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1. INTRODUCTION 

 

 Volatility has become a topic of enormous importance to almost anyone who 

is involved in the financial markets, even as a spectator. To many among the general 

public, the term is simply synonymous with risk: high volatility is thought of as a 

symptom of market disruption. To them, volatility means that securities are not being 

priced fairly and the capital market is not functioning as well as it should. But for 

those who deal with derivative securities, understanding volatility, forecasting it 

accurately, and managing the exposure of their investment portfolios to its effects are 

crucial.  

A widely studied and quite useful measure of volatility is the implied volatility 

index. Although, there is a growing literature on the construction and the properties of 

implied volatility indices (Fleming et al., 1995, Whaley, 1993, and 2000, Wagner and 

Szimayer, 2000), to the best of our knowledge there has not yet been constructed and 

examined an implied volatility index on an individual stock. And this is the purpose 

of this paper. By construction, Implied Volatility Indices are weighted averages of 

the implied volatilities computed from call and puts near-the-money, nearby and 

second nearby option contracts on the relevant underlying stock index and they 

represent the implied volatility of a synthetic option that has constant time to maturity 

(usually 22 trading days) and fixed strike price (usually at-the-money). In this paper, 

we construct an implied volatility index on the General Motors U.S. stock (GM), with 

the methodology of VIX (CBOE VIX white paper, 2003), we call it GMVIX, and 

then we try to investigate its properties. We are confident that this study will 

contribute significantly in the relative literature and will be of interest to practitioners 

as well. 

The usual properties that implied volatility indices exhibit, are the “investor’s 

fear gauge” (see Whaley, 2000, Dotsis et. al., 2000), this is a negative relationship 

between underlying stock index returns and the implied volatility index. The leverage 

effect1, which refers to the fact that when stock returns fall, volatility increases. These 

                                                
1 The “leverage effect” refers to the negative relationship between stock returns and volatility: volatility 
increases when the stock prices fall. It is attributed to the effect that a change in the market valuation of 
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two relationships are quite the same effect seen reverse. We also test whether GMVIX 

has any predictive power over stock price and the reverse, via Granger causality tests. 

Then we test whether there is any spillover effect between the original VIX and the 

constructed GMVIX. This means whether VIX lead or whether it can predict the 

GMVIX, and the reverse. We should note here that GM is a stock that is included in 

S&P 500 index from which VIX is constructed. Hence, we expect VIX to be able to 

predict GMVIX, but the reverse is rather unlikely. Finally, we investigate whether this 

GMVIX has any predictive power over GM option prices. This seems to be rather 

unlikely, but we believe that any information content in the implied volatility index 

would be quite useful, if not for speculation, at least for hedging purposes.  

The rest of the paper is organized as follows, in the next of this section we 

refer to some important issues like implied volatility indices and the related literature. 

In section 3 we describe the data set. In section 4 we describe the VIX calculation, 

which is the method that we have also used in order to construct the implied volatility 

index of General Motors, GMVIX. In section 5 we investigate the properties of 

GMVIX, investor’s fear gauge, leverage effect, Granger-cause and spillover effect. In 

section 6 we try to test the predictive ability of GMVIX over the GM options. The 

conclusions drawn are presented in the last section.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                       
a firm’s equity has on the degree of leverage in its capital structure. Figlewski and Wang (2000) report 
that the “leverage effect” is not just the result of changing financial leverage since the effect is different 
for implied vs. historical volatilities and for falling vs. rising markets.  
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2. BACKGROUND 
 
 
2.1 Implied Volatility Indices 

 

 Volatility risk is one of the main risks an investor faces and the more difficult 

to deal with. In the past, many financial institutions have been severely damaged 

because of their unhedged position in volatility risk. So far, standard options were 

used in various ways in order to hedge both price and volatility risk. This is inefficient 

since it insures both type of risk and is also more expensive than a pure bet in 

volatility. Volatility derivatives are the new products that allow us to hedge efficiently 

volatility risk. These are futures and options written on some measure of risk, like an 

implied volatility index. Chicago Board Options Exchange (CBOE) has introduced 

such instruments (volatility futures and options) in the first quarter of 2004.       

The study of the construction and of the properties of implied volatility indices 

has been primarily motivated by the increasing need to create derivatives on volatility 

(volatility derivatives, see Brenner and Galai, 1989). These are instruments whose 

payoffs depend explicitly on some measure of volatility. Hence, they are the natural 

candidates for speculating and hedging against changes in volatility (volatility risk). 

Volatility risk has played a major role in several financial disasters in the past 25 

years (e.g. Baring Bank, Long-Term-Capital Management). Many traders also profit 

from the fluctuations in volatility (see Carr and Madan, 1998, for a review on the 

volatility trading techniques); Guo (2000), and Poon and Pope (2000) find that 

profiTable volatility trades can be developed in the currency and index option 

markets, respectively.  

Implied volatility is the volatility that is derived from the option’s market 

prices, by solving the pricing model with respect to volatility. The first pricing model 

was introduced in 1973 by Black-Scholes-Merton, and has had a huge influence on 

the way that traders price and hedge options. In 1997, the importance of the model 

was recognized when Robert Merton and Myron Scholes were awarded the Nobel 

prize for economics. Sadly, Fischer Black died in 1995, otherwise he too would 

undoubtedly have been one of the recipients of this prize. It is widely accepted that 
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the Black-Scholes volatility computed from the market price of an option is a good 

estimate of the “market’s” expectation of the volatility of the underlying asset, and 

that the market’s expectation is informationally efficient. In the framework of an 

option pricing model such as the Black and Scholes (1973) model, the expected 

volatility of the asset over the life of the option is the volatility embedded in the price 

of the option. If call or put option prices are available, then the Black and Scholes 

(1973) pricing formula can be “inverted” such that the expected volatility over the life 

of the option is computed from the observed market prices of the call or put options. 

Indeed, when all the other parameters are known, there is a one-to-one relationship 

between the option prices and underlying (expected) asset volatility. This yields the so 

called implied volatility. 

 It is also widely believed that the volatility implied in an option’s price is the 

option market’s forecast of the future return volatility over the remaining life of the 

option. Under a rational expectations assumption, the market uses all the information 

available to form its expectations about future volatility and hence the market option 

price reveals the market’s true volatility estimate. Furthermore, if the market is 

efficient, the market’s estimate, the implied volatility, is the best possible forecast 

given the currently available information. That is, all information necessary to explain 

future realized volatility generated by all other explanatory variables in the market 

information set should be subsumed in the implied volatility.  

 Black-Scholes model assumes that volatility is constant throughout the life of 

the option, but this is not the case in real life, implied volatility is a function of both 

the strike price and the time to maturity. And since we have many options in the 

market, both puts and calls, with different expiries and strikes (which means different 

implied volatilities), we need a measure that will give us something like the weighted-

average of all these implied volatilities. And this is the so called implied volatility 

index.    

By construction, Implied Volatility Indices are weighted averages of the 

implied volatilities computed from call and puts near-the-money, nearby and second 

nearby option contracts on the relevant underlying stock index. The weighting method 

ensures that the implied volatility index on any given point in time, represents the 

implied volatility of a synthetic option that has constant time to maturity (usually 22 
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trading days) and fixed strike price (usually at-the-money). For instance, VIX of 

CBOE is such an index computed from implied volatilities in S&P 500 index options.   

In an efficient market where option prices reflect all available information, the 

level of the implied volatility index “is the market’s best assessment of the expected 

volatility of the underlying stock index over the remaining life of the option”. Note 

that, by construction, these implied volatility indices take into account early exercise 

and dividend payment features, and they do not use as inputs market prices from 

options that are not actively traded (thus avoiding the troublesome problem of stale 

quotes for deep out-of-the-money or in-the-money options). Thus, implied volatility 

indices deliver easy-to-use information regarding future volatility and should be less 

prone to computation errors than previous measures of implied volatility.   

Several volatility indices have been developed since 1993. The idea of 

developing a volatility index was first suggested by Brenner and Galai in 1989. 

Fleming, Ostdiek and Whaley in 1993 describe the construction of an implied 

volatility index (the VIX) originally based no S&P 100 options. Currently CBOE 

disseminates prices for VIX based on S&P500 options, VXO based on S&P100 

options. Skiadopoulos (2004) developed a methodology for the construction of GVIX, 

the Greek market volatility index based on FTSE/ASE-20 option series.  

A volatility index serves two primary purposes. First, it is an “investor’s fear 

gauge”2 as it provides an indicator of the market consensus estimate of the expected 

future stock market volatility – a measure of stock market risk. The term “fear” arises 

from the fact that investors are averse to risk and such fears are reflected to stock 

prices. If a stock market volatility is expected to increase, investors will demand 

higher rates of return on stocks and so stock prices are going to fall. This is an 

alternative explanation of the negative relationship between returns and volatility 

other than the leverage effect. Second, it can serve as the underlying asset to volatility 

derivatives; it could play the same role as the market index plays for options and 

futures on the index3. A volatility index can also be used for Value-at-Risk purposes 

(Giot, 2002b), to identify buying/selling opportunities in the stock market (Stendahl, 

                                                
2 See Whaley (2000) 
3 A volatility derivative can also be written on an asset that has a payoff closely related to the volatility 
swings, e.g. a straddle. See Brenner et al. (2002) who propose an option on a straddle.  
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1994, Whaley, 2000) and to forecast the future market volatility (see Fleming et al., 

1995, Giot, 2002b).     

 In 1993 CBOE introduced the CBOE Volatility Index VIX, an index which 

tracks the implied volatility from options on S&P100 (OEX) and it became the 

benchmark for stock market volatility. In the ten years following the launch of VIX, 

theorists and practitioners have changed the way they think about volatility. On 

September 2003 CBOE updated the construction methodology of VIX in order to 

ensure that it remains the premier benchmark of U.S. stock market volatility. The 

changes reflect the latest advances in financial theory and what has become standard 

industry practice. As far as the old methodology index is concerned, CBOE continues 

the calculation and dissemination of original VIX, but under a new ticker symbol – 

“VXO”.  

 The fundamental features of VIX remain the same. VIX continues to provide a 

minute-by-minute snapshot of expected stock market volatility over the next 30 

calendar days. This volatility is still calculated in real time from stock index option 

prices and is continuously disseminated throughout each trading day.  

 The two important changes in the new methodology are the following: 

• The most significant change is a new method of calculation. The new VIX 

estimates expected volatility from the price in stock index options in a wide range 

of strike prices, not just from at-the-money strikes as in the original VIX. Thus it 

is more robust because it pools the information from option prices over the whole 

volatility skew, not just from at-the-money options. Also, the new VIX is not 

calculated from the Black Scholes option pricing model; the calculation is 

independent of any model. The new VIX uses a newly developed formula to 

derive expected volatility by averaging the weighted prices of out-of-the-money 

puts and calls, taking into account a broader range of strike prices.  

