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Abstract 

The increasing trend of moving from the old-fashioned centralized database systems into 
distributed ones significantly increased the query optimization problem's complexity, 
leading to complicated optimization algorithms based on time and resource-consuming 
analytical methods. This study proposes introducing natural language processing 
techniques combined with Deep Learning architectures as a statistical alternative to the 
traditional analytical query optimization approach to address this issue. 
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1 Introduction 

The amount of data published on the Web and the number of data sources have been 

exploding recently, covering diverse domains. Therefore, applying optimization 

techniques to the systems querying these data is heavily required. Declarative query 

languages allow easy expression of complex queries without knowing about the details of 

the physical data organization of the database. Advanced query processing technology 

transforms high-level queries into efficient lower-level query execution strategies. The 

query transformation should achieve both correctness and efficiency. The main difficulty 

is achieving efficiency, which is also one of the essential tasks of any database management 

system. 

Furthermore, there is a growing trend of moving towards a service-oriented architecture 

by putting the traditional databases behind web services. As a result, data is not stored in 

databases bound to a single system but instead is being made available via web services. 

However, the new structure may increase the versatility but brings additional complexity 

to the system, affecting the efficiency of the old-fashioned query optimizers.  

Efficient query processing over distributed web services in a transparent and integrated 

fashion demands appropriate manipulation of the individual endpoints. The scientific 

domain involved with these operations' research and development is Federated Query 

Processing (FQP). FQP's primary goal is transforming the initial (federated) query over 

the whole schema into an equivalent set of sub-queries over the distributed databases 

(local query). As a result, federated query processing is divided into four distinct sub-

processes: (i) creating distributed databases representation, (ii) federated query 

decomposition and proper schemata selection, (iii) execution plan development and 

optimization, and (iv) query execution, as shown at the following figure. 
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Figure 1: FQP sub-processes 

Different approaches have been studied to optimize query processing, leading to 

numerous corresponding processors. FedX processor utilizes schema representation 

techniques during the query execution phase (on-flight) and chooses the proper 

endpoints, accelerating the execution process. On the other hand, the Semagrow 

processor uses complex and time-consuming optimization algorithms and calculates the 

optimal execution plan based on the knowledge of data distribution over remote 

endpoints. As a result, the time consumed during execution plan designing and 

optimization is counterbalanced by the reduced query execution time. The common 

attribute of all the algorithms mentioned above is the increased complexity and the 

enormous computational resource demands. Therefore, a model will be proposed in this 

project's scope, approximating the optimal execution plans and thus accelerating the 

whole optimization process using machine learning techniques. 

Based on the concept that both the input SQL query and the output execution plan are text 

sequences, the whole optimization process could be faced as a well-known sequence-to-

sequence learning problem. As a result, Neural Machine Translation (NTM) deep neural 

learning architectures will be incorporated as the prediction generation unit. At the same 

time, natural language processing techniques will be used to transform the text sentences 

into suitable inputs for the NTM model, i.e., numeric sequences. 

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html


  -3- 

The utilization of the pre-trained NTM model in the optimization process is expected to 

speed up the query optimization process due to the deep learning models' reduced 

prediction time while maintaining the whole process efficiency compared to the 

traditional analytical optimizers. 

1.1 Outline 

The remainder of this thesis is organized as follows: 

● In Chapter 2, background on query optimization and machine learning algorithms. 

● In Chapter 3, methodology and implementation technical details are described. 

● In Chapter 4, the conducted experiments alongside the individual results are 

presented. 

● In Chapter 5, the whole project's conclusions are discussed. 
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2 Background 

Query optimization is a highly complicated process consisting of several sub-modules, 

each of whom is responsible for a specific task: (i) the query parser, (ii) the query 

optimizer, (iii) the code generator, and (iv) the query processor. The complexity of each 

module raises significantly when distributed database systems replace the traditional 

centralized ones, diminishing the efficiency of the typical optimizers. 

Based on this assumption, it will be attempted to replace the analytical algorithms with 

statistical ones by introducing deep neural network architectures and natural language 

processing techniques in the optimization process. 

The abovementioned concepts will be thoroughly discussed and analyzed in the following 

sections. 

2.1 Query Optimization 

A vital component of every Database management system (DBMS) is the query optimizer 

regarding the query evaluation process. The query optimizer is responsible for 

determining the most efficient execution plan for any given SQL query by estimating the 

costs of every project within the space of possible execution plans. Since the algebraic 

representation of a SQL query can be transformed into a set of equivalent expressions, the 

task of the query optimizer is nontrivial [1].  

Having stated the above, each query should follow a specific traversal through a DBMS to 

be answered, as shown in Figure 2. 
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Figure 2: Query flow 

The individual modules, as depicted above, have the following functionalities: 

● The Query Parser validates the query and then transforms it into an equivalent 

internal form, using relational calculus expressions. 

● The Query Optimizer generates an efficient execution plan by examining all the 

equivalent algebraic expressions produced by the query parser and choosing the 

optimal one. 

● The Code Generator or the Interpreter converts the optimal execution plan 

into a set of the appropriate calls to the query processor. 

● The Query Processor executes the query and produces the final output. 

Since the core of this project mainly concerns the query optimization process, the 

following sections will be focused on the modular architecture and functionality of a 

typical query optimizer [2]. 
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2.1.1 Query Optimizer Architecture 

Given a query on a DBMS, a set of equivalent execution plans could be produced. The 

query optimizer should evaluate all the alternatives to conclude with the most efficient 

one. The process of generating and examining these alternatives could be generalized to 

an abstract model, indicating the modular architecture of a typical query optimizer, as 

shown in Figure 3. 

 

Figure 3: Query optimizer architecture 

The above abstraction optimization process could be divided into the rewriting and 

planning stages. The functionalities of the modules included in these stages will be 

thoroughly discussed in the following sections. 

2.1.2 Modules Functionalities 

Rewriter 

This module converts the original query into a more efficient equivalent query by 

performing transformations depending only on the static characteristics of the query. 

These transformations include operations such as replacements of views with the 

corresponding definitions, flattening out of nested queries, etc. Since neither the structure 
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nor the data distribution of the given database is considered during rewriting operations, 

this module is characterized at the declarative level. 

Algebraic Space 

This module generates all the alternative series of action execution orders for any given 

query that the Planner should consider answering the query. All these series produce 

equivalent results, but there is usually significant fluctuation in performance. Each set of 

action execution orders is represented as either relational algebraic formulas or in tree 

forms. The complexity of the examined query determines the number of distinct sets. 

Several restriction policies are applied to diminish the size of the space needed to be 

explored, as described below. 

Lemma 1 

"Selections and projections are processed on the fly and rarely generate intermediate 

relations. Selections are processed as relations are accessed for the first time. Projections 

are processed as the results of other operators are generated." [2] 

For example, given the below query 

 select name, property 

 from owners, properties 

 where owners.id = properties.owner_id and properties.value > 1M. 

three different query trees could be generated, as shown in Figure 4. 
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Figure 4: Query trees 

Lemma 1 restricts only suboptimal query trees, based on the admission that separate 

processing of selections and projection incurs additional costs. As a result, only T1 satisfies 

this restriction: index scan on properties finds only the tuples that satisfy the selection on 

properties value and joins only those. In contrast, the projection on the result attributes 

occurs after the join. 

Due to join commutativity and associativity algebraic properties, several alternative join 

series are generated in multi-joint queries. Therefore, a second restriction rule should be 

applied to reduce the algebraic space further 

Lemma 2 

"Cross products are never formed unless the query itself asks for them. Relations are 

always combined through joins in the query." [2] 

For example, given the following query 

select name, property and area 

 from owners, properties, areas 

 where owners.id=properties.owner_id and properties.post_code= 

areas.post_code. 

three different query trees could be generated, as shown in Figure 5. 
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Figure 5: Join trees; T3 has a cross product 

This restriction rule eliminates any join trees containing cross products, producing 

unnecessary large-size results. As a result, T3 is disqualified from the algebraic space. 

The final restriction, only present in some database systems such as DB2 and MVS, 

requiring an even smaller space, deals with the shape of join trees. 

Lemma 3 

“The inner operand of each join is a database relation, never an intermediate result.” [2] 

Given the below query 

select name, property, area, state 

 from owners, properties, areas, states 

 where owners.id=properties.owner_id and properties.post_code= 

areas.post_code and areas.state_id=states.id. 

