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Abstract

This Ph.D. thesis is a collection of three publishable papers with a signi�cant contri-

bution to auction theory and its corporate �nance applications. Each chapter of this

thesis addresses each paper separately, apart from the Chapter 1.

In Chapter 1, we introduce and explain some essential auction-theoretic toolkits for

the following chapters' analysis and discuss some seminal papers we used as a grounding

base of our research.

Chapter 2 investigates how uniform-price auctions can be used for the pricing of

corporate bonds. In order to have a realistic approach, we incorporate the investment

mandates and the budget limits on the bidding strategies under the presence of a

secondary market. To our knowledge, we are the �rst to address all these factors in

one model and result to some interesting results presented both in section 2.4 and

Chapter 5.

The next chapters examine the auction designs of portfolio trading. In Chapter

3 we propose a two-stage auction design for the pricing of blind portfolios - a basket

of unknown securities auctioned at a pre-determined execution price. The mechanism

allows information release at the interim and this feature not only can reduce the asset

managers' liquidation costs but also eliminate brokers' �winners' curse�.

In Chapter 4 we design a two-stage auction for a divisible portfolio auctioned either

as parts or as a whole. Again the two-round setup admits an information release at

the interim, which may o�set the �winner's curse�. Our main novelty is a new pricing

rule for a core-selecting auction that extends the current Nearest-VCG in a dynamic

two-round setup and can mitigate free-riding incentives.

The last chapter summarizes the results from previous chapters and concludes.
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Chapter 1

An Overview on Auction Theory

1.1 Auction Basics

1.1.1 Introduction

The best description for an auction is the term market mechanism, which determines

an outcome based on the information and answers to who will acquire the items and

at what price. This market mechanism operates under speci�c rules, especially in

environments where the market price is hard to be set [Krishna, 2010; Mochón and

Sáez, 2015].

The history of auctions goes back to antiquity. Herodotus reports that auctions

were used in Babylon as early as 500 b.c. for women on marriageable age and slaves

[McNeal, 1988]. In recent years, auctions have become universal in the sense that

they may be used for art paintings, bonds' issuance, spectrum rights, and auctions etc.

[Krishna, 2010].

Both the evolution of auction theory1 and the operational research have contributed

to more sophisticated auction designs, which promote the e�ciency in allocations and

competitiveness in the seller's revenue. Additionally, auctions could be characterized

as market barometers on the market price when the latter is hard to be determined

[Mochón and Sáez, 2015].

1Begun from William Vickrey [Vickrey, 1961] whose work was initially unrecognized.
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1.1 Auction Basics

1.1.2 Valuations, Bids and Prices

A seller auctions an object because he is uncertain about the object's value i.e., the

maximum price that the bidders are willing to pay for it. Each bidder's valuation for

the object can be di�erent from the amount o�ered i.e., bid. [Krishna, 2010; Mochón

and Sáez, 2015].

When the bidder makes a bid equal to his valuation, then he follows a sincere

strategy. Any bidding below the valuation is called underbidding, while bidding above

the valuation is an overbidding.

In the context of bidders' valuations, their preferences can be classi�ed as follows:

• Private Valuation. It is a situation where no information can change the valua-

tion. This means that no bidder knows the values of others, and any knowledge

for others' would not change how much the object worths for him. Private val-

uations are associated with the �personal use� with no intentions to resale the

object in order to gain pro�ts.

• Interdependent Valuation. The valuations of other rivals may a�ect his valuation.

If the bidder has the resale option, his valuation may change if the signals he

receives show that other bidders estimate more or less the object. The term refers

only to the structure of the values, and how these are a�ected by the signals of

others - it does not refer to any statistical properties of this information.

• Common Valuation. It is a special case of interdependence, and it refers to the

case of the value that derives from the market price of the item, which is unknown

at the time of the auction. It is often called the mineral rights model [Milgrom

and Weber, 1982] to illustrate that bidders might have di�erent estimates on the

amount of recoverable ore, its quality, and the prices that will based on private

information, yet the �nal value is the same for all bidders. This means that a

bidder's estimate might change if he could know the other bidders' estimates, as

all of them are trying to estimate the same underlying value of the object.
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1.2 Standard Single-Unit Auctions

1.2 Standard Single-Unit Auctions

Single-unit auctions are auctions where one seller sells a single item or object to one

out of many bidders. There are two types concerning the revelation of price quotes:

• Open auctions: Bids are required to be public and adjustable. After some

time, the auction matches buyers and sellers and determines the �nal price. Such

auctions are considered the English auction, the clock auction, and the dutch

auction. The analysis of those formats is beyond the scope of this thesis, yet the

reader may �nd further information on Mochón and Sáez [2015].

• Sealed-Bid auctions : The bids are private and are opened simultaneously.

The auctioneer receives the bid and rearranges them in a decreasing/ increasing

order. If the format is the �rst-price sealed-bid auction, then the higher/lower

bidder acquires the item and pays the seller his bid. Another format is the

second-price sealed-bid auction (aka a Vickrey auction), in which the bidder

pays only the second-highest/lowest bid price. Each format is analyzed in the

following subsection.

In the subsection 1.1.2 we explain the notion of independent private and common

valuation. In the following chapters, we focus on common-value auctions; hence we

shed more light on those auctions. In a common-value auction, the bidders will

take into account each other's information, and their value estimates will coincide to

a single joint distribution. We shall use the concept of Bayesian Nash equilibrium

to predict each bidder's strategic behavior, where all bidders have a common prior

distribution of their valuation.

1.2.1 First-Price Sealed-Bid Auctions

Each bidder submits one bid in a �rst-price sealed-bid auction but does not learn about

other bidders' bids. The highest/lowest bidder pays the price equal to the winning bid

and acquires the item. A bidder's strategy is his bid as a function of his value. A

bidder's bid should be large(low) enough to win the second-highest (lowest) bid. In

this type of auction, no dominant strategy exists, in the sense that bidders tend to

5



1.2 Standard Single-Unit Auctions

bid below their values because a bid equal to their value implies zero surplus [Bichler,

2017; Mochón and Sáez, 2015].

