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Abstract   
Nowadays with the rapid development and application of new technologies in all areas 

of our lives the interaction with integrated circuits is daily. This thesis focuses and 

analyzes all aspects of malicious hardware and hardware-based attacks. We briefly 

analyze the production process of hardware systems and the vulnerabilities that can be 

founded in each of the steps. Moving on, we approach the taxonomy of malicious 

hardware with two different ways, describe the lifecycle of the hardware system which 

provides several opportunities to include unwanted functionality and use this to 

categorize the attackers. Moreover, detection, localization and prevention mechanisms 

are outlined and thoroughly analyzed as countermeasures in order to deal with the risk 

of malicious hardware and more specifically Hardware Trojans. Finally, we refer 

shortly to malicious hardware use cases featuring specific attack vectors.  
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Περίληψη 
Στην εποχή μας, με την ραγδαία εξέλιξη και εφαρμογή των νέων τεχνολογιών σε όλους 

τους τομείς της ζωής μας, η αλληλεπίδραση με τα ολοκληρωμένα κυκλώματα είναι 

καθημερινή. Η παρούσα διπλωματική εργασία εστιάζει και αναλύει όλες τις πτυχές του 

κακόβουλου υλικού και των επιθέσεων που βασίζονται στο υλικό. Αναλύουμε εν 

συντομία τη διαδικασία παραγωγής συστημάτων υλικού και τις ευπάθειες που μπορούν 

να δημιουργηθούν σε κάθε ένα από τα στάδια. Προχωρώντας, προσεγγίζουμε την 

κατηγοριοποίηση του κακόβουλου υλικού με δύο διαφορετικούς τρόπους, 

περιγράφουμε τον κύκλο ζωής του συστήματος υλικού που παρέχει αρκετές ευκαιρίες 

για την ενσωμάτωση ανεπιθύμητης λειτουργικότητας και το χρησιμοποιούμε για να 

κατηγοριοποιήσουμε τους κακόβουλους εισβολείς. Επιπλέον, περιγράφονται και 

αναλύονται διεξοδικά οι μηχανισμοί ανίχνευσης, εντοπισμού και πρόληψης ως 

αντίμετρα για την αντιμετώπιση του κινδύνου του κακόβουλου υλικού και πιο 

συγκεκριμένα των Δούρειων Ίππων Υλικού. Τέλος, αναφερόμαστε εν συντομία σε 

περιπτώσεις χρήσης κακόβουλου υλικού που χαρακτηρίζονται από συγκεκριμένους 

τρόπους επίθεσης. 
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Chapter 1: Introduction 

Motivation and Background 

Cyber-attacks are a significant threat in today’s modern world, with technology 

evolving faster every day and playing such a critical role in people’s daily lives. People 

need to feel protected when using their workstations or electronic devices, and in order 

to do that, more threats have to be identified and treated. Malicious hardware is one 

category of these threats. It can be defined as a vulnerability, flaw, or built-in back 

doors such as code inside hardware or firmware of computer chips or hardware 

Trojans in an integrated circuit, enabling an attacker to gain unauthorized access to a 

system. Once the machine’s hardware is compromised, the intruder can read the data in 

the system. For example, the user’s personal identifying information such as passwords, 

bank account information, or any other sensitive data available, tamper with it or use it 

for malicious purposes. The described hardware compromisation results in a 

catastrophic loss of security, which can be expensive to the user or even the 

organization if the device is used for business purposes and leave the user with 

untrustworthy hardware. We can only assume that either the security was neglected by 

design, or the appropriate security measures were not taken, or finally there was a fault 

in manufacturing the hardware. For example, the vendor is likely to have implemented 

a backdoor to connect back to them for services but did not apply high-security 

standards regarding access, authentication & authorization management, or network 

security. So, that will leave the system vulnerable. 

Hardware-level vulnerabilities are difficult to overcome and require, in most 

cases, physical replacement of the compromised hardware components, resulting in a 

significant loss of money. For example, a hardware recall similar to Intel’s Pentium 

FDIV bug, which cost 500 million dollars to recall five million chips, has been 

estimated to cost many billions of dollars today. Furthermore, malicious hardware can 

provide control to the software running above due to the fact that hardware is the lowest 

layer in the computer system. This low-level control enables sophisticated and stealthy 

attacks aimed at evading software-based defenses. Such a scenario is possible when 

malicious logic is inserted during design time and gets triggered with a special or 

unlikely event like introducing a sequence of bytes into the hardware by attackers. 

Nowadays, the design phase of a hardware component is highly complicated, making 
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it vulnerable to the insertion of malicious logic. We can distinguish two scenarios in 

which the malicious logic can be inserted during the design phase and remain 

undetected even after the validation and testing of the hardware. In the first scenario, 

one employee can intentionally insert malicious circuits into a design prior to 

validation. In the second scenario, a generally trusted third-party intellectual property 

(IP) can be proved untrustworthy containing hidden malicious circuits. In either 

scenario, there is a high possibility that these malicious logic circuits can remain 

undetected during final design verification and validation and be shipped to be 

integrated into customers’ computer systems. Subsequently, it can be used to escalate 

privileges, turn off access control checks, or execute arbitrary instructions. Any of the 

above cases result in the attacker taking control of the machine and eventually releasing 

system-level attacks (1).  

All these vulnerabilities and bugs on the hardware allow attackers to exploit 

them in order to achieve their ulterior motive. The motivations behind these malicious 

hardware attacks vary. Some of those can be hardware cloning, unlocking hidden 

features, imitating user authentication for system access, information leakage, or even 

unlocking devices to gain access to an internal shell or increase control of a system. 

Some reported accidents of potential hardware attacks have been reported to steal secret 

information, gain control of devices, or even crush a system.  

Israel, in September 2007, launched a successful airstrike on a nuclear reactor 

in Syria, while Syria’s advanced air defense system did not respond throughout the 

operation. In 2008, there were speculations that a built-in kill switch had disabled 

Syria’s air defense system that could be accessed and activated remotely. Since the 

malicious hardware used in industrial fields and military are often highly confidential, 

researchers cannot accurately determine the implementation details of these attacks. 

However, it still shows the worries of various communities about the destructive power 

of malicious hardware alterations.  

In 2010, the motor vehicle manufacturer Toyota had to place one of the most 

extensive product recalls in the automobile industry in the U.S. About 6.5 million cars 

were affected due to reports of unintended acceleration. Imagining that such an error 

can be placed maliciously by an attacker into software and hardware parts highlights 

the importance of advanced research in hardware and embedded systems security. (2) 

Another prominent example to picture the threat of malicious hardware is the 

worm Stuxnet that had been detected in 2010. The malicious code was designed 
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specifically to observe and control technical processes in industrial facilities. Due to the 

high complexity of the worm, it is generally assumed that the designers of Stuxnet had 

knowledge of unrevealed Microsoft exploits and the architecture of the industrial 

control system of the facility. Supposing that such worm could be (partially) 

implemented in hardware, the operation could be even more precise. In general, using 

hardware Trojans to attack infrastructure and military applications, such as industrial 

complexes and power plants, can have a huge impact on the populations of a region and 

yield serious financial damages. These examples illustrate how pervasive computer 

hardware has become in human life and how much society depends on it—without 

being aware of it. (3) 

In 2016, Yang proposed a tiny malicious Hardware Trojan named A2, in which 

they implemented a privilege escalation attack by running a set of seemingly harmless 

commands in the OR1200 processor. Such lightweight analog malicious backdoors are 

awfully hard to detect. 

Finally, the Free Software Foundation revealed, in January 2018, the Intel 

Management Engine (ME), a built-in subsystem in Intel computers, which can take 

complete control over the computer and even has access to the main memory. The ME 

structure can be a major threat to the users’ privacy and security. Users though do not 

have the ability to audit, examine, or disable it, and from their perspective, this could 

also be considered a malicious hardware alteration. 
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Production Process of Hardware Systems 

An attack at the hardware level differs from an attack at the software level. Opposite to 

software, hardware is a physical good and can only be altered in limited ways after 

manufacturing. Hardware also requires significant effort and human resources in order 

to be duplicated as easily as software. So as to examine hardware level attack scenarios, 

the following questions should be answered: 

1. Where are possible vulnerabilities located? 

2. How can vulnerabilities be protected? 

3. Who are the possible attackers? 

In order to respond to the above questions, we will first give a brief overview of the 

production and design process of microprocessors to provide a detailed understanding 

of the risks and vulnerabilities originating in the hardware production process. 

Workflow 

Growing competitive pressure and ever-shorter product launch times make it necessary 

to reuse already developed hardware components. Therefore, hardware must be present 

in a special, reusable format. The solution is to textually describe the behavior of the 

hardware so that it can be generated through synthesis. Such descriptions are verbalized 

in so-called hardware description languages (HDL) such as VHDL or Verilog. 

Fig. 1(a) below shows some substantial parts of the hardware development process. 

After the system has been described in natural language, the system model is designed 

in a modeling language. Based on the model, partitioning is used to decide which parts 

of the functionality will be implemented in hardware and which in software. Through 

synthesis, the hardware will be generated from the system model components intended 

for this purpose. Fig. 1(b) shows how the synthesis process works. The “source code” 

that is scattered across multiple files is translated into a format that only includes logic 

gates and connecting signals. 

The resulting representation of the hardware netlist is then mapped to the desired target 

technology (ASIC, FPGA). Here, the respective logic elements are placed on the chip 

and are connected to each other via electrical connections (place and route). The result 

is a file that fits the physical representation of the hardware (see Fig. 1(c)). The physical 

representation is submitted to the chip manufacturer (Tape Out). After manufacturing, 

the chips are returned or delivered to the market. 
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(a) HW development process                      (b) Synthesis Process                      (c) Physical layout process 

Figure 1: Hardware design flow, synthesis, and layout process 

 

Vulnerabilities 

As stated above, the hardware design and production process consist of many steps and 

corresponding interfaces. Each of these steps in the process along with every transition 

between the process steps is vulnerable. 

