (MRI) brain examinations. They used the narrative 

clinical information provided by clinicians. The models were trained to make 

predictions on three tasks including: i) Selection of examination protocols, ii) 

Evaluation of the need for contrast administration, and iii) Estimation of priority. The 

dataset consisted of about 14K MRI brain examinations over the period of January 2013 

to June 2015. They created three models for each prediction task, each using a different 

classification algorithm (Random Forest, Support Vector machine and K-Nearest 

neighbor). They got an accuracy of 82,9%, 83% and 88,2% for each task. The empirical 

results largely demonstrated that the models could be effectively employed to assist the 

clinical decision support in this regard. 

Castro et al. (2017), in the context of radiology, have developed a system to 

automate the annotation and classification of the Breast Imaging Reporting and Data 

System (BI - RADS) categories. They tried to develop an NLP system so it can 

automate BI-RADS categories extraction from breast radiology reports. Specifically, 

the system tackled two tasks including: w) Annotation of the BI-RADS categories, and 

ii) Classification of the laterality for each BI-RADS category. The study included 2K 

radiology reports collected from 18 hospitals of the University of Pittsburgh from 2003 

to 2015.  

Pendyala, and Figueira (2017), explored the potential of Text Mining for 

automating medical diagnosis. They applied the Bag-of-Words representation to 

medical documents. To simplify the text representation, the Bag-of-Words model 

builds a histogram of the words, while each word count is considered as a feature 
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(Goldberg, 2017). As such, each document can be simply represented as a “bag” of 

words, while disregarding the order, sequence, and grammar of text. Though using a 

small dataset, their experiments demonstrated promising results for that application. 

More recently, (van Dijk et al., 2020) applied Text Mining to EHR data to validate the 

screening eligibility of trial patients. The study was based on a multi-center, and multi-

EHR systems as well. The accuracy of the Text-Ming approach was compared to the 

standard process produced by research personnel. The accuracy of the automatically 

extracted data was about 88.0%. 

Jelodar et al. (2020), used Text Mining to extract the COVID-19 discussions 

from social media. They applied topic modeling of public opinions to gain insights into 

the various issues pertaining to the COVID-19 pandemic. In addition, they 

implemented an LSTM recurrent neural network for sentiment classification of 

COVID-19 comments. Their findings put light on the importance of using public 

opinions and the appropriate techniques to understand issues surrounding COVID-19. 

The model achieved an accuracy of 81,15% which was higher than that of other well-

known machine-learning algorithms for COVID-19 sentiment classification.  

Tvardik et al. (2018), developed a Text-Analytics solution for the automatic 

detection of medical events. The textual records included data collected from three 

University hospitals based in France over the period October 2009 to December 2010. 

The dataset spanned a variety of medical surgical specialties including neurosurgery, 

orthopedic surgery, and digestive surgery. The system performance was compared with 

standard methods. The overall sensitivity and specificity were about 84%. The study 

generally confirmed the feasibility of using NLP-based methods to automate the 

detection and monitoring of healthcare-associated events in hospital facilities. 

Afzal et al. (2018), applied NLP for the automatic identification of Critical limb 

ischemia (CLI). Critical limb ischemia is a complication of advanced peripheral artery 

disease (PAD) with diagnosis based on the presence of clinical signs and symptoms. 

The dataset included narrative clinical notes retrieved from the HER (Electronic Health 

Record) database. They tried to extend a previous NLP algorithm for PAD by 

developing and validating a sub phenotyping NLP algorithm to identify the CLI cases 

from clinical notes. The model performance was validated compared to the human 

abstraction of clinical notes. Specifically, a physician reviewed and interpreted the 

information in the EHR data for each patient in the dataset. Overall, the method could 

achieve an excellent F1-score of about 90%. 

 



 

 

6 
 
 

Sterling et al. (2019), utilized the bag-of-words representation of nursing triage 

free-text notes which are the first text data created at the start of an emergency 

department (ED) visit. The study aimed to predict the final ED deposition using three 

NLP preprocessing techniques. Using a dataset of over 250K ED visits they defined the 

target variable as 1: admission, transfer, or death and 2: discharged, ‘left without being 

seen’ and ‘left against medical advice’. Neural network regression models were trained 

to predict hospital admissions. They could achieve a promising accuracy with ROC-

AUC≈0.74. 

Ge et al. (2019), came through with another recent study developed a framework 

to realize scalable Text Analytics. The framework aimed to support real-time analytics 

for decision support in a variety of domains such as healthcare for example. Deep 

Learning was applied for NLP tasks including language understanding and sentiment 

analysis. The framework utilized a set of open-source tools including Spark Streaming 

for real-time text processing along with Zeppelin and Banana for data visualization. In 

addition, an LSTM model was trained for sentiment analysis. They practically 

demonstrated the functionality of the framework using a scenario with Twitter data. 

Kidwai, and Nadesh (2020), discussed the application of diagnostic chatbots in 

healthcare. They developed a chatbot that makes use of NLP methods to understand the 

user queries. After collecting the initial symptoms, the chatbot would guide the user 

through a sequence of questions towards making the appropriate diagnosis. The system 

uses decision trees and follows a top-down approach to conclude the diagnosis. The 

chatbot was experimented with using a medical database of about 150 diseases. 

Chen et al. (2020), managed to deal with the problem of overcrowding in 

emergency department (ED) which has serious issues and demands effective clinical 

decision-making of patient disposition. Their study included the development of a 

disposition prediction model using Deep Learning. They gathered approximately 105K 

ED visits during 2017-2018. The class to be predicted a deep neural network model 

was developed with word embedding. They aimed to compare ML models as they put 

the DNN against a Logistic Regression model with structured data. The metric used to 

measure the predictive performance in both cases was F1 score.  

Arnaud et al. (2020), presented an approach based on integrating structured data 

with unstructured textual notes recorded at the triage stage. The key idea was to apply 

a multi-input of mixed data for training a classification model to predict hospitalization. 

On one hand, a standard Multi-Layer Perceptron (MLP) model was used with the 

standard set of features (i.e., numeric, and categorical). On the other hand, a 

Convolutional Neural Network (CNN) was used to operate over textual data. Their 
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empirical results demonstrated that the classifier could achieve a very good accuracy 

with ROC-AUC≈0.83. 

2.2. Applications on image classifications 

 

Image classification is the ability to assign a label to a given image of any size. 

This task belongs to the subset of artificial intelligence that is well known as computer 

vision. Computer vision is widely used nowadays in many different industries with very 

interesting and useful applications, one of those is healthcare.  

Modern hospitals hold a diverse range of imaging data for diagnosis, treatment 

planning, and assessing response to treatment. There are many cases where the human 

eye is not possible to detect organ damage or a type of disease that is at its earliest stage. 

Medical image analysis aims to extract the most important features in health-related 

images to improve clinical diagnosis. In all medical specialties there are plenty of image 

processing and classification applications with most of them related to early cancer 

detection. 

Ali Ari and Davut Hanbay (2018), developed a system for brain tumor detection 

and segmentation. They proposed a method which had three stages. At the first stage 

nonlocal means and local smoothing methods were used to remove possible noises. In 

the second stage, cranial magnetic resonance images were classified as benign or 

malignant using extreme learning machine local receptive fields (ELM-LRF). In the 

third stage the detected tumors were segmented. The dataset they have used was 

comprised of sixteen patients’ images digitized at 256x256 pixels. The training set had 

9 images while the testing was 7. All input images were resized to 32x32 before feeding 

into the ELM-LRF. The ELM-RF had four tunable parameters: convolution filter size 

r, convolution filter number K, pooling size, and C regulation coefficient. The values 

of the parameters were set to 5 to be the convolution filter size, the K value was chosen 

as 16 and the pooling size was chosen as 3. In addition, for identifying the most 

appropriate C value, an interval search was performed among 2−10, 2−8, … , 28, 210 and 

the C value with the minimum fault was chosen. In the experimental studies the 

classification accuracy of cranial MR images is 97.18%. Evaluated results showed that 

the proposed method’s performance was better than the other recent studies in literature. 

Experimental results also proved that the proposed method is effective and can be used 

in computer aided brain tumor detection. 
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Tariq Sadad et al. (2020), developed a model for tumor detection and 

classification. The dataset that they used was from Figshare source which contained 

3,064 brain MRI images of size 512x512 pixels. These images were obtained from 233 

patients. It contains three brain tumors: glioma, pituitary, meningioma tumor and three 

distinct views: sagittal, axial, coronal views. 

 

For phase one, brain tumor detection, a U-Net architecture was employed and 

achieved a remarkable efficiency in detecting tumors in medical images. The backbone 

that was applied is an ResNet50 which is comprised of an encoder and decoder. For 

phase two, brain tumor classification, transfer learning and NASNet architecture were 

used. NASNet comprises of CNN and Controller Recurrent Neural Network (CRNN). 

They managed to achieve the highest IoU score of 0.9504 for brain tumor detection and 

the highest accuracy of 99.6% for the detected tumor classification. 

 

 

Figure 1 - Brain tumor types 

Figure 3 - Confusion Matrix of Brain tumor classification Figure 2 - Roc Curve of the 
classification 
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Majid Nawaz et al. (2018), in the context of breast tumor detection, presented a 

deep learning approach that was based on a Convolutional Neural Network (CNN) 

model for multiclass breast cancer classification. They aimed not only to classify the 

breast tumors in non-benign or malignant, but they proposed an approach that was able 

to predict the subclass of the tumors like Fibroadenoma, Lobular carcinoma, etc. The 

dataset used for training and testing is BreakHis dataset which contains images 

collected through a clinical study from January 2014 to December 2014 that took place 

in Brazil. The dataset contains 7909 colored microscopic biopsy images of benign and 

malignant breast tumors in four magnifying factors. 

 

The proposed model is a convolutional neural network where the convolution 

non-linear and pooling layers were replaced with dense blocks and transition layers. 

This kind of CNN is known as DenseNet model. The DenseNet has three dense blocks, 

and two transition layers. They used 7x7 kernels for the first convolution to detect small 

variation and substance in the image and extract more important features. An average 

7x7 kernel size pooling layer with stride 2 is used before the fully connected layer and 

finally the softmax layer for the eight classes of breast cancer histopathological images 

was configured. The weights of different layers were initialized by using a pre-trained 

model on ImageNet. The last layer was fine-tuned on BreakHis cancer images dataset. 

The first convolutional layer was then unfrozen, and the entire network was fine-tuned 

on the BreakHis training data. The results of the model were reported in two ways: In 

patient level and in image level. In patient let, 𝑁𝑝 be the number of histopathological 

images of patient P. For each patient, if 𝑁 cancer images are correctly classified, the 

patient score and the patient recognition rate are defined as: 

 

Table 1 - Image distribution in the BreakHis dataset 
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𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 =
𝑁

𝑁𝑝
 (1) 

 

𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
∑ 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑆𝑐𝑜𝑟𝑒

𝑡𝑜𝑡𝑎𝑙 𝑝𝑎𝑡𝑖𝑒𝑛𝑡 𝑛𝑢𝑚𝑏𝑒𝑟
 (1) 

 

In image level reporting the recognition rate is calculated in image level. Let, 

𝑁𝑡 be the number of histopathological images inside the testing set. If 𝑁𝑟, cancer images 

are correctly classified then the recognition rate in image level is: 

 

𝐼𝑚𝑎𝑔𝑒 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
𝑁𝑟

𝑁𝑡
 (3) 

 

 

In image level the DenseNet CNN model achieved high performance with 

95.4% accuracy in the multiclass breast cancer classification task when compared with 

other state-of-the-art models. 

Xi Wang, et al. (2018), proposed an approach for fast and effective classification 

on whole slide lung cancer images. Their method takes advantage of a patch-based fully 

convolutional network for discriminative block retrieval. The network architecture they 

proposed was split into three parts. The first part is a patch-based CNN that aims to 

predict the cancer likelihood from whole slide images, the second part the spatially 

contextual information is considered when selecting features from these blocks and the 

Table 2 - DenseNet Vs Popular CNNs in the multiclass breast cancer classification 

https://openreview.net/profile?email=xiwang%40cse.cuhk.edu.hk
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third part the global feature descriptor is fed into a standard Random Forest for the final 

whole slide image classification. 

 

 

 

The data used for the experiments were provided by Sun Yat-Sen University 

Cancer Center. The dataset consists of 871 digitalized histology WSIs with lung 

carcinomas and 68 healthy WSIs. The 871 WSIs are split into three subcategories of 

lung cancer, Squamous cell Carcinoma (SC), Adenocarcinoma (ADC) or Small Cell 

Lung Carcinoma (SCLC). Inside this set, 59 images are commented by a group of 

experienced pathologists. These 59 images comprise as D1 dataset. The rest 812 cancer 

images are further split into 642 (D2) and 170 (D4) images for training and testing 

accordingly. The normal images are also split into two datasets containing 53 (D3) and 

15 (D4) images for training and testing respectively. The table below shows the split of 

the dataset they had done. 

 

Table 3 - Data description in the dataset 

  Carcinoma SC ADC SCLC Normal 

Training D1 59 21 20 18 - 

D2 642 267 293 82 - 

D3 - - - - 53 

Testing D4 170 73 77 20 15 

Figure 4 - Discriminative patch prediction 

Figure 5 - Context - aware feature selection and aggregation 



 

 

12 
 
 

With these data as shown above they set 4 experiments, M1 where D1 and D3 

were used for patch-based CNN training. All the patches extracted from D1 and D3 

only convey the WSI-level labels. During inference, CNN scanned the training set and 

output the patch-wise probabilities as well as the features from the last convolutional 

layer. The M2 experiment is like M1 except that the weighted loss function is employed 

during training. In M# experiment the training dataset was constructed from D1, D2 

and D3 and the coarse annotation masks were not utilized during CNN training. Finally, 

in M4 experiment where the training dataset was the same as in M3 with the difference 

that the weighted loss function was utilized on coarse annotation regions. After the 

extensive experiments, the proposed method achieved an accuracy score of 97.1% 
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3. Text Data Preprocessing steps and techniques  

Text pre-processing is an essential part of any Text Mining and NLP system, 

since the characters, words, and sentences identified at this stage are the fundamental 

units passed to all further processing stages, from analysis and tagging components, 

such as morphological analyzers and part-of-speech taggers, through applications, such 

as information retrieval and machine translation systems. It is a collection of activities 

in which text documents are pre-processed. Because the text data often contains some 

special formats like number formats, date formats and the most common words that are 

unlikely to help Text mining such as prepositions, articles, and pro-nouns can be 

eliminated. Text data pre-processing is needed to reduce indexing or data file size of 

the text documents as well as to improve the efficiency of the IR system. The 20%-30% 

of total word counts in a particular document is composed of stop words that do not add 

any value. Words of the same root or meaning, in the natural human language, are 

presented in different forms with different suffixes which affect the total number of 

significant words inside a document by presenting the same word with different tokens. 