The following cross-product-free join trees can be formed: 
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Figure 6: Left-deep (T1), bushy (T2), and right-deep (T3) join trees. 

Based on the final restriction, only the T1 join tree is qualified since T2 and T3 include at 

least one join with an intermediate result as the inner relation. This restriction is more 

heuristic than the previous ones, and it is possible to eliminate even the optimal plan. 

However, in most cases, it has been proved that the optimal left-deep is almost equally 

expensive compared to the optimal tree overall. 

This module is classified at the procedural level due to the algorithmic nature of the 

objects generated during these operations. 

Method-Structure Space 

Any algebraic expression is composed of a combination of logical operators, such as 

(inner/outer) joins, scans, sortings, etc. Given an algebraic expression or tree from 

Algebraic Space, this module incorporates any available implementation choice provided 

by the DBMS. It generates all alternative complete execution plans, specifying the exact 

implementation of each logical operator included in the execution plan. In other words, 

method-structure space serves as a one-to-many mapping, matching each logical operator 

to the available physical implementations. For example, given a join, the number of 

distinct choices varies based on the available methods used to implement it (e.g., nested 

loops, merge scan, and hash join) and the indices stored in database catalogs. These 

alternatives generated at the Method-Structure Space module depend on database 

structural characteristics and do not affect the development of the query optimizer. 
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Cost Model 

This module evaluates the arithmetic formulas used to estimate the cost of every execution 

plan within the Algebraic Space with respect to the complexity of the distinct steps that 

should be accessed to fulfill an execution plan. The cost of each of these steps, including 

join methods, index type assessments, etc., is determined by simple approximations 

regarding the underlying functionalities executed by the system during each step. Since 

these cost formulas depend on assumptions concerning operations like buffer 

management, disk-CPU overlap, I/O processes, etc., parameters such as the buffer pool 

size used by the corresponding step, the size of indices and relations incorporated, as well 

as the distributions of the values on these relations, play a crucial role on step cost 

estimation. 

Size-Distribution Estimator 

A critical factor in query optimization is estimating the costs of all available execution 

plans in advance and without actually invocating them. This can only be achieved by 

appraising the results of each (sub)query and the frequency distributions of the values in 

attributes involved in these results. In most cases, a query affects several attributes, and 

as a result, multi-attribute joint frequency distributions are required to predict the size of 

the results accurately. However, storing the frequency distributions of all possible 

attribute combinations in a DBMS is rarely feasible and inefficient. Instead, the attribute 

value independence assumption is utilized, and even though it is not often true, the joint 

frequency distribution is calculated as the product of the respective attributes 

distributions. 

Several techniques have been developed to produce accurate estimations over the queries' 

expected results size and the related attributes' frequency distributions. However, the 

approach adopted by the most commercial DBMSs involves estimation based on 

histograms. 

A histogram on an attribute X is constructed by partitioning the data distribution of X into β 

(≥ 1) mutually disjoint subsets called buckets and approximating the frequencies and values in 

each bucket in some typical fashion [3]. In terms of database systems, the attribute X 

corresponds to a specific column of a given table. The process of histogram construction 
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involves scanning the database and then aggregating the values fluctuating within a predefined 

range per attribute. Since the contents of a typical large-scale web resource are frequently 

updated, the maintenance of the corresponding histograms through a periodic data scan can 

be proved a highly inefficient task. Instead, adaptive query processing methods can be applied, 

updating the related histograms on the flight by observing and analyzing the results of the 

queries that constitute the client-requested workload [4]. 

Workload-aware self-tuning histograms have been successfully used in relational 

databases avoiding the costly creation of static histograms of massive datasets. One of the 

leading and state-of-the-art representatives of the self-tuning approach is STHoles. 

STHoles' distinct characteristic is allowing buckets to overlap. This more flexible data 

structure allows STHoles to exploit feedback genuinely multi-dimensional. STHoles allow 

for inclusion relationships between buckets, resulting in a tree-structured histogram 

where each node represents a bucket [5]. Holes are subregions of a bucket with different 

tuple densities and are buckets themselves. A new hole is drilled whenever a query result 

partially intersects with an existing bucket. The prediction based on the current 

histogram's statistics diverges from the query results. 

Figure 7 shows a bucket b with frequency f(b) = 100. Suppose that from the result stream 

for a query q. We count those Tb = 90 tuples lie in the part of bucket b that is touched by 

query q, q ∩ b. We can deduce that bucket b is significantly skewed since 90% of its tuples 

are located in a small fraction of its volume. The histogram's accuracy will improve if we 

create a new bucket bn by 'drilling' a hole in b corresponding to the region q ∩ b and 

adjusting b and bn's frequencies accordingly, as illustrated in Figure 7. So, opening a new 

hole for the part of the bucket that partially intersects with the query solves the problem 

of different tuple densities in the same bucket [5]. 
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Figure 7: Drilling a hole in bucket b to improve the histogram quality 

The number of full buckets stored and maintained is limited due to memory and space 

resource restrictions. As a result, buckets with relative tuple densities should be merged 

and replaced with new ones containing more meaningful information. Thus, a penalty 

function measuring the difference in approximation accuracy between the old and the new 

histogram is used as a bucket merging criterion. Parent-child merges help eliminate 

buckets that become too similar to their parents; sibling merges are proper to extrapolate 

frequency distributions to unseen regions in the data domain and consolidate buckets with 

similar densities covering nearby regions. 

Planner 

The core of query optimization occurs in the planner module. The alternative execution 

plans generated by the Algebraic Space and the Method-Structure Space are filtered. The 

optimal one is selected based on the established Cost Model with respect to the Size-

Distribution Estimator. Several approaches have been proposed based on the exploration 

strategy employed by the Planner. 

Dynamic Programming Algorithms 

Search algorithms utilizing dynamic programming strategies are the most commonly used 

approach in commercial applications. These algorithms can be faced as dynamically 

pruning exhaustive search algorithms by performing a merge scan on the join trees 

specified at Algebraic Space and pruning the suboptimal trees that violate the restrictions 

described at lemmas 1-3 in the previous section. A key component of dynamic 

programming is the interesting order concept. According to this concept, all join attributes 

are stored in a sorted queue based on their appearance, starting from the input join 

relation. Thus, attributes participating in multiple joins can be identified with ease. As a 
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result, it is not acceptable to choose a sub-plan over another, using as criterion just their 

costs. Instead, their intermediate results should also be considered since the results of the 

most expensive one may be sorted on an attribute that will save a sort in a subsequent 

merge-scan execution of a join. 

Having stated these, the complete dynamic programming algorithm optimizing a query 

composed of N relations could be analyzed in the following steps: 

Step 1 

The input query is processed using a simple sequential scan, identifying all relations 

alongside the respective partial (single-relation) plans and extracting the exciting order. 

Afterward, the extracted plans are classified into equivalence classes based on the exciting 

order. Another class is formed with the plans whose results are not in accordance with the 

exciting order. Based on the Cost Model, the cheapest plan per in-order equivalence class 

is selected for further consideration. Finally, the no-order class is scanned, searching for 

a plan whose cost is lesser than any other plan. Otherwise, the whole class is discarded. 

Step 2 

The partial plans extracted from step 1 are utilized to generate all possible ways to access 

every relation joined in the query. These new execution plans are classified and pruned 

following the same process described in step 1. 

… 

Step i 

Having joined one relation per step, choosing the cheapest plan to access it based on the 

exciting order, a set of i-1 relations and the individual plans have already been obtained. 

So, in this step, considering this set of relations plans, it is attempted to join another 

relation by evaluating all possible ways to achieve it without producing a cross product.  

… 

Step N 

All N relations of the initial query have been joined, and as a result, all possible execution 

plans have been formed in the previous step. The cheapest plan is selected, marked as the 

final output of the optimization, and executed to answer the query. 
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This algorithm avoids enumerating all alternative plans by dynamically pruning those that 

failed to satisfy restrictions, as described in Lemmas 1-3. As a result, it is guaranteed to 

determine the optimal execution plan through scanning. In some cases, only O(N3) plans 

[2]. 