• The second noteworthy change is that the new VIX calculation will use options on 

the S&P 500 (SPX) index rather than the S&P 100. While the two indices are well 

correlated, the S&P 500 is the primary U.S. stock market benchmark as well as 

the reference point for performance of many stock funds, with over $800 billion in 

indexed assets. In addition, the S&P 500 underlies the most active stock index 

derivatives.   
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2.2 Related Literature 
 
 

There is a recently growing literature on the behavior and the interrelations of 

implied volatilities especially those conveyed by implied volatility indices. These 

include for example Whaley (1993, 2000), Giot (2002a), Skiadopoulos (2004), 

Wagner and Szimayer (2004). Giot (2002a) reports a negative and statistically 

significant relationship for the period 1995-2002 between the levels of S&P100 and 

NASDAQ100 and their implied volatility indices: positive stock index returns lead to 

decreased implied volatility levels, while negative returns lead to higher implied 

volatility levels. He also finds that this relationship is asymmetric in the sense that 

negative stock index returns yield bigger proportional changes in implied volatility 

measures than do positive returns. Whaley (2000) observes an asymmetric negative 

relationship between weekly changes of the old VIX and weekly returns of S&P100 

over the period 1995-2000. Skiadopoulos (2004) also reports the existence of an 

asymmetric leverage effect between returns of GVIX and changes of it’s underlying 

FTSE/ASE-20 and finds a contemporaneous spillover of implied volatility changes 

between GVIX and VXO/VXN. Gemmill and Kamiyama (2000) examine whether 

there ate spillovers of implied volatility and implied skewness across time zones, 

using daily data of the index-option markets of the US, Japan and UK. They find that 

the level of implied volatility spills across markets but skewness of the volatility smile 

is a local phenomenon.  

Several papers have been written on the information content and the predictive 

power of implied volatility index prices as a forecast of future realized volatility. 

Fleming-Ostdiek-Whaley (1995) found that implied volatilities contained substantial 

information for future volatility. Giot (2002b) found that VIX and VXN provide 

accurate and meaningful information as to future volatility forecasts. Fleming et al. 

(1995) concluded that implied volatility (VIX 1986-1992) is an upwardly biased 

estimator of future volatility even if the magnitude of the bias is not economically 

significant. They also concluded that implied volatility dominates past volatility as a 

forecast of future volatility. Malz (2000) found that implied volatility contains 

information regarding future large-magnitude returns, which is not contained in other 

risk measures, and this fact can help risk managers posture themselves for stress 

events. On the other hand, Canina and Figlewski (1993), reported for S&P 100 (1983-
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1987) that implied volatilities have little predictive power for future volatility – in fact 

implied volatility has no correlation with future return volatility – and therefore they 

are significantly biased forecasts. Figlewski (2004) concluded that even though 

implied volatility contains significant information about future volatility, it does not 

pass the test of forecast rationality and is not necessarily a more accurate forecast of 

future volatility than historical volatility. He also showed that the historic volatility 

forecasts more accurately for large samples and long rather than short forecasting 

horizons.        
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3. THE DATA SET 
 
 We use daily data on American style options on the General Motors (GM) 

from www.ivolatility.com for the period January 1st 2001 – March 20th 2006. This 

data set contains the following daily information for each option traded: the expiration 

date, the strike price, the last bid and ask prices, the trading volume, and the GM 

closing price. In Appendix 1 we represent the data for a single date (11/22/05) and 

only for the two nearest expiration dates, for the reader to take a clue of the data set 

form. The average of the bid-ask option price is used as the option’s market price. 

This is a standard approach taken to reduce the impact of measurement errors on the 

implied volatilities calculated subsequently. 

 The last trading day of the GM options is the business day (usually a Friday) 

preceding the expiration date. The expiration date is the Saturday following the third 

Friday of the expiration month. Up to six near-term months are traded every day. The 

strike prices are spaced at intervals of five or two and a half stock points. The options 

are traded from 8:30 a.m.-3:15 p.m. central time (Chicago time).  

 In addition, we use London Euro-currency interest rates (middle rates) on the 

US dollar obtained from DataStream to proxy for the risk-free rate. Daily interest 

rates for 7-days, one-month, three months, six months and one year were used, while 

those for other maturities were obtained by linear interpolation. These rates where 

transformed to continuously compounded rates.  

 

3.1 Screening the Data  

The raw data is screened for data errors for the purposes of the subsequent 

analysis. Options with zero trading volume and less than $0.5 premium were 

discarded. The underlying GM of the options is a dividend-paying asset. Therefore, 

the dividend yield to be realized over the life of the option is required as an input so as 

to check the arbitrage bounds for the option prices. Toward this end, we obtained 

from DataStream the daily dividend yields for General Motors and for the period 

January 1st 2001 – April 30th 2006. A dividend is counted as occurring during the life 

of the option if the ex-dividend date is during its life. In some countries, like U.S.A., a 

small number of ex-dividends dates tend to be used by all companies. In such cases, it 
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is appropriate to assume that stock indices provide a dividend yield at discrete points 

in time. These dividends can be converted to an equivalent continuous dividend yield 

by  

( )Q
tT

q +
−

= 1ln1  

where ( ) ( ) ( ) .11...11 21 −+∗∗+∗+= nqqqQ  nqqq ,...,, 21  are the discrete dividends 

yields expected between time zero and time T-t (time to maturity). 

Finally, the standard upper and lower arbitrage bounds for the American option prices 

(Merton, 1973) were checked using the dividend yield obtained and the options, for 

which bounds were violated, were discarded.   

The upper arbitrage bounds are KP  and  ≤≤ SC , for calls and puts respectively, 

where C is the call price, P is the put price, S is the stock price and K is the strike 

price.  

Also, the American options must satisfy the following inequality  

)exp()exp( ,, ττ ττ ∗−∗−≤−≤−∗−∗ tttttt rKSPCKqS  

Where τ,tq  and τ,tr  is the dividend yield and risk-free rate in the day t and for time to 

expiry τ.  
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4. GMVIX CALCULATION 

 

 We use the calculation method of CBOE’s VIX White Paper (2003) to 

construct the implied volatility index on the individual U.S. stock General Motors. 

We will call this index GMVIX. 

The generalized formula of VIX is VIX = σ *100  

where σ is the weighted implied volatility as a result of interpolation between the 

implied volatilities of a series from options. For every option, σ is the square root of  

 

( )∑ 



 −−Κ

Κ
∆Κ

Τ
=

i
i

RT

i

i

K
F

T
Qe

2

2
2 112

σ         (1) 

 

T is the time to expiration in minutes 

F is the forward index level derived from index option price 

iK  is the strike price for the thi  out-of-the money option; a call if iK >F and a put if 

iK <F 

Δ iK  is the interval between strike prices – half the distance between the strike on 

either side of iK :  
2

11 −+ −
=∆Κ ii

i
KK

 

0K is the first strike price below the forward index level F 

R is the risk-free interest rate to expiration 

( )iKQ  is the midpoint of the bid-ask spread for each option with strike iK  
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The options used are put and call options in the two nearest-term expiration 

months in order to bracket a 30-day calendar period. However, with 8 days left to 

expiration, the new VIX ‘rolls’ to the second and third contract months in order to 

minimize pricing anomalies that might occur close to expiration.  

 The time of the VIX calculation is assumed to be 8:30 a.m. (Chicago time). 

The new VIX calculation measures the time to expiration T in minutes rather than 

days in order to replicate the precision that is commonly used by professional option 

and volatility traders. The time to expiration is given by the following expression: 

 

{ } yearin  Minutes/days  day    otherSettlementdayCurrent MMMT ++=   (2) 

 

where   

Mcurrent day is the number of minutes remaining until midnight of the current day 

Msettlement day is the number of minutes from midnight until 8:30 a.m. on SPX 

settlement day 

Mother days is the total number of minutes in the days between current day and 

settlement day 

 

The basic steps in the calculation of (1) are the following:  

Step 1: Select the options to be used in the formula. For each contract month: 

 

• Determine the forward index level F, based on at-the-money option prices. 

The at-the money strike is the strike at which the difference between the call 

and put prices is smallest. The formula used to calculate the forward index 

level is F = Strike price + exp(RT)*(Call – Put price) 

• Determine Ko, the strike price immediately bellow the forward index level F. 

• Sort all of the options in ascending order by strike price. Select call options 

that have strike prices greater than K0 and a non-zero bid-price. After 
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encountering two consecutive calls with a bid price of zero, do not select any 

other calls. Next, select put options that have strike prices less than K0 and a 

non-zero bid price. After encountering two consecutive puts with bid price of 

zero, do not select any other puts. Select both the put and call with strike price 

K0. Then average the quoted bid-ask prices for each option.  

Notice that two options are selected at Ko, while a single option, either a call 

or a put, is used for every other strike price. This is done to center the strip of 

options around Ko. In order to avoid double counting, however, the put and 

call prices at K0 are averaged to arrive at a single value. 

 

Step 2:  Calculate implied volatility for both near term and next term options by    

applying the formula (1). 

The new VIX is an amalgam of the information reflected in prices off all of the 

options used. The contribution of a single option to the new VIX value is proportional 

to the price of that option and inversely proportional to the option’s strike price.  

 

Step 3: Interpolate the 2
1σ  and 2

2σ  to arrive at a single value with a constant maturity 

of 30 days to expiration. Then take the square root of that value and multiply by 100 

to get VIX. If 2
1σ  and 2

2σ  are the values for near term and next term options 

respectively, then the interpolation formula is  

30

365302
22

302
11

12

1

12

2

Ν
Ν

×
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Ν−Ν

Ν−Ν
Τ=

ΤΤ

Τ

ΤΤ

Τ σσσ
 (3) 

Where… 

 1TN  =  number of minutes to expiration of the near term options 

 2TN  = number of minutes to expiration of the next term options 

 30N  = number of minutes in 30 days (30*1440=43,200) 

 365N  = number of minutes in a 365-day year (365*1440 = 525,600) 
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One of the most interesting features of VIX, and the reason it has been called 

“investor fear gauge”, is that historically, VIX hits its highest levels during times of 

financial turmoil and investor fear. VIX is based on real-time option prices, which 

reflect investors’ consensus view of future expected stock market volatility. 

Historically, during periods of financial stress, which are often accompanied by steep 

market declines, option prices – and VIX – tend to rise. The greater the fear, the 

higher the VIX level. As investor fear subsides, option prices tend to decline, which in 

turn causes VIX to decline. It is important to note, however, that past performance 

does not necessarily indicate future results.  

Another interesting aspect of VIX is that, historically, it tends to move opposite its 

underlying index (leverage effect). VIX measures market expectation of near term 

volatility conveyed by stock index option prices.  

The VIX is calculated using a wide range of strike prices in order to incorporate 

information from the volatility skew. It also uses a newly developed formula to derive 

expected volatility directly from the prices of a weighted strip options.  

The VIX calculation reflects the way financial theorists, risk managers and volatility 

traders think about – and trade – volatility. As such, the VIX calculation more closely 

conforms to industry practice. It is simple, yet it yields a robust measure of expected 

volatility. It is robust because it pools information from option prices over a wide 

range of strike prices thereby capturing the whole volatility skew, rather than just the 

volatility implied by at-the-money options, which were used in the calculation of the 

Old VIX. The New VIX is simpler because it uses a formula that derives the market 

expectation of volatility directly from stock option prices rather than an algorithm that 

involves backing implied volatilities out of an option-pricing model. 

In the next section we report the evolution of the constructed index GMVIX and we 

try to investigate whether it has all the above discussed properties of VIX, and hence 

if it can be called “investor’s fear gauge”. 
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5. GMVIX PROPERTIES 
 
 
5.1 Summary Statistics 
 

 Figure 1 shows the evolution of GMVIX calculated from the average bid-ask 

option prices. It also shows the evolution of the General Motors stock over the same 

period. We can see that in certain periods there seems to be a negative correlation 

between the changes in the GM and the changes in the volatility index. This has been 

termed as leverage effect.  