If the values are considered as private information and only a common prior distribu-

tion with values exists, then a Bayesian Nash equilibrium might be a complex solution.

Bidder's dilemma is between bidding high/low and win more often or bidding low/high

and bene�t from winning if it occurs. Also, the Bayesian Nash equilibrium strategy

(explicitly de�ned in subsection 1.3.1) depends on risk aversion and the prior distribu-

tion [Bichler, 2017]. In particular, risk aversion causes an increase in equilibrium bids,

since bidders buy insurance against the probability of losing [Krishna, 2010]. Thus,

in the �rst-price sealed-bid auctions, the Bayesian Nash equilibrium is less robust to

mistakes than the equilibrium of the second-price sealed-bid auction [Bichler, 2017].

In this thesis, we focus only on risk-neutral bidders. We apply the rule of �rst-price

sealed-bid auction in Chapter 3 and Chapter 4.

1.2.2 Second-Price Sealed-Bid Auctions

Similar to the previous subsection 1.2.1, in the second-price sealed-bid auction, winning

bids are revealed ex-post. This rule attributes the item to the highest/lowest bidder,

yet the amount paid by the winner is the �rst rejected bid (second highest/lowest).

The winner's payo� is determined by his valuation over the item minus the price

paid (second highest/lowest bid) for the acquisition. The second highest/lowest bid

associates the seller's payo�.

The most appealing property in this auction format is that bidding sincerely is a

weakly dominant strategy. To explain it further, a bidder who bids less is no more

likely to win the auction, but he pays the same price, the second-highest/lowest bid

if he is the winner. Bidding more than the value of the item could lead to a negative

payo�. The rule belongs to the class of VCG mechanisms and it is strategy-proof2

[Vickrey, 1961]. For example if bidder 1 bids b1 with a value v1, such as b1 > v1, and

bidder 2 bids b2 with value v2, such as v1 < b2 < b1. The outcome of the auction

attributes to bidder 1 the item, but bidder 1 su�ers a loss [Bichler, 2017].

2Mechanisms with dominant strategies are referred in the literature as strategy-proof [Bichler,

2017; Borgers et al., 2015].
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1.3 The Common Value Model

1.3 The Common Value Model

The common value model was introduced by Wilson [1969] and developed the �rst

closed-form equilibrium analysis on the �winner's curse� - the possibility to pay more

than the true value of the object. The winner's curse is a form of adverse selection.

A bidder who wins in an auction against well-informed bidders must be apprised that

the other unwillingness to bid higher is unfavorable information about the value of the

item [Menezes and Monteiro, 2005; Milgrom, 2004].

The usual practice in a common value auction model is to refer to bidders' types

as bidders' signals. If we assume that bidders' types determine bidders' preferences, in

these models bidders' preferences might be a function of the other bidders types/signals

[Menezes and Monteiro, 2005].

1.3.1 Auctions as a Bayesian Games

In this section we borrow the example of Menezes and Monteiro [2005] to explain how

auctions can be considered as games of incomplete information. Thus, the expected

payo� and the strategies of each bidder i depends on his beliefs about others' payo�s.

A Bayesian Game is de�ned as a tuple (I,X, F, Si, πi), where

• a set of potential bidders is I = {1, 2, . . . , n};

• a set X = X1× · · · ×Xn of possible types , where Xi = [0, v̄] is the type space of

bidder i ∈ I and a type xi in this space is the value that the bidder i estimates

for the object;

• F (·) is the probability distribution over X, depicting the probabilities attached

to each combination of types where F (·) : [0, v̄]n → [0, 1] with a density function

f(·) : [0, v̄]n → R;

• Si = R+ is the set of strategies or bids for bidder i ∈ I and si : Xi → Si the

decision of i.

• πi(si, s−i, xi, x−i) is the payo� function of i given his type vi choosing a strategy

si ∈ Si and s−i(x−i) to be the strategy followed by other bidders.
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1.3 The Common Value Model

First Harsanyi [1967] introduced the type of a bidder that is a random variable that

encompasses the information about bidder i's payo�. The probability distribution F (·)

of vi is assumed to be common a priori among the bidders. For each bidder i, the value

vi is chosen randomly from Xi according to F and bidder i observes the realized type

vi. Then the bidders update their beliefs about other bidders' types based on F . The

payo� πi of bidder i will depend on his attitude towards risk and on the rules of the

auction.

Next, we de�ne the Bayesian Nash equilibrium, which is basically the same concept

as a Nash equilibrium with the addition that players need to take expectations over

opponents' types.

DEFINITION 1.1 (Bichler [2017]). A Bayesian-Nash equilibrium is a list of decision

functions (s∗1(·), . . . , s∗n(·)) such that ∀i ∈ I, ∀xi ∈ X and ∀si ∈ Si:

E(πi(s
∗
i |s∗−i, xi)) ≥ E(πi(si|s∗−i, xi))

for all s∗i (xi) and for all types xi occurring with positive probability.

In other words, each bidder chooses a strategy using a Bayesian decision function.

We then can apply the concept of Nash equilibrium to these decision functions: each

bidder forms a best response strategy of choosing the best Bayesian decision functions,

based on the best response strategies of other bidders.

1.3.2 Auction as a Mechanism

This section will consider the underlying allocation problem by disregarding the auction

formats and identifying the best allocation rule. One property that is desirable in every

mechanism is truthfulness, and holds when agents truthfully disclose their preferences

to the mechanism in the equilibrium. If this property can be attained for all the

implemented social choice functions (allocative e�ciency or revenue maximization for

the auctioneer) and agents' preferences, then there is a subclass of such mechanisms

called �direct mechanisms� [Bichler, 2017; Borgers et al., 2015]. In �direct mechanisms�

the set of strategies (�bids�) is the same as the set of bidders' types - that is, for all i,

Si = Xi. If f(x) is the joint density of x = (x1, x2, . . . , xN) and types are independently

8



1.3 The Common Value Model

distributed, f(x) = f1(x1)× f2(x1) · · ·× fN(xN)3, then a �direct mechanism� is de�ned

as follows [Krishna, 2010].