Fig. 2(a) below summarizes every step of the process, focusing on the physical 

manufacturing process (4). Some of the physical manufacturing process steps cannot 

be trusted; thus, they are categorized based on their trustworthiness. Fig. 2(b) below 

illustrates this by assigning white to the trusted and black to the non-trustworthy steps. 

If no assumption about trustworthiness can be made, the step is hatched. Mask and 

Fabrication steps cannot be trusted because during pre-IC fabrication; a backdoor could 

be inserted at the time of design, within integrated IP, or even during mask or silicon 

modification. After IC fabrication, malicious logic could also find its way in through 

physical or packaging modifications, side-channel exploits (i.e., power, analog, RF), 

and even maintenance or upgrade updates. 
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(a) Traditional Supply chain 

(b) Supply chain with steps based on their trust level 

Figure 2: IC Production supply chains 

 

Authors at (4) also specify confidentiality classes for the different development 

processes for ASICs (Fig. 3(a)) and FPGAs (Fig. 3(b)).  

 

(a) Design flow ASIC 

 

(b) Design flow FPGA 

Figure 3: ASIC and FPGA design flow 

 

The Defense Science Board, Department of Defense, U.S. (5), provides a thorough look 

at the links between the development and production processes and the risks involved 

(Fig. 4). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Generic design flow proposed by the Department of Defense Science Board 
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In this way, malicious functionality could be inserted directly as code by developers 

into the hardware description. Moreover, it is likely that functionality bought as IP cores 

(IP—Intellectual Property) implements malicious, unwanted functionality in addition 

to the expected one. We also cannot eliminate the possibility that errors or additional 

functionality are introduced by software tools, such as synthesizers or place-and-route 

tools. (6) 
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Chapter 2: Malicious Hardware Overview 

Taxonomy 

ENISA defines vulnerability as: “The existence of a weakness, design, or 

implementation error that can lead to an unexpected, undesirable event compromising 

the security of the computer system, network, application, or protocol involved 

(ITSEC).” So, based on that fact, we can define a hardware attack as the act of taking 

advantage of a hardware vulnerability. (7) 

First Approach (8) 

The first approach towards hardware attacks taxonomy is outlined in Fig. 5. 

Figure 5: Hardware attacks taxonomy 

 

Firstly, a hardware attack is categorized based on the goal, the desired result 

that the attacker is trying to succeed, in our case, a malicious action. The attacker’s aim 

is the attacked hardware, towards which efforts are directed. The attacked hardware is 

characterized as a target and can be either information that the hardware is handling or 

property of the hardware itself (functional or non-functional).  

A hardware attack can be initiated to steal, corrupt, or inhibit a target. Either of 

those actions can result in a violation of the information security principles, the 

Confidentiality Integrity Availability (CIA) triad. More specifically, stealing a 

cryptographic key discloses confidential information or trade secrets which are 

intellectual property (IP) rights on confidential information that may be sold or licensed, 

violates the Confidentiality principle since the attacker obtains confidential data or 

information illegally. Cryptography is used primarily to protect the confidentiality of 
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data. That is why a cryptographic key is needed to ensure that the data exchanged 

between two parties remain confidential. However, the use of cryptography is not only 

restricted to confidentiality which is the main focus but also extends to checking the 

integrity and authentication processes as well. Furthermore, when corrupting a 

permission file or a memory word, the attacker modifies an asset without authorization, 

so the Integrity is lost. Finally, inhibiting a service or a defense mechanism allows the 

attacker to shut out of the system the authorized users in violation of the Availability.  

Hardware attacks also have a domain, an area in which they are implemented. 

The domain is classified into logical and physical. The logical domain attacks are 

implemented starting from the upper layers with respect to the hardware. These attacks 

are not targeting directly the hardware but the software running on top of it. Some 

examples of those attacks are privilege escalation, exploitation of vulnerabilities in 

processor microarchitectures such as Meltdown (9), Spectre (10), or cache-based 

attacks (11) (12). On the other hand, physical domain attacks are implemented directly 

on the hardware device through proper actions such as backdoor programs and 

modifications in integrated circuits. 

Moreover, the hardware attacks can also be categorized according to the 

modality in which they are carried out. We can further split them into invasive and non-

invasive (passive or active) attacks. The invasive attacks are the ones including physical 

intrusions against the attacked hardware device such as disconnection 

(“Usually a circuit breaker, a fused switch, or a fused circuit-breaker-assembly 

that disconnects the conductors of an electric circuit from the source of supply.”), 

desoldering (“In electronics, desoldering is the removal of solder and components 

from a circuit board for troubleshooting, repair, replacement, and salvage.”), or 

depackaging (“Depackaging a chip in order to get access to its surface.”) of its internal 

components. Attacks belonging to this sub-category are micro probing, reverse 

engineering, or data remanence attacks.  

In contrast to invasive attacks, the non-invasive ones are carried out without any 

physical contact with the device. This type of attack is divided into passive and active 

non-invasive attacks. Passive non-invasive attacks can be carried out by analyzing and 

measuring one or more physical dynamic entities at the attacked hardware device. 

Examples of these sub-category attacks are all distinct types of side-channel attacks 

(timing, power, electromagnetic, acoustic, and optical attacks). Active non-invasive 

attacks are carried out by performing a specific action on the device, forcing the system 
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into abnormal states that the goal is easier to reach. Examples of these sub-category 

attacks are all distinct types of fault attacks (supply, clock, heating, and radiation 

attacks) and test-infrastructure-based attacks.  

Second Approach 

A second approach towards hardware attacks taxonomy could classify them 

depending on the hardware vulnerability exploited. In such a case, hardware attacks can 

be split into hardware backdoors, maliciously altered or flawed integrated circuits, and 

hardware trojans. Each of the previously mentioned categories poses a threat to the 

hardware and subsequently to the whole system. We are going to analyze these 

categories thoroughly. 

 

Hardware Backdoor (13) (14) 

Hardware backdoors are vulnerabilities inserted intentionally inside a hardware 

device to guarantee to the entity that builds it either the possibility of later access or use 

of it outside the scope of intended cases. Furthermore, we have to consider that 

malicious hardware modification can pose a threat to the system, providing attackers a 

foothold into sensitive or critical information.  

Such malicious modifications in order to create backdoors can come into the 

design in several ways. First of all, they can either come from a core design component, 

for example, a few lines of Hardware Design Language (HDL), or a third-party 

intellectual property (IP). Nowadays, hardware designs use a variety of third-party IP 

components that are integrated into the designs after passing validation tests but without 

code review for any malicious modification. Nevertheless, even in the case of a possible 

complete code review, it could be highly improbable to discover a thoroughly hidden 

backdoor since modern designs come with many bugs. Additionally, the malicious 

modifications might as well come during the hardware design phases. At first, the 

hardware is designed to meet operational requirements and coded into HDL. Then, 

hardware undergoes many and strict validations as hardware bugs are more expensive 

to fix after deployment. When done, the design is processed using computer-aided 

design tools (CAD). So, thousands of engineers can have access to hardware during its 

design and creation phases and alter it maliciously.   

A key factor of hardware backdoors is that they can remain inactive during 

testing and can be triggered in order to wake up at a later time. Then during the 
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validation phase, we encounter difficulty detecting them because of the exponentially 

many different ways that the hardware backdoors can be expressed. We will describe 

two trigger types, ticking timebombs and cheat codes, that can wake up a hardware 

backdoor to attack the system. 

Ticking timebombs attacks can be programmed into hardware devices with 

malicious HDL code in order to be triggered automatically a fixed amount of time after 

the unit powers on. An attribute of this trigger type is that it can go undetected by 

evading validation techniques and then trigger without any warning. This poses a 

significant threat to many high-security areas. The timebomb can undermine the system 

security or function as a ‘kill-switch’ in hardware despite the use of a secure, tamper-

free environment and running of trusted code. It is crucial to notice that the adversary 

does not need to have privileged access to the machine in order to launch this attack. 

 Cheat code attacks, on the other hand, require the attacker to have privileged 

access to the machine (e.g., is a user and a designer) in order to execute code on the 

malicious hardware and provide the cheat code key. So, cheat codes can be defined as 

backdoors that are triggered by data values. The adversary in this type of attack needs 

to insert a special input or sequence of inputs that functions as a key in order to trigger 

the malicious hardware to attack. This input, also characterized as the identification of 

the adversary at the hardware backdoor logic, must be unique in order to avoid any 

detection during validation techniques. The cheat codes can be communicated in two 

ways, either as a single-shot or as a sequence cheat code. Single-shot cheat codes are 

large pieces of data sharing the entire code through a single data value. In contrast, 

sequence cheat codes are small pieces of data over multiple cycles or inputs sharing the 

code in pieces. The cheat codes can introduce themselves as addresses in hex; for 

example, 0xdecafbad can be a secret trigger to wake up a hardware backdoor. 

Actions resulting from the triggering of a backdoor are often referred to as 

payload. Payloads can be categorized either as emitter or corrupter. Emitter payloads 

send out extra information or perform extra actions beyond what is specified and are 

easier for an attacker to implement. In comparison, corrupter payloads change existing 

messages to alter data that plays a specific role and are likely to cause other aspects of 

the system to fail in unexpected ways without careful engineering.  