Randomized Algorithms 

In general, dynamic programming algorithms generate and examine an exponential 

number of plans to determine the optimal, making the optimization task extremely 

inefficient. Several algorithms, such as Simulated Annealing, Iterative Improvement, and 

Two-Phase Optimization, have been recently introduced as an alternative solution to 

dealing with this dynamic programming inability. These algorithms are based on plan 

transformations instead of the plan construction of dynamic programming. Specifically, 

all alternative execution plans are represented as nodes of a graph, each associated with 

the respective plan's cost. The nodes directly connected to node S are called neighbors of 

S. A transition from a source node to any destination node is called uphill (resp. downhill) 

if the latter's cost is higher (resp. lower) than the latter cost of the former. Randomized 

algorithms perform multiple searches in the graph through random walks (set of moves) 

to find the globally minimum cost – i.e., reach a node with the lowest cost among all nodes. 

Some algorithms, Iterative Improvement, achieve optimization by identifying local 

minimums – i.e., the accepted paths from any given node, allowing uphill moves only after 

at least one downhill one. 

Despite their efficiency over complex queries, randomized algorithms' capabilities are 

limited due to their strong dependence on the characteristics of the selected cost model 

and the connectivity of the graphs as determined by the neighbors of each node. Dynamic 

programming algorithms are generally preferred on simple queries (up to 10 joins) due to 

their speed and completeness (always find the optimal solution). In contrast, the 

randomized algorithms are upvoted on more complex queries despite their probabilistic 

nature due to their efficiency. However, both are affected by the established Cost Model, 

which depends on optimizer implementation choices and the targeted DBMS data 

distribution [2]. 
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2.1.3 Distributed Databases 

The need to manage and access data stored in distributed data has recently skyrocketed, 

moving the distributed database system from a small part of the worldwide computing 

environment a few decades ago to mainstream [6]. The main differences regarding query 

optimization are detected in the Method-Structure Space and the Planner comparing the 

centralized case discussed in the previous sections [2]. Additionally, the Cost Model 

should account for the possible delays due to limitations on the network transmission 

rates.  

Method-Structure Space 

Since multiple independent databases are involved regarding Method-Structure Space, 

additional processing strategies and implementation choices for transmitting data are 

offered. Additionally, the traditional monolithic execution plans are transformed into a 

proper combination of web service calls, addressing the distributed databases. However, 

query processing over distributed web services demands transparent data integration over 

multiple remote web resources. To this end, the Web Service Management System 

(WSMS) [7] is utilized as the administration mechanism, enabling the communication 

and coordination of the individual web services. As a result, a client can query the WSMS, 

which will handle the optimization and execution of the client's Select-Project-Join query 

by spanning the multiple connected web services and choosing the optimal ones, and 

finally returns the corresponding result set Figure 8. 
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Figure 8: A Web Service Management System (WSMS) [7] 

WSMS primarily focuses on constructing the optimal execution plan of available web 

services that minimize the query's total execution time by exploiting parallelism. 

 DEFINITION 3.1.1 (SPJ QUERIES OVER WEB SERVICES). 

Given a table I, corresponding to the input data by the client and WS1,..., WSn is the set of 

the available web services, then the class of the queries to be optimized can be described 

by the following formula: 

( ) ( ) ( )
( ) ( ) ( )

1 1 1

1 1 2 2

 

 , ,

 

s

b f b f

I n n n

m m

SELECT A

FROM I A WS X Y WS X Y

WHERE P A P A P A  
 

Where As is the set of projected attributes, AI is the set of attributes in the input data and 

P1, ..., Pm are predicates applied on attributes A1, ..., Am, respectively [5]. 

 

 DEFINITION 3.1.2 (PRECEDENCE CONSTRAINTS). 

Suppose a bound attribute in Xj for WSj is obtained from some accessible attribute Yi of 

WSi. In that case, there exists a precedence constraint WSi ≺ WSj, i.e., in any feasible 

execution plan for the query, WSi must precede WSj [5]. 
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Based on the aforementioned definitions, any query execution plan can be represented as 

a directed acyclic graph (DAG), whose nodes correspond to the involved web services. If 

there is a precedence constraint WSi ≺ WSj between two web services, they will be 

connected by a directed edge from WSi to WSj, implying that the execution should wait for 

the output of WSi to invoke WSj. Otherwise, input data could be dispatched in parallel to 

the two web services, and thus the corresponding nodes are placed in different paths of 

the graph, as shown in Figure 9. 

 

Figure 9: Execution Plan Directed Acyclic Graph (DAG) 

Planner 

Due to the introduction of parallel and in-order partial plan executions, the need for 

accurate scheduling escalates the complexity of even simple join queries, as the number 

of alternative plans is significantly increased. As a result, no dynamic programming 

algorithm can be applied, making the randomized ones the only feasible solution. 

However, even optimization algorithms using heuristic methods can be proved relatively 

inefficient. Scanning a very complex graph while estimating nodes' costs and identifying 

local or global minima is a time-consuming and expensive process. Additionally, the lack 

of accurate knowledge of remote web resource data distribution, which can be changed 

dramatically without any notice, significantly impacts the reliability of cost estimation. 

More loose methods could be incorporated to overcome these obstacles, replacing the 

strict analytical processes described in the previous sections. Recent efforts have shown 

promising results in applying machine learning techniques to query optimization [8]. 

Such methods will be discussed thoroughly in the following sections. 

Cost Model 

Establishing a suitable cost function is vital for the query optimization process. The most 

cases, optimization's primary goal is minimizing query response time. In this project's 
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scope, web services' selectivity and response time will be considered the key factors 

affecting the overall response time. Based on this assumption, we will focus our efforts on 

profiling these two quantities to be used for the cost function generation. 

Selectivity (si) 

After evaluating the query and applying all relevant predicates, selectivity si of a web 

service WSi is a quantity measuring the total number of the returned tuples per input 

tuple. Since selectivity is a fraction, its value ranges from 0 to 1. For simplicity, in this 

paper, it is assumed that there is no correlation between web services selectivity. 

Response Time (ci) 

Given that ri is the maximum results invocation rate for a specific web service WSi. We 

can define the web service's adequate per-tuple response time as 1i ic r=  actually denoting 

to web service's average invocation cost. This quantity expresses the total time the web 

service requires to return a result set containing just one tuple. As a result, it incorporates 

network transmission time, web service processing time, and queuing delays and depends 

on numerous factors, such as network conditions, web service provisioning, and load. 

Therefore, it is not acceptable to be considered constant. Instead, a stochastic approach 

will be adopted, providing a better and more accurate approximation to this quantity. 

Cost Function 

Assuming that any web service call could be executed in parallel, then the overall system 

maximum input tuples processing rate will be determined by the web service needed the 

most time on average per input tuple - i.e., the bottleneck web service. Based on those 

mentioned above, and assuming that web services selectivities are independent of each 

other, then the (bottleneck) cost of any DAG, corresponding to an execution plan, will be 

equal to the maximum of the product of the predecessors' web services combined 

selectivity and current web service response time, for all web services included in the 

execution plan [7]. 

Using the above cost definition, we can calculate the costs corresponding to the query 

plans shown in Figure 8. Let the respective web services' costs and selectivities be as 

follows: 
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i 1 2 3 

Cost of WSi (ci) 2 10 5 

Selectivity of WSi (si) 0.1 5 0.2 

Table 1: Web services' costs and selectivities 

and |I|  be the number of tuples in input data I. In Plan 1, WS1 is the first invoked in the 

query execution plan, meaning that it has no predecessors and will process the whole |I| 

number of tuples. Thus, WS1 costs equal to 1 2 2 = . and will forward only 10% of them to 

the following web service, having a 0.1 selectivity value. Thus, WS1 cost will equal to 

11 1 2 2c =  = . Regarding WS2 the combined selectivity of its predecessors (just WS1) is 0.1, 

and the respective cost will be 1 2 0.1 10 1s c =  = . Finally, WS3 cost value will equal to 

( ) ( )1 2 3 0.1 5 5 2.5s s c  =   = . So, based on the cost function, the overall cost of the execution 

plan H is ( )max 2,1,2.5 2.5= . 