DEFINITION 1.2 (Borgers et al. [2015]; Krishna [2010]). A direct mechanism con-

sists of a pair of functions A : X → ∆ and P : X → RN , where ∆ is the set of all

probability distributions over the set bidders I where Ai(x) is the probability that i will

get the object and Pi(s) is the expected payment by i. The pair (A(x),P(x)) is the

outcome of the mechanism at x.

The interpretation of a �direct mechanism� is that the only available action to each

bidder is to announce his private information, i.e. his type. From subsection 1.3.1,

where we de�ne auctions as a Bayesian Game, then in �direct mechanism� we have

Si = Xi. The direct mechanism is truthful (or incentive compatible), if, for any type

vector x, in the equilibrium of the game de�ned by the mechanism, every bidder's i

strategy is to announce his true type [Borgers et al., 2015; Shoham and Leyton-Brown,

2010].

Now we will state one of the most basic results in mechanism design, the revela-

tion principle which shows that the outcome resulting from any equilibrium of any

mechanism can be replicated by a truthful equilibrium of a direct mechanism.

PROPOSITION 1.1 (Krishna [2010]). Given a mechanism and an equilibrium for

that mechanism, there exists a direct mechanism in which (1) it is an equilibrium for

each bidder to report his value truthfully, and (2) the outcomes are the same as in the

given equilibrium of the original mechanism.

Proof. See Krishna [2010], p.62. �

The revelation principle means that even though one might have thought a priori

that a particular auction design problem calls for an arbitrary complex strategy space,

in reality, one can only focus on truthful, direct mechanisms [Shoham and Leyton-

Brown, 2010]. Suppose one can �x a mechanism and an equilibrium s of the mechanism.

Now instead of having bidders submit bids s(xi) and then applying the rules of the

mechanism in order to determine the outcome, we would directly ask the bidders to

�report� their types xi and then reassure that the outcome remains the same as if they

3Similarly for f−i(x−i) and x−i = (x1, . . . , xi−1, xi+1, . . . , xN ).
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1.3 The Common Value Model

had submitted bids si(xi). In other words, a direct mechanism does the �equilibrium

calculations� for the bidders automatically.

1.3.3 Correlation and A�liation

An important assumption in the analysis of optimal auctions4 is that each bidder's

private information is independent of his competitors' private information. Myerson

[1981] in his in�uential paper5 presents an example indicating that if bidders' private

information is correlated, then the seller can design a mechanism that achieves the

entire social surplus as if bidder's information were fully public!

The notion of a�liation in information was �rstly introduced by Milgrom and We-

ber [1982]. The assumption of positively a�liated signals attributes a strong positive

correlation and roughly means that if a subset of X ′is are all large, it is more likely that

the remaining X ′js are also large. In that sense, a�liation is stronger than correlation.

The formal de�nition may be found in Milgrom [2004] at pages 182-183. Brie�y, we

give the intuition with an example.

Suppose the random variables X and Y with a joint distribution f : [0, v̄]2 → R. If

X and Y are a�liated , then x′ ≥ x and y′ ≥ y,

f(x′, y)f(x, y′) ≤ f(x, y)f(x′, y′)

.

The main results of their paper are that ascending auctions lead to higher expected

prices than sealed-bid second-price auctions, which in succession lead to higher expected

prices than �rst-price auctions (under the risk-neutrality assumption). Their intuition

is that the more the price paid depends on other's information, the more closely the

price is related to the winner's information (due to a�liation). Thus the lower is

the winner's information rent, and so the winner's expected surplus, the higher the

expected price [Klemperer, 2003].

We use this notion of correlation in Chapter 3 to show how an update in public

4Revenue-maximizing auctions are also referred to as optimal auctions.
5A few years later Crémer et al. [1985] showed that Myersons' result is very general.
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1.3 The Common Value Model

information may a�ect positively or negatively bidder's valuations.

1.3.4 The symmetric model

Now we present the notion of symmetric bidders for common value auctions based on

the de�nition given by Krishna [2010]. When signals are a�liated, symmetry concerns

the valuations and the distribution of signals.

If all signals Xi are drawn from the same interval [0,v̄], then the valuations of the

bidders are symmetric in the following sense

vi(X) = v(Xi,X−i)

where v is a symmetric function in the last N − 1 components and it is the same

for all bidders.

This means that from the perspective of a bidder i, the signals of the other bidders

can be interchanged without a�ecting the value. In the example with N = 3 (three

bidders), the value of bidder 1 depends on his signal and the signal of bidders 2 and

3. If the signals of the other bidders were interchanged, then the value would not

be a�ected. Also we assume that the symmetric joint density function of the signals

f → [0, v̄]N is a�liated. We de�ne the following function

v(x, y) = E[V1|X1 = x, Y1 = y]

which is the expected value of bidder 1 when the received signal of bidder 1 is

X1 = x and the highest signal of other rival bidders is Y1 = y. Since we have assume

symmetry among the participating bidders, this function is the same for all bidders

with v(x, y) to be strictly increasing in x and y.
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1.3 The Common Value Model

1. Second-Price Auction

Following the Theorem 6 of Milgrom and Weber [1982], we will prove that in the

symmetric equilibrium of second-price auction the symmetric equilibrium strate-

gies are given by:

s(x) = v(x, x)

Suppose all other bidders i 6= 1 follow the strategy s. We denote with s−1(b) the

value of s for which b is the equilibrium bid. If bidder 1 has a signal x and bids

an amount b, his expected payo� is given by

E(π1|b, x) =

∫ s−1(b)

0

[
v(x, y)− s(y)

]
f(y|x)dy

=

∫ s−1(b)

0

[
v(x, y)− v(y, y)

]
f(y|x)dy,

where f(·|x) is the conditional density function of the distribution F (·|X) for

Y1 ≡ maxi 6=1Xi conditional on X1 = x.

