

University of Piraeus

Postgraduate Program

M.Sc. Digital Systems Security

Master’s Thesis

Multiple Layer Hybrid Classification

for Android Malware Detection

Anyfantakis Konstantinos

MTE 1902

Supervisor

Prof. Christos Xenakis

June, 2021

Copyright © Anyfantakis Konstantinos, 2021 – All rights reserved

It is prohibited to copy, store and distribute this work, in whole or in part, for commercial purposes.
Reproduction, storage and distribution for non-profit, educational or research purposes is
permitted provided the source of origin is referenced and the present message maintained.

This document reflects the results of a study that has been prepared on behalf of the Postgraduate
Program “Digital Systems Security” at University of Piraeus. The information and conclusions
contained in this thesis express the author’s personal, opinion and arguments, and therefore should
not be interpreted that they represent the official concepts of University of Piraeus.

Abstract

Because of the ever-increasing number of mobile devices running the Android

operating system, as well as their widespread use and diverse application capabilities,

such devices have become lucrative targets for malicious apps. Despite mitigating

attempts, mobile malware has begun to flourish at an alarming rate. Because Android

is an open platform that is fast dominating other rival systems in the mobile smart

device industry [3], this has become much more prominent. Experts acquire significant

insights into the mechanics of malware using powerful static and dynamic analysis, and

machine learning is frequently used to discover unknown harmful software.

Nevertheless, the Android operating system, as well as malware associated with it, is

always changing. As a result, training a machine learning model with obsolete malware

may have a detrimental impact on the predicted detection of more recent malware, so

one of the side goals of this thesis is introducing the Omnidroid dataset and the usage

of AndroPyTool, already covered in other research works. Apart from that, a new wave

of Android malware groups has recently developed that have excellent evasive

capabilities, making them far harder to identify using traditional approaches. Various

malware detection approaches based on static, dynamic, and hybrid analysis have

recently been proposed to make Android devices increasingly safe, however with the

growing evolution of malware these methods are nowadays ineffective and imprecise.

This thesis not only demonstrates how to employ unique parallel classifiers forming

stacked ensemble models to identify zero-day Android malware, but it also discusses

how this type of models helps improving malware detection using it on both types of

features (static features obtained from static analysis and dynamic from dynamic

analysis). On top of that, the suggested approach attempts to fuse the results from these

two types, being classified on their own, to aggregate attributes from parallel classifiers

using as an example a soft-voting ensemble. The final prediction accuracy on the given

dataset was found to be around 91%.

Keywords: Android, malware, detection, machine learning, ensemble, parallel

Table of Contents

1. Introduction .. 6

2. Theoretical Background ... 7

2.1 Android .. 7

2.1.1. Architecture ... 8

2.1.2. Application principles ..12

2.1.3. Security ..18

2.2. Android Malware Analysis ..21

2.2.1. Static Analysis ...24

2.2.2. Dynamic Analysis ...28

2.2.3. An example of Hybrid Analysis ..30

2.3. Machine Learning ...36

2.3.1. Basic Algorithms ..40

2.3.2. Ensemble Learning ...43

2.3.3. Neural Networks ..45

2.4. Related Work ..47

3. Problem statement ...50

4. Approach ..52

4.1. Dataset ..53

4.1.1. Features ...54

4.2. Model Architecture ..60

4.2.1. Ensemble Classifiers ...62

4.2.2. Stacked Approach ..62

4.2.3. Voting-based fusion ..65

5. Implementation ...67

5.1. Workspace ...67

5.2. Methodology ..68

6. Results ...73

6.1. Metrics ..73

6.2. Evaluation ..77

7. Future Work ..79

8. Conclusion ...80

References ...81

List of Figures

Figure 2.1. Android platform architecture .. 9

Figure 2.2. Dalvik / ART architecture .. 11

Figure 2.3. Application and process ... 14

Figure 2.4. Activity lifecycle .. 15

Figure 2.5. App components .. 17

Figure 2.6. Android static analysis .. 26

Figure 2.7. Android dynamic analysis.. 29

Figure 2.8. syssecApp permissions ... 30

Figure 2.9. syssecApp main activities .. 31

Figure 2.10. syssecApp receiver/services ... 31

Figure 2.11. syssecApp decompilation .. 32

Figure 2.12. syssecApp onAlarmReceiver.. 33

Figure 2.13. syssecApp smsReceiver .. 34

Figure 2.14. syssecApp suspicious functions ... 34

Figure 2.15. syssecApp virusTotal analysis ... 35

Figure 2.16. Types of ML algorithms .. 38

Figure 2.17. Cross-validation ... 39

Figure 2.18. Boosting and Bagging.. 45

Figure 2.19. Neural Networks ... 46

Figure 4.1. Omnidroid dataset ... 55

Figure 4.2. AndroidPyTool overview .. 59

Figure 4.3. Model’s stacked classifier .. 61

Figure 4.4. Model architecture .. 61

Figure 4.5. Stacked ensemble learning ... 63

Figure 4.6. Soft-voting model ... 66

Figure 4.7. Model as-a-whole ... 66

Figure 5.1. Loading and processing data (python) .. 69

Figure 5.2. Loading and processing data .. 69

Figure 5.3. Testing estimators loop (python)... 70

Figure 5.4. Testing estimators loop ... 70

Figure 5.5. Cross-validation .. 72

Figure 5.6. Stratified K-Fold .. 72

Figure 7.1. Testing estimators loop (python)... 74

Figure 7.2. Testing estimators loop ... 74

Figure 7.3. Precision and recall ... 75

Figure 7.4. ROC Curve .. 76

Figure 7.5. Static features evaluation ... 77

Figure 7.6. Dynamic features evaluation .. 77

Figure 7.7. Voting fusion evaluation ... 78

List of Abbreviations

1. AOSP, Android Open Source Project

2. GPS, Global Positioning System

3. UMTS, Universal Mobile Telecommunications System

4. GSM, Global System for Mobile

5. IPC, Inter-Process Communication

6. OOM, Out of Memory

7. HAL, Hardware Abstract Layer

8. API, Application Programming Interface

9. ELF, Executable and Linking Format

10. ART, Android Run Time

11. VM, Virtual Machine

12. JVM, Java Virtual Machine

13. SDK, Software Development Kit

14. JNI, Java Native Interface

15. URI, Uniform Resource Identifier

16. UID, Unique Identifier

17. GID, Global Unique Identifier

18. XML, Extensible Markup Language

19. DEX, Dalvik Executable

20. JAR, Java Archive

21. IMSI, International Mobile Subscriber Identity

22. ML, Machine Learning

23. SVM, Support-Vector Machines

24. JSON, JavaScript Object Notation

25. CSV, Comma-Separated Values

26. GUI, Graphical User Interface

27. IDE, Integrated Development Environment

28. CV, Cross Validation

29. AUC, Area Under Curve

30. ROC, Receiver Operating Characteristic

Page 5

1. Introduction

 In order to present the motives behind this thesis, this section leads the rest,

ensuring adequate context for understanding the underlying problem and the factors

that encourage research to provide information and solutions.

 At the present, cyber threats are one of the most difficult and challenging

problems affecting contemporary society. These activities are an attempt to disrupt,

reveal, modify, disable, steal or obtain unauthorized access to something that has value

to an organization or another actor, or make unauthorized use of it. Efforts to address

these attacks have resulted in enormous costs [8]. Although the forms in which these

cyber attacks are presented and perpetrated, vary, a large number of mechanisms and

techniques are also deployed to deal with them.

 This research focuses on a specific type of attacks, those carried out through

executable files containing a malicious payload, also known as malware, software that

attempts to obstruct their proper functioning by causing damage to computing devices.

Such attacks have a long trajectory, since the first viruses emerged in earlier years. Ever

since, they have progressed into various forms, trying to implement different processes

like attempting to bypass antivirus and attain the victim, or even using sophisticated

methods of obfuscation designed to prevent its tracking. The main problem involving

existing malware is broad and complicated. Malware has been found to be a powerful

platform that targets a huge number of users and points to critical infrastructures for

massive assaults. Carrying this as a starter, when facing such kind of threats, there are

two main tasks: to build malware detectors capable of filtering and classifying

suspicious samples that integrate malicious pieces of code and, secondly, to mitigate the

damage induced when the detection mechanism has been successfully circumvented.

As a standalone process in which suspect samples are examined to form an opinion on

whether there is malicious or harmless intent, this study focuses on the former issue.

 In addition to malware, because of their success, mobile operating systems are

everywhere nowadays. This has been found also in major businesses, thereby

introducing new strategies and rising the number of telecommuting staff. Therefore,

new tools for automated malware detection in mobile devices, particularly those using

the Android operating system, need to be investigated, as it accounts for over 80 percent

of the market share compared to iOS [12]. Even after the steps widely in use to suppress

exploitation among the rising population of Android users around the world, Android

malware is at an impressive speed.

Page 6

The main means of Android app delivery is by app markets, and alongside the

official Google Play app store, many unauthorized online app stores are growing. Since

these platforms have poor or non-existent safeguards to discourage malicious apps from

being uploaded and delivered to the smartphones of consumers, the third-party app

stores that have arisen in past years have also been a very prevalent cause of malicious

app delivery.

So, attempts to mitigate malware rely on the creation and operation of filters that

can reliably determine if a suspect sample can be deemed to be benevolent or malicious.

It is possible to determine the variety of actions that the application will perform and to

make that decision by extracting a set of behavioral markers. The relevance of this

challenge is without doubt, but the vast number of new applications discovered daily

render the use of software capable of automatically dealing with large quantities of

samples essential. Therefore, analysis must be carried out to review processes that can

simplify this mission, preventing malware to target consumers.

Machine learning strategies are increasingly gaining attention as a solution to

resolve this issue in this context. They can be used as a tool to launch malware detectors

that can accommodate vast quantities of applications and that can categorize malicious

or benign software from already labeled samples based on a previous training phase.

Machine learning methods, however, involve vast datasets with representative

characteristics derived from actual samples, establishing one of the purposes of this

study. Therefore, a strategy is suggested for timely identification of Android malware,

by concurrent machine learning classifiers that use various algorithms with features

that are intrinsically distinct. In the learning stage of the development of the model, a

variety of static and dynamic app features are used.

Finally, regarding the structure of this dissertation: First, there is the segment on

the theoretical background, where all theoretical knowledge is provided that was

deemed fit or beneficial in understanding the purpose for developing an automated tool

for Android malware analysis and detection. Next comes the problem statement and

approach chapters, where the challenge that this study helps to address, is quickly

identified and evidence that is yet to be considered for its resolution are presented. The

next part is the chapter of implementation, in which the method of constructing the

classifiers suggested is discussed. The outcomes of the implementation are included in

the next chapter. This covers aspects of performance assessment of the multiple

constructed classifiers. Eventually, the last chapter contains recommended suggestions

which could be focused as possible future work.

Page 7

2. Theoretical Background

 This section includes the background of required information concerning

Android and its malware realization. This includes a theoretical background about

Android as system, Android malware in general, while it also focuses on the basics of

using machine learning. It’s quite important to note here, that this section tries mostly

to offer basic knowledge, in order to better understand the proposed architecture shown

later and to further raise awareness of malware’s importance.

2.1 Android

 Operating systems for new devices are becoming more relevant as smartphones

and tablets become more popular. Android Inc., which was acquired by Google and

launched as AOSP in 2007, developed a platform based on that principle and through

the years, Android has become an operating system that operates mostly on battery-

backed low-powered devices and is equipped with hardware such as GPS receivers,

cameras, light and direction sensors, WiFi and UMTS networking. It is developed on

top of Linux, but modifies it in major ways, including those that violate the popular

usability. A reasonable estimation would be that Android and Linux are about 95

percent the same at the kernel level, and about 65 percent or so at the user-mode, but it

is difficult to calculate just how far the two OSes vary [14]. This estimation is rendered

by taking into account that, apart from a few variations at the kernel level, the majority

of the kernel source is unmodified. Such discrepancies are collectively referred to as

Androidisms, and most have already been incorporated into the mainline by now [12].

 Android is a feature-rich operating system presenting a complete mobile

application software stack. Android APIs are a rich collection of device services that are

packaged in intuitive class files that allow many useful functions to be quickly accessed.

All the materials, frameworks and functionality needed to create an Android application

are available are free. The Android app is a smartphone application designed for use on

Google's Android platform-powered smartphones which can be written in several

different programming languages. While most of them are heavily Java-coded, they rely

deeply on a large stack of C++ written native libraries, discussed also in 3.1.1. Developers

of software can conveniently navigate the tremendous array of framework resources,

software and libraries if necessary in their app.

Page 8

2.1.1. Architecture

 Android as a platform has managed to have a quite simple and yet divided

architecture. As seen in figure 3.1, there are 5-6 different software layers, each one

serving its own purpose. Starting from bottom to top, due to its open source and free

license nature, the Linux kernel offers an excellent Android low-level example. The

Linux kernel is the base of the Android platform. The Android Runtime for instance –

also seen later in detail, depends on the Linux kernel for underlying functionality such

as threading and resource protection at a low level. Using a Linux kernel makes it easier

for Android to take advantage of key security features and helps manufacturers of

smartphones to create hardware drivers for a well-known kernel. Introducing its own

new features in the Linux kernel, Android also adds Binder IPC, the heart of all IPC in

Android working like a clock pulse in a circuit, keeping sync by communicating between

processes and services and presenting a character device like /dev/binder which all

applications can open. Along with Binder, it adds Anonymous Shared Memory, which

is a shared memory system where applications can open a character interface like

/dev/ashmem to construct a region of memory that can then be converted into memory,

a Logger, ION Memory Allocator and Low Memory Killer - a layer on top of Linux's own

Out-Of-Memory (OOM) killer who, in the event of memory depletion, terminates

processes [12].

 Immediately after the kernel layer, follows the hardware abstraction layer also

known as HAL. Standard interfaces that expose computer hardware functionality to the

higher-level Java API platform are provided by it. The HAL consists of several library

modules, each of which has an interface, such as a camera or Bluetooth module, for a

particular type of hardware item. The Android system loads the library module for that

hardware part when a platform API allows a call for hardware access. In other words, a

HAL defines a standard specification to be introduced by hardware vendors that allows

Android to be agnostic regarding implementations of lower-level drivers used in the

previously mentioned kernel [14]. Using a HAL allows to enforce features without

impacting or changing the higher level structure.

Page 9

Many main components and services of the Android framework, such as HAL

and other core characteristics, are constructed from native code that includes native

libraries written in C and C++. To open the capabilities of some of these native libraries

to users, the Android platform offers Java application APIs. For starters, via the Java

OpenGL API of the Android platform, you can access OpenGL ES to add support for

drawing and manipulating 2D and 3D graphics in your app. Most of the essential

portion of Android critical parts, is implemented in C/C++ and compiled into native

binaries. Almost all core libraries exist in a filesystem like system/core to provide

wrappers over kernel features or implement additional functionality like wrapping the

ION Memory Allocator socket mechanism and abstracting partition management [14].

User programs are compiled into bytecode, but in the sense of an Android runtime

environment as virtual machine, which is an ELF binary where the bytecode runs or

compiled ahead of time.