The above descriptions regarding hardware backdoors taxonomy are depicted 

below in Fig. 6.  
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Figure 6: Hardware backdoors taxonomy 

 

Integrated Circuits (15) 

  An integrated circuit (also referred to as an IC, a chip, or a microchip) is a set 

of electronic circuits on one small flat piece (or “chip”) of semiconductor material that 

is usually silicon. It is defined as a circuit in which all or some of the circuit elements 

are inseparably associated and electrically interconnected so that it is considered to be  

inseparable for construction and marketing. Circuits fulfilling this definition can be 

constructed using a variety of different technologies, including thin-film 

transistors, thick-film technologies, or hybrid integrated circuits. However, in general, 

an integrated circuit refers to the single-piece circuit construction primarily known as 

a monolithic integrated circuit, usually built on a single piece of silicon. (16) 

Circuits are the result of the integration of large numbers of tiny MOS 

transistors into a small chip. Those circuits are smaller, faster and less expensive orders 

of magnitude than the ones constructed of discrete electronic components. The fast 

adoption of standardized ICs in place of designs using discrete transistors have been 

ensured due to the IC’s mass production capability, reliability, and building-block 

approach to integrated circuit design. Virtually all electronic equipment are using ICs 

and have reformed the world of electronics. Digital home appliances, mobile phones 

and computers that are now inseparable parts of the modern societies, are made possible 

by the small size and low cost of ICs. (16) 

Figure  SEQ Figure \* ARABIC 2: Hardware Backdoors Taxonomy Figure  SEQ Figure \* ARABIC 2: Hardware Backdoors Taxonomy 
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ICs are susceptible to weakness in design and implementation defects or flaws 

introduced during manufacturing, and as a result, adversaries can exploit these 

vulnerabilities. Furthermore, ICs are also subject to malicious alteration even after the 

deployment and can frequently be counterfeited and sold as genuine. These 

vulnerabilities are hard to detect. The expense and time needed to inspect the IC after 

being manufactured for malicious alteration have a great cost due to the expertise 

required. Typically, an IC involves almost 100-400 steps, so it is vulnerable to being 

maliciously altered by several actors.  

The main threats introduced into the security properties of an IC are 

counterfeiting to be sold as genuine, reverse engineering to discover sensitive data and 

tampering to make malicious alterations or sabotage IC operation. Counterfeiting poses 

a threat to authenticity and dependability, and it refers to replicas that are approaching 

the genuine product in such a way that can be mistaken by users, resellers, or testers. 

Most of the counterfeits are often legitimate IC’s that have failed testing have been 

discarded, then salvaged and resurfaced with a newer version number. These IC’s, 

which are typically documented with misleading mechanical characteristics or 

performances, are more subject to failure or compromise. 

On the other hand, Reverse Engineering poses a threat to intellectual property 

and data confidentiality because it aims to obtain information about the IC’s operation. 

These attacks are physical and can be either invasive (like depackaging) or non-invasive 

(like side-channel attacks). They are highly sophisticated attacks and require expertise, 

resources, and patience that they remain rare. Lastly, tampering poses a threat to 

integrity and trustworthiness and can be performed to the design of an IC. Its purpose 

is to alter the functionality of an IC maliciously. 

To summarize, we have to point out that because the IC is the lowest layer in a 

computer system, when specific malicious alterations are performed, it can give the 

adversaries the ability to bypass, subvert or gain control over all software running above 

it. All the above can result in stealthy and sophisticated attacks evading software-based 

defenses. For example, an adversary in order to activate embedded malicious circuits 

might introduce a sequence of predetermined bytes into the IC. Such action will enable 

leaks of highly sensitive data or crypto keys or halt the processor at critical or random 

processing times. 
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Hardware Trojan (17) (18) 

 Hardware Trojan can be defined as a malicious modification of the circuitry of 

an integrated circuit that results in undesired behavior when it is deployed. So, hardware 

trojans fall under the category of maliciously altered integrated circuits, which can be 

inserted at any phase of the IC development. Additionally, Hardware Trojans are 

designed by intelligent adversaries to be stealthy, unlike IC’s manufacturing defects 

which have been extensively researched for years and can manifest with delay fault or 

stuck-at fault. So, Hardware Trojan is a more complex problem than the appearance of 

manufacturing defects. 

 Hardware Trojans can include two core parts: trigger and payload. A trojan 

trigger can be defined as an activation mechanism that monitors several signals or 

sequences of occurrences in the circuit. At the same time, a trojan payload is the 

functionality or the part of the circuit affected by the activation of the Trojan. So, when 

the trigger meets an anticipated condition or event, the payload gets activated to 

perform malicious actions. However, the Trojan payload remains dormant until 

triggered, making it harder to detect because the IC operates as a normal circuit. 

 Trojan trigger mechanisms can be classified into two types, digital or analog. 

Digital trigger mechanisms can fall into combinational (which “becomes 

active when a specific condition arises in the internal signals and/or circuit flip-flops 

or a portion of it.” (19)) and sequential (which “becomes active upon the appearance 

of a specific occurring sequence(s) of rare logic values at internal circuit signals” (19)). 

A combinational trigger trojan uses conditions such as A=0 and B=0, as shown in Fig. 

7(a). That condition triggers the payload, and the output C is being sent out modified 

(Cmodified). Usually, an attacker will choose an extremely rare condition in order to have 

very little chance of Trojan triggering during manufacturing testing.  

On the other hand, the sequential trigger trojan (also called timebombs) are 

activated by a period of uninterrupted functioning or the event of a sequence. We can 

categorize them into synchronous, asynchronous, hybrid, or rare sequences that trigger 

trojans. Synchronous versions are stand-alone counters which are being triggered when 

reaching a particular count. In Fig. 7(b), we can see a synchronous k-bit counter 

activated when the count reaches 2k-1, thus modifying the node ER to an incorrect 

value at node ER*. Asynchronous, on the contrary, are not based on a clock but in a 

rising transition at the output of an AND gate with two inputs (p, q), as shown in Fig. 

7(c). Hybrids are a combination of synchronous and asynchronous at the same design, 
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which determines the condition of the trigger (Fig. 7(d)). More complex state machines 

are used to produce the condition of the trigger based on a rare sequence of events. Note 

that sequential trigger trojans are more challenging to detect because of the sequence 

of rare conditions needed to be tested, which can be uncontrollably large.  

 Analog trigger mechanisms can also be split into on-chip sensors and activity. 

The on-chip sensor trigger mechanism is used to trigger a malfunction. In Fig. 7(e), we 

can see an analog trigger with an on-chip sensor which, after a great number of cycles, 

causes the output to be modified. Lastly, Fig. 7(f) presents a different analog trigger 

mechanism that causes malfunction after high circuit activity and temperature rise. 

The objective of such attacks can be numerous, taking into consideration the attacker’s 

perspective. Such objectives could be to malign the image of a company in order to 

gain a competitive edge in the market; to disrupt a major national infrastructure by 

causing malfunction in electronics used in mission-critical systems; to leak secret 

information from inside a chip to illegally access a secure system, or to tear down the 

security and safety of a system. Moreover, recent investigations have shown that an 

intelligent adversary can mount a hard-to-detect Trojan attack mostly by using just a 

few transistors or logic gates in a large multimillion transistor system-on-chip (SoC) 

design. In addition to what is mentioned above, Trojan attacks can also be mounted by 

selectively changing specific process steps, e.g., the doping profile, to affect a circuit’s 

operational reliability. 
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Figure 7: Examples of Trojans with various trigger mechanisms 

 

 

Figure  SEQ Figure \* ARABIC 3: Hardware Trojan Trigger Mechanisms Figure  SEQ Figure \* ARABIC 3: Hardware Trojan Trigger mechanisms 
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Hardware Trojans can also be categorized based on their payload except from 

the triggers, which can be split into digital and analog payload types. Analog payload 

Trojans can affect noise margin, performance, and power which all are circuit 

parameters. Examples of analog payload trojans are excess activity on the circuit, like 

the one shown in Fig. 7 (f), bridging faults with the assistance of an inserted resistor 

(Fig. 8(a)), and delay of the path by increasing the capacitive load (Fig. 8(b)). On the 

other hand, a digital payload Trojan can affect either the logic values at chosen internal 

nodes or alter the contents of memory locations. Lastly, based on already explored 

works, we can introduce two different types of Trojan payload mechanisms: the 

“information leakage” attack and the “Denial of Service” (DoS) attack. 

 

 

 

 

 

 

 

Figure 8: Examples of analog payload Trojans 

 

 The above descriptions about the hardware trojans taxonomy are summarized 

in Fig. 9. 

Figure 9: Trojan taxonomy based on trigger and payload mechanisms 

 

Figure  SEQ Figure \* ARABIC 4: Hardware Trojan Analog Payload Figure  SEQ Figure \* ARABIC 4: Hardware Trojan Payload 

Figure  SEQ Figure \* ARABIC 5: Hardware Trojans Taxonomy 
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Injection Phase 

The lifecycle of a hardware system provides several opportunities to include hidden, 

unwanted functionality. The stages of the lifecycle of a digital IC could be divided into 

four: Design, Manufacture, Test, and Deployment, as shown in Fig. 10. 

Figure 10: Lifecycle of a hardware system 

 

Design 

“Design phase” is the first phase in the lifecycle of a hardware system, and here are 

specified, for the first time, the properties of the system that is going to be developed. 

Next, modeling is performed in a system description language, leading to a high-level 

synthesis being carried out. Then, optimization measurements are taken in order to meet 

different criteria, and the system’s behavior is mapped to a structural representation 

using logic synthesis. Proceeding to the next step, the design is mapped to the targeted 

technology, and the circuit components are placed and connected to the chip area. Then 

following additional optimization, a possible test synthesis takes place, which inserts 

dedicated logic and helps the testing of the manufactured system. Lastly, the tape-out 

step is performed, i.e., the transfer of the production documents to the manufacturer. 

 

Manufacture 

Since the design phase is completed, we can commence with the “Manufacturing 

phase.” The first step in the case of a mask manufacturer, is to produce the masks for 

semiconductor production. Then, the chipmaker uses the masks in a photolithographic 

process to expose the wafers produced by the wafer manufacturer. Typically, a 

multitude of identical ICs is produced on a wafer. Next, the wafer is cut, the individual 

Figure  SEQ Figure \* ARABIC 6: Lifecycle of a Hardware System 
Figure  SEQ Figure \* ARABIC 6: Lifecycle Stages of a digital IC 
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chips are inserted into packages, and the external connections of the ICs are connected 

to the connection pins of the package (bonding). 