3.1. Tokenization 

Tokenization is the process of breaking a stream of text into words, phrases, 

symbols, or other meaningful elements called tokens. The aim of the tokenization is the 

exploration of the words in a sentence. The list of tokens becomes input for further 

processing such as parsing or text mining. Tokenization is useful both in linguistics 

(where it is a form of text segmentation), and in computer science, where it forms part 

of lexical analysis. Textual data is only a block of characters at the beginning. All 

processes in information retrieval require the words of the data set. Hence, the 

requirement for a parser is the tokenization of documents. This may sound trivial as the 

text is already stored in machine-readable formats. Nevertheless, some problems are 

still left, like the removal of punctuation marks. Other characters like brackets, hyphens, 

etc. require processing as well. Furthermore, tokenizer can cater for consistency in the 

documents. The main use of tokenization is identifying meaningful keywords. The 

inconsistency can be different number and time formats. Another problem is 

abbreviations and acronyms which must be transformed into a standard form. 

3.2. Stop Word Removal  

Many words in documents recur very frequently but are meaningless as they are 

used to join words together in a sentence. It is commonly understood that stop words 

do not contribute to the context or content of textual documents. Due to their high 
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frequency of occurrence, their presence in text mining presents an obstacle in 

understanding the content of the documents.  

Stop words are very frequently used common words like ‘and’ ‘are’, ‘this’ etc. 

They are not useful in classification of documents. So, they must be removed. However, 

the development of such stop words list is difficult and inconsistent between textual 

sources. This process also reduces the text data and improves the system performance. 

Every text document deal with these words which are not necessary for text mining 

applications. 

3.3. Stemming  

Stemming is the process of conflating the variant forms of a word into a 

common representation, the stem. For example, the words: “presentation”, “presented”, 

“presenting” could all be reduced to a common representation “present”. This is a 

widely used procedure in text processing for information retrieval (IR) based on the 

assumption that posing a query with the term presenting implies an interest in 

documents containing the words presentation and presented. Although there are some 

errors when it comes to stemming. There are mainly two errors in stemming, over 

stemming and stemming. 

Over-stemming is when two words with different stems are stemmed to the 

same root. This is also known as a false positive. Under-stemming is when two words 

that should be stemmed to the same root are not. This is also known as a false negative. 

Usually, stemming algorithms can be classified into three groups: truncating 

methods, statistical methods, and mixed methods. Each of these groups has a typical 

way of finding the stems of the word variants. Some of the stemming algorithms are 

going to be analyzed below. 

3.3.1. Porters Stemmer  

Porters stemming algorithm is one of the most popular stemming algorithms 

proposed in 1980. Many modifications and enhancements have been made and 

suggested on the basic algorithm. It is based on the idea that the suffixes in the English 

language (approximately 1200) are mostly made up of grouping of smaller and simpler 

suffixes. It has five steps, and within each step, rules are applied until one of them 

passes the conditions. If a rule is accepted, the suffix is removed consequently, and the 

next step is performed. The resultant stem at the end of the fifth step is returned. 

 

 



 

 

15 
 
 

The rule looks like the following:  

<condition> <suffix> → <new suffix> 

For example, a rule (m>0) EED → EE means “if the word has at least one vowel 

and consonant plus EED ending, change the ending to EE”. So “agreed” becomes 

“agree” while “feed” remains unchanged. This algorithm has about 60 rules and very 

easy to understand. Porter designed a detailed framework of stemming which is known 

as “Snowball”. The main purpose of the framework is to allow programmers to develop 

their own stemmers for other character sets or languages.  

3.3.2. N-Gram Stemmer (Statistical Methods) 

It is language independent stemmer. The string-similarity approach is used to 

convert word inflation to its stem. N-gram is a string of n, usually adjacent, characters 

extracted from a section of continuous text. N-gram is a set of n following characters 

extracted from a word. The main idea behind this approach is, similar words will have 

a high quantity of n-grams in common. For n equals to 2 or 3, the words extracted are 

called diagrams or trigrams, respectively. 

For example, the word “INTRODUCTIONS” results in the generation of the 

diagrams:  

*I, IN, NT, TR, RO, OD, DU, UC, CT, TI, IO, ON, NS, S* and the trigrams:  

**I, *IN, INT, NTR, TRO, ROD, ODU, DUC, UCT, CTI, TIO, ION, ONS, NS*, 

S**  

Where '*' denotes a padding space. There is n+1 such diagram and n+2 such 

trigrams in a word containing n characters. Most stemmers are language specific. 

Usually, a value of 4 or 5 is selected for n. After that textual data or document is 

analyzed for all the n-grams. A word root generally occurs less frequently than its 

morphological form. This means a word generally has an affix associated with it. This 

stemmer has an advantage that it is language independent and hence very useful in 

many applications. The disadvantage is it requires huge memory and storage for 

creating and storing the n grams and indexes and hence it is not a practical approach. 

3.3.3. Context Sensitive Stemmer (Mixed Methods) 

This is a remarkably interesting method of stemming unlike the usual method 

where stemming is done before indexing a document, over here for a Web Search, 

context sensitive analysis is done using statistical modeling on the query side. This 

method was proposed by Funchun Peng et al. (2007). 
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Basically, for the words of the input query, the morphological variants which 

would be useful for the search are predicted before the query is submitted to the search 

engine. This severely reduces the number of bad expansions, which in turn reduces the 

cost of additional computation and improves the precision at the same time. After the 

predicted word variants of the query have been derived, a context sensitive document 

matching is done for these variants. This conservative strategy serves as a safeguard 

against spurious stemming, and it turns out to be very important for improving 

precision. This stemming process is divided into four steps after the query is fired: 

a. Candidate generation:  

Over here the Porter stemmer is used to generate the stems from the query 

words. This has completely no relation to the semantics of the words. For a better output 

the corpus-based analysis based on distributional similarity is used. The foundation of 

using distributional word similarity is that true variants tend to be used in similar 

contexts. In the distributional word similarity calculation, each word is represented by 

a vector of features derived from the context of the word. We use the bigrams to the left 

and right of the word as its context features, by mining a huge Web corpus. The 

similarity between two words is the cosine similarity between the two corresponding 

feature vectors. 

b. Query Segmentation and head word detection:  

When the queries are long, it is important to detect the major concept of the 

query. The query is broken into segments which are normally noun phrases. For each 

noun phrase the most important word is detected which is the head word. Sometimes a 

word is split to know the content. The mutual information of two adjacent words is 

found and if it passes a threshold value, they are kept in the same segment. Finding the 

headword is by using a syntactical parser. 

c. Context sensitive word expansion:  

The keywords words are obtained by using probability measures and it decided 

which word variants would be most useful – generally they are the plural forms of the 

words. This is done using the simplest and most successful approach to language 

modeling, which is the one based on the n-gram model which uses the chain rule of 

probability. In this step all the important headword variants are obtained. The traditional 

way of using stemming for Web search, is referred to as the naïve model. This is to treat 

every word variant equivalent for all possible words in the query. The query 

“bookstore” will be transformed into “(book OR books) (store OR stores)” when 

limiting stemming to pluralization handling only, where OR is an operator that denotes 

the equivalence of the left and right arguments. 
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d. Context sensitive document matching:  

The context is the left or the right non-stop segments of the original word. Since 

queries and documents may not represent the intent in the same way, this proximity 

constraint is to allow variant occurrences within a window of some fixed size. The 

smaller the window size is, the more restrictive the matching. The advantage of this 

stemmer is it improves selective word expansion on the query side and conservative 

word occurrence matching on the document side. The disadvantage is the processing 

time and the complex nature of the stemmer. There can be errors in finding the noun 

phrases in the query and the nearest words. 

3.4. Word Vectorization 

For as long as computers have existed, there has been the question of how to 

represent data in a way that machines can understand and work with. A problem with 

modeling text is that it is messy, and techniques like machine learning algorithms prefer 

well defined fixed-length inputs and outputs. Machine learning algorithms cannot work 

with raw text directly; the text must be converted into numbers. Specifically, vectors of 

numbers. Below three of the most used techniques namely Bag of Words, tf-idf 

vectorization and word embedding are presented to convert text into numeric feature 

vectors. 

3.4.1. Bag of Words 

When dealing with text data it is necessary to understand terms like Document, 

Corpus and Feature. A document is a single text data point e.g., a medical prescription. 

The corpus is the collection of all the documents and the features are every unique word 

inside the corpus. 

A bag of words (BoW) is the text representation that describes the occurrence 

of words inside a document. This representation is product of two things, a vocabulary 

of known words and a measure of the presence of known words. For example, let’s say 

that 2 documents exist as below: 

Doc1: “I like to watch football despite my wife’s disagreement.” 

Doc2: “My wife does not enjoy the time I watch football.” 

The corpus can be built by combining the above three documents: 

Corpus = “I like to watch football despite my wife’s disagreement. My wife does not 

enjoy the time I watch football.” 
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And features will be all unique words: {“I”, “like”, “to”, “watch”, “football”, 

“despite”, “My”, “wife”, “disagreement”, “does”, “not”, “enjoy”, “the”, “time”}.  

In table 4 is the vocabulary of 14 words out of 19 inside the corpus. 

 

Table 4 - Vocabulary inside the corpus 

Hence, Doc2 would look as follows as a binary vector:  

𝑑𝑜𝑐2 = [1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1,1] 

3.4.2. Term Frequency - Inverse Document Frequency Vectorization 

The Bag-of words is simple and works properly, but its main disadvantage is 

that it treats all words equally and cannot distinguish quite common words or rare 

words. Term Frequency – Inverse Document Frequency (Tf-idf) solves this problem.  

Term Frequency–Inverse Document Frequency (tf-idf) is a numerical statistic 

which reveals how important a word is to a document in a collection. The Tf - IDF is 

often used as a weighting factor in information retrieval and text mining. The value of 

tf-idf increases proportionally to the number of times a word appears in the document 

but is counteracting by the frequency of the word in the corpus. This can help to control 

the fact that some words are generally more common than others. Tf–IDF can be 

successfully used for stop-words filtering in various subject fields including text 

summarization and classification. Tf-IDF is the product of two statistics which are 

termed frequency and inverse document frequency. To further distinguish them, the 

number of times each term occurs in each document is counted and sums them all 

together. Term Frequency (TF) is defined as the number of times a term occurs in a 

document. 

𝑇𝑓(𝑡, 𝑑) =
𝑁𝑜. 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑤𝑜𝑟𝑑 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡
 

 

 I like to watch football despite my wife disagreement does not enjoy the time 

my 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

wife 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

does 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

not 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

enjoy 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

the 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

time 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

I 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

watch 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

football 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Bow for 

Document1 
1 0 0 1 1 0 1 1 0 1 1 1 1 1 
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An Inverse Document Frequency (IDF) is a statistical weight used for 

measuring the importance of a term in a text document collection. IDF feature is 

incorporated which reduces the weight of terms that occur very frequently in the 

document set and increases the weight of terms that occur rarely.  

𝐼𝐷𝐹(𝑡, 𝑑) = 𝑙𝑜𝑔
𝑁𝑜. 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠

𝑛𝑜. 𝑜𝑓 𝑑𝑜𝑐. , 𝑡𝑒𝑟𝑚 𝑡 𝑎𝑝𝑝𝑒𝑎𝑟𝑠 𝑖𝑛𝑡𝑜
  

The more files a word appears in the smaller IDF.  

Then TF-IDF is calculated for each word using the formula, 

𝑇𝑓 − 𝑖𝑑𝑓(𝑡, 𝑑) = 𝑡𝑓(𝑡, 𝑑) ∗ 𝑖𝑑𝑓(𝑡, 𝑑) 

3.4.3. Word Embeddings 
 

Both Vectorization techniques, BoW and tf-idf work well but it fails to suggest 

a relation between two words. E.g., king and queen are two related words, but these 

methods fail to recreate that relation in Vectorization. Vectorization using word 

embedding solves this problem. 

Word embedding or word vector is an approach in NLP to map words or phrases 

from a vocabulary to a corresponding vector of real numbers. It is defined as a type of 

word representation that allows words with similar meaning to have a similar 

representation. The process of converting words into numbers is called vectorization 

and after vectorization it is needed a technique to identify similar words; such technique 

is the Cosine Similarity. 

Cosine similarity measures the cosine of the angle between two vectors (item1, 

item2) projected in an N-dimensional vector space. The smaller the angle, the higher 

the similarity. It is defined as follows: 

 

𝑠𝑖𝑚(𝑖𝑡𝑒𝑚1, 𝑖𝑡𝑒𝑚2) = 𝑐𝑜𝑠𝜃 =
𝐴 ∙ 𝐵

||𝐴|| ∙ ||𝐵||
 

 

Figure 6 - Cosine Distance 
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These embeddings can be learned, or precomputed embeddings can be used. 

Some of the most used embeddings are: 

 

• Word2Vec 

• Glove 

3.4.3.1. Word2Vec 

Word2Vec is a statistical method for efficiently learning a standalone word 

embedding from a text corpus. It was developed by Tomas Mikolov, et al. (2013),  at 

Google as a response to make the neural-network-based training of the embedding more 

efficient and since then has become the de facto standard for developing pre-trained 

word embedding. Two different learning models were introduced that can be used as 

part of the word2vec approach to learn the word embedding; they are: 

• Continuous Bag-of-Words, or CBOW model 

• Continuous Skip-Gram Model 

CBOW model takes the context of each word as the input and tries o predict the 

word corresponding to the context. More specifically, one hot encoding is used for the 

input word and measures the output error compared to one hot encoding of the target 

word. In the process of predicting the target word, the vector representation of the target 

word is learned. 

 

 

  

 

 

 

The input word is a one hot encoded vector of size V. The hidden layer contains 

N neurons, and the output is again a V length vector with the elements being the softmax 

values. 𝑊𝑉×𝑁 is the weight matrix that maps the input x to the hidden layer while 𝑊𝑁×𝑉
′  

is the weight matrix that maps the hidden layer outputs to the final layer. There is no 

activation like sigmoid, tanh or ReLU. The only non-linearity is the softmax 

calculations in the output layer. 

Figure 7 - A simple CBOW model 



 

 

21 
 
 

 

Skip-gram is a slightly different word 

embedding technique in comparison to CBOW as it 

does not predict the current word based on the context. 

Instead, each current word is used as an input to a log-

linear classifier along with a continuous projection 

layer. This way, it predicts words in a certain range 

before and after the current word. This variant takes only 

one word as an input and then predicts the closely 

related context words. That is the reason it can 

efficiently represent rare words. 

3.4.3.2.  Glove 

The Global Vectors for Word Representation, or GloVe, algorithm is an 

extension to the word2vec method for efficiently learning word vectors, developed by 

Pennington, et al. at Stanford. It is an unsupervised learning algorithm which aims to 

generate word embeddings by aggregating global word co-occurrence matrices from a 

given corpus. The basic idea behind the GloVe word embedding is to derive the 

relationship between the words from statistics.  Unlike the occurrence matrix, the co-

occurrence matrix presents how often a particular word pair occurs together. Each value 

in the co-occurrence matrix represents a pair of words occurring together. GloVe 

focuses on global context to create word embeddings.  

