

Query Optimization with Deep Learning

Architectures

by

Theodoros Goulas

Submitted

in partial fulfillment of the requirements for the degree of

Master of Artificial Intelligence

at the

UNIVERSITY OF PIRAEUS

June 2022

 University of Piraeus, NCSR “Demokritos”. All rights reserved.

Author: Theodoros Goulas

II-MSc "Artificial Intelligence"

June 20, 2022

Certified by.

.

Stasinos Konstantopoulos

Post-Doctoral Researcher

 Thesis Supervisor

Certified by.

.

Antonis Troumpoukis Post-

Doctoral Researcher

Member of Examination

Committee

 Certified by.

.

Thanasis Vergoulis

Post-Doctoral Researcher

Member of Examination

Committee

 -i-

Query Optimization with Deep Learning Architectures

By

Theodoros Goulas

Submitted to the II-MSc "Artificial Intelligence" on June 20, 2022, in partial

fulfillment of the
requirements for the MSc degree

Abstract

The increasing trend of moving from the old-fashioned centralized database systems into
distributed ones significantly increased the query optimization problem's complexity,
leading to complicated optimization algorithms based on time and resource-consuming
analytical methods. This study proposes introducing natural language processing
techniques combined with Deep Learning architectures as a statistical alternative to the
traditional analytical query optimization approach to address this issue.

Thesis Supervisor: Stasinos Konstantopoulos
Title: Query Optimization with Deep Learning Architectures

-ii-

Acknowledgments

First and foremost, I would like to thank the thesis supervisor Mr. Stasinos

Konstantopoulos who guided me throughout this project. Besides, I would like to

thank the members of the Examination Committee, Mr. Antonis Troumpoukis and

Mr. Thanasis Vergoulis, for their significant contribution to the completion of the

current study.

Also, I would like to thank my girlfriend Maria and my family and friends for their

support. Without that support, I couldn't have succeeded in completing this project.

Any opinions, findings, conclusions, or recommendations expressed in this

material are the author's. They do not necessarily reflect the views of the «funding

body» or the view of the University of Piraeus and Inst. of Informatics and

Telecom. of NCSR "Demokritos".

 -iii-

Contents

1 1

1.1 OUTLINE 3

2 4

2.1 QUERY OPTIMIZATION 5

2.1.1 6

2.1.2 6

2.1.3 16

2.2 MACHINE LEARNING ALGORITHMS 20

2.2.1 21

2.2.2 21

2.2.3 23

2.3 REMARKS 27

3 28

3.1 DATASET PREPARATION 28

3.2 DATA PREPROCESSING 31

3.2.1 32

3.2.2 33

3.2.3 35

3.3 MODEL 34

3.3.1 35

3.3.2 37

3.3.3 38

3.4 EXPERIMENTS 38

3.4.1 39

3.4.2 45

3.4.3 48

-iv-

4 50

FUTURE WORK 51

REFERENCES 52

 -v-

List of Figures

FIGURE 1: FQP SUB-PROCESSES 2

FIGURE 2: QUERY FLOW 6

FIGURE 3: QUERY OPTIMIZER ARCHITECTURE 7

FIGURE 4: QUERY TREES 8

FIGURE 5: JOIN TREES; T3 HAS A CROSS PRODUCT 9

FIGURE 6: LEFT-DEEP (T1), BUSHY (T2), AND RIGHT-DEEP (T3) JOIN TREES. 10

FIGURE 7: DRILLING A HOLE IN BUCKET B TO IMPROVE THE HISTOGRAM QUALITY 13

FIGURE 8: A WEB SERVICE MANAGEMENT SYSTEM (WSMS) [7] 16

FIGURE 9: EXECUTION PLAN DIRECTED ACYCLIC GRAPH (DAG) 17

FIGURE 10: RECURRENT NEURAL NETWORK ARCHITECTURE 21

FIGURE 11: LSTM HIDDEN STATE UNIT 22

FIGURE 12: EXAMPLE QUERY TREE 30

FIGURE 13: OPERATOR COUNT DISTRIBUTION OVER DATASET QUERIES 30

FIGURE 14: ENCODER-DECODER SEQUENCE TO SEQUENCE MODEL 35

FIGURE 15: ATTENTION MECHANISM 36

FIGURE 16: TEACHER FORCING MECHANISM 36

FIGURE 17: INFERENCE PROCEDURE 37

FIGURE 18: TRAINING-VALIDATION ACCURACY AND LOSS PER EPOCH 40

FIGURE 19: TRAINING-VALIDATION ACCURACY AND LOSS PER EPOCH 41

FIGURE 20: PREDICTION ACCURACY COMPARED WITH QUERY COMPLEXITY GRAPH 42

FIGURE 21: TRAINING-VALIDATION ACCURACY AND LOSS PER EPOCH 43

FIGURE 22: PREDICTION ACCURACY COMPARED WITH QUERY COMPLEXITY GRAPH 44

FIGURE 23: TRAINING-VALIDATION ACCURACY AND LOSS PER EPOCH 45

FIGURE 24: PREDICTION ACCURACY COMPARED WITH QUERY COMPLEXITY GRAPH 45

FIGURE 25: TRAINING-VALIDATION ACCURACY AND LOSS PER EPOCH 47

FIGURE 26: PREDICTION ACCURACY COMPARED WITH QUERY COMPLEXITY GRAPH 47

-vi-

List of Tables

TABLE 1: WEB SERVICES' COSTS AND SELECTIVITIES 19

TABLE 2: TEXT CLEANSING STEPS 23

 -1-

1 Introduction

The amount of data published on the Web and the number of data sources have been

exploding recently, covering diverse domains. Therefore, applying optimization

techniques to the systems querying these data is heavily required. Declarative query

languages allow easy expression of complex queries without knowing about the details of

the physical data organization of the database. Advanced query processing technology

transforms high-level queries into efficient lower-level query execution strategies. The

query transformation should achieve both correctness and efficiency. The main difficulty

is achieving efficiency, which is also one of the essential tasks of any database management

system.

Furthermore, there is a growing trend of moving towards a service-oriented architecture

by putting the traditional databases behind web services. As a result, data is not stored in

databases bound to a single system but instead is being made available via web services.

However, the new structure may increase the versatility but brings additional complexity

to the system, affecting the efficiency of the old-fashioned query optimizers.

Efficient query processing over distributed web services in a transparent and integrated

fashion demands appropriate manipulation of the individual endpoints. The scientific

domain involved with these operations' research and development is Federated Query

Processing (FQP). FQP's primary goal is transforming the initial (federated) query over

the whole schema into an equivalent set of sub-queries over the distributed databases

(local query). As a result, federated query processing is divided into four distinct sub-

processes: (i) creating distributed databases representation, (ii) federated query

decomposition and proper schemata selection, (iii) execution plan development and

optimization, and (iv) query execution, as shown at the following figure.

-2-

Figure 1: FQP sub-processes

Different approaches have been studied to optimize query processing, leading to

numerous corresponding processors. FedX processor utilizes schema representation

techniques during the query execution phase (on-flight) and chooses the proper

endpoints, accelerating the execution process. On the other hand, the Semagrow

processor uses complex and time-consuming optimization algorithms and calculates the

optimal execution plan based on the knowledge of data distribution over remote

endpoints. As a result, the time consumed during execution plan designing and

optimization is counterbalanced by the reduced query execution time. The common

attribute of all the algorithms mentioned above is the increased complexity and the

enormous computational resource demands. Therefore, a model will be proposed in this

project's scope, approximating the optimal execution plans and thus accelerating the

whole optimization process using machine learning techniques.

Based on the concept that both the input SQL query and the output execution plan are text

sequences, the whole optimization process could be faced as a well-known sequence-to-

sequence learning problem. As a result, Neural Machine Translation (NTM) deep neural

learning architectures will be incorporated as the prediction generation unit. At the same

time, natural language processing techniques will be used to transform the text sentences

into suitable inputs for the NTM model, i.e., numeric sequences.

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

 -3-

The utilization of the pre-trained NTM model in the optimization process is expected to

speed up the query optimization process due to the deep learning models' reduced

prediction time while maintaining the whole process efficiency compared to the

traditional analytical optimizers.

1.1 Outline

The remainder of this thesis is organized as follows:

● In Chapter 2, background on query optimization and machine learning algorithms.

● In Chapter 3, methodology and implementation technical details are described.

● In Chapter 4, the conducted experiments alongside the individual results are

presented.

● In Chapter 5, the whole project's conclusions are discussed.

-4-

2 Background

Query optimization is a highly complicated process consisting of several sub-modules,

each of whom is responsible for a specific task: (i) the query parser, (ii) the query

optimizer, (iii) the code generator, and (iv) the query processor. The complexity of each

module raises significantly when distributed database systems replace the traditional

centralized ones, diminishing the efficiency of the typical optimizers.

Based on this assumption, it will be attempted to replace the analytical algorithms with

statistical ones by introducing deep neural network architectures and natural language

processing techniques in the optimization process.

The abovementioned concepts will be thoroughly discussed and analyzed in the following

sections.

2.1 Query Optimization

A vital component of every Database management system (DBMS) is the query optimizer

regarding the query evaluation process. The query optimizer is responsible for

determining the most efficient execution plan for any given SQL query by estimating the

costs of every project within the space of possible execution plans. Since the algebraic

representation of a SQL query can be transformed into a set of equivalent expressions, the

task of the query optimizer is nontrivial [1].