2.2 Machine Learning Algorithms 

Machine Learning (ML) covers a broad range of learning tasks aiming to design and 

develop computer systems that "automatically improve with experience" while defining 

the fundamental laws governing all learning processes. ML is a natural outgrowth of the 

intersection of Computer Science and Statistics. While Computer Science's primary goal 

is to program computer systems manually, ML focuses on establishing the initial structure 

that enables a computer system to program itself, using the acquired experience. On the 

other hand, ML diversifies from Statistics since the former tries to identify the most 

efficient computational architectures and algorithms that can be incorporated to capture, 

store, index, retrieve and merge data instead of only extracting conclusions from these 

data [9]. 

An abundance of ML algorithms developed so far, organized into a taxonomy based on 

their desired outcome. This taxonomy involves the following main categories: (i) 

Supervised learning, (ii) Unsupervised learning, and (iii) Reinforcement learning. 
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Supervised learning algorithms aim to generate a function mapping inputs to the desired 

outputs, while unsupervised learning algorithms model a set of inputs without any labeled 

examples. Reinforcement learning target is establishing a policy guiding an agent to act 

based on an observation of the world. Every act made by the agent interacts with the 

environment, which provides feedback used to improve the efficiency of the learning 

algorithm [9]. 

During the last decades, various sophisticated learning algorithms have been invented, 

marking the transition of the artificial neural networks (ANNs) towards increasingly deep 

neural network architectures with significantly improved learning. However, the 

complexity of these deep learning models created a set of challenges to overcome due to 

the induction of black-box properties that can lead to bias and drift in data [19]. 

2.2.1 Problem Definition 

In this project's scope, the primary goal is to predict and reconstruct the optimal execution 

plan for a given query - i.e., the plan with the minimum cost function, while maintaining 

the processing time significantly lower than an analytical optimizer. Therefore, the ML 

algorithm should be trained using a set of samples (training set) corresponding to SQL 

queries-execution plans pairs produced by an ordinary optimizer for the input set of 

queries. Given that both the input queries and the optimal execution plan can be 

considered as text sentences, sequence-to-sequence models [16] can be utilized to 

translate the input phrase (SQL query) to the respective output (execution plan). As a 

result, the approach of Neural Machine Translation [17] will be adopted, a state-of-the-art 

machine translation algorithm, surpassing the typical Recurrent Neural Networks (RNN) 

and Phrase-Based Machine Translation (PBMT) architectures, providing significantly 

improved translation speed and accuracy. 

2.2.2 Natural Language Processing 

Deep neural networks have shown great success in a variety of natural language 

processing (NLP) tasks, such as language modeling [20], paraphrase detection [21] and 

word embedding extraction [22], and statistical machine translation (SMT). As stated 

above, this project's scope will be attempted to face the query optimization problem as a 
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sequence-to-sequence machine translation problem. A natural choice for processing 

sequential data is the recurrent neural network (RNN). 

Recurrent Neural Networks (RNN) 

A typical deep neural network assumes that inputs are independent of the outputs. On the 

contrary, an RNN utilizes information from the previous input to determine the current 

input and output, introducing a "memory" mechanism. An RNN consists of a hidden state 

h and is fed by a variable-length input sequence x = (x1, x2, …, xn) and generates an output 

y. 

 

Figure 10: Recurrent Neural Network architecture 

As shown in Figure 10, at each step t, the hidden state ht depends on the prior hidden state 

ht-1 and the current input xt. Since hidden state is a two-factor function, the traditional 

back-propagation concept is extended to a more complex method called "back-

propagation through time". This method unfolds the network in time and calculates each 

hidden state's gradients with respect to all the network parameters [23]. However, this 

complex process enhances the vanishing gradient problem, making RNNs' training 

procedure nearly impossible. 

To address the problem of RNNs' long-term dependencies, leading to vanishing gradient 

during back-propagation, long-short-term memory (LSTM) neural networks come into 

play [24]. LSTMs' hidden state layer comprises four distinct units controlling the 

information flow through the network layers: the forget gate that decides what 

information should be thrown away or kept. The input gate, which determines which 

values should be updated, the cell state, the information flow bus, and the output gate, 

which decides what the next hidden state should be, are shown in the following figure. 

https://en.wikipedia.org/wiki/Backpropagation_through_time
https://en.wikipedia.org/wiki/Backpropagation_through_time
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Figure 11: LSTM hidden state unit 

2.2.3 Text preprocessing 

The instruction of a complete, compact, and meaningful representation for both the input 

and the output-target sequence is a prerequisite for any RNN-based deep neural network. 

This representation refers to text vectorization in the natural language processing field, 

transforming any text sequence into a numeric vector. This procedure could be analyzed 

into distinct sequential steps: sentence tokenization, vocabulary extraction, sentence 

transformation, and sentence padding. 

Sentence tokenization 

The tokenization step's primary task is to split any given sequence into components. 

Speaking of text sentences, these parts could consist of the individual letters and words or 

even the collection of sequential letters or words. In the current projects, words are chosen 

as the unit of the elementary sentence. So, the term token will refer to the word from now 

on. Before extracting the distinct tokens, it's crucial to perform some cleansing techniques 

to remove redundant words and symbols and speed up the process. These techniques 

involve lower case transformation and numbers and symbols removal. Since the processed 

sentences are SQL statements, SQL operators are critical, and thus they are not removed. 

Additionally, whitespaces are added to separate the remained tokens. For example, given 
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the previous sentence, the cleansing techniques will perform the following 

transformations: 

Step Output 

initial text 

SQL operators such as !, %, <, etc., are not 

excluded, while the irrelevant symbols like ~, #, 

etc., are removed. 

lower case transformation 

sql operators such as !, %, <, etc., are not 

excluded, while the irrelevant symbols like ~, #, 

etc., are removed. 

remove numbers and 

symbols 

sql operators such as !, %, <, etc., are not 

excluded, while the irrelevant symbols like , , 

etc. are removed. 

whitespaces addition 

sql operators such as ! % , < , etc . are not 

excluded , while the irrelevant symbols like , , 

etc . are removed . 

Table 2: Text cleansing steps 

Having performed the above-described steps, the tokenization process will split the final 

output text into a list containing the selected components. Single-word tokenization has 

been chosen for both input and output text sequences in this project's scope. 

Token embeddings 

Transforming the input text sequences into numeric ones is essential to training any 

neural network. So, a general transition map needs to be established, matching every 

token of the initial sequence to a unique numeric representation. This procedure includes 

extracting the specific words in the space of the sentences' corpus, a.k.a. the vocabulary, 

followed by creating an embedding set, associating each word contained in the vocabulary 

with a distinct embedding. Several techniques have been introduced regarding the 

formation of efficient embeddings. This project's scope will examine two strategies: the 

traditional bag-of-words approach [28] and the word embedding implementation using 

GloVe word representation [28]. 
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Bag-of-words 

The bag-of-words is the most straightforward approach used in natural language 

processing to create a document representation. Specifically, a list of the unique tokens 

included in the document is extracted, and each word's frequency (or presence) is 

calculated per sentence and used as a feature. For example, given the following document 

consisting of two sentences: 

Mary also likes to watch football games. (1) 

John likes to watch movies. Mary likes movies too. (2) 

the list of the different words (feature vector) is composed of the following words: 

"John","likes","to","watch","movies","Mary","too","also","football","games", ".". 

So, the sentences will be represented by the following sequence: 

[“John”: 0, “likes”: 1, “to”:   1, “watch”: 1, “movies”: 0, “Mary”: 1, “too”: 0, “also”: 1, 

“football”: 1, “games”: 1, “.”: 1] -> [0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1] 

[“John”: 1, “likes”: 2, “to”:   1, “watch”: 1, “movies”: 2, “Mary”: 1, “too”: 1, “also”: 0, 

“football”: 0, “games”: 0, “.”: 2] -> [1, 2, 1, 1, 2, 1, 1, 0, 0, 0, 2] 

However, term frequency is not always a reliable feature since high-frequency words 

include limited information and thus have predictive power. The term frequency–inverse 

document frequency (TF-IDF) metric has been introduced to address this issue. TF-IDF 

is a statistic metric reflecting the word importance over a sentence in a collection [31]. 

This time instead of term frequency, the TF-IDF score is calculated per word and is used 

to create the representation of the sentence. As a result, it works as a weighted factor, 

increasing proportionally to each word in the sentence. At the same time, it is inversely 

proportional to the number of sentences in the corpus containing the word, which helps 

to adjust for the fact that some words appear more frequently. 