 

Test 

“Testing phase” is the third in the lifecycle of a hardware system and verifies the 

produced IC’s functionality by using functional testing carried out by test engineers. As 

soon as the tests are specified, test vectors are generated and applied to the primary 

input of the integrated circuit. Then, with the aid of the dedicated test logic, the outputs 

of the integrated circuit are monitored. Furthermore, an analysis of those results helps 

to make a statement about the proper functioning of the IC. Lastly, methods such as 

side-channel analysis, statistical, or specialized vector generation, called assistive, 

allow testing for specific aspects like Trojan detection. 

 

Deployment 

Finally, is the “Deployment phase” of the IC after the testing is completed and the 

correct functionality of the IC is certified. “Deployment phase” starts with the assembly 

in which the IC is inserted into its application. After that, the operation of the IC 

follows, which can be interrupted by failures and repair times. Once the deployment 

phase is completed, the disposal of the IC marks the end of its life cycle. 

 

Attackers 

So, now it is clear that all the phases of the life cycle that we analyzed above are 

vulnerable to attacks. These attacks differ significantly depending on the phase in which 

they occur, as well as the attackers involved. Attackers can be classified by various 

properties in the following basic categories: 

● the knowledge of the attacker, such as which information is available 

● the expertise of the attacker, such as which skills are available 

● the resources that are available to the attacker, both human and financial 

● the function of the attacker such as designer, manufacturer, mask manufacturer, 

developer of software tools 

● the sphere of the attacker, such as their influence, where they can become active, 

etc.  
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Moreover, Fig. 11 presents the attackers’ categories based on the phase of the supply 

chain in which they occur. They are classified as:  

● In-house design team attackers 

● 3PIP Vendor attackers 

● CAD tools attackers 

● Fabrication stage attackers 

● Testing stage attackers 

● Distribution stage attackers 

 

These attackers’ categories are followed by: 

● the methods each group of attackers is using,  

● the capability/thread level of each group of attackers measured in a 3-level scale 

(High, Medium, Low), and 

● the challenges each group of attackers is facing. 

 

 
Figure 11: Attackers’ categories based on the supply chain 

 

 

  

Figure  SEQ Figure \* ARABIC 7: Attack models in terms of the attackers' methods, capabilities, and challenges 
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Chapter 3: Malicious Hardware Analysis 

The previous chapter focused on introducing malicious hardware and the different 

categories that can alter the hardware maliciously, resulting in catastrophic 

consequences. So, in this chapter, we present detection, localization, and prevention 

mechanisms of the previously mentioned taxonomy, diving deeper into malicious 

hardware analysis.  

After many years of research that is still ongoing, there are many ways to deal with the 

risk of malicious hardware and, more specifically, Hardware Trojans. This section 

focuses mostly on hardware Trojans’ detection, localization, and prevention 

mechanisms.  

Detection determines whether a hardware system contains an unspecified functionality. 

Localization determines the Trojan’s topological (logical and/or physical) position if a 

detection mechanism diagnoses the examined system as compromised. 

Prevention inhibits the inclusion of Trojans into hardware 

 

Detection (18) (20) 

This section describes the state-of-the-art Hardware Trojan detection techniques and 

classifies them based on how they are detecting malicious logic. Fig. 12 shows this 

exact classification. The majority of these techniques address Trojan detection in 

manufactured ICs. Significantly few researches have addressed it at a higher-level 

design since the detection technique most of the time is not easily scalable for larger 

designs.  
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Figure 12: Hardware Detection Classification 

 

The trojan detection techniques can be classified into two main types: destructive and 

non-destructive. Destructive reverse engineering techniques are being used to a sample 

of the manufactured ICs in order to test them, using Chemical Mechanical Polishing 

(CMP) followed by Scanning Electron Microscope (SEM) image reconstruction and 

analysis, and then obtain a Trojan free chip also known as Golden Chip (GC). However, 

such techniques are extremely expensive, time-consuming and the results cannot be 

generalized to all the manufactured IC’s. Furthermore, testing only a small portion of 

the chips is ineffective since the adversary may affect only a small percentage of them. 

Non-Destructive techniques can be classified into two main sub-categories:  Invasive 

and Non-Invasive. The invasive techniques alter the design in order to embed features 

for Trojan detection, while non-invasive techniques leave the design unmodified.  

  

Destructive 

As far as destructive techniques are concerned, one of the methods used is to apply 

sophisticated failure analysis techniques. Some of the techniques mentioned above are: 

scanning optical microscopy (SOM), scanning electron microscopy (SEM), pico-

second imaging analysis (PICA), voltage contrast imaging (VCI), light-induced voltage 

alteration (LIVA), charge-induced voltage alteration (CIVA), etc. Although the above 

methods can be proven effective for authentication purposes, they are extremely time-

Figure  SEQ Figure \* ARABIC 8: Hardware Trojan Detection Techniques classification 
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consuming and expensive. Furthermore, many require the chip to be prepared by 

backside thinning and de-processing operations. 

So, we can conclude that the above approach is not suitable for applications in which 

every chip needs to be authenticated. Another disadvantage is that many of these 

techniques are becoming ineffective for technologies in the nanometer domain. 

Moreover, the adversary can insert randomly Trojan into chips, so spending a 

significant amount of time on each chip for authentication will be prohibitively 

expensive. That leads us to conclude that new and efficient methods are required to 

detect Trojans with higher confidence levels and minimum authentication time.  

 

Non-Destructive Invasive 

A potentially more effective way to detect hardware Trojan is through non-destructive 

invasive techniques by dealing with the Trojan problem in the design phase through 

design-for-trust (DfT). The invasive techniques are further categorized into assistive 

and preventive. Assistive techniques facilitate the detection of inserted Trojans by using 

post-manufacturing tests, whereas preventive techniques prevent the insertion of 

Trojans during the design or fabrication of an IC. 

Assistive techniques, which is the first class of design-for-trust (DfT) approaches, are 

classified into three categories according to their objectives:  

● Functional Testing: Focuses on triggering a Trojan from inputs and observing 

the Trojan effect from outputs which is considered difficult due to the stealthy 

nature of Trojans. Moreover, the possibility of activating a Trojan is 

significantly prevented by the large number of low controllable and low 

observable nets in the design. However, some approaches exist that can 

facilitate the activation of a Trojan for functional-test-based detection 

techniques. One approach suggests increasing controllability and observability 

of nodes by inserting test points into the circuit. Another approach proposes 

multiplexing two outputs of a DFF (Delay Flip Flop), Q and ¯Q, through a 2-

to-1 multiplexer and selecting either of them. This approach extends the state 

space of the design and increases the possibility of exciting/propagating the 

Trojan effects to circuit outputs, making them detectable. Both approaches are 

also beneficial to side-channel-based methods that need partial activation of 

Trojan circuitry. 
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● Side-Channel Signal Analysis: Several design methods have been developed to 

facilitate the side-channel-based detection methods. Such design methods and 

techniques can detect functional Trojans without activating them by measuring 

their secondary action characteristics. For example, functional Trojans are never 

completely inactive because of their need to continuously monitor for the 

activation conditions. Let’s consider a Trojan that activates based on a specific 

state of a data bus in the chip. The implementation, in this case, needs some type 

of comparator to be installed to monitor the wires of the data bus. So as the data 

bus changes, the logic comparators, e.g., AND gates, switches and therefore 

consumes power. Thus, side-channel signal analysis can possibly detect the 

power anomaly introduced by the operation of the comparator. Other side-

channels signals include electromagnetic field variations, temperature 

variations, voltage variations, etc., occurring at various locations across the 

chip. New methods can be developed that use such signals to detect and isolate 

hardware Trojans.  

Furthermore, the detection of tightly coupled functional Trojans can be 

succeeded even without applying a digital stimulus due to the highly sensitive 

nature of side-channel analysis techniques. The presence of the Trojan logic 

gates adds additional capacitance to the power grid, which sequentially changes 

the power grid’s impulse response and can be tested by injecting an analog 

stimulus onto the grid at one place and measuring the response at another. 

The effectiveness of side-channel-based measurement and analysis techniques 

can be improved by adopting design-for-trust (DfT) techniques. This way, the 

circuitry can be added to support the measurement and analysis processes with 

the condition to incorporate a validation strategy for the on-chip support circuits 

due to the potential of the adversary to sabotage the sensors. 

● Runtime Monitoring: Runtime monitoring of critical computations can 

significantly increase the level of trust concerning hardware Trojan attacks as 

triggering Trojans during pre-silicon, and post-silicon tests is very difficult. 

Runtime monitoring approaches can use existing or supplemental on-chip 

structures to monitor chips’ behavior or operating conditions, such as transient 

power and temperature. Therefore, the chip can be disabled upon detecting any 

abnormalities or bypassing it to allow reliable operation, even though there will 

be some performance overhead.  
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Research has shown that an on-chip analog neural network can be trained to 

distinguish trusted from untrusted circuit functionality based on measurements 

obtained via on-chop acquisition sensors.  

 Preventive techniques, which is the second class of design-for-trust (DfT) approaches, 

are also classified into three categories according to their objectives:  

● Logic Obfuscation: Aims at hiding the actual functionality and implementation 

of a design by inserting built-in locking mechanisms into the original design. 

Consequently, the locking circuits become visible, and the proper function 

appears only when the correct key is applied. This approach increases 

complexity in identifying the actual functionality without knowing the suitable 

input vectors. Thus, the attackers are having a hard time inserting a targeted 

Trojan. In sequential logic obfuscation, additional states are introduced in a 

finite state machine to conceal its functional states. In contrast, in combinational 

logic obfuscation, XOR/XNOR gates can be introduced at specific locations in 

a design.  