Since v is increasing in the �rst argument for all y < x, v(x, y) − v(y, y) > 0.

Thus, E(π1|b, x) is maximized by choosing b so that s−1(b) = x or equivalently,

by choosing b = s(x) [Krishna, 2010].

To explain further the bidding strategies mentioned above, assume that bidder 1

with a signal x bids an amount s(x) such that he wins in the auction with this

bid. If the highest competing bid that determines the price was s(x) too, bidder

1 would �break even� because he would conclude that Y1 = x and the expected

value of the object conditional on the new information is in accord with:

s(x) = v(x, x) = E[V1|X1 = x, Y1 = x]

At this stage we can calculate bidder's 1 expected payment conditional on receiv-

ing a signal X1 = x

E[b(Y1)|X1 = x, x > Y1] = E[v(Y1, Y1)|X1 = x, x > Y1]

The seller's expected revenue from the second-price auction in a symmetric envi-

ronment is simply n times this expected payment [Menezes and Monteiro, 2005].
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1.3 The Common Value Model

2. First-Price Auctions

Suppose that all bidders j 6= i follow the increasing and di�erential strategy b.

Evidently, bidder 1 does pay for any bid less than b(0) or more than b(v̄). If

bidder 1 has a signal x and bids an amount b(z), then his expected payo� is

de�ned by

E(πi(z, x)) =

∫ z

0

(
v(x, y)− b(z)

)
f(y|x)dy

=

∫ z

0

v(x, y)f(y|x)dy − b(z)F (z|x)

Applying the �rst-order conditions

(
v(x, z)− b(z)

)
f(z|x)− b′(z)F (z|x) = 0

At a symmetric equilibrium, the optimal z = x, thus we obtain the di�erential

equation which is only a necessary condition:

b′(x) =
(
v(x, x)− b(x)

) f(x|x)

F (x|x)

s.t. v(x, x)− b(x) ≥ 0, for all x,

since otherwise a bid equal to zero would be better. By assumption v(0, 0) = 0

with a boundary condition b(0) = 0. The solution of the above di�erential

equation results to the symmetric equilibrium.

The symmetric equilibrium strategies in a sealed-bid �rst-price auction are given

by

b(x) =

∫ x

0

v(y, y)dL(y|x)

where,

L(y|x) = exp

(
−
∫ x

y

f(t|t)
F (t|t)

dt

)
Further analysis on the proof is given by Krishna [2010] in the section 6.4.
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1.3.5 The �Linkage� Principle

In many instances, the seller may have information that is potentially useful to the

bidders. How should the seller react in these cases? Should he keep it hidden or reveal

it publicly?

These questions have been answered in the remarkable paper of Milgrom and Weber

[1982] in Theorems 8, 12 and 16. In Theorem 8 and 12, they have shown in second-price

and English auctions �revealing information publicly raises seller's revenues�, while in

Theorem 16 they have proven that in the �rst-price auction, �revealing the seller's

information cannot lower, and may raise, the expected price�.

In a �rst-price auction, revealing the seller's information connects the price to that

information, even when the winning bidder's reported signal is �xed. In the second-

price auction, the price is connected to the evaluation of the second-highest bidder, and

revealing information connects the price to that information as well. Last, the English

auction, with linkages to all of their estimates, yields the highest expected price. In all

of the three, revealing information, there is a �linkage� which raises prices. Milgrom

[2004] renames the �linkage� principle with the term �publicity e�ect�.

Kagel and Levin [1986] con�rmed the theory with experimental results. In the

absence of �winner's curse�, revealing public information may reduce uncertainty about

the value of the item resulting in higher winning bids and an increase in the seller's

revenue. However, in the presence of a �winner's curse�, the same public information

generates lower average winning bids and reduces seller's revenues. So, the response

of public information is conditional on the presence or absence of �winner's curse�,

creating several practical applications.

The signi�cance of the �linkage � principle has been quite in�uential in practical

auction designs. This can be demonstrated on FCC spectrum auctions, which included

open-auction components. According to McMillan [1994], the option given to bidders

to learn from others' bids out-weighted the potential inherent risk-aversion and the

possibility of collusive behavior.

As said by Milgrom [1989] another application of �linkage� principle arises in the

weakly Treasury bill (T-bill) auction. Those brokers who bid in the T-bill auction have
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1.3 The Common Value Model

estimates for the future prices to resell the bills to their customers. Thus, it can be

assumed that their estimates are a�liated. This can suggest that a design, such as

uniform auction, in which the price paid by each broker is linked to the bids made by

others. Indeed, the theory predicts that it can generate a higher average price than

discriminatory. In general, under this principle, the bidders are made worse o� and

the seller better o� if the price paid by the buyer can be more e�ectively linked to

exogenous variables that are a�liated with the bidder's private information.

1.3.6 The number of bidders

An essential part of the auction literature has been concerned with the properties of

pure-common-value auctions as the number of bidders becomes large. Matthews [1984]

in his model showed that as the number of bidders becomes large, the amount of

information each bidder receives falls, but in a way that the �rst-price sale price does

not, in general, converge to the true value. Matthews [1987] and McAfee and McMillan

[1987] analyzed how the nature of bidders' risk aversion a�ects bidders' and the seller's

preferences conditional on the revelation of the number of bidders.

Bulow and Klemperer [1996] discuss that when bidders are symmetric, the entry

of an additional bidder is worth more to the seller in an ascending auction than the

ability to set a reserve price, provided bidders with higher signals have higher marginal

revenues. Keeping the number of bidders secret may robust ascending auctions and

restrict collusions [Cramton and Schwartz, 2000]. Milgrom [2004] results that in sym-

metric models, the total value enjoyed by the bidders and the auctioneer is a concave

function of the number of bidders. In particular, in a second-price auction, the entry

of the last bidder causes a decline in the expected welfare.

Michael J. Fishman [1988] illustrated that bidders might in�uence the number of

their rivals through their strategic behavior, in a sense that it can be pro�table for a

bidder to commit a high bid (�jump bid�) to prohibit potential rivals from incurring

the cost requires to enter the contest.