Let’s say a corpus of one document that says, “The quick brown fox jumps over 

the lazy dog”. Then the co-occurrence matrix window size of1 would be as follows: 

 

Table 5 - Co-occurance Matrix 

 brown dog fox jumps lazy over quick the 

brown 0 0 1 0 0 0 1 0 

dog 0 0 0 0 1 0 0 0 

fox 1 0 0 1 0 0 0 0 

umps 0 0 1 0 0 1 0 0 

lazy 0 1 0 0 0 0 0 1 

over 0 0 0 1 0 0 0 1 

quick 1 0 0 0 0 0 0 1 

the 0 0 0 0 1 1 1 0 

Figure 8 - A Skip-Gram model 
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Let 𝑋 be the matrix of word-word co-occurrence counts with entries 𝑋𝑖𝑗. 𝑋𝑖𝑗 is 

the number of times word 𝑗 occurs in the context of word 𝑖. Moreover, 𝑋𝑖 = ∑ 𝑋𝑖𝑘𝑘   is 

the number of times any word appears in the context of word 𝑖. Finally let 𝑃𝑖𝑗 =

𝑃(𝑗|𝑖) =
𝑋𝑖𝑗

𝑋𝑖
 be the probability that word j appears in the context of word 𝑖. 

The idea of GloVe is to convert 𝑋 into feature matrices 𝑊 whose rows are 

populated by 𝑤𝑖 or 𝑤𝑗, where 𝑤𝑖, 𝑤𝑗 ∈ ℝ𝑑  are the feature vectors of word 𝑖 and 𝑗. Also 

into matrix 𝑉 whose rows are populated by 𝑣𝑘, where 𝑣𝑘 ∈ ℝ𝑑 is a separate context 

feature vector of word 𝑘. 

The model in the most general form is: 

𝐹(𝑤𝑖, 𝑤𝑗 , 𝑣𝑘) =
𝑃𝑖𝑘

𝑃𝑗𝑘
    (1) 

Where 𝐹 relates 𝑊 and 𝑉 to 𝑋. If word 𝑘 is related to both word 𝑖 and 𝑗 which 

means that 𝑃𝑖𝑘 and 𝑃𝑗𝑘 are large, or unrelated to both word 𝑖 and 𝑗 which means that 𝑃𝑖𝑘 

and 𝑃𝑗𝑘  are small, then the value of F would be close to 1. On the other hand, if word 

𝑘 is related to exactly one of the words 𝑖 and 𝑘, which means that one of 𝑃𝑖𝑘 and𝑃𝑗𝑘 is 

small and the other is large, then the value of 𝐹 would be far from 1. As each model, 

GloVe needs a Cost Function to be defined. Since vector spaces are inherently linear 

structures, the most natural way to encode the information present in  
𝑃𝑖𝑘

𝑃𝑗𝑘
  is with vector 

differences. Hence, you could restrict 𝐹 to be: 

𝐹(𝑤𝑖 − 𝑤𝑗 , 𝑣𝑘) =
𝑃𝑖𝑘

𝑃𝑗𝑘
    (2)   

To maintain the linear structure of the vectors, F will be restricted one more 

time such that it now receives the dot product of its arguments, 

𝐹((𝑤𝑖 − 𝑤𝑗)𝑇𝑣𝑘) =
𝑃𝑖𝑘

𝑃𝑗𝑘
    (3) 

There is nothing special about 𝑖 and 𝑗, they point to arbitrary words in the 

corpus. Hence, the role of  𝑖 and 𝑗 in equation can be flipped to obtain: 

𝐹((𝑤𝑗 − 𝑤𝑖)
𝑇𝑣𝑘) =

𝑃𝑗𝑘

𝑃𝑖𝑘
=

1

𝐹((𝑤𝑖 − 𝑤𝑗)𝑇𝑣𝑘)
   (4) 
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The model should be invariant under this relabeling, but equation (2) is not. To 

achieve invariance, F is assumed to be a group homomorphism from (ℝ, +) to (ℝ,×). 

Hence, 

𝑃𝑖𝑘

𝑃𝑗𝑘
= 𝐹 ((𝑤𝑖 − 𝑤𝑗)

𝑇
𝑣𝑘) 

= 𝐹 (𝑤𝑖
𝑇𝑣𝑘 + (−𝑤𝑗

𝑇𝑣𝑘)) 

= 𝐹(𝑤𝑖
𝑇𝑣𝑘) × 𝐹(−𝑤𝐽

𝑇𝑣𝑘) 

=
𝐹(𝑤𝐼

𝑇𝑣𝑘)

𝐹(𝑤𝑗
𝑇𝑣𝑘)

     (5) 

Where  𝐹(𝑤𝑖
𝑇𝑣𝑘) = 𝑃𝑖𝑘 =

𝑋𝑖𝑘

𝑋𝑖
 

The solution of equation (5) is: 

𝑤𝑖
𝑇𝑣𝑘 = log(𝑃𝑖𝑘) = log(𝑋𝑖𝑘) − log(𝑋𝑖) 

Since the term log(𝑋𝑖) does not depend on 𝑘, it could be considered as a bias 

term 𝑏𝑖 for 𝑤𝑖. To restore exchange symmetry, a bias 𝑎𝑘 for 𝑣𝑘 will be also added. The 

final model becomes: 

𝑤𝑖
𝑇 + 𝑏𝑖 + 𝑎𝐾 = log(𝑋𝑖𝑘)     (7) 

The model in part (7) is called the log-bilinear regression model. The optimal 

values for parameters 𝑤𝑖, 𝑣𝑘, 𝑏𝑖 and 𝑎𝑘 can be found using the least squares method.  

A weighting function 𝑓(𝑋𝑖𝑘) is introduced to compensate whenever 𝑋𝑖𝑘 = 0  

since 𝑙𝑜𝑔(𝑋𝑖𝑘) is undefined at that point, and to balance out the contribution of frequent 

and infrequent words to the model. The cost function of the model becomes: 

𝐽 = ∑ 𝑓(𝑋𝑖𝑘)(𝑤𝑖
𝑇𝑣𝑘 + 𝑏𝑖 + 𝑎𝑘 − 𝑙𝑜𝑔𝑋𝑖𝑘)2

𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 𝑠𝑖𝑧𝑒

𝑖,𝑘=1

 

The weighting function should obey the following properties: 

1. 𝑓(0) = 0. If 𝑓 is continuous function, it should vanish as 𝑥 → 0 fast enough 

that the lim
𝑥→0

𝑓(𝑥) log2 𝑥   is finite. 

https://en.wikipedia.org/wiki/Group_homomorphism
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2. 𝑓(𝑥)  should be non-decreasing so that rare co-occurrences are not 

overweighted. 

3. 𝑓(𝑥)  should be relatively small for large values of 𝑥  , so that frequent co-

occurrences are not overweighted. 

One good simple choice of 𝑓 is: 

𝑓(𝑥) =  {
(

𝑥

𝑥𝑚𝑎𝑥
)

𝑎

     𝑖𝑓 𝑥 < 𝑥𝑚𝑎𝑥

1             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Where 𝑥𝑚𝑎𝑥 and 𝑎 are hyperparameters. 

 

 

 

 

 

 

 

The performance of the model depends weakly on the cutoff, which is fixed to 

𝑥𝑚𝑎𝑥 = 100 for the experiments. An 𝑎 =
3

4
  gives a modest improvement over a linear 

version with 𝑎 = 1. Although only empirical motivation is offered for choosing the 

value 𝑎 𝑎𝑡
3

4
.  

 

 

 

 

  

Figure 9 - Weighting function f with a =3/4. 
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4. Classification Algorithms 

In this chapter the theory behind various ML and Deep Learning (DL) 

algorithms will be presented in the context of text classification. 

4.1. Multinomial Naive Bayes Classifier 

Multinomial NB is a probabilistic classifier which means that it is designed to 

use an implicit mixture model for the generation of the documents. That is the reason 

these kinds of classifiers are called generative classifiers. The naïve Bayes classifier is 

the simplest and most used generative classifier. Multinomial Naïve Bayes algorithm 

is the statistical classification algorithm which is based on the Bayes’ theorem and helps 

us find the conditional probability of happening of two events based on the probabilities 

of happening of each individual event. Multinomial Naïve Bayes classifier works on 

the concept of term frequency that means the number of times the 

word occurs within a document.  

The Multinomial model aims at determining the term frequency i.e., the 

number of times a term occurs in a document. The multinomial Naïve Bayes Classifier 

can be formulated as follows: 

Assuming that there is a document ‘d’. The probability of being a document of 

class c, c ∈  {1, … , C}, is calculated as: 

𝑃(𝑐|𝑑) = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑐) ∏ 𝑃(𝑡𝑘|𝑐)
𝑛𝑑

𝑘=1
 

( 1 ) 

𝑛𝑑: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑘𝑒𝑛𝑠 𝑖𝑛 𝑎 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡  

𝑡𝑘: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑘𝑡ℎ 𝑡𝑜𝑘𝑒𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 

 

where 𝑃(𝑡𝑘|𝑐) represents the conditional probability that whether the term 𝑡𝑘 

occurs in a document of class ‘c’, and it is calculated as follows: 

𝑃(𝑡𝑘|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑡𝑘|𝑐) + 1

𝑐𝑜𝑢𝑛𝑡(𝑡𝑐) + |𝑉|
 

( 2 ) 

where 𝑐𝑜𝑢𝑛𝑡(𝑡𝑘|𝑐)  means the number of times the word 𝑡𝑘 is used in the 

documents among class c and 𝑐𝑜𝑢𝑛𝑡(𝑡𝑐) means the total number of tokens present in 
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the documents of class c. Furthermore 1 and |𝑉| are added as smoothing constants 

which are added to avoid setbacks in the calculation when the term does not appear at 

all in the document, or the documents is empty or null. |𝑉| is the number of tokens 

inside the total vocabulary of documents. 

𝑃(𝑐): is the prior probability of document being of class c which is calculated 

as taken after:  

𝑃(𝑐) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑐

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠
 

( 3 ) 

The probability 𝑃(𝑐|𝑑) is calculated for all the classes and the maximum of it, 

is the predicted class for a document. 

4.2. Logistic Regression 

Logistic Regression is a probability-based machine learning algorithm which is 

used for classification problems.  

Logistic Regression can be compared with Linear Regression model with the 

difference that logistic regression uses a more complex cost function, which is known 

as “Sigmoid function”. This function is a mathematical function which is used to map 

the predictive values to probabilities. The sigmoid function is: 

𝑔(𝑦) =
1

1 + 𝑒−𝑦
 

It always gives a value of probability ranging from 0 ≤ 𝑝 ≤ 1. The function can 

take any real number and map it into a value between 0 and 1. For example, if the output 

of the sigmoid function is more than 0.5 then the data point is classified as 1. 

 

 

 

 

 

 

 

Figure 10 - Sigmoid Function 
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The linear regression function is:  

𝑌 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 

Y is the dependent variable and 𝑋1, 𝑋2, … , 𝑋𝑛 are the explanator variables. 

If the sigmoid function is applied to the linear regression equation the ended p 

function is:  

𝑝 =
𝑒𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑛𝑋𝑛  

1 + 𝑒𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑛𝑋𝑛
 

 

Let 𝑢 = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛, 

 

𝑝

1 − 𝑝
=

𝑒𝑢 
1 + 𝑒𝑢

1 −
𝑒𝑢 

1 + 𝑒𝑢

=

𝑒𝑢 
1 + 𝑒𝑢

1
1 + 𝑒𝑢

=
𝑒𝑢(1 + 𝑒𝑢)

1 + 𝑒𝑢
= 𝑒𝑢 

 

𝑝

1 − 𝑝
= 𝑒𝑏0+𝑏1𝑋1+𝑏2𝑋2+⋯+𝑏𝑛𝑋𝑛 = log (

𝑝

1 − 𝑝
) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 

 

 

Logistic Regression can be expressed as: 

log (
𝑝(𝑋)

1 − 𝑝(𝑋)
) = 𝑏0 + 𝑏1𝑋1 + 𝑏2𝑋2 + ⋯ + 𝑏𝑛𝑋𝑛 

Where the left side is called logit and 
𝑝(𝑋)

1−𝑝(𝑋)
 is called odds. The odds signify the 

ratio of probability of success to probability of failure. Therefore, in Logistic 

Regression, linear combination of inputs is mapped to the log(odds) – The output to be 

equal to 1. 

Logistic Regression in its straightforward way is a classification method for 

binary target variable. When it comes to multiclass categorical target variable, there are 

some techniques thar are going to be presented in the next section. 
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4.3. Support Vector Machines (SVM) 

The original version of SVM is developed by Vapnik and Chervonenkis in 1963. 

SVM was originally designed for binary classification tasks. The SVM problem is to 

find the decision surface that maximizes the margin between the data points of the two 

classes while minimizing the penalty associated with the misclassifications in the 

training set. 

 

 

 

 

 

 

4.3.1. Binary-Class SVM 

In the context of text classification, let 𝑑1, 𝑑2, . . . , 𝑑𝑙 be training examples 

belonging to one class D, where D is a compact subset of 𝑅𝑁. A set of examples 

(𝑑1, 𝑦1), (𝑑2, 𝑦2), … , (𝑑𝑙, 𝑦𝑙),   𝑦𝑖 ∈ {−1.1}  are given. The optimum hyperplane, 

defined by (𝑤 ·  𝑥)  +  𝑏 =  0, is the solution of the following quadratic programming 

problem: 

min
1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑖

𝑙

𝑖=1
  

( 4 ) 

𝑠. 𝑡.        𝑦𝑖(𝑑𝑖𝑤 + 𝑏) ≥ 1 − 𝜉𝑖  

𝜉𝑖 ≥ 0 𝑖 = 1, … , 𝑙 

   

The above minimization problem is equivalent to solving the following 

Lagrangian dual problem: 

max
𝑎

∑ 𝑎𝑖

𝑙

𝑖=1

−
1

2
∑ ∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝑑𝑖𝑑𝑗

𝑙

𝑗=1

𝑙

𝑖=1

  

( 5 ) 

Figure 11 - Linear Support Vector Machine (SVM) for a 2D 
data. 
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𝑠. 𝑡.  ∑ 𝑎𝑖𝑦𝑖

𝑙

𝑖=1

= 0  

0 ≤ 𝑎𝑖 ≤ 𝐶   𝑖 = 1, … , 𝑙 

where 𝑎𝑖  , 𝑖 = 1, … , 𝑙 are the Lagrange multiplier. 

4.3.2. Multi-Class SVM 

A multiple SVM (MSVM) must be created for multi-class situations as SVM 

are often used for binary classification problems. Below two techniques, OVO (One vs 

One) and OVA (One vs All), are going to be presented that shift traditional SVM to 

multi-class SVM (MSVM).  