Given the above example, term frequency is calculated per sentence word: 

Sentence 1: 

1 1 1 1 1

1 1 1

(" ", ) (" ", ) ("likes", ) ("to", ) ("watch", )

1("footbal", ) ("games", ) (".", ) 0.125
7

tf Mary s tf also s tf s tf s tf s

tf s tf s tf s

= = = =

= = = = =
 

Sentence 2: 

https://en.wikipedia.org/wiki/Proportionality_(mathematics)
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2 2 2 2

2

("John", ) ("to", ) ("watch", ) ("Mary", )

1("too", ) 0.091
11

tf s tf s tf s tf s

tf s

= = =

= =
 

2 2 2

2

("likes", ) ("to", ) ("movies", )

2(".", ) 0.182
11

tf s tf s tf s

tf s

= =

= =
 

Afterward, inverse document frequency per word is measured: 

( )
("John", ) ("also", ) ("football", ) ("games", )

2("too", ) ("movies", ) log 0.301
1

idf D idf D idf D idf D

idf D idf D

= = =

= = =
 

( )
("Mary", ) ("likes", ) ("to", ) ("watch", )

2(".", ) log 0
2

idf D idf D idf D idf D

idf D

= = =

= = =
 

Finally, tf-idf scores for sentence one words will be the followings: 

( ) ( )1 1("Mary", ,D) "Mary",s "Mary",D 0.125 0 0tfidf s tf idf=  =  =  

( ) ( )1 1("also", ,D) "also",s "also",D 0.125 0.301 0.038tfidf s tf idf=  =   

( ) ( )1 1("likes", ,D) "likes",s "likes",D 0.125 0 0tfidf s tf idf=  =  =  

( ) ( )1 1("to", ,D) "to",s "to",D 0.125 0 0tfidf s tf idf=  =  =  

( ) ( )1 1("watch", ,D) "watch",s "watch",D 0.125 0 0tfidf s tf idf=  =  =  

( ) ( )1 1("football", ,D) "football",s "football",D 0.125 0.301 0.038tfidf s tf idf=  =   

( ) ( )1 1("games", ,D) "games",s "games",D 0.125 0.301 0.038tfidf s tf idf=  =   

( ) ( )1 1(".", ,D) ".",s ".",D 0.125 0 0tfidf s tf idf=  =  =  

( ) ( )1 1("John", ,D) "John",s "John",D 0 0.301 0tfidf s tf idf=  =  =  

( ) ( )1 1("movies", ,D) "movies",s "movies",D 0 0.301 0tfidf s tf idf=  =  =  

( ) ( )1 1("too", ,D) "too",s "too",D 0.125 0.301 0.038tfidf s tf idf=  =   
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and the representation sequence will be formed as follows: 

[“John”: 0, “likes”: 0, “to”:   0, “watch”: 0, “movies”: 0, “Mary”: 0, “too”: 0.038, “also”: 

0.038, “football”: 0.038, “games”: 0.038, “.”: 0] -> 

[0, 0, 0, 0, 0, 0, 0.038, 0.038, 0.038, 0.038, 0]. 

Using the same methodology, sentence 2 feature vector will be: 

[0.038, 0, 0, 0, 0.038, 0, 0, 0, 0, 0, 0]. 

Word Embedding 

Word embedding is a word representation used for text analysis. Each word is replaced by 

a fixed-sized and real-valued vector, calculated from the probability distribution for each 

word to the similar meaning words. As a result, each word representation encloses the 

context information so that words with similar meanings are expected to be mapped closer 

to the vector space. Several word embedding models have been developed during the past 

decade, such as Google's Word2Vec [29], Facebook's FastText [32], Stanford's GloVe [30], 

etc. Their main difference is in the document corpus used during the training process. In 

the current project, Sandford's GloVe embeddings implementation has been chosen. 

Comparison 

Having presented the implementation details regarding these vectorization approaches, it 

is clear that the BoW algorithm relies solely on contword frequencies under the unrealistic 

word-independent assumption, while the GloVe embeddings are a more sophisticated 

method since it encapsulates structural and context information. As far as it concerns the 

vectorization of SQL queries and the corresponding execution plans, both solutions can 

be a viable option since creating global representation per word can assist the model in 

identifying patterns and thus associate the input sequences with the output ones and 

generate more accurate predictions. A critical difference between these two 

implementations is the word context information that Word embeddings offer, the 

positive or negative impact of which should be evaluated since it is not clear if the context 

of the words in a SQL query (column/table names, SQL keywords) contains meaningful 

information or adds bias into the system. 
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2.3 Remarks 

To sum up, the typical analytical query optimizers provide accurate optimization results. 

However, they can be proved highly inefficient when dealing with large and complex 

queries, joining data from multiple remote databases. Their strong dependence on 

database data distribution increases their vulnerability to sudden and unnoticed internal 

changes in the web resources. As a result, the efficiency of analytical optimizers on query 

optimization tasks over distributed databases can be questionable. 

An alternative perspective will be proposed on this project's scope, replacing the analytical 

optimization approach with a statistical one, incorporating learning techniques. Thus, 

instead of calculating the exact execution plan through complex tree traversal operations 

to determine the optimal plan, the proposed model will incorporate natural language 

processing techniques transforming the original optimization problem into a sequence-

to-sequence text generation. As a result, the optimization process is expected to be 

accelerated and simplified, with a minimum accuracy tradeoff. The following chapters will 

thoroughly discuss the exact details of the feature extraction, training, and evaluation 

process to establish this model. 

 

 

 

 

 

 

 

3 Methodology and Experiments 

Any traditional deep neural network requires fixed dimensionality inputs and outputs. 

However, this is impossible for the examined case since neither the input SQL queries nor 

the output execution plans can have a predefined length. A simple strategy to overcome 



  -29- 

this challenge is to map the input sequence to a fixed-size vector, using an LSTM network 

as an encoder, followed by an LSTM decoder mapping this vector to the target sequence 

[16]. In neural machine translation, this technique was introduced by Google Neural 

Machine Translation (NTM) systems, replacing the traditional phrase-based translation 

systems and enabling the capturing of long-range dependencies that occur in natural 

language sentences. The same long-range dependencies occur in both SQL and query plan 

statements, making the usage of this architecture quite promising. 

3.1 Dataset preparation 

The main idea was to deduce the optimization process into a sequence-to-sequence neural 

machine translator task. The input text sequences will be the SQL queries, and the output 

text sequence will consist of the optimized execution plan. PostgreSQL database system is 

utilized to query the database and retrieve the execution plan using the embedded 

optimizer. A set of queries over several established databases was needed to acquire these 

input-output tuples. Instead of manually creating the queries and the respective schemas, 

the CoSQL dataset was used [26]. Create and insert queries from the CoSQL dataset were 

executed to establish the respective SQL tables in a local PostgreSQL database. Afterward, 

an EXPLAIN command was used for each select query in the dataset to create the 

corresponding optimal execution plan produced by the PostgreSQL optimizer. For 

example, given the select query: 

select t1.first_name from students as t1 join addresses as t2 on 

t1.permanent_address_id   =   t2.address_id where t2.country   =   'haiti' 

(1

) 

the optimal execution plan (in JSON format), retrieved by executing the same statement 

using the EXPLAIN command, will be the following: 

 

{ 

   "Node Type":"Hash Join", 

   "Join Type":"Inner", 

   "Hash Cond":"(t1.permanent_address_id = t2.address_id)" 

   "Plans":[ 

https://research.googleblog.com/2016/09/a-neural-network-for-machine.html
https://research.googleblog.com/2016/09/a-neural-network-for-machine.html


-30- 

 

      { 

         "Node Type":"Seq Scan", 

         "Parent Relationship":"Outer", 

         "Relation Name":"students", 

         "Alias":"t1" 

      }, 

      { 

         "Node Type":"Hash", 

         "Parent Relationship":"Inner" 

         "Plans":[ 

            { 

               "Node Type":"Seq Scan", 

               "Parent Relationship":"Outer", 

               "Relation Name":"addresses", 

               "Alias":"t2", 

               "Filter":"((country)::text = 'haiti'::text)" 

            } 

         ] 

      } 

   ] 

}, 

corresponding to the following query tree: 
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Figure 12: Example query tree 

As a result, a set of 5445 queries-execution plans was obtained. This dataset comprises 

4784 single-operator queries, 554 queries with two operators, 93 with three, 10 with four, 

and just four queries with five operators, as depicted in the following graph. 