Having stated the above, each query should follow a specific traversal through a DBMS to

be answered, as shown in Figure 2.

 -5-

Figure 2: Query flow

The individual modules, as depicted above, have the following functionalities:

● The Query Parser validates the query and then transforms it into an equivalent

internal form, using relational calculus expressions.

● The Query Optimizer generates an efficient execution plan by examining all the

equivalent algebraic expressions produced by the query parser and choosing the

optimal one.

● The Code Generator or the Interpreter converts the optimal execution plan

into a set of the appropriate calls to the query processor.

● The Query Processor executes the query and produces the final output.

Since the core of this project mainly concerns the query optimization process, the

following sections will be focused on the modular architecture and functionality of a

typical query optimizer [2].

-6-

2.1.1 Query Optimizer Architecture

Given a query on a DBMS, a set of equivalent execution plans could be produced. The

query optimizer should evaluate all the alternatives to conclude with the most efficient

one. The process of generating and examining these alternatives could be generalized to

an abstract model, indicating the modular architecture of a typical query optimizer, as

shown in Figure 3.

Figure 3: Query optimizer architecture

The above abstraction optimization process could be divided into the rewriting and

planning stages. The functionalities of the modules included in these stages will be

thoroughly discussed in the following sections.

2.1.2 Modules Functionalities

Rewriter

This module converts the original query into a more efficient equivalent query by

performing transformations depending only on the static characteristics of the query.

These transformations include operations such as replacements of views with the

corresponding definitions, flattening out of nested queries, etc. Since neither the structure

 -7-

nor the data distribution of the given database is considered during rewriting operations,

this module is characterized at the declarative level.

Algebraic Space

This module generates all the alternative series of action execution orders for any given

query that the Planner should consider answering the query. All these series produce

equivalent results, but there is usually significant fluctuation in performance. Each set of

action execution orders is represented as either relational algebraic formulas or in tree

forms. The complexity of the examined query determines the number of distinct sets.

Several restriction policies are applied to diminish the size of the space needed to be

explored, as described below.

Lemma 1

"Selections and projections are processed on the fly and rarely generate intermediate

relations. Selections are processed as relations are accessed for the first time. Projections

are processed as the results of other operators are generated." [2]

For example, given the below query

 select name, property

 from owners, properties

 where owners.id = properties.owner_id and properties.value > 1M.

three different query trees could be generated, as shown in Figure 4.

-8-

Figure 4: Query trees

Lemma 1 restricts only suboptimal query trees, based on the admission that separate

processing of selections and projection incurs additional costs. As a result, only T1 satisfies

this restriction: index scan on properties finds only the tuples that satisfy the selection on

properties value and joins only those. In contrast, the projection on the result attributes

occurs after the join.

Due to join commutativity and associativity algebraic properties, several alternative join

series are generated in multi-joint queries. Therefore, a second restriction rule should be

applied to reduce the algebraic space further

Lemma 2

"Cross products are never formed unless the query itself asks for them. Relations are

always combined through joins in the query." [2]

For example, given the following query

select name, property and area

 from owners, properties, areas

 where owners.id=properties.owner_id and properties.post_code=

areas.post_code.

three different query trees could be generated, as shown in Figure 5.

 -9-

Figure 5: Join trees; T3 has a cross product

This restriction rule eliminates any join trees containing cross products, producing

unnecessary large-size results. As a result, T3 is disqualified from the algebraic space.

The final restriction, only present in some database systems such as DB2 and MVS,

requiring an even smaller space, deals with the shape of join trees.

Lemma 3

“The inner operand of each join is a database relation, never an intermediate result.” [2]

Given the below query

select name, property, area, state

 from owners, properties, areas, states

 where owners.id=properties.owner_id and properties.post_code=

areas.post_code and areas.state_id=states.id.

The following cross-product-free join trees can be formed:

-10-

Figure 6: Left-deep (T1), bushy (T2), and right-deep (T3) join trees.

Based on the final restriction, only the T1 join tree is qualified since T2 and T3 include at

least one join with an intermediate result as the inner relation. This restriction is more

heuristic than the previous ones, and it is possible to eliminate even the optimal plan.

However, in most cases, it has been proved that the optimal left-deep is almost equally

expensive compared to the optimal tree overall.

This module is classified at the procedural level due to the algorithmic nature of the

objects generated during these operations.

Method-Structure Space

Any algebraic expression is composed of a combination of logical operators, such as

(inner/outer) joins, scans, sortings, etc. Given an algebraic expression or tree from

Algebraic Space, this module incorporates any available implementation choice provided

by the DBMS. It generates all alternative complete execution plans, specifying the exact

implementation of each logical operator included in the execution plan. In other words,

method-structure space serves as a one-to-many mapping, matching each logical operator

to the available physical implementations. For example, given a join, the number of

distinct choices varies based on the available methods used to implement it (e.g., nested

loops, merge scan, and hash join) and the indices stored in database catalogs. These

alternatives generated at the Method-Structure Space module depend on database

structural characteristics and do not affect the development of the query optimizer.

 -11-

Cost Model

This module evaluates the arithmetic formulas used to estimate the cost of every execution

plan within the Algebraic Space with respect to the complexity of the distinct steps that

should be accessed to fulfill an execution plan. The cost of each of these steps, including

join methods, index type assessments, etc., is determined by simple approximations

regarding the underlying functionalities executed by the system during each step. Since

these cost formulas depend on assumptions concerning operations like buffer

management, disk-CPU overlap, I/O processes, etc., parameters such as the buffer pool

size used by the corresponding step, the size of indices and relations incorporated, as well

as the distributions of the values on these relations, play a crucial role on step cost

estimation.

Size-Distribution Estimator

A critical factor in query optimization is estimating the costs of all available execution

plans in advance and without actually invocating them. This can only be achieved by

appraising the results of each (sub)query and the frequency distributions of the values in

attributes involved in these results. In most cases, a query affects several attributes, and

as a result, multi-attribute joint frequency distributions are required to predict the size of

the results accurately. However, storing the frequency distributions of all possible

attribute combinations in a DBMS is rarely feasible and inefficient. Instead, the attribute

value independence assumption is utilized, and even though it is not often true, the joint

frequency distribution is calculated as the product of the respective attributes

distributions.

Several techniques have been developed to produce accurate estimations over the queries'

expected results size and the related attributes' frequency distributions. However, the

approach adopted by the most commercial DBMSs involves estimation based on

histograms.

A histogram on an attribute X is constructed by partitioning the data distribution of X into β

(≥ 1) mutually disjoint subsets called buckets and approximating the frequencies and values in

each bucket in some typical fashion [3]. In terms of database systems, the attribute X

corresponds to a specific column of a given table. The process of histogram construction

-12-

involves scanning the database and then aggregating the values fluctuating within a predefined

range per attribute. Since the contents of a typical large-scale web resource are frequently

updated, the maintenance of the corresponding histograms through a periodic data scan can

be proved a highly inefficient task. Instead, adaptive query processing methods can be applied,

updating the related histograms on the flight by observing and analyzing the results of the

queries that constitute the client-requested workload [4].

Workload-aware self-tuning histograms have been successfully used in relational

databases avoiding the costly creation of static histograms of massive datasets. One of the

leading and state-of-the-art representatives of the self-tuning approach is STHoles.

STHoles' distinct characteristic is allowing buckets to overlap. This more flexible data

structure allows STHoles to exploit feedback genuinely multi-dimensional. STHoles allow

for inclusion relationships between buckets, resulting in a tree-structured histogram

where each node represents a bucket [5]. Holes are subregions of a bucket with different

tuple densities and are buckets themselves. A new hole is drilled whenever a query result

partially intersects with an existing bucket. The prediction based on the current

histogram's statistics diverges from the query results.

Figure 7 shows a bucket b with frequency f(b) = 100. Suppose that from the result stream

for a query q. We count those Tb = 90 tuples lie in the part of bucket b that is touched by

query q, q ∩ b. We can deduce that bucket b is significantly skewed since 90% of its tuples

are located in a small fraction of its volume. The histogram's accuracy will improve if we

create a new bucket bn by 'drilling' a hole in b corresponding to the region q ∩ b and

adjusting b and bn's frequencies accordingly, as illustrated in Figure 7. So, opening a new

hole for the part of the bucket that partially intersects with the query solves the problem

of different tuple densities in the same bucket [5].

 -13-

Figure 7: Drilling a hole in bucket b to improve the histogram quality

The number of full buckets stored and maintained is limited due to memory and space

resource restrictions. As a result, buckets with relative tuple densities should be merged

and replaced with new ones containing more meaningful information. Thus, a penalty

function measuring the difference in approximation accuracy between the old and the new

histogram is used as a bucket merging criterion. Parent-child merges help eliminate

buckets that become too similar to their parents; sibling merges are proper to extrapolate

frequency distributions to unseen regions in the data domain and consolidate buckets with

similar densities covering nearby regions.

Planner

The core of query optimization occurs in the planner module. The alternative execution

plans generated by the Algebraic Space and the Method-Structure Space are filtered. The

optimal one is selected based on the established Cost Model with respect to the Size-

Distribution Estimator. Several approaches have been proposed based on the exploration

strategy employed by the Planner.