 In order to study the time series properties of the constructed index formally, 

we proceed as follows. Table 1 shows the summary statistics (mean, median, 

maximum, minimum, standard deviation, skewness, kurtosis, and the results from the 

Jarque-Bera test with it’s p-value in the brackets) of the GM stock and the implied 

volatility index GMVIX. GM and GMVIX have both high mean near 40, but GMVIX 

has higher std. deviation indicating that it is more volatile than GM stock, and this can 

be attributed to the jumps that we can observe when GM falls (investor’ s fear gauge, 

see next section). Under the null hypothesis of a normal distribution, the Jarque-Bera 

statistic is distributed as 2X  with 2 degrees of freedom. The reported probability is 

the probability that a Jarque-Bera statistic exceeds (in absolute value) the observed 

value under the null hypothesis. Since zero probabilities are reported for all our time 

series’ Jarque-Bera statistics, we are led to the rejection of the null hypothesis of a 

normal distribution. This means that extreme volatility changes are assigned higher 

probabilities with regard to those under a normal distribution. This can also be evident 

from the Q-Q plots reported below (Figure 2). Hence, we can claim that the two series 

are distributed non-normally.  

In order to check our series for unit roots we use the augmented Dickey-Fuller 

test. This test gives has the null hypothesis that a series has unit root. The p-values we 

get for the GM and GMVIX are 0.7516 and 0.003*, respectively. This means that we 

reject the null for a significance level of 1% in the case of GMVIX, but we cannot 

reject it for GM. Therefore, GM seems to be a random walk and hence a non-

stationary process. For that reason, we will thereafter use the (continuously 

compounded) returns of the GM (R) for our analysis (which are stationary, p-value of   
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augmented Dickey-Fuller test is 0.00*), because if we don’ t our results will be 

spurious. For the GMVIX series we can use the levels since we have stationarity. But 

we will use the first differences instead, whenever we want to check a relationship 

between GM and GMVIX, in order to have comparable sizes.  

 Table 2 shows the summary statistics of the (continuously compounded) 

returns of the GM (R) and the changes ΔGMVIX = GMVIXt – GMVIXt-1 of the index, 

as well as their cross-correlation. The sample mean for the ΔGMVIX and for R are 

both zero indicating that there is a zero trend. But still ΔGMVIX has higher std. 

deviation indicating that it is more volatile than GM stock. Both R and the volatility 

index changes are distributed non-normally; hence extreme movements in the 

volatility changes and in the stock returns are more probable than under the normal 

distribution.  

 The cross-correlation between ΔGMVIX and R is also reported in Table 2, and 

it confirms the existence of the leverage effect, even though this is rather weak. The 

correlation between the GM return and the changes in GMVIX is found to be -0.246.  

 Finally, regarding the autocorrelation coefficients, the standard 5% 

significance bound is T/2 = 05549.01301/2 = . The autocorrelations of GM 

return and the changes in GMVIX are also reported in Table 2. We can see that the 

first and third order autocorrelation for measure of ΔGMVIX is statistically 

significant, and it is negative. This can be interpreted as evidence of mean reversion in 

the implied volatility index. Alternatively, the negative serial autocorrelation can be 

interpreted as a signal for the presence of measurement errors in the calculation of 

implied volatility. 

We can see in Figure 3 (Table 3) the autocorrelations and the partial autocorrelations 

of GM, respectively, and we can see that there seems to be autocorrelation of first 

order. In reality we have a unit root and not an AR(1). This is why as we have 

mentioned above we use the GM returns. We can now see in Figure 4 (Table 4) that 

Returns (R) seem to be uncorrelated. On the other hand GMVIX does not have a unit 

root as we have mentioned above, but we can see from Figure 5 (Table 5) that it 

seems to follow an AR(p) model. In Figure 6 (Table 6) we can see that the first 

differences of GMVIX (ΔGMVIX) still seem to be autocorrelated.  ΠΑ
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Figure 1. Evolution of implied volatility index GMVIX and GM stock for the period 

02/01/2001 – 20/03/2006.  

 

 GM Stock  GMVIX 

Mean 42.49 40.38 

Median 41.74 35.67 

Maximum 68.02 101.17 

Minimum 18.61 22.12 

Std. Dev. 10.90 14.26 

Skewness 0.132 1.427 

Kurtosis 2.571 4.747 

Jarque-Bera 13.75(0.001) 607.46(0.00) 

Table 1: Summary Statistics of the GM stock and the implied volatility index 

GMVIX  
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Figure 2. Q-Q plot for the GM stock series (left) and the implied volatility index 

GMVIX (right).   
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Figure 3. GM autocorrelogram (left) partial autocorrelogram (right) 
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 GM Return ΔGMVIX 

Mean 0.00 0.00 

Median 0.00 -0.089 

Maximum 0.16647 53.51 

Minimum -0.15045 -41.49 

Std. Dev. 0.022 3.65 

Skewness 0.02 1.4926 

Kurtosis 9.063 64.22 

Jarque-Bera 1991.56(0.00) 203530.5(0.00) 

                                                  Cross-correlations 

GM Return 1 -0.246 

ΔGMVIX -0.246 1 

                                                  Autocorrelations 

)1(p̂  -0.022 -0.1984* 

)2(p̂  -0.0166 -0.0302 

)3(p̂  0.040 -0.0668* 

Table 2: Summary Statistics of the returns GM (R) and the changes of the implied 

volatility index, ΔGMVIX. Cross-Correlations and autocorrelations up to three lags 

are reported. The asterisk indicates significance of the autocorrelation coefficient at 

5% level of significance. 
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Autocorrelations and Partial Autocorrelations 
 
Series: GMt  

Lag Autocorrelation Std.Error Box-Ljung Statistic   

      Value df Sig.(b) 
Partial 

Autocorrelation Std.Error 
1 0.995 0.028 1289,942 1 0 .995 .028 
2 0.989 0.028 2566,899 2 0 -.002 .028 
3 0.984 0.028 3831,41 3 0 .015 .028 
4 0.979 0.028 5083,154 4 0 -.016 .028 
5 0.973 0.028 6321,75 5 0 -.018 .028 
6 0.968 0.028 7548,043 6 0 .025 .028 
7 0.963 0.028 8762,074 7 0 -.003 .028 
8 0.957 0.028 9963,094 8 0 -.031 .028 
9 0.951 0.028 11149,63 9 0 -.061 .028 

10 0.945 0.028 12321,8 10 0 -.003 .028 
11 0.939 0.028 13479,25 11 0 -.021 .028 
12 0.932 0.028 14621,91 12 0 -.006 .028 
13 0.926 0.028 15750,04 13 0 .003 .028 
14 0.919 0.028 16863,54 14 0 -.013 .028 
15 0.913 0.028 17962,12 15 0 -.016 .028 
16 0.906 0.028 19045,13 16 0 -.031 .028 

 
a  The underlying process assumed is independence (white noise). 
b  Based on the asymptotic chi-square approximation. 
 
Table 3. GM autocorrelations and partial autocorrelations for up to 16 lags. 
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Autocorrelations and Partial Autocorrelations 
 
Series: Rt  

Box-Ljung Statistic   

Lag Autocorrelation Std.Error Value df Sig.(b) 
Partial 

Autocorrelation Std.Error 
1 -.022 .028 .636 1 .425 -0.022 0.028 
2 -.017 .028 .996 2 .608 -0.017 0.028 
3 .041 .028 3.140 3 .371 0.04 0.028 
4 .035 .028 4.735 4 .316 0.037 0.028 
5 -.068 .028 10.799 5 .056 -0.065 0.028 
6 .006 .028 10.854 6 .093 0.003 0.028 
7 -.008 .028 10.938 7 .141 -0.013 0.028 
8 .015 .028 11.223 8 .189 0.019 0.028 
9 -.028 .028 12.237 9 .200 -0.023 0.028 

10 .017 .028 12.597 10 .247 0.012 0.028 
11 -.012 .028 12.778 11 .308 -0.012 0.028 
12 .011 .028 12.943 12 .373 0.011 0.028 
13 .010 .028 13.065 13 .443 0.013 0.028 
14 .033 .028 14.501 14 .413 0.03 0.028 
15 .047 .028 17.455 15 .292 0.052 0.028 
16 .050 .028 20.811 16 .186 0.05 0.028 

Table 4. GM returns autocorrelations and partial for up to 16 lags 
 
 
 

 

16151413121110987654321

Lag Number

1,0

0,5

0,0

-0,5

-1,0

Pa
rti

al
 A

CF

Lower
Confidence
Limit

Upper
Confidence
Limit

Coefficient

Returns

 

Figure 4. GM returns autocorrelogram (left) partial autocorrelogram (right) 
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Autocorrelations Partial Autocorrelations 
 
Series: GMVIXt  

Box-Ljung Statistic   

Lag Autocorrelation Std.Error(a) Value df Sig.(b) 
Partial 

Autocorrelation Std.Error 
1 0.967 0.028 1219,191 1 0 0.967 0.028 
2 0.947 0.028 2388,49 2 0 0.179 0.028 
3 0.928 0.028 3514,175 3 0 0.062 0.028 
4 0.914 0.028 4607,248 4 0 0.08 0.028 
5 0.897 0.028 5659,472 5 0 -0.032 0.028 
6 0.883 0.028 6679,374 6 0 0.037 0.028 
7 0.87 0.028 7670,251 7 0 0.032 0.028 
8 0.863 0.028 8645,995 8 0 0.102 0.028 
9 0.855 0.028 9605,143 9 0 0.04 0.028 

10 0.846 0.028 10545,56 10 0 0.001 0.028 
11 0.835 0.028 11462,47 11 0 -0.027 0.028 
12 0.825 0.028 12358,52 12 0 -0.002 0.028 
13 0.816 0.028 13235,59 13 0 0.017 0.028 
14 0.803 0.028 14085,96 14 0 -0.051 0.028 
15 0.789 0.028 14905,75 15 0 -0.047 0.028 
16 0.774 0.028 15696,23 16 0 -0.025 0.028 

a  The underlying process assumed is independence (white noise). 
b  Based on the asymptotic chi-square approximation. 
Table 5. GMVIX autocorrelations and partial autocorrelations for up to 16 lags 
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Figure 4. GMVIX autocorrelogram (left) partial autocorrelogram (right) 
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Autocorrelations and Partial Autocorrelations 
 
Series: DGMVIXt 

Box-Ljung Statistic   

Lag Autocorrelation Std.Error(a) Value df Sig.(b) 
Partial 

Autocorrelation Std.Error 
1 -0.198 0.028 51.314 1 0 -0.198 0.028 
2 -0.03 0.028 52.507 2 0 -0.072 0.028 
3 -0.067 0.028 58.333 3 0 -0.092 0.028 
4 0.054 0.028 62.088 4 0 0.019 0.028 
5 -0.05 0.028 65.415 5 0 -0.046 0.028 
6 -0.019 0.028 65.901 6 0 -0.043 0.028 
7 -0.096 0.028 77.922 7 0 -0.116 0.028 
8 0.01 0.028 78.065 8 0 -0.05 0.028 
9 0.014 0.028 78.309 9 0 -0.012 0.028 

10 0.033 0.028 79.705 10 0 0.016 0.028 
11 -0.018 0.028 80.123 11 0 -0.008 0.028 
12 -0.011 0.028 80.273 12 0 -0.025 0.028 
13 0.056 0.028 84.453 13 0 0.043 0.028 
14 0.031 0.028 85.725 14 0 0.039 0.028 
15 -0.003 0.028 85.736 15 0 0.02 0.028 
16 -0.026 0.028 86.655 16 0 -0.007 0.028 

a  The underlying process assumed is independence (white noise). 
b  Based on the asymptotic chi-square approximation. 
Table 6. ΔGMVIX autocorrelations and Partial autocorrelations for up to 16 lags 
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Figure 5. ΔGMVIX  autocorrelogram (left) partial autocorrelogram (right) 
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5.2 Investor’s Gauge of Fear 
 
 
 The capital asset pricing model theories predict that the expected return 

depends on the expected volatility. In addition, within the implied volatility index 

literature, Whaley (2000) and Giot (2002a) have found a negative relationship 

between returns and VIX. A possible explanation of this is that the demand for puts 

increases when the market declines. Increased demand means higher put prices, and 

hence higher implied volatilities. Furthermore, this relationship is asymmetric: an 

equal size positive/negative shock on implied volatility does not have the same effect 

on the index return. Hence, they interpret the VIX as “the investor’s fear gauge”; the 

further VIX increases in value, the more panic is in the market. The further VIX 

decreases in value, the more complacency there is in the market.  