Another work by Kremer and Nyborg [2004] proves that when bidders are risk-

averse, an ex-ante speci�ed allocation rule in uniform auctions might have a consider-

able e�ect on the equilibrium price. The lower bound on prices is determined by the
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number of participating bidders.

Overall, the increasing number of bidders a�ects the outcome of an auction and can

increase the revenue of the seller [Bichler, 2017]. However, when it comes to Vickrey-

Clarke-Gloves mechanism [Clarke, 1971; Groves, 1973; Vickrey, 1961] which su�ers

from monotonicity problems, adding more bidders may reduce equilibrium revenues to

the point that might reach zero [Milgrom, 2004].

1.4 Sealed-Bid Auctions for Homogeneous Items

Prior literature has focused on debate for the optimal design of multi-unit auctions for

decades used in a real-world application. Friedman [1960] took the �rst steps to shape

the proposition that the U.S. Treasury could decrease funding costs by using uniform

price rather than discriminatory price auctions. Both auction formats are sealed-bid,

with individual bidders submit demand schedules (collection of bids), and the securities

are awarded in the order of descending price until supply equals demand.

Wilson [1979] in one of his seminal papers that was many years ahead of its time,

analyzed �share auctions�, in which each bidder o�ers a schedule specifying a price for

each possible fraction of the item (for example, a particular volume of Treasury notes),

comparatively to unit auctions. He showed that in the �share auction� the selling price

can be signi�cantly lower if bidders are allowed to submit bid schedules rather than

a single price bid. The seller may experience a reduction in the revenue due to two

reasons: it may be that the seller obtains no advantage from the increased number of

bidders, and secondly, the optimal strategies that are selected from the bidders may

be disadvantageous for the seller.

Maskin and Riley [1989] extended the work of Myerson [1981] for optimal auctions

in which bidders have downward-sloping demand curves, independently drawn from

a one-parameter distribution, for quantities of homogeneous goods. They provide an

exposition of revenue equivalence for the multi-unit case when bidders each demands

no more than a single unit. Finally, Back and Zender [1993] point that bidders buying

multiple units are concerned with marginal cost than price. This is very important

16



1.4 Sealed-Bid Auctions for Homogeneous Items

because the marginal cost in auctions is endogenous6 and determined by the demand

schedules submitted by the bidders.

Here below, we analytically present those two formats, but �rst, we discuss the Vick-

rey auction [Vickrey, 1961], which has received a particular interest for its theoretical

properties.

Figure 1.1: Pricing Rules for bidder i's payments [Krishna, 2010].

1.4.1 Vickrey Auction

The Vickrey Auction, named from the seminal work of the Nobel prize winner Vickrey

[1961], is a single-round auction forM identical items. This auction format bears some

fundamental properties such as dominant strategy7 and sincere bidding (a bid equal to

the valuation).

Following Krishna [2010], if a bidder wins in the Vickrey auction, he pays the

opportunity cost for the items obtained. For instance, for the ki winning units, he pays

the ki highest losing bids of the other bidders (not including his own). To compute this

payment, we denote c−i = (c−i1 , c
−i
2 . . . , c−iK ) the vector of competing bids that bidder i

is facing, which is the K-vector of the highest bids submitted by the rivals. This vector

is obtained by rearranging the (N − 1)×M bids of all bidders except i in decreasing

6The supply curve faced by a bidder is the residual from the demands of other bidders, so his

marginal cost depends on his competitor's strategies.
7A strategy that does at least as well as any other strategy for one bidder, no matter how rivals

might play.
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1.4 Sealed-Bid Auctions for Homogeneous Items

order and selecting K highest bids, which are the K winning bids if bidder i would not

place a bid.

Thus to win one unit, bidder's i highest bid must defeat the lowest competing bid

- bi1 > c−iK , sequentially, to win a second unit, bidder's i second-highest bid must defeat

the second-lowest competing bid - bi2 > c−iK−1 and so on.

In Vickrey pricing rule the bidder is asked to pay c−iK for the �rst unit he wins

(Figure 1.1). If the bidder wins ki the amount that he pays is:

ki∑
k=1

c−i
K−ki+k

The basic principle of the Vickrey auction is the same as the VCG mechanism

presented in the next chapter. When there is a single unit for sale, the second-price

sealed-bid auction becomes a particular case of the Vickrey auction.

1.4.2 Uniform Price Auctions

Since the spectrum auction of 1994, one of the most popular designs used for the auction

of homogeneous items is the uniform-price auction. This auction format has been used

for spectrum auctions, suggested for the sale of Treasury Bills, and currently used in

the electricity spot market around the globe [Menezes and Monteiro, 2005]. Uniform-

price auctions' popularity stems from the fact that they can mitigate the price risk and

reduce the transaction costs of bidding repeatedly [Milgrom, 2004]. In the following

paragraphs, we will analyze the simplest form of uniform-price auctions, the sealed-bid.

Other ascending auction formats that enforce uniformity by rule are out of the scope

of our research.

In a uniform-price auction, all bidders pay the same �market-clearing� price for the

acquired items, such that the total amount demanded is equal to the total amount

supplied. Practically, market-clearing prices are calculated as the price would clear a

Walrasian Market. The selection of the price can either be the highest-rejected-bid

or the lowest-accepted-bid. We adopt the rule that the �market-clearing� price is the

same as the highest-rejected-bid. Thus, if p∗ is the �market-clearing� price and k∗ the
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items that bidder i wins, then his payment is equal to:

P ∗i = p∗ × k∗i

Following Krishna [2010], we denote by c−i the K-vector of bidder i's rivals. Then

by rearranging in decreasing order the (N − 1)K bids bjk of bidders j 6= i and the

mechanism selects the �rst K of these. For example, c−i1 the highest of the other bids

and so on. Thus, the number of units that the bidder i wins is just the number of

competing bids he defeats:

biki > c−i
K−ki+1

and

biki+1 < c−i
K−ki

At any price p the residual S−i supply that bidder i is facing equal to (Figure 1.1) :

S−i(p∗) = K −max{k : c−ik ≥ p∗}

The highest losing bid is:

p∗ = max{bik+1, c
−i
K−ki+1

}

These auctions create incentives for bidders to reduce demand to avoid driving up

prices and exist Nash equilibria with meager prices. When a bidder wants to buy more

than one unit, and when the units have declining marginal values, a bidder generally

has an incentive to reduce his demand that is, to bid less than his value for some units.