● Camouflaging: Focuses on obstructing attackers from extracting a correct gate-

level netlist of a circuit from the layout through imaging different layers, so the 

original design is protected from the insertion of targeted Trojans. 

Camouflaging can be defined as a layout-level obfuscation technique to create 

indistinguishable layouts for different gates by adding dummy contacts and 

faking connections between the layers within a camouflaged logic gate. 

● Functional Filler Cell: Aims at filling all-white spaces during layout design 

based on the built-in self-authentications approach. When these cells are 

inserted, they are connected automatically to form a combination circuit that 

could be tested. A failure during later testing denotes that a Trojan has replaced 

a functional filler. That approach is used because layout design tools cannot fill 

100% of the area with regular standard cells in a design. 

 

Non-Destructive Non-Invasive 

A different approach in order to detect Trojan is by comparing the behavior of the test 

IC with a golden functional model or the golden IC instance. Those techniques can be 

further classified into two main types: run-time and test-time. The run-time techniques 

utilize an online monitoring system that tries to detect suspicious activity during in-
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field operations. On the other hand, the test-time techniques aim to detect Trojan-

infected chips before deployment. Diving deeper into the above two approaches, we 

can better understand the methods used for each. 

● Run-time: Many researchers are proposing different approaches regarding run-

time techniques. One method includes the addition of reconfigurable Design for 

Enabling Security (DEFENSE) logic in a given SoC to enable live functionality 

monitoring. Once a deviation from normal functionality is detected, appropriate 

countermeasures are triggered instantly due to the fact that the checks can be 

performed concurrently with the normal circuit operation. However, it is not yet 

known how effective the above approach is and how the performance of the 

hardware is affected. (21) 

Furthermore, researchers also present a novel SoC bus architecture that can 

identify malicious bus behaviors associated with Trojan hardware, defend the 

system and system bus from them, and report the malicious behaviors to the 

system CPU without losing bus performance. The authors of the particular work 

report an additional gate-count of about eight hundred (800) logic gates in a four 

million gate SoC and negligible delay overhead. (22) 

Finally, the authors at (23) and (24) propose a combined hardware-software 

approach to perform run-time execution monitoring. A simple, verifiable 

“hardware-guard” module external to the CPU is considered in this approach. It 

mainly targets DoS and privilege escalation attacks, using periodic checks by 

the operating system (OS) enhanced with live check functionality. This research 

reports a 2.2% average performance overhead using SPECint2006 benchmark 

programs but does not report the hardware design overhead.   

● Test-time: Testing-based approaches are classified into two main classes 

regarding Trojan detection: logic testing-based techniques and measurement of 

side-channel parameters-based techniques such as power, delay, temperature, 

and radiation.  

Logic testing-based approaches face a serious challenge: the enormously large 

Trojan space, which makes computationally infeasible the generation of an 

extensive set of test vectors to detect all possible Trojans. Hence, a statistical 

approach seems more suitable for test vector generation in this case. Proposed 

approaches by researchers include but are not limited to:  
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❖ Randomization-based techniques to probabilistically compare the 

functionality of the implemented circuit with the design of the circuit 

❖ Statistical vector generation technique that targets the creation of an 

ideal set of test vectors that can activate each rare node in a circuit to its 

rare value multiple times 

Side-channel analysis-based approaches for Trojan detection focus on 

observing the impact of an inserted Trojan on a physical variable such as circuit 

current transient, power consumption, or path delay. The apparent advantage of 

this approach lies in the fact that even if the Trojan circuit does not cause 

observable malfunction during testing, the presence of the extra circuitry can be 

reflected in some side-channel parameters. Proposed approaches by researchers 

include but are not limited to:  

❖ IC fingerprinting technique, where each IC instance is associated with a 

signature called a “fingerprint” obtained by measuring one or more side-

channel parameters.  

❖ Gate-level characterization technique, where the detection problem was 

formulated as Linear Programming Problem. For this technique, both 

path delay and leakage current were considered. 

To conclude, we have summarized the advantages and disadvantages of each 

approach (logic-based testing and side-channel analysis testing) in the table 

below. This table shows that these two approaches have complementary scope 

in terms of Trojan detection capability. So, approaches that combine the best of 

both worlds can be considered as the most promising. 

 

 Logic Testing Approach Side-channel Approach 

Advantages ● Effective for small Trojans 

● Robust under process noise 

● Effective for large Trojans 

● Test generation is easy 

Disadvantages ● Test generation is complex 

● Large Trojan detection 

challenging 

● Vulnerable to process noise 

● Small Trojan detection 

challenging 
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Localization 

After making use of one or more (maybe even a combination) of the detection methods 

analyzed above, and malicious circuits are detected in the hardware, the next step is 

their localization. Localization is the regional detection of a malicious circuit and has a 

variety of mechanisms. The current localization mechanisms are activation, 

mensuration, or calculation, as shown in Fig. 13. 

Figure 13: Localization mechanisms 

 

Activation 

The activation method to localize hardware Trojans is achieved by activating a subset 

of gates during the functional test. The purpose is to maximize the activity in certain 

areas of the circuit while minimizing it in the remaining ones. This method can succeed 

in two ways, either by segmentation or partitioning. Segmentation is the fragmentation 

of the circuit in the state space, whereas partitioning is the division of the circuit 

according to its structural composition. 

● Segmentation: Segmentation is defined as the functional partitioning of a circuit 

into subcircuits. This functional partitioning could be achieved by various input 

vectors that activate specific gates during a functional test. Subsequently, if this 

specific sequence of test vectors manages to activate a Hardware Trojan, then it 

is likely to reside in the set of gates that we “segment” and was addressed by 

that sequence.  

Researchers at (25) follow an approach that finds a subset of gates (a segment) 

by their controllability by primary inputs. The purpose is to generate segments 

whose gates will have good scaling factors in a subsequence Gate-Level-

Figure  SEQ Figure \* ARABIC 9: Methods for localizing detected Trojans 
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Characterization (GLC). First, some primary inputs are varied while the rest of 

the inputs remain constant. Then, for the gates that are controlled by the primary 

inputs, a GLC is performed—so based on the accuracy of the GLC and the 

characteristics of the segments, a regression model is created to predict the 

accuracy of the values of the GLC for other unknown segments. Finally, Trojans 

are detected through a side-channel analysis using GLC, and when a Trojan is 

detected, the segment in which it was found gives information about its logical 

position. GLC produces appropriate results in simulations which are, in 

practice, hard to achieve, as it requires precise control over temperature and 

accurate measurements. 

Another research at (26) uses a different technique which keeps a test vector 

constant for several clock cycles. This method is intended to keep the activity 

of the rest of the circuit low so that any activity should only originate from inner 

state changes (see Fig. 14(a), 14(b)). To identify Trojans, the difference in 

power consumption compared to a non-tempered golden model is determined 

through side-channel analysis. A deviation of more than 5% (to account for 

process variations) might indicate additional circuitry in the vicinity of the logic 

gates that were stimulated by the test vector. 

Figure 14: Concept of activity minimization. In (a) circuit activity is created by 

both flip-flops and PIs whereas in (b) only by flip-flops 

 

● Partitioning: Partitioning is the structural division of the circuit into several 

subcircuits. The first approach to analyze is based on the Hamming distance of 

state variables. The Hamming distance between two strings of equal length is 

the number of positions at which the corresponding symbols are different. 

 

Figure  SEQ Figure \* ARABIC 10: (a) The behavior of the tested circuit is determined by primary 
inputs and internal state changes, (b) the behavior of the tested circuit is only determined by 

internal state changes 
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Simply put, it measures the minimum number of errors that could have 

transformed one string into the other or the minimum number 

of substitutions required to change one string into the other.  

Research at (27) seeks to generate test patterns that activate a particular part of 

the circuit (partition) while minimizing the activity of other partitions. As a 

result, the fan-out cone activity of the flip-flops in the partition is low. If a 

Trojan is identified during a side-channel analysis, it is located in the partition 

that was active during the test.  

As an alternative, the same authors propose a partition method based on the 

maximization of the toggle count instead of the Hamming distance (19).This is 

because the Hamming distance does not necessarily permit the drawing of 

conclusions on the power consumption of a tested circuit. In Fig.15, we can see 

a sample partitioning of a circuit. More specifically, the partitions of a circuit 

(Fig. 15(a)) result from a fixed radius. A radius of 0 means that only one specific 

gate is included in the partition. A radius of 1 contains a specific gate and the 

gates upstream and downstream from it that are included in the first level. A 

radius of 2 extends to the second level, etc. 

For example, in Fig. 15(b), the following gates belong to a radius of 1: G1, G2, 

G3, G4, FF1, G6, and G7. Trojans are assumed to be connected to circuit 

components that fulfill a specific functionality. Flip-flops and their gates 

execute this functionality. Therefore, a flip-flop threshold is defined that 

determines how many flip-flops are present in a partition. In other words: the 

radius of a partition is extended until the appropriate number of flip-flops is 

contained in the partition. Afterward, test patterns are generated to maximize 

activity within the partitions while the activity in the rest of the circuit is 

minimized. If a Trojan is subsequently detected through side-channel analysis, 

it is located in the partition whose test pattern recognized the Trojan. 



  

38 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Illustration of the concept of Region and Radius in a circuit 

 

 

Mensuration 

Parts of a circuit that have been tampered with can also be localized using the measuring 

setup that is used for detection. Multiple methods can be used to capture the side 

channels that are subsequently evaluated by side-channel analysis. 

Researchers at (28) capture IDDT across multiple power ports scattered across the 

entire chip surface (Fig. 16). The measured current might give clues about the presence 

of a Trojan. If a significant deviation from IDDT is observed near a power port, a Trojan 

is suspected in its proximity. 