Dynamic Programming Algorithms

Search algorithms utilizing dynamic programming strategies are the most commonly used

approach in commercial applications. These algorithms can be faced as dynamically

pruning exhaustive search algorithms by performing a merge scan on the join trees

specified at Algebraic Space and pruning the suboptimal trees that violate the restrictions

described at lemmas 1-3 in the previous section. A key component of dynamic

programming is the interesting order concept. According to this concept, all join attributes

are stored in a sorted queue based on their appearance, starting from the input join

relation. Thus, attributes participating in multiple joins can be identified with ease. As a

-14-

result, it is not acceptable to choose a sub-plan over another, using as criterion just their

costs. Instead, their intermediate results should also be considered since the results of the

most expensive one may be sorted on an attribute that will save a sort in a subsequent

merge-scan execution of a join.

Having stated these, the complete dynamic programming algorithm optimizing a query

composed of N relations could be analyzed in the following steps:

Step 1

The input query is processed using a simple sequential scan, identifying all relations

alongside the respective partial (single-relation) plans and extracting the exciting order.

Afterward, the extracted plans are classified into equivalence classes based on the exciting

order. Another class is formed with the plans whose results are not in accordance with the

exciting order. Based on the Cost Model, the cheapest plan per in-order equivalence class

is selected for further consideration. Finally, the no-order class is scanned, searching for

a plan whose cost is lesser than any other plan. Otherwise, the whole class is discarded.

Step 2

The partial plans extracted from step 1 are utilized to generate all possible ways to access

every relation joined in the query. These new execution plans are classified and pruned

following the same process described in step 1.

…

Step i

Having joined one relation per step, choosing the cheapest plan to access it based on the

exciting order, a set of i-1 relations and the individual plans have already been obtained.

So, in this step, considering this set of relations plans, it is attempted to join another

relation by evaluating all possible ways to achieve it without producing a cross product.

…

Step N

All N relations of the initial query have been joined, and as a result, all possible execution

plans have been formed in the previous step. The cheapest plan is selected, marked as the

final output of the optimization, and executed to answer the query.

 -15-

This algorithm avoids enumerating all alternative plans by dynamically pruning those that

failed to satisfy restrictions, as described in Lemmas 1-3. As a result, it is guaranteed to

determine the optimal execution plan through scanning. In some cases, only O(N3) plans

[2].

Randomized Algorithms

In general, dynamic programming algorithms generate and examine an exponential

number of plans to determine the optimal, making the optimization task extremely

inefficient. Several algorithms, such as Simulated Annealing, Iterative Improvement, and

Two-Phase Optimization, have been recently introduced as an alternative solution to

dealing with this dynamic programming inability. These algorithms are based on plan

transformations instead of the plan construction of dynamic programming. Specifically,

all alternative execution plans are represented as nodes of a graph, each associated with

the respective plan's cost. The nodes directly connected to node S are called neighbors of

S. A transition from a source node to any destination node is called uphill (resp. downhill)

if the latter's cost is higher (resp. lower) than the latter cost of the former. Randomized

algorithms perform multiple searches in the graph through random walks (set of moves)

to find the globally minimum cost – i.e., reach a node with the lowest cost among all nodes.

Some algorithms, Iterative Improvement, achieve optimization by identifying local

minimums – i.e., the accepted paths from any given node, allowing uphill moves only after

at least one downhill one.

Despite their efficiency over complex queries, randomized algorithms' capabilities are

limited due to their strong dependence on the characteristics of the selected cost model

and the connectivity of the graphs as determined by the neighbors of each node. Dynamic

programming algorithms are generally preferred on simple queries (up to 10 joins) due to

their speed and completeness (always find the optimal solution). In contrast, the

randomized algorithms are upvoted on more complex queries despite their probabilistic

nature due to their efficiency. However, both are affected by the established Cost Model,

which depends on optimizer implementation choices and the targeted DBMS data

distribution [2].

-16-

2.1.3 Distributed Databases

The need to manage and access data stored in distributed data has recently skyrocketed,

moving the distributed database system from a small part of the worldwide computing

environment a few decades ago to mainstream [6]. The main differences regarding query

optimization are detected in the Method-Structure Space and the Planner comparing the

centralized case discussed in the previous sections [2]. Additionally, the Cost Model

should account for the possible delays due to limitations on the network transmission

rates.

Method-Structure Space

Since multiple independent databases are involved regarding Method-Structure Space,

additional processing strategies and implementation choices for transmitting data are

offered. Additionally, the traditional monolithic execution plans are transformed into a

proper combination of web service calls, addressing the distributed databases. However,

query processing over distributed web services demands transparent data integration over

multiple remote web resources. To this end, the Web Service Management System

(WSMS) [7] is utilized as the administration mechanism, enabling the communication

and coordination of the individual web services. As a result, a client can query the WSMS,

which will handle the optimization and execution of the client's Select-Project-Join query

by spanning the multiple connected web services and choosing the optimal ones, and

finally returns the corresponding result set Figure 8.

 -17-

Figure 8: A Web Service Management System (WSMS) [7]

WSMS primarily focuses on constructing the optimal execution plan of available web

services that minimize the query's total execution time by exploiting parallelism.

 DEFINITION 3.1.1 (SPJ QUERIES OVER WEB SERVICES).

Given a table I, corresponding to the input data by the client and WS1,..., WSn is the set of

the available web services, then the class of the queries to be optimized can be described

by the following formula:

() () ()
() () ()

1 1 1

1 1 2 2

 , ,

s

b f b f

I n n n

m m

SELECT A

FROM I A WS X Y WS X Y

WHERE P A P A P A

Where As is the set of projected attributes, AI is the set of attributes in the input data and

P1, ..., Pm are predicates applied on attributes A1, ..., Am, respectively [5].

 DEFINITION 3.1.2 (PRECEDENCE CONSTRAINTS).

Suppose a bound attribute in Xj for WSj is obtained from some accessible attribute Yi of

WSi. In that case, there exists a precedence constraint WSi ≺ WSj, i.e., in any feasible

execution plan for the query, WSi must precede WSj [5].

-18-

Based on the aforementioned definitions, any query execution plan can be represented as

a directed acyclic graph (DAG), whose nodes correspond to the involved web services. If

there is a precedence constraint WSi ≺ WSj between two web services, they will be

connected by a directed edge from WSi to WSj, implying that the execution should wait for

the output of WSi to invoke WSj. Otherwise, input data could be dispatched in parallel to

the two web services, and thus the corresponding nodes are placed in different paths of

the graph, as shown in Figure 9.

Figure 9: Execution Plan Directed Acyclic Graph (DAG)

Planner

Due to the introduction of parallel and in-order partial plan executions, the need for

accurate scheduling escalates the complexity of even simple join queries, as the number

of alternative plans is significantly increased. As a result, no dynamic programming

algorithm can be applied, making the randomized ones the only feasible solution.

However, even optimization algorithms using heuristic methods can be proved relatively

inefficient. Scanning a very complex graph while estimating nodes' costs and identifying

local or global minima is a time-consuming and expensive process. Additionally, the lack

of accurate knowledge of remote web resource data distribution, which can be changed

dramatically without any notice, significantly impacts the reliability of cost estimation.

More loose methods could be incorporated to overcome these obstacles, replacing the

strict analytical processes described in the previous sections. Recent efforts have shown

promising results in applying machine learning techniques to query optimization [8].

Such methods will be discussed thoroughly in the following sections.

Cost Model

Establishing a suitable cost function is vital for the query optimization process. The most

cases, optimization's primary goal is minimizing query response time. In this project's

 -19-

scope, web services' selectivity and response time will be considered the key factors

affecting the overall response time. Based on this assumption, we will focus our efforts on

profiling these two quantities to be used for the cost function generation.

Selectivity (si)

After evaluating the query and applying all relevant predicates, selectivity si of a web

service WSi is a quantity measuring the total number of the returned tuples per input

tuple. Since selectivity is a fraction, its value ranges from 0 to 1. For simplicity, in this

paper, it is assumed that there is no correlation between web services selectivity.

Response Time (ci)

Given that ri is the maximum results invocation rate for a specific web service WSi. We

can define the web service's adequate per-tuple response time as 1i ic r= actually denoting

to web service's average invocation cost. This quantity expresses the total time the web

service requires to return a result set containing just one tuple. As a result, it incorporates

network transmission time, web service processing time, and queuing delays and depends

on numerous factors, such as network conditions, web service provisioning, and load.

Therefore, it is not acceptable to be considered constant. Instead, a stochastic approach

will be adopted, providing a better and more accurate approximation to this quantity.

Cost Function

Assuming that any web service call could be executed in parallel, then the overall system

maximum input tuples processing rate will be determined by the web service needed the

most time on average per input tuple - i.e., the bottleneck web service. Based on those

mentioned above, and assuming that web services selectivities are independent of each

other, then the (bottleneck) cost of any DAG, corresponding to an execution plan, will be

equal to the maximum of the product of the predecessors' web services combined

selectivity and current web service response time, for all web services included in the

execution plan [7].