 

Figure 13: Operator count distribution over dataset queries 

This indicates that the acquired dataset consisted of rather than simple queries and can 

prevent the proposed model from effectively dealing with large and complex queries. 
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3.2 Data preprocessing 

The initial approach did not involve any preprocessing. The plain text from both SQL 

queries and the respective execution plans was fed into standard text processing pipelines, 

transforming the raw text into an integer sequence. These techniques will be discussed 

further in the next section. However, as it can be easily understood, both the input queries 

and the output JSON format execution plans contain a great deal of redundant 

information that can mess up the whole training process by increasing model training 

time, adding bias, and thus plummeting the system's overall efficiency. Therefore, an 

algorithm transforming input and output texts into a more informative and compact form 

was introduced. 

3.2.1 Input encoding 

As far it concerns the query optimization process, the key elements include the 

contributing tables, the existence of table joins and scans, aggregation and sorting 

operations, and the projected columns. Our efforts focused on tables' joins and scans in 

this project's scope, ignoring the aggregation and sorting operations. As a result, the 

proposed algorithm extracts these elements from the input SQL queries by identifying 

table aliases, join and scan operations, replacing the joins with the participating table-

columns pairs, and the scans with the filtered table columns. For example, table allies are 

identified given the (1) SQL query mentioned in the previous section. A transition map is 

created associating table students with t1 alias and table addresses with t2 alias. 

Afterward, the join operation is spotted and replaced with the following text: 

Join students.permanent_address_id-addresses.address_id 

where the first word indicates the operation type (join or scan) and the next element 

corresponds to the join attributes. Similarly, the scan operation is replaced with the 

following text: 

scan addresses.country 

To sum up, the initial SQL query text is transformed into the following sequence: 

join students.permanent_address_id-addresses.address_id scan 

addresses.country 
(2) 
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The efficiency of this encoding method will be tested compared to the raw input strategy, 

and the results will be presented in the following sections. 

3.2.2 Output encoding 

Execution plan encoding  

Execution plans preprocessing algorithm is a more complex procedure since PostgreSQL 

optimizer output is a query tree structure given in JSON format text with multiple nodes. 

Each element of the query tree corresponds to a specific operation, as described by the 

node tag "Node Type". Since optimizer output is a query tree, join operations are assigned 

to tree nodes, while the scan operations are set to tree leaves. Like the input encoding, join 

nodes are replaced by the join type identifier from the Node Type tag, followed by the 

contributed table-columns pairs. In contrast, the scan nodes are represented by the exact 

scan type given from the tag Node Type and the filtered columns. The critical difference 

between the two encoders is the operation order. Specifically, the output encoder 

illustrates the ordering of the operations, which is the optimizer's primary task. Given this, 

breadth-first traversal is adopted to extract query tree nodes, reassuring that the text 

representations of the operations lying at a higher level will also come first in the encoded 

text. For example, given the query (1) 

optimizer output will be the following: 

Based on the described encoder algorithm, the above query tree will be described by the 

following text sequence: 

inner hash join students.permanent_address_id-addresses.address_id, 

seq scan students, hash, seq scan, table scan addresses.country 

(3

) 

Operators' implementation encoding 

Instead of encoding the whole execution plan, it will also be attempted to extract helpful 

information that an analytical optimizer can use to boost its efficiency. This includes the 

selection of the optimal physical operator per logical operators described in the original 

SQL query and determining the actual execution order of the involved operators. On the 

scope of the current project, we focused just on join and scan operators to reduce the 

complexity of the encoding procedure. Regarding the physical operators' approach, each 
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logical join operator can be implemented by the query processor module using any of the 

following procedures: 

1. nested loop join 

2. merge join 

3. hash join 

while the scan operators are carried out by: 

1. sequential scan 

2. index scan 

3. index-only scan 

4. bitmap (index/heap) scan 

So, during the encoding process, using the operators' appearance order in the encoded 

input sequence, each logical operator will be replaced by the physical implementation 

described at the corresponding node of the execution plan. As a result, the output 

encoding procedure discards all intermediate nodes. It extracts only those that enclose the 

requested information while retaining the one-to-one mapping between the query level 

operators and the physical ones. For example, the encoded output (see three above) 

corresponding to the SQL query (presented at 1 of 3.1 section) will be transformed as 

follows: 

hash_join seq_scan (4) 

Operators' order encoding 

As far as it concerns the operator order at the execution level, an auto-incremented 

number is added to each operator in the encoded input sequence as a unique identifier to 

distinguish the first join (or scan) from the following ones. So, the (2) encoded input 

sequence will be formed as follows: 

join_1 students.permanent_address_id-addresses.address_id 

scan_1 addresses.country 
(5) 

Afterward, a depth-first postorder traversal in the execution plan tree is conducted. 

Whenever a node referring to a logical operator is visited, the corresponding unique 

identifier is added to the output sequence, resulting in a sequence indicating the involving 

operators' execution order. So, the encoded output sequence will be the following: 
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scan_1 join_1 (6) 

3.2.3 End-to-end encoding example 

To sum up, the encoded input sequence corresponding to the examined SQL query: 

select t1.first_name from students as t1 join addresses as t2 on 

t1.permanent_address_id   =   t2.address_id where t2.country   =   'haiti' 

will be the following: 

join students.permanent_address_id-addresses.address_id scan 

addresses.country 
 

Accordingly, the enriched encoded output, compressing the excessive JSON formatted 

execution plan of the above query, will be formed as: 

inner hash join students.permanent_address_id-addresses.address_id, 

seq scan students, hash, seq scan, table scan addresses.country 

while more comprehensive encoded output version, enclosing information about the 

physical operators' implementation will be the following: 

hash_join seq_scan 

Finally, to extract information about physical operators' execution order, the encoded 

input sequence should be transformed as follows: 

 select t1.first_name from students as t1 join addresses as t2 on 

t1.permanent_address_id   =   t2.address_id where t2.country   =   'haiti' 

so that the logical operators of the SQL query could be associated with the physical 

operators of the ordered encoded output: 

scan_1 join_1 

3.3 Model 

3.3.1 Architecture 

As already mentioned, a pair of encoder-decoder is needed to overcome the input-outputs 

dimensionally variance. A natural choice for sequential data processing and 

transformation is the RNN. A deep multi-layer unidirectional RNN using LSTM as a 
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recurrent network will be utilized for the input and output decoder in the proposed model. 

The encoder network transforms the input sentences into a fixed-sized vector at a higher 

level. In contrast, the decoder network consumes the vector fed by the encoder and 

decodes the predicted sequence to compare it with the expected one [25]. 

 

Figure 14: Encoder-decoder sequence to sequence model 

As shown in Figure 14, the above-described architecture's main disadvantage is that the 

information from the first tokens in the input sequence is diluted, especially in long 

sequences, due to encoder output vector size restrictions. To address this issue, a 

pioneering technique called Attention Mechanism was introduced by Bahdanau et al. 

(2014) [33] and Luong et al. (2015) [34]. The attention mechanism improves system 

efficiency by allowing the decoder to access all the past encoder's hidden states and 

emphasize the most relevant ones. The measure of each of the encoder's past state 

importance to the decoder output is denoted by the alignment vector. The alignment 

vector has the same length as the input sequence. It is calculated at every time step of the 

decoder using the concat strategy, which involves the addition of the decoder hidden state 

and the encoder hidden states, followed by a linear layer with a tanh activation function 

and multiplied by a weight matrix. Thus, each of its values reflects the importance of the 

corresponding word in the source sequence. 

https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1508.04025


  -37- 

 

Figure 15: Attention Mechanism 

3.3.2 Training process 

State-of-the-art recurrent neural networks in the field of Natural Language Processing use 

Teacher Forcing [35] algorithm in the training process. Teacher forcing key characteristic 

is that it trains recurrent networks by supplying the actual output sequence values as the 

next timestep's inputs improving the network's learning capabilities using multi-step 

sampling. 

 

Figure 16: Teacher Forcing mechanism 

In the proposed model, this technique is applied by providing the target sequence at 

timestep t to the decoder input at time step t+1. To achieve this time-shifting, a start token, 
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<sos> is added as the leading element of each input sequence, while an end token, <eos> 

is inserted as the target sequence trailing element, equalizing the sequences' lengths and 

denoting their end. 