Figure 2.1. Android platform architecture

Page 10

Now for one of the most important parts of Android, lying together with native

and core android libraries, follows the Android Runtime or ART. Android Runtime and

its precursor, Dalvik, were primarily developed for the Android project, performing the

translation of the application's bytecode into native instructions that are later executed

by the device's runtime environment. In general, the Dalvik VM and ART use a register-

based architecture that needs less, usually more complex, virtual machine instructions,

unlike Java virtual machines, which are stack machines [12]. Using the Android

application programming interface, applications are written in Java, compiled into Java

bytecodes, and converted to Dalvik or ART instructions as provided. Several Java classes

are contained in a single file called .dex. In order to save space, redundant strings and

other constants used in different class files are used in the .dex output only once. Also,

the Java bytecode is often translated into an alternate instruction set used by the Dalvik

VM. ART executes the Dalvik Executable or .dex format and the definition of its

bytecode as the runtime. ART and Dalvik are .dex bytecode compatible runtimes, so

when running with ART, applications built for Dalvik should operate.

Some techniques that operate on Dalvik, however, do not operate on ART [14].

Some of the features added were ahead-of-time compilation and development /

debugging improvements. ART increases the overall performance of execution and

decreases power consumption by reducing Dalvik's interpretation and trace-based JIT

collection, resulting in increased battery autonomy on mobile devices. At the same

time, ART brings quicker program execution, better processes for memory allocation

and garbage collection, modern debugging functionality for applications, and more

reliable high-level program profiling [12].

Android programs run on a virtual machine, but often they need to break from

it, usually to reach unique features on hardware or chipsets. Android Runtime then

allows, via the Java Native Interface (JNI), the incorporation of native libraries (ELF

shared objects) in the program code. There is no question that manufacturers will be

satisfied with pure implementations, as those are limited to the VM and therefore are

agnostic to the underlying architecture. In this manner, with no change, Android apps

will run uniformly on all chipset architectures. The VM setting, on the other hand, is

not without its limitations and disadvantages, such as decompilation. Therefore, it is

not at all surprising to see JNI used in performance enhancing applications or finding

resistance to reverse engineering [14].

Page 11

Figure 2.2. Dalvik / ART Architecture

 The entire Android OS feature set is also accessible through APIs written in the

Java language. By simplifying the reuse of core, modular device components and

utilities, these APIs shape the building blocks you need to construct Android apps. It

owes its rich collection of frameworks a crucial portion to its popularity because would

potentially end up being yet another embedded Linux distribution without them.

Android supports the application development process by offering interfaces,

encouraging developers to use the higher-level Java language rather than low-level C /

C++. The implementation of frameworks further speeds up the process, as developers

will rely on the numerous APIs that manage access to graphics, audio and hardware.

These are much easier, and run in a far simplified way, unlike X-Windows and GNOME

/ KDE [14]. Android frameworks are broken into different namespaces according to their

features through the use of Java package naming and include a rich and expandable

View framework to create the UI of an app, a Resource Manager that provides access to

localized strings and layout files, a Notification Manager that enables notifications, an

Activity Manager that manages the lifecycle of applications and Service Providers to

have access to other apps’ data.

Page 12

 Finally, Android comes with a collection of messages, SMS texting, calendars,

internet access, contacts, and more key applications. Among the programs the user

wishes to use, software included with the framework have no unique classification. So a

third-party app can become the default web browser of the user, SMS messenger, or even

the default keyboard. The core system apps act both as user apps and feature providers

to be accessed by developers from their own software.

2.1.2. Application principles

 The most important part of an Android device supported by its own architecture

described before, are applications or so called apps. Although at first it was mainly Java

that was used to create new apps since the runtimes, frameworks are based on it and

JVM but since May 2019 Google declared the Kotlin programming language to be the

preferred language for creating new Android apps, which is created to interoperate

normally with Java, and its standard library depends on the Java Class Library [12]. As a

whole, using Kotlin, Java and C++ languages, new Android apps can be written and be

deployed though without any problems.

The Android SDK tools compile the code into an APK, an Android Package,

which is an archive file with the .apk extension, along with some data and property files.

One APK file includes all the content of an Android app and is the file used to launch

the app by Android-powered users. Android Package is the application file format used

for the delivery and development of smartphone applications, computer games and

middleware using the Android operating system, and a range of other Android-based

operating systems. All program code such as .dex files, services, equipment, credentials,

and manifest files are stored in an APK file. APK files may have any name needed, as is

the case for many file formats, but it might be important for the file name to end with

the .apk file extension. Altogether, an APK file usually contains a lib directory with

compiled code that is platform dependent, a res and assets directory with resources and

app assets used by different content managers, a META-INF directory containing a

meta-manifest file and other certificates, a classed.dex file that includes the classes

compiled by the Dalvik Virtual Machine and the Android Runtime in the dex file format

and finally an AndroidManifest.xml file that specifies the program name, version, access

rights, referenced library files [16].

Page 13

Every Android app, covered by the following Android security features, exists in

its own security sandbox: The Android operating system is a Linux multi-user system

where each software running is a different user. The system assigns a special Linux user

ID to all apps by default and sets permissions on all files in an application, so that they

can only be reached by the user ID allocated to that application. Each process runs in

its own virtual machine, so the code of an app runs independently from other programs

and so, each app runs in its own Linux process [34]. When all of the components of the

software are to be run, the Android device begins the process and then shuts down the

process until it is no longer needed or when the machine needs to restore memory for

other applications. The concept of least privilege is also applied by the Android

framework. That is, by default, each app only has access to the components it needs to

do its job and no more. This provides a very safe environment in which portions of the

device, for which approval is not granted, will not be reached by an app. There are,

however, forms for an app to exchange information with other software and for an app

to access device resources. You can arrange to share the same Linux user ID with two

users, in which case they are able to access each other's files. Apps with the same user

ID can also arrange to run the same Linux process and share the same VM in order to

save machine resources.

 There is no single entry point that the device can reach in an Android application

like a main() function for example, unlike other operating systems. An app component,

instead, is a separate point from which the device will independently reach an

application and instantiate the component entity. There are various kinds of application

components, each serving a function and a lifecycle that determines its creation or

destruction [16].

Page 14

Figure 2.3. Application and process

 The first app component that comes in use is the Activity, the point of entry for

communicating with the user. It reflects a single user-interface device, which means a

single screen with a user interface is represented by an activity. In order to shape a

consistent user interface, different activities work together, but each is independent of

the others. As such, every one of these activities will start with a separate application.

The precise context in which an activity displays users and the number of events in an

app depends on how the task is constructed by the developer. Usually, one activity is

always defined as the main activity in a multi-activity environment [12]. In order to

execute multiple activities, each activity will then initiate another activity. The previous

activity is interrupted any time a new one begins, but the device retains them in a stack

in order to retrieve them correctly. Normally, the activities implemented as a subclass of

the Activity class, know that the formerly used processes require items that can be

resorted to by the users like other stopped operations activities, and thereby give more

emphasis to holding certain processes intact. They help the app destroy its own process

so that the user can return to previous processes and activities in their former state while

providing a means for apps to enforce user flows with each other and to organize these

flows for the device. A great example for activities is an email app that may have one task

that displays a list of new emails, another email composition task, and another for email

reading. Then, to encourage the user to post a photo, a camera app will initiate the

activity in the email app that composes new mail [12].

Page 15

Figure 2.4. Activity lifecycle

 Another key component is called Service. It is a general-purpose access point to

keep an app going for all types of purposes in the background. It is a part that runs in

the background for long-running operations or for remote processes to conduct work.

A user interface is not supported in this case. You may connect or attach an activity to a

service that is running, while when linked to a service, via the interface exposed, the

activity can communicate with the service. Service systems, like all application

elements, often run by default on the main thread of an application [12]. There are

mainly two kinds of services that tell the system how to manage an app. An app’s service

that needs to be in the forefront with a message to tell the user about it; in this situation,

the machine understands that it should work very hard to keep the activity of the service

going, and if it goes out, the user will be disappointed. On the other hand, the user is

not explicitly aware that a standard background service is operating, so the device has

more flexibility to control it. If it needs RAM for items that are of more urgent

importance to the user for example, it will cause it to be destroyed. Live wallpapers,

feedback listeners, screen savers, input methods, connectivity facilities, and many other

aspects of the core framework [16] are all designed as utilities introduced by apps (as a

subclass of Service class) and connected to when they should be running.

Page 16

Apart from services and activities, there’s also another component called Content

Provider, which maintains a mutual collection of application data that can be stored in

the file system, on the network, in the SQLite database, or some other permanent

storage location accessed by the software. Other apps can ask or change the data from

the content provider if the content provider requires it. As a subclass of Content

Provider class, such a provider specifies the data format it supports and provides a series

of methods to allow other applications to query or change the data. A content provider

is an entry point in an application for publishing named data objects, defined by a URI

scheme, to the system. An app will then specify how to map the data it holds to a URI

namespace, transmitting such URIs to other entities who will use them to retrieve the

data in turn. An example of content provider in Android, is the one that it provides to

manage the user's contact information.

Finally, there are the Broadcast Receivers as part of the app. A broadcast receiver

is a part that allows the device to transmit events outside of a normal user flow to the

app, enabling the app to respond to broadcast announcements throughout the device.

The device will provide broadcasts also to applications that are not currently operating,

because broadcast receivers are another well-defined entry into the app. Broadcast

receivers are responsible for obtaining the transmission signal and reacting to the

information provided by a transmission. For example, a broadcast introduced as a

Broadcast Receiver sub-class that announces that the screen has switched off or the

battery is down. Although broadcast receivers do not have a user interface, when a

broadcast event happens, they will generate a status bar warning to warn the user.

 A unique property of the Android device architecture is that any app can initiate

any other app’s components. If you want the user of the smartphone camera to capture

a picture, there's obviously another app that does it and your app will use it to capture it

instead of designing a new activity to do it. You don't need to integrate the code from

the camera app or even connect to it. Instead, in the camera application that captures a

frame, you can simply start the action [16]. As the device launches a component, if it is

not already running, it begins the process for that function and instantiates the classes

required for the component. For instance, if your software begins a photo-capturing

operation in the camera app, that operation will run in the process that belongs to the

camera app, not in the process of your app. Thus, Android applications do not have a

single entry point, as already mentioned before there is no main() function, unlike

software on most other platforms. Because each app is run by the device in a different

process with file permissions limiting access to other applications, your app is unable to

Page 17

trigger a feature directly from another app. To trigger a component in another app, send

a message to the device that defines your intent to enable a specific component. The

Android system triggers that part for you afterwards. So, an intent, an asynchronous

message, aims at runtime to connect individual components to each other regardless of

whether the component is part of the same framework. An intent defines the procedure

to be done for activities and services, and may determine the URI of the data to be

generated annually. For broadcast receivers, the intent specifically determines the

transmitting of the broadcast. Intents may not enable the service provider, though.

Instead, when targeted by a Content Resolver request, which manages all relevant

interactions with the content provider so that the component that's performing

transactions with the provider doesn’t, the content provider is enabled [12].

 All of these app components are declared in the AndroidManifest.xml file which

primary function is to inform the device about the app’s components. It is located in the

root directory of every Android application and actually contains important

information about the application and its components with its permissions, packages

and used libraries. The device is not noticeable to events, so programs, and content

providers that you have in the source but are not announced in the manifest may

therefore never run.

Figure 2.5. App components

Page 18

2.1.3. Security

 Despite major changes for each edition, Android had its security broken a

number of times in the past. The flaw was often in Android itself, while at other times

in the underlying Linux Kernel. Therefore, it follows that Android security must

integrate both environments, Linux and its own, and merge them as successfully and as

safely as possible together. On top of the Linux basis, Android builds a rich system, but

depends on Linux for nearly all operations at its heart [3]. The Linux provision also

allows Android to use the same security mechanisms as the permissions, capabilities,

SELinux, and other low-level security protections provided by Linux.

 Regarding Linux security model, having remained almost unchanged through

the years, it comes up with the most known security features of UNIX family. First of all,

a user has a specific user ID called UID, so the real user name does not matter. UID 0 is

the most powerful user ID possible, essentially breaks checks and provides access to all

files or services regardless of the way authorization checks are done [34]. What follows

is the total power of uid over the device. In addition to that, the user has also a numeric

default group ID called GID, so the group name does not matter, just like the username,

except some GIDs are reserved for device use. File permissions are given to a designated

person, group, and "other" that maps read, write, or execute permissions to each one of

them. This incredibly narrow model, for which UNIX has been criticized, is

accompanied by both files and folders. File access criteria effectively compel the

formation of specialist organizations because of their restrictions. Now there are also

the SetUID or SetGID binaries, which cause another UID to be presumed or joined

during its execution by another party. These unique permissions are immediately given

by executing a setID binary. This function is simply a feature used to operate around

privileged activities, such as modifying one's UID or password. Finally, it follows that

access to system tools such as IPC or UNIX sockets, is an actual verification of user

permissions: anything in UNIX can be accessed as files [34]. That is, they can be treated

just like files and have the same form of permissions, having the same filesystem

interpretation.

 Android utilizes the same permission paradigm, which is obtained from the

underlying Linux system, but provides a novel, quite different interpretation by saying

that the applications are considered as users with IDs, not the actual person using the

device, thus creating a kernel-level app sandbox. When an application is installed for

the first time, it is given a specific user ID also called app ID by the PackageManager, an

Page 19

object service to obtain different categories of app package-related information

currently installed on the device [3]. The same applies for all of the software other than

the kernel in Android architecture like native libraries and binaries, app framework or

runtime, they all run inside of an global application sandbox system. The root user with

UID 0 in Android is limited to as less processes as possible in order to avoid root-owned

processes getting exploited. One example of such a process is init, the first process to

start in Android, responsible for the initial setup of the system [12].

 Another security feature implemented in Linux and ported directly in Android,

is the capabilities system. If a SetUID binary can be trusted, the model can work in

principle. In reality, however, SetUID faces inherent security risks: if a binary SetUID is

abused in any way, it may be fooled into compromising the root. Capabilities provide a

solution to this issue by dividing root “powers” into different regions, each represented

by a bit in a bitmask, and by toggling the bitmask allowing or limiting respectively

privileged operations in these regions. For an example, a networking utility like older

versions of ping that need to create raw sockets, uses capabilities and with a slice called

CAP_NET_RAW allows ping to run as a normal user and decides that only the part that

needs the raw socket will be using root [3]. Init also begins most of the core processes of

Android as root, and as they launch, these processes have the full bitmask capabilities.

However, they lose their privileges until these procedures genuinely do something, and

maintain only the capabilities they require.

 Furthermore, Android incorporates the notion of isolated services. This function

is a type of transference that allows an application to run its services entirely

independently with a separate UID in an another process, denying them any other

request. As a result, they are unable to scan for device assets and are essentially confined

to memory operations. This is very useful for applications such as web browsers [3].