 

Figure  SEQ Figure \* ARABIC 11: Illustration of the concept of Region and 
Radius in a circuit 
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Figure 16: Architecture of Simulation Model of paper (28) 

 

Furthermore, other research (29) uses a network of ring oscillators distributed over the 

entire chip area to determine measurement variables. Fig. 17 shows the arrangement of 

the ring oscillators as well as the locations of several implanted Trojans. If Trojans are 

built into the chip, they alter the frequency of neighboring ring oscillators. This fact can 

be used to determine the spatial position of a Trojan. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Arrangement of ring oscillators and Trojans on the chip surface of paper (29) 
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Calculation 

A Trojan can also be localized by using mathematical methods. 

Such a method is GLC (Gate-Level Characterization), which characterizes circuits at 

gate level. Consequently, it means that scaling factors are determined for each 

individual gate of a circuit in order to calibrate for process variations. If scaling factors 

differ strongly from their expected values, the presence of a Trojan can be assumed. 

Because a Trojan influences the scaling factors of the gates to which it is connected, 

this can be a good clue for its localization. (30) 

 

Prevention 

In contrast to detection and localization, prevention is the action of stopping Trojans 

and their actions from happening. Trojan prevention methods have also been explored 

to ensure hardware security. Prevention methods can be classified into two main 

categories: Obfuscation and Invasion (Fig. 18). 

Figure 18: Prevention methods taxonomy 
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Obfuscation 

Obfuscation is a technique by which the structure or the description of the electronic 

hardware is modified to intentionally disguise its functionality, which makes it 

significantly more difficult to reverse-engineer. In other words, hardware obfuscation 

modifies parts of a hardware system so that the resulting architecture and functions 

become un-obvious of an adversary. The parts of a hardware system that can be 

modified are:  

● Design 

A hardware system is obfuscated at the design level in order to make it more 

difficult for the adversary to reverse engineer the function of the IC. 

At (31), the authors propose, in order to obfuscate design at gate level, an 

approach that changes the original functionality of the design by modifying the 

netlist. An additional state machine is inserted with two execution modes: an 

obfuscated and a non-obfuscated mode. At the beginning of operations, the state 

machine is in the obfuscated mode and remains there until a specific pattern is 

applied to the primary inputs. While in obfuscated mode, invalid data is returned 

on the primary outputs. When the change from obfuscated to non-obfuscated 

mode occurs, a transition to a state of the original state machine takes place. 

This method can prevent the insertion of Trojans because it makes reverse 

engineering, and therefore the insertion of malicious circuits by an attacker, 

significantly more difficult. 

Furthermore, another method is introduced at (32) that inserts additional inputs 

and outputs and an additional state machine. Authentication keys are generated 

by the additional circuit components, which will spread through the entire 

hardware system. This is done in a special execution mode which is activated at 

test time. The authors note that it is more difficult for an attacker to reverse 

engineer the original functionality because of the added obfuscation through the 

additional circuit components. 

The authors present an approach for obfuscation that splits an existing design 

into two state spaces at (33). One state-space implements the original 

functionality, and the other implements the obfuscated functionality. The 

starting point of all operations is the obfuscated state space. The transition from 

https://en.wikipedia.org/wiki/Function_(engineering)
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obfuscated to normal state space can only be triggered by a very rare condition. 

Therefore, an attacker who reverse engineers a design cannot find a suitable 

place to insert the malicious circuit safely. Either a Trojan is added to the 

obfuscated state space—which renders the Trojan harmless—or it is linked to a 

supposedly difficult to reach state, increasing its visibility in functional tests. 

The starting point is a state in the obfuscated space, the initialization state space. 

A unique sequence of states must be traversed to reach the normal state space, 

which is only possible if specific values are provided as primary inputs. This 

sequence of values is called the initialization key. If an invalid key is provided 

during the initialization phase, a transition into a state is enforced that is part of 

an isolated state space, which cannot be left. In this way, potential Trojans are 

rendered harmless. 

Moreover, at (34) is presented a method to not only ease detection of hardware 

Trojans but to obfuscate a design against Trojan implementations partially. The 

main goal of this approach is to increase the number of reachable states initially 

and then partition the flip-flops into different groups to enhance the state-space 

variation. In their approach, the state-space variation operates as an obfuscation 

technique. 

 

● Configuration 

Another way to achieve obfuscation is by configuration. In order to achieve it, 

one part of the circuit should be realized as reconfigurable logic, i.e., as Field-

Programmable Gate Array (FPGA). Essential functions of the hardware system 

are implemented into this reconfigurable part of the chip. The functionality is 

added to the reconfigurable logic after the manufacturer provides the chip and 

inserts it into the application. The above functionality will likely be added 

during the deployment phase while assembling the system. 

Fig. 19 below shows the approach that (21) has implemented. As shown in Fig. 

19, the system intended to avoid attacks altogether or prevent successful attacks 

from executing. Signals will be tapped by signal processor networks (SPN) 

which are monitored by security monitors (SM). A security and coordination 

processor (SECOPRO) configures SPN (which signals should be checked), as 

well as SM (which tests are done). If the SECOPRO detects unauthorized 

behavior, it can influence the signals of the hardware system by using signal 
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control. All configurations are stored securely in an encrypted flash memory 

that makes the reverse engineering of the logic by an attacker virtually 

impossible. The actual configuration is only taken during operation. The 

manufacturer does not know its shape and cannot make any changes. 

 

Figure 19: Prevention by obfuscation using reconfigurable logic based on (21) 

 

● Execution 

The execution of software on non-trustworthy hardware is another way to 

achieve obfuscation. 

Researchers at (35) introduce a method that uses a multi-core system on which 

different cores are running instances of functionally equivalent software 

(different algorithms or different compilations of the same algorithm). Their 

approach is based on the assumption that a Trojan is activated on the occurrence 

of a rare event. It is unlikely that two different versions of functionally 

equivalent software satisfy the same rare condition and activate the same 

Trojan. The described concept is illustrated in Fig. 20 below.  
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Figure 20: Prevention by obfuscation using different variants of functionally equivalent software based 

on (35) 

 

Initially, two different versions A and B, are executed on two cores of the 

hardware system (Fig. 20(a) and 20(b)). If the results VA and VB of both 

executions are the same (VA = VB), it can be assumed with great certainty that 

no Trojan has been triggered. If the two results differ (VA ≠ VB), it is assumed 

that a Trojan has been triggered on one core. In order to find in which core the 

Trojan is activated, another variant of the task, C, is started (Fig. 20(c)). If the 

result from the execution of VC is the same as one of the other results, then the 

Trojan was activated in the core, where the execution delivers a different result. 

If all three results are different (VA ≠ VB ≠ VC), another variant D is started (Fig. 

20(d)), and so on. Aiming to avoid executing tasks on compromised cores, the 

level of trust is reduced for each core on which a Trojan is detected. Reducing 

the trust of a compromised core allows a scheduler to avoid allocating one. The 

same authors introduce such a scheduler in (36). 
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● Data 

Lastly, during the operation of a hardware system, in order to prevent a Trojan’s 

payload, data can also be obfuscated. The basic idea is that the trigger condition 

for a Trojan cannot occur. 

Authors at (13) define two types of triggers that can activate a Trojan: 

a. single-shot cheat codes and  

b. sequence cheat codes 

In addition, they define two types of functional units of a hardware system: 

a. computational units and 

b. non-computational units.  

 

Data is obfuscated at inputs to untrusted functional units and de-obfuscated at 

their outputs (Fig. 21(a)). Single-shot cheat codes can be obfuscated by simple 

encryption (such as bitwise XOR or the addition of a random value, see Fig. 

21(a)). However, this is only possible for non-computational functional units. 

For computational units, homomorphic functions are used.  

 

A function f is homomorphic with respect to another function g if:  

      𝑓(𝑥)𝑔(𝑦) = 𝑔(𝑓(𝑥, 𝑦))                                                                       

A simple example is the function in the below equitation:  

𝑥2𝑦2 = (𝑥𝑦)2 

 

Suppose a functional unit implements the squaring function (see Equation 3.4). 

To obfuscate the original value x, it is multiplied by a random value y. The 

functional unit calculates (xy)2. For de-obfuscation, the result of the functional 

unit must be divided by the square of the random value y2, which gives the 

original result of the functional unit, x2. In this way, a valid trigger condition 

should be prevented from occurring for a Trojan within a functional unit. To 

obfuscate sequences of values, data streams are rearranged in a way that 

prevents the occurrence of a trigger condition caused by the sequence (Fig. 21 

(b)). In cases where it is not possible to rearrange the data stream, dummy values 

are inserted to break the sequence. 
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(a) Obfuscation of single-shot cheat codes 

 

 

 

 

 

(b) Obfuscation of sequence cheat codes 

Figure 21: Prevention by obfuscation using simple encryption and reordering of data based 

on (13) 

 

Invasion 

Invasion is a technic to prevent Trojans by inserting additional functionality into a 

hardware design. Invasion can be based on the design of a hardware system or the data 

to be processed. If an invasive approach is design-based, a hardware design is altered 

so that Trojans can be defended during operation. If the data to be processed is 

monitored during operation, the invasive approach is data-based. A data-based invasive 

approach can be implemented in two ways with: 

• Guards, when the added circuitry monitors the authenticity of data, 

• Transformation, when the added circuitry modifies data of an application to 

render them useless for a trigger condition. 
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Below we analyze further the aforementioned invasive approaches for the prevention 

of Trojan: 

• Design-based 

A design-based invasive approach to prevent Trojans modifies the original 

design. 

Authors at (37) propose the introduction of a separate security layer for 3D 

hardware systems. 3D hardware systems are hardware systems that consist of 

several stacked and interconnected layers. The security layer is used to perform 

security tasks such as cryptography. The possibility of defending against 

hardware Trojans is mentioned briefly but details are left for future research. 