Using the above cost definition, we can calculate the costs corresponding to the query

plans shown in Figure 8. Let the respective web services' costs and selectivities be as

follows:

-20-

i 1 2 3

Cost of WSi (ci) 2 10 5

Selectivity of WSi (si) 0.1 5 0.2

Table 1: Web services' costs and selectivities

and |I| be the number of tuples in input data I. In Plan 1, WS1 is the first invoked in the

query execution plan, meaning that it has no predecessors and will process the whole |I|

number of tuples. Thus, WS1 costs equal to 1 2 2 = . and will forward only 10% of them to

the following web service, having a 0.1 selectivity value. Thus, WS1 cost will equal to

11 1 2 2c = = . Regarding WS2 the combined selectivity of its predecessors (just WS1) is 0.1,

and the respective cost will be 1 2 0.1 10 1s c = = . Finally, WS3 cost value will equal to

() ()1 2 3 0.1 5 5 2.5s s c = = . So, based on the cost function, the overall cost of the execution

plan H is ()max 2,1,2.5 2.5= .

2.2 Machine Learning Algorithms

Machine Learning (ML) covers a broad range of learning tasks aiming to design and

develop computer systems that "automatically improve with experience" while defining

the fundamental laws governing all learning processes. ML is a natural outgrowth of the

intersection of Computer Science and Statistics. While Computer Science's primary goal

is to program computer systems manually, ML focuses on establishing the initial structure

that enables a computer system to program itself, using the acquired experience. On the

other hand, ML diversifies from Statistics since the former tries to identify the most

efficient computational architectures and algorithms that can be incorporated to capture,

store, index, retrieve and merge data instead of only extracting conclusions from these

data [9].

An abundance of ML algorithms developed so far, organized into a taxonomy based on

their desired outcome. This taxonomy involves the following main categories: (i)

Supervised learning, (ii) Unsupervised learning, and (iii) Reinforcement learning.

 -21-

Supervised learning algorithms aim to generate a function mapping inputs to the desired

outputs, while unsupervised learning algorithms model a set of inputs without any labeled

examples. Reinforcement learning target is establishing a policy guiding an agent to act

based on an observation of the world. Every act made by the agent interacts with the

environment, which provides feedback used to improve the efficiency of the learning

algorithm [9].

During the last decades, various sophisticated learning algorithms have been invented,

marking the transition of the artificial neural networks (ANNs) towards increasingly deep

neural network architectures with significantly improved learning. However, the

complexity of these deep learning models created a set of challenges to overcome due to

the induction of black-box properties that can lead to bias and drift in data [19].

2.2.1 Problem Definition

In this project's scope, the primary goal is to predict and reconstruct the optimal execution

plan for a given query - i.e., the plan with the minimum cost function, while maintaining

the processing time significantly lower than an analytical optimizer. Therefore, the ML

algorithm should be trained using a set of samples (training set) corresponding to SQL

queries-execution plans pairs produced by an ordinary optimizer for the input set of

queries. Given that both the input queries and the optimal execution plan can be

considered as text sentences, sequence-to-sequence models [16] can be utilized to

translate the input phrase (SQL query) to the respective output (execution plan). As a

result, the approach of Neural Machine Translation [17] will be adopted, a state-of-the-art

machine translation algorithm, surpassing the typical Recurrent Neural Networks (RNN)

and Phrase-Based Machine Translation (PBMT) architectures, providing significantly

improved translation speed and accuracy.

2.2.2 Natural Language Processing

Deep neural networks have shown great success in a variety of natural language

processing (NLP) tasks, such as language modeling [20], paraphrase detection [21] and

word embedding extraction [22], and statistical machine translation (SMT). As stated

above, this project's scope will be attempted to face the query optimization problem as a

-22-

sequence-to-sequence machine translation problem. A natural choice for processing

sequential data is the recurrent neural network (RNN).

Recurrent Neural Networks (RNN)

A typical deep neural network assumes that inputs are independent of the outputs. On the

contrary, an RNN utilizes information from the previous input to determine the current

input and output, introducing a "memory" mechanism. An RNN consists of a hidden state

h and is fed by a variable-length input sequence x = (x1, x2, …, xn) and generates an output

y.

Figure 10: Recurrent Neural Network architecture

As shown in Figure 10, at each step t, the hidden state ht depends on the prior hidden state

ht-1 and the current input xt. Since hidden state is a two-factor function, the traditional

back-propagation concept is extended to a more complex method called "back-

propagation through time". This method unfolds the network in time and calculates each

hidden state's gradients with respect to all the network parameters [23]. However, this

complex process enhances the vanishing gradient problem, making RNNs' training

procedure nearly impossible.

To address the problem of RNNs' long-term dependencies, leading to vanishing gradient

during back-propagation, long-short-term memory (LSTM) neural networks come into

play [24]. LSTMs' hidden state layer comprises four distinct units controlling the

information flow through the network layers: the forget gate that decides what

information should be thrown away or kept. The input gate, which determines which

values should be updated, the cell state, the information flow bus, and the output gate,

which decides what the next hidden state should be, are shown in the following figure.

https://en.wikipedia.org/wiki/Backpropagation_through_time
https://en.wikipedia.org/wiki/Backpropagation_through_time

 -23-

Figure 11: LSTM hidden state unit

2.2.3 Text preprocessing

The instruction of a complete, compact, and meaningful representation for both the input

and the output-target sequence is a prerequisite for any RNN-based deep neural network.

This representation refers to text vectorization in the natural language processing field,

transforming any text sequence into a numeric vector. This procedure could be analyzed

into distinct sequential steps: sentence tokenization, vocabulary extraction, sentence

transformation, and sentence padding.

Sentence tokenization

The tokenization step's primary task is to split any given sequence into components.

Speaking of text sentences, these parts could consist of the individual letters and words or

even the collection of sequential letters or words. In the current projects, words are chosen

as the unit of the elementary sentence. So, the term token will refer to the word from now

on. Before extracting the distinct tokens, it's crucial to perform some cleansing techniques

to remove redundant words and symbols and speed up the process. These techniques

involve lower case transformation and numbers and symbols removal. Since the processed

sentences are SQL statements, SQL operators are critical, and thus they are not removed.

Additionally, whitespaces are added to separate the remained tokens. For example, given

-24-

the previous sentence, the cleansing techniques will perform the following

transformations:

Step Output

initial text

SQL operators such as !, %, <, etc., are not

excluded, while the irrelevant symbols like ~, #,

etc., are removed.

lower case transformation

sql operators such as !, %, <, etc., are not

excluded, while the irrelevant symbols like ~, #,

etc., are removed.

remove numbers and

symbols

sql operators such as !, %, <, etc., are not

excluded, while the irrelevant symbols like , ,

etc. are removed.

whitespaces addition

sql operators such as ! % , < , etc . are not

excluded , while the irrelevant symbols like , ,

etc . are removed .

Table 2: Text cleansing steps

Having performed the above-described steps, the tokenization process will split the final

output text into a list containing the selected components. Single-word tokenization has

been chosen for both input and output text sequences in this project's scope.

Token embeddings

Transforming the input text sequences into numeric ones is essential to training any

neural network. So, a general transition map needs to be established, matching every

token of the initial sequence to a unique numeric representation. This procedure includes

extracting the specific words in the space of the sentences' corpus, a.k.a. the vocabulary,

followed by creating an embedding set, associating each word contained in the vocabulary

with a distinct embedding. Several techniques have been introduced regarding the

formation of efficient embeddings. This project's scope will examine two strategies: the

traditional bag-of-words approach [28] and the word embedding implementation using

GloVe word representation [28].

 -25-

Bag-of-words

The bag-of-words is the most straightforward approach used in natural language

processing to create a document representation. Specifically, a list of the unique tokens

included in the document is extracted, and each word's frequency (or presence) is

calculated per sentence and used as a feature. For example, given the following document

consisting of two sentences:

Mary also likes to watch football games. (1)

John likes to watch movies. Mary likes movies too. (2)

the list of the different words (feature vector) is composed of the following words:

"John","likes","to","watch","movies","Mary","too","also","football","games", ".".

So, the sentences will be represented by the following sequence:

[“John”: 0, “likes”: 1, “to”: 1, “watch”: 1, “movies”: 0, “Mary”: 1, “too”: 0, “also”: 1,

“football”: 1, “games”: 1, “.”: 1] -> [0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1]

[“John”: 1, “likes”: 2, “to”: 1, “watch”: 1, “movies”: 2, “Mary”: 1, “too”: 1, “also”: 0,

“football”: 0, “games”: 0, “.”: 2] -> [1, 2, 1, 1, 2, 1, 1, 0, 0, 0, 2]

However, term frequency is not always a reliable feature since high-frequency words

include limited information and thus have predictive power. The term frequency–inverse

document frequency (TF-IDF) metric has been introduced to address this issue. TF-IDF

is a statistic metric reflecting the word importance over a sentence in a collection [31].

This time instead of term frequency, the TF-IDF score is calculated per word and is used

to create the representation of the sentence. As a result, it works as a weighted factor,

increasing proportionally to each word in the sentence. At the same time, it is inversely

proportional to the number of sentences in the corpus containing the word, which helps

to adjust for the fact that some words appear more frequently.