 As part of its security model, Android also maintains Security-Enhanced Linux

or SELinux and sometimes called SEAndroid. With it, all processes, even those running

with root or superuser rights including Linux capabilities, implement mandatory access

control. Many enterprises and organizations have contributed to the SELinux

implementation of Android. Android can help secure and confine system resources with

SELinux, monitor access to application data and server logs or reduce the impact of

malicious malware. Generally, SELinux works on the default denial principle, so

something not expressly permitted is rejected [34]. It can work in two global modes: the

permissive mode, which logs but does not execute permission denials and then

enforcing mode, in which denials of authorization are also logged and implemented.

Page 20

Using enforcing mode, Android provides SELinux and a corresponding security policy

that operates through AOSP by default. The key in SELinux is that it is based on labeling.

A label assigns to a resource (as an object) a new category, and to a process (subject) a

security domain. SELinux can then be enforced such that only processes in the same

domain, which is also labeled, can use the resource. For instance, in the init domain, no

other processes should run other than init process which was mentioned earlier.

 Now, instead of native code, operating at the level of a virtual machine carries

with it immense benefits for controlling activities and imposing stability. The benefit of

the ART / Dalvik VM lies therein, that most operations are carried out by means of pre-

supplied packages and classes, and those come with authorization controls built-in. The

user app is absolutely useless, stripped of all Linux-level functionality and permissions,

so all access to the underlying device infrastructure can be blocked right there. In order

to perform any operation that has an effect beyond the reach of the program, a process

like SystemServer (The center of android app system. It initiates all the other system

services and registers them with the ServiceManager) must be used. Although a call to

SystemServer may be openly invoked by any application, none has access to its specified

permissions, which of course can be reviewed. This check is carried out beyond the

phase of the application, because the application has no logical route by which it may,

unless it has been delegated to it already, somehow receive such permissions. What

follows is that there is no need for unique data structures or specific metadata for the

permissions themselves. A permit in Dalvik / ART is nothing more than a basic constant

value given in an app’s manifest file [3]. When an app is installed by the Package

Manager, the credentials of that app are applied to a database that includes permissions,

which is in essence part of a larger database with packages containing a lot more useful

information than just permissions such as public keys etc. Finally, what stands between

VM level permissions and those of Linux and at the same time connecting them, is a file

called platform.xml in /system/etc/permissions/ directory that actually maps a given

named permission to a group or app ID.

 Ultimately, it’s worth mentioning the application signing and authentication

system that Android makes use of. Without the need of complex frameworks and

permissions, application signing helps developers recognize the author of the

application and upgrade it. Any program running on the Android platform must be

developer-signed. Either Google Play or the software installer on the Android computer

would reject applications that try to run without signing them [34].

Page 21

2.2. Android Malware Analysis

 Nowadays almost every cyber threat contains malware and at the same time the

number of such attacks is rising, while the attackers are becoming bolder. Every day,

millions of bits of malware are seen, but usually not enough resources and time are out

there to deal with it all. In most intrusion and vulnerability cases, malicious software,

plays a critical role. Malware, including trojan horses, worms, rootkits, viruses and

spyware, can be called any software that does anything that causes damage intentionally

to a person, device, or network [34]. In order to learn how it operates, how to classify it,

and how to beat or remove it, malware analysis is used, as the process or technique of

evaluating the characteristics, origin and possible effect of a given sample of malware.

Results from such analysis are used for multiple purposes, like incident response in

order to have an overview of root cause, measure effect and excel in recovery and

restoration, or even malware research to obtain an appreciation of the new methods,

exploits and tools employed by malicious users.

 With respect to the process of analysis, quite likely, often the analyst will have

only just an executable, probably not human-readable. There will be also available a

number of techniques and tricks to make sense of it, each disclosing a small amount of

knowledge. In order to display the whole picture, you'll need to use a number of software

and tools. On that matter, malware analysis has two basic approaches: static and

dynamic. Static analysis is done by dissecting the various binary file resources without

executing them and observing each variable. It is also possible to disassemble the binary

file or reverse engineer it using a disassembler (tools like Ghidra and IDA, for reverse

engineering and malware analysis). Sometimes the code can be transformed into

assembly language that humans can read and understand, and so someone can make

sense of the assembly instructions and get a clearer understanding of what the software

is doing and how it was initially designed. Standard static analysis is easy and could be

fast, but it is largely ineffective against advanced malware, and important behaviors and

activities can be skipped [15]. Among the difficulties that are presented, are techniques

that adversaries may use such as obfuscation, a process which makes it hard to

understand textual and binary data. It allows malicious user to conceal crucial terms

such as strings because they expose patterns of the actions of the malware.

Page 22

Encryption and encoding methods are widely used by rivals to hide data in terms

of obfuscation. Quite often, they go a little deeper and use special methods called

packers which compress the executable into a packed file and self-extracts into memory

in runtime, which make reverse engineering and research even more difficult [29].

 On the other hand, dynamic analysis is done when the malware is already

operating on a host machine by analyzing the malware's actions. In a sandbox setting,

this type of inspection is often done to prevent the malware from actively infecting

production processes; several such sandboxes are virtual structures that can be quickly

rolled back to a clean state after the completion of the study. Current malware can

present a wide range of evasive strategies designed to overcome complex analytics,

including virtual environment testing or active debugging tools, slowing harmful

payload execution. In this case, the provided solution to this, is to use a hybrid version

of this by combining both of static and dynamic analysis by providing the best of these

approaches.

 Moving on from generic ideas on malware analysis to more specific environments

like Android, we could say that mobile devices have an extremely different vulnerability

environment, albeit comparable in some ways to desktops. Their mere versatility, unlike

the other, exposes them to even more dangers, since they can be unintentionally lost or

purposely stolen. This essentially negates the software security features that one could

impose on a desktop system, by limiting access at the lock and key level, opening up a

slew of threats that an attacker could attempt until a system has physical access. The

attack profile has also changed since mobile devices are more likely to include personal

user data and instead of taking complete control of the device centrally, it is always

necessary to only access user data and smuggle it out to a remote server, potentially often

using an internet connection.

 Thus, in Android-powered devices the main threat vector is from within: that of

an application [34]. A misbehaving or purposely malicious app may try to access the

details of the user or even take over the functions of the device. Android must consider

all apps as suspicious in order to avoid this. Applications are granted a minimum range

of permissions by default, otherwise they are constrained. However, this range should

not contain something that might be potentially vulnerable even if it is considered

important. For this purpose, any extra permissions must be expressly asked in the

application\s manifest for any approval outside of the minimum range. Each program

is granted its own UID, which isolates it from others, and root access for software is never

given, needless to say.

Page 23

That, though, is not enough since Android must secure itself as well from the inside,

since it is possible that a malicious application will attempt to target fragile components

of the OS itself, given the small subset of permissions it has. Such vulnerabilities can be

abused and more privileged operating system components can be fooled into executing

an activity on behalf of the application, especially those running as root [34]. This is a

major threat due to the large number of software running in the Android system, and

even more code in the underlying Linux kernel.

 Latest studies based on developments in mobile malware, suggest that the

number of malicious Android applications is currently between 120,000 and 718,000 [8].

It is possible to categorize most Android malware into two forms, each using social

engineering to manipulate users into running the malicious software. The bulk of

malware for Android is known as fake installers. These applications claim to be an

installer on their computers for legitimate applications and trick users into

downloading them. The software will display a service agreement when executed and,

after the customer has agreed, sends high rated text messages. Variants involve

repackaged software that have the same features as the original version, mostly paid for,

but have extra code in the background to secretly transfer SMS messages. SMS trojans

are relatively simple to implement: it is only important to execute a single activity with

a button that begins sending an SMS message when pressed [8]. Another Android

malware form that has been found is known as spyware and has the potential to forward

private data to a remote server. The malware may also obtain commands from the server

to start specific operations in a more complicated manner, in which case it is part of a

botnet. Broadcast receivers are of specific interest when they're used to remotely capture

and forward incoming SMS messages to a remote server or wait until the system is

launched to initiate a background operation. The advanced Eurograbber attack

demonstrated in the summer of 2012 that this form of malware could be very profitable

by stealing an estimated 36 million EUR from bank customers in Italy, Germany, Spain

and the Netherlands [8].

 Public access to known samples of Android malware is mainly supported by

plenty of datasets found online. One of the most prominent datasets is the Drebin one,

which includes 5,560 software from 179 separate families of malware. The samples were

collected and made available by the MobileSandbox project during the period from

August 2010 to October 2012. Another option is AndroZoo and DroidCollector, which

are growing repositories of Android applications from various outlets, including the

official store for Google Play apps.

Page 24

2.2.1. Static Analysis

 The Android static malware detection is the same as that of other OS. For

Android malware, what varies is how APKs are packed and assembled in contrast to a

normal binary. Android apps are installed as an APK that can be unpacked to contain

the source code, a manifest, and other files similar to that, as separate. Without running

any code, Android static analysis is based on analyzing an APK. Although it may

theoretically expose all potential execution routes, there are many drawbacks. After all,

all static approaches are susceptible to obfuscations such as encryption that eliminate

or restrict access to the code [15]. Similarly, code injection or object changing at runtime

are outside the static inspection framework since they are only observable during

execution. Application-Manifest.xml, which explains permissions, names, libraries and

application components like activities or services, along with classes.dex, which

includes all of the application classes compiled into a compliant dex file format, are two

important APK components for Android static analysis and identification.

 There are several typical file data points that can be gathered automatically if you

look at an Android app: filename, accessed times, size and type [15]. When searching

for identical samples that may have special names or variations that may occur on other

devices when managing an incident review, a suspect filename may be useful later. The

more special a filename is, the more helpful it can be when correlating or checking. In

corresponding to a threat, date and times associated with the file can also be helpful.

An event, for instance, can include attacks that have occurred on or near a particular

date. In certain cases, searching for threats of a certain kind, such as applications,

matching times changed, or accessed, can help to discover other threats associated with

static analysis installed in an attack. Also, file type is a type of document analysis where

it is likely that the initial filename is misleading. Files are often not what they appear to

be, like a file that claims to be a certain extension, but it's really something else. In this

case, APK files are usually listed as ZIP (compressed) files.

 First thing to do after getting done with the APK filename, extension, times and

so on, is to unpack (or unzip) the APK, a trivial and simple process. Unpacked APKs, as

already mentioned, include an AndroidManifest.xml, classes.dex, resources.arsc and

META-INF directories. They will also include other libraries and assets directories, while

the manifest XML formatted file includes the app's metadata and permissions, the key

point to measuring the app 's capabilities.

Page 25

Regarding the certificates and digests included in META-INF directories, all

applications must be signed or they can’t be installed [12]. Certificate details in some

cases proved to be rich information source in the early days of Android attacks, since

unauthorized developers were able to share codes easily without intervention inside

approved marketplaces and did not change certificates. As a consequence, looking at

certificate details helped (and can still sometimes help) researchers to compare and

relate the same author's interests.

 One of the most important parts of evaluating as part of this process, is the

permissions. It is important to assert these demanded permissions inside the

AndroidManifest.xml format. Since the manifest is simple to statically access, static

analysis based on the permissions given, is used by many applications to determine the

threats of the Android authorization scheme and individual apps. Most malware

researchers accept that the Android authorization system's development tends to

implement unsafe permissions and does not discourage malware from leveraging bugs

and increasing them [34].

 What’s more, intents are abstract structures within Android that hold knowledge

about an action to be done for an application component. The required behavior is taken

by the device depending on the purpose and thus may be useful for study. In particular,

it is possible to leak private data to a malicious app that requested the data through

intents specified in its Android manifest file.

 The mentioned hardware components are another aspect of the Android

Manifest that has been used for static analysis. This can be useful when applications

need to request all the hardware they need in order to work (e.g., microphone, GPS).

Therefore, such combinations of demanded hardware can indicate maliciousness. For

starters, there is no obvious need to demand GPS access for a contacts app.

 Eventually, in the Android APK, the dex or classes.dex files can be found, clearly

the key element for a static analysis. They are difficult to read for humans and are

therefore first decompiled into a more readable format. There are several stages of

formats, from low-level bytecode to assembly code to source code that can be read by

humans. Most tools decompile dex files into assembly-like code (it is considerably

important to mention that the most known form of assembly-like representation of

bytecode is called Smali) while others prefer to acquire Dalvik byte code or even source

code. In general, more forceful decompiling approaches have a higher failure rate or

error rate, which can be changed by a form of post-processing. Also, features including

classes, layout sequences, and application dependency diagrams can be extracted and

Page 26

evaluated from the decompiled code. On top of that, strings contained on extracted

classes.dex files is equally valuable to find and record. That is why tools like the built-in

executable strings is often used, to look into all the strings directly. While there are other

alternatives, this is the most significant code part of an application and comprises the

most valuable data of interest. When strings from classes.dex or other files are collected,

they can be evaluated and examined with other tools in order to automatically extract

any suspicious data that exists within the code.

Figure 2.6. Android static analysis

With regard to static analysis tools used globally for Android malware analysis,

we focus mostly on open source tools that utilize all the basic needs for such a process.

For example, the strings executable command which is built into Linux is a very

important part of any analysis.

Page 27

It may include information associated with the construction of malware,

accessibility and more. Once they are unpacked, the most important strings in an app

are found in classes.dex, the actual source code. Other strings and data are also

significant, but the app's source code obviously means the most. Also built into Linux,

the file command is equally important. Any malware researcher can tell you that when

it comes to code files, particularly an extension of a filename, there is nothing that can

be trusted. This file executable helps to easily detect file types and show more info about

them. Some information about the packages from Android is that they will appear as

ZIP archives.

 In the Java Development Kit, Keytool is installed and widely used to examine

Android malware. Keytool prints an app with interesting detail, such as the country

code, area, and more. In the early days of Android malware, this knowledge used to be

indispensable to help correlate with unique rogue developers, but is typically faked in

current malware.

 For conventional Android malware researchers, Dex2Jar is a standard approach

that transforms an app's DEX source code files to a JAR for a review of the converted Java

code. Converted code analysis is not as accurate in some instances as studying source

code inside the native Smali, but this kind of code analysis is more than satisfactory and

very fast for most researchers in general. Moreover, in order to decompile and evaluate

Java byte code, the Java Decompiler project is intended to give resources to do so. JD-

GUI is a standalone interactive utility that presents .class file source Java codes. For quick

access to methods and sectors, you can search the recovered source code with JD-GUI.

JD-Core is also a library that, from one or more .class files, reconstructs the Java source

code. JD-Core can be used to retrieve lost source code and to explore Java runtime library

sources and is included by JD-GUI. APKTool is also a versatile approach that is widely

explored by many. It is a widely recommended freeware application that provides APKs

and XML decompilation. Production from the decompilation of APKTool results in

simple to read permission / XML files and other useful data.

Besides manual decompilation, AndroWarn is a tool aimed primarily at detecting

and alerting the user to potentially malicious activities generated by an Android

application. The identification is achieved by static analysis with the androguard library

of the application's Dalvik bytecode, described as Smali. Else way, AndroTotal is an

excellent way to start a search of a problematic app as it offers a fast rundown of the

static information and links to various useful third-party sites such as VirusTotal. Sites

such as VirusTotal are traditionally mostly antivirus multiscanners.