Researchers at (1) replace suspicious components of a circuit by software 

emulation. Suspicious components are determined during the functional test at 

design time. A functional unit counts as suspicious if it is not activated during 

the entire testing process and could therefore act as a trigger for a Trojan. This 

method is called Unused Circuit Identification (UCI). So, if the input and the 

output of a functional unit have the same value during the entire testing process, 

the component counts as inactive and can be replaced by a short circuit. To still 

be able to maintain the functionality of the hardware system, suspicious units 

are replaced by detection hardware and the original function is emulated by 

BlueChip software. BlueChip software identifies and removes suspicious 

circuits and inserts runtime hardware checks. These hardware checks raise 

software exceptions to provide the BlueChip software an opportunity to 

progress the computation by emulating instructions, despite the fact that 

BlueChip may have removed legitimate circuits. Fig. 22 below illustrates the 

principle.  

Figure 22: Principle of preventing Trojans by software emulation based on paper (1) 
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Lastly, authors at (4) proved that circuits exist that are classified as non-

suspicious by UCI but can still be used as Trojans. The research looks for 

circuits that meet the conditions of the UCI but are malicious nonetheless. After 

introducing constraints (maximum number of gates, gate availability, maximum 

number of input-outputs, etc.), every possible combination of these gates is 

examined to determine whether this circuit is: 

1. admissible, 

2. obviously malicious, 

3. stealthy.  

If a circuit meets these conditions, it can execute malicious functions and is still 

not recognized by UCI. Fig. 23(a), for example, shows such an example circuit 

representing an AND gate with inputs i0, i1 (non-trigger inputs) and t0, t1 (trigger 

inputs). The trigger condition is t0 ∧ t1 and the output function f in a non-

triggered state is fNT = i0 ∧ i1. So, when the circuit is in the triggered state (t1 = 

t0 = 1), it fulfills the function f as shown the corresponding truth table (Fig. 

23(b)). This circuit evades detection by UCI because of the way the circuit was 

constructed. There is no intermediate function equivalent to i0 ∧ i1 that UCI can 

short-circuit the output with. This idea of creating a non-trigger function which 

is not equivalent to any internal function is the key to defeating UCI. 

 

 

 

 

 

 

        

Figure 23: Two-gate circuit design and truth table   
(b) Truth table of two-gate circuit                                                                             

(a) Two-gate, stealthy, admissible, and 

malicious circuit 
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Experiments for a maximum of three gates, each with two inputs and one output, 

as well as a gate library of {AND,OR,NOT,NAND,2-input-MUX} for two 

trigger inputs and one or two non-trigger inputs yield 27 circuits with different 

Boolean functions from 256 possible ones. The authors further reported a 

decrease in detection rate the more test cases were checked by UCI. This 

phenomenon is explained by an increase in false negatives and a decrease in 

false positives. However, the more test cases are examined, the higher the risk 

that a Trojan is detected during a functional test. Therefore, attackers have to 

find the perfect balance between bypassing UCI and staying hidden from 

functional tests. To still be able to test hardware for harmful components at 

design time, the authors propose to define a class of malicious circuits. One can 

search explicitly for such circuits in the course of a functional test. However, 

test methods that use test cases as their only specification for correct behavior 

(such as UCI) are not suited for this purpose, because the specification might be 

incomplete. 

 

• Data-based – Guards 

A data-based invasive approach can be implemented as a guard. The job of a 

guard is to check and verify processed data for authenticity. If it recognizes that 

data is invalid or that data is being accessed without permission, it can initiate 

defensive measures. 

Authors at (22) and (38) propose Trojan-resistant bus architecture with a 

functionality that is based to a large extend on data guards. The proposed 

architecture offers protection against malicious bus masters and malicious bus 

slaves. Malicious bus masters access memory without authorization. If this is 

detected, the master is denied access to the bus by the secure address decoder. 

Malicious masters can also block the bus by locking it and issuing a lock signal 

so that other masters can no longer access the bus. This is prevented by a 

maximum time span for which a master can request exclusive bus access. Once 

this time span is over, the secure bus arbiter revokes the access of the bus master 

to the bus. Malicious bus slaves can block the bus by continuously sending a 

wait signal. This problem is addressed in the same manner as a continuous lock 

signal: if a bus slave claims the bus for too long, its access is revoked by a secure 
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bus matrix. If a Trojan is detected, an interrupt signal is sent to initiate further 

defensive measures. 

Moreover, authors at (23) introduce a data guard to prevent Denial-of-Service 

(DoS)-attacks. The data guard has a simple design so that its authenticity can be 

verified with simple measures. In addition, it is located off-chip. The proposed 

approach should protect a computer system from 

DoS-attacks. To counter DoS-attacks, the guard checks if the higher-level 

operating system is still running. For this purpose, the guard monitors all 

accesses to the memory (Fig. 24(a)). The operating system sends a liveness 

check to the guard every 1μs. The liveness check is implemented as 

pseudorandom non-cached memory access. The guard detects the liveness 

check and sets an internal watchdog timer to a pseudorandom value. If the 

watchdog times out, it assumes that the operating system is no longer running—

a DoS-attack is detected. The CPU is reset to allow further operation. Fig. 24(b) 

shows implementation details of the guard. An oscillator is used as internal 

timer, RAM is used to store pseudorandom values. A reset signal is used to reset 

the CPU or to inform a higher-level instance of attack. A processor takes control 

and monitors the memory bus (load and store signals). 

 

 

 

(a) System architecture 

 

 

 

 

 

 

(b) Implementation details of the guard 

Figure 24: Data guard to block malicious access to the memory bus based on paper (23) 

 

Furthermore, researchers at (39) present a predictor/monitor/reactor-model, 

which checks the functional units of a hardware system for authenticity (Fig. 

25(a)). They present an approach to combat Trojans especially in 
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microprocessors at runtime. However, in their paper the design process is not 

trusted: they address the possibility that malicious functionality is injected 

during the design phase by malicious designers. The following constraints are 

defined: 

1. the number of malicious designers is low, 

2. the activity of malicious designers remains unnoticed, 

3. the attackers need few resources to inject a backdoor, 

4. the backdoor is activated by a trigger and 

5. the Read-Only Memories (ROMs) written during the design phase 

contain correct data(microcode) 

Two types of backdoors serve as a Trojan model: emitter (send data) and 

corruptor (modify data) backdoors. The latter are very difficult to detect, since 

it can be hard to distinguish their operations from normal, legitimate operations. 

The measure proposed for preventing the hardware backdoors is an on-chip 

monitoring system that consists of four parts: predictor, reactor, target, and 

monitor (Fig. 25(a)). Fig. 25(b) shows details of the internal structure of the 

predictor and the monitor units. The monitor takes on the role of guard by 

comparing predicted values with actual results. If the values do not match, a 

Trojan attack is assumed. An alarm is issued to initiate countermeasures. 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Predictor, reactor, target object, monitor 
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(b) Implementation details 

Figure 25: TRUSTNET Monitor Overview & Microarchitecture based on paper (39) 

 

In another research (40) authors base their work on the assumption that data 

always have to pass through the main memory before it can leak. Thus, if 

malicious access to the memory can be prevented, the leakage of data can be 

prevented. This is achieved by replication of memory operations which are 

performed by a software application. The source code of the application is 

altered to create two simultaneous data streams: the original one and a parallel 

one, for which the addresses are generated using a secret key (see the left part 

of Fig. 26). Both data streams are compared to each other, making it possible to 

detect if the original data stream is manipulated by a Trojan. The data streams 

are compared by an external guard, which is placed between the CPU and the 

main memory (see the right part of Fig. 26). The approach is a combined 

hardware-/software solution. The software is manipulated by the end-user to 

create a second data stream with its own keys. The guard core is also 

programmable, so that the end-user can determine its implementation herself. 

 

 

 

 

 

 

 

Figure 26: Guardian core 

to block malicious access to 

the memory bus based on 

paper (40) 
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• Data-based – Transformation 

Another possibility for a data-based invasive approach is to transform the 

processed data in a way that renders them unusable for a Trojan. The goal is to 

prevent the trigger from being activated. 

Authors at (13) use two types of transformation: encryption and permutation. 

To implement the encryption, additional hardware modules need to be included 

in the original design. Since the mechanisms can be kept very simple, simple 

blocks can be inserted at the inputs of computational units for encryption. For 

decryption, they can be placed at their outputs. In order to permute data within 

a data stream, the memory control is altered in a simple manner.  

Furthermore, authors at (24) present an invasive approach which uses dual 

encryption. Fig. 27(a) shows the architecture of the approach. An external and 

an internal guard are implemented, both located between the CPU and the main 

memory (Fig. 27(a)) to defend against attacks to leak data from the main 

memory. The guards each use a different key sk1 and sk2 (Fig. 27(b)). The 

transformation is performed within the guards. If data w should be written to the 

main memory, it is encrypted by the internal guard (w1 = E(sk1,w)). The external 

guard encrypts the output of the internal guard (w2 = E(sk2,w1)). The dually 

encrypted data is then passed on to the main memory. Read access takes place 

in the opposite order: first data r is decrypted by the external guard (r1 = 

D(sk2,r)) and then by the internal guard (r2 = D(sk1,r1)). The memory itself 

contains only encrypted data. The defense against attacks that leak data is 

achieved as follows: if the CPU or the internal guard is compromised, the attack 

can be defeated by the external guard. Since the outer guard can be made 

reconfigurable, it is very difficult to compromise. 

 

(a) Architecture 
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(b) Dual-encryption details 

Figure 27: Prevention by transformation using dual encryption based on paper 

(24) 
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Chapter 4: Malicious Hardware Use Cases 

In this chapter we will focus on describing different malicious hardware use cases that 

can subvert the system through hardware attacks and remain stealthy. We will present 

four examples of malicious hardware use cases that use different attack vectors and 

most of them, if not all, manage to remain undetected from protection software. 

 

Chipset Level Backdoor 

A chipset is a set of electronic components that manages the flow of data between 

components on the motherboard or components on an expansion card. Authors at (41) 

introduce and describe explicitly a proof-of-concept chipset level rootkit/network 

backdoor based on Intel’s chipset 8255x Ethernet Controller. The aforementioned 

backdoor has the ability, due to its low-level position in the computer system, to 

virtually bypass all commodity firewall and host-based intrusion detection software. 

