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Περίληψη 
Καθώς η επιστήμη της Μηχανικής Εκμάθησης εξελίσσεται, η ανάγκη για ανάπτυξη μοντέλων που 
μιμούνται την ανθρώπινη κρίση αυξάνεται. Ένα κομμάτι επάνω στο οποίο εστιάζουν πολυάριθμες 
έρευνες είναι η ανάλυση οπτικών σημάτων με στόχο την εξαγωγή συμπερασμάτων σύμφωνων 
με την ανθρώπινη λογική. Στην παρούσα διατριβή αναλύεται η πρόβλεψη της ελκυστικότητας 
ενός προσώπου με τη χρήση Συνελικτικών Νευρωνικών Δικτύων και εξετάζεται η επιρροή που 
μπορεί να έχουν μεροληπτικά δεδομένα κατά τη διαδικασία της εκπαίδευσης. Για το σκοπό αυτό, 
αναπτύχθηκαν πολλαπλά μοντέλα με διαφοροποιήσεις στα δεδομένα εκπαίδευσης και 
αναλύθηκαν τα αποτελέσματα με γνώμονα τις διαφορές αυτές. Σύμφωνα με τα αποτελέσματα της 
μελέτης, γίνεται φανερό ότι η εκπαίδευση μοντέλων με χρήση μεροληπτικών δεδομένων δύναται 
να αποφέρει μη αξιόπιστα αποτελέσματα και να οδηγήσει σε εσφαλμένα συμπεράσματα. 

Abstract 
As the science of Machine Learning evolves, the need to develop models that mimic the human 
crisis increases. One area on which many researchers focus is the analysis of optical signals with 
the aim of drawing conclusions in accordance with human logic, with the most important tool for 
this analysis being Convolutional Neural Networks. The subject of this dissertation is the 
prediction of facial beauty using Convolutional Neural Networks and the impact that discriminatory 
training data may have on the extracted predictions. For this purpose, multiple models were 
developed with differences in the training data and the results were analyzed based on the 
introduced bias in each case. According to the results of the study, it becomes clear that model 
training using biased data can yield unreliable results and lead to erroneous conclusions. 
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1. INTRODUCTION 
Facial attractiveness has been a subject of many studies over the years. Although previous 
studies indicate that characteristics like facial averageness and symmetry are defining factors that 
influence the facial attractiveness perception of a human, a universal definition of beauty remains 
a mystery. This is more prominent when comparing data across countries and ethnicities. 
Different cultures usually have different perception of attractiveness and value different 
characteristics. Also, each person’s definition of beauty is different and can be influenced by 
numerous factors such as personal feelings, clothing, hairstyle, and social status. 

 Deep learning is a machine learning technique that teaches computers to do what comes 
naturally to humans: learn by example. Deep learning applications are the key technology behind 
many recent services such as natural language recognition in virtual assistants, self-driving cars 
etc. One of the most popular deep neural networks are Convolutional Neural Networks that are 
commonly used for analyzing visual data and can be used to build attractiveness prediction 
models. Using Convolutional Neural Networks for image recognition has been proved a challenge 
as it requires a large amount of data in order to create a model that can generate reliable and 
consistent results. Building an effective facial beauty recognition model presents two main 
challenges: the amount of data and data quality. 

 The Transfer Learning method can be used to overcome the first challenge. The basic 
premise of transfer learning is simple: take a model trained on a large dataset and transfer its 
knowledge to a smaller dataset. This method provides a base model that can extract all the useful 
characteristics needed for beauty recognition and can be trained on a smaller dataset in order to 
be able to predict the desired characteristic. In this thesis we applied the transfer learning 
technique to the VGG-Face model developed by the Visual Geometry Group of the University of 
Oxford (Parkhi et al. [1]). This model was created using a dataset of 2.6 million face images of 
2,622 individuals. 

 Data quality is a defining factor in machine learning systems and biased data is a common 
problem. Bias as a general term defines the tendency to lean towards a certain direction either in 
favor of or against the given topic, person or thing. When it comes to data science, a biased 
dataset can be classified as one that doesn’t represent a model’s use case fully and therefore 
produces results that are skewed or inaccurate. There are many examples where applications 
utilizing deep learning were characterized as racially biased due to faults in the process of data 
collection and labeling. On numerous platforms, AI-based facial recognition systems have 
problems recognizing women and people of color as accurately as they can identify white men. 
Much of this problem is due to the lack of diverse training data the models were trained on. A 
study from Joy Buolamwini [2], a researcher at the MIT Media Lab, showed that nearly 35% of 
black women were misidentified by prominent facial recognition systems. 

 Especially for facial beauty, which is a subjective attribute, data needs to be diverse and 
unbiased. In this thesis, the dataset selected is the Chicago Face Database provided by the 
University of Chicago which contains a diverse sample of  standardized photographs of male and 
female faces of varying ethnicity. Several convolutional neural networks were implemented using 
different subsets of the main set as training data, based on race. Using the full dataset as control, 
the role of racial bias in data collection and how it affects final predictions was investigated. 

1.1 Previous research 

Facial beauty has been a topic of debate for centuries. In medieval times, renaissance painters 
used unique ratios named “The Golden Ratios” to represent through paintings what the perfectly 
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shaped human face would look like [3]. The Golden Ratios are ratios based on the value of 1.6, 
which was considered by the Greeks to be a perfect number. This golden ratio was applied to 
facial beauty, where different facial ratios were calculated and compared against the value of 1.6.  

 Over the last years, facial beauty prediction has become an increasingly popular research 
area due to the many potential applications that it can benefit, such as aesthetic surgery planning, 
cosmetic recommendation, and others. Rhazi et al. [4] proposed a method to predict facial beauty 
based on golden ratios calculated from the extracted feature corners. Schmid et al. [5] have 
proposed a model to calculate facial beauty based on golden ratios, symmetry, and neoclassical 
canons. The neoclassical canons are ratios used by medieval painters in their paintings to 
represent their understanding of human beauty. Thornhill et al. [6] proved that there is a strong 
correlation between average faces and facial beauty, but the most attractive faces are usually not 
average. Facial symmetry, however, does increase with facial averageness, as stated in 
Grammer et al. [7]. 