Page 28

2.2.2. Dynamic Analysis

 Android dynamic (or also called behavioral) analysis is somewhat close to

analyzing all other binary executables, not depending on the OS. It carries out its results

by the use of normal dynamic testing, which means it achieves the behavior of the

application through an application sandbox, virtual machine, or runtime emulation of

the application. For complex malware identification, it performs real-time

identification, tracks contact between suspicious IP addresses or uses packet sniffing.

Current works that use dynamic analysis predominantly function during the runtime

phase focused on application behavior analysis. Ordinarily, system calls, network

utilization and battery use [30] are the key parameters that can be viewed and examined

as the main behaviors of the application.

 In more recent times, most of dynamic analysis happens through a list of

automated tools. Most of them represent a modified version of the Dalvik Virtual

Machine or ART from Android that provides an inclusive trace yield process. Each

application automatic analysis reveals information about its actions, invoking

parameters like return values, network correspondence records, internal method calls,

executed Java code, user interactions, or even calls and messages [30]. They try to expose

an app's malicious ways, simulate incidents and test their analytical effectiveness. Most

of these tools also try to reflect applications' post-install activity on mobile devices and

involve the application's behavior on the platform or on the network.

 One of these automated tools is called DroidBox. It has been developed to

provide interactive analysis of Android users. In the results created when the analysis is

complete, it usually gives an output of hashes for the analyzed package, incoming /

outgoing network data and leaks, file read and write operations, and SMS or phone calls.

It is solely based on the ART compiling system and during on-device compilation

it tries to modify any application code. ARTist integrates especially well into the

installation process of the Android app because it does not modify the APK, but instead

removes the compiled native version, thereby retaining the package signature such that

updates are always obtained by updated apps. Based on these two tools, we could add

here that there is a huge list of behavioral analysis techniques and other automated ways

for a researcher to do his job, at least helping them run and examine an application

package.

Page 29

Concerning testing methods now, the most crucial and important aspect of it, is

a sandbox implementation or undoubtedly the development of an isolated

environment, meaning it should be performed carefully and with appropriate

preparation. The goal should be both to build a device capable of meeting all the needs

needed and make it as practical as possible. Leaving deliberately traces of users such as

browser cookies or documents can be considered an option, because you may be able to

tell whether a malware is built to run, exploit or steal those data [30]. One of the most

popular tools in this subject, is called CuckooDroid. It is an extension of the Cuckoo

Sandbox platform for the automation of suspicious file analysis, while it adds the

features of android program execution and analysis to the Cuckoo.

Figure 2.7. Android dynamic analysis

Page 30

2.2.3. An example of Hybrid Analysis

 This illustration is a preview of malware called syssecApp.apk written for the

Ruhr University-Bochum Reverse Engineering Summer School in 2013 and it offers a

rundown of what Android malware is capable of doing. This apk contains the Amazed

package / game found on Google play with extra malware code and is already given an

example analysis in older walk-throughs found online, so it is quite good to be used as a

sample since it uses no obfuscation. It is not attached to a remote controller, so it can

never leave the attacked phone with the data it steals. However, some personal

information would be evident in the logs and during this study.

 At first, once downloaded, we get the MD5 and SHA-256 hashes for the sample

malware, for future use. Then, we can begin with static analysis methods. The easiest

thing to do, is to examine the AndroidManifest.xml file including the permissions

required and all the entry points assigned to it, like activities and services. By examining

the permissions, it can be observed that the application needs multiple different

permissions like accessing the internet or bookmarks and reading or receiving SMS and

call logs, which at first glance may seem suspicious. Having a look now at the entry

points of the application, we can see that there are components that execute when the

device receives an SMS or an alarm and when it boots up. The main activity representing

the main on-screen app is de.rub.syssec.amazed.AmazedActivity.

Figure 2.8. syssecApp permissions

Page 31

Figure 2.9. syssecApp main activities

Figure 2.10. syssecApp receivers/services

Page 32

Our next step is to decompress the apk file and get the files inside. After that, we

can run the strings command on the classes.dex file in order to grab any suspicious or

useful strings contained in the file that can be also used later in dynamic analysis (now

we can have more info on the structure, URLs found inside or even code functions). In

addition to that, the core of our static analysis begins with examining the java code

inside that file by using for example an inspecting tool with possible decompilation like

Jadx (Dex to Java decompiler). Here, it has to be mentioned that using such a tool, may

helps us find all the previous information about the apk with the help of a more

sophisticated GUI instead of using commandline tools like strings or apkanalyzer.

Having a deeper look at the onCreate method of the main Activity, it is noticed that it

makes use of the system service alarm to set a recurring alarm every 15 seconds. More

precisely, after getting the handle for this service, it creates an AlarmManager object

along with an intent that is registered to run code as OnAlarmReceiver.

 Then it objectifies a new PendingIntent entity that is intended to conduct a

broadcast within the current app context that will execute the previous intent created.

Finally, it sets a repeating alarm to perform the same broadcast every 15 secs after the

first one.

Figure 2.11. syssecApp decompilation

Page 33

Searching more inside inside main activity’s components, we take a look at

onAlarmReceiver broadcast receiver. There, it is seen that this class is responsible for

starting two new services (Runner and PositionService) when receives a broadcast

message. Inside Runner class, there are a lot of suspicious methods created like steal,

sendData or read. After reading some of steal method’s code, we understand that it is

about the extra malware code that reads from Calendar, Call logs, Browser, etc. and

sends it in a remote address (which is 127.0.0.1 in this case). Based on the API calls in the

method list, the information gathered by the app is as follows: · IMSI · SIM serial

number · Computer ID · Contacts · Call logs · Calendar info · Web cookies and

bookmarks · SMS and finally GPS info such as Location.

Figure 2.12. syssecApp onAlarmReceiver

Apart from onAlarmReceiver that are also two other Receiver classes called

onBootReceiver and SmsReceiver. The first one contains multiple event handlers such as

onBoot handler which sets the alarm since booting, while the latter is called each time

an SMS is obtained by the app and it verifies if the message begins with the word bank.

Page 34

Figure 2.13. syssecApp smsReceiver

Figure 2.14. syssecApp suspicious functions

Page 35

Regarding dynamic analysis we could use a tools like DroidBox or CuckooDroid

that use an emulator in order to display in an automated way information about

incoming/outgoing network traffic, started services, file reads/writes, sent SMS or calls

and any information leaks or even run the malware in our manner. In this case, we

analyze the apk through an online website that offers free analysis services (both static

and dynamic, in such matter we only need the dynamic analysis) named VirusTotal, just

for the sake of this example. After submitting the file, the website gives back a report

with details such as network behavior, dangerous functions, privacy behaviors, services

started and other malicious intents. Furthermore, the detection service that VirusTotal

offers showed that 26 of 64 antivirus engines find syssecApp as malicious, something

that is visible from the following figures.

Figure 2.15. syssecApp virusTotal analysis

Page 36

2.3. Machine Learning

 These days, apart from a heavy use of manual malware analysis in Android, an

approach that uses machine learning is deliberately showing up. Machine learning is

the analysis of computational algorithms that over experience, improve automatically

[9]. It is used as an artificial intelligence sub-set. In order to test hypotheses or

predictions without even being directly programmed to do so, machine learning

algorithms create a model based on sample data, known as training data. In a broad

range of applications, machine learning algorithms are used where the development of

traditional algorithms to perform the necessary tasks is difficult or unworkable.

Computational statistics, which concentrate on making calculations using machines,

are closely linked to a branch of machine learning. The analysis of mathematical

optimization provides the field of machine learning with techniques, theory and

implementation domains, while data mining is a similar area of research, based through

unsupervised learning on exploratory data processing [19].

 Centered on the topic above, machine learning can provide an effective

alternative to the traditional engineering flow where implementation expense and time

are the key concerns, or when the problem seems to be too difficult to be examined in

its full generality. On the contrary, this method has usually the main pitfalls of delivering

suboptimal results, or hindering the solution's usability, and of applying it only to a

small number of challenges [27]. The following parameters was proposed in order to

classify activities for which machine learning techniques can be useful. For example, if

the task includes a mechanism comprising input-output pairs that maps well-defined

inputs to well-defined outputs or large data sets, whereas the process gives immediate

input with clearly defined objectives. If the process does not include lengthy logical or

rational chains that rely on various context information or do not include thorough

reasons about how the decision was made or even if he task has error tolerance and no

requirement for proven right and optimal solutions.

 Based on their engagement with the experience or world or whatever we like to

call the input data, there are various ways an algorithm can model a problem. In

machine learning and artificial intelligence literature, it is common to first examine the

types of learning that an algorithm should follow. This categorization or method of

arranging algorithms for machine learning is beneficial because it allows you to reflect

about the functions of the input data and the process of model preparation.

Page 37

 Starting with the category of supervised learning, input material is called

training data and has a recognised label at a time, such as spam or a stock price [9]. A

model is prepared by a training phase in which predictions need to be made and when

those predictions are incorrect, it is corrected. The testing process continues until a

desired degree of precision is reached on the training samples by the algorithm.

Classification and regression are exemplary topics. Classification is when data is used to

simulate a categorical attribute and it is often called supervised learning. This is the

situation when a tag or identifier is given to an image, which is called binary labeling

because there are just two categories to classify. If more than two groups exist, the

emerged challenges are referred to as multi-class grouping. On the other hand, when

the need for estimating continuous and constant values becomes apparent, these issues

become a matter of regression.

On the opposite, using unsupervised learning, input data is not classified and

doesn't have a known outcome. By comprehending constructs existing in the input data,

a model is formed [19]. This could be for general standards to be extracted. It may be to

minimize duplication systematically by a statistical method, or it may be to group data

through similarity. Clustering and dimension reduction are examples of this kind of

challenges. Clustering means grouping a number of data samples such that, according

to certain requirements, examples in one group are more comparable than those in

other categories. This is also used for the entire dataset to be segmented into many

categories. In each category, research can be done to allow users to identify inherent

patterns. In addition to that, reducing the dimension implies lowering the number of

variables under consideration. The raw data has very high dimensional characteristics

in certain applications and certain characteristics are redundant or unrelated to the task.

Dimensionality reduction helps to uncover the real, implicit connection.

 There exists also semi-supervised learning that means input data is a

combination of examples that have labels or not. There is a required prediction problem,

but the model must study the systems and make predictions to arrange the data.

Classification and regression are noteworthy subjects. With supervised learning, the

difficulty is that it can be costly and time consuming to mark data. You may use

unlabeled examples to boost supervised learning if labels are constrained. Since the

machine in this case is not completely supervised, we can say that the machine is semi-

supervised. For semi-supervised learning, to increase the accuracy of learning, we use

unlabeled samples with a limited amount of labeled data.

Page 38

Finally, using reinforcement learning, a computer algorithm deals with a complex

world in which a specific objective, such as driving a car or playing games against an

adversary, must be achieved. The software is given input that is equivalent to awards,

which it seeks to optimize, as it navigates its problem space. So, reinforcement learning

evaluates and improves an agent's actions based on the environment's feedback. Instead

of being told which actions to take, algorithms try various simulations to discover which

actions produce the greater benefit. Reinforcement learning is differentiated from other

methods by trial-and-error and delayed compensation.

Figure 2.16. Types of ML algorithms

 Often we take things like precision, learning time and simplicity of use into

consideration, when selecting an algorithm. Many users put consistency first while

beginners prefer to rely on algorithms that they know best [5]. The first thing to

remember when faced with a dataset is how to produce outcomes, no matter what those

results might look like. Beginners prefer to select easy-to-implement algorithms that

can easily obtain results.

Page 39

This works well as long as the method is just the first step. Performing machine

learning requires developing a model, which is conditioned on certain training data and

then can process additional data to create predictions. For machine learning

applications, various kinds of models have been used and studied. Models also are used

to categorize algorithms that are usually grouped by similarity, in terms of their role in

how they run [2].

 Input data to train a model to estimate outcomes are given in supervised machine

learning. A few important concepts are provided in order to be able to describe the

various models and how machine learning operates in a more comprehensive manner.

First of all, the already existing classified data set needs to be divided into two sets in

order to train the model and better assess its performance: a test set and a testing set.

Both two sets must be distinct of one another, extracted from the initial data set

arbitrarily. On top of that, there is cross-validation, which is a method of testing and

performance assessment in order to eliminate the inherent variance that could arise due

to a forced selection of samples being the test and training sets. The data set is divided

into n equivalent, distinct, and random sub-sets. As a test set, one of the subgroups is

selected and all other subsets are combined into one training set. Train the classifier,

create estimates and analyze efficiency. Repeat the procedure by selecting the next

subset as a training set each time and combining the other subsets into a training set

every time.

Figure 2.17. Cross-validation

Page 40

2.3.1. Basic Algorithms

 Regression is associated with modeling the relationships among variables that is

adaptively optimized in the predictions produced by the algorithm using a measure of

error. Regression approaches are a mathematical mainstay that have been co-opted into

machine statistical learning [5]. This can be misleading, since we can use regression to

refer to the problem class and the algorithm class. In order to approximate the

relationship between input variables and their related characteristics, regression

analysis involves a wide range of statistical approaches. Linear regression, where a

continuous line is drawn to better match the data set as per a mathematical standard

such as ordinary least squares, is the most common form. By fitting the best line, we

create a relationship between different variables. This best suitable line is referred to as

a line of regression and is described by a linear equation Y= a*X+b. Here Y is a dependent

variable, A a slope, X is the independent variable and B is called intercept. These a and

b coefficients are calculated on the basis of minimizing the sum of the square distance

gap between both the pieces of data as well as the line of regression. The above is also

generalized by statistical techniques of regularization to minimize overfitting.

 Several other methods involve polynomial regression, logistic regression,

sometimes used in statistical classification, or also kernel regression when working with

non-linear issues, which adds non-linearity by using the kernel trick to indirectly map

input data to higher-dimensional space. Logistic regression, given a particular number

of independent variables, it is used to determine discrete or binary values like 0 and 1,

true or false. It calculates, in simple terms, the likelihood of an occurrence happening

by fitting data to a logistic function. It is thus known as logistic regression and it used

for both classification and regression. Since the likelihood is estimated, the production

values are between 0 and 1. The benefits of logistic regression are that it is very efficient,

does not require large computing assets, does not need to scale data features it is quick

and easy to apply. In contrast, non-linear situations are not handled correctly and until

all independent variables are explicitly defined, it does not function effectively [9].

Support vector machines also called SVM, is a group of linked supervised

learning methods intended for classification and regression. Provided a number of

training cases, each labeled as belonging to one of two categories, an SVM training

algorithm constructs a model that can predict if a new iteration fits into one group or

the other.

Page 41

An SVM trained model is a non-probabilistic, discrete, linear classifier, but in a

probabilistic classification environment, there are methods that also use SVM [9]. In

order to select the optimal fit to make a decision, such approaches usually build up a

profile of example data and compare fresh information into the database using a

correlation matrix. Example-based approaches are often called winner-take-all

methods and memory-based learning, for this purpose. Emphasis is focused on the

portrayal of the instances stored and metrics of similarity used between instances. In

SVM models, kernel techniques are often used to convert non-linearly separable

functions to higher dimension functions, often using the word “hyperplane”. A training

algorithm for SVM considers the classifier represented by the hyperplane's feature

vector w and bias b. This boundary actually divides multiple classes by as large a margin

as possible. The issue can be turned into a restricted question of optimization [19]. SVM

essentially draws distinctions between instances of data plotted in multidimensional

space features, being used to identify instances of data belonging to various classes.