Given the above example, term frequency is calculated per sentence word:

Sentence 1:

1 1 1 1 1

1 1 1

(" ",) (" ",) ("likes",) ("to",) ("watch",)

1("footbal",) ("games",) (".",) 0.125
7

tf Mary s tf also s tf s tf s tf s

tf s tf s tf s

= = = =

= = = = =

Sentence 2:

https://en.wikipedia.org/wiki/Proportionality_(mathematics)

-26-

2 2 2 2

2

("John",) ("to",) ("watch",) ("Mary",)

1("too",) 0.091
11

tf s tf s tf s tf s

tf s

= = =

= =

2 2 2

2

("likes",) ("to",) ("movies",)

2(".",) 0.182
11

tf s tf s tf s

tf s

= =

= =

Afterward, inverse document frequency per word is measured:

()
("John",) ("also",) ("football",) ("games",)

2("too",) ("movies",) log 0.301
1

idf D idf D idf D idf D

idf D idf D

= = =

= = =

()
("Mary",) ("likes",) ("to",) ("watch",)

2(".",) log 0
2

idf D idf D idf D idf D

idf D

= = =

= = =

Finally, tf-idf scores for sentence one words will be the followings:

() ()1 1("Mary", ,D) "Mary",s "Mary",D 0.125 0 0tfidf s tf idf= = =

() ()1 1("also", ,D) "also",s "also",D 0.125 0.301 0.038tfidf s tf idf= =

() ()1 1("likes", ,D) "likes",s "likes",D 0.125 0 0tfidf s tf idf= = =

() ()1 1("to", ,D) "to",s "to",D 0.125 0 0tfidf s tf idf= = =

() ()1 1("watch", ,D) "watch",s "watch",D 0.125 0 0tfidf s tf idf= = =

() ()1 1("football", ,D) "football",s "football",D 0.125 0.301 0.038tfidf s tf idf= =

() ()1 1("games", ,D) "games",s "games",D 0.125 0.301 0.038tfidf s tf idf= =

() ()1 1(".", ,D) ".",s ".",D 0.125 0 0tfidf s tf idf= = =

() ()1 1("John", ,D) "John",s "John",D 0 0.301 0tfidf s tf idf= = =

() ()1 1("movies", ,D) "movies",s "movies",D 0 0.301 0tfidf s tf idf= = =

() ()1 1("too", ,D) "too",s "too",D 0.125 0.301 0.038tfidf s tf idf= =

 -27-

and the representation sequence will be formed as follows:

[“John”: 0, “likes”: 0, “to”: 0, “watch”: 0, “movies”: 0, “Mary”: 0, “too”: 0.038, “also”:

0.038, “football”: 0.038, “games”: 0.038, “.”: 0] ->

[0, 0, 0, 0, 0, 0, 0.038, 0.038, 0.038, 0.038, 0].

Using the same methodology, sentence 2 feature vector will be:

[0.038, 0, 0, 0, 0.038, 0, 0, 0, 0, 0, 0].

Word Embedding

Word embedding is a word representation used for text analysis. Each word is replaced by

a fixed-sized and real-valued vector, calculated from the probability distribution for each

word to the similar meaning words. As a result, each word representation encloses the

context information so that words with similar meanings are expected to be mapped closer

to the vector space. Several word embedding models have been developed during the past

decade, such as Google's Word2Vec [29], Facebook's FastText [32], Stanford's GloVe [30],

etc. Their main difference is in the document corpus used during the training process. In

the current project, Sandford's GloVe embeddings implementation has been chosen.

Comparison

Having presented the implementation details regarding these vectorization approaches, it

is clear that the BoW algorithm relies solely on contword frequencies under the unrealistic

word-independent assumption, while the GloVe embeddings are a more sophisticated

method since it encapsulates structural and context information. As far as it concerns the

vectorization of SQL queries and the corresponding execution plans, both solutions can

be a viable option since creating global representation per word can assist the model in

identifying patterns and thus associate the input sequences with the output ones and

generate more accurate predictions. A critical difference between these two

implementations is the word context information that Word embeddings offer, the

positive or negative impact of which should be evaluated since it is not clear if the context

of the words in a SQL query (column/table names, SQL keywords) contains meaningful

information or adds bias into the system.

-28-

2.3 Remarks

To sum up, the typical analytical query optimizers provide accurate optimization results.

However, they can be proved highly inefficient when dealing with large and complex

queries, joining data from multiple remote databases. Their strong dependence on

database data distribution increases their vulnerability to sudden and unnoticed internal

changes in the web resources. As a result, the efficiency of analytical optimizers on query

optimization tasks over distributed databases can be questionable.

An alternative perspective will be proposed on this project's scope, replacing the analytical

optimization approach with a statistical one, incorporating learning techniques. Thus,

instead of calculating the exact execution plan through complex tree traversal operations

to determine the optimal plan, the proposed model will incorporate natural language

processing techniques transforming the original optimization problem into a sequence-

to-sequence text generation. As a result, the optimization process is expected to be

accelerated and simplified, with a minimum accuracy tradeoff. The following chapters will

thoroughly discuss the exact details of the feature extraction, training, and evaluation

process to establish this model.

3 Methodology and Experiments

Any traditional deep neural network requires fixed dimensionality inputs and outputs.

However, this is impossible for the examined case since neither the input SQL queries nor

the output execution plans can have a predefined length. A simple strategy to overcome

 -29-

this challenge is to map the input sequence to a fixed-size vector, using an LSTM network

as an encoder, followed by an LSTM decoder mapping this vector to the target sequence

[16]. In neural machine translation, this technique was introduced by Google Neural

Machine Translation (NTM) systems, replacing the traditional phrase-based translation

systems and enabling the capturing of long-range dependencies that occur in natural

language sentences. The same long-range dependencies occur in both SQL and query plan

statements, making the usage of this architecture quite promising.

3.1 Dataset preparation

The main idea was to deduce the optimization process into a sequence-to-sequence neural

machine translator task. The input text sequences will be the SQL queries, and the output

text sequence will consist of the optimized execution plan. PostgreSQL database system is

utilized to query the database and retrieve the execution plan using the embedded

optimizer. A set of queries over several established databases was needed to acquire these

input-output tuples. Instead of manually creating the queries and the respective schemas,

the CoSQL dataset was used [26]. Create and insert queries from the CoSQL dataset were

executed to establish the respective SQL tables in a local PostgreSQL database. Afterward,

an EXPLAIN command was used for each select query in the dataset to create the

corresponding optimal execution plan produced by the PostgreSQL optimizer. For

example, given the select query:

select t1.first_name from students as t1 join addresses as t2 on

t1.permanent_address_id = t2.address_id where t2.country = 'haiti'

(1

)

the optimal execution plan (in JSON format), retrieved by executing the same statement

using the EXPLAIN command, will be the following:

{

 "Node Type":"Hash Join",

 "Join Type":"Inner",

 "Hash Cond":"(t1.permanent_address_id = t2.address_id)"

 "Plans":[

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html

-30-

 {

 "Node Type":"Seq Scan",

 "Parent Relationship":"Outer",

 "Relation Name":"students",

 "Alias":"t1"

 },

 {

 "Node Type":"Hash",

 "Parent Relationship":"Inner"

 "Plans":[

 {

 "Node Type":"Seq Scan",

 "Parent Relationship":"Outer",

 "Relation Name":"addresses",

 "Alias":"t2",

 "Filter":"((country)::text = 'haiti'::text)"

 }

]

 }

]

},

corresponding to the following query tree:

 -31-

Figure 12: Example query tree

As a result, a set of 5445 queries-execution plans was obtained. This dataset comprises

4784 single-operator queries, 554 queries with two operators, 93 with three, 10 with four,

and just four queries with five operators, as depicted in the following graph.

Figure 13: Operator count distribution over dataset queries

This indicates that the acquired dataset consisted of rather than simple queries and can

prevent the proposed model from effectively dealing with large and complex queries.

-32-

3.2 Data preprocessing

The initial approach did not involve any preprocessing. The plain text from both SQL

queries and the respective execution plans was fed into standard text processing pipelines,

transforming the raw text into an integer sequence. These techniques will be discussed

further in the next section. However, as it can be easily understood, both the input queries

and the output JSON format execution plans contain a great deal of redundant

information that can mess up the whole training process by increasing model training

time, adding bias, and thus plummeting the system's overall efficiency. Therefore, an

algorithm transforming input and output texts into a more informative and compact form

was introduced.

3.2.1 Input encoding

As far it concerns the query optimization process, the key elements include the

contributing tables, the existence of table joins and scans, aggregation and sorting

operations, and the projected columns. Our efforts focused on tables' joins and scans in

this project's scope, ignoring the aggregation and sorting operations. As a result, the

proposed algorithm extracts these elements from the input SQL queries by identifying

table aliases, join and scan operations, replacing the joins with the participating table-

columns pairs, and the scans with the filtered table columns. For example, table allies are

identified given the (1) SQL query mentioned in the previous section. A transition map is

created associating table students with t1 alias and table addresses with t2 alias.

Afterward, the join operation is spotted and replaced with the following text:

Join students.permanent_address_id-addresses.address_id

where the first word indicates the operation type (join or scan) and the next element

corresponds to the join attributes. Similarly, the scan operation is replaced with the

following text:

scan addresses.country

To sum up, the initial SQL query text is transformed into the following sequence:

join students.permanent_address_id-addresses.address_id scan

addresses.country
(2)

 -33-

The efficiency of this encoding method will be tested compared to the raw input strategy,

and the results will be presented in the following sections.

3.2.2 Output encoding

Execution plan encoding

Execution plans preprocessing algorithm is a more complex procedure since PostgreSQL

optimizer output is a query tree structure given in JSON format text with multiple nodes.