The incentive to reduce demand arises because the bids for the second and subsequent

units in the highest-rejected-bid auction a�ect both the expected quantity the bidder

acquires and the expected price he pays for each unit he buys if one of these subsequent

bids does not win.

1.4.3 Discriminatory Price Auctions

In the discriminatory price auctions, each bidder pays an amount equal to the sum of

his bids that count for winning. If K is the vector of bidder's i bids

(bi1, . . . , b
i
K), bi1 ≥ bi2 ≥ · · · ≥ bi2
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Then, the winning bids are among the K's highest of N × K such as {bik;≤ 1 ≤

n, 1 ≤ k ≤ K}. Thus, if bidder i has k bids among the winning bids his payment is

ki∑
k−1

bik.

The residual supply function that each bidder is competing in this pricing rule is

S−i(p∗) = max{K −
∑
j 6=i

bj(p∗), 0}.

It is a nondecreasing function of the price. Each bidder pays an amount equal to

the area under his demand function up to the point where it intersects the residual

supply curve Figure 1.1.

1.4.4 Discussion

Wilson [1979] showed that in a uniform-price auction, there are Nash equilibria that

look very collusive, in a sense that prices may be much lower than if the item sold as

an indivisible unit. The intuition is that bidders can implicitly agree to divide up the

item at a low price with each bidder to bid aggressively for smaller quantities than her

equilibrium �share� discouraging the others from bidding more. Thus, there are two

ways to �ruin� the equilibrium.

One way is to run a discriminatory auction as bidding aggressively for small quan-

tities is costly, as bidders submit �atter demand curves, which induce greater price

competition at the margin. Anton and Yao [1992] use a private-value framework to

prove that there is implicit coordination in discriminatory auctions if bidders' values are

non-linear in the volume purchased [Klemperer, 2003]. Another way to �ruin� the low-

price equilibrium is to include some randomness in the demand schedules [Klemperer,

2003].

Supporting Merton Miller's view on 1991 in New York Times that in a uniform

auction �You just bid what you think it's worth � and compared to the result Milgrom

and Weber [1982] on second-price versus �rst-price auctions, it has been argued that

uniform auctions reduce the �winner's curse � relative to discriminatory auctions, and

that generates more revenue.
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Bikhchandani and Huang [1989] studied competitive bidding when the resale mar-

ket signals the auction and showed that, there is a symmetric equilibrium in uniform

auctions, which generates higher expected revenues than the symmetric equilibrium

in discriminatory auctions. Also, in the cases where bidders have no signaling incen-

tive8, uniform auctions result in a symmetric Nash equilibrium and generate strictly

higher expected revenue for the auctioneer. The feature of the bid schedule (price and

quantity) was not included in this model.

Back and Zender [1993] argue that discriminatory auctions are probably more prof-

itable for a seller than uniform auctions, including Ausubel et al. [2014] for symmetric

bidders with �at demands. Their result is relevant to Friedman's argument. The

uniform-price auction, even though non-cooperative equilibria exist, could be charac-

terized as �collusive�. The device for this �collusive� outcome is the fact that marginal

costs are very high for other bidders and thereby inhibit competition from them. This

problem does not necessarily diminish as the number of bidders is increased. On the

treasury experiment evaluating the spread of winning bids is very important. The as-

sumption is that a greater spread will indicate that bidders are bidding their �truthfull

valuations�. Last but not least, the presence of a pool of potential bidders is an essen-

tial aspect in auctions and is related to Friedman's point that increasing the number

of bidders will lead to higher prices for the Treasury.

A similar view has been expressed by Bikhchandani and Huang [1993] in their later

work. They claim that in a uniform-price auction bidders are more likely to bid more

aggressively; thus the average selling price in a uniform-price auction is higher than

in a discriminatory auction. Competitive bidders usually keep an inventory of �xed

income securities and place their bids based on their expectation of falling interest

rates, which would increase the value of these securities. They have the incentive to

bid higher than they would, if the secondary market buyers received no signal from the

auction, in order to signal the market's buyers that the bidders' private information is

very favorable. In uniform-price auctions, it is cheaper for bidders to bid high to signal

their expectation that the interest rates will fall.

Nyborg and Sundaresan [1996] used a dataset of when-issued transactions to assess

8Only when the highest losing bid is announced.
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the U.S. Treasury bills experiment with uniform auctions. They conclude that uniform

auctions release more information than discriminatory reducing the pre-auction uncer-

tainty and the �winner's curse�. While for uniform-auctions, when-issued volatility falls

after the auction and the outcome's announcement, for discriminatory auctions, there

is strategic behavior that increases the when-issued volatility.

Tenorio [1997] builds a model with two bidders who compete for three identical

items, and are constrained with a single price for either bidding two items or bidding

three items. He concludes that under uniform-price auction, there is a higher demand

reduction than in the discriminatory auction.

Binmore and Swierzbinski [2000] assess the evidence of prior empirical research com-

paring discriminatory and uniform multi-unit auction, and found that neither empirical

evidence nor auction theory, o�er any constraining reason for preferring a uniform auc-

tion to a discriminatory auction. Ausubel et al. [2014] result in the same ambiguity,

who �nd that the appealing properties of the second-price auction i.e., �truth-telling�

and e�ciency, do not exist in uniform-price auctions, and any equilibrium in this type

of auction is ex-post ine�cient.