We now turn to investigating whether this interpretation can also be attributed 

to GMVIX. First let’s have a look at Figure 1 which shows the closing values of the 

GMVIX and the GM over the past five years. We observe that like VIX, GMVIX 

spikes during periods of market turmoil and hence can be named “investor’s fear 

gauge”, just like the VIX. Naturally, such fears are usually reflected in stock prices 

also. This stands to reason. If expected market volatility increases, investors demand 

higher rate of return on stock (GM), so stock price falls. The relation is not perfect, 

however. As Figure 1 show, some spikes in the GMVIX are coincident with spikes in 

the opposite direction for the GM. In October 2002, for example, GMVIX spiked 

upward and the GM spiked downward. Similar effects are also seen in months such as 

November 2001, August 2002, March 2005, and November 2005. At other times, 

however, there can be a run-up in stock prices as well as volatility. In September 

2001, the GMVIX was rising (i.e., investors were becoming more nervous) while the 

level of GM was rising. Yet, at even other times, there can be a run-up in stock prices 

with little movement in volatility.   

            In Figure 6 we can take a first idea of the relationship between ΔGMVIX and 

R. We can observe a slightly negative relationship which goes nearly at the zero axes. 

We can still observe some outliers which are only a few exceptions and we believe 

that they will not influence the robustness of our analysis. 
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To assess more precisely the relation between GM and the GMVIX, we 

regress the daily returns tR  of GM on the daily changes ΔGMVIX of the GMVIX. 

 

ttt GMVIXbbR ε+∆+= 10            (4) 

 

In every regression that we will run thereafter we will use OLS to estimate the 

parameters, the t-statistic and hence the p-values (computed using Newey-West’s 

heteroskedasticity-consistent standard errors). We must also check the residuals, 

which must follow a White noise in order to have robust results. For that purpose we 

check the residual plots and the Durbin-Watson (DW) statistic. A DW statistic around 

2 indicates the absence of first-order serial correlation in the residuals. If residuals are 

correlated with their own lagged values, OLS will no longer be efficient among linear 

estimators and standard errors will be generally understated.  

In equation (4) the model’s prerequisites ( tε  follows a White Noise), were not surely 

satisfied (DW = 2.13). And hence, we have adjusted an autoregressive model of order 

p = 1 in the residuals. We have checked various ARMA models and found that AR(1) 

has the smallest AIK(Akaike Information Criterion). After this adjustment the 

model’s prerequisites ( tε  follows a White Noise), were satisfied (DW = 2.0041). 

The regression results (p-values in brackets) are  

 

tt GMVIXR ∆−−= *001636.0000737.0              (4) 

p-val.   (0.1978)      (0.00)  

R-square = 0.0648 

 

We can see now that if the implied volatility rises the stock GM is going to fall 

and vice versa. In order to check whether this relationship is asymmetric we regress 

the daily returns tR  of GM on the daily changes ΔGMVIX of the GMVIX and the 

change ΔGMVIX +  of GMVIX when the change is positive i.e.  ΔGMVIX + = 

ΔGMVIX if ΔGMVIX > 0, and  ΔGMVIX + = 0, otherwise 
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tttt GMVIXbGMVIXbbR ε+∆+∆+= +
210               (5) 

 

As above, we adjust an AR(1) model to the residuals and hence the model’s 

prerequisites ( tε  follows a White Noise), and were all satisfied (DW = 2.0054). 

The regression results (p-values in brackets) are  

 

      +∆−∆−= ttt GMVIXGMVIXR *000786.0*0012.00    (5) 

p-val. (0.9448)  (0.0)                      (0.0368)  

R-square = 0.0679 

 

The number of observations is 1301 and the R-square is 0.0679. This number 

is very small indeed, but it gives at least a sense of the relationship of the stock returns 

and the implied volatility index first differences. At least, we can see that the 

regression coefficients are all significant different from zero at a significance level of 

5%.      

We observe that the estimated intercept of the regression is 0 with big 

probability. This means that if the GMVIX does not change, the GM stock is not 

expected to change either.  

 From the perspective of understanding the relation between changes in the 

GMVIX and the stock returns of GM, however, the two slope coefficients rather than 

the intercept term tell the story. What they say is that if GMVIX falls by 100 basis 

points, the GM stock will rise by tR =-0.0012x (-1.00) = 0.0012%,    

while, if the GMVIX rises by 100 basis points, the GM will fall by  

tR =-0.0012(1.00)-0.000786(1.00) = -0.001986%. 

Interestingly, the relation between stock returns and changes in the GMVIX is 

asymmetric. The stock market reacts more negatively to an increase in the GMVIX 

than it reacts positively when the GMVIX falls, even though this difference is quite 
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small. Put differently, GMVIX is more a barometer of investors’ fear of the downside 

than it is a barometer of investors’ excitement (or greed) in a market rally. And these 

results are in accordance with Whaley (2000), Giot (2002a) and Skiadopoulos (2004). 

But in contrast with the literature our results indicate a more weaker relationship.          
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Figure 6. Scatter plot of the returns GM (R) and the changes of the implied volatility 
index, ΔGMVIX 
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5.3 Leverage Effect 
 
 
 In this section, we will take a broad look at the “leverage effect”, as the term is 

normally used to describe the relation between the return on an underlying asset and 

its subsequent volatility. Volatility can mean the standard deviation of realized 

returns, or it can mean implied volatility in option prices. Leverage effects are 

commonly found in both, but we are interested in the latter one.  

We run the following simple regression: 

ttt RbaGMVIX ε++=∆ *       (6) 

The model’s prerequisites ( tε  follows a White Noise) ,were checked but were not all 

satisfied (DW = 2.483), because the first differences of the GMVIX are autocorrelated 

and in evidence of this we can take a look at the autocorrelation and the partial 

correlation Figure 5, as well as in the respective Table 6.  We can see from Figure 5 

and Table 6 that DGMVIX might be autocorrelated. And it seems to be an 

autoregressive model of order 1 to 3.  In order to take into consideration this 

autocorrelation we will try to model the residuals with some different ARMA(p,q) 

models so that to eliminate the autocorrelation of DGMVIX. We will choose the 

ARMA model that has the smallest AIK (Akaike Information Criterion). We have 

checked the various ARMA models and we have found that the model that best fits 

the data and has the smallest AIK is the ARMA(2,1). So we run the regression (6) 

with the residuals following an ARMA(2,1) and we get the following results:       

 

tt RGMVIX *73342.47018246.0 −−=∆      (6) 

 p-value            0.4817      0.000 

R-square=0.1457 

 

We should note here that after fitting the ARMA model in the residuals all the 

model’s prerequisites were satisfied (DW = 2.00). 

The R-square is only 0.1457. This number is small indeed, but it gives at least a sense 

of the relationship of the stock returns and the implied volatility index first 
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differences. At least, we can see that the regression coefficient is significant different 

from zero at a significance level of 1%. We observe that the estimated intercept of the 

regression is -0.018246. This means that if the GM stock does not change, the 

GMVIX is expected to fall by 0.018246.  

 From the perspective of understanding the relation between changes in the 

GMVIX and the stock returns of GM, however, the slope coefficient rather than the 

intercept term tell the story. What it says is that if GM stock falls by 100 basis points, 

the GMVIX will rise by tGMVIX =-0.018246-45.73342x(-1.00) = 45.7151%, and if 

GM stock rises by 100 basis points, the GMVIX will fall by tGMVIX =-0.018246-

45.73342x (1.00) = -45.7516%. 

A fall in the market price for the stock should increase its subsequent 

volatility, and a price rise of the same magnitude should reduce volatility by a 

comparable amount. However, the existence of a “leverage effect” is most commonly 

associated with falling, rather rising, stock prices. This raises the question of whether 

it may be an asymmetrical phenomenon more closely related to negative returns than 

to leverage per se. To examine this possibility, we add a Down market dummy 

variable specification to equation (6): 

 

  tttt DownRbRbaGMVIX ε+++=∆ ** 210     (7) 

 

where Down =1 if R is negative, and 0 otherwise. Now the leverage effect is 

measured by b1 in an up market and b1 + b2 in a down market. A significantly negative 

value for b2  will indicate that the effect is stronger when prices are falling. 

In regression (7) like in (6) we apply an ARMA (2,1) model in the residuals, which 

we found that has the smallest AIK and we get the following results: 

 

 

 

 −−−−= ttt RRDGMVIX *3794.34*6994.262994.0     (7) 
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 p-value            0.00            0.00                  0.00 

R-square=0.1541 

DW = 1.9926 

 

These results suggest indeed that the “leverage effect” is stronger when prices are 

falling. We can see that when GM stock falls by 100 basis points, the GMVIX will 

rise by tGMVIX = -0.2994 – 26.6994x (-1.00) - 34.3794x(-1.00) = 60.7794%, and 

when GM stock rises by 100 basis points, the GMVIX will fall by  

tGMVIX = -0.2994-26.6994x (1.00) = -26.9988%. We can now clearly see that when 

the stock price falls (financial turmoil) the implied volatility rises by a very big 

amount (60.7794%), but when the stock price rises the implied volatility falls only by 

roughly the half of that amount (-26.9988%). We should note that all the regression 

coefficients are significant different from zero for a significance level a = 1%, but still 

the R-square is quite small and we cannot say that the relationship between DGMVIX 

and R is very strong. At least we can claim that there is such a relationship, even a 

weak one, and this gives some useful information.  Finally, we should mention that 

the leverage we have observed above is much bigger than the observed in the 

literature. Of course, this may be attributed to the fact that we have an implied 

volatility index of an individual stock, which is much more volatile than an implied 

volatility index of a market index, like VIX.     
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5.4 Granger Causality Tests 
 

A time series Y is said to be Granger-caused by X if X helps in the prediction 

of Y, or equivalently if the coefficients on the lagged X’s are statistically significant. 

It is important to note that the statement “X Granger causes Y” does not imply that Y 

is the effect or the result of X. Granger causality measures precedence and 

information content but does not by itself indicate causality in the more common use 

of the term (see Hamilton, 1994, for a detailed description of the Granger causality 

test).   

In this section we want to test whether ΔGMVIX (R) helps to predict R 

(ΔGMVIX). The Granger causality test consists of running bivariate regressions of 

the form  
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1 1
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l
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L
ltlltlt uGMVIXbRacR

1 1
 (9) 

 

The null hypothesis is 0...: 10 === mbbH . 