• One vs One (OVO)  

By using this method, our multiclass classification problem is divided into 

smaller binary classification problems. Thus, following the application of this 

technique, binary classifiers are obtained for each pair of classes. The idea of majority 

voting combined with the distance from the margin as its confidence criterion when 

making a final forecast for any input is used. The major problem of this approach is that 

too many SVMs must be trained. 

 

For multi-class problems with L categories: 

− Positive Samples: all the data point in class 𝑠({𝑥𝑖: 𝑠 ∈ 𝑦𝑖}) 

− Negative Samples: all the data point in class 𝑡({𝑥𝑖: 𝑡 ∈ 𝑦𝑖}) 

− 𝑓𝑠,𝑡(𝑥) ∶ the decision value of this specific classifier  

(Large value of 𝑓𝑠,𝑡(𝑥) then label s has a higher probability than the 

label t) 

− 𝑓𝑠,𝑡(𝑥) =  −𝑓𝑡,𝑠(𝑥)  

− Prediction: 𝑓(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠(∑ 𝑓𝑠,𝑡(𝑥)𝑡 ) 

Let it be a classification problem with 3 classes. In the One vs One strategy, the 

data points of the third class are ignored in the process of the search for the hyperplane 

that divides every pair of classes. 
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Red-Blue line tries to maximize the separation only between blue and red points 

while it has nothing to do with the green points. 

• One vs All (OVA) 

In this technique N SVMs are being trained to deal with the classification 

problem of N classes. For example: 

− 𝑆𝑉𝑀1: 𝑙𝑒𝑎𝑟𝑛𝑠 "𝑐𝑙𝑎𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 = 1 𝑣𝑠 𝑐𝑙𝑎𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 ≠ 1"  

− 𝑆𝑉𝑀2: 𝑙𝑒𝑎𝑟𝑛𝑠 "𝑐𝑙𝑎𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 = 2 𝑣𝑠 𝑐𝑙𝑎𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 ≠ 2"  

− 𝑆𝑉𝑀3: 𝑙𝑒𝑎𝑟𝑛𝑠 "𝑐𝑙𝑎𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 = 3 𝑣𝑠 𝑐𝑙𝑎𝑠𝑠 𝑜𝑢𝑡𝑝𝑢𝑡 ≠ 3"  

and so on.  

For the prediction of a new input, each of the bult-in SVMs are used and the 

predicted class is that one the SVM of which placed the prediction the furthest into the 

positive region. 

In this strategy, challenges like too much computation time and unbalanced data 

problems must be overcome. For example, if a dataset contains a target variable in 

which there are 10 classes and each of the class consists of 1000 data points, then for 

any one of the SVM having two classes, one class will have 9000 points and the other 

will have only 1000 data points, so the problem becomes unbalanced. 

For multi-class problems with L categories: 

− Positive Samples: all the points in class 𝑡({𝑥𝑖: 𝑡 ∈ 𝑦𝑖}) 

− Negative Samples: all the points not in class 𝑡({𝑥𝑖: 𝑡 ∉ 𝑦𝑖}) 

− 𝑓𝑡(𝑥):  The decision value for the 𝑡 − 𝑡ℎ classifier 

(Large value of 𝑓𝑡 then higher probability that x belongs in the class t) 

− Prediction: 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝑓𝑡(𝑥)  

Figure 13  - Three different classes scatter plot Figure 12 -  One vs One Approach 
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In the same classification problem as before, the One vs All approach attempts 

to discover hyperplanes to isolate the classes. The separation takes all points into 

account and then divides them into two groups in which there is a group for the one 

class points and the other group for all other points.  

 

 

 

 

 

  

4.4. Artificial Neural Networks 

Simultaneously with Machine Learning techniques, Neural Networks have deep 

impact in many classification techniques especially in applications which deal with 

nontabular data like images, voice records, handwritten documents, videos provided by 

traffic cameras etc.  

Artificial Neural Networks (ANNs) are a simulation of human brain’s biological 

neural networks as seen in Figure 14: 

 

 

 

 

 

 

 

 

 

A biological neuron consists of a cell body and two types of out-reaching 

branches, axon and terminal branches. Inside the cell body nucleus contains information 

about hereditary traits. Each neuron receives signals from other neurons through its 

Figure 14 - One vs All Approach 

Figure 15 - human brain's neuron 
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dendrites and transmits signals which are generated by its cell bod along the axon. At 

the terminals of these strands the functional parts between two neurons called synapses 

exist which release certain chemicals called neurotransmitters as the signal reaches 

them. The neurotransmitters diffuse across the synaptic gap, to enhance or inhibit, 

depending on the type of the synapse, the receptor neuron’s own tendency to emit 

electrical impulses. The synapse’s effectiveness can be adjusted by the signals passing 

through it so that the synapses can learn from the activities in which they participate. 

Artificial Neural Networks work similarly like biological neural networks. 

ANNs are processors that are made up of simple processing units (neurons). They are 

capable of learning experiential knowledge expressed through interunit connection 

strengths and making such knowledge available for use. The major developments 

behind this rise were done back in 1982 with Hopfield’s energy approach and the 

backpropagation learning algorithm for multilayer perceptron which first proposed by 

Werbos. 

The architecture of an ANN which consists of a set of neurons and weighted 

links that connect the neurons is combined with a learning algorithm that is used for 

training the neural network by calculating the weights in order to model a particular 

learning task correctly on training examples. A regular ANN looks like as follows: 

 

𝑥1, 𝑥2, … , 𝑥𝑛   are the input variables while 𝑤1, 𝑤2, … , 𝑤𝑛 are weights of 

respective inputs. b is the bias which is summed with the weighted inputs to form the 

net inputs. Bias and weights are both adjustable parameters of neurons which are being 

adjusted using some learning rules. The output of a neuron can range             from -

Figure 16 - ANN Architecture 
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𝑖𝑛𝑓 to +𝑖𝑛𝑓. Activation function which works like a mapping mechanism between the 

input and output decides the final value of the target variable. 

 Activation function defines the output of a neuron in terms of a local 

induced field. There are many activation functions. Some of them are as follows: 

 

Hard Limit:  

𝒚 = {
𝟏, 𝒙 ≥ 𝟎
𝟎, 𝒙 < 𝟎

 

 

 

 

 

Binary Sigmoid Function is a logistic function 

where the output values are either binary or vary from 0 to 

1. 

 

 

 

Hyper Tangent Function:  

𝒚 =
𝒆𝒙 − 𝒆−𝒙

𝒆𝒙 + 𝒆−𝒙
 

 

 

 

ReLu stands for the rectified linear unit (ReLu). It is 

the most used activation function in the world.it output o for 

negative values of x. 
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4.4.1. Perceptron ANN 

The perceptron is a single processing unit of any neural network. It is a neural 

network unit that does a precise computation to detect features in the input data. 

Perceptron is mainly used to classify the data into two parts. That is the reason it is also 

known as Linear Binary Classifier. The training algorithm of a Perceptron ANN is as 

follows: 

I. Initialize weights and threshold in range [−0.5 , 0.5] using a random generator. 

II. For each example 𝑥𝑗̃ = (𝑥1, 𝑥2, … , 𝑥𝑛) inside the training dataset labeled as 𝑙𝑗 

perform the following steps: 

a. calculate the following: 

𝑢(𝑗) =  ∑ 𝑤𝑖(𝑗)𝑥𝑖(𝑗)

𝑛

𝑖=1

 

b. Use the activation function to map the value of 𝑢(𝑗) with the output 

value 𝑦𝑗. 

c. Update the weights as follows: 

𝑤𝑖(𝑗 + 1) = 𝑤𝑖(𝑗) + 𝜂 ∙ (𝑙𝑗 − 𝑦𝑗) ∙ 𝑥𝑗   

where 𝜂 is the learning rate 

4.4.2. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks, also known as CNN or ConvNet are a subtype 

of neural networks, but they are distinguished from them by their extremely good 

performance with image, speech, or audio signal inputs. They are developed to work as 

the human brain does when it comes to recognize shapes, patterns, angles, lines, etc. 

For this reason, CNN architectures do not necessarily need hand-crafted feature 

extraction by humans. 

A CNN architecture typically has three layers: a convolutional layer, a pooling 

layer, and a fully connected layer. 

The Convolutional layer is the most important layer of CNN as this layer is 

responsible for detecting the most important features and as a matter of fact in this layer 

is where the most computations take place. The convolutional layer performs a dot 

product between two matrices, where one matrix is the set of learnable parameters 

which is also known as kernel or filter, and the other is the slice of the input resulting 
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Figure 17 - Convolution Filter 

as the filter is sliding over the input. The output matrix is a convolved feature also 

known as feature map. The number of pixels that the kernel slides over the input is 

called stride. Usually, it is equal to 1.  

 

 

 

 

 

The Pooling Layer comes after convolution layer and applies in the feature 

map. This layer is responsible for reducing the spatial size of the convolved feature to 

decrease the computational power required to process the data through dimensionality 

reduction. There are two types of pooling: Max Pooling and Average Pooling.  

Max Pooling returns the maximum value from the portion of the image covered 

by the pooling kernel. While Average pooling returns the average of all he values from 

the portion of the image covered by the pooling kernel.  

 

 

 

 

 

 

 

 

The pooled feature map is being converted into a flattened reshaped vector of 

one row that it will be passed into the fully connected layer. 

Figure 18 - Max and Average Pooling 
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The Fully Connected Layer performs the task of classification based on the 

features extracted through the previous layers and their different filters. It consists of 

the weights and biases along with the neurons and is used to connect the neurons 

between two different layers. The flattened feature map becomes the input of the neural 

network. This is then passed to a fully connected layer. Before the final output is 

obtained, the result is passed to an appropriate activation function. For instance, the 

sigmoid activation function in the case of binary problems and softmax in the case of 

multi-class problems.  

 

 

Convolutional Neural Networks for NLP 

When it comes to NLP tasks, such as document classification, sentiment 

classification etc., the architecture of CNN is changed to 1 dimension convolutional 

and pooling operations. Given a sequence of words 𝑤1:𝑛 = 𝑤1, …  , 𝑤𝑛 , where each is 

associated with an embedding vector of dimension d, the 1D convolution of width-k is 

the resulting of moving a sliding-window of size k over a sentence and applying the 

same convolution filter or kernel to each window in the sequence. Considering a 

window of words 𝑤𝑖 , … , 𝑤𝑖+𝑘 the concatenated vector of the ith window is: 

𝑥𝑖 = [𝑤𝑖, 𝑤𝑖+1, … , 𝑤𝑖+𝑘] ∈ ℝ𝑘×𝑑 

The convolution filter is applied to each window, resulting in scalar values 𝑟𝑖, 

each of the i-th window:  

𝑟𝑖 = 𝑔(𝑥𝑖 ∙ 𝑢) ∈ ℝ 

Figure 19 - Fully Connected layer 
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Let’s see how a 1-D CNN works. For a given sentence “Green shirt for men 

regular fit” consisting of 6 words, each word is represented by a 5-dimensional word 

vector, hence the sentence matrix is of  6 × 5 shape. 

In the graph above there are three filter regions each of which has k 

filters.  Filters perform convolutions on the sentence matrix and generate feature maps. 

The number of feature maps inside a region depends on the number of filters in each 

region size. The total number of feature maps is 𝑟 × 𝑘, where 𝑟 is the number of regions, 

in our example is 3. One max-pooling layer is performed over each feature map 

recording the maximum value of each feature map. Thus, a univariate feature vector is 

generated from all feature maps, and these features are concatenated to form a feature 

vector the length of which is equal to the total number of filters 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑖𝑙𝑡𝑒𝑟𝑠 𝑝𝑒𝑟 𝑟𝑒𝑔𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑖𝑜𝑛 𝑠𝑖𝑧𝑒). This feature 

vector can then be fed into a fully connected layer to perform classification. 

4.4.3. Recurrent Neural Networks (RNN) 

Recurrent Neural Networks are a well-known Deep Learning methodology 

which was initially created in the 1980s based on David Rumelhart’s work in 1996. 

David Rumelhart was an American psychologist who made many contributions to the 

formal analysis of human cognition, working primarily within the frameworks of 

mathematical psychology, symbolic artificial intelligence, and parallel distributed 

processing. 

Figure 20 - General CNN architecture for text classification 
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RNNs work on the guideline of saving the output of a specific layer and feeding 

this back to the input in arrange to predict the output layer. Since of their inner memory, 

RNNs can remember vital things about the input they have received, which allows them 

to be exceptionally exact in predicting what’s coming next. This is why they’re the 

preferred algorithm for sequential data like time series, speech, text, financial data, 

audio, video, weather and much more. 

The information in a Recurrent Neural Network cycles through a loop to the 

middle hidden layer. The middle layer “h” which can consist of multiple hidden layers, 

each of them with its own activation functions, weights, and biases, takes the processed 

input from the input layer “x”. Finally, the RNN will define activation functions and 

will standardize all the weights and biases in a way that each hidden layer consists of 

the same parameters. 

 

 

Two inputs are used in a Recurrent Neural Network, one for the present and 

another for the recent past. This is because sequential data contains important 

information about what is coming next. This is why RNN can deal with problems that 

other algorithms cannot handle in an efficient way. A feed-forward neural network 

assigns a weight matrix to its inputs and then produces the output. RNNs apply weights 

to the current and to the previous input. Furthermore, a recurrent neural network 

will also tweak the weights for both gradient descent and backpropagation through 

time. 

Feed-forward neural networks map one input tone output while RNNs can map 

one to many, many to one, many to many.  

One to One RNN, also known as Vanilla Neural Network, is used for general 

machine learning problems, which has a single input and a single output. One to Many 

Figure 21 - Recurrent Neural Network 

https://builtin.com/data-science/introduction-segmentation-correlation-time-series-modeling
https://builtin.com/data-science/gradient-descent
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RNN has a single input and multiple outputs. An example of its usage I the image 

caption. Many to One RNN generates a single output by receiving a sequence of inputs. 

Sentiment analysis is an example where this kind of RNN can be used as a classifier of 

a sentence to be positive or negative. Finally, Many to Many RNN takes a sequence of 

inputs and generates a sequence of outputs. This kind of RNN is used in tasks such as 

machine translation. 

 

 

Recurrent Neural Networks is a sequence of neural networks that are trained 

one after another with backpropagation. Backpropagation is an algorithm which is used 

for calculating the gradient of an error function with respect to network’s weights. This 

process is done by “walking” the algorithm its way backwards through the various 

layers of gradients to find the derivative of the errors with respect to the weights. As 

RNN is a network with a loop inside it, the backpropagation is done on an unrolled 

RNN, and it is called Backpropagation Through Time (BPTT). 

 

 

Figure 22 - Types of RNNs 

Figure 23 - Unrolled Recurrent Neural Network 
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There are two significant issues of standard RNNs. Exploding gradients and 

vanishing gradients. Exploding gradients are when the algorithm assigns a high 

importance to the weights. This problem can be easily solved by truncating or 

squashing the gradients. Vanishing gradients occur when the values of a gradient are 

too small, and the model stops learning or takes way too long as a result. This was a 

major problem in the 1990s and much harder to solve than the exploding gradients. 