Consequently, it can send out and receive malicious network packets without being 

identified thus becoming a serious threat in high profile attacks like corporate espionage 

or cyber terrorist attacks. 

The rootkit/network backdoor described at (41) paper can remain invisible due to the 

fact that it resides, below both the NDIS (Network Driver Interface Specification) and 

TDI (Transport Driver Interface) Operating System interfaces, at the physical hardware 

layer of the network card. It is worth mentioning that both components (NDIS & TDI) 

are the most common target for authors focused on malware and security software since 

they are the deepest layers in the Operating System for sending and receiving network 

packets. The authors at (41) propose a rootkit backdoor that is developed and installed 

as a Windows kernel driver for the Intel’s 8255x Ethernet Controller.  

The Intel 8255x chipset consists of 2 main components the Command Unit (CU) and 

the Receive Unit (RU). In order to achieve data exfiltration, transmission of data out of 

the compromised host, a data packet with specific data structure should be constructed 

and send to the CU. Finally, after sending to the CU a start command the packet will be 

transmitted. We have to point out that the aforementioned chipset backdoor bypasses 

the network stack and builds the entire malicious packet to be sent, therefore making it 

invisible to security software and the Operating System. However, on a normal 
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operation the packet is built in the Windows network stack and then send to NIC 

(Network Interface Card) driver. 

For data infiltration to be achieved with the chipset backdoor, all incoming packets on 

the networks are handled by the RU. So, when a packet arrives it raises an interrupt to 

inform the CPU. On a normal operation the interrupt will be handled by the windows 

NDIS and the NIC driver. However, in our case in order to avoid detection the driver 

can redirect the interruption to a different address, where it can analyze the packet 

received.  

Overall, according to paper (41) when a malware is deep in the OS and close to the 

physical hardware it becomes stealthier and more difficult to detect for various reasons:  

• Security vendors find it difficult to operate at this level, 

• There is no network protocol stack support from the OS at this level, 

• A generic, robust product cannot be produced due to the hardware specific 

nature of the code 

The defenses proposed by the authors also at (41) are:  

• Software side defense by detecting outbound traffic and inbound traffic. 

• Hardware side defense by inspecting and blocking outgoing traffic with a 

hardware firewall. 

• Network-based intrusion detection systems (NIDS), to detect the backdoor, or 

any other rootkit secret traffic. 

 

DMA Attack 

Modern operating systems implement the concept of virtual memory by having each 

process to run in a separate address space. So, applications are prevented from accessing 

any memory locations, memory isolation, not explicitly authorized by the virtual 

memory controller, called memory management unit (MMU). MMU translates virtual 

memory to physical memory addresses. However, devices connected to bus do not 

implement the concept of virtual memory and use instead shared address space and 

access the physical memory by using Direct Access Memory (DMA). DMA enables 

I/O controllers to transfer data directly to or from the main memory bypassing the main 

CPU and OS. So, this could become a great threat since attackers could take advantage 
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and tamper critical areas of memory such as the OS kernel. DMA attacks are considered 

a powerful class of attacks for adversaries that have physical access to a system or 

compromised firmware locally or remotely on peripheral hardware such as network 

cards.  

Over the last decade, chipset and hardware vendors have introduced new technologies 

aimed at reinforcing kernel protection against DMA attacks, increasing security and 

enabling isolation at the device address space. They have introduced Input/Output 

Memory Management Unit (I/O MMU) technologies which behaves like a firewall for 

I/O controllers and filters out unauthorized I/O controllers’ accesses to the main 

memory. However, even I/O MMU contains vulnerabilities which enable malicious 

code to have access to protected resources. Vulnerabilities found in the Intel VT-d, 

which is Intel’s implementation of an I/O MMU, are thoroughly analyzed and described 

by authors at (42). 

Furthermore, additional research (43) shows that many devices with built-in hardware 

protections continue to be vulnerable. Researchers tested HP and Dell laptops and 

discovered two different DMA vulnerabilities. More specifically they tested:  

1. Dell XPS 13 7390 2-in-1, which was susceptible to pre-boot DMA attacks by 

performing DMA code injection directly over Thunderbolt during the boot 

process. This is called closed-chassis DMA attack due to fact that lets the 

attacker connect to the exposed port of the device without otherwise having to 

modify the device. 

2. HP ProBook 640 G4, which even though it was protected with HP Sure Start 

Gen4 and VT-d, was still susceptible to an open-chassis pre-boot DMA attack. 

The researchers at (43) open the case of the device and replaced the wireless 

card in the system with a Xilinx SP605 FPGA development platform. Then they 

were able to successfully attack the system with a DMA attack and gain control 

over the device. 

In general, the aforementioned attacks provide real-world examples of the weaknesses 

and threats at the hardware and firmware level and how quickly these can subvert 

hardware protections, defenses at the operating system and even software layers.  
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Software Attacks Enabled by Malicious Hardware 

Earlier attempts were made to leak data by altering the design of an IC with hard-coded 

Hardware Trojans which are in fact hard to detect but the malicious circuit is useful 

only for the purpose for which is made. So, authors at (44) present two different 

hardware designs to support powerful, general purpose attacks and implements them in 

a real system. The attacks presented in the paper that are supported by the malicious 

hardware designs include: 

• a privileged escalation mechanism,  

• a service that steals passwords from users on the system, and  

• a login backdoor that gives an attacker full and high-level access to the machine 

The paper addresses the designing and implementation of Illinois Malicious Processors 

(IMPs) which is a malicious CPU consisted of a Leon3 processor (open-source SPARC 

design) with two added mechanisms: 

• memory access 

• invisible malicious code execution called shadow mode (Fig. 28) 

Figure 28: Shadow Mode inside the Processor 
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A specific sequence of bytes on the data bus triggers the memory access mechanism to 

get activated. Once its activated, the memory access mechanism disables the MMU 

privilege levels for memory accesses, therefore granting unprivileged software access 

to all memory, including privileged memory regions like the operating system kernel. 

The memory access mechanism is used to implement the privilege escalation program 

attack that bypasses the usual security checks. 

Regarding the shadow mode mechanism authors at (44) made it similar to Intel System 

Management Mode (SMM) due to the fact that shadow mode instructions have full 

processor privilege and are not visible to software. Shadow mode get activated by a 

predetermined bootstrap trigger, which is a set of conditions to tell the IMP to load 

some code (firmware) from nearby data and execute it in shadow mode. The shadow 

mode mechanism is used to implement two attacks: a login backdoor and a password 

sniffer service. 

 

Malicious USB Device 

Nowadays USB (Universal Serial Bus) devices are widespread, easy to use and were 

created to improve the connection of pug-and-play devices to PCs. The USB Flash 

Drive is one of the most used USB Devices in the world and it consists of a flash 

memory with an integrated USB interface. As a result of its widespread use, it became 

a huge attack vector for malicious code. One category of attack exploits USB devices 

and does not rely on malicious software stored inside a USB Flash Drive. This attack 

category is called HID spoofing. 

USB human interface device (USB HID) is a USB specification for computer 

peripherals. It describes a device class (a type of computer hardware) for human 

interface devices such as keyboards, mice, game controllers and alphanumeric display 

devices. It is a system that requires two-way communication between the system and 

the user. (45) So, HID spoofing keys use specialized hardware to trick a computer to 

expect a USB HID key, for a example a keyboard. The malicious USB disguised as 

fake keyboard, as soon as the device is plugged into the computer, injects keystrokes. 

These keystrokes are a set of commands that gives a hacker remote access to the 

victims’ computer thus compromising it. Papers and articles describe the process of 

reprogramming the USB interface to act as a malicious USB HID Keyboard which can 

amongst other malicious actions run and execute a batch script or spawn a background 
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TCP reverse shell that will connect back to a server chosen by the attacker. The first 

demo of a malicious HID USB key was done by Adrian Crenshaw at Defcon 18 in 

2010. Adrian Crenshaw used Teensy 2.0 a complete USB-based microcontroller 

development system, programmable over Mini USB in C or Arduino dev package with 

USB HID support. (46) 

Some real-world USB based attacks are the Stuxnet attack discovered back in 2010 and 

more recently in 2017, an attack on a Nuclear Power plant by a user who wanted to 

watch the movie La La Land. Overall, these attacks are not happening at mass scale but 

mostly are used by APT (Advanced Persistent Threat) groups and nation state level 

attackers. 

 

  

https://www.defcon.org/images/defcon-18/dc-18-presentations/Crenshaw/DEFCON-18-Crenshaw-PHID-USB-Device.pdf
https://www.defcon.org/images/defcon-18/dc-18-presentations/Crenshaw/DEFCON-18-Crenshaw-PHID-USB-Device.pdf
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Chapter 5: Conclusion 

Malicious hardware is an emerging threat as the presence of designated hardware in 

different applications including household, financial and military systems continue to 

rise. Due to the high complexity of the hardware development life cycle and 

decentralized production chains, hardware becomes increasingly untrusted. In this 

thesis, we presented a comprehensive analysis of malicious hardware. After giving a 

short introduction to the problem, we presented two approaches for malicious hardware 

taxonomy. We classified malicious hardware according to their components and 

behavioral characteristics and also categorized them depending on the hardware 

vulnerability exploited. Furthermore, we described shortly the lifecycle phases in which 

malicious logic can be inserted and based on that referred to the various attacker 

categories. We presented methodologies for the detection of hardware Trojans, such as 

formal verification, logic testing and side-channel analysis. We also introduced 

mechanisms to locate efficiently hardware Trojans within a system and presented 

obfuscation and invasion as reliable ways of preventing hardware from being infected 

by hardware Trojans. Finally, we analyzed briefly malicious hardware use cases 

featuring specific attack vectors.  
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