 The interpretation of the null is that R does not Granger-cause ΔGMVIX in the 

first regression and that ΔGMVIX does not Granger-cause R in the second regression. 

If both these events occur there is feedback. The test for causality is based on an F-

statistic that is calculated by estimating the above expression in both unconstrained 

and constrained forms (full and reduced model). The full model is the equation (8) 

and (9) and the reduced model is the one without the ∑
=

−

m

l
ltl Rb

1
term for equation (8) 

and without the ∑
=

−∆
m

l
ltl GMVIXb

1
term for equation (9). 
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where fr SSESSE ,  = residual sum of squares of the reduced and full model,                                    

respectively, 

T = total number of observations,  

m = number of lags. 

F is (Fisher’s) F distributed with m and (T-2m-1) degrees of freedom F~F(m,T-2m-1).  

We should note here that for regression (8) (for both m=2 and m=1) and we have 

adjusted to the residuals an ARMA(2,1) model in order to take into consideration the 

autocorrelation of ΔGMVIX, like we did in regression (6).  

 Tables 8 and 9 show the results from the Granger causality test using two 

(m=2) and one lags (m=1) and the results for the respective regressions. 

 We can see that, for two lags (m=2), R Granger-causes ΔGMVIX (i.e., 

rejection of the null (p-value = 0.00)). The reverse is also true but for a higher 

significance level of 5%. Of course, we cannot claim with big certainty that ΔGMVIX 

Granger-causes R because as we can observe from Table 8, only coefficient 1b  is 

statistically significant. As for the one lag (m=1) regressions, R Granger-causes 

ΔGMVIX (i.e., rejection of the null (p-value = 0.00)) and the reverse is also true (i.e., 

rejection of the null (p-value = 0.005)). Our findings are of particular importance to an 

investor who has a position in GM options. They suggest that he can use the returns of 

the underlying asset in order to forecast the future movement of the implied volatility, 

and hence the option price. The opposite could also be applied in order to forecast the 

future returns from the implied volatility. Of course, this forecasting ability should not 

be misunderstood, since the R-square of all the above regressions are very small. This 

implies that the relationships are rather weak and hence would not provide much 

useful information for speculation purposes. They just give some sense of what is 

going on. Finally, we should report that following a general-to-specific approach, we 

have run similar regressions with higher order lags, but we have found that these do 

not have any additional forecasting power. Therefore, the investor can use the 

information contained in the values of ΔGMVIX and R of the past two or even one 

periods to develop appropriate strategies for hedging purposes.    
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Null Hypothesis  (m=2) F-Statistic Probability 

R does not Granger Cause ΔGMVIX 17.93* 0.00 

ΔGMVIX does not Granger Cause R 4.426** 0.01213 

Regression Results: Equation (5) with m=2, 2R = 0.083 

Coefficient Estimate P-Value 

c -0.002776 0.5692 

1a  0.7827* 0.00 

2a  0.0445 0.8258 

1b  -20.6320* 0.00 

2b  13.2459* 0.0045 

Regression Results: Equation (6) with m=2, 2R = 0.007725 

c -0.000815 0.1981 

1a  -0.04282 0.1381 

2a  -0.016387 0.5697 

1b  -0.000477** 0.0101 

2b  0.000148 0.4233 

Table 8. Granger causality test between R and ΔGMVIX using two lags (m=2). The 

results from regressions (8) and (9) with m=2, are also reported. One asterisk denotes 

significance at a 1% significance level, and two asterisks denote significance at a 5% 

significance level.   
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Null Hypothesis  (m=1) F-Statistic Probability 

R does not Granger Cause ΔGMVIX 29.36* 0.00 

ΔGMVIX does not Granger Cause R 7.8972* 0.005 

Regression Results: Equation (5) with m=1, 2R = 0.0812 

Coefficient Estimate P-Value 

c -0.008571 0.6518 

1a  0.5819 0.00 

1b  -15.2008 0.00 

Regression Results: Equation (5) with m=1, 2R = 0.0065 

c -0.000769 0.2244 

1a  -0.04193 0.1418 

1b  -0.000504* 0.005 

Table 9. Granger causality test between R and ΔGMVIX using two lags (m=1). The 

results from regressions (8) and (9) with m=1, are also reported. One asterisk denotes 

significance at a 1% significance level, and two asterisks denote significance at a 5% 

significance level.    
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5.5 Spillover Effect 

 

In this section we examine whether there is a relationship between the VIX of 

the CBOE and the new implied volatility index, of the individual U.S. stock General 

Motors, GMVIX, which we have constructed with the methodology of VIX. In Figure 

7 we can see the evolution of the VIX and GMVIX indices over the period 2001 – 

2005. From this Figure we can observe that the two indices have almost the same 

evolution over the time period observed, except for the late 2005 where we can see 

that while VIX follows a descending course, GMVIX is rising and has many spikes. 

This, approximately same movement, gives us a good reason to believe that the two 

indices are highly correlated. As for the latest time period, the completely opposite 

evolution between them may be due to the fact that GM stock is falling (so high 

implied volatility (GMVIX) is observed, “investor’s fear gauge”), while S&P 500 is 

rising (making implied volatility (VIX) to fall). This may be evident from Figure 8. 

Usually a stock follows the course of the market index in which it belongs, GM 

belongs in the S&P 500, and we indeed observe GM to roughly follow the evolution 

of S&P 500. In contrast, at the very end of our observation period we observe the GM 

and S&P 500 to move to the opposite directions.  And that is how the evolution of the 

two indices is explained.         

In order to check the VIX series for unit root we use the augmented Dickey-

Fuller test. This test gives has the null hypothesis that a series has unit root. The p-

value we get for VIX is 0.04**. This means that we reject the null for a significance 

level of 5%, but we cannot reject it for a significance level of 1%. Therefore, we 

cannot say with certainty that VIX does not have a unit root. For that reason, we will 

thereafter use the first differences of VIX, ΔVIX, for our analysis (which is stationary, 

p-value of augmented Dickey-Fuller test is 0.00*).  

Table 10 shows the cross-correlation between VIX and GMVIX in their first 

differences. We can see that this correlation is quite small, only 0.0908. This is in 

contrast to our first observation 
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Next, we test whether there is a Granger causality relationship between changes in 

GMVIX and VIX. We use four, two and one lags. The results are shown in Table 11. 

As we can see ΔVIX does Granger Cause ΔGMVIX for any m used and it does so in 

significance level of 1%. Nevertheless, the reverse is not true. We can see that 

ΔGMVIX does not Granger Cause ΔVIX in any lag used. These results suggest that 

the changes in the GMVIX cannot forecast the changes in VIX, but the changes in 

VIX can forecast the changes in the GMVIX.  

 

In Figure 9, we can see the relationship between the VIX and GMVIX first 

differences. We can observe that there is a slightly upward slope and this is evidence 

for a positive correlation between the two indices.  

Finally, the following unidirectional regressions are performed in order to study 

further the presence of any spillover effect:  

ttt uVIXacGMVIX +∆+=∆ *  (10) 

ttt uVIXbcGMVIX +∆+=∆ −1*  (11) 

tttt uVIXbVIXacGMVIX +∆+∆+=∆ −1**  (12) 

In every of the above regressions we have adjusted an ARMA(2,1) model to the 

residuals. Equation (10) shows whether there is a contemporaneous relationship 

between ΔGMVIX and ΔVIX. Equation (11) checks whether the VIX index leads the 

GMVIX volatility index. Equation (12) examines whether there is both a 

contemporaneous and a lead relationship between the two indices.  

Table 12 show the results of the equations 10 to 11, respectively. We can see that in 

every regression the coefficients are statistically significant in a significance level of 

1%. These results suggest that there is both a contemporaneous and a lead relationship 

between the two indices, although these relationship are rather weak since all the 

equations of interest have very small R–square. And this seems to be consistent with 

the earlier Granger causality tests.  
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  Figure 7. Evolution of VIX and GMVIX for the period 2/01/2001 – 31/12/2005 
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Figure 8. Evolution of GM stock price and S&P 500 index price (divided by 10) for 

the period 2/01/2001 – 31/12/2005 
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 ΔVIX ΔGMVIX 

ΔVIX 1 0.0908 

ΔGMVIX 0.0908 1 

Table 10. Cross-correlation between VIX and GMVIX in the first differences 

 

Null Hypothesis  (m=4) F-Statistic Probability 

ΔVIX does not Granger Cause ΔGMVIX 6.75* 0.00 

ΔGMVIX does not Granger Cause ΔVIX 0.4217 0.793 

Null Hypothesis  (m=2) F-Statistic Probability 

ΔVIX does not Granger Cause ΔGMVIX 12.6212* 0.00 

ΔGMVIX does not Granger Cause ΔVIX 0.03 0.97023 

Null Hypothesis  (m=1) F-Statistic Probability 

ΔVIX does not Granger Cause ΔGMVIX 13.7823* 0.00021 

ΔGMVIX does not Granger Cause ΔVIX 0.04950 0.8239 

Table 11. Granger causality test between R and ΔGMVIX using four, two and one 

lags (m=4, m=2, m=1). One asterisk denotes significance at a 1% significance level, 

and two asterisks denote significance at a 5% significance level.    
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 Figure 9. Scatter plot of first differences in VIX and first differences in GMVIX. 

 

Regression Results: Equation (10) with m=1, 2R = 0.074 

Coefficient Estimate P-Value 

c 0.0255 0.5637 

a 0.3742* 0.00 

Regression Results: Equation (11) with m=1, 2R = 0.0757 

c 0.0289 0.5072 

b  0.4010* 0.00 

Regression Results: Equation (12) with m=1, 2R = 0.08597 

c 0.02866 0.4845 

a  0.30466* 0.00 

b 0.3332* 0.00 

Table 12.  The results from regressions (10), (11) and (12) are reported. One asterisk 

denotes significance at a 1% significance level, and two asterisks denote significance 

at a 5% significance level.   
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6. FORECASTING CALLS AND PUTS 

 

6.1 Moneyness and Maturity dimension 

 

In this final section will try to test whether the implied volatility index of GM can be 

used in order to forecast option prices of GM. In order to do that we have to construct 

in some way the option series that we want to forecast. For that purpose, we separate 

the options regarding their moneyness dimension, as follow: 

Call options are regarded in-the-money (ITM) when S/K > 1.02 (S is the Stock Price 

and K is the Strike Price), at-the-money (ATM) when 0.98 < S/K < 1.02 and out-of-

the-money (OTM) when S/K < 0.98. Put options are regarded ITM when S/K < 0.98, 

ATM when 0.98 < S/K < 1.02 and OTM when S/K > 1.02. For the purposes of our 

analysis, because there are many such options (ITM, ATM and OTM), we use the first 

ITM and OTM options (those that are closest to the ATM) and the closest ATM 

option (the one for which S/K is closest to 1). Hence, we have 3 series of call and 3 

series of put options regarding their moneyness.    

We also separate the options regarding their maturity dimension, as follows: 

We have the shortest to expiry options if their time to maturity is less than 40 days, 

the second shortest to expiry options if their time to maturity is between 40 and 70 

days, and the third shortest to expiry options if their time to maturity is more than 70 

days. Therefore, we also separate the options regarding their time to maturity in 3 

different classes. 