Fortunately, it was solved through the concept of LSTM by Sepp Hochreiter and 

Juergen Schmidhuber. 

4.4.4. Long Short-Term Memory (LSTM) 

Long-Short Term Memory (LSTM) is a type of recurrent neural network but 

in terms of memory is better. LSTMs are developed to avoid the long-term 

dependency problem. Like all neural networks, LSTMs can have multiple hidden 

layers where the relevant information is kept, and all the irrelevant information gets 

discarded as it passe through every hidden layer. The main role of LSTM model is 

described by a memory cell known as “cell state” which maintains its state over 

time. LSTM has three main gates: Forget Gate, Input Gate and Output Gate. 

Forget gate layer is a sigmoid layer which is responsible for deciding which 

information is kept for calculating the cell state and which is up to be discarded. It 

takes as an input ℎ𝑡−1 which is the information from the previous cell and 𝑥𝑡 which 

is the information from the current cell and outputs a number between 0 and 1 for 

each number in the cell state 𝐶𝑡−1. Number close to 1 means that the information 

must be kept while a number close to 0 means that the information must be 

discarded. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) 

 

 

 

 

 

 

 

 

Figure 24 - Forget Gate 
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The input gate is responsible for deciding which information is important 

and which is not to be stored in the cell state. This is done by two layers, a sigmoid 

layer called “input gate layer” which decides which values are going to be updated 

and a 𝑡𝑎𝑛ℎ layer that creates a vector of new candidate values, 𝐶̃𝑡, that could be 

added to the state. 

 

𝑖𝑡 = 𝑠(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) 

 

 

 

 

 

 

 

 

After the decisions done from the previous gates, the old cell state, 𝐶𝑡−1, is 

going to be updated into the new cell state 𝐶𝑡. This is done by multiplying the old 

state by 𝑓𝑡 and adding 𝑖𝑡 ∗ 𝐶̃𝑡. First multiplication helps in forgetting all the 

information that was decided to be discarded. The second multiplication contains 

the new candidate values, scaled by how much each state was decided to be updated. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 

 

 

 

 

 

 

 

 

Figure 25 - Input Gate 

Figure 26 - Cell State Update 
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The output gate decides what the next state should be. ℎ𝑡−1 and 𝑥𝑡 are passed 

to a sigmoid layer which decides what parts of the cell state are going to be 

outputted. Then the new cell state, 𝐶𝑡, is going through a 𝑡𝑎𝑛ℎ layer and is 

multiplied by the output of the sigmoid layer to decide what information the hidden 

state should carry.  

𝑜𝑡 = 𝜎(𝑊0[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) 

 

 

 

 

 

 

 

  

Figure 27 - Output Gate 
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5. Clinical Text Analysis 

In this chapter all text preprocessing and classification techniques are going to 

be presented under the shade of a clinical text dataset with the scope of the development 

of a model that classifies clinical documents with the best performance. 

5.1. Dataset 

The dataset that is going to be used for this purpose is mtsamples.csv gathered 

from Kaggle datasets. The dataset consists of 5 columns and 4999 rows and contains 

sample transcription reports for many specialties and different work types. 

 

 

 

 

 

 

 

For text analytics and text classification, all columns are going to be dropped 

from the dataset except column “transcription” as it contains all the text that is needed, 

and column “medical_specialty” as it is the target variable that is going to be used for 

the classification of the transcriptions. “transcription” column is string column and 

contains various length strings with the shortest at 11 characters and the longest at 

18425 characters. The distribution of the lengths of the medical transcription is shown 

in the graph below.  

 

Column Description 

description Short description of transcription 

medical_specialty Medical specialty of transcription 

sample_name Transcription Title 

transcription Sample medical transcription 

keywords Relevant keywords from transcription 

Table 6 - Data set columns 

Figure 28 - Distribution of medical transcription text lengths 
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As it is observed from the figure above, “medical_specialty” is categorical 

variable with 40 unique categories. Some of the categories are the minority as they 

appear less than 50 times in the entire dataset. The most frequent category is “Surgery” 

as it appears in 1103 documents out of 4999.  

33 rows have NaN values in the “transcription” column although there are not 

“transactions” that contain only whitespaces or are empty strings. These rows are going 

to be dropped as they do not contribute to the analysis.  

 

 

 

 

 

 

 

 

 Figure 30 - NaN Values for "transcription" column 

Figure 29 - Counts of each category in target variable 
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5.2. Data Preprocessing 

Categories with less than 50 appearances in the dataset are going to be removed, 

this will reduce the medical specialty categories from 40 to 21. 

 

It is obvious that the dataset is imbalanced. This might cause overfitting while 

a model is getting trained. For this reason, later, oversampling and under sampling 

techniques may be used to avoid overfitting. 

A random row of the dataset consists of two fields, the free text of the 

transcription and the category in which the transcription belongs to. 

 

Figure 31 - Counts of each category in target variable after reduction 
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The free text of the transcription is a string that contains punctuations, numbers 

and words that are very common in all the transcription provided through the dataset, 

those words are called stop words. In the next steps each transcription row will be 

cleaned which means that all the punctuations, alphanumeric characters and stop words 

are going to be removed. 

 

The text field now looks cleaner as all the punctuation, alphanumeric characters 

and stop words are removed. There are 13716 unique words inside the cleaned 

transcription column and the 20 most frequent words are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 - Most frequent occurring words 
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5.3. Modeling 

5.3.1. Initial Experiment 

All the three algorithms (Logistic Regression, SVM and Multinomial Naïve 

Bayes) will be fitted and evaluated with the preprocessed data. The parameters of each 

model and vectorization algorithms, as well, are decided by applying grid search with 

cross validation through pipeline. All the experiments will be tracked using MLflow 

opensource platform. 

5.3.1.1. Multinomial Naïve Bayes: 

 

The corpus is vectorized using Tfidf Vectorizer with ngram range set to (1,2) 

and with use of idf term. 

label precision recall f1-score support 

 Cardiovascular / Pulmonary 49.06% 35.14% 40.94% 74 

 Neurology 33.33% 26.67% 29.63% 45 

 Urology 100.00% 3.23% 6.25% 31 

 General Medicine 0.00% 0.00% 0.00% 52 

 Surgery 45.83% 80.73% 58.47% 218 

 SOAP / Chart / Progress Notes 0.00% 0.00% 0.00% 33 

 Radiology 33.33% 32.73% 33.03% 55 

 Psychiatry / Psychology 0.00% 0.00% 0.00% 10 

 Pediatrics - Neonatal 0.00% 0.00% 0.00% 14 

 Pain Management 0.00% 0.00% 0.00% 12 

 Orthopedic 26.19% 15.49% 19.47% 71 

 Ophthalmology 0.00% 0.00% 0.00% 17 

 Obstetrics / Gynecology 37.50% 9.68% 15.38% 31 

 Neurosurgery 0.00% 0.00% 0.00% 19 

 Nephrology 0.00% 0.00% 0.00% 16 

 Hematology - Oncology 0.00% 0.00% 0.00% 18 

 Gastroenterology 35.29% 13.33% 19.35% 45 

 ENT - Otolaryngology 0.00% 0.00% 0.00% 19 

 Emergency Room Reports 0.00% 0.00% 0.00% 15 

 Discharge Summary 20.00% 4.55% 7.41% 22 

 Consult - History and Phy. 28.93% 89.32% 43.71% 103   

accuracy 37.61% 

macro avg 19.50% 14.80% 13.03% 920 

weighted avg 30.53% 37.61% 28.82% 920 

Table 7 - Classification report of NB 
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From table 7, can be observed that the initial Multinomial Naïve Bayes classifier 

achieved poor results trying to classify each specialty into the correct label. With an 

accuracy of 37.61% and extremely imbalanced data, the classifier predicted correctly 

80.73% of true “Surgery” specialty, and 89.32% of true “Consult History and Phy.” 

specialty. All the other labels had less than 50% recall. 

5.3.1.2. Logistic Regression: 

Again, the corpus is vectorized using Tfidf Vectorizer with ngram range set to 

(1,2) and without use of idf term as grid search decided those to be the optimal 

parameters. 

 

label precision recall f1-score support 

 Cardiovascular / Pulmonary 37.74% 27.03% 31.50% 74 

 Neurology 31.58% 26.67% 28.92% 45 

 Urology 25.00% 3.23% 5.71% 31 

 General Medicine 13.33% 7.69% 9.76% 52 

 Surgery 43.52% 77.06% 55.63% 218 

 SOAP / Chart / Progress Notes 35.48% 33.33% 34.38% 33 

 Radiology 32.35% 40.00% 35.77% 55 

 Psychiatry / Psychology 0.00% 0.00% 0.00% 10 

 Pediatrics - Neonatal 33.33% 7.14% 11.76% 14 

 Pain Management 50.00% 33.33% 40.00% 12 

 Orthopedic 18.75% 12.68% 15.13% 71 

 Ophthalmology 40.00% 11.76% 18.18% 17 

 Obstetrics / Gynecology 25.00% 3.23% 5.71% 31 

 Neurosurgery 0.00% 0.00% 0.00% 19 

 Nephrology 0.00% 0.00% 0.00% 16 

 Hematology - Oncology 0.00% 0.00% 0.00% 18 

 Gastroenterology 9.09% 2.22% 3.57% 45 

 ENT - Otolaryngology 100.00% 5.26% 10.00% 19 

 Emergency Room Reports 0.00% 0.00% 0.00% 15 

 Discharge Summary 39.02% 72.73% 50.79% 22 

 Consult - History and Phy. 34.76% 63.11% 44.83% 103   

accuracy 36.74% 

macro avg 27.09% 20.31% 19.13% 920 

weighted avg 31.22% 36.74% 30.26% 920 

 
Table 8 - Classification report of Logistic Regression 
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From table 8, can be observed that the initial Logistic Regression classifier 

achieved poor results as well as Multinomial Naïve Bayes, trying to classify each 

specialty into the correct label. With an accuracy of 36.74% and extremely imbalanced 

data, the classifier predicted correctly 77.06% of true “Surgery” specialty, 72.73% of 

true “Discharge Summary” specialty and 62.11% of true “Consult History and Phy.” 

specialty. All the other labels had less than 50% recall. 

5.3.1.3. Support Vector Machines 

As the other two algorithms, SVM trained with the corpus vectorized again with 

ngram range at (1,2) and without idf term. 

label precision recall f1-score support 

 Cardiovascular / Pulmonary 33.93% 25.68% 29.23% 74 

 Neurology 26.19% 24.44% 25.29% 45 

 Urology 0.00% 0.00% 0.00% 31 

 General Medicine 12.90% 7.69% 9.64% 52 

 Surgery 41.37% 69.27% 51.80% 218 

 SOAP / Chart / Progress Notes 32.14% 27.27% 29.51% 33 

 Radiology 23.73% 25.45% 24.56% 55 

 Psychiatry / Psychology 33.33% 10.00% 15.38% 10 

 Pediatrics - Neonatal 11.11% 7.14% 8.70% 14 

 Pain Management 60.00% 75.00% 66.67% 12 

 Orthopedic 13.46% 9.86% 11.38% 71 

 Ophthalmology 14.29% 5.88% 8.33% 17 

 Obstetrics / Gynecology 0.00% 0.00% 0.00% 31 

 Neurosurgery 0.00% 0.00% 0.00% 19 

 Nephrology 0.00% 0.00% 0.00% 16 

 Hematology - Oncology 0.00% 0.00% 0.00% 18 

 Gastroenterology 0.00% 0.00% 0.00% 45 

 ENT - Otolaryngology 16.67% 5.26% 8.00% 19 

 Emergency Room Reports 0.00% 0.00% 0.00% 15 

 Discharge Summary 34.15% 63.64% 44.44% 22 

 Consult - History and Phy. 32.34% 52.43% 40.00% 103   

accuracy 32.17% 

macro avg 18.36% 19.48% 17.76% 920 

weighted avg 24.51% 32.17% 26.84% 920 

 

 

 

Table 9 - Classification report of SVM 
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Specialties like “Surgery”, “Pain Management”, “Discharge Summary” and 

“Consult-History and Phy.” achieved a recall of more than 50%, which means that 

support vector machines could predict more than 50% of the true labels of them. 

Although model accuracy remains at a low level. 

 

5.3.1.4. Experiment Summary 

 

Table 10 - Summary of the “Initial Experiment” 

The best performance is that of Multinomial Naïve Bayes classifier with an 

accuracy of 37.61%, precision weighted average 30.53%, recall weighted average 

37.61% and f1-score weighted average 28.82%. Although the results are extremely 

poor. 

5.3.2. Dropping Categories Experiment 

From the previous experiment, the results were too poor so some domain 

knowledge will be applied to improve the results. As mentioned in the previous 

experiment, the “surgery” specialty is a superset inside of which are more specialties 

included,  also some other specialties like “SOAP / Chart / Progress Notes”, “Discharge 

Summary” etc. overlap with other specialties. Rows of those specialties will be 

removed. Additionally, two specialties will be combined int one. More specifically, 

“Neurosurgery” will be transformed into “Neurology” and “Nephrology” will be 

transformed into “Urology”. 

Model Accuracy Precision Recall f-1-score 

Multinomial NB 37.61% 30.53% 37.61% 28.82% 

Logistic Regression 36.74% 31.22% 36.74% 30.26% 

SVM 32.17% 24.51% 32.17% 26.84% 
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After dropping and merging categories, the dataset contains 2583 documents of 

13 categories. The most frequent category is “Cardiovascular/Pulmonary” with 371 

appearances and the least frequent is “Psychiatry/Psychology” with 53 appearances in 

the dataset. 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 - Reduced Categories of specialties 
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5.3.2.1. Multinomial Naïve Bayes: 

The corpus is vectorized using Tfidf Vectorizer with ngram range set to (1,1) 

and the use of idf term. 

 

 

The results are quite better than the initial experiment with a model accuracy 

close to 60%. It is remarkable that the “Ophthalmology” category reached a precision 

of 100% which means that all the documents that were predicted as “Ophthalmology” 

were actually, “Ophthalmology”. Some categories like “Pediatrics - Neonatal” and 

“Radiology” still do not perform as expected with an f-1 score less than 50%. 