SVM's benefits are that it is versatile and that the outcomes of the estimation are very

precise. On the other hand, it is only appropriate to binary classification while it is very

complicated and slow with large datasets.

A model of assumptions based on specific properties of attributes in the data is

built by decision tree methods, used both for classification and regression. Calculations

fork in trees before a decision for a class label is made. In machine learning, decision

trees are always quick, efficient and a major favorite, being used quite often in statistics

and data mining. This type of learning, substantially, uses a decision tree to get from the

findings on an element defined in its branches to assertions about the target value of

the item, represented in the leaves as a prediction [5]. Tree models that can take a

distinct set of values from the target variable are also called classification trees. Decision

trees where continuous values such as real numbers are being taken by the target

variable are considered regression trees. There are several types of decision trees, but

they all have the same functionality, which is split the area of features of the function.

Decision trees are quick to grasp and to execute, but when the branches are overloaded

and they trees go far into them, however, they seem to hyper fit results.

 Specifically now, random forest is a composite classification algorithm which

institutes several classifiers of the decision tree and utilizes them. From the random

collection of a sub-group within a data set, a set of decision trees is generated. Most

votes are added to combine the output of the various trees when the random forest is

produced with the mixture of decision trees.

Page 42

The advantages of Random Forest would be that it functions well enough on

broad and extensive data sets, includes procedures for mitigating errors in an unstable

class population data set, has a reliable approach for calculating incomplete information

and preserves accuracy in the absence of a large proportion of data. The drawbacks are

that when it incorporates many decision trees, it is very hard to explain, it is far more

costly than a simple decision tree model [19].

Clustering determines the problem class and the process type. Usually, clustering

techniques are coordinated by modeling strategies such as centroid and other

hierarchical approaches [5]. In order to better arrange the data into classes of maximum

commonality, both approaches are concerned with utilizing the underlying constructs

in the data. K-Means is a clustering method that uses grouping in machine learning

based on segmentation. N data points are allocated to one of the K clusters of the K-

means classifier, where K is a user-defined variable with the necessary clusters. In

general, for each cluster known as centroid, K-means captures k number of points. A

cluster with the nearest centroids, i.e. k clusters, is formed from each piece of data. It

then finds each cluster's centroid dependent on current member nodes and repeats the

previous steps since there are new centroids. For each data point, finds the nearest

distance from new centroids and gets connected to new k-clusters. It finally repeats this

step until there is enough stability, i.e. no shift in centroids. The advantage of the K-

means classifier is that it is quite scalable and seems to be very strong in efficiency and

results in several situations and complications. The drawbacks of clustering K-means

are that it requires a random chance and in some situations may not be an ideal set of a

cluster while at the same time certain skill is needed for the user to guess the initial

number of natural clusters to have successful results.

Bayesian approaches are those which extend Bayes's theorem specifically to

situations like classification or regression and one of them being quite popular is Naive

Bayes. A Naive Bayes classifier claims, in basic terms, that the inclusion of a certain

element in a category is irrelevant to the existence of any other feature. Even though

these characteristics rely on one another and the presence of the other characteristics,

all of these properties will be considered by a naive Bayes classifier to individually add

to the possibility to classify a target. Naive Bayesian classifiers are direct linear classifiers

and are recognized for their simple and precise outcomes [2]. The benefits of this

classifier are that it is quick and efficient in computation, works well with larger and

smaller quantities of data for training and it is relatively easy to perform well, in

circumstances where it is noisy and lacking data.

Page 43

On the other hand, if the set of data represents a significant amount of numerical

characteristics, the presumption of equal importance and autonomy does not hold true

as the precision and consistency of the output becomes limited [2].

2.3.2. Ensemble Learning

Ensemble approaches in statistics and machine learning employ multiple diverse

learning algorithms to achieve greater predictive accuracy than either of the component

learning algorithms individually. A machine learning ensemble is made up of only a

limited number of alternative models, but it usually allows for a much more versatile

design to arise among them. Trying to assess an ensemble's prediction usually

necessitates further computation than estimating a single model's prediction. Ensemble

learning can be viewed as a way to adjust for bad learning algorithms by doing a large

amount of extra calculation, which means that the other option, on the other hand, is

to do a lot of learning on a single non-ensemble scheme. An ensemble system could be

more effective at enhancing average accuracy with the same improvement in

computational and storage capacity by distributing the increase across multiple

techniques than a single approach may have been [21]. Strong algorithms, such as trees,

are often used in ensemble methods, but slower algorithms may also benefit from them.

Furthermore, where there is a lot of variety among the models, ensembles seem

to produce better performance. As a result, several ensemble approaches aim to

encourage diversity within the models they integrate. More random algorithms may

yield a better ensemble than very intentional algorithms, which may seem

counterintuitive. Although the amount of component classifiers in an ensemble has a

significant effect on prediction accuracy, there are few studies that address this issue.

The importance of evaluating ensemble size a priori, as well as the frequency and speed

of large data sources, is much more important for online ensemble classifiers. The

correct number of components was often determined using statistical tests [21].

There are multiple kinds of ensemble, but two are the one that distinguish the

most, called averaging and boosting. The guiding force behind averaging methods is to

construct many estimators independently and then average their forecasts. Since its

uncertainty is minimized, the combined estimator is normally better than either of the

single basis estimators. In boosting methods, on the other hand, base estimators are

constructed sequentially and the cumulative estimator's bias is reduced.

Page 44

Bagging methods (kind of averaging) are a type of ensemble algorithm that

creates multiple cases of a black-box assessor on randomized subsets of the initial

training set, then aggregates their individual predictions to shape a final prediction [17].

These techniques are used to reduce a base estimator's variance by integrating random

sampling into the building process. In certain ways, bagging approaches are an easy way

to develop with respect to a particular model without having to change the underlying

base algorithm. Bagging methods, in comparison to boosting methods, which work

better with poor models, work best with solid and complicated models so they offer a

means to minimize overfitting.

On the other hand, boosting is a group of machine learning algorithms that

transform weak classifier to intelligent ones. It is an ensemble meta-algorithm for

specifically minimizing bias and even variance in supervised learning. Although

boosting is not computationally limited, most boosting algorithms involve learning

weak learners iteratively and then combining them with a final strong classifier. They

are weighted in a way that is related to the precision of the poor learners when they are

applied. The data weights are rebalanced after a slow learner is inserted, a process known

as reweighting [7]. Input evidence that has been incorrectly categorized gains weight,

while examples that have been correctly classified lose weight. As a result, potential

weak learners will place a greater emphasis on instances that past weak learners

incorrectly classified.

As an example of ensemble learning, two of the most popular algorithms used

nowadays is Random Forest and Gradient Tree Boosting. Random forests, as mentioned

before, are an ensemble learning tool for classification or regression that works by

building a large number of decision trees during training and then extracting the class

that is the average class of the individual trees. That said, gradient boosting is a machine

learning method for regression and classification problems that generates a prediction

model from an ensemble of poor prediction models, usually decision trees. The

subsequent signal is considered gradient boosted trees when a decision tree is the weak

learner, and it often outclasses random forest.

Page 45

Figure 2.18. Boosting and Bagging

2.3.3. Neural Networks

 Artificial neural networks are models which are based on biological neural

networks' system and components. They are a method of template matching, frequently

used during issues with regression and classification, but they are really a huge subfield

consisting of a large number of algorithms and different versions for all kinds of

classification methods [9]. In early days, neural networks succeeded because of their

parallel and distributed computing capacity. But the inefficiency of the back-

propagation training algorithm, which is commonly used to refine the variables of

neural networks, has hindered research in this area. In machine learning, support vector

machines as well as other simplified models that can be efficiently trained by addressing

optimization problems have steadily replaced neural networks. In recent times, modern

and enhanced training methods have fostered the growth of enthusiasm in neural

networks, such as unsupervised pre-training and layer-wise training. This restored

implementation has also been spurred by increasingly strong computing capacities,

such as GPUs. The development of structures of thousands of layers, has been the result

of resurgent studies in neural networks.

Page 46

 In other words, shallow neural networks have developed into neural networks of

deep learning. Deep neural networks for supervised learning have been very effective,

while extended to unsupervised learning functions, such as feature extraction, often

removes functionality with far less human interference from raw images or expression

[5]. They can model non-linear interactions that are complicated and create conceptual

models in which the object is expressed as primitives' structured representation. The

extra layers make it easier to compose features from lower layers, theoretically modeling

complex information with fewer units than a shallow network that works in a similar

way. Usually, these networks are a type in which information goes without crossing back

from the input layer to the output layer. They initially generate a map of simulated

neurons and apply relations between them to arbitrary numerical values, or weights.

Weights and inputs are multiplied and an output of 0 to 1 is returned [9]. An algorithm

would change the weights if the network did not correctly identify a given pattern. Other

popular deep learning algorithms include convolutional deep neural networks (CNNs)

that are used in image or automated speech recognition and recurrent neural networks

(RNNs) in which information can move in either way, for applications such as language

processing.

Figure 2.19. Neural Networks

Page 47

2.4. Related Work

 With the explosive rise of Android malware, many methods have been developed

to identify the OS's inherent vulnerabilities. Static and dynamic analysis are the two

main types of approaches for ensuring and reviewing Android apps. Here follows a

section that describes the fundamental work and research projects, containing topics

about Android malware analysis and machine learning, that aided our thesis.

 Static analysis was the first Android malware identification method, in which

specific pieces of code were examined without the program being run on an external

computer or an Android emulator. It is an automatic procedure that provides an Android

app's source code or binary file, analyses it without running it, and generates analysis

results by testing the code structure, API call sequences, and how sensitive the code is.

Tools created and studied before like AndroidAPIMiner [1] use a supervised learning

algorithm to detect malware by extracting the frequency of API calls from applications.

They concentrate on permission-related API calls and use balanced API dependence

graphs to analyze the behavior of applications. These graphs are used as features, and a

machine learning algorithm is used to introduce highly accurate malware detection.

AndroidAPIMiner uses machine learning to classify the behavior of apps using

sequences of threat modalities, then uses these modalities as features to enforce

efficient malware identification and family classification. On other hand, tools like

AndroSimilar [10] are based only on signature-based detection, which is used to identify

only recognized malware samples. Its primary function is to collect, remove, and analyze

malware-affected Android APKs. In general, all these tools specify how apps behave

when security-sensitive procedures, such as permission-protected methodologies,

source and sink techniques and dynamic code loading methods, are invoked. They

separate contexts to illustrate the purposes of security-sensitive activities, then use

these contexts as features to enforce precise malware detection.

The second method that was studied employs dynamic analysis, which attempts

to solve the static analysis' shortcomings. The conduct of the application in a real-time

environment is observed using this approach. This method examines the application's

output when it is running, effectively resolving the problem of dynamic code loading in

static analysis. Also, Android apps with obfuscated or encrypted source code may be

handled by dynamic analysis. TaintDroid [32] is a complex taint analysis framework that

detects confidential data leakage in Android apps.

Page 48

It can now perform system-wide taint monitoring and report information

leakage in applications without false positives after modifying the Android virtual

machine interpreter. Tools like CrowDroid [13] recognize malware by initiating and

running device calls. They identify malware by watching and reflecting on the actions

of events in an Android app or at runtime. Typically, they create signatures by capturing

inputs and outputs depending on the application's functionality. Furthermore,

emulation-based detection is used by DroidScope [33] It has features that are dependent

on the OS's review and Dalvik Semantics. In the sandbox, it does a separate analysis by

dealing with the class.dex file, which is broken down into an easily readable format.

 Nevertheless, since battery-operated systems use a lot of energy, complex

analysis is not possible. When a valid application lets more device calls, anomaly-based

identification strategies waste time and power, and they provide false findings. Taint

analysis does not monitor control flow, whereas emulation-based monitoring covers

only a small area and ignores new malware. So, techniques that involve a kind of hybrid

analysis was required for a better research. For example, with Andrubis [20], the output

of a static analysis that is retrieved by inspecting byte-code and the

AndroidManifest.xml format, is fed into a dynamic analysis, which then performs

process tracing and device level analysis while the program is being executed.

 What’s more, machine learning methods, which, when paired with program

analysis techniques, can instantly predict behavior characteristics of applications, have

become prevalent in the detection of malicious software, with both static and dynamic

approaches. ML is based on Artificial Intelligence, which helps the machine to learn

and evolve without having to be directly programmed. Not only in computer science,

but also in a wide range of applications such as atomic physics, machine learning has

proven to be successful. Although machine learning is incorporated in many tools

already mentioned, another great example of ML combined with hybrid analysis is

SAMADroid [28]. It's a three-level hybrid malware detection method for Android that's

a reliable and effective malware detection approach. However, since it is reliant on server

contact, the malicious activity of Android APKs is observed at a remote location. Also,

Crowdroid [13] blends supervised learning algorithms to introduce efficient malware

identification by performing complex analysis to track runtime activities such as API

calls, device calls, and unseen icon activity.

Page 49

More specifically, this work was mostly inspired by two other research projects:

EnDroid [23] and Omnidroid [18]. For EnDroid, a novel dynamic analysis scheme is

applied, that uses ensemble learning to define and distinguish malicious and benign

applications. Ensemble learning improves the classification accuracy of base learning

algorithms by integrating data from several base machine learning algorithms. To

determine which base classifiers are effective and which are not, EnDroid uses Stacking.

By merging templates constructed from various base classifiers with a meta-classifier,

stacking typically achieves the best generalization accuracy. The complex analysis

behind it includes system-level action tracing as well as general application-level

malicious activities such as data theft or malicious data interaction. The researchers

there, use a variety of machine learning algorithms to test EnDroid's efficacy, and found

that stacking current ensemble approaches achieves the best results. Via a series of tests,

they confirm EnDroid's efficacy in detecting Android malware and classifying it into

families. They also equate EnDroid's malware detection efficiency to that of Maline, a

cutting-edge dynamic analysis platform, to demonstrate its supremacy in malware

detection. In addition, they use the chisquare feature filtering algorithm to filter out

obsolete or noisy features and extract critical ones. In real-world implementations,

these crucial features aid in the detection of dangerous actions.

 Regarding Omnidroid project (that is also mentioned in a later section

thoroughly), it is a detailed collection of dynamic and static features from Android apps.

Other researchers will use this analysis to enhance and create new automated malware

detection strategies for Android devices. At the same time, the features of this dataset

make it ideal for use as a benchmark dataset for experimenting with and testing various

algorithms and techniques. All of the data in the OmniDroid dataset is supported in

JSON and CSV formats and is freely accessible to make it easier to use. AndroPyTool, an

automated open source platform for dynamic and static review of Android software, was

used to build the OmniDroid dataset. The efficiency of many state-of-the-art ensemble

classifiers was investigated in order to determine the viability of using the features

chosen to build special identification or classification models using ensemble

techniques. It also shows the benefits of using the platform and dataset to create

ensemble methods for detecting and classifying Android malware. Ultimately, an

Android malware identification strategy is introduced, which is built on the integration

of static and dynamic features through the use of an ensemble of classifiers with a voting

scheme.