Hence, we get 9 series of call options (ITM, ATM and OTM for every of the three 

maturity classes) and 9 series of put options (ITM, ATM and OTM for every of the 

three maturity classes). We symbolize them as c_itm1, c_itm2, c_itm3, c_atm1, 

c_atm2, c_atm3, c_otm1, c_otm2, c_otm3, p_itm1, p_itm2, p_itm3, p_atm1, p_atm2, 

p_atm3, 

p_otm1, p_otm2, p_otm3, respectively. We will also refer to these series as Real 

series because they are real prices that exist in the market.  
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We will also construct options series with another way. We keep the same means of 

maturity dimension, but we get the moneyness dimension through interpolation. To 

make this more concrete, we get the ITM call or put price of moneyness 2% (S/K = 

1.02 for calls and S/K = 0.98 for puts) via interpolation, even when these calls-puts 

does not exist. Therefore, we get the price that would more possibly have the option 

with moneyness 2%, and we find this price by interpolating between the market prices 

of the options that are above and below this moneyness level. We do the same for 

ATM options and OTM options. By this way, we also get 9 series of call and 9 series 

of put prices, which we also symbolize as c_itm1, c_itm2, c_itm3, c_atm1, c_atm2, 

c_atm3, c_otm1, c_otm2, c_otm3, p_itm1, p_itm2, p_itm3, p_atm1, p_atm2, p_atm3, 

p_otm1, p_otm2, p_otm3, but we will refer to these series as Interpolated series, 

because they are derived via interpolation and they do not represent existing prices in 

the market.  

 

6.2 Summary Statistics of Option Series 

 

 In Table 13 we report the summary statistics for the Real series of calls and 

puts. And in Tables 14 we report the summary statistics for the respective Interpolated 

series. We can see that in general the mean price of all  options increases as the time 

to maturity increases and this of course is expected since there is more time (higher 

probability) for the option to become in-the-money. Since zero probabilities are 

reported for all our time series’ Jarque-Bera statistics, we are led to the rejection of 

the null hypothesis of a normal distribution. This means that extreme volatility 

changes are assigned higher probabilities with regard to those under a normal 

distribution.  

We can observe that ATM and OTM call and put Real series have smaller 

mean than those of the Interpolated series. On the other hand, ITM call and put Real 

series have higher mean than those of the Interpolated series. We can also observe 

that ATM and ITM Real call and put series have higher maximums and higher 

standard deviations than the respective ATM and ITM Interpolated call and put series. 

Contrary, OTM Real call and put series have smaller maximums and smaller standard 

deviations than the respective OTM Interpolated call and put series. These results give 
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us a good reason to believe that the Real and Interpolated series are quite different and 

forecasting them will be a different matter.  

Finally, from Figures 10 (autocorrelogram and Partial autocorrelogram of 

c_atm2), we can observe that the ATM Real shortest call series are autocorrelated. 

The same patterns have also been observed in every other series, both Real and 

Interpolated, and hence we can say that every series is autocorrelated.    

 

 

Real 
series 

Mean Median Max Min Std. 
Dev. 

Skew. Kurtos
. 

Jarque-
Bera  

P-value 
c_atm1 1.19 1 20.3 0.0 1.204 6.97 86.86 0.00 
c_atm2 1.98 1.85 5.65 0.0 0.837 0.85 3.69 0.00 
c_atm3 2.91 2.70 6.45 1.00 1.065 0.71 2.98 0.00 
c_itm1 2.81 2.52 13.0 0.0 1.30 1.46 6.99 0.00 
c_itm2 3.50 3.25 7.25 1.52 1.21 0.88 3.13 0.00 
c_itm3 4.39 4.05 20.0 2.00 1.54 2.15 16.76 0.00 
c_otm1 0.36 0.30 4.20 0.0 0.35 2.34 15.72 0.00 
c_otm2 1.00 0.92 3.15 0.0 0.54 0.82 3.58 0.00 
c_otm3 1.85 1.75 5.75 0.32 0.817 0.67 3.32 0.00 

 
p_atm1 1.25 1.10 17.6 0.00 0.91 5.54 87.29 0.00 
p_atm2 2.20 2.10 9.05 0.42 0.86 1.44 8.89 0.00 
p_atm3 3.30 3.20 27.0 0.7 1.20 6.12 117.06 0.00 
p_itm1 2.95 2.70 17.6 0.62 1.37 2.17 17.22 0.00 
p_itm2 3.73 3.40 22.4 1.40 1.44 3.36 34.64 0.00 
p_itm3 4.74 4.40 27.0 2.05 1.52 3.05 37.79 0.00 
p_otm1 0.45 0.38 2.52 0.00 0.37 1.44 5.98 0.00 
p_otm2 1.22 1.13 3.85 0.20 0.56 0.99 4.31 0.00 
p_otm3 2.21 2.10 5.90 0.22 0.81 0.61 3.38 0.00 

Table 13. Summary Statistics for Real call and put Series 
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Interpo-
lated 
series 

Mean Median Max Min Std. 
Dev. 

Skew. Kurt. Jarque-
Bera  

P-value 
c_atm1 1.23 1.09 13.0 0.0 0.74 5.13 62.27 0.00 
c_atm2 2.03 1.86 4.60 0.0 0.65 0.60 2.78 0.00 
c_atm3 2.95 2.73 6.13 1.46 0.92 0.65 2.70 0.00 
c_itm1 1.68 1.50 13.0 0.0 0.80 4.66 49.99 0.00 
c_itm2 2.47 2.25 5.26 0.0 0.71 0.56 2.72 0.00 
c_itm3 3.37 3.10 6.66 1.67 0.97 0.68 2.62 0.00 
c_otm1 0.85 0.73 13.0 0.0 0.71 6.41 85.42 0.00 
c_otm2 1.60 1.47 3.85 0.0 0.58 0.63 2.89 0.00 
c_otm3 2.52 2.31 5.78 1.02 0.86 0.63 2.84 0.00 

 
p_atm1 1.31 1.22 17.6 0.04 0.77 8.61 107.15 0.00 
p_atm2 2.23 2.10 9.05 0.75 0.70 1.68 12.35 0.00 
p_atm3 3.32 3.22 27.0 1.54 1.10 7.74 163.15 0.00 
p_itm1 1.81 1.69 17.6 0.17 0.79 7.14 130.26 0.00 
p_itm2 2.71 2.54 9.05 1.12 0.77 1.46 9.48 0.00 
p_itm3 3.80 3.67 27.0 1.55 1.14 6.61 130.17 0.00 
p_otm1 0.98 0.88 17.6 0.0 0.75 9.78 191.71 0.00 
p_otm2 1.87 1.77 9.05 0.58 0.70 2.27 17.31 0.00 
p_otm3 2.95 2.86 27.0 1.25 1.08 8.48 183.5 0.00 

Table 14. Summary Statistics for Interpolated call and put series 
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Figure 10. Autocorrelogram and Partial autocorrelogram of Real ATM call of 

shortest expiry.  
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6.3 Forecasting options 

 

In order to test the forecasting ability of GMVIX in the option prices, we run the 

following regressions: 

ttt GMVIXbccalls ε++= −1*  (13) 

ttt GMVIXbcputs ε++= −1*  (14) 

tttt RbGMVIXbccalls ε++∆+=∆ −− 1211 **  (15) 

tttt RbGMVIXbcputs ε++∆+=∆ −− 1211 **  (16) 

where Δcalls are the daily first differences of the call prices and  Δputs the daily first 

differences of the put prices. Alternatively, we could insert in regressions (13) and 

(14) as an independent variable the stock price GM 

 ( tttt GMbGMVIXbccalls ε+++= −− 1211 ** ), 

 but this would overestimate the coefficients and the R-square and general give 

spurious results, since GM is non-stationary. This is the reason that we have decided 

not to include GM in regressions (13) and (14). Contrary, in equations (15) and (16) 

we have taken the returns of GM (R) and so there is no problem with non-stationarity. 

Because every option series is autocorrelated and this makes the residuals 

autocorrelated we have fitted an ARMA model to the residuals.  

We run the above regressions for both Real option series and Interpolated 

series, and the results are reported (p-values in brackets) in Tables 15 and 17 for Real 

series and equations (13) to (16), and in Tables 16 and 18 for Interpolated series, 

respectively.  

We can see in Table 15 that some coefficients are statistically significant in 

1%, in 5% and some are not at all. More specifically, for call options we can see that 

ITM options can not be predicted (insignificant coefficient b), ATM options are better 

predicted as the time to maturity is heightened, and OTM options can generally be 

predicted, with c_otm2 be more significant than the other c_otm. In general R-squares 

are satisfactory high. The better predicted Real call series is the ATM calls for 
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second-shortest expiry, c_atm2, because it has a statistically significant coefficient in 

1% level and has the highest R-square comparable with the other statistically 

significant coefficients in 1% level. 

On the other hand, from Table 16 we can see that GMVIX does not have any 

forecasting ability in the Interpolated series. R-squares are higher from those of Table 

15, but this fact is insignificant to the forecasting ability of GMVIX since all 

coefficients are statistically insignificant. This might be attributed to the fact that the 

Interpolated series are not true option prices but hypothetical.  

In Table 15 for the Put series, we can see that some coefficients are 

statistically significant in 1%, in 5% and some are not at all. More specifically, we can 

see that ITM options can be better predicted for second-shortest expiry, ATM options 

can be predicted only for shortest expiry, and OTM options can be predicted for 

shortest and second-shortest expiry. In general R-squares are good enough. The better 

predicted Real put series is the OTM puts for second-shortest expiry, p_otm2, because 

it has a statistically significant coefficient in 1% level and has the highest R-square 

comparable with the other statistically significant coefficients in 1% level. 

On the other hand, from Table 16 we can see that only p_atm1 is significant in 

5%, p_itm2 in 10% and p_otm1 in 10%. R-squares are higher from those of Table 15, 

but this does not mean that GMVIX predicts better the Interpolated than the Real 

series, since the coefficients significance is what matters. Hence, we can claim that   

in the case of puts, as with calls, GMVIX can better predict the Real series. This 

might be attributed to the fact that the Interpolated series are not true option prices but 

hypothetical.  
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ttt GMVIXbccalls ε++= −1*     (13)                           (Real call series) 
Real series c b R-square 

c_atm1 0.99  
(0.00)* 

0.004814  
(0.1293) 

0.30 

c_atm2 1.1828  
(0.0013)* 

0.01014  
(0.00)* 

0.54 

c_atm3 2.4453  
(0.00)* 

0.009206 
(0.0148)** 

0.71 

c_itm1 2.67678  
(0.00)* 

-0.005675  
(0.3727) 

0.50 

c_itm2 2.7887  
(0.00)* 

0.004687  
(0.1688) 

0.68 

c_itm3 3.814  
(0.00)* 

0.006544  
(0.1002) 

0.65 

c_otm1 0.2133  
(0.00)* 

0.003741 
(0.0235)** 

0.42 

c_otm2 0.652119  
(0.00)* 

0.007164  
(0.0068)* 

0.53 

c_otm3 1.5393  
(0.00)* 

0.007032 
(0.0373)** 

0.68 

ttt GMVIXbcputs ε++= −1*      (14)                               (Real put series) 
 

p_atm1 0.1957  
(0.7340) 

0.007622  
(0.0086)* 

0.18 

p_atm2 2.3114  
(0.00)* 

-0.004252  
(0.6646) 

0.47 

p_atm3 3.088  
(0.00)* 

0.00329 
 (0.6163) 

0.41 

p_itm1 2.7496  
(0.00)* 

-0.00889 
(0.0183)** 

0.37 

p_itm2 2.2861  
(0.0013)* 

0.01344  
(0.0029)* 

0.43 

p_itm3 4.2385  
(0.00)* 

0.006284  
(0.2834) 