5.3.2.2. Logistic Regression: 

Again, the corpus is vectorized using Tfidf Vectorizer with ngram range set to 

(1,1) and with the use of idf term as Grid Search decided as best parameters. Fitting 

Logistic Regression model with “newton-cg” set as solver and “l2” as penalty 

parameters: 

 

 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 71.88% 62.16% 66.67% 74 

Neurology 56.36% 49.21% 52.54% 63 

Urology 75.56% 72.34% 73.91% 47 

General Medicine 37.90% 90.38% 53.41% 52 

Radiology 31.91% 27.27% 29.41% 55 

Psychiatry / Psychology 75.00% 81.82% 78.26% 11 

Pediatrics - Neonatal 50.00% 14.29% 22.22% 14 

Orthopedic 72.06% 69.01% 70.50% 71 

Ophthalmology 100.00% 70.59% 82.76% 17 

Obstetrics / Gynecology 73.33% 70.97% 72.13% 31 

Hematology - Oncology 28.57% 22.22% 25.00% 18 

Gastroenterology 96.55% 62.22% 75.68% 45 

ENT - Otolaryngology 84.62% 57.89% 68.75% 19   

accuracy 59.96% 

macro avg 65.67% 57.72% 59.33% 517 

weighted avg 64.27% 59.96% 60.14% 517 

Table 11 - Classification report of NB 
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label precision recall f1-score support 

Cardiovascular / Pulmonary 69.23% 72.97% 71.05% 74 

Neurology 58.57% 65.08% 61.65% 63 

Urology 72.92% 74.47% 73.68% 47 

General Medicine 47.25% 82.69% 60.14% 52 

Radiology 22.45% 20.00% 21.15% 55 

Psychiatry / Psychology 80.00% 36.36% 50.00% 11 

Pediatrics - Neonatal 50.00% 7.14% 12.50% 14 

Orthopedic 71.05% 76.06% 73.47% 71 

Ophthalmology 100.00% 70.59% 82.76% 17 

Obstetrics / Gynecology 77.78% 67.74% 72.41% 31 

Hematology - Oncology 20.00% 11.11% 14.29% 18 

Gastroenterology 94.12% 71.11% 81.01% 45 

ENT - Otolaryngology 93.33% 73.68% 82.35% 19   

accuracy 62.67% 

macro avg 65.90% 56.08% 58.19% 517 

weighted avg 63.90% 62.67% 61.81% 517 

 

 

As shown from table 12, the Logistic Regression classifier achieved an accuracy 

of 62.67% which is better than Multinomial Naïve Bayes classifier. The same problem 

with “Pediatrics – Neonatal” and “Radiology” categories occurs also with Logistic 

Regression.  

 

 

 

 

 

Table 12 - Classification report of Logistic Regression 
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5.3.2.3. Support Vector Machines 

 

 

The accuracy of Support Vector Machines is 61.51%, slightly less than Logistic 

Regression’s. The category of “Pediatrics -Neonatal” has a recall of 21.43% which is 

better than the previous models but still very poor. 

5.3.2.4. Experiment Summary 

 

Table 14 - Summary of the "Dropping Categories Experiment" 

The best performance with this experiment is Logistic Regression’s classifier 

with an accuracy of 62.67%, precision weighted average 63.90%, recall weighted 

average 62.67% and f1-score weighted average 61.81%. The results are pretty good but 

there are some issues that must be solved. All three models fail to identify correctly 

labels like “Radiology”, “Psychiatry / Psychology”, “Pediatrics - Neonatal” and 

“Hematology - Oncology”.  

label precision recall f1-score support 

Cardiovascular / Pulmonary 64.10% 67.57% 65.79% 74 

Neurology 56.72% 60.32% 58.46% 63 

Urology 69.39% 72.34% 70.83% 47 

General Medicine 45.88% 75.00% 56.93% 52 

Radiology 27.78% 27.27% 27.52% 55 

Psychiatry / Psychology 80.00% 36.36% 50.00% 11 

Pediatrics - Neonatal 60.00% 21.43% 31.58% 14 

Orthopedic 72.86% 71.83% 72.34% 71 

Ophthalmology 92.86% 76.47% 83.87% 17 

Obstetrics / Gynecology 86.36% 61.29% 71.70% 31 

Hematology - Oncology 33.33% 33.33% 33.33% 18 

Gastroenterology 93.94% 68.89% 79.49% 45 

ENT - Otolaryngology 88.24% 78.95% 83.33% 19   

accuracy 61.51% 

macro avg 67.03% 57.77% 60.40% 517 

weighted avg 64.11% 61.51% 61.69% 517 

Table 13 - Classification report of SVM 

Model Accuracy Precision Recall F1 

Multinomial NB 59.96% 64.27% 59.96% 60.14% 

Logistic Regression 62.67% 63.90% 62.67% 61.81% 

SVM 61.51% 64.11% 61.51% 61.69% 
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In general, the results are pretty good with the SVM classifier as they appear to 

be from the confusion matrix. The diagonal is full of correctly predicted documents but 

still there are documents that are being misclassified to some labels like “General 

Medicine” and “Radiology” mainly. 

 

 

 

 

 

 

 

Figure 33 - Confusion Matrix of Logistic Regression (Dropped Categories experiment) 
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5.3.3. Dropping Categories and Feature Selection using 𝑿𝟐  

In this experiment, feature selection will be implemented with scope of 

dimensionality reduction. 𝑋2 test will be used to test the independence between each 

feature and the target variable. All the features out of 2500 with p-value more than 0.05 

will be dropped. After selecting most relevant features using  𝑋2 test, the modeling data 

frame know includes only 1024 features. Below are the 10 most significant features of 

each category: 
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5.3.3.1. Multinomial Naïve Bayes: 

Multinomial Naïve Bayes classifier fitted with alpha parameter set to 0.01 while 

the corpus vectorized using ngram range of (1,1) and the use of idf term. 

label precision recall f1-score support 

Cardiovascular / Pulmonary 68.00% 68.92% 68.46% 74 

Neurology 61.82% 53.97% 57.63% 63 

Urology 71.43% 74.47% 72.92% 47 

General Medicine 38.79% 86.54% 53.57% 52 

Radiology 21.88% 12.73% 16.09% 55 

Psychiatry / Psychology 83.33% 90.91% 86.96% 11 

Pediatrics - Neonatal 33.33% 7.14% 11.76% 14 

Orthopedic 74.67% 78.87% 76.71% 71 

Ophthalmology 100.00% 76.47% 86.67% 17 

Obstetrics / Gynecology 73.33% 70.97% 72.13% 31 

Hematology - Oncology 25.00% 16.67% 20.00% 18 

Gastroenterology 93.10% 60.00% 72.97% 45 

ENT - Otolaryngology 81.25% 68.42% 74.29% 19      

accuracy 61.32% 

macro avg 63.53% 58.93% 59.24% 517 

weighted avg 62.56% 61.32% 60.21% 517 

 

 

The accuracy of Multinomial Naïve Bayes classifier improved from 59.96% to 

61.32%. The model deals good with categories like “Urology”, “Psychiatry / 

Psychology”, “Orthopedic”, “Ophthalmology”, “Obstetrics / Gynecology”, 

“Gastroenterology” and “ENT - Otolaryngology” reaching an f-1 score more than 70%. 

 

 

 

 

 

 

 

 

Table 15 - Classification report of NB 
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5.3.3.2. Logistic Regression: 

Again, the corpus is vectorized using Tfidf Vectorizer with ngram range set to 

(1,1) and with the use of idf term as Grid Search decided as best parameters. Fitting 

Logistic Regression model with “newton-cg” set as solver and “l2” as penalty 

parameters, the classification report is as follows: 

 

 

 

Results are much better with Logistic Regression than Multinomial NB. The 

model achieved a slight increase of accuracy from 62.67% to 63.44%. Although again 

is visible that the model can correctly identify many categories, 7 out of 13 categories 

have f-1 score more than 70%. 

 

 

 

 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 69.14% 75.68% 72.26% 74 

Neurology 59.02% 57.14% 58.06% 63 

Urology 73.47% 76.60% 75.00% 47 

General Medicine 48.24% 78.85% 59.85% 52 

Radiology 23.91% 20.00% 21.78% 55 

Psychiatry / Psychology 85.71% 54.55% 66.67% 11 

Pediatrics - Neonatal 50.00% 7.14% 12.50% 14 

Orthopedic 67.47% 78.87% 72.73% 71 

Ophthalmology 100.00% 76.47% 86.67% 17 

Obstetrics / Gynecology 84.62% 70.97% 77.19% 31 

Hematology - Oncology 30.77% 22.22% 25.81% 18 

Gastroenterology 91.43% 71.11% 80.00% 45 

ENT - Otolaryngology 87.50% 73.68% 80.00% 19   

accuracy 63.44% 

macro avg 67.02% 58.71% 60.66% 517 

weighted avg 64.21% 63.44% 62.60% 517 

Table 16 - Classification report of Logistic Regression 
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5.3.3.3. Support Vector Machines 

 

 

5.3.3.4. Experiment Summary 

 

Table 18 - Summary of "Dropping categories and Feature Selection" experiment 

The best performance with this experiment is, again, Logistic Regression’s 

classifier with an accuracy of 63.64%, precision weighted average 64.51%, recall 

weighted average 63.64% and f1-score weighted average 62.91%. The results are pretty 

good but there are some issues that must be solved. There is enough noise added mainly 

from categories like “General Medicine” and “Radiology”. During the next experiment 

those categories will be dropped and an oversampling technique that handles 

imbalanced training datasets, will be presented as a way of improvement of 

classification models. 

label precision recall f1-score support 

Cardiovascular / Pulmonary 65.06% 72.97% 68.79% 74 

Neurology 58.73% 58.73% 58.73% 63 

Urology 70.00% 74.47% 72.16% 47 

General Medicine 46.59% 78.85% 58.57% 52 

Radiology 26.53% 23.64% 25.00% 55 

Psychiatry / Psychology 75.00% 54.55% 63.16% 11 

Pediatrics - Neonatal 75.00% 21.43% 33.33% 14 

Orthopedic 72.86% 71.83% 72.34% 71 

Ophthalmology 93.33% 82.35% 87.50% 17 

Obstetrics / Gynecology 86.36% 61.29% 71.70% 31 

Hematology - Oncology 25.00% 22.22% 23.53% 18 

Gastroenterology 93.75% 66.67% 77.92% 45 

ENT - Otolaryngology 88.24% 78.95% 83.33% 19   

accuracy 62.28% 

macro avg 67.42% 59.07% 61.24% 517 

weighted avg 64.49% 62.28% 62.14% 517 

Table 17 - Classification report of SVM 

Model Accuracy Precision Recall f1-score 

Multinomial NB 61.32% 62.56% 61.32% 60.21% 

Logistic Regression 63.44% 64.21% 63.44% 62.60% 

SVM 62.28% 64.49% 62.28% 62.14% 
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5.3.4. Oversampling with SMOTE & Feature Selection 

 

In this experiment, “General Medicine” and “Radiology” category will be 

dropped as they add a lot of noise to the dataset. Also, the problem of imbalanced 

categories will be handled. The new dataset will be fed into SMOTE (Synthetic 

Minority Oversampling Technique) algorithm to be resampled. SMOTE aims to 

balance class distribution by randomly increasing minority class examples by 

replicating them. It generates virtual training records by linear interpolation for the 

minority class.  These synthetic training records are generated by randomly selecting 

one or more of the k-nearest neighbors for each example in the minority class.  

 

The initial number of records before oversampling was 2051 while after 

oversampling that number turned to 4081. 

 

     

 

 

 

 

 

 

 

 Table 19 - Categories counts before and after SMOTE 

 

5.3.4.1. Multinomial Naïve Bayes: 

 

Naïve Bayes classifier fitted on Tfidf vectorized texts with ngram range (1,1), 

𝑋2 test for feature selection ended up with 941 features out of 2500. 

Dropping “General Medicine” and “Radiology” category combined with 

oversampling to generate artificial data points, proved to be an efficient technique as 

the accuracy of the model increased to 85.68%. The classifier seems to recognize 

documents from all the categories properly. 

Category Counts before SMOTE Counts after SMOTE 

Cardiovascular / Pulmonary 371 371 

Orthopedic 355 371 

Neurology 317 371 

Urology 237 371 

Gastroenterology 224 371 

Obstetrics / Gynecology 155 371 

ENT – Otolaryngology 96 371 

Hematology- Oncology 90 371 

Ophthalmology 83 371 

Pediatrics - Neonatal 70 371 

Psychiatry / Psychology 53 371 
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label precision recall f1-score support 

Cardiovascular / Pulmonary 87.88% 77.33% 82.27% 75 

Neurology 77.61% 70.27% 73.76% 74 

Urology 91.18% 83.78% 87.32% 74 

Psychiatry / Psychology 92.50% 100.00% 96.10% 74 

Pediatrics - Neonatal 74.71% 86.67% 80.25% 75 

Orthopedic 75.29% 86.49% 80.50% 74 

Ophthalmology 97.33% 98.65% 97.99% 74 

Obstetrics / Gynecology 98.36% 81.08% 88.89% 74 

Hematology - Oncology 70.33% 86.49% 77.58% 74 

Gastroenterology 90.91% 80.00% 85.11% 75 

ENT - Otolaryngology 95.77% 91.89% 93.79% 74   

accuracy 85.68% 

macro avg 86.53% 85.70% 85.78% 817 

weighted avg 86.53% 85.68% 85.77% 817 

 

Table 20  - Classification Report of Multinomial NB 

 

5.3.4.2. Logistic Regression: 

 

Logistic Regression classifier trained with “l2” penalty and “newton-cg” solver. 

The vectorized corpus’s ngram range was set at (1,1) and the selected features were 

922. 

label precision recall f1-score support 

Cardiovascular / Pulmonary 87.50% 84.00% 85.71% 75 

Neurology 76.47% 70.27% 73.24% 74 

Urology 91.30% 85.14% 88.11% 74 

Psychiatry / Psychology 92.50% 100.00% 96.10% 74 

Pediatrics - Neonatal 79.75% 84.00% 81.82% 75 

Orthopedic 75.90% 85.14% 80.25% 74 

Ophthalmology 96.05% 98.65% 97.33% 74 

Obstetrics / Gynecology 97.10% 90.54% 93.71% 74 

Hematology - Oncology 86.49% 86.49% 86.49% 74 

Gastroenterology 90.79% 92.00% 91.39% 75 

ENT - Otolaryngology 97.18% 93.24% 95.17% 74   

accuracy 88.13% 

macro avg 88.28% 88.13% 88.12% 817 

weighted avg 88.27% 88.13% 88.11% 817 

Table 21 - Classification report of Logistic regression 
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The model archives an accuracy of 87.88% which is way better than the 

equivalent model of the previous experiment. 