Each element of the query tree corresponds to a specific operation, as described by the

node tag "Node Type". Since optimizer output is a query tree, join operations are assigned

to tree nodes, while the scan operations are set to tree leaves. Like the input encoding, join

nodes are replaced by the join type identifier from the Node Type tag, followed by the

contributed table-columns pairs. In contrast, the scan nodes are represented by the exact

scan type given from the tag Node Type and the filtered columns. The critical difference

between the two encoders is the operation order. Specifically, the output encoder

illustrates the ordering of the operations, which is the optimizer's primary task. Given this,

breadth-first traversal is adopted to extract query tree nodes, reassuring that the text

representations of the operations lying at a higher level will also come first in the encoded

text. For example, given the query (1)

optimizer output will be the following:

Based on the described encoder algorithm, the above query tree will be described by the

following text sequence:

inner hash join students.permanent_address_id-addresses.address_id,

seq scan students, hash, seq scan, table scan addresses.country

(3

)

Operators' implementation encoding

Instead of encoding the whole execution plan, it will also be attempted to extract helpful

information that an analytical optimizer can use to boost its efficiency. This includes the

selection of the optimal physical operator per logical operators described in the original

SQL query and determining the actual execution order of the involved operators. On the

scope of the current project, we focused just on join and scan operators to reduce the

complexity of the encoding procedure. Regarding the physical operators' approach, each

-34-

logical join operator can be implemented by the query processor module using any of the

following procedures:

1. nested loop join

2. merge join

3. hash join

while the scan operators are carried out by:

1. sequential scan

2. index scan

3. index-only scan

4. bitmap (index/heap) scan

So, during the encoding process, using the operators' appearance order in the encoded

input sequence, each logical operator will be replaced by the physical implementation

described at the corresponding node of the execution plan. As a result, the output

encoding procedure discards all intermediate nodes. It extracts only those that enclose the

requested information while retaining the one-to-one mapping between the query level

operators and the physical ones. For example, the encoded output (see three above)

corresponding to the SQL query (presented at 1 of 3.1 section) will be transformed as

follows:

hash_join seq_scan (4)

Operators' order encoding

As far as it concerns the operator order at the execution level, an auto-incremented

number is added to each operator in the encoded input sequence as a unique identifier to

distinguish the first join (or scan) from the following ones. So, the (2) encoded input

sequence will be formed as follows:

join_1 students.permanent_address_id-addresses.address_id

scan_1 addresses.country
(5)

Afterward, a depth-first postorder traversal in the execution plan tree is conducted.

Whenever a node referring to a logical operator is visited, the corresponding unique

identifier is added to the output sequence, resulting in a sequence indicating the involving

operators' execution order. So, the encoded output sequence will be the following:

 -35-

scan_1 join_1 (6)

3.2.3 End-to-end encoding example

To sum up, the encoded input sequence corresponding to the examined SQL query:

select t1.first_name from students as t1 join addresses as t2 on

t1.permanent_address_id = t2.address_id where t2.country = 'haiti'

will be the following:

join students.permanent_address_id-addresses.address_id scan

addresses.country

Accordingly, the enriched encoded output, compressing the excessive JSON formatted

execution plan of the above query, will be formed as:

inner hash join students.permanent_address_id-addresses.address_id,

seq scan students, hash, seq scan, table scan addresses.country

while more comprehensive encoded output version, enclosing information about the

physical operators' implementation will be the following:

hash_join seq_scan

Finally, to extract information about physical operators' execution order, the encoded

input sequence should be transformed as follows:

 select t1.first_name from students as t1 join addresses as t2 on

t1.permanent_address_id = t2.address_id where t2.country = 'haiti'

so that the logical operators of the SQL query could be associated with the physical

operators of the ordered encoded output:

scan_1 join_1

3.3 Model

3.3.1 Architecture

As already mentioned, a pair of encoder-decoder is needed to overcome the input-outputs

dimensionally variance. A natural choice for sequential data processing and

transformation is the RNN. A deep multi-layer unidirectional RNN using LSTM as a

-36-

recurrent network will be utilized for the input and output decoder in the proposed model.

The encoder network transforms the input sentences into a fixed-sized vector at a higher

level. In contrast, the decoder network consumes the vector fed by the encoder and

decodes the predicted sequence to compare it with the expected one [25].

Figure 14: Encoder-decoder sequence to sequence model

As shown in Figure 14, the above-described architecture's main disadvantage is that the

information from the first tokens in the input sequence is diluted, especially in long

sequences, due to encoder output vector size restrictions. To address this issue, a

pioneering technique called Attention Mechanism was introduced by Bahdanau et al.

(2014) [33] and Luong et al. (2015) [34]. The attention mechanism improves system

efficiency by allowing the decoder to access all the past encoder's hidden states and

emphasize the most relevant ones. The measure of each of the encoder's past state

importance to the decoder output is denoted by the alignment vector. The alignment

vector has the same length as the input sequence. It is calculated at every time step of the

decoder using the concat strategy, which involves the addition of the decoder hidden state

and the encoder hidden states, followed by a linear layer with a tanh activation function

and multiplied by a weight matrix. Thus, each of its values reflects the importance of the

corresponding word in the source sequence.

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025

 -37-

Figure 15: Attention Mechanism

3.3.2 Training process

State-of-the-art recurrent neural networks in the field of Natural Language Processing use

Teacher Forcing [35] algorithm in the training process. Teacher forcing key characteristic

is that it trains recurrent networks by supplying the actual output sequence values as the

next timestep's inputs improving the network's learning capabilities using multi-step

sampling.

Figure 16: Teacher Forcing mechanism

In the proposed model, this technique is applied by providing the target sequence at

timestep t to the decoder input at time step t+1. To achieve this time-shifting, a start token,

-38-

<sos> is added as the leading element of each input sequence, while an end token, <eos>

is inserted as the target sequence trailing element, equalizing the sequences' lengths and

denoting their end.

3.3.3 Inference procedure

The inference procedure involves the generation of predictions given a source sequence.

The source sequence is fed to the encoder to produce the encoder's hidden state, used to

initialize the decoder. Afterward, <sos> token is supplied to the decoder, which produces

an output per time step. The decoder's output is handled as a set of logits corresponding

to a word. The word associated with the maximum logit value is the timestep's output. The

prediction process is terminated when the end token, <eos> is generated.

Figure 17: Inference procedure

 -39-

3.4 Experiments

3.4.1 Glove Embeddings experiments

In the following set of experiments, the GloVe 200-dimensional word representation and

Word2vec algorithm were utilized during the vectorization of the input and output text

sequences.

Raw data experiment

As mentioned in the previous section, the initial thought was to develop a model that could

reconstruct the complete execution plan using the simple SQL query as input. Therefore,

the input dataset was composed by appending the SQL queries of the CoSQL dataset. At

the same time, the output-target sequences were created by the corresponding JSON-

format output of the EXPLAIN SQL command, i.e., the optimal execution plan. As a result,

a total of 5445 query-plan pairs were created. Then, the Word2Vec library and GloVe word

embeddings, with the word representation vector size of 128 elements, were utilized for

training two separate embedding models-encoders: an input encoder and an output

encoder. The embedding vectors of the former were created using the input dataset, while

the latter's vectors were based on the output dataset. The input encoder transformed,

whose vocabulary consisted of 1151 unique tokens (words), the SQL queries into numeric

vectors, while the output encoder, with a 1935-token vocabulary, vectorized the execution

plans. Padding was applied in both input and output vectorized sequences to equalize their

length. After the padding sequence, the input dataset comprises 119-element vectors,

while the output dataset is 1385-element vectors.

As a result, 5445 fixed-sized input-target pairs were created and split into the train,

validation, and test subsets using the ratio 70:10:20, respectively. The validation dataset

was incorporated as an indicator of the early-stopping mechanism with five epochs

patient, applied during the model training process, preventing model overfitting.

Regarding the overall model architecture, since the encoder embedding layer dimension

should be following the input sequences vocabulary size of 1153 elements, to be able to

encode every word in the input corpus, the former dimension was set to 1154. The extra

dimension serves as a placeholder for the padding characters. Accordingly, the decoder

embedding layer was set to 1936, whereas the output dense layer dimension numbers 1935

-40-

elements to recreate any execution plan. Since the pre-trained Glove vector embeddings

were already fit to the corpus using the transfer learning utilities of the Word2vec library,

the encoder and decoder embedding layers were not trainable during the overall model

training process.

Having stated these, the training process is ready to start. However, this task has been

proven to be highly inefficient and time-consuming since the excess of both input and

output sequences length demands training through multiple timesteps. Specifically, a

memory allocation exception was raised during just the first batch of the first epoch,

making the model's training process impossible under the available resources (32GB

RAM). Therefore, the need to shrink both the input and output sequences length has been

proved eminent.

Input-Output encoding experiment

The former experiment highlighted reducing both the input and output sequences. So, the

5445 input-output pairs used in the initial model training process were transformed using

the encoding algorithms described in section 3.2. Specifically, the input encoding followed

by the Glove embedding encoder was applied to the set of simple SQL queries, resulting

in a new input dataset with half the initial vocabulary (559 distinct tokens). Accordingly,

the output sequences dataset was also compressed using the execution plan encoding

algorithm. As a result, the reduced output dataset contained a total number of 839 unique

words. After vectorization and padding, the final dataset consisted of 5445 pairs of 32-

token input and 92-token output vectors. The same train, validation, and test split ratio,

as well as early-stopping mechanism, was incorporated in this experiment, too. However,

since both the input and output sequences length were modified, the dimensions of the

encoder and decoder units were fixed accordingly. The encoder embedding layer

dimension was 560, while the decoder embeddings size numbered 840 elements, and the

dense output layer dimension equaled 840.