Interestingly Ausubel et al. [2014] conclude that bid shading results generically in

ex post ine�cient allocations in the uniform-price and pay-as-bid auctions and that

strong assumptions are required in settings with decreasing marginal utility to obtain

a sharp ranking of multi-unit auctions.

Wang and Zender [2002] address the issue of pure common value auctions in which

allocation is always e�cient. Similar to Back and Zender [1993], they examine the

revenue ranking between the uniform-price and discriminatory auctions. They result

that equilibrium bid schedules in such auctions contain strategic aspects and consider

the �winner's curse�. In symmetry, the equilibria in uniform-price auction yields lower

expected revenue than discriminatory auction. For risk averse bidders, the uniform-

price auction gives higher expected revenues in the equilibrium than discriminatory.

However, Ausubel et al. [2014] overcome the methodological limitations of the above

mentioned works, which compared one equilibrium (out of a multiplicity of equilibria)

of uniform-price auction with one equilibrium of the discriminatory auction. They

discuss the entire set of equilibria of uniform auctions in �Ine�ciency Theorem�.
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Kremer and Nyborg [2004] have shown that the tools for eliminating underpricing

equilibria in uniform-price auctions are the bid discretization, and the tie-breaking rules

holding the market price �xed. On top of that Burkett and Woodward [2020], showed

for uniform auctions that the price selection (�rst-rejected or last-accepted bid) can

also be a valuable tool for eliminating equilibria.

The theoretical ambiguity on the outcome rankings, between discriminatory and

uniform-price auctions, has opened the doors for empirical research. Some studies

conclude that discriminatory auctions do better than uniform auctions, such as Février

et al. [2004], Kang and Puller [2008], Marszalec [2017], while other studies reach on

reverse outcomes. The studies which merit uniform auctions are Armantier and Sbaï

[2006, 2009] and Castellanos and Oviedo [2008].

Hortaçsu and Mcadams [2010] used Turkish treasury's auction data, and concluded

that discriminatory auctions produced more revenue ex post, than the uniform-price

auction, and any switch from discriminatory auction to a uniform price or Vickrey

auction would not signi�cantly increase revenue. They show that there is no statistical

di�erence between the two and rely on the bounding �best response� behavior.

Jehiel [2011] employs an analogy-based expectation equilibrium to model an auction

framework, in which bidders receive incomplete information about the bids' distribution

in earlier auctions. There are two situations: either past bids are disclosed anonymously

in asymmetric bidders or the distribution of the bids.

To conclude, we illustrate some experimental studies which investigate the e�ects

of the uniform-price auction in �nance. Goswami et al. [1996] provide experimen-

tal evidence that pre-play communication facilitates collusive equilibrium outcomes in

uniform-price auctions. On the other hand, in discriminatory auctions, bidder strate-

gies approximate the unique equilibrium outcome, producing a larger surplus for the

auctioneer. Their results have signi�cant implications on the design of Treasury auc-

tions. If participants have many opportunities to communicate with uniform auctions,

the Treasury will yield lower revenues. Kagel and Levin [2001] have found a mate-

rial demand reduction under uniform pricing either in the case of static or dynamic

auctions. Zhang [2009] compares uniform-price auctions with �xed-price o�erings in

Initial Public O�erings (IPO) using laboratory experiments and results that uniform-
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price auctions outperform �xed-price o�erings for raising revenues.

1.5 Introduction to Combinatorial Auctions

Now, we will introduce the concept of combinatorial auctions(CA) or package auctions

related to Chapter 4. This format captures the market where the seller o�ers multiple

items (usually heterogeneous but related) in a single auction. Each bidder is allowed

to place bids for a combination of items, called �packages� (non-trivial subsets). It

is suitable for items that are substitutes or complements as the exposure problem9 is

reduced [Cramton et al., 2006; Mochón and Sáez, 2015].

The most important features that determine the auction environment in combi-

natorial auctions can be the number of bidders, the items being traded, the parties'

preferences expressed through strategies, and the type of private information the par-

ticipants might have about preferences [Cramton et al., 2006; Mochón and Sáez, 2015].

In this context, the winner determination problem becomes complex.

Although there is a vast literature about the auction of substitutes, here in this

thesis, we will be concerned with the case of complements. For complements, the

bidders bear an aggregation risk or exposure problem which means that a bidder might

be required to buy an item that no longer wants after the price adjustment, without

receiving the super-additivity value of the whole package. Thus, a bidder has to decide

either to bid aggressively despite the associated risk or to avoid bidding for complement

packages, despite his willingness to acquire the packages at the current market prices

[Milgrom, 2007]. In that sense, expressing preferences for a di�erent combination of

items can mitigate bidders' exposure problem.

This market design has several applications in practice starting from �Spectrum

auctions� by the FCC, transportation, communication networks, and �nance [Mil-

grom, 2007; Nisan et al., 2007]. However, there are two potential caveats linked to

combinatorial auctions: (a) the �free-rider� problem which occurs when diseconomies

of scale dominate, and (b) it is computationally di�cult (NP-hard) to solve the winner

9The risk associated with winning an inferior subset of high prices, when bidders compete aggres-

sively for a particular combination of items.
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determination problem [Rothkopf et al., 1998].

1.5.1 The Winner Determination Problem (WDP)

Now we will focus on the winner-determination problem in combinatorial auctions. It

is an optimization problem that one may face in di�erent multi-object auctions on

various bidding languages.

Among all bids submitted by all bidders, the question that arises is how to compute

the allocations which maximize the seller's revenue. It is the feasible combination of

bids (labeled as winning or losing) that maximized the sum of the accepted bids under

the constraint that each item can be allocated to at most one bidder [Cramton et al.,

2006].

To give some mathematical intuition behind this notion, we represent a set of

bidders with I = {1, 2, . . . , N} and J = {1, 2, . . . ,M}. The combinations of items or

the packages are represented by Q ⊂ J . Each bidder i has a value for the package

vi(Q), which the maximal amount that bidder i is willing to pay for the package Q.

Bidder i's bid for that package is denoted as bi(Q) and xi(Q) is a binary variable, which

equals to one if the bidder wins the package and equal to zero when he does not win.