 

5.3.4.3. Support Vector Machines 

 

Table 22 - Classification report of SVM 

5.3.4.4. Experiment Summary 

 

Model Accuracy Precision Recall F1 

Multinomial NB 85.07% 86.07% 85.07% 85.21% 

Logistic Regression 88.13% 88.27% 88.13% 88.11% 

SVM 88.98% 89.18% 88.98% 88.95% 

    
  Table 23 - Summary of "Oversampling with SMOTE & Feature Selection" experiment 

label precision recall f1-score support 

Cardiovascular / Pulmonary 91.30% 84.00% 87.50% 75 

Neurology 75.76% 67.57% 71.43% 74 

Urology 94.20% 87.84% 90.91% 74 

Psychiatry / Psychology 93.67% 100.00% 96.73% 74 

Pediatrics - Neonatal 86.42% 93.33% 89.74% 75 

Orthopedic 73.86% 87.84% 80.25% 74 

Ophthalmology 97.30% 97.30% 97.30% 74 

Obstetrics / Gynecology 92.11% 94.59% 93.33% 74 

Hematology - Oncology 86.11% 83.78% 84.93% 74 

Gastroenterology 91.67% 88.00% 89.80% 75 

ENT - Otolaryngology 98.59% 94.59% 96.55% 74   

accuracy 88.98% 

macro avg 89.18% 88.99% 88.95% 817 

weighted avg 89.18% 88.98% 88.95% 817 
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The best performance with this experiment is of SVM classifier with an 

accuracy of 88.98%, precision weighted average 89.18%, recall weighted average 

88.98% and f1-score weighted average 88.95%. The results of this experiment were 

undoubtedly good enough. Categories like “Cardiovascular / Pulmonary”, “Psychiatry 

/ Psychology”, “Orthopedics”, “Ophthalmology”, “Obstetrics / Gynecology” and “ENT 

- Otolaryngology” have f1-score more than 80%, some of them are even more than 90% 

which means that SVM classifier does a perfect separation between each of them and 

the others. 

 

 

  

Figure 34 - Confusion Matrix of SVM classifier 
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5.4. Deep Learning Approach 

In this section, deep learning algorithms and techniques will be presented as a 

way of text preprocessing and classification. All the gained knowledge from the 

previous section will be used during the preprocessing steps. The target variable finally 

consists of 11 unique categories to be predicted. 

 

Text before cleaning Text after cleaning 

2-D M-MODE: , ,1.  Left atrial 

enlargement with left atrial diameter of 4.7 

cm.,2.  Normal size right and left 

ventricle.,3.  Normal LV systolic function 

with left ventricular ejection fraction of 

51%.,4.  Normal LV diastolic function.,5.  

No pericardial effusion.,6.  Normal 

morphology of aortic valve, mitral valve, 

tricuspid valve, and pulmonary valve.,7.  PA 

systolic pressure is 36 mmHg.,DOPPLER: , 

,1.  Mild mitral and tricuspid 

regurgitation.,2.  Trace aortic and pulmonary 

regurgitation. 

left atrial enlargement left atrial 

diameter normal size right left normal lv 

systolic function left ventricular ejection 

fraction normal lv diastolic pericardial 

normal morphology aortic valve mitral valve 

tricuspid valve pulmonary pa systolic 

pressure doppler mild mitral tricuspid trace 

aortic pulmonary regurgitation 

Table 24 - Before and After text cleaning 

 

Figure 35 - Final medical specialties counts 
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From Table 24, easily can be observed that all punctuation, stop words and non-

alphabetical characters removed from each document while simultaneously, instead of 

using the porter stemmer to stem them the tokens inside each document were 

lemmatized and transformed into lowercase. 

5.4.1. Deep Neural Network 

The corpus of total 2051 documents vectorized using Tf-idf vectorizer with 

5000 maximum features. The training sample consists of 1640 documents and 5000 

features while the test set consists of 411 documents and 5000 features. 

 

Network Achitecture 

The input layer of the neural network consists of 5000 nodes. Four layers of 512 

nodes followed by one dropout layer of 0.25 dropping rate form the hidden layers. 

Finally, the output layer comprised of 11 nodes and softmax activation function 

completes the architecture of the neural network. The total trainable parameters are 

3,616,779. 

 

 

 

 

 

 

 

 

 

 

Figure 36 - DNN Architecture 
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Model Evaluation 

 

  Table 25 - Classification report of DNN 

The accuracy of the DNN is 76.16%. The remarkable note is that the network 

could not correctly predict most of the true labels of “Pediatrics – Neonatal” and 

“Psychiatry / Psychology” categories inside the test set. This is also visible from Figure 

36. The diagonal cells of confusion matrix corresponding to those categories contain1 

and 2 correctly classified documents, respectively.  

 

 

 

 

 

 

 

 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 91.36% 81.32% 86.05% 91 

Neurology 73.08% 65.52% 69.09% 58 

Urology 84.00% 85.71% 84.85% 49 

Psychiatry / Psychology 66.67% 15.38% 25.00% 13 

Pediatrics - Neonatal 100.00% 7.14% 13.33% 14 

Orthopedic 72.62% 88.41% 79.74% 69 

Ophthalmology 72.22% 86.67% 78.79% 15 

Obstetrics / Gynecology 87.88% 90.63% 89.23% 32 

Hematology - Oncology 28.13% 60.00% 38.30% 15 

Gastroenterology 76.32% 78.38% 77.33% 37 

ENT - Otolaryngology 78.95% 83.33% 81.08% 18   

accuracy 76.16% 

macro avg 75.56% 67.50% 65.71% 411 

weighted avg 79.09% 76.16% 75.28% 411 

Figure 37 - Confusion Matrix of DNN 
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5.4.2. Convolutional Neural Network 

Preprocessing  

To use Convolutional Neural Networks for text classification some extra 

preprocessing is required. After tokenizing the documents, the ended up vocabulary 

size is 16,513 unique tokens. These tokens need to be presented as sequence of integers. 

 Table 26 - Text encoded into sequence of integers 

The word “left” is represented by the number 3 while the word “artial” by the 

number 342 and so on. All the corpus is being encoded into lists of encoded texts. As 

different texts have different lengths of words, the lists of encoded documents are also 

of different lengths. A deep learning model will often want input of uniform size which 

means that the documents of different lengths will raise a problem. All the documents 

must be of the same pre-defined length, this means that the longer documents must 

become shorter, and the shorter documents must become longer by adding a pre-defined 

numeric value (usually 0), This is going to be resolved using padding. Deciding the 

maximum length of each encoded document to be 100 and the padding value to be 0, 

the padded encoded documents will be as the example I the table below.  

 

 

 

 

Natural Language Text Text encoded into sequence of integers 

left atrial enlargement left atrial diameter 

normal size right left normal lv systolic 

function left ventricular ejection fraction 

normal lv diastolic pericardial normal 

morphology aortic valve mitral valve 

tricuspid valve pulmonary pa systolic 

pressure doppler mild mitral tricuspid 

trace aortic pulmonary regurgitation 

 

[3, 342, 1543, 3, 342, 966, 7, 224, 

2, 3, 7, 1326, 752, 451, 3, 255, 886, 853, 

7, 1326, 2492, 1293, 7, 3439, 331, 308, 

913, 308, 1567, 308, 150, 3551, 752, 49, 

2031, 91, 913, 1567, 1878, 331, 150, 

1327] 
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Table 27 - Padding sequences into 100 maximum length 

The input of the model is going to be each of these encoded documents of 100 

length. Each token represented by an integer is going to be transformed into a vector of 

a specific size. The values of the vectors are real numbers called weights and are 

assigned throughout an embedding layer which assign numbers close to each other 

depending on the similarity of the tokens. The actual input of the CNN is an array of 

(100, vector size) shape. The vector size of the embedding layer chosen for the model 

is 300. 

 

Before Padding After Padding 

 

 

[3, 342, 1543, 3, 342, 966, 7, 224, 

2, 3, 7, 1326, 752, 451, 3, 255, 886, 853, 

7, 1326, 2492, 1293, 7, 3439, 331, 308, 

913, 308, 1567, 308, 150, 3551, 752, 49, 

2031, 91, 913, 1567, 1878, 331, 150, 

1327] 

[3, 342, 1543, 3, 342, 966, 7, 224, 

2, 3, 7, 1326, 752, 451, 3, 255, 886, 853, 

7, 1326, 2492, 1293, 7, 3439, 331, 308, 

913, 308, 1567, 308, 150, 3551, 752, 49, 

2031, 91, 913, 1567, 1878, 331, 150, 

1327, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

[3, 255, 326, 224, 192, 1999, 675, 

7, 192, 364, 3, 255, 752, 451, 410, 8449, 

218, 886, 853, 6298, 95, 15, 410, 304, 3, 

255, 2944, 940, 1527, 532, 326, 72, 316, 

8449, 3, 255, 752, 451, 523, 3, 255, 8450, 

1429, 95, 8, 262, 3, 342, 49, 95, 2031, 3, 

1061, 410, 954, 2, 1061, 2, 579, 675, 331, 

441, 410, 331, 308, 410, 1789, 91, 331, 

308, 185, 1790, 331, 308, 30, 71, 5865, 

1405, 12108, 1527, 1568, 1527, 913, 

1718, 1051, 778, 3087, 3173, 587, 1273, 

913, 308, 3087, 91, 913, 1567, 308, 410, 

7, 1878, 1567, 1327, 361, 150, 20, 398, 

218, 150, 20, 752, 49, 541, 218, 2, 342, 

49, 150, 308, 410, 7, 1878, 150, 1293, 

648, 3088, 83, 1791, 2031, 1569, 596, 

717, 5187, 7440, 1544, 6799, 296, 747, 

4129, 829, 5495, 2537, 496, 191, 3821] 

[8, 262, 3, 342, 49, 95, 2031, 3, 

1061, 410, 954, 2, 1061, 2, 579, 675, 331, 

441, 410, 331, 308, 410, 1789, 91, 331, 

308, 185, 1790, 331, 308, 30, 71, 5865, 

1405, 12108, 1527, 1568, 1527, 913, 

1718, 1051, 778, 3087, 3173, 587, 1273, 

913, 308, 3087, 91, 913, 1567, 308, 410, 

7, 1878, 1567, 1327, 361, 150, 20, 398, 

218, 150, 20, 752, 49, 541, 218, 2, 342, 

49, 150, 308, 410, 7, 1878, 150, 1293, 

648, 3088, 83, 1791, 2031, 1569, 596, 

717, 5187, 7440, 1544, 6799, 296, 747, 

4129, 829, 5495, 2537, 496, 191, 3821] 
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Network Achitecture 

As mentioned above the first layer of the CNN model is an embedding layer 

with input size 100 and the output size is an array of size (100,300). Following the 

embedding layer, a 1-dimensional convolution layer with 80 filters ss assigned to the 

model architecture. Each filter’s kernel size is 5. A Global Max-Pooling layer is 

assigned to the convolution and one dense layer with 64 nodes and 0.2 dropping rate 

dropout layer follows.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 - CNN Architecture 
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Model Evaluation 

 

Table 28 - Classification report of CNN 

 

The CNN model’s predictions are less accurate than DNN’s. Although The 

CNN model can correctly predict some more of the documents that belong to “Pediatric 

- Neonatal” category.  

 

 

 

 

 

 

 

 

 

 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 74.76% 84.62% 79.38% 91 

Neurology 64.29% 46.55% 54.00% 58 

Urology 70.69% 83.67% 76.64% 49 

Psychiatry / Psychology 100.00% 46.15% 63.16% 13 

Pediatrics - Neonatal 50.00% 28.57% 36.36% 14 

Orthopedic 65.82% 75.36% 70.27% 69 

Ophthalmology 100.00% 80.00% 88.89% 15 

Obstetrics / Gynecology 88.24% 93.75% 90.91% 32 

Hematology - Oncology 33.33% 33.33% 33.33% 15 

Gastroenterology 60.00% 64.86% 62.34% 37 

ENT - Otolaryngology 78.57% 61.11% 68.75% 18   

accuracy 70.32% 

macro avg 71.43% 63.45% 65.82% 411 

weighted avg 70.55% 70.32% 69.53% 411 

Figure 39 - Confusion Matrix of CNN 
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5.4.3. Convolutional Neural Network with Glove Embeddings 

 

  

       Table 29 -Classification report of CNN wih Glove Embeddings 

Using pre-trained Glove word vectors as embedding layer in CNN did not bring 

any significant change in the overall classification. However, CNN with pre-trained 

Glove embedding dealt with some categories in a more successful way. Categories like 

“Cardiovascular / Pulmonary”, “Neurology”, “Orthopedic”, “Gastroenterology”, 

“Gastroenterology” and “ENT - Otolaryngology” got higher f-1 score than the CNN 

without pre-trained Glove embeddings. 

 

 

 

 

 

 

 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 81.32% 81.32% 81.32% 91 

Neurology 52.24% 60.34% 56.00% 58 

Urology 63.08% 83.67% 71.93% 49 

Psychiatry / Psychology 100.00% 46.15% 63.16% 13 

Pediatrics - Neonatal 42.86% 21.43% 28.57% 14 

Orthopedic 71.23% 75.36% 73.24% 69 

Ophthalmology 92.31% 80.00% 85.71% 15 

Obstetrics / Gynecology 85.29% 90.63% 87.88% 32 

Hematology - Oncology 28.57% 26.67% 27.59% 15 

Gastroenterology 80.00% 64.86% 71.64% 37 

ENT - Otolaryngology 90.91% 55.56% 68.97% 18   

accuracy 70.56% 

macro avg 71.62% 62.36% 65.09% 411 

weighted avg 71.71% 70.56% 70.20% 411 
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The best performing model, according to validation loss and validation accuracy 

(Figure 40), is of the Deep neural network which was trained over 6 epochs add 

achieved an accuracy of 0.76 and validation loss 0.96. 

5.4.4. Text Generation for balancing minority categories 

In this section one LSTM model is going to be presented as a technique for 

artificial test generation. With this method the data imbalance problem is going to be 

resolved. 

For the generation of artificial texts, extra preprocessing steps are required to 

prepare the input of the model. The model will take as an input a sequence of 15 tokens, 

and it will try to predict the next token. The features and the labels will be extracted 

from the texts in a recurrent way. An algorithm will walk through each text and will 

extract the first 15 tokens as features and the 16th feature as label. This will be done for 

all consecutive 15-length tokens as shown above: 

Figure 40 - Models performance over epochs 
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For example, the following sentence represent a text: 

“Natural language processing refers to the branch of computer science and 

more specifically, the branch of artificial intelligence or AI concerned with giving 

computers the ability to understand text and spoken words as human beings can” 

 

Features Labels 

Natural language processing refers to 

the branch of computer science and more 

specifically, the branch” 

of 

language processing refers to the 

branch of computer science and more 

specifically, the branch of 

artificial 

processing refers to the branch of 

computer science and more specifically, the 

branch of artificial 

intelligence 

refers to the branch of computer science 

and more specifically, the branch of artificial 

intelligence 

or 

to the branch of computer science and 

more specifically, the branch of artificial 

intelligence or 

AI 

the branch of computer science and 

more specifically, the branch of artificial 

intelligence or AI 

concerned 

branch of computer science and more 

specifically, the branch of artificial intelligence 

or AI concerned 

with 

of computer science and more 

specifically, the branch of artificial intelligence 

or AI concerned with 

giving 

computer science and more specifically, 

the branch of artificial intelligence or AI 

concerned with giving 

computers 

science and more specifically, the 

branch of artificial intelligence or AI concerned 

with giving computers 

the 

and more specifically, the branch of 

artificial intelligence or AI concerned with giving 

computers the  

ability 

more specifically, the branch of 

artificial intelligence or AI concerned with giving 

computers the ability 

to 
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specifically, the branch of artificial 

intelligence or AI concerned with giving 

computers the ability to 

understand 

the branch of artificial intelligence or AI 

concerned with giving computers the ability to 

understand 

text 

branch of artificial intelligence or AI 

concerned with giving computers the ability to 

understand text  

and 

of artificial intelligence or AI concerned 

with giving computers the ability to understand 

text and 

spoken 

artificial intelligence or AI concerned 

with giving computers the ability to understand 

text and spoken 

words 

intelligence or AI concerned with giving 

computers the ability to understand text and 

spoken words 

as 

or AI concerned with giving computers 

the ability to understand text and spoken words 

as 

human 

AI concerned with giving computers the 

ability to understand text and spoken words as 

human 

beings 

concerned with giving computers the 

ability to understand text and spoken words as 

human beings 

can 

Table 30 - Feature and Labels extraction from given text. 