 Recently, machine learning approaches have been developed to assess facial 
attractiveness with facial shape features and landmarks considered as decisive factors. Kagian 
et al. [8] analyzed facial beauty depending on the shape and facial geometry. Various facial 
features that describe facial geometry, color and texture, combined with an average human 
attractiveness score for each facial image were used to train various prediction models. Facial 
attractiveness ratings produced by the final model were found to be highly correlated with the 
respective human ratings. Wei et al. [9] assessed facial symmetry and attractiveness based on 
Support Vector Machines (SVM) and linear regression using a predefined dataset. Hong Y-J et 
al. [10] presented a novel framework for automatically assessing facial attractiveness based on 
facial landmark extraction. Lin et al. [11] used an attribute-aware CNN to predict the facial beauty 
using the SCUT-FPB5500 dataset [12] and utilizing powerful GPU systems for training. Q. Xiao 
et al. [13] developed Beauty3DFaceNet, which makes use of a CNN to predict the attractiveness 
of 3D faces. The research team created a 3D facial attractiveness dataset called ShadowFace3D, 
which contains information such as the point clouds, texture images, and texture mappings of 3D 
faces as well as their public aesthetic criteria. Although the approach is promising, the nature of 
the source data is limiting and furthermore the training is quite resource demanding. Zhai, Yikui 
et al. [14], based on previous research on fine-grained image classification using the multiscale 
architecture, implemented a model for unconstrained facial beauty prediction. In order to mitigate 
the overfitting phenomenon which is caused by the scarcity of labeled facial beauty samples, the 
transfer learning strategy was used, improving the networks performance. Finaly, Cao, Kerang et 
al. [15] presented a novel network design for facial beauty prediction aiming to better performance 
using a residual-in-residual (RIR) structure for the prediction model. Final results showed that this 
kind of network was able to predict attractiveness closer to a human’s assessment than previous 
attempts. 
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2. DEEP CONVOLUTIONAL NEURAL NETWORKS 

2.1 Neural Networks 

Artificial neural networks are information-processing systems whose structure and functionality 
are reminiscent of the nervous system and especially the brain of humans and animals. A neural 
network often consists of a large number of simple units working in parallel, the so-called neurons. 
These neurons send each other information, in the form of activation signals, via weighted 
connections. A neural network is arranged in several layers: the input layer, the output layer and 
the "hidden layers" in between. 

 From the input layer, each node propagates its value to all hidden layer nodes connected 
to it. In order to learn from the data, each node connection receives a weight and a bias for the 
evaluation and interpretation of the information. These are the flexible adjusting components in a 
network that make learning possible in the first place. Input values that are important for correct 
classification are strengthened and unimportant ones are attenuated. These weighted values are 
then summed and passed through an activation function. Activation functions simulate the 
biological neurons by deciding whether a signal is passed on and at what level. In the human 
brain, this happens by "overloading" the neuron with electrical energy. The activation functions 
ultimately decide whether the input features are significant enough to be passed on. The same 
procedure then takes place between the hidden layer and the output layer.  

 

 

Image 1: Depiction of a basic  neural network 

2.2 Basic network principles 

2.2.1 Weights and structure 

The connections between the units in a neural network are weighted, meaning that the weight 
indicates how much the input from a previous unit affects the output of the next unit. To 
mathematically compute an artificial neuron, all the products of all the inputs and their 
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corresponding weights are added, then a bias is added to that sum and finally the resulting value 
is fed into an activation function to form the output. 

2.2.2 Biases  

A bias is an extra input to a neuron and it is technically the number 1 multiplied by a weight. The 
bias makes it possible to move the activation function curve left or right on the coordinate graph, 
enabling the neuron to create the required output value. 

2.2.3 Activation functions and the ReLu  

By definition, an activation function decides if a neuron should be activated (“fired”) or not. It 
introduces non-linearity to the output of a neuron. A neural network without activation functions 
would be just a linear regression model. The most common activation function for a CNN the 
ReLu. It outputs 𝑥 when 𝑥 is positive or zero and outputs 0 otherwise (Figure 5). 

 

Figure 1: Popular activation functions 

 ReLu is less computationally expensive than some other common activation functions 
like tanh and Sigmoid because the mathematical operation is simpler and the activation is sparser. 
Since the function outputs 0 when 𝑥 ≤ 0, there is a considerable chance that a given unit does not 
activate at all. Sparsity also means more concise models with more predictive power and less 
noise or overfitting. In a sparse network, neurons are more likely to process meaningful 
information. For example, a neuron which can identify human faces should not be activated if the 
image is actually about a dog. One more advantage, which the ReLu possesses over the others, 
is that it converges faster. Linearity (when 𝑥 ≥ 0) means that the slope of the line does not plateau 
when 𝑥 increases. Therefore, ReLu does not have the vanishing gradient problem suffered by 
some other activation functions, such as Sigmoid or tanh. Another common activation function 
used in CNNs is the Softmax function. It is often used in the output layer, where a multiclass 
classification happens. 

2.2.4 Backpropagation & Gradient descent 

Backpropagation is an algorithm which, based on prediction errors, helps neural networks to learn 
their parameters. This algorithm works by calculating the gradient of the loss function, which 
points us in the direction of the value that minimizes the loss function. A loss function is an error 
metric, a way to calculate the inaccuracy of predictions. The aim of deep learning models is to 
minimize this loss function value, and the process of minimizing the loss function value is called 
optimization. Using gradient descent, we can iteratively move closer to the minimum value by 
taking small steps in the direction given by the gradient. Gradient descent is an optimization 
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algorithm which modifies the internal weights of the neural network to minimize the loss function 
value. After each iteration, the gradient descent algorithm attempts to decrease the loss function 
value by tweaking weights, until it reaches the point where further tweaks produce little or no 
change to the loss function value, also called convergence. In conclusion, backpropagation and 
gradient descent are two different methods that form a powerful combination in the learning 
process of neural networks. 