As shown in the following graphs, the training process lasted six epochs, and despite the

apparent improvement compared with the previous ultimately failed attempt, the results

are not satisfying. Neither Loss nor Accuracy curves are smooth and converge, while the

accuracy score remains substantially low.

 -41-

Figure 18: Training-validation accuracy and loss per epoch

Additionally, the testing accuracy score of 30.04% insists that the model's inference

capabilities are irrelevant, compared to the 22.66% accuracy score of a dummy baseline

model that generates predictions by repeating the most common token. In other words,

the predicted sequences are consisted of random words, enclosing no meaningful

information. The model's poor performance is due to the design and the overall

methodology of this experiment. As a result, the model failed to identify underlying

patterns associating input and output sequences. This means that despite the noticeable

shrink achieved through encoding algorithms applied to input and output, their

complexity remained too high, exceeding the model's capabilities.

Therefore, the task of recreating the whole or partial execution plan based just on

information extracted from the initial SQL query cannot be fulfilled using the proposed

NTM model. After all, several well-established analytical implementations have already

been developed to deal with this problem.

Operator implementation experiment

Having abandoned the efforts to predict the execution plan using as input the SQL query

due to the efficiency reasons described above, our focus shifted towards introducing a

model that can provide helpful information to the analytical query optimization process,

thus enhancing its efficiency.

As mentioned in chapter 2.1.2, a substantial element of the success of the query

optimization process is selecting the appropriate physical implementation for each logical

operator in the initial SQL query. So, the encoded input sequences used in the previous

experiment will be retained during this experimental setup. In contrast, the output

-42-

sequences will be further compressed by applying the operators' implementation

encoding methodology described in section 3.2.2. Further input sequences abstraction is

avoided since, based on query optimization theory stated in section 2.1.2, the selection of

the optimal physical operator depends on database structural characteristics and

predicates distribution, which can be reflected on the tables and columns defined at the

query and are already present even in the encoded sequences. Thus, 5445 vectorized input

sequences, with a fixed size of 32 elements, will be fed to the encoder module, just as in

the previous experiment. However, the feature that distinguishes this setup from its

ancestors is that the output sequences are now constituted of vectors whose length equals

just six tokens. At the same time, the respective vocabulary contains nine different words,

i.e., an enormous 99% size reduction compared to the previous experiment. Subsequently,

the overall NTM model was simplified since the number of the encoder's trainable weights

plummeted drastically.

These more comprehensive output sequences lead to a significant decline in the training

time (from 35 minutes per epoch to less than 1) and a simultaneous improvement in the

model's prediction accuracy, as shown in Figure 19.

Figure 19: Training-validation accuracy and loss per epoch

Due to the activation of the early-stopping mechanism, the training process terminated at

the 8th epoch, with the final model's prediction accuracy equal to a promising 91.62% over

554 test samples. Examining the model efficiency with respect to the queries' complexity,

the model creates almost perfect predictions for the most straightforward queries.

However, its accuracy diminishes when more complex and multi-operator queries occur.

 -43-

To demonstrate the objective model's performance, the prediction results are compared

with the respective ones generated by a dummy baseline model, whose inferences are just

replicates of the most common word in the test dataset. The comparison results are

depicted in the following graph:

Figure 20: Prediction accuracy compared with query complexity graph

The observed ineffectiveness is expected and caused by the absence of multi-argument

queries in the initial dataset. Thus it can be treated by enriching the training dataset with

more complex queries.

Operator order experiment

As mentioned in section 2.1.2, several alternative series of operators' execution orders can

be generated for any query, producing equivalent results. However, significant fluctuation

in the query answering performance can be observed between the different execution

series. Therefore, determining the operators' optimal execution order is another vital

decision that should be made during the query optimization with a massive impact on the

whole process efficiency. In the scope of this experiment, capitalizing on the order output

encoding algorithm, we developed a model that determines the execution order of the

physical operators participating in the initial SQL query. Since the present model aims to

predict the optimal arrangement of the involved operators at the execution step, single-

operator queries should be excluded from the training process. However, having rejected

these queries from the training corpus, the number of samples declined to only 661

queries. This is undoubtedly a small dataset to train a complex deep learning model. To

-44-

overcome this issue, more than 100 multi-operator queries were written and added

manually to the training dataset. So, the final dataset consists of 796 samples.

Before proceeding with the model training, as stated in paragraph 3.2.2, input sequences

should also be transformed by adding a unique identifier to each logical operator to match

its physical implementation in the predicted execution order sequence. So, having applied

both input and output encodings to the corresponding sample pairs, the input sequences

vocabulary numbers 638 unique words, while the output sequences vocabulary included

just eight different words. Subsequently, after the vectorization and padding process, the

input vector size equals 32, and the output-target vectors are composed of 6 elements. So,

the encoder module embedding layer consists of 640 elements, whereas the decoder

embedding layer size was set to 9, and the output layer was composed of 9 tokens.

The model training process terminated after ten epochs, giving mediocre results, as

expected, due to the fixed training dataset size. The training loss and accuracy curves are

presented in the following figures:

Figure 21: Training-validation accuracy and loss per epoch

The model's prediction accuracy score is confined to 71.77%. In contrast, the inverse

correlation between the prediction accuracy and query complexity observed in the

previous experiment is retained, too, as shown in the graphs below.

 -45-

Figure 22: Prediction accuracy compared with query complexity graph

In this case, the baseline model predictions are obtained by replicating the first token of

the test-expected text sequence. The above figure provides strong evidence to the

previously stated allegation that the model's intermediate results are primarily due to the

lack of a sufficient training dataset. The model's prediction results are improved for the

most uncomplicated queries with more samples.

3.4.2 BoW experiments

The BoW vectorization approach was applied in the input and output encoded sequences.

The last two experiments (i.e., operator implementation and order experiments) were

repeated to examine the impact of the vectorization process on the most promising

models' efficiency.

Operator implementation experiment

On the scope of this experiment, the same input-output pairs were incorporated as in the

operator implementation setup described in the previous section. However, the Bag-of-

words approach was utilized instead of the pre-trained GloVe embeddings to vectorize the

training samples. Specifically, the unique words were extracted from input and output

corpora, formatting the corresponding vocabularies. Afterward, an auto-incremented

unique integer was assigned to each word, starting from 1, since the 0 was used as a

placeholder for the padding characters. This one-to-one mapping, combined with zero

padding, was applied to transform the text sequences into fixed-sized numeric vectors.

-46-

Regarding overall model architecture, encoder and decoder modules and their

components remained unchanged, with just one key difference. The encoder and decoder

embeddings layers variables were not excluded from the training process. In other words,

during the back-propagation step, the applied weights modifications affected embeddings

variables, too.

After the completion of the training process, which lasted 16 epochs, the final model

produces almost identical results to the corresponding experiment with the GloVe

embeddings, as shown in the following figure:

Figure 23: Training-validation accuracy and loss per epoch

The model's inference capabilities are sufficient, giving an overall prediction accuracy

score of 92.29%. As expected, the accuracy is downfalls as the queries' complexity rise.

Figure 24: Prediction accuracy compared with query complexity graph

 -47-

The outcomes similarity between GloVe embeddings and BoW approaches is due to the

training dataset's structural characteristics. Notably, the sparsity of both input and output

corpora is limited due to the encoding procedures applied. As a result, there are very few

rare words, and thus there is a sufficient number of training samples to establish efficient

embeddings per word. Additionally, the snake case column naming convention, a

common practice in most SQL queries, adds to the training corpora unknown words for

the GloVe embeddings. This practically means that the large datasets incorporated during

the GloVe representation training process make no difference regarding the examined

case study, making their usage almost irrelevant.

The only noticeable advantage of the GloVe embeddings over the BoW is the reduced

training time since the number of the network trainable parameters is reduced due to the

encoder and decoder's non-trainable embeddings layers – 90.240 fewer trainable

parameters involved in the GloVe approach networks, translated to a one-second

difference in training time per epoch and about 5.5 minutes (339 seconds) in the whole

training process. This feature also gives values to the scalability of the model, considering

that in more complicated schemas, with much more extensive input and output

vocabularies and thus more massive embedding layers, the training time, as well as the

processing resources, could make (just as the first experiment) the whole training process

impossible.

Operator order experiment

Having applied the same methodology as described in the previous paragraph, concerning

the vectorization algorithm, on operator order encoded input-output sequences produce

results that confirm the above-stated allegations. Specifically, BoW implementation

slightly outperforms the GloVe embeddings approach regarding the models' prediction

accuracy. At the same time, the latter provides improved training speed and thus a more

promising perspective in more extensive and more complex training tasks, as depicted in

the subsequent figures.