3.3.3 Inference procedure 

The inference procedure involves the generation of predictions given a source sequence. 

The source sequence is fed to the encoder to produce the encoder's hidden state, used to 

initialize the decoder. Afterward, <sos> token is supplied to the decoder, which produces 

an output per time step. The decoder's output is handled as a set of logits corresponding 

to a word. The word associated with the maximum logit value is the timestep's output. The 

prediction process is terminated when the end token, <eos> is generated. 

 

Figure 17: Inference procedure 
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3.4 Experiments 

3.4.1 Glove Embeddings experiments 

In the following set of experiments, the GloVe 200-dimensional word representation and 

Word2vec algorithm were utilized during the vectorization of the input and output text 

sequences. 

Raw data experiment 

As mentioned in the previous section, the initial thought was to develop a model that could 

reconstruct the complete execution plan using the simple SQL query as input. Therefore, 

the input dataset was composed by appending the SQL queries of the CoSQL dataset. At 

the same time, the output-target sequences were created by the corresponding JSON-

format output of the EXPLAIN SQL command, i.e., the optimal execution plan. As a result, 

a total of 5445 query-plan pairs were created. Then, the Word2Vec library and GloVe word 

embeddings, with the word representation vector size of 128 elements, were utilized for 

training two separate embedding models-encoders: an input encoder and an output 

encoder. The embedding vectors of the former were created using the input dataset, while 

the latter's vectors were based on the output dataset. The input encoder transformed, 

whose vocabulary consisted of 1151 unique tokens (words), the SQL queries into numeric 

vectors, while the output encoder, with a 1935-token vocabulary, vectorized the execution 

plans. Padding was applied in both input and output vectorized sequences to equalize their 

length. After the padding sequence, the input dataset comprises 119-element vectors, 

while the output dataset is 1385-element vectors. 

As a result, 5445 fixed-sized input-target pairs were created and split into the train, 

validation, and test subsets using the ratio 70:10:20, respectively. The validation dataset 

was incorporated as an indicator of the early-stopping mechanism with five epochs 

patient, applied during the model training process, preventing model overfitting.  

Regarding the overall model architecture, since the encoder embedding layer dimension 

should be following the input sequences vocabulary size of 1153 elements, to be able to 

encode every word in the input corpus, the former dimension was set to 1154. The extra 

dimension serves as a placeholder for the padding characters. Accordingly, the decoder 

embedding layer was set to 1936, whereas the output dense layer dimension numbers 1935 
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elements to recreate any execution plan. Since the pre-trained Glove vector embeddings 

were already fit to the corpus using the transfer learning utilities of the Word2vec library, 

the encoder and decoder embedding layers were not trainable during the overall model 

training process. 

Having stated these, the training process is ready to start. However, this task has been 

proven to be highly inefficient and time-consuming since the excess of both input and 

output sequences length demands training through multiple timesteps. Specifically, a 

memory allocation exception was raised during just the first batch of the first epoch, 

making the model's training process impossible under the available resources (32GB 

RAM). Therefore, the need to shrink both the input and output sequences length has been 

proved eminent. 

Input-Output encoding experiment 

The former experiment highlighted reducing both the input and output sequences. So, the 

5445 input-output pairs used in the initial model training process were transformed using 

the encoding algorithms described in section 3.2. Specifically, the input encoding followed 

by the Glove embedding encoder was applied to the set of simple SQL queries, resulting 

in a new input dataset with half the initial vocabulary (559 distinct tokens). Accordingly, 

the output sequences dataset was also compressed using the execution plan encoding 

algorithm. As a result, the reduced output dataset contained a total number of 839 unique 

words. After vectorization and padding, the final dataset consisted of 5445 pairs of 32-

token input and 92-token output vectors. The same train, validation, and test split ratio, 

as well as early-stopping mechanism, was incorporated in this experiment, too. However, 

since both the input and output sequences length were modified, the dimensions of the 

encoder and decoder units were fixed accordingly. The encoder embedding layer 

dimension was 560, while the decoder embeddings size numbered 840 elements, and the 

dense output layer dimension equaled 840. 

As shown in the following graphs, the training process lasted six epochs, and despite the 

apparent improvement compared with the previous ultimately failed attempt, the results 

are not satisfying. Neither Loss nor Accuracy curves are smooth and converge, while the 

accuracy score remains substantially low. 
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Figure 18: Training-validation accuracy and loss per epoch 

Additionally, the testing accuracy score of 30.04% insists that the model's inference 

capabilities are irrelevant, compared to the 22.66% accuracy score of a dummy baseline 

model that generates predictions by repeating the most common token. In other words, 

the predicted sequences are consisted of random words, enclosing no meaningful 

information. The model's poor performance is due to the design and the overall 

methodology of this experiment. As a result, the model failed to identify underlying 

patterns associating input and output sequences. This means that despite the noticeable 

shrink achieved through encoding algorithms applied to input and output, their 

complexity remained too high, exceeding the model's capabilities. 

Therefore, the task of recreating the whole or partial execution plan based just on 

information extracted from the initial SQL query cannot be fulfilled using the proposed 

NTM model. After all, several well-established analytical implementations have already 

been developed to deal with this problem. 

Operator implementation experiment 

Having abandoned the efforts to predict the execution plan using as input the SQL query 

due to the efficiency reasons described above, our focus shifted towards introducing a 

model that can provide helpful information to the analytical query optimization process, 

thus enhancing its efficiency. 

As mentioned in chapter 2.1.2, a substantial element of the success of the query 

optimization process is selecting the appropriate physical implementation for each logical 

operator in the initial SQL query. So, the encoded input sequences used in the previous 

experiment will be retained during this experimental setup. In contrast, the output 
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sequences will be further compressed by applying the operators' implementation 

encoding methodology described in section 3.2.2. Further input sequences abstraction is 

avoided since, based on query optimization theory stated in section 2.1.2, the selection of 

the optimal physical operator depends on database structural characteristics and 

predicates distribution, which can be reflected on the tables and columns defined at the 

query and are already present even in the encoded sequences. Thus, 5445 vectorized input 

sequences, with a fixed size of 32 elements, will be fed to the encoder module, just as in 

the previous experiment. However, the feature that distinguishes this setup from its 

ancestors is that the output sequences are now constituted of vectors whose length equals 

just six tokens. At the same time, the respective vocabulary contains nine different words, 

i.e., an enormous 99% size reduction compared to the previous experiment. Subsequently, 

the overall NTM model was simplified since the number of the encoder's trainable weights 

plummeted drastically. 

These more comprehensive output sequences lead to a significant decline in the training 

time (from 35 minutes per epoch to less than 1) and a simultaneous improvement in the 

model's prediction accuracy, as shown in Figure 19. 

 

  

Figure 19: Training-validation accuracy and loss per epoch 

Due to the activation of the early-stopping mechanism, the training process terminated at 

the 8th epoch, with the final model's prediction accuracy equal to a promising 91.62% over 

554 test samples. Examining the model efficiency with respect to the queries' complexity, 

the model creates almost perfect predictions for the most straightforward queries. 

However, its accuracy diminishes when more complex and multi-operator queries occur. 
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To demonstrate the objective model's performance, the prediction results are compared 

with the respective ones generated by a dummy baseline model, whose inferences are just 

replicates of the most common word in the test dataset. The comparison results are 

depicted in the following graph: 

 

Figure 20: Prediction accuracy compared with query complexity graph 

The observed ineffectiveness is expected and caused by the absence of multi-argument 

queries in the initial dataset. Thus it can be treated by enriching the training dataset with 

more complex queries. 

Operator order experiment 

As mentioned in section 2.1.2, several alternative series of operators' execution orders can 

be generated for any query, producing equivalent results. However, significant fluctuation 

in the query answering performance can be observed between the different execution 

series. Therefore, determining the operators' optimal execution order is another vital 

decision that should be made during the query optimization with a massive impact on the 

whole process efficiency. In the scope of this experiment, capitalizing on the order output 

encoding algorithm, we developed a model that determines the execution order of the 

physical operators participating in the initial SQL query. Since the present model aims to 

predict the optimal arrangement of the involved operators at the execution step, single-

operator queries should be excluded from the training process. However, having rejected 

these queries from the training corpus, the number of samples declined to only 661 

queries. This is undoubtedly a small dataset to train a complex deep learning model. To 
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overcome this issue, more than 100 multi-operator queries were written and added 

manually to the training dataset. So, the final dataset consists of 796 samples. 