2.2.5 Learning rate – optimizers 

A learning rate is the step size of each iteration in the gradient descent or other optimization 
algorithms. If the learning rate is too small, convergence will take a long time to happen, but if the 
learning rate is too large, there might be no convergence at all. There are many optimization 
algorithms (optimizer), one of which is the Adam, which computes individual learning rates for 
different parameters. Adam is the optimization algorithm used in this thesis. 

2.3 Convolutional Neural Networks 

Convolutional Neural Networks (ConvNet/CNN) are one of the most popular and effective learning 
algorithms for image analysis. A ConvNet is a Deep Learning algorithm which can take in an input 
image, assign importance (learnable weights and biases) to various aspects/objects in the image 
and be able to differentiate one from the other, extract localized features from input images and 
unfold these image fields using filters. First, the CNN recognizes simple structures such as lines, 
splashes of color or edges in the first levels. As the levels progress, the convolutional neural 
network learns combinations of these structures such as simple shapes or curves. With each 
level, more complex structures can be identified. The data is repeatedly resampled and filtered in 
the levels. In the last step, the results are assigned to the classes or objects to be recognized. 

 The architecture of a ConvNet is analogous to that of the connectivity pattern of Neurons 
in the human brain and was inspired by the organization of the visual cortex. Individual neurons 
respond to stimuli only in a restricted region of the visual field known as the Receptive Field. A 
collection of such fields overlap to cover the entire visual area. CNN is usually constructed by 
three types of layers: convolution, pooling and fully connected layers. Convolutional and pooling 
layers are used for feature extraction and fully connected layers perform the final mapping of 
extracted features into the final output.  

 

Image 2: Convolutional Neural Network architecture 
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2.3.1 Convolutional Layer 

Convolutional layers are the most important building blocks of any CNN. A convolutional layer is 
able to recognize and extract individual features in the input data. In image processing, these can 
be features such as lines, edges, or specific shapes. In this layer, the image is analyzed by various 
filters that have a certain pixel size and gradually scan the graphic for its properties. This process 
can be compared with a small magnifying glass that scans the image from left to right and top to 
bottom. The filter records the results of this scanning process in a matrix. This result matrix is 
now also scanned through a smaller filter - in the same way as the original image was scanned. 
The results of this new scanning process are also recorded in matrices. This process is repeated 
several times at lower and lower levels, allowing the convolutional layer to analyze the original 
input in high detail. 

 

Image 3: Convolutional layer 

 In Image 3, an element wise multiplication is made between a 3x3 sized filter matrix and 
a 3x3 sized area of the input image’s matrix. The elements of the resulting matrix are summed, 
and the sum is the output value (“destination pixel”) on the feature map. The filter then slides over 
the input matrix, repeats the multiplication with every remaining combination of 3x3 sized areas 
and completes the feature map. Multiple filters are used for one input and the resulting feature 
maps are joined together for the final output of one convolutional layer. 

 There are two other important concepts in convolutional layers: strides and padding. 
Strides are the number of pixels a kernel or a filter moves over the input matrix. Padding is what 
is used when the filter does not fit the input matrix. There are two types of padding: valid padding, 
when the border pixels of the input matrix are discarded, and zero or “same” padding, when zeros 
are added to the borders so that the filter fits the input matrix. 
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2.3.2 Pooling Layers 

Pooling layers are responsible for reducing the dimensionality of feature maps, specifically the 
height and width, preserving the depth. By doing so, the required processing power is decreased, 
while at the same time the dominant features in feature maps are extracted. There are two types 
of pooling layers: max pooling and average pooling. Max pooling outputs the maximum value of 
the elements in the portion of the image covered by the filter (Image 4), while average pooling 
returns the average value. Max pooling is usually the preferred method as it is better at extracting 
dominant features and is generally performs better. 

 

 

 

 

Image 4: Max Pooling layer 

2.3.3 Fully Connected Layers 

Fully connected layers are where classification actually happens. The input to the fully connected 
layer is the output from the final Pooling or Convolutional Layer, which is flattened and then fed 
into the fully connected layer. Each fully connected layer (called Dense layer) is passed through 
an activation function (e.g. tanh or ReLu), but the output Dense layer is passed through Softmax. 
In the Softmax multiclass classification, the loss function used is Cross Entropy. The output of the 
Softmax function is an N-dimensional vector, where N is the number of classes the CNN has to 
choose from. Each number in this N-dimensional vector represents the probability that the image 
belongs to each certain class. 
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Image 5: Fully Connected layers 

2.4 VGG-Face model 

The VGG-Face model was used as a base for implementing the models for this thesis. It is a CNN 
implemented by Omkar Parkhi in the 2015 paper titled “Deep Face Recognition”. It is a modified 
implementation of VGG-16, trained especially for face feature extraction. 

The model’s architecture consists of clusters of convolutional layers and max pooling layers. The 
activation function used after each convolution is ReLu. It has 22 layers and 37 deep units. In 
Table 1 all the layers are listed in order with shape details and number of trainable parameters 
for each. 