Then the WDP has the following formulation:

max
∑
i∈I

∑
Q⊆J

bi(Q)xi(Q)

subject to:

1.
∑

Q⊇{j}

∑
i∈I
xi(Q) ≤ 1, ∀j ∈ J

2.
∑
Q⊇j

xi(Q) ≤ 1, ∀j ∈ J

3. xi(Q) ∈ {0, 1}, Q ⊆ J , ∀j ∈ J

The �rst restriction implies that each item is awarded to, at most, one bidder. The

second restriction ensures that bids are mutually exclusive - each bidder obtains, at

most, one winning bid. As the number of bidders and items increases, the possible
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allocations may grow exponentially. This means that WDP may be NP-hard and can

be solved with advanced optimization techniques [Mochón and Sáez, 2015].

1.5.2 Payment rules

The two seminal theoretical mechanisms that utilize package pricing are pay-as-bid

or �rst-price sealed-bid [Whinston and Bernheim, 1986] and the Vickrey-Clarkes-Glove

(VCG) or generalized Vickrey auction [Clarke, 1971; Groves, 1973; Vickrey, 1961]. The

latter auction format has a dominant strategy equilibrium yet encounters caveats when

it comes to applying in multi-object auctions. An outstanding issue is when the VCG

outcome is outside the core (see the section below), creating an opportunity for the

losing bidders to collude with the auctioneer for a better outcome. For this reason

bidder-optimal core-selecting payment rules have been designed. Brie�y, in the VCG

mechanism, the payment rule for bidder i is calculated so as the total payo� of the

seller and all bidders except i is the same as if bidder i had not participated in the

auction [Milgrom, 2007]. The pay-as-bid payment rule gives payments to bidders equal

to their bids for the acquired items, subject to the auctioneer's payo� maximization.

In the next paragraphs, we elaborate on each rule separately.

Pay-as-Bid

It can be asserted that it is the most widely used payment rule in practice. Some

examples of this rule are industrial procurement, auctioning bus routes in London, or

transportation auctions. They present a �strategical di�culty� in a sense that bidders

need to decide not only on which packages to bid but also by how much to shade on

bids, and no closed-form equilibrium strategy with general valuations exists [Bichler,

2017].

First Whinston and Bernheim [1986] developed a theory of �rst-price package auc-

tions with complete information. Even though the assumption of full information is

far from practice, their theory identi�es some critical aspects. The �rst observation for

this type of auction is that it has many Nash equilibria.
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They focused on pro�t-targeted strategies10, which have two appealing characteris-

tics: (a) they are simple, and (b) regardless of others bidders' strategies, each bidder's

best reply will always include a pro�t-targeted strategy. These two characteristics

imply that it is di�cult to apply a collusive behavior in equilibrium in the �rst-price

package auction, as no pure strategy pro�le can deter a bidder from bidding aggressively

for additional units. This occurs because if a bidder uses a pro�t-targeted strategy,

a marginal increase in his allocation will increase his bid o�ering to pay his marginal

value for the additional unit. Thus, unlike uniform auctions, in �rst-price package

auctions bidders have no incentives to reduce demand [Milgrom, 2004].

Vickrey-Clarke-Glove (VCG)

Under this rule, each bidder has monotonically non-increasing marginal values for the

good and submits a sealed bid associated with his demand curve. The seller aggregates

the individual demand curves and determines the clearing price for the units. Each

bidder wins the quantity demanded at a clearing price. However, the price he pays

or the clearing price for the units he won is the �opportunity cost�. For instance, if a

bidder wins 2 units and the highest rejected bids by his competitors are 12 and 14, the

bidder pays 26 for these two units. Alternatively, the price that a bidder pays for his

qth unit is the clearing price that would have resulted if the bidder had restricted his

demand to q units (all other bidders' behavior held �xed). Thus, the total payment of

a winning bidder is computed by aggregating this payment over all items won (discrete

units) or integrating this payment from 0 to the quantities won (continuous units)

[Ausubel and Milgrom, 2006].

The WDP determines the winners, and the VCG price is computed as:

pV CGi = vi(x
∗)− [ω(I)− ω(I−i)]

where ω(I) is the objective value to the WDP of the valuations of all bidders, and

ω(I−i) is the objective value to the WDP of all bidders except the winning bidder

i. The optimal allocation is x∗ and its respective valuation is vi(x
∗) assuming that

10The strategy is characterized only the pro�t that the bidder bears from any winning bid.
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it is a direct revelation mechanism11. The payment that each bidder receives is his

contribution on the increase on the total value of the auctioneer [Bichler, 2017].

The most appealing property of VCG mechanism is the one of dominant-strategy

for bidders, who bid their true values for every combination of items. This property

reduces the auction's costs by making it easier for bidders to determine their optimal

bidding strategies and eliminate bidders' incentives to spend resources by learning

about competitor's values. Additionally, it can impose some constraints, for example,

the government seller in a spectrum auction may wish to limit the concentration of

spectrum ownership. Finally, the average revenues are not less than from any other

e�cient mechanism [Ausubel and Milgrom, 2006].

These properties of VCG prompt economists to believe that they could design an

e�cient auction. The de�nition of e�ciency in auctions includes allocations, revenues,

costs of the various parties, and lastly, the incentives for a pre-auction investment

[Ausubel and Milgrom, 2002].

However, when it comes to applying the VCG rule several shortcomings emerge

[Ausubel and Baranov, 2020; Ausubel and Milgrom, 2002, 2006; Day and Raghavan,

2007; Milgrom, 2004]. The �rst is that VCG may yield low or zero revenues and �unfair�

outcomes. For example, assume an item A and an item B and three bidders. Bidder

1 wants to acquire both items AB as a package, and bids 2, while bidder 2 is willing

to pay 2 for A and bidder 3 pays 2 for B. The Vickrey outcome assigns both items to

bidders 2 and 3 at the price of zero! Some other limitations to Vickrey's design are

its vulnerability to shill bidding and