Before proceeding with the model training, as stated in paragraph 3.2.2, input sequences 

should also be transformed by adding a unique identifier to each logical operator to match 

its physical implementation in the predicted execution order sequence. So, having applied 

both input and output encodings to the corresponding sample pairs, the input sequences 

vocabulary numbers 638 unique words, while the output sequences vocabulary included 

just eight different words. Subsequently, after the vectorization and padding process, the 

input vector size equals 32, and the output-target vectors are composed of 6 elements. So, 

the encoder module embedding layer consists of 640 elements, whereas the decoder 

embedding layer size was set to 9, and the output layer was composed of 9 tokens. 

The model training process terminated after ten epochs, giving mediocre results, as 

expected, due to the fixed training dataset size. The training loss and accuracy curves are 

presented in the following figures: 

  

Figure 21: Training-validation accuracy and loss per epoch 

The model's prediction accuracy score is confined to 71.77%. In contrast, the inverse 

correlation between the prediction accuracy and query complexity observed in the 

previous experiment is retained, too, as shown in the graphs below. 
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Figure 22: Prediction accuracy compared with query complexity graph 

In this case, the baseline model predictions are obtained by replicating the first token of 

the test-expected text sequence. The above figure provides strong evidence to the 

previously stated allegation that the model's intermediate results are primarily due to the 

lack of a sufficient training dataset. The model's prediction results are improved for the 

most uncomplicated queries with more samples. 

3.4.2 BoW experiments 

The BoW vectorization approach was applied in the input and output encoded sequences. 

The last two experiments (i.e., operator implementation and order experiments) were 

repeated to examine the impact of the vectorization process on the most promising 

models' efficiency. 

Operator implementation experiment 

On the scope of this experiment, the same input-output pairs were incorporated as in the 

operator implementation setup described in the previous section. However, the Bag-of-

words approach was utilized instead of the pre-trained GloVe embeddings to vectorize the 

training samples. Specifically, the unique words were extracted from input and output 

corpora, formatting the corresponding vocabularies. Afterward, an auto-incremented 

unique integer was assigned to each word, starting from 1, since the 0 was used as a 

placeholder for the padding characters. This one-to-one mapping, combined with zero 

padding, was applied to transform the text sequences into fixed-sized numeric vectors. 
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Regarding overall model architecture, encoder and decoder modules and their 

components remained unchanged, with just one key difference. The encoder and decoder 

embeddings layers variables were not excluded from the training process. In other words, 

during the back-propagation step, the applied weights modifications affected embeddings 

variables, too. 

After the completion of the training process, which lasted 16 epochs, the final model 

produces almost identical results to the corresponding experiment with the GloVe 

embeddings, as shown in the following figure: 

  

Figure 23: Training-validation accuracy and loss per epoch 

The model's inference capabilities are sufficient, giving an overall prediction accuracy 

score of 92.29%. As expected, the accuracy is downfalls as the queries' complexity rise. 

 

Figure 24: Prediction accuracy compared with query complexity graph 
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The outcomes similarity between GloVe embeddings and BoW approaches is due to the 

training dataset's structural characteristics. Notably, the sparsity of both input and output 

corpora is limited due to the encoding procedures applied. As a result, there are very few 

rare words, and thus there is a sufficient number of training samples to establish efficient 

embeddings per word. Additionally, the snake case column naming convention, a 

common practice in most SQL queries, adds to the training corpora unknown words for 

the GloVe embeddings. This practically means that the large datasets incorporated during 

the GloVe representation training process make no difference regarding the examined 

case study, making their usage almost irrelevant. 

The only noticeable advantage of the GloVe embeddings over the BoW is the reduced 

training time since the number of the network trainable parameters is reduced due to the 

encoder and decoder's non-trainable embeddings layers – 90.240 fewer trainable 

parameters involved in the GloVe approach networks, translated to a one-second 

difference in training time per epoch and about 5.5 minutes (339 seconds) in the whole 

training process. This feature also gives values to the scalability of the model, considering 

that in more complicated schemas, with much more extensive input and output 

vocabularies and thus more massive embedding layers, the training time, as well as the 

processing resources, could make (just as the first experiment) the whole training process 

impossible. 

Operator order experiment 

Having applied the same methodology as described in the previous paragraph, concerning 

the vectorization algorithm, on operator order encoded input-output sequences produce 

results that confirm the above-stated allegations. Specifically, BoW implementation 

slightly outperforms the GloVe embeddings approach regarding the models' prediction 

accuracy. At the same time, the latter provides improved training speed and thus a more 

promising perspective in more extensive and more complex training tasks, as depicted in 

the subsequent figures. 
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Figure 25: Training-validation accuracy and loss per epoch 

 

Figure 26: Prediction accuracy compared with query complexity graph 

3.4.3 Discussion 

After conducting these experiments, it is clear that the task of the complete execution plan 

recreation, using the respective SQL query as input, cannot be fulfilled using the natural 

language processing techniques NTM architecture under the available hardware 

resources. On the other hand, the extraction of valuable insights concerning minor 

decisions should be made during the optimization process, such as the selection of the 

suitable implementation per logical operator participating in the original SQL query, or 

even the optimal operators' execution order, is a pretty promising perspective, that can 

accelerate the whole process. 
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Regarding the NLP-related task of studying the impact of the vectorization algorithm on 

the final model's inference efficiency, the experimental results insist that the old-

fashioned Bag-of-Words approach leads to more accurate models due to the specific 

characteristics of this problem (columns-tables name, SQL keywords, etc.). On the other 

hand, the GloVe embeddings provide a more versatile and scalable solution that can make 

a strong case in datasets containing more complex queries. 

In conclusion, the dataset's structure used to train the models was the primary 

vulnerability of the whole task, diminishing the proposed model's efficiency and the 

generalization of the drawn conclusions. Specifically, the lack of a sufficient number of 

complex queries limited the model's performance in more complicated optimization tasks. 

It reduced the confidence level of its effectiveness in real-world applications. 
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4 Conclusion 

In this project's scope, natural language processing techniques combined with Neural 

Machine Translation architectures were incorporated to reconstruct the optimal 

execution plan of any given SQL query by replacing the analytical approach used by the 

typical optimizers with probabilistic deep learning procedures. However, the complexity 

and the sparsity of both the raw and the encoded and compressed input and output 

sequences exceed the learning capabilities of the proposed deep neural network, 

producing inefficient or even non-trainable (resource-wise) models. 

Having abandoned the execution plan prediction task due to the reasons already 

mentioned, we focused on extracting valuable insights that the ordinary optimizers can 

use as hints to conclude faster and more accurate decisions during the optimization 

process regarding operators' implementation and execution order. Encoding algorithms 

were introduced to filter the initial input and output texts and extract the most meaningful 

words, including relevant information. For simplicity and importance reasons, only scan 

and join operations were considered. Both models show promising results. Although, 

primarily due to the limited complex queries involving multiple operators included in the 

training dataset, the models' efficiency drops as the query complexity rises. 

Finally, the effect of text sequence vectorization techniques on the models' efficiency was 

also examined. Specifically, the GloVe embeddings and Bag-of-words approaches were 

validated for the operator implementation and the execution order models. Having 

applied both of these algorithms in the training dataset, it was found that the former 

provides better convergence time during the training process and improved scalability, 

whereas the latter result in models with slightly enhanced inference capabilities.
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o Future Work 

The limited amount of training samples, especially those involving complex queries, 

hugely impacted the proposed models' efficiency during the whole process. To overcome 

this obstacle, the training dataset should be enriched with more multi-operator queries. 

Since this process could be proved to be a demanding and time-consuming task, another 

perspective that can address this issue is the integration of sample-weighting architectures 

so that the limited complicated sample has a more significant impact on the training 

process. 

Another improvement field involves including the rest of the SQL operators cut off in this 

project's scope. Additionally, embedded select statements were also excluded from the 

encoding algorithms and should be considered in the future. 

Finally, ways of incorporating the extracted information regarding the operator 

implementation and execution order in the optimization process should also be studied as 

a real-world evaluation of the present work findings. 
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