Layer (type)     Output Shape Number of parameters 

conv2d_input (InputLayer) (None, 224, 224, 3) 0 
conv2d (Conv2D) (None, 224, 224, 64) 1792 

 conv2d_1 (Conv2D)   (None, 224, 224, 64) 36928 
 max_pooling2d (MaxPooling2D)  (None, 112, 112, 64) 0 

 conv2d_2 (Conv2D)   (None, 112, 112, 128) 73856 
 conv2d_3 (Conv2D)   (None, 112, 112, 128) 147584     

 max_pooling2d_1 (MaxPooling 
2D) 

(None, 56, 56, 128) 0 

 conv2d_4 (Conv2D)   (None, 56, 56, 256)  295168     

 conv2d_5 (Conv2D)   (None, 56, 56, 256)  590080     
 conv2d_6 (Conv2D)   (None, 56, 56, 256)  590080     

 max_pooling2d_2 (MaxPooling 
2D)  

(None, 28, 28, 256) 0 

 conv2d_7 (Conv2D)   (None, 28, 28, 512)  1180160    

 conv2d_8 (Conv2D)   (None, 28, 28, 512)  2359808    

 conv2d_9 (Conv2D)   (None, 28, 28, 512)  2359808    
 max_pooling2d_3 (MaxPooling 
2D) 

 (None, 14, 14, 512) 0 
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 conv2d_10 (Conv2D)  (None, 14, 14, 512)  2359808    
 conv2d_11 (Conv2D)  (None, 14, 14, 512)  2359808    

 conv2d_12 (Conv2D)  (None, 14, 14, 512)  2359808    
 max_pooling2d_4 (MaxPooling 
2D) 

 (None, 7, 7, 512) 0 

 conv2d_13 (Conv2D)  (None, 1, 1, 4096) 102764544  
 dropout (Dropout)   (None, 1, 1, 4096) 0  

 conv2d_14 (Conv2D)  (None, 1, 1, 4096) 16781312   
 dropout_1 (Dropout) (None, 1, 1, 4096) 0  

 conv2d_15 (Conv2D)  (None, 1, 1, 2622) 10742334   
 flatten (Flatten)   (None, 2622) 0 

 activation (Activation: ‘Softmax’) (None, 2622) 0 
Table 1: VGG-Face layer architecture 

 

 

Image 6: Visualization of VGG-Face 

3. DATASET DESCRIPTION 
In this thesis, the data used for training the CNN is a subset of the Chicago Face Database that 
was developed at the University of Chicago by Debbie S. Ma, Joshua Correll, and Bernd 
Wittenbrink. It provides high-resolution, standardized photographs of male and female faces of 
varying ethnicity between the ages of 17-65. Extensive norming data are available for each 
individual model. These data include both physical attributes (e.g., face size) as well as subjective 
ratings by independent judges (e.g., attractiveness). 

 The database consists of three datasets: CFD, CFD-MR and CFD-INDIA. The CFD 
dataset consists of images of 597 unique individuals. They include self-identified Asian, Black, 
Latino, and White female and male models, recruited in the United States. All models are 
represented with neutral facial expressions. A subset of the models is also available with happy 
(open mouth), happy (closed mouth), angry, and fearful expressions (Image 7). The CFD-MR 
extension set includes images of 88 unique individuals, who self-reported multiracial ancestry. 
The CFD-INDIA extension set includes images of 142 unique individuals, recruited in Delhi, India. 

 For this thesis, the CFD dataset was used in order to have a more diversified sample. 
Subjective rating norms such as attractiveness, which will be the focus of this study, are based 
on a U.S. rater sample. The question presented to each rater was to rate each person’s 
attractiveness with respect to other people of the same race and gender. Ratings were recorded 
based on the Likert scale, which is a standard classification format. The range is 1-7: 1 = Not at 
all, 4 = Neutral and 7 = Extremely. A mean attractiveness value was then calculated for each 
model. 
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Image 7: Images with different expressions 

 

 

Image 8: Attractiveness score examples 

4. EXPERIMENTATION SETUP 

4.1 Tool description 

Google Colab was used as the development environment for this experiment. Google Colab 
provides hosted runtimes for Python development with free access to GPUs and TPUs. This was 
an important feature as training a model on image data can be very resource demanding and the 
process could not be executed on available local machines. A hosted Tensor Processing Unit 
(TPU) runtime was used for the training process. 

 The CNN model was developed with Keras, an open-source library built on top of 
TensorFlow 2 designed to provide a high-level API towards Tensorflow to simplify and speed-up 
the development of deep learning models. Tensorflow  is an end-to-end open-source platform for 
machine learning. It is a symbolic math library that uses dataflow and differentiable programming 
to perform various tasks focused on training and inference of deep neural networks. 

4.2 Data pre-process 

The dataset contains 1207 images of 597 unique individuals categorized by gender and race 
(White, Black, Latino, Asian). The first step of the dataset processing was to read the norming 
data provided and match each entry with the respective image file.  All relevant data were then 
gathered in a dataframe. The properties included in the final dataframe were folder, filename, 
attractiveness score, emotion, race, gender. As mentioned previously, for some models there are 
images with different emotions. For the purposes of this experiment, all expressions except 
neutral and happy (closed mouth) were excluded from the training data. The final dataset 
consisted of 750 images. 
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Image 9: Norming data extraction 

 

Image 10: Dataset pre-process 
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 The test sets had to be extracted and saved at the pre-processing stage in order to be 
used for predictions on all the models that would be subsequently created. Considering that the 
number of images in the test set was relatively small due to the overall small dataset, aiming to 
improve the reliability of the final results, ten different test sets were randomly created applying 
the same method. 

 

Image 11: Test set extraction 

4.3 CNN implementation & training 

As mentioned in the Introduction chapter, the purpose of this experiment is to determine how 
racially biased data affect the prediction results on an attractiveness prediction model. For this 
purpose, 5 different types of CNN models were implemented. The Type F models were trained 
on all available images, and the rest were trained on a subset created by excluding one of the 
four races (Table 2). 

Model type Information 
Type F Model trained on the full dataset
Type W Model trained on a subset, excluding White ethnicity individuals 
Type B Model trained on a subset, excluding Black ethnicity individuals 
Type A Model trained on a subset, excluding Asian ethnicity individuals 
Type L Model trained on a subset, excluding Latino ethnicity individuals 

Table 2: Model type categorization  

 The training versus validation ratio was 85/15 for all models and the number of images in 
each test set was set to 72 (Table 3). For Type F, the full test set (72 images) was used for 
predictions while for the rest, an ethnicity was excluded from the test set depending on the model 
type. For example, for Type A models, images of Asian models were excluded from the test set 
resulting in a final set of 54 mages.  