0.53 

p_otm1 0.2527  
(0.00)* 

0.04939  
(0.0051)* 

0.49 

p_otm2 0.7408  
(0.00)* 

0.01063 
 (0.0011)* 

0.64 

p_otm3 1.8566  
(0.00)* 

0.008467 
 (0.1231) 

0.72 

Table 15. Results from regressions (13) and (14) for Real call and put series. One 

asterisk denotes significance at a 1% significance level, two asterisks denote 

significance at a 5% significance level and three asterisks denote significance at 10%. 
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ttt GMVIXbccalls ε++= −1*     (13)                          (Interpolated call series) 
Real series c b R-square 

c_atm1 1.4130 
(0.00)* 

-0.0045  
(0.4314) 

0.4889 

c_atm2 1.7177  
(0.00)* 

0.001089 
(0.5383) 

0.8565 

c_atm3 2.8394 
(0.00)* 

0.000163   
(0.9456) 

0.9335 

c_itm1 0.8959 
(0.3699) 

0.005719  
(0.3411) 

0.4954 

c_itm2 2.073 
(0.00)* 

0.0000796 
(0.9647) 

0.8621 

c_itm3 3.2285 
(0.00)* 

0.00104  
(0.9623) 

0.933 

c_otm1 0.8737 
(0.00)* 

-0.00603 
(0.9032) 

0.4441 

c_otm2 1.3181 
(0.00)* 

0.002272  
(0.1594) 

0.8594 

c_otm3 2.4099 
(0.00)* 

0.000653 
(0.7859) 

0.9379 

ttt GMVIXbcputs ε++= −1*      (14)                              (Interpolated put series) 
 

p_atm1 0.3641 
(0.5856) 

0.005916 
(0.0265)** 

0.27011 

p_atm2 1.9022 
(0.00)* 

0.0037 
(0.4153) 

0.7839 

p_atm3 3.155 
(0.00)* 

0.002839 
(0.6311) 

0.5232 

p_itm1 1.1709 
(0.0433)** 

0.000483 
(0.8619) 

0.3602 

p_itm2 2.1936 
(0.00)* 

0.006537 
(0.0563)*** 

0.7606 

p_itm3 3.635 
(0.00)* 

0.002168 
(0.7192) 

0.56467 

p_otm1 0.7887 
(0.00)* 

0.004645 
(0.0814)*** 

0.2022 

p_otm2 1.5937 
(0.00)* 

0.003834 
(0.4792) 

0.7451 

p_otm3 2.7797 
(0.00)* 

0.003427 
(0.5819) 

0.4988 

Table 16. Results from regressions (13) and (14) for Interpolated call and put series. 

One asterisk denotes significance at a 1% significance level, two asterisks denote 

significance at a 5% significance level and three asterisks denote significance at 10%. 
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 Now, in Table 17 (Panel A) we can see the results from equation (15). We can 

see that in most cases ΔGMVIX is statistically significant at least in 10%, but R in 

most cases is not. In the cases where R is not statistically significant we have reported 

the results of the equation (15) without R. We can also see that all R-squares are near 

0.20 and 0.30, which implies a good relationship between the variables, but not a very 

strong for the purpose of forecasting. Hence, we can say that the first differences of 

GMVIX and the returns of GM can give us a clue about the movement of the future 

call price, but not a perfect tool for forecasting. The better series forecasted are the 

ITM calls of second and third expiry.  

 As for the Interpolated series, the results of equation (15) can be seen in Table 

18 (Panel A). In contrast with the Real series we can see that ΔGMVIX is statistically 

insignificant in every case but for Δc_itm1. We can also see that in some cases R is 

statistically significant (which is rather unrealistic), but the R-squares are quite small 

and so we can not claim about any forecasting ability. We can also see here that we 

can better forecast the Real series than the Interpolated series.     

Finally, in Table 17 (Panel B) we report the results from equation (16) for 

Real series. We observe that ΔGMVIX is statistically significant only in the cases of 

atm1, itm2, itm3 and otm2, and R is statistically significant only in the cases of itm1, 

itm2, itm3 and otm1. We can see that the better results are for Δp_itm2 and Δp_itm3 

which have significant coefficients in 1% level and also high enough R-squares near 

0.40.  

In Table 18 (Panel B), we can see that in some cases ΔGMVIX is statistically 

significant but only for 5% or 10% significance level. R-squares are worse than the 

ones of the Real put series and we can again say that Real series can be better 

predicted from Interpolated series.    

 To conclude this final section, we can say that in general Real series can better 

be predicted than Interpolated series and this may be due to the fact that Interpolated 

option series are not real option prices which are observed in the market, but they are 

constructed and hence hypothetical market prices.  In general, we have observed that 

using GMVIX levels, equations (13) and (14), OTM options are better forecasted than 

ATM and ITM options, and this may be attributed to the fact that GMVIX is indeed 

constructed from OTM options. But, when we use the first differences of GMVIX and 
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the returns of GM, equations (15) and (16), we observe that we can better forecast the 

ITM options and more precisely the second and third expiry ITM options. In general 

it seems that OTM and ITM options can more easily be forecasted. This is rational, 

since ATM options have strike price equal to the stock price and hence they can easily 

become OTM or ITM, with big probability. So, their prices may easily change, 

making them hard to forecast. On the other hand, stock price must move quite rapidly 

for OTM and ITM option prices to make big movements, and that’s why we can more 

easily forecast them. 

 We can finally say that Stock returns have little information regarding the 

future option prices. This was expected, since tomorrow’s option prices depend on 

tomorrow’s stock price and not yesterday’s stock price. On the contrast, we can claim 

that the implied volatility index GMVIX, both in levels and in first differences, has 

some information regarding the future option prices, though this information is just 

elementary and does not constitute an artificial device for speculation purposes. But, it 

could instead be used for delta hedging purposes. 
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     Panel A:  tttt RbGMVIXbccalls ε++∆+=∆ −− 1211 **   (15)     (Real call series) 

Real series c 1b  2b  R-square 
Δc_atm1 -0.001203 

(0.0033)* 
0.009817 

(0.0613)*** 
0.1457  
(0.69) 

0.2869 

Δc_atm1 -0.001284 
(0.00)* 

0.008409    
(0.0138)** 

-- 0.2868 

Δc_atm2 -0.000923 
(0.2636) 

0.013225 
(0.0003)* 

0.4078 
(0.2611) 

0.2869 

Δc_atm2 -0.001162 
(0.1946) 

0.010387 
(0.0013)** 

-- 0.2863 

Δc_atm3 -0.000954 
(0.5934) 

0.014573 
(0.00)* 

1.0408 
(0.0436)** 

0.2486 

Δc_atm3 -0.001579 
(0.4398) 

0.009613 
(0.0077)** 

-- 0.2458 

Δc_itm1 -0.000719 
(0.4899) 

0.009381 
(0.3683) 

1.9863 
(0.0146)** 

0.2958 

Δc_itm1 -0.000918 
(0.4682) 

-- 1.4481 
(0.0031)* 

0.2947 

Δc_itm2 -0.000933 
(0.4910) 

0.017092 
(0.00)* 

2.0967   
(0.00)* 

0.2849 

Δc_itm3 -0.000985 
(0.4455) 

0.025616 
(0.00)* 

2.7839 
(0.00)* 

0.3461 

Δc_otm1 -0.000404 
(0.00)* 

0.004364 
(0.0538)*** 

-0.1802 
(0.2467) 

0.2391 

Δc_otm1 -0.000313 
(0.00)* 

0.0058 
(0.00)* 

-- 0.2382 

Δc_otm2 -0.00077 
(0.4608) 

0.006549 
(0.0377)** 

-0.2787 
(0.3985) 

0.2978 

Δc_otm2 -0.000599 
(0.8432) 

0.007941 
(0.0041)* 

-- 0.2972 

Δc_otm3 -0.000599 
(0.8432) 

0.008638 
(0.0350)** 

0.4896 
(0.3138) 

0.2624 

Δc_otm3 -0.000920 
(0.7681) 

0.006981 
(0.0627)*** 

-- 0.2617 

Table 17, Panel A. Results from regression (15) for Real call. One asterisk denotes 

significance at a 1% significance level, two asterisks denote significance at a 5% 

significance level and three asterisks denote significance at 10%.  
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 Panel B:   tttt RbGMVIXbcputs ε++∆+=∆ −− 1211 **   (16)      (Real put series) 

Real series c 1b  2b  R-square 
Δp_atm1 -0.000637 

(0.0043)* 
0.011596 

(0.0128)** 
0.3821  

(0.3263) 
0.3728 

Δp_atm1 -0.000829 
(0.00)* 

0.008091 
(0.0172)** 

-- 0.3720 

Δp_atm2 -0.001377 
(0.3254) 

0.001313 
(0.9067) 

-0.3543 
(0.6689) 

0.3161 

Δp_atm3 -0.001169 
(0.6480) 

0.008598 
(0.3187) 

0.5236 
(0.4687) 

0.3372 

Δp_itm1 -0.000655 
(0.4850) 

0.006443 
(0.2025) 

1.8515  
(0.00)* 

0.3833 

Δp_itm1 -0.000766 
(0.426) 

-- 1.5014  
(0.00)* 

0.3828 

Δp_itm2 -0.000967 
(0.2434) 

0.0306  
(0.00)* 

2.3639   
(0.00)* 

0.409 

Δp_itm3 -0.000935 
(0.7778) 

0.01809 
(0.0049)* 

2.284 
(0.00)* 

0.399 

Δp_otm1 -0.000393 
(0.2502) 

0.0022 
(0.3869) 

-0.3233 
(0.1073) 

0.1917 

Δp_otm1 -0.000427 
(0.2694) 

-- -0.4349 
(0.0267)** 

0.1911 

Δp_otm2 -0.000686 
(0.5365) 

0.009591 
(0.0113)** 

-0.3550 
(0.2808) 

0.2309 

Δp_otm2 -0.00045 
(0.6943) 

0.011019 
(0.0012)* 

-- 0.2299 

Δp_otm3 -0.0000888 
(0.9821) 

0.008354 
(0.1947) 

0.4397 
(0.4964) 

0.1980 

Δp_otm3 -0.000934 
(0.9208) 

0.007159 
(0.2185) 

-- 0.1975 

Table 17, Panel B. Results from regression (16) for Real put series. One asterisk 

denotes significance at a 1% significance level, two asterisks denote significance at a 

5% significance level and three asterisks denote significance at 10%.  
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Panel A: tttt RbGMVIXbccalls ε++∆+=∆ −− 1211 **  (15)   (Interpolated call series) 
Interpolated 

series 
c 1b  2b  R-square 

Δc_atm1 -0.000945 
(0.0373)** 

-0.00454 
(0.64159) 

-0.3293 
(0.5663) 

0.2059 

Δc_atm2 -0.001238 
(0.2679) 

0.000218 
(0.9131) 

-0.2845 
(0.2944) 

0.1271 

Δc_atm3 -0.001357 
(0.3571) 

0.001884 
(0.4438) 

0.4385 
(0.0389)** 

0.0729 

Δc_itm1 -0.000291 
(0.6603) 

0.01217 
(0.0259)** 

0.8698 
(0.0389)** 

0.2268 

Δc_itm2 -0.00128 
(0.2408) 

0.000205 
(0.9204) 

-0.010925 
(0.9680) 