Page 50

3. Problem statement

 The fundamental problem of this master's thesis will be introduced in this

section, plus an objective and the requirements will be described. The primary research

issue will also be enhanced. Software applications or libraries in general are continually

changing and so are malware and Android malware as well. For software devices, new

features and fixes for bugs or security flaws are also implemented. Hence, in order to

create new cyber threats, malware that exploits security flaws, has to always modify its

application code. This leads in a battle between ensuring stability and spreading

malware efficiently. Particularly, code modifications inside the operating system or its

applications, potentially create new flaws that can be abused by more recent malware

models. In this context, malware is continually evolving, but the security measures and

detection systems have to do the same as well.

 This thesis attempts to highlight the question of Android malware identification

through the use of machine learning methods from various viewpoints. It is therefore

meant to analyze the effectiveness of these approaches when used to address the

problem illustrated, including requisite methods to accomplish this conjunction and to

build innovative methods aimed at reliably identifying and quantifying malware. In

particular, such a study is based on machine learning classifiers, supervised models

being used to predict the class of new unlabeled examples after a training phase from

defined samples. Here, such techniques are applied to tackle two separate challenges.

As malware identification models, machine learning classifiers may be used to

characterize malicious samples into two groups, those being malware or benign

applications. As family classification methods, they are sometimes used to evaluate the

malicious category of applications already identified as threats.

 On top of that, the estimation accuracy for more modern malware can be

impaired by testing a machine learning model with obsolete malware. New malware

techniques and their essential functions are never learned, so the machine learning

algorithm remains unaware of their unique attributes. Also, in order to estimate the

identification of untrained Android malware, the core issue is that many scientific

papers, as well as more recent ones, use old malware in supervised machine learning

approaches, which creates new problems on its own. So, another aim of this thesis is to

construct and test a range of new malicious and benign applications. It would still be

accessed if older malware is present at the same time, as it may be useful for additional

work.

Page 51

The core study challenge runs as, how accurate is the quantitative detection of

recent Android malware by analyzing multiple distinct approaches to hybrid analysis in

combination with ensemble learning. In the assessment, the projected quality of each

will be measured and the thesis will be concluded by addressing the underlying subject

of the study, including a summary and possible future activities.

Engineering these methods for machine learning models though, whether for

identification or malware family classification, requires a sequence of steps, from

gathering a diverse collection of samples to validating and checking the qualified

methods. It is possible then to define a protocol involving the following steps.

1. Comprehensive selection of both benign applications and malware. Throughout the

context of family grouping, examples ought to be obtained from multiple malware

families and a dataset that contains mostly new and relevant apps.

2. A variety of features capable of defining the behavior of each program and rendering

distinctions between malicious and benign signatures are derived by malware

detection and other tools.

3. Introduction and implementation of a functional model for hybrid analysis of both

static and dynamic analysis with all kinds of features.

4. Multiple different samples defined as objects holding the extracted features, are

given to the chosen machine learning algorithms in order to train them.

5. Appliance of feature engineering and optimization on behalf of the trained

algorithms for any performance escalation possible.

6. Model testing and evaluation with proper machine learning and statistics metrics.

Finally, this thesis was organized across multiple goals in order to better

understand the need for machine learning methods to address activities like malware.

Some of them are, to analyze the most significant behavioral characteristics of android

malware that must be taken into account when developing software for Android

malware identification, to build the appropriate tools for automatic hybrid feature

extraction and test efficiency or time consumption. The observations of these

objectives, approach, implementation and results are outlined in the following

chapters.

Page 52

4. Approach

 The approach method employed for this work, will be described in this segment,

including the measures taken to decide the right data sets to be chosen, classifying the

android applications as benign or malware and the parameters used to select the most

effective resources for this work. Eventually, an elevated overview of a model of machine

learning and testing will be presented.

 In order to minimize the impact of emerging Android malware, these problems

already mentioned, call for new and more efficient detection approaches. Therefore,

here, it is proposed a method for early detection of Android malware by parallel

machine learning classifiers that use various algorithms with behaviors that are clearly

distinct. In the learning stage of the model, a variety of static app functions are used. In

order to identify a given new application, the trained models are mixed using different

mixture schemes to create a composite model that generates a verdict of malware or

benign results. The primary contributions to this study are the upholding: Using

concurrent ensemble machine learning classifiers, specifically stacked architecture

used distinctly on 2 different groups of features (dynamic and static) combined with a

final averaging function like a voting classifier, balancing individual weaknesses, a new

Android malware detection technique is developed with a different structure than

previous works.

 A different approach is also introduced for detecting Android malware based on

a extensive feature (different approach on features and permissions, mentioned later in

5.1.) system that reflects the distinction between hostile applications and friendly

applications as machine learning functionality, including the hazardous permission

details used for the first time in the components.

Furthermore, the purpose of the process described in this section is to

demonstrate the feasibility and ease of use of the dataset when using it to build

classifiers through machine learning methods (in particular, ensemble methods. In

other words, show that the dataset that is being used for testing purposes, is usable out-

of-the-box, and although some promising experimental results are currently obtained,

there is still a large room for improvement.

Page 53

4.1. Dataset

 Over the years, machine learning classifiers have played a great role in designing

intelligent systems for various problems. Especially, in finding and detecting malware

on all networks, ML techniques are gaining momentum. So, the proposed model is

based on supervised machine learning, whereby a named dataset acquires the

characteristics defined in the previous section and uses them to construct and train a

model. Also, the aim of the method outlined in this section is to evaluate the viability

and ease of use of the dataset by using it to create classifiers using machine learning

techniques (in particular, ensemble techniques) instead of constructing a highly

accurate malware classifier. In these terms, it indicates that the sample used is out-of-

the-box accessible and there is still a wide space for progress, while some positive

experimental findings are currently obtained. Such approaches were used

independently over the collection of derived static and dynamic features, and essentially

a fusion-based approach is proposed where all types of features are merged.

 Statically derived features could be used to construct representative sample

structures where each location reflects the frequency of occurrence in the sample that

are present with a certain characteristic, i.e. the number of times invoked by a certain

API call. Given a set of samples X of size n: X = {x1, x2, . . . , xn}, each sample xi is

represented by a vector of m static features: xi = {sc1 i , sc2 i , . . . , scm i }. At the same

moment, each xi sample is labeled according to its mark li , li ∈ {0, 1} as benevolent or

malicious. Our task is to train the classifier that creates this relationship: Cls(xi) = (p(li),

li). Then, the use of dynamic features derived during the execution of the sample in an

emulator is evaluated until the static features have been analyzed. Each analysis

provides a transient sequence of actions conducted during the execution, in which each

action is connected to a group, for example, access to the file or filepath.

 The proposed model utilizes static and dynamic analysis to retrieve essential

components by decompiling programs and evaluating them using the ideal machine

learning solution in order to extract features that can best represent application actions.

Page 54

4.1.1. Features

There are actually a variety of resources to extract static and dynamic features

from Android apps. Each, though, relies on a precise category of features, so it becomes

impossible to achieve a full collection of both static and dynamic features. It requires

setting up each tool with its respective configuration files and settings, as well as

grouping the independently collected outcomes to construct a full data collection.

AndroPyTool is an interactive Python application intended to obtain different

dynamic and static features from a collection of Android apps. It integrates the most

used tools for Android malware detection, conducts source code inspection and

retrieves activity information while the sample is run in a managed environment [18].

For any analyzed application, including a broad batch of fine-grained representative

characteristics, the tool offers a comprehensive report. As seen in AndroPyTool

documentation and relevant publication [18], every application file (namely apk)

follows a pipeline comprising seven steps :

1. Filtering APK: The purpose of the first stage is to inspect using the AndroGuard tool

for each sample to determine if it is a legitimate Android program for the study.

2. Virustotal analysis: A report is obtained for an application from the online web

application Virustotal. The report includes the conclusions of the scan conducted

by and resulting from Virustotal data from the application's review by more than 60

different anti-malware engines.

3. Dataset partitioning: In this stage, which is optional, if tagged this way by at least e

antivirus based on VirusTotal study, each sample is classified as malware. The end

user of the tool, who can set his/her own e-threshold, can change these parameters.

4. FlowDroid execution [4]: This method is run against each sample, based on taint

analysis.

5. Processing of FlowDroid outcomes: There is a processing step of those outcomes

provided by FlowDroid to extract links. The cause for splitting the extraction and

processing of information flows lies in the possibility of different representations,

thus enabling the processing step to be independently altered.

6. Execution of DroidBox: A customized version of DroidBox, a dynamic analysis tool

for Android that includes the Strace tool, is run against the data.

Page 55

7. Feature extraction: The tool captures, reorganizes and structures the findings as

records of derived features in this process. For both implementations, the

cumulative dataset of extracted features is given in the following formats: as a

comma-separated value or as a JavaScript Object Notation file.

Figure 4.1. OmniDroid dataset [18]

AndroPyTool was also used to create the OmniDroid dataset [18], the primary

dataset used for our testing purposes. A large collection of samples from two separate

sites is analysed using this method. At the very beginning, from a dataset of 100,000

samples that Koodous gave to OmniDroid for research reasons, both benign and

malicious samples were obtained. To complement the first set and also to encourage

diversity inside the malware set, additional samples from the AndroZoo portal have

been included, while avoiding alternative causes of prejudice in between the samples.

In order to exclude repetitive applications and those found to be invalid, a filtering

approach was followed. The first filter consists of eliminating samples represented by

repeated names of packages, thus avoiding several instances of the same program and

its associated vector features. Then, with the AndroGuard method considered part of

AndroPyTool, invalid apps that could not be run were found in order to delete them.

The third stage pursues the same target, but removing samples in this case that could

not possibly be implemented in the Android emulator used by DroidBox.

Page 56

AndroPyTool has actually run on multiple sample sets until a large amount of

samples have been analyzed: 21,018 samples of malware and 11,973 benign samples

[18]. However a distinguish between malicious and non-malicious samples is already

made by the Koodous dataset, all samples were sent to VirusTotal. This helps each app

to receive a modified report that contains the outcome of the scan collected from a

collection of antivirus engines that can be used to mark each sample as malware or

benign. Therefore, for each sample, the rate of positives given by the antivirus engines

deployed by the VirusTotal portal is included as pre-static information. The final

distribution of samples to a malware or benignware range would be in the hands of the

OmniDroid dataset developers, who will set their own parameters, because a low rate of

antivirus reporting malicious material may be attributed to false positives. A method

such as the one proposed by AndroPyTool can be used in this line, where even the

classification of each sample is set according to a given E-threshold [18].

The finally constructed dataset comprises a subset of the collected applications

because of the heavy computing load needed to extract the complete analysis from each

sample. To retain a healthy dataset containing both malware and benign samples, this

decline was discussed. The threshold parameter E was set to 1 for that reason. As per

this criterion, 11,000 malware and 11,000 benignware samples are composed of the finally

created and released dataset.

 All of the features available in this dataset were obtained by running

AndroPyTool from the above collection of processes mentioned. A basic understanding

of the amount of extracted features can be seen here, where some of the most significant

feature categories are listed. Through further analysis in [18], only a subgroup (at least

80%) of each feature category of the below list is used as features in our dataset.

• Permissions: 5,501

• Services: 4,365

• Opcodes: 224

• Receivers: 6,415

• API calls: 2,129

• API Packages: 212

• System commands: 103

• FlowDroid: 961

• Activities: 6,089

Page 57

The large range of features found in the dataset, derived utilizing both a static

and a dynamic approach to evaluation, allows the creation of resilient methods for

identification and classification. While strategies that rely on a reduced collection of

features can be fooled quite efficiently, those that use a wide set of features to define the

actions of the application present a major resistance against this form of attack.

 In this dataset, all the features derived describe a broad space from which various

distinctions and considerations can be made. For example, when observing malware or

safe samples, it is possible to examine the existence of unique features. The threshold e

has been adjusted to 1 for such tests, so benign samples would be those that all antivirus

engines deem as such, whereas those that are at least one antivirus classified as malware

are added to the malware set.

Regarding pre-static analysis, this includes background information about the

applications, such as the name of its file and checksums, the number of positive fields

recorded in its VirusTotal analysis, and the total number of engines from which the

results of the scan were collected. While several of these components can not necessarily

be viewed as behavioral characteristics, these fields can be used for further research to

keep track of the APK. This form of features also contains a sample categorization

according to the AVClass tool, which attempts to find a consensus between the outputs

generated by the numerous VirusTotal-operated antivirus engines [18]. Starting from a

series of numbered samples, this tool extracts a token array, identifies aliases, applies

several filters, and shows the most convenient token for each sample.

 A collection of additional features, that are derived using static analysis methods,

is retrieved from the samples and inserted into the dataset until the pre-static features

are retrieved. These attributes are: the name of the package, permissions, opcodes, the

name of the key operation, API calls, strings, device commands, and the collection of

intents that can be individually handled by the activities, utilities, and receivers. The

primary purpose of this set of features was to have an overview into the intended

behavior of the program and the variety of actions it may involve on the basis of a static

code analysis which does not mean code execution [18]. Although this method of

analysis does not represent the sample's actual actions, which can only be disclosed once

the sample is run, it feeds useful information to the analysis of a study. A detailed

description of API calls contained in the code is given in the first place. It is essential to

mention that this method of analysis does not identify certain functions that are

triggered through reflection or dynamic code loading, among other evasion techniques.

API calls can be found in the OmniDroid dataset, clustered by the category in which

Page 58

they are specified or by their package. Furthermore, permissions display system features

that may be accessed by the app, and system commands give a description of behavior

that can occur at a low level, such that unusual behavior, like privilege escalation, may

be exposed. Some other static features include Dalvik opcodes that are produced by

evaluating the Dalvik bytecode that are effective for low-level discernment of the

behavior of the sample and about the same moment, a collection of intents used to

invoke other elements of the application allows the sample to be profiled based on the

actions done and the activities that affect those actions. Finally, it also contains a report

assembled using the FlowDroid tool. In order to determine relations between a source

and a drain, this is a valuable instrument that conducts taint analysis over the

application code. This sources and sinks, previously defined by the SuSi framework [31],

make it possible to model the data leaks carried out over the life cycle of the program.

The dynamic analysis data gathered with a modified version of the well known

Droidbox system are grouped by this set of features. This architecture offers useful

features, such as network behavior or accessed files collected during execution, that can

be evaluated. To receive more detailed complex reports, this system was modified. This

alteration includes deploying the Strace tool within the Android emulator application

to collect a list of all system calls made at the Linux level during runtime. There were

also two additional DroidBox adjustments. On the one hand, with the intention of

stimulating the sample under examination with a larger amount of simulated user

behaviors on the screen and buttons, the behavior of the MonkeyRunner tool already

implemented in DroidBox has been modified. This updated version, on the other hand,

allows the sample to be run in a non-GUI environment, allowing several simultaneous

simulator instances in device nodes to be run [18]. The use of a dynamic analysis

technique, in comparison to static analysis, makes it possible to interpret the actual

actions displayed in a virtual environment where the software is performed. The

OmniDroid dataset includes all the occurrences collected by the DroidBox tool and a

log created with Strace for each analyzed application in the entire production log. These

two types of knowledge include vast volumes of information that must be filtered and

interpreted if used in accordance with the machine learning classifier.