Model type Total set Training set Validation set Test set
Type F 678 576 102 72
Type W 440 374 66 54
Type B 420 357 63 54
Type A 594 505 89 54
Type L 594 505 89 54
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Table 3: Number of images per model type and set 

 All Convolutional Networks implemented had the same architecture, based on the VGG-
Face model (Image 12). The model was reconstructed, and the available trained weights were 
applied. The last seven layers of the base model were trained on the dataset while the rest were 
kept unmodified in order to take advantage of the model’s existing ability to recognize facial 
features and patterns (Image 13). As this is a regression problem, the loss function selected was 
mean squared error (Image 14). Mean squared error is calculated as the average of the squared 
differences between the predicted and actual values. The result is always positive regardless of 
the sign of the predicted and actual values and a perfect value is 0.0. The squaring means that 
larger mistakes result in more error than smaller mistakes, meaning that the model is punished 
for making larger mistakes. ADAM was selected as the optimization algorithm, which is best suited 
for the problem. According to Kingma et al., 2014, the method is "computationally efficient, has 
little memory requirement, invariant to diagonal rescaling of gradients, and is well suited for 
problems that are large in terms of data/parameters". Finally, the epoch number was set to 2000, 
but an early stopping callback was used with a patience number of 50, meaning that if the 
validation loss didn’t decrease for 50 rounds the training would be terminated. The checkpointer 
was responsible for saving the best performing model and weights through the course of the 
training. 

 

Image 12: VGG-Face model implementation 
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Image 13: Final model implementation 

 

 

Image 14: Model compiling and training 

 In the data pre-processing section, it was mentioned that ten different test sets were 
created. As each test set needed to be excluded from the training data, the training of each of the 
five model types needed to be repeated for every test set , resulting in ten iterations of training, 
each producing a new model, resulting in a final number of fifty trained models. Following are the 
training/validation plots for all model types during the first iteration (Figures 2-6). 
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Figure 2: Model Type F - Train & validation loss 

 

Figure 3: Model Type W - Train & validation loss 
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Figure 4: Model Type B - Train & validation loss 

 

Figure 5: Model Type A - Train & validation loss 
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Figure 6: Model Type L - Train & validation loss 

4.4 CNN layer visualization 

Visualizing CNNs can give us a better understanding of how the network extracts information from 
the input image and how each layer and filter processes the input to come to a final result. The 
technique used, takes an input image and plots what each filter has extracted after a convolution 
operation in each layer.  

 

Image 15: Input image 
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 For this process a Type F model was used, and the input image was randomly selected. 
The first step was to load the previously trained model and the input image. In order to extract the 
feature maps, a Keras model was created, that takes batches of images as input, and outputs the 
activations of all convolution and pooling layers. When fed an image input, this model returns the 
values of the layer activations in the original model. 

 

 

Image 16: Model & input image loading 

 

 

Image 17: Implementing model for visualization 

 Finally, a complete visualization of all the activations in the first 15 layers was plotted and 
saved. Each image created shows the visualized activation of each filter in a layer. 
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Image 18: conv2d 

 

Image 19: conv2d_1 

 

Image 20: max_pooling2d 
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Image 21: conv2d_2 

 

Image 22: conv2d_3 
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Image 23: max_pooling2d_1 

 

Image 24: conv2d_4 
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Image 25: conv2d_5 
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Image 26: conv2d_6 
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Image 27: max_pooling2d_2 
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Image 28: conv2d_7 
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Image 29: conv2d_8 
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Image 30: conv2d_9 
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Image 31: max_pooling2d_3 



Μεταπτυχιακή Διατριβή  Κωνσταντίνος Μποζίκης 
 

Predicting Facial Beauty with Convolutional Neural Networks  31 

 

Image 32: conv2d_10 
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Image 33: conv2d_11 
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Image 34: conv2d_12 
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Image 35: max_pooling2d_4 

 The initial layers (Images 18-26) seem to retain most of the input image features. It looks 
like the convolution filters are activated at every part of the input image. This gives us an intuition 
that these initial filters might be primitive edge detectors. 

 As we go deeper (Images 27-35) the features extracted by the filters become visually less 
interpretable. An explanation for this can be that the network is now abstracting away visual 
information of the input image and trying to convert it to the required output. 

 In some images (especially Images 34-35) there are a lot of blank convolution outputs. 
This means that the pattern encoded by the filters was not found in the input image. As we 
progress through the network the filters try to extract more complex shapes and patterns that in 
some cases don’t exist in an image, which results in a blank output. 
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5. EXPERIMENTATION RESULTS 
In this chapter, all prediction results will be displayed and analyzed. Two basic metrics were 
calculated in order to evaluate each model’s performance: Pearson correlation and mean 
absolute error. The Pearson correlation coefficient is a measure of linear correlation between two 
sets of data. Mean absolute error is a measure of errors between paired observations expressing 
the same phenomenon. In our case, it is the error between attractiveness predictions and actual 
values. Additionally, scatter plots of actual vs predicted values were created for each case, 
containing paired values of all ten models of each type. 

5.1 Type F model performance 

Type F model, as mentioned in the previous chapter, is a model trained on the full dataset 
containing images of all four ethnicities. Ten models of this type were trained, each with a different 
test set. 

 The Pearson correlation for the validation set is acceptable (Table 4) with an average 
value of 0.6981 and mean square error is at 0.43. Considering that the attractiveness score is 
between 1 and 7, the model can predict it with ±0.4 error. Additionally, the test set results are 
almost identical, which indicates that the model has the ability to generalize and predict scores 
for input images that weren’t included in the training process. 