-48-

Figure 25: Training-validation accuracy and loss per epoch

Figure 26: Prediction accuracy compared with query complexity graph

3.4.3 Discussion

After conducting these experiments, it is clear that the task of the complete execution plan

recreation, using the respective SQL query as input, cannot be fulfilled using the natural

language processing techniques NTM architecture under the available hardware

resources. On the other hand, the extraction of valuable insights concerning minor

decisions should be made during the optimization process, such as the selection of the

suitable implementation per logical operator participating in the original SQL query, or

even the optimal operators' execution order, is a pretty promising perspective, that can

accelerate the whole process.

 -49-

Regarding the NLP-related task of studying the impact of the vectorization algorithm on

the final model's inference efficiency, the experimental results insist that the old-

fashioned Bag-of-Words approach leads to more accurate models due to the specific

characteristics of this problem (columns-tables name, SQL keywords, etc.). On the other

hand, the GloVe embeddings provide a more versatile and scalable solution that can make

a strong case in datasets containing more complex queries.

In conclusion, the dataset's structure used to train the models was the primary

vulnerability of the whole task, diminishing the proposed model's efficiency and the

generalization of the drawn conclusions. Specifically, the lack of a sufficient number of

complex queries limited the model's performance in more complicated optimization tasks.

It reduced the confidence level of its effectiveness in real-world applications.

-50-

4 Conclusion

In this project's scope, natural language processing techniques combined with Neural

Machine Translation architectures were incorporated to reconstruct the optimal

execution plan of any given SQL query by replacing the analytical approach used by the

typical optimizers with probabilistic deep learning procedures. However, the complexity

and the sparsity of both the raw and the encoded and compressed input and output

sequences exceed the learning capabilities of the proposed deep neural network,

producing inefficient or even non-trainable (resource-wise) models.

Having abandoned the execution plan prediction task due to the reasons already

mentioned, we focused on extracting valuable insights that the ordinary optimizers can

use as hints to conclude faster and more accurate decisions during the optimization

process regarding operators' implementation and execution order. Encoding algorithms

were introduced to filter the initial input and output texts and extract the most meaningful

words, including relevant information. For simplicity and importance reasons, only scan

and join operations were considered. Both models show promising results. Although,

primarily due to the limited complex queries involving multiple operators included in the

training dataset, the models' efficiency drops as the query complexity rises.

Finally, the effect of text sequence vectorization techniques on the models' efficiency was

also examined. Specifically, the GloVe embeddings and Bag-of-words approaches were

validated for the operator implementation and the execution order models. Having

applied both of these algorithms in the training dataset, it was found that the former

provides better convergence time during the training process and improved scalability,

whereas the latter result in models with slightly enhanced inference capabilities.

 -51-

o Future Work

The limited amount of training samples, especially those involving complex queries,

hugely impacted the proposed models' efficiency during the whole process. To overcome

this obstacle, the training dataset should be enriched with more multi-operator queries.

Since this process could be proved to be a demanding and time-consuming task, another

perspective that can address this issue is the integration of sample-weighting architectures

so that the limited complicated sample has a more significant impact on the training

process.

Another improvement field involves including the rest of the SQL operators cut off in this

project's scope. Additionally, embedded select statements were also excluded from the

encoding algorithms and should be considered in the future.

Finally, ways of incorporating the extracted information regarding the operator

implementation and execution order in the optimization process should also be studied as

a real-world evaluation of the present work findings.

-52-

References

[1] S. Chaudhuri, An Overview of Query Optimization in Relational Systems, PODS '98,

1998.

[2] Yannis E. Ioannidis, Query Optimization. ACM Computing Surveys, Volume 28, Issue

1, pages 121–123, 1996.

[3] Yannis Ioannidis, The History of Histograms (abridged), Proceedings 2003 VLDB

Conference, pages 19-30, 2003.

[4] Katerina Zamani, Angelos Charalambidis, Stasinos Konstantopoulos, Nickolas Zoulis,

and Effrosyni Mavroudi. Workload-Aware Self-tuning Histograms for the Semantic

Web. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XXVIII,

pages 133–156. Springer, 2016.

[5] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. STHoles: A Multi-dimensional

Workload-Aware Histogram. In ACM SIGMOD Record, Volume 30, pages 211–222.

ACM, 2001.

[6] Özsu M.T., Valduriez P. (2020) Introduction. In: Principles of Distributed Database

Systems, pages 1-2. Springer, Cham.

[7] Utkarsh Srivastava, Kamesh Munagala, Jennifer Widom and Rajeev Motwani. Query

Optimization over Web Services.

[8] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh,

and Tim Kraska. 2021. Bao: Making Learned Query Optimization Practical. In

Proceedings of the 2021 International Conference on Management of Data.

Association for Computing Machinery, New York, NY, USA, 1275–1288.

[9] Taiwo Oladipupo Ayodele, Types of Machine Learning Algorithms. In New Advances

in Machine Learning, pages 19-48, February 2010.

[10] Sebastian Ruder, An overview of gradient descent optimization algorithms, June

2017.

https://dl.acm.org/toc/csur/1996/28/1
https://dl.acm.org/toc/csur/1996/28/1
https://dl.acm.org/toc/csur/1996/28/1
https://dl.acm.org/toc/csur/1996/28/1

 -53-

[11] Evgeniou T., Pontil M. (2001) Support Vector Machines: Theory and Applications. In:

Paliouras G., Karkaletsis V., Spyropoulos C.D. (eds) Machine Learning and Its

Applications. ACAI 1999. Lecture Notes in Computer Science, vol 2049.

[12] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query optimization in the presence

of limited access patterns. In Proc. of the 1999 ACM SIGMOD Intl. Conf. on

Management of Data, pages 311–322, 1999.

[13] H. Garcia-Molina et al. The TSIMMIS approach to mediation: Data models and

languages. Journal of Intelligent Information Systems, 8(2):117–132, 1997.

[14] Tom M. Mitchell, The Discipline of Machine Learning. CMU-ML-06-108, July 2006.

[15] An Overview of Query Optimization in Relational Systems

[16] Ilya Sutskever, Oriol Vinyals, Quoc V. Le, Sequence to Sequence Learning with Neural

Networks, 2014

[17] Quoc V. Le et al., A Neural Network for Machine Translation, at Production Scale,

2016

[18] Kyunghyun Cho et al., Learning Phrase Representations using RNN Encoder-

Decoder for Statistical Machine Translation, 2014.

[19] P. P. Shinde and S. Shah, "A Review of Machine Learning and Deep Learning

Applications," 2018 Fourth International Conference on Computing Communication

Control and Automation (ICCUBEA), 2018, pp. 1-6.

[20] Y. Bengio et al., A neural probabilistic language model, 2003.

[21] Socher et al., Semi-supervised recursive autoencoders for predicting sentiment

distributions, 2011.

[22] Mikolov et al., Efficient estimation of word representations in vector space, 2013.

[23] P. Werbos. Back-propagation through time: what it does and how to do it.

Proceedings of IEEE, 1990.

[24] S. Hochreiter et al., Long Short-term Memory. Neural Computation 9(8):1735-

1780, 1997.

[25] LUONG, Minh-Thang. Neural machine translation. 2016. Ph.D. Thesis. Stanford

University.

-54-

[26] Yu et al., CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain

Natural Language Interfaces to Databases

[27] Leis et al., How Good Are Query Optimizers, Really?. PVLDB Volume 9, No. 3, 2015

[28] R. Zhao and K. Mao, Fuzzy Bag-of-Words Model for Document Representation.

IEEE Transactions on Fuzzy Systems, vol. 26, no. 2, pp. 794-804, April 2018.

[29] US 9037464, Mikolov, Tomas; Chen, Kai & Corrado, Gregory S. et al., "Computing

numeric representations of words in a high-dimensional space", published 2015-05-

19, assigned to Google Inc.

[30] J. Pennington et al., GloVe: Global Vectors for Word Representation.

[31] Rajaraman, A.; Ullman, J.D. (2011). "Data Mining" (PDF). Mining of Massive

Datasets. pp. 1–17

[32] Mannes, John. "Facebook's fastText library is now optimized for

mobile". TechCrunch.

[33] D. Bahdanau, K. Cho, Y. Bengio, "Neural Machine Translation by Jointly Learning

to Align and Translate", 2014.

[34] Minh-Thang Luong, Hieu Pham, Christopher D. Manning, "Effective Approaches

to Attention-based Neural Machine Translation", 2015.

[35] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and Y. Bengio. Professor

Forcing: A New Algorithm for Training Recurrent Networks (2016), NeurIPS 2016.

https://paperswithcode.com/paper/cosql-a-conversational-text-to-sql-challenge
https://paperswithcode.com/paper/cosql-a-conversational-text-to-sql-challenge
https://worldwide.espacenet.com/textdoc?DB=EPODOC&IDX=US9037464
https://en.wikipedia.org/wiki/Google_Inc.
http://i.stanford.edu/~ullman/mmds/ch1.pdf
https://techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-for-mobile/
https://techcrunch.com/2017/05/02/facebooks-fasttext-library-is-now-optimized-for-mobile/
https://en.wikipedia.org/wiki/TechCrunch
https://arxiv.org/search/cs?searchtype=author&query=Bahdanau%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Cho%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Bengio%2C+Y
https://arxiv.org/search/cs?searchtype=author&query=Luong%2C+M
https://arxiv.org/search/cs?searchtype=author&query=Pham%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Manning%2C+C+D
https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks
https://papers.nips.cc/paper/6099-professor-forcing-a-new-algorithm-for-training-recurrent-networks