 This will be applied to all texts after they have been cleaned and all the 

preprocessing steps are done. Short texts, those that contain less than 30 words, are not 

going to be included in the process of feature and label creation. 

After the creation of the features and the labels, the tokens will be encoded into 

integers and the data are going to be fed into the LSTM model. 
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After training the model with the created features and labels, text generation 

process will take place. 

The lengths of the generated texts are going to be randomly selected from 50 to 

150 words maximum. After defining the length of the generated text, an encoded text 

is randomly selected from the corpus and a sequence of 15 consecutive words inside of 

it is extracted from any random position. This 15 word sequence is going to be the 

starting point for generating the artificial text. The model that was trained before, is 

Figure 41 - LSTM model for text generation 
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going to be called as many times as the length of generated text is defined. The model 

will take as an input the 15 sequences that randomly were selected and will predict the 

16th word. That 16th word constitutes the first word of the artificial text. During the 

next iteration, the first element of the 15-length sequence is dropped and the 16th 

element that was predicted in the previous iteration is being assigned to the sequence, 

know the new 15-length sequence is being fed into the model and again the 16th is 

predicted and assigned next to the first prediction and so on. This process keeps going 

until the maximum generated text length is reached. 

The process mentioned above generates one artificial text. To handle the 

problem of imbalanced categories, the corpus is going to be split into 11 sub corpuses 

each for the 11unique categories. Then the LSTM model is going to be trained with 

each of the subcategories. Having the model trained on each subcategory a repeating 

structure will generate N artificial texts of random length between 50 to 150 words. 

 

 

 

 

Figure 42 - Text categories counts after text generation 
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5.4.5. Deep Neural Network with oversampled data 

 

            Table 31 - Classification report of DNN on generated texts 

The DNN which was fitted on the mixed dataset which includes the artificial 

texts that were generated using the LSTM model, seems to perform well reaching an 

accuracy almost 85%. The weighted average of F-1 scores is 84.81. The categories that 

did not perform well during the previous experiments such as “Neurology”, “Pediatrics 

- Neonatal” etc., are now well performing categories. This is because of the extra 

training and testing samples that were created after the oversampling of the dataset. The 

testing samples increased from 411 to 911, this is an increase of 122% by the initial 

testing samples.   

 

 

 

 

 

 

 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 89.53% 85.56% 87.50% 90 

Neurology 77.14% 62.07% 68.79% 87 

Urology 90.00% 83.51% 86.63% 97 

Psychiatry / Psychology 79.38% 90.59% 84.62% 85 

Pediatrics - Neonatal 89.19% 86.84% 88.00% 76 

Orthopedic 67.31% 90.91% 77.35% 77 

Ophthalmology 88.33% 74.65% 80.92% 71 

Obstetrics / Gynecology 90.80% 94.05% 92.40% 84 

Hematology - Oncology 89.55% 83.33% 86.33% 72 

Gastroenterology 82.47% 90.91% 86.49% 88 

ENT - Otolaryngology 96.20% 90.48% 93.25% 84   

accuracy 84.85% 

macro avg 85.45% 84.81% 84.75% 911 

weighted avg 85.50% 84.85% 84.81% 911 

Figure 43 - Confusion Matrix of DNN on generated texts 
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The improvement is also visible from the confusion matrix as the diagonal 

includes almost all the data points. Very few misclassifications are spotted and those 

are for the categories of “Neurology”, “Psychiatry - Psychology” and 

“Ophthalmology”. Many categories that suffered from misclassification seem to have 

dealt with this as more texts were generated to support the classification. One good 

example is the category of “Pediatrics – Neonatal”. 

5.4.6. Convolutional Neural Network with oversampled data 

 

label precision recall f1-score support 

Cardiovascular / Pulmonary 83.58% 62.22% 71.34% 90 

Neurology 66.20% 54.02% 59.49% 87 

Urology 81.00% 83.51% 82.23% 97 

Psychiatry / Psychology 63.89% 81.18% 71.50% 85 

Pediatrics - Neonatal 64.84% 77.63% 70.66% 76 

Orthopedic 62.92% 72.73% 67.47% 77 

Ophthalmology 71.15% 52.11% 60.16% 71 

Obstetrics / Gynecology 89.29% 89.29% 89.29% 84 

Hematology - Oncology 60.44% 76.39% 67.48% 72 

Gastroenterology 84.42% 73.86% 78.79% 88 

ENT - Otolaryngology 88.89% 85.71% 87.27% 84   

accuracy 73.77% 

macro avg 74.24% 73.51% 73.24% 911 

weighted avg 74.80% 73.77% 73.67% 911 

 

         Table 32 - Classification report of CNN on generated texts 

The Convolutional Neural Network did not perform that well in comparison 

with the Deep Neural Network. The oversampling of the dataset had no impact on the 

overall model’s accuracy. The F-1 scores of some categories such as “Pediatrics 

Neonatal”, “Neurology”, “Obstetrics / Gynecology”, “ENT - Otolaryngology” and 

“Hematology - Oncology” improved but the others remained the same or did not 

improve. This is visible also from the following confusion matrix. Many more 

misclassifications are visible from almost all the categories. 
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5.4.7. Summary 

 

 
Table 33 - Summary of all DL experiments 

The best performing model is the deep neural network that was fitted on the 

dataset that also included the artificial text data which were generated from the LSTM 

model. That model has an accuracy of 84.85%. The weighted average of the precision 

is 85.5%, the recall is 84.85% and of F-1 score is 84.81%. Considering that the target 

variable is a multiclass category, The performance of the model is very satisfactory.  

 

Model Accuracy Precision Recall f-1 score 

DNN 76.16% 79.09% 76.16% 75.28% 

CNN 70.32% 70.55% 70.32% 69.53% 

CNN-Glovee 70.56% 71.71% 70.56% 70.20% 

DNN-Oversampled 84.85% 85.50% 84.85% 84.81% 

CNN-Glovee-Oversampled 73.77% 74.80% 73.77% 73.67% 

Figure 44 - All models performance over epochs 
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Figure 43 shows the validation accuracy and loss, over the epochs, for each one 

of all the DL models. All the models except the candidate perform almost in the same 

way. The candidate model has a validation loss of 0.52 which is almost half of the 

others validation loss. 
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6. Chest X-rays Covid-19 Classification 

In this chapter image classification techniques will be presented as a way to 

detect Covid-19 infection by analyzing human chest x-rays. 

6.1. Dataset 

The used dataset was extracted from Kaggle and refers to chest x-rays which 

were collected from publicly released GitHub repository by the University of Montreal 

professors. The dataset consists of a total of 317 images belonging to three classes, 

“Normal”, “Covid-19” and “Viral Pneumonia”. 

 Train set Test set Totals 

Normal 70 20 90 

Covid-19 111 26 137 

Viral Pneumonia 70 20 90 

Totals 251 66 317 

 

Table 34 - Dataset Description 

For the current analysis the “Viral Pneumonia” images were not taken into 

consideration, and they have been dropped. The classification task turned into binary 

classification. 

 Train set Test set Totals 

Normal 70 20 90 

Covid-19 111 26 137 

Totals 181 46 227 

 

Table 35 - Final Dataset Description 

 

6.2. Data Exploration and Preprocessing 

The images that were extracted from the source seem to be well separated 

between the classes although the x-ray images are of different sizes. 

https://www.kaggle.com/datasets/pranavraikokte/covid19-image-dataset
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Deep learning requires all the inputs to be of the same size. For that reason and 

for less complexity and computational time, al the images resized to 224×224 pixel 

images. The ended up training and testing samples converted into 4 dimensional arrays 

of (181, 224, 224, 3) and (46, 224, 224, 3) shape respectively. The 1st dimension refers 

to the number of samples, the 2nd, and the 3rd to the image size while the 4th dimension 

refers to the three color channels of each pixel. 

 

 

 

 

 

 

 

Figure 45 - Images of Normal and Covid-19 X-rays 
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6.3. Deep Neural Network 

To train a deep neural network with images, transformed to n dimensional array, 

the input must be reshaped into two - dimensional array where the first dimension is 

the number of samples and the second is the product of the total pixels and the color 

channels. Hence, the training set which is of (181, 224, 224, 3) shape will be reshaped 

into (181, 150528) and the test set into (46, 150528).  

The multilayer perceptron, between input layer and output layer, contains 6 

hidden layers each of them followed by a dropout layer with 10% drop out percentage, 

as shown in figure 46: 

 

 

 

Table 36 - Classification report of DNN 

 

The accuracy of the model is 91.30% which means that, approximately, 9 out 

of 10 chest x-rays are classified correctly. It is important to detect correctly as many 

Covid-19 cases as possible. If positive is set to be the presence of Covid-19 infection, 

it is important to minimize False Negative cases. Hence, the metric that is more 

important is the sensitivity or recall of the model to predict Covid-19 cases. The model 

has a recall of 91.30% which means that it was able to detect 96.15% of the x-rays with 

covid infection. 

label precision recall f1-score support 

Normal 94.44% 85.00% 89.47% 20 

Covid-19 89.29% 96.15% 92.59% 26      

accuracy 91.30% 

macro avg 91.87% 90.58% 91.03% 46 

weighted avg 91.53% 91.30% 91.24% 46 

Figure 46 - DNN Architecture 
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6.4. VGG16 Network 

VGG16, also known as OxfordNet, is a Convolutional Neural Network 

architecture developed by Visual Geometry Group of Oxford University. The model 

that was proposed by Andrew Zisserman and Karen Simonyan (2013) and published in 

a paper called “Very Deep Convolutional Networks for Large-Scale Image 

Recognition” was trained on ImageNet database which contains more than 14 million 

images of total 1000 classes. VGG16 can achieve a test accuracy of 92.7%. 

 

The model architecture as shown in Figure 49, consists of 16 weighted layers 

of which, thirteen are Convolution layers and three Dense layers. Also, it has five Max 

Pooling layers which sum up 21 layers in total. The input of the network is of size 

224×224 with 3 RGB channels image. The Convolutional layer uses 3×3 convolution 

Figure 49 - VGG16 Architecture 

Figure 48 - Confusion matrix of DNN Figure 47 - Receiver Operating Characteristic Curve of DNN 
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filters with stride 1 and the same max pooling layer of 2×2 filter of stride 2. In this 

experiment the pre-trained VGG16 will be used with the difference of adding 3 more 

dense layers at the output of it. This technique is known as Transfer Learning. Transfer 

Learning is a Machine Learning technique where a pre-trained model is used as the 

starting point of the training of another model. This optimization task promises rapid 

progress while training the second model and can achieve significantly higher 

performance than training from scratch a model with small amount of data. Transfer 

Learning is very common nowadays as most image and NLP are not implemented from 

scratch anymore. 

 

 

 

 Table 37 - Classification report of VGG16 

 

 

 

 

 

 

 

 

 

label precision recall f1-score support 

Normal 95.24% 100.00% 97.44% 20 

Covid-19 100.00% 96.15% 98.11% 26      

accuracy 97.83% 

macro avg 97.62% 98.03% 97.80% 46 

weighted avg 97.93% 97.83% 97.83% 46 

Figure 50 - Confusion Matrix of VGG16 
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The model accuracy is 97.83% which is very good. The recall of the Covid-19 

class is 96.15% which means that the model can identify almost all of the x-rays of 

infected patients. 

 

 

 

 

 

 

 

 

 

6.5. Summary 

The best performance is achieved from the VGG16 model with the following 

performance metrics: 

 
Table 38 - Models Summary Table 

 

 

 

Model accuracy Precision Recall F-1 Score 

DNN 91.30% 91.53% 91.30% 91.24% 

VGG16 97.83% 97.93% 97.83% 97.83% 

Figure 53 - Receiver Operating Characteristic of models Figure 52 - Models performance over training 

Figure 51 - Receiver Operating Characteristic Curve of VGG16 
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In Figure 52 the validation loss and accuracy for both models are presented over 

the epochs. Validation loss of VGG16 is 0.34 while the validation accuracy is 0.98 in 

just two epochs training. This is normal as the weights of the VGG16 were not trained 

from scratch, but the pre-trained weights were used. 
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7. Conclusion 

The aim of this thesis was to develop Machine Learning and Deep Learning 

models to classify medical text documents and medical images as well, into pre-defined 

categories. The purpose is to present a concrete solution which, combined with the 

medical staff, would transform that time consuming task into a handy and time saving 

one. 

During the analysis a dataset of 4999 total medical transcriptions belonging to 

40 distinct categories was taken as a starting point. The dataset is quite noisy, and the 

categories are imbalanced over the transcriptions. A lot of medical transcriptions 

overlap across the categories. After all the text cleaning, vectorization and SMOTE 

algorithm for data balancing, three Machine Learning algorithms were tested and 

evaluated over multiple experiments. SVM algorithm that achieved a classification 

accuracy of 88.98% and 0.89 f-1 score brought the best classification performance. 

Many categories were dropped as overlapped medical specialties. This action 

reduced the number of unique classes increasing the performance of the algorithms 

despite the loss of significant number of documents. The same classification is proposed 

to be split into two different classifications in the future. One primary classification 

algorithm that classifies the text documents into a medical specialty and a secondary 

that classifies each medical specialty’s document into a subspecialty. 

A model to recognize and classify chest X-rays into two categories was 

presented, in the context of image classification. The images were discretized into two 

categories. Patients with normal chest X-rays and patients whose lungs were infected 

with Covid-19 virus. The task was carried out using two neural network architectures. 

A Multilayer Perceptron which achieved an accuracy of 91.3% and 0.96 recall of the 

positive class (Covid-19). The results were quite good, but the best performance 

achieved from a pre-trained CNN, also known as VGG16 network, which achieved an 

accuracy of 98.03% and 0.96 recall of the positive class. 

This task can go one step further in the future, in the context of computer vision, 

by splitting it into two tasks. After the classification of the Covid-19 cases one 

secondary model could recognize the type and the level of the damage that has been 

caused by the infection to the patient.  
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8. Appendix 

8.1. Medical Text Classification Code 
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8.2. Medical Text Classification (Deep Learning Approach) Code 
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8.3. Medical Image Classification Code 
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