ModelNo 
Validation set Test set 

Pearson 
correlation 

Mean absolute 
error 

Pearson 
correlation

Mean absolute 
error 

1 0.7114608706 0.3891693419 0.5851807451 0.5400051229

2 0.6488464311 0.4268629942 0.7069867723 0.4020390598

3 0.6114909335 0.4974872831 0.6821329715 0.4098491618

4 0.6686423875 0.4671703047 0.7689630167 0.362511383

5 0.7708477094 0.3718037034 0.7897271135 0.4013349699

6 0.7384085026 0.4268569263 0.6942402076 0.4217622864

7 0.7370681529 0.4103251549 0.6600841722 0.4627719748

8 0.6502897626 0.456986166 0.7073352683 0.4519757964

9 0.7345835474 0.3849640041 0.7449945108 0.4129380476

10 0.7094588302 0.4569267838 0.6571672391 0.4844723094

Average 0.6981097128 0.4288552662 0.6996812017 0.4349660112
Table 4: Type F model - Validation/test set performance 

 In the respective scatter plots (Figures 8, 9) a positive linear relationship between actuals 
and predictions is depicted. The grouping is slightly tighter for the validation set, which is in line 
with the metrics on Table 4. 
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Figure 7: Type F model - Scatter plot on validation set predictions 

 

 

Figure 8: Type F model - Scatter plot on test set predictions 
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5.2 Type W model performance 

Type W model, as mentioned in the previous chapter, is a model trained on a subset, excluding 
White ethnicity individuals. Ten models of this type were trained, each with a different test set. 

 The Pearson correlation for the validation set is acceptable (Table 5) with an average 
value of 0.7054 and mean square error is at 0.41 which means that the model can predict 
attractiveness with ±0.4 error. Additionally, the prediction performance results for the test set are 
slightly lower with a moderate correlation. These results supported by the scatter plots for 
validation and test sets (Figures 10-11), where there is a strong linear relationship between actual 
and predicted values, with a slightly tighter grouping for the validation set. 

ModelNo 
Validation set Test set

Pearson 
correlation 

Mean absolute 
error 

Pearson 
correlation

Mean absolute 
error

1 0.7522903866 0.3746734471 0.5191768892 0.5524340469 

2 0.7076249169 0.4225660206 0.6419403264 0.4307983066 

3 0.7267429516 0.4028885525 0.7191278017 0.3814956607 

4 0.6921820072 0.4366546432 0.6915883937 0.4319676529 

5 0.6986949243 0.3977268467 0.7396080468 0.4670180879 

6 0.7465498614 0.4157233258 0.6241018735 0.4476720286 

7 0.7346080891 0.3881537467 0.6064066948 0.4899079148 

8 0.6997446262 0.3794407606 0.7768880973 0.399471898 

9 0.5937631784 0.4351835797 0.6477580512 0.4218431584 

10 0.7013180302 0.4237639553 0.6232046173 0.4933024214 

Average 0.7053518972 0.4076774878 0.6589800792 0.4515911176 
Table 5: Type W model - Validation/test set performance 
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Figure 9: Type W model - Scatter plot on validation set predictions 

 

Figure 10: Type W model - Scatter plot on test set predictions 

 For the purpose of testing the effects of excluding an entire group of individuals from the 
training data, predictions were calculated for the excluded group on both the type W and type F 
models. From the results displayed in Table 6, it is clear that the predictions on the type W model 
had a low degree of correlation as an average and high error values. In some cases, like model 
number 7, the correlation nears zero and error value is almost 0.8. On the other hand, the 
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predictions of the same set of images on the type F model are clearly more accurate with a high 
average correlation of 0.8585 and 0.40 average error. 

ModelNo 
Type W - Excluded Test set Type F - Excluded Test set 

Pearson 
correlation 

Mean absolute 
error

Pearson 
correlation

Mean absolute 
error 

1 0.4074935666 0.6673390262 0.8066008993 0.4124333667

2 0.7662039926 0.4523312389 0.8826492274 0.3115141459

3 0.5901058163 0.5106764415 0.7376284336 0.3413824274

4 0.2332453885 0.4921994914 0.6013614998 0.3836462457

5 0.1517063933 0.5380770538 0.8584553068 0.2882150592

6 0.4877419835 0.6558088893 0.8554576931 0.4250530929

7 0.06143093995 0.7999063731 0.6020476274 0.499391643

8 0.09370903376 0.810165702 0.5989702988 0.5240724138

9 0.5586956412 0.5528191668 0.6781391886 0.4376925084

10 0.5907160873 0.6305290722 0.8859977355 0.3849337008

Average 0.3941048843 0.6109852455 0.750730791 0.4008334604
Table 6: Type W model - Excluded test set (White) - Type W/F comparison 

 Examining the scatter plots (Figures 12-13)shows a weak positive relationship between 
actuals and predictions for the Type W models while the same data have a strong, linear and 
positive relationship on Type F models. These results support the metrics in Table 6 and visualize 
the effect of the introduced bias on the model. 

 

Figure 11: Type W model - Scatter plot on excluded test set predictions 
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Figure 12: Type F model - Scatter plot on excluded test set predictions 

5.3 Type B model performance 

Type B model, as mentioned in the previous chapter, is a model trained on a subset, excluding 
Black ethnicity individuals. Ten models of this type were trained, each with a different test set. 

 The Pearson correlation for the validation set is high (Table 7) with an average value of 
0.7474 and mean square error is at 0.3677 which means that the model can predict attractiveness 
with ±0.37 error. Additionally, the prediction performance results for the test set are slightly lower 
with a moderate correlation. 