0.1251 

Δc_itm3 -0.001208 
(0.7588) 

0.00112 
(0.6894) 

0.4998 
(0.2115) 

0.08 

Δc_otm1 -0.000966 
(0.0199) 

-0.004392 
(0.6395) 

-0.6378 
(0.2541) 

0.2211 

Δc_otm2 -0.00119 
(0.2590) 

0.000657 
(0.7256) 

-0.5178 
(0.0464)** 

0.1305 

Δc_otm2 -0.001201 
(0.2583) 

-- -0.5490 
(0.0158)** 

0.1304 

Δc_otm3 -0.00128 
(0.3642) 

0.001756 
(0.5111) 

0.2273 
(0.4720) 

0.055 

Table 18, Panel A. Results from regression (15) for Interpolated call series. One 

asterisk denotes significance at a 1% significance level, two asterisks denote 

significance at a 5% significance level and three asterisks denote significance at 10%.   
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Panel B:  tttt RbGMVIXbcputs ε++∆+=∆ −− 1211 **  (16)    (Interpolated put series) 
Interpolated 

series 
c 1b  2b  R-square 

Δp_atm1 -0.000675 
(0.0017)* 

0.01048 
(0.0139)** 

0.388 
(0.1604) 

0.3659 

Δp_atm1 -0.000849 
(0.0021) 

0.006386 
(0.0263)** 

-- 0.3650 

Δp_atm2 -0.001177 
(0.3739) 

0.004215 
(0.4676) 

-0.06626 
(0.8992) 

0.1448 

Δp_atm3 -0.001085 
(0.8339) 

0.004968 
(0.3969) 

0.2139 
(0.7619) 

0.3866 

Δp_itm1 -0.000612 
(0.0123)** 

0.009966 
(0.0146)** 

0.8922 
(0.0008)* 

0.366 
 

Δp_itm2 -0.001276 
(0.3099) 

0.009374 
(0.0591)*** 

0.3964 
(0.4266) 

0.2032 

Δp_itm2 -0.00154 
(0.2416) 

0.007409 
(0.0304)** 

-- 0.2023 

Δp_itm3 -0.0001015 
(0.8406) 

0.007265 
(0.1744) 

0.7252 
(0.2881) 

0.4013 

Δp_otm1 -0.000717 
(0.0044)* 

0.008941 
(0.0464)** 

0.01189 
(0.9695) 

0.3766 

Δp_otm1 -0.000722 
(0.0013)* 

0.008815 
(0.0035)* 

-- 0.3765 

Δp_otm2 -0.001225 
(0.3694) 

0.002853 
(0.6671) 

-0.479 
(0.4073) 

0.1511 

Δp_otm3 -0.001178 
(0.8268) 

0.003801 
(0.5346) 

-0.2588 
(0.7349) 

0.3921 

Table 18, Panel B. Results from regressions (16) for Interpolated put series. One 

asterisk denotes significance at a 1% significance level, two asterisks denote 

significance at a 5% significance level and three asterisks denote significance at 10%.   
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7. CONCLUSION 
 
  
 We have constructed an implied volatility index on an individual stock price, 

General Motors. We have used the new VIX methodology to construct it and we 

called it GMVIX. Next, the properties of GMVIX have been examined. In line with 

Whaley (2000) and Giot (2002a), we have found that the index can be used as a gauge 

of the investor’s fear. We also found that leverage effect is true and it is also 

asymmetric, “leverage effect” is stronger when prices are falling. Moreover, the 

results from Granger causality tests imply that the investor can use the information 

contained in the values of GM of the past two or one periods to forecast the future 

GMVIX and hence to develop a profitable option strategy. GMVIX can also forecast 

the future GM returns but the relationship is weaker. We have also observed a 

spillover effect between GMVIX and VIX, VIX can forecast GMVIX but the opposite 

is not true. This was rather expected since GM is included in S&P 500.  

 Finally, we have taken ATM, ITM and OTM, with maturities near, second 

near and third near to maturity, call and put series. We constructed Interpolated series 

and Real series and we test whether GMVIX and GM have any predictive power over 

these options. We have found that in general GMVIX has some predictive power but 

GM has not. This predictive power is weaker and almost non-existent in the case of 

the Interpolated series. Furthermore, OTM options seem to be easier predicted by 

GMVIX, since GMVIX is constructed by OTM option prices. Despite these results, 

the reader should not be confused. Our results do not indicate any speculative device, 

but can just provide some useful information regarding future option movements. 

Hence information content in GMVIX could be used for hedging purposes.  

 Future research should investigate whether GMVIX can forecast the future 

market volatility. This can be done by means of statistical analysis or under a more 

practical metric such as Value-at-Risk by performing the appropriate Backtesting.     
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APPENDIX 1 

 

We represent here a sample Data set of a day’s (11/22/05) option series and only for 
the two nearest expiration dates 
 

symbol date expiration strike call/put ask bid volume 
 stock 
price 

GM 11/22/05 12/17/05 5 C 18.4 18.1 40 23.27 
GM 11/22/05 12/17/05 5 P 0.05 0 0 23.27 
GM 11/22/05 12/17/05 7.5 C 15.9 15.6 0 23.27 
GM 11/22/05 12/17/05 7.5 P 0.05 0 0 23.27 
GM 11/22/05 12/17/05 10 C 13.4 13.2 100 23.27 
GM 11/22/05 12/17/05 10 P 0.05 0 0 23.27 
GM 11/22/05 12/17/05 12.5 C 10.9 10.7 0 23.27 
GM 11/22/05 12/17/05 12.5 P 0.1 0.05 594 23.27 
GM 11/22/05 12/17/05 15 C 8.5 8.3 10 23.27 
GM 11/22/05 12/17/05 15 P 0.2 0.1 403 23.27 
GM 11/22/05 12/17/05 17.5 C 6.1 5.9 27 23.27 
GM 11/22/05 12/17/05 17.5 P 0.3 0.25 993 23.27 
GM 11/22/05 12/17/05 20 C 3.8 3.7 400 23.27 
GM 11/22/05 12/17/05 20 P 0.5 0.45 7211 23.27 
GM 11/22/05 12/17/05 22.5 C 1.9 1.8 5126 23.27 
GM 11/22/05 12/17/05 22.5 P 1.1 1.05 8731 23.27 
GM 11/22/05 12/17/05 25 C 0.75 0.65 6311 23.27 
GM 11/22/05 12/17/05 25 P 2.5 2.35 2429 23.27 
GM 11/22/05 12/17/05 27.5 C 0.25 0.2 1852 23.27 
GM 11/22/05 12/17/05 27.5 P 4.5 4.4 107 23.27 
GM 11/22/05 12/17/05 30 C 0.1 0.05 715 23.27 
GM 11/22/05 12/17/05 30 P 6.9 6.6 1503 23.27 
GM 11/22/05 12/17/05 32.5 C 0.05 0 136 23.27 
GM 11/22/05 12/17/05 32.5 P 9.4 9.1 650 23.27 
GM 11/22/05 12/17/05 35 C 0.05 0 16 23.27 
GM 11/22/05 12/17/05 35 P 11.9 11.6 19 23.27 
GM 11/22/05 12/17/05 37.5 C 0.05 0 3 23.27 
GM 11/22/05 12/17/05 37.5 P 14.4 14.1 10 23.27 
GM 11/22/05 12/17/05 40 C 0.05 0 6 23.27 
GM 11/22/05 12/17/05 40 P 16.9 16.6 0 23.27 
GM 11/22/05 12/17/05 42.5 C 0.05 0 0 23.27 
GM 11/22/05 12/17/05 42.5 P 19.4 19.1 0 23.27 
GM 11/22/05 12/17/05 45 C 0.05 0 0 23.27 
GM 11/22/05 12/17/05 45 P 21.9 21.6 0 23.27 
GM 11/22/05 01/21/06 2.5 C 20.9 20.6 0 23.27 
GM 11/22/05 01/21/06 2.5 P 0.05 0 0 23.27 
GM 11/22/05 01/21/06 5 C 18.4 18.1 70 23.27 
GM 11/22/05 01/21/06 5 P 0.05 0 70 23.27 
GM 11/22/05 01/21/06 7.5 C 16 15.7 50 23.27 
GM 11/22/05 01/21/06 7.5 P 0.1 0.05 20 23.27 
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GM 11/22/05 01/21/06 10 C 13.6 13.4 78 23.27 
GM 11/22/05 01/21/06 10 P 0.2 0.2 2510 23.27 
GM 11/22/05 01/21/06 12.5 C 11.2 11 0 23.27 
GM 11/22/05 01/21/06 12.5 P 0.4 0.3 980 23.27 
GM 11/22/05 01/21/06 15 C 8.9 8.7 10 23.27 
GM 11/22/05 01/21/06 15 P 0.55 0.45 955 23.27 
GM 11/22/05 01/21/06 17.5 C 6.8 6.5 0 23.27 
GM 11/22/05 01/21/06 17.5 P 0.9 0.8 621 23.27 
GM 11/22/05 01/21/06 20 C 4.7 4.6 273 23.27 
GM 11/22/05 01/21/06 20 P 1.4 1.3 3359 23.27 
GM 11/22/05 01/21/06 22.5 C 3 2.9 3125 23.27 
GM 11/22/05 01/21/06 22.5 P 2.2 2.1 7204 23.27 
GM 11/22/05 01/21/06 25 C 1.75 1.6 2935 23.27 
GM 11/22/05 01/21/06 25 P 3.5 3.4 1849 23.27 
GM 11/22/05 01/21/06 27.5 C 0.9 0.85 2151 23.27 
GM 11/22/05 01/21/06 27.5 P 5.1 4.9 168 23.27 
GM 11/22/05 01/21/06 30 C 0.45 0.35 372 23.27 
GM 11/22/05 01/21/06 30 P 7.1 6.9 287 23.27 
GM 11/22/05 01/21/06 32.5 C 0.2 0.1 31 23.27 
GM 11/22/05 01/21/06 32.5 P 9.4 9.2 569 23.27 
GM 11/22/05 01/21/06 35 C 0.1 0.05 30 23.27 
GM 11/22/05 01/21/06 35 P 11.9 11.6 102 23.27 
GM 11/22/05 01/21/06 37.5 C 0.1 0.05 186 23.27 
GM 11/22/05 01/21/06 37.5 P 14.4 14.1 15 23.27 
GM 11/22/05 01/21/06 40 C 0.05 0 59 23.27 
GM 11/22/05 01/21/06 40 P 16.9 16.6 2 23.27 
GM 11/22/05 01/21/06 45 C 0.05 0 1 23.27 
GM 11/22/05 01/21/06 45 P 21.9 21.6 0 23.27 
GM 11/22/05 01/21/06 50 C 0.05 0 0 23.27 
GM 11/22/05 01/21/06 50 P 26.9 26.6 0 23.27 
GM 11/22/05 01/21/06 55 C 0.05 0 0 23.27 
GM 11/22/05 01/21/06 55 P 31.9 31.6 0 23.27 
GM 11/22/05 01/21/06 60 C 0.05 0 5 23.27 
GM 11/22/05 01/21/06 60 P 36.9 36.6 0 23.27 
GM 11/22/05 01/21/06 65 C 0.05 0 0 23.27 
GM 11/22/05 01/21/06 65 P 41.9 41.6 0 23.27 
GM 11/22/05 01/21/06 70 C 0.05 0 0 23.27 
GM 11/22/05 01/21/06 70 P 46.9 46.6 0 23.27 
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