Page 59

Figure 4.2. AndroidPyTool overview [18]

Page 60

4.2. Model Architecture

 These approaches (parallel classifiers) were used independently over the

collection of derived static and dynamic features and essentially a fusion-based

approach is proposed where all types of features are merged. To train and evaluate these

algorithms, the same threshold related to the minimum number of positives specified

in the previous segment, described by e = 1 (as mentioned later), is again used.

 In general, four well-known state-of-the-art ensemble methods for classification

were trained in parallel with different combinations of features. These algorithms,

executed with the Scikit-learn library for Python, are the following: AdaBoost, Random

Forest, ExtraTrees, Gradient Boosting (all of them using a parameter of 100 internal

estimators. Their results are then fed on a final estimator, in this case, Logistic

Regression, leading in a stacked model. This is repeated for both dynamic and static

features independently, combining the results with a final Voting Classifier with

multiple weight approaches (the reason behind the selection of these specific

algorithms is explained in the next section).

When opposed to a dynamic-based approach, it has been shown that using a

classifier with an input based on static features increases accuracy [18]. Despite this, the

increasing sophistication of threats necessitates the use of all possible methods in order

to determine the type of a suspect sample. To this purpose, a new method was invented

based on the fusion of activity data derived from a hybrid analysis that merged static

and dynamic elements. This combination method entails merging the best

classification models with each category of function (static and dynamic) to create a

voting classifier in which each feature category model contributes to the final

categorization. So, the final classifier of this model uses both static features like API

calls (which provide the best results in the static comparison) and dynamic features like

the various representations evaluated in the dynamic analysis method. As a result, three

vectors are generated by combining API call functionality with transfer probabilities,

frequencies states, and a combination of both. In practice, the voting classifier's

specification incorporates the results of two stacked classifiers that are responsible for

classifying the input vector's static and dynamic features parts. As per two weight

parameters W1 and W2, each classifier leads to the classification of a linear set of

features.

Page 61

Figure 4.3. Model’s Stacked Classifier

Figure 4.4. Model Architecture

Page 62

4.2.1. Ensemble Classifiers

There are several classifiers that could be used in order to obtain a result that

suits our purposes inside a stacked model, but instead there were chosen 4 ensemble

methods. As already mentioned, ensemble methods aim to increase generalizability and

robustness over a single estimator by combining the predictions of multiple base

estimators constructed with a given learning algorithm. Typically, two types of ensemble

approaches are distinguished: The guiding force behind averaging methods is to

construct many estimators independently and then average their forecasts. Since its

uncertainty is minimized, the combined estimator is normally better than either of the

single basis estimators. In boosting methods, on the other hand, base estimators are

constructed sequentially and the cumulative estimator's bias is reduced. The aim is to

create a strong ensemble by combining many poor models. In order to build our basic

estimator, 4 ensemble methods are used. These are AdaBoost, RandomForest,

ExtraTrees and GradientBoosting. The reason behind these specific algorithms, is first,

the fact that they are 4 of the most known and usable ensemble methods in Android

malware detection in general and secondly they are a great example to compare final

statistics and results as shown in other research works.

4.2.2. Stacked Approach

As far as our main estimator goes, a stacked approach is used. Stacking is the

process of teaching a learning algorithm to merge the assumptions of several learning

algorithms. Every one of the algorithms are trained with the available data first, and

then a fusion algorithm is taught using all of the other algorithms' predictions as

additional information to produce a final prediction. Stacking can potentially represent

all of the other ensemble methods if an arbitrary combiner algorithm is used, but in

reality, a logistic regression model is often used as the combiner. In most cases, stacking

outperforms all of the qualified models individually. It has been effectively

implemented on both supervised and unsupervised learning functions (density

estimation) [31].

Page 63

Stacking answers the issue of how to pick between various machine learning

models that are skilled at solving a problem in different ways. Another machine learning

algorithm that knows when to use each model in the ensemble is used to address this

problem as a final estimator [31]. In contrast to bagging, the models in stacking are

usually different and work on the same dataset rather than samples from the testing

dataset. Also, unlike boosting, stacking utilizes a specific template to learn how to better

integrate the observations from the participating models, rather than a series of

algorithms that correct prior models' predictions.

 A stacking model's structure consists of multiple base models, also known as

level-0 models, meaning models that fit on the training dataset, and a meta-model that

incorporates the projections of the base models, also known as a level-1 model, that

learns how to best mix the previous predictions [31]. The meta-model is educated using

out-of-sample data projections created by base models. That is, non-training data is fed

into the base models, predictions are made, and these estimates, along with the

predicted outcomes, form the input and output combinations of the training dataset

used to match the meta-model. In the case of regression, the results from the base

models for use as feedback to the meta-model could be actual numbers, likelihood

values; in the case of classification, the outputs from the base models may be probability

values, or class labels.

Figure 4.5. Stacked ensemble learning

Page 64

The most popular method for planning the training dataset for the meta-model

is k-fold cross-validation of the base models, with the out-of-fold projections serving as

the foundation for the meta-training model's dataset. The inputs to the base models,

such as input elements of the training data, can also be used in the meta-training

model's data. This will give the meta-model more context in terms of how to better

combine the meta-forecasts. The meta-model can be learned in turn on this dataset

until the training dataset for the meta-model has been fitted, and the base-models can

be trained on the entire initial training dataset until the training dataset for the meta-

model has been prepared. When several distinct machine learning models have

knowledge on a dataset, but in varied contexts, stacking is suitable. Another way to put

it is that the models' observations or flaws in predictions are mutually independent or

have a poor correlation.

 Base models are often dynamic and varied. As a result, it is always a great idea to

use a variety of models, such as linear models, decision trees, neural networks, and

others, that make quite reasonable interpretations about how to handle the predictive

analytics problem. The meta-model is sometimes straightforward, allowing for a

seamless analysis of the base models' observations. As a result, linear models, such as

linear regression for regression tasks and logistic regression for classification tasks, are

frequently used as the meta-model. This is a standard practice, but it is not always

needed.

 Since a basic linear model is used as the meta-model, stacking is often referred

to as "blending" [31]. A weighted average or mixing of the estimates provided by the base

models is used in the analysis. Stacking is intended to increase modeling efficiency, but

it is not expected to do so in all situations. The nature of the situation and whether it is

fairly well described by the training data and complex enough that there is something

to gain by integrating projections determine whether or not output can be improved.

Page 65

4.2.3. Voting-based fusion

The stacked model described above is used separately in different static and

dynamic feature groups. The final estimation of the sample being malware or benign is

performed through a special voting classifier, fusing the results from the previous

feature groups, using weighted approach.

Classifier fusion is based on the assumption that all classifiers in a given set are

competing rather than complementary. Each factor contributes to the classification of

an input vector. In the basic voting case, the selection is done depending on the amount

of votes provided to each of the classes by the individual classifiers, with x being

assigned to the class with the most votes [22]. When dealing of data sets with more than

two classes, relations between certain classes are very common in the final decision.

Several conditions should be considered in order to solve this dilemma. To take the

decision at random, for example, or to use an alternative classifier whose end aim is to

skew the decision against a certain class. This assertion, though, is not necessarily true.

For example, simple voting may perform worse than all of its members in certain

situations. As a result, using a weighting approach as a means of partly overcoming these

problems has been suggested. The error rate associated with the basic voting system and

its individual components is a significant problem that has piqued the interest of many

researchers. It has been demonstrated that if any one of the classification methods

being integrated has an error rate of less than 50%, the ensemble's performance would

increase as more parameters are applied to the method.

Fusing results with voting could be made more resilient to the number of

individual classifiers by using a weighted voting system. There are two general

approaches to weighting that can be mentioned: Classifier weighting can be dynamic or

static. The weights allocated to the specific classifiers will vary for each input vector in

the operational process using a dynamic approach. The weights for each classification

model are calculated in the training process of the static approach, and they do not

adjust during the classification of the input patterns. The latter is the one used in our

research scenario.

Specifically, we use a methodology that can be used to increase model

consistency, with the aim of outperforming any particular model used individually for

static and dynamic feature detection. The projections from different models are

combined in a soft-voting ensemble. It may be used for regression or classification.

Page 66

Figure 4.6. Soft-voting model

Figure 4.7. Model as-a-whole

Page 67

5. Implementation

 This section includes a more detailed discussion and explanation of the proposed

architecture. Any part's applicable code will be presented and clarified. A

comprehensive overview of the applied code's components, including features, classes

and in general of the way all the models were built together. Some information about

the libraries and modules that were used will be given in the code sections where they

were used. In conclusion, this chapter shows the complete way that tests were run and

how the results were obtained, in order to have a better understanding of the benefits

and drawbacks that the proposed architecture has to offer.

5.1. Workspace

 Beginning with the nature of the architecture and the tests that were run, the

programming language used, was Python (version 3.9), a scripting language. Its

programming philosophy prioritizes code readability, as shown by the extensive use of

indentation, while most of its constructs and object-oriented style are aimed at assisting

programmers in writing simple, logical code for projects, independently of their size.

Python was designed to be extremely scalable with modules, rather than having all of

its features incorporated into its core. Because of its lightweight modularity, it's

especially common for connecting programmable interfaces to existing applications. A

minimal core language with a wide standard library and an interpreter that can be

quickly extended. With libraries including TensorFlow, Keras, Pytorch, and Scikit-learn,

Python is widely used in artificial intelligence and machine learning projects like this

one, while it is also a very common language used in information security areas like

exploit development. The platform used to create any necessary scripts and equally run

it, is called PyCharm, a popular Python IDE through which any library needed was

installed.

 Regarding the libraries used for our purposes, Pandas [11] is one of the two

libraries utilized. This is a data manipulation and interpretation software library written

in Python. It includes data structures and operations for controlling numerical tables

and time series, in general. The term panel data comes from econometrics which refers

to data sets that contain measurements from different time intervals. Pandas is

primarily used to analyze data. It supports data import from a variety of file formats,

including comma-separated values and JSON. Pandas supports a wide range of data

Page 68

manipulation processes, including reconfiguring, picking and metadata management.

Many of its useful features needed are the following: DataFrame objects with optimized

aggregation for data processing, reading and writing content between in-memory data

structures and various file formats, alignment and management of lost data in a unified

manner and the possibility of reshaping and pivoting data sets.

 The second and most important library used in our project, is called Scikit-learn,

also known as sklearn. It is a Python machine learning library that is available for free.

Support vector machines, random forests, and k-means are among the classification,

regression, and clustering algorithms used, and it is designed to work with Python

computational and science libraries such as NumPy.

5.2. Methodology

 The first thing to be done after having essentially used AndroPyTool in order to

have the datasets ready as csv files (explained earlier), is to load the datasets. CSV files

are the most popular format for machine learning results, while they can be loaded in

Python in a variety of ways. Generally, the module reader() in the Python API can be

used to load CSV files and after the data has been loaded, it is converted to a NumPy

array and used for machine learning. In our case, Pandas and the pandas.read_csv()

function are used to load the datasets. This feature is extremely versatile, and it is

probably the preferred method for loading machine learning data. The function returns

a DataFrame from which we can begin summarizing and analyzing data right away. This

process is done twice for static and dynamic features, independently.

 Right after loading the dataframes, we retrieve the features (static and dynamic)

into an array called X and their labels in an array we call Y. Using LabelEncoder() from

sklearn.preprocessing, both input and output parameters in machine learning

algorithms must be numerical. This implies that if the data is categorical, you'll need to

convert it to numerical before fitting and evaluating a model. When dealing with

categorical data for machine learning algorithms, encoding is a mandatory

preprocessing phase. So, with LabelEncoder() target labels with a value between 0 and

n_classes - 1 should be encoded. Instead of encoding the input X, this transformer can

be used to encrypt the target values such as Y.

Page 69

Figure 5.1. Loading and processing data (python)

Figure 5.2. Loading and processing data

Page 70

As soon as the encoding is completed, we go through a loop to test all of the

estimators capabilities. The estimators tested here, taken directly from scikit-learn are

the following: RandomForestClassifier(), GradientBoostingClassifier(),

ExtraTreesClassifier(), AdaBoostClassifier(), VotingClassifier() and StackingClassifier

with LogisticRegressionCV as final estimator. The final estimation considers the

VotingClassifier() as a combining function between a dynamic and static feature

assessment.

Figure 5.3. Testing estimators loop (python)

Figure 5.4. Testing estimators loop

Page 71

It is highly recommended here to pay attention to a specific method used in order

to have correct results, called cross validation. A conceptual error, is studying the

properties of a prediction function and evaluating it on the same information: a system

that simply repeats the labels of the samples it has just seen will have a top score but

struggle to determine something meaningful on unseen data. Overfitting is the term

used to describe these circumstances. To stop this, it is standard practice to set aside a

share of the sample data as a test set X test, y test while running a machine learning test.

The train test split assistant component in scikit-learn will easily compute an arbitrary

division into training and test sets. There is also a chance of overfitting on the test range

when assessing various configurations for estimators since the variables can be adjusted

before the estimator works ideally. This allows information about the test set to

accumulate into the model. To address this issue, another portion of the dataset may be

set aside as a validation set, with testing taking place on the training set, followed by

assessment on the validation set, and finally, when the test appears to be satisfactory,

final evaluation on the test set. Even so, by dividing the accessible data into three groups,

we greatly limit the amount of samples that can be used to train the model, and the

outcomes can be influenced by a random pair of set selection. Cross-validation is a

technique that can be used to solve this case. The validation collection is no longer

required, but a test set should be kept on hand for final assessment. The training set is

divided into k complete subsets in the simple technique, known as k-fold CV. For each

of the k folds, the protocol is as follows: A model is created using the spreads as training

data, and the model is then tested using the collected information. The average of the

values computed in the loop becomes the output metric stated by k-fold cross-

validation.

 StratifiedKFold as a specific example that’s being used, is a k-fold variant that

generates stratified folds, with each set containing about the same proportion of

samples from each class label as the entire set. Finally, with concern to the way the

results are being processed and evaluated, these methods (that are explained in the next

chapter thoroughly) are used through scikit-learn:

Page 72

Figure 5.5. Cross-validation

Figure 5.6. Stratified K-Fold

Page 73

6. Results

 The outcomes of the previously mentioned implementation and testing will be

summarized in this chapter. For each function retriever and classification algorithm,

there are performance metrics for particular features-classifier combinations and

results obtained in general. In our case, we didn’t have to go further with testing and

tuning different hyperparameters manually, since there was a different overall goal. The

matrix is subjected to the 5-fold cross validation procedure in order to assess the

accuracy of the classifier construct. As a result, the dataset is divided into five equivalent

bits with no overlaps. Each phase of the assessment uses test data from one partition

and a qualified model from the other four bits. The outcomes are combined to provide

the classifier's final output results. The k-fold cross validation procedure is a widely used

machine learning assessment tool that is well suited to our aim of assessing the overall

effectiveness of classifiers in detecting abnormal malicious applications, which is

simulated by the non-overlapping testing segments.