ModelNo 
Validation set Test set

Pearson 
correlation 

Mean absolute 
error 

Pearson 
correlation

Mean absolute 
error

1 0.8008635274 0.2950863208 0.5949393526 0.5697499071 

2 0.713284108 0.377150961 0.7711832414 0.3850495579 

3 0.7286109359 0.3704864425 0.684635278 0.3639285332 

4 0.7591041935 0.3991122531 0.7281237818 0.397985391 

5 0.6878293411 0.3960688389 0.7871874495 0.3802769484 

6 0.7453820828 0.3864011331 0.6593320446 0.4563800653 

7 0.7391158474 0.4256376284 0.7008715354 0.443287309 

8 0.7703685791 0.3207339004 0.7218015759 0.4476571583 

9 0.7087185652 0.3668553577 0.701470454 0.4154738662 

10 0.8202630286 0.3397371093 0.7408565353 0.4157496919 

Average 0.7473540209 0.3677269945 0.7090401249 0.4275538428 

Table 7: Type B model – Validation/test set performance 
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Figure 13: Type B model - Scatter plot on validation set predictions 

 

Figure 14: Type B model - Scatter plot on test set predictions 

 Regarding predictions for the excluded group on both the Type B and Type F models, 
from the results displayed in Table 8, it is clear that the predictions on the Type B model had a 
low degree of correlation as an average (0.445) and high error values (0.70). On the other hand, 
the predictions of the same set of images on the Type F model are clearly more accurate with a 
moderate average correlation of 0.6494 and 0.45 average error. 
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ModelNo 
Type B - Excluded Test set Type F - Excluded Test set 

Pearson 
correlation 

Mean absolute 
error

Pearson 
correlation

Mean absolute 
error 

1 0.6657600103 0.581662987 0.5133249718 0.511128949

2 0.6041490478 0.7309349693 0.5632838208 0.4899690109

3 0.4978413884 0.69752481 0.5735912699 0.4511501922

4 0.6838238944 0.6202281324 0.8250189315 0.3279072557

5 0.5564948394 0.5358872068 0.7221493098 0.4702108203

6 0.4712052143 0.9685865225 0.739286221 0.4380403242

7 0.04388510445 0.8603541111 0.4447802713 0.5059208567

8 0.4548847431 0.7147458721 0.8340853034 0.4478253791

9 0.3782038599 0.5505686086 0.7260536075 0.3396844079

10 0.09328420133 0.7731214266 0.5523518568 0.5445585749

Average 0.4449532303 0.7033614646 0.6493925564 0.4526395771

Table 8: Type B model - Excluded test set (Black) - Type B/F comparison 

 The metrics above are depicted in Figures 16, 17. Grouping of values in model B looks 
shifted to the left, meaning that images on the excluded set scored consistently lower that the 
actual attractiveness values. On the other hand, actuals/predictions on Type F models show a 
good linear relationship. 

 

Figure 15: Type B model - Scatter plot on excluded test set predictions 
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Figure 16: Type F model - Scatter plot on excluded test set predictions 

5.4 Type A model performance 

Type A model, as mentioned in the previous chapter, is a model trained on a subset, excluding 
Asian ethnicity individuals. Ten models of this type were trained, each with a different test set. 

 The Pearson correlation for the validation set is high (Table 9) with an average value of 
0.7259 and mean square error is at 0.3747 which means that the model can predict attractiveness 
with ±0.37 error. The prediction performance results for the test set are lower with a moderate 
correlation (0.6330) and higher average error (0.45). 

ModelNo 
Validation set Test set

Pearson 
correlation 

Mean absolute 
error 

Pearson 
correlation

Mean absolute 
error

1 0.7790136542 0.3363166791 0.5509466897 0.5344106943 

2 0.7375181364 0.3592557339 0.6079663659 0.4556312842 

3 0.7764488864 0.3511565253 0.6780335958 0.4140937201 

4 0.7313311696 0.3807832228 0.6860787658 0.4243501828 

5 0.6293286617 0.4197092451 0.6823135146 0.4327685774 

6 0.7079445649 0.3921269535 0.7315948737 0.4157022699 

7 0.7259164432 0.351757423 0.466441419 0.5062755364 

8 0.6859025908 0.3674618801 0.6321781777 0.4650022034 

9 0.7252427747 0.405608064 0.6220297386 0.4415359808 

10 0.7605881825 0.3830803068 0.6726402782 0.4802457303 

Average 0.7259235064 0.3747256034 0.6330223419 0.457001618 

Table 9: Type A model – Validation/test set performance 
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 The lower performance for the test sets on model Type A is observable on the scatter 
plot (Figure 19), where the values are slightly shifted to the left in comparison with the validation 
set plot (Figure 18). However, both plots display a good linear relationship between actual and 
predicted values. 

 

Figure 17: Type A model - Scatter plot on validation set predictions 

 

Figure 18: Type A model - Scatter plot on test set predictions 
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 Regarding predictions for the excluded group on both the Type A and Type F models, the 
results are inconclusive (Table 10). Excluding the Asian group from the training data didn’t seem 
to have an impact on prediction performance. This is also visible in the respective scatter plots 
(Figures 20, 21), where in both cases the grouping of values is similar, with a strong linear 
correlation. This could be explained by the lower number of images for the Asian group compared 
to White or Black, and also by facial characteristics that might make the group less susceptible to 
biased training data. 

ModelNo 
Type A - Excluded Test set Type F - Excluded Test set 

Pearson 
correlation 

Mean absolute 
error

Pearson 
correlation

Mean absolute 
error 

1 0.5605758751 0.6185375805 0.5144375768 0.6069098648

2 0.8423549584 0.32380907 0.8814362951 0.2716675202

3 0.808978486 0.2814593368 0.7713284969 0.3784251143

4 0.8635573137 0.3603317123 0.8268615343 0.3268554097

5 0.8112934686 0.468606279 0.8335959375 0.4554526583

6 0.5079950046 0.4997010019 0.5614072468 0.4095774262

7 0.8150798878 0.3954848796 0.8713157295 0.3719708483

8 0.6914193048 0.5476302576 0.7470348729 0.4736194613

9 0.8061502187 0.45549438 0.8538980527 0.3783307099

10 0.6663721805 0.4896766098 0.6798833408 0.5517110412

Average 0.7373776698 0.4440731107 0.7541199083 0.4224520054

Table 10: Type A model - Excluded test set (Asian) - Type A/F comparison 
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Figure 19: Type A model - Scatter plot on excluded test set predictions 

 

Figure 20: Type F model - Scatter plot on excluded test set predictions 

5.5 Type L model performance 

Type L model, as mentioned in the previous chapter, is a model trained on a subset, excluding 
Latino ethnicity individuals. Ten models of this type were trained, each with a different test set. 
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 The Pearson correlation for the validation set is moderate (Table 11) with an average 
value of 0.6754 and mean square error is at 0.3908 which means that the model can predict 
attractiveness with ±0.39 error. Additionally, the prediction performance results for the test set are 
slightly higher with a stronger correlation albeit higher error. 

ModelNo 
Validation set Test set

Pearson 
correlation 

Mean absolute 
error 

Pearson 
correlation

Mean absolute 
error

1 0.7160112536 0.3323401808 0.6046989879 0.5262706637 

2 0.6482604911 0.4307984866 0.785233173 0.374705388 

3 0.6193688013 0.4362318242 0.7689628212 0.3250118931 

4 0.6511514548 0.4426543262 0.7843580066 0.3414114139 

5 0.6334481472 0.3984320881 0.7883489001 0.3898562602 

6 0.6641791613 0.3967074845 0.7370693142 0.4167473067 

7 0.7747588464 0.3363746343 0.6525105639 0.5077570679 

8 0.7096553327 0.3275324308 0.7532955825 0.4602677015 

9 0.7030647736 0.3949674393 0.7672953648 0.3709079484 

10 0.6338765951 0.4122167136 0.6945963649 0.4732141368 

Average 0.6753774857 0.3908255608 0.7336369079 0.418614978 

Table 11: Type L model – Validation/test set performance 

 

Figure 21: Type L model - Scatter plot on validation set predictions 
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Figure 22: Type L model - Scatter plot on test set predictions 

 Regarding predictions for the excluded group on both the Type L and Type F models, the 
results are inconclusive (Table 12). Like with the Asian group, excluding the Latino group from 
the training data didn’t seem to have an impact on prediction performance and this is also visible 
in the respective scatter plots (Figures 24, 25). This could be explained by the lower number of 
images for the Latino group compared to White or Black, and also by facial characteristics that 
might make the group less susceptible to bias. 

ModelNo 
Type L - Excluded Test set Type F - Excluded Test set 

Pearson 
correlation 

Mean absolute 
error

Pearson 
correlation

Mean absolute 
error 

1 0.5405781953 0.6270277249 0.505981102 0.6295482184

2 0.5329833733 0.5167786597 0.5402907682 0.5350055754

3 0.5940382685 0.5707245171 0.646839298 0.4684390327

4 0.5751808614 0.558535802 0.7501187755 0.4116366077

5 0.69370438 0.4426014272 0.8032424362 0.3914614212

6 0.7809101365 0.3385424 0.7122318118 0.4143782492

7 0.5520114041 0.4704808255 0.5267299518 0.4738045776

8 0.7250212586 0.3406508664 0.6679593967 0.3623860375

9 0.5612776237 0.4133750078 0.7188023401 0.496044617

10 0.8115515198 0.3054898364 0.4183414789 0.4566858678

Average 0.6367257021 0.4584207067 0.6290537359 0.4639390205

Table 12: : Type L model - Excluded test set (Latino) - Type L/F comparison 
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Figure 23: Type L model - Scatter plot on excluded test set predictions 

 

Figure 24: Type F model - Scatter plot on excluded test set predictions 
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6. CONCLUSION - FUTURE WORK 
The problem addressed in this thesis was to implement an attractiveness prediction model and 
evaluate its performance along with the effects of bias introduction. This was achieved by 
implementing a convolutional neural network based on the VGG-Face model and training it on 
data from the Chicago Face Database. Five model categories were created based on the training 
data and ten different test sets were randomly generated, resulting in fifty models. 

 The training process was consistent across all models, with the only differentiating factors 
being the training and test data. Training time varied between 25 and 120 epochs as an early stop 
technique was used, meaning that the process stopped after 50 rounds of no validation accuracy 
decrease.  

 Despite the relatively small dataset available, the performance results were acceptable 
for all cases. Test set results for all model types show good correlation of predicted versus actual 
values and in most cases are close with the respective validation results. That means that the 
models have the ability to generalize and accurately predict attractiveness on images not included 
in the training process. 

 Regarding the introduction of bias in the training data, excluding White or Black ethnicities 
from the data showed a clear effect on prediction results, with low correlation and error being 
evidently higher. In both cases the scatter plots showed a shift to the left, revealing a trend of 
predicted attractiveness values being lower than the actual scores. This supports the case that 
when data collection is flawed, without diversity or even a complete group exclusion, the resulting 
model would potentially output compromised results. For Asian and Latino ethnicities, the results 
were different, with the exclusion of the groups from training data not affecting the prediction 
performance. This could be due to specific facial traits or the amount of data representing these 
two groups. 

6.1 Future work 

As mentioned above, the results for the Asian and Latino ethnicities weren’t in in line with the 
other two groups. It would be interesting to examine the reasons behind those results and what 
makes the two groups apparently less susceptive to bias introduction. 

 The filter visualization process provided some insight on the convolution process, but 
couldn’t provide the factors that define a low or high attractiveness score. Future research could 
focus on the visualization process and define the patterns and facial features that define 
attractiveness. 

 Another future approach would be to gather a bigger dataset. The Chicago Face 
Database consists of diverse, quality data, but the number of images is relatively low. Additionally, 
excluding data from the initial dataset in order to introduce bias definitely didn’t help with this 
problem. A bigger dataset would produce more reliable results and provide a bigger tolerance for 
data exclusion. The current models were trained on images created in studio, with consistent 
lighting conditions, background and model expressions. A bigger more diverse dataset would also 
help to create a more capable model, able to output predictions on images with a variety of 
backgrounds and  expressions. 
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