6.1. Metrics

- Accuracy

- Precision

- Recall

- F1

- AUC

 Before diving into the explanation of these metrics and starting with another

important concept, the confusion matrix, it is the most straightforward way to assess

the success of a classification problem with two or more types of output. A confusion

matrix is just a two-dimensional table where all dimensions include True Positives, True

Negatives, False Positives, and False Negatives. True positives are the ones when the

actual class of the data point was True and the predicted is also True. True negatives are

the cases when the actual class of the data point was False and the predicted is also False.

False positives are the cases when the actual class of the data point was False and the

predicted is True while False negatives are the ones with True actual class and False

predicted.

Page 74

Regarding accuracy now, it is the most common efficiency metric. It's the

number of accurate predictions divided by the total number of predictions. The amount

of accurate predictions divided by the total number of input data is the ratio of accuracy.

Here, we use accuracy_score [25] from sklearn in order to compute accuracy. Precision,

on the other hand, is the percentage of correct records retrieved by a model, while the

general amount of positives produced by the model is known as recall. The modules

being used from sklearn.metrics are precision_score and recall_score [25].

Figure 7.1 Confusion Matrix

Figure 7.2 Accuracy

Page 75

 Figure 7.3 Precision and Recall

Page 76

The harmonic mean of precision and recall is the F1 Score. It informs you of the

classifier's precision, or how many times it accurately categorizes, as well as its

robustness. High precision but poor recall gives you an incredibly precise result, but it

still misses a vast amount of incidents. The higher the F1 Score, the stronger our model's

results, because it practically attempts to bridge the gap among recall and precision.

F1_score from sklearn.metrics is the module used in our implementation.

 One of the most commonly used metrics for measurement is the Area Under

Curve (AUC). It's used to solve problems involving binary classification. A classifier's

AUC is the likelihood that a selected randomly positive example will be ranked higher

than a randomly picked negative example. A receiver operating characteristic curve, or

simply ROC curve, is a visual representation of the output of a binary classifier scheme

as the threshold is changed. It's made by comparing the fraction of true positives to the

fraction of false positives at different threshold settings. In other words, the AUC-ROC

metric measures a model's ability to differentiate between classes, which means the

stronger the model, the higher the AUC.

Figure 7.4 ROC Curve

Page 77

6.2. Evaluation

 Below are presented in a detailed manner the results of multiple different tests,

as explained earlier, on Omnidroid dataset. To sum up, the experiments that were

eventually run and are shown in these tables, are the following (the dataset and the

features used are the same on all runs and are shown in 4.1.1.):

1. Random Forest, Extra Trees, Gradient Tree Boosting, ADA Boost and proposed

stacked classifier exclusively and separately each one of them on static features

2. Random Forest, Extra Trees, Gradient Tree Boosting, ADA Boost and proposed

stacked classifier exclusively and separately each one of them on dynamic features

3. Fusion of both static and dynamic feature results using soft-voting as final

classifier and the proposed stacked classifier as the classifier that was used on both static

and dynamic features (since it had the best results, seen also in Figure 7.5 and 7.6). The

W_S and W_D abbreviations following figure 7.7, represent the weight of static and the

weight of dynamic features respectively, all tested in a range between and 0.1 and 0.9.

 On the first table, it can be seen that the stacked classifier outperforms all the

other ensemble classifiers in a class of at least 2%. Same thing goes with the dynamic

features, as it can be spotted on figure 7.6 below. Finally, using stacked classifiers on

both the feature categories, the voting classifier fuses the results giving even better

results, with maximum performance obtained at W_S = 0.7 and W_D = 0.3, going as far

as 5% better results.

 Αccuracy Precision Recall F1 AUC

Random
Forest

0.875700 0.878454 0.867739 0.872952 0.951470

Extra
Trees

0.876200 0.881434 0.864897 0.872999 0.948090

Gradient
Tree

Boosting

0.875400 0.882224 0.862051 0.871948 0.946220

ADA
Boost

0.849700 0.8444737 0.851078 0.847870 0.927380

Stacked
Classifier

0.890800 0.893609 0.871032 0.886649 0.965431

Figure 7.5 Static Features Evaluation

Page 78

 Αccuracy Precision Recall F1 AUC

Random
Forest

0.765500 0.760719 0.742282 0.750964 0.834027

Extra
Trees

0.753167 0.760315 0.745570 0.747207 0.826118

Gradient Tree
Boosting

0.758000 0.751021 0.750000 0.739962 0.831020

ADA
Boost

0.736900 0.735019 0.735019 0.726349 0.811444

Stacked
Classifier

0.778833 0.774882 0.745302 0.754182 0.852121

Figure 7.6 Dynamic Features Evaluation

 W_S =
0.1

W_D =
0.9

W_S =
0.2

W_D =
0.8

W_S =
0.3

W_D =
0.7

W_S =
0.4

W_D =
0.6

W_S =
0.5

W_D =
0.5

W_S =
0.6

W_D =
0.4

W_S =
0.7

W_D =
0.3

W_S =
0.8

W_D =
0.2

W_S =
0.9

W_D =
0.1

Accu-
racy

0.845800 0.865900 0.865800 0.885732 0.907739 0.908730 0.915200 0.907730 0.905600

Preci-
sion

0.854664 0.863000 0.864464 0.883426 0.894890 0.895100 0.902210 0.902440 0.892300

Recall 0.852550 0.861050 0.861430 0.877710 0.892050 0.872324 0.899176 0.898700 0.895145

F1 0.842350 0.863350 0.863400 0.878800 0.894500 0.904450 0.913405 0.904740 0.903630

AUC 0.957030 0.958000 0.958550 0.963548 0.965035 0.971034 0.975730 0.973030 0.966030

Figure 7.7 Voting Fusion Evaluation (using stacked ensemble as sub-classifiers)

Page 79

7. Future Work

 Several suggestions for future work are discussed in this segment, which can

enhance the identification of Android malware. Having analyzed this dataset, we

conducted various experiments, and presented findings after analyzing groups of

features independently in order to supply relevant implications with a preliminary

assessment of the dataset, as well as illustrating the dataset's large capacity and

efficiency of use. About the fact that most of the state-of-the-art algorithms studied,

performed well in the experiments, there is also some space for progress as compared to

the OmniDroid dataset [18]. This could aid researchers in training, testing, and

evaluating their models, or simply comparing malware detection approach using

OmniDroid as a safe, pre-processed data standard. Ultimately, as mentioned in [18],

there is an idea about expanding AndroPyTool's structure to allow for the extraction of

more features per sample by adding other feature extraction and reverse engineering

methods. Simultaneously, there is a need in the immediate future to increase the

number of samples in the OmniDroid dataset, upgrading it to include new samples

discovered in the wild.

 In addition to that, using stacked classification models and having more than

one algorithm running on the same data, consumes more time, as already mentioned.

A solution to this issue is apparently running those algorithms in parallel which of

courses provides a great aid but requires having the correct amount of computation

power. So, with regard to how much time is required and the performance implications,

this kind of models need direct improvement.

 In the long run, we want to build further concurrent classifiers by combining new

variations of individual classifiers. Our aim is to use deep-learning models on a massive

real-world dataset to identify and forecast security flaws and malware. We want to use

the examined technique to build and test a complete Android malware detection

mechanism in the future. More research into the detection engine's success when

exposed to real datasets from evolving Android app markets is also expected.

Page 80

8. Conclusion

 Android mobile applications are vulnerable to malware attacks, and while studies

have extensively dealt with malware detection and classification, their methods could

be improved [3]. As a result, this thesis tries first of all, to encourage learning about

Android subsystems and its security architecture, while ensuring the criticality

regarding malware and the procedure of correctly analyzing and engineering. On a

second level, it intends to show how hybrid parallel ensemble classifiers like a stacked

model and soft voting, can be used to efficiently detect and identify malware in Android

applications, while promoting the correct use of datasets for testing purposes, wanting

to encourage the research on Android malware analysis even more. In practice,

individual classifiers are used throughout our approach, which ensembles them to

construct a more efficient and reliable system based on a stacked model, leading to a

linking process between dynamic and static results.

 First, a theoretical context was given, including theoretical knowledge and

related work on machine learning classification techniques, in order to better develop

the machine learning classifiers. After that, the solution to the problem was presented.

Finally, the implementation algorithm was introduced, as well as the empirical results

of the output metrics. Although there have already been numerous researches for

identifying Android malware using machine learning techniques, as discussed before,

the aim of this work was to show how stacked methods combined with parallel voting

between dynamic and static features can improve the results in general.

Finally, the system that was tested, not only detects malware in the Android OS

with a very high accuracy and precision, but it also eliminates the gaps and

shortcomings of previous methods. This approach takes advantage of each classifier's

unique strengths and strong points when averaging out their individual flaws. As a

result, the system as a whole is more stable and has a lower error rate. Our study, in

general, involves data for developing machine learning models and recommendations

given for machine learning classification of Android malware that has been shown to

increase classification accuracy.

Page 81

References

[1] Aafer, Y., Du, W., Yin, H.. DroidAPIMiner: Mining API-Level Features for Robust Malware

Detection in Android. In: 9th International ICST Conference, SecureComm 2013; vol. 127 of

Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering. Springer; 2013, p. 86–103.

[2] Agrawal, Prerna & Trivedi, Bhushan. (2021). Machine Learning Classifiers for Android

Malware Detection. 10.1007/978-981-15-5616-6_22.

[3] Ahmed, Omar & Sallow, Amira. (2019). Android Security: A Review. 6. 6.

[4] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., et al. Flowdroid: precise

context, flow, field, objectsensitive and lifecycle-aware taint analysis for android apps. In: O’Boyle,

M.F.P., Pingali, K., editors. ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’14. ACM; 2014, p. 259–269.

[5] Ayodele, Taiwo. (2010). Types of Machine Learning Algorithms. 10.5772/9385.

[6] Droidbox source code repository. 2011. URL: https://github. com/pjlantz/droidbox; Last

accessed: 2018-03-14.

[7] Drucker. “Improving Regressors using Boosting Techniques”, 1997.

[8] Dunham, K. & Hartman, S. & Morales, J.A. & Quintans, M. & Strazzere, T.. (2014). Android

malware and analysis. 10.1201/b17598.

[9] Ethem Alpaydin (2020). Introduction to Machine Learning (Fourth ed.). MIT. pp. xix, 1–3, 13–

18. ISBN.

[10] Faruki P, Ganmoor V, Laxmi V, Gaur MS, Bharmal A. AndroSimilar: robust statistical feature

signature for Android malware detection. In: Proceedings of the 6th international conference on

security of information and networks. ACM; 2013. p. 152–9. doi: 10.1145/2523514.2523539.

[11] https://github.com/pandas-dev/pandas

[12] Google n.d. Android Developer Guide. http://developer.android.com/guide/index.html.

Accessed September 25, 2020.

Page 82

[13] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behaviorbased malware

detection system for android,” in Proceedings of the 1st ACM workshop on Security and privacy in

smartphones and mobile devices. ACM, 2011, pp. 15–26.

[14] Jonathan Levin, Android Internals: A Confectioner's Cookbook, Volume I: The Power User's

View, http://newandroidbook.com/AIvI-M-RL1.pdf, 2015.

[15] Kapratwar, Ankita & Di Troia, Fabio & Stamp, Mark. (2017). Static and Dynamic Analysis of

Android Malware. 653-662. 10.5220/0006256706530662.

[16] Liu, Jianye & Yu, Jiankun. (2011). Research on Development of Android Applications.

Proceedings - 2011 4th International Conference on Intelligent Networks and Intelligent Systems,

ICINIS 2011. 10.1109/ICINIS.2011.40.

[17] L. Breiman, “Bagging predictors”, Machine Learning, 24(2), 123-140, 1996.

[18] Martín García, Alejandro & Lara-Cabrera, Raul & Camacho, David. (2018). Android malware

detection through hybrid features fusion and ensemble classifiers: The AndroPyTool framework and

the OmniDroid dataset. Information Fusion. 52. 10.1016/j.inffus.2018.12.006.

[19] Mitchell, Tom (1997). Machine Learning. New York: McGraw Hill. ISBN 0-07-042807-7.

[20] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van Der Veen, and C.

Platzer, “Andrubis–1,000,000 apps later: A view on current android malware behaviors,” in Building

Analysis Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third

International Workshop on. IEEE, 2014, pp. 3–17

[21] Opitz, D.; Maclin, R. (1999). "Popular ensemble methods: An empirical study". Journal of

Artificial Intelligence Research. 11: 169–198.

[22] O. Matan: On voting ensembles of classifiers, In: Proc. of the 13th Natl. Conference on

Artificial Intelligence, 84–88, 1996.

[23] P. Feng, J. Ma, C. Sun, X. Xu and Y. Ma, "A Novel Dynamic Android Malware Detection

System With Ensemble Learning," in IEEE Access, vol. 6, pp. 30996-31011, 2018, doi:

10.1109/ACCESS.2018.2844349.

[24] Rasthofer, S., Arzt, S., Bodden, E.. A machine-learning approach for classifying and

categorizing android sources and sinks. In: 21st Annual Network and Distributed System Security

Symposium, NDSS 2014. The Internet Society; 2014, p. 1–15.

Page 83

[25] Scikit-learn python library, https://scikit-learn.org/stable/user_guide.html

[26] Sill, J.; Takacs, G.; Mackey, L.; Lin, D. (2009). "Feature-Weighted Linear Stacking".

[27] Simeone, O., A Brief Introduction to Machine Learning for Engineers, 2017.

[28] S. Arshad, M. A. Shah, A. Wahid, A. Mehmood, H. Song and H. Yu, "SAMADroid: A Novel 3-

Level Hybrid Malware Detection Model for Android Operating System," in IEEE Access, vol. 6, pp.

4321-4339, 2018, doi: 10.1109/ACCESS.2018.2792941.

[29] Tam, Kimberly & Feizollah, Ali & Anuar, Nor & Salleh, Rosli & Cavallaro, Lorenzo. (2017).

The Evolution of Android Malware and Android Analysis Techniques. ACM Computing Surveys.

49. 1-41. 10.1145/3017427.

[30] Van der Veen, Victor. (2013). Dynamic Analysis of Android Malware. 10.13140/2.1.2373.4080.

[31] Wolpert, David H. “Stacked generalization.” Neural networks 5.2 (1992): 241-259.

[32] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A.

N. Sheth, “Taintdroid: an information-flow tracking system for realtime privacy monitoring on

smartphones,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5, 2014.

[33] Yan L-K, Yin H. DroidScope: seamlessly reconstructing the OS and Dalvik semantic views for

dynamic Android Malware analysis. In: USENIX security symposium; 2012. p. 569–84.

[34] Zhauniarovich, Yury. (2014). Android Security (and Not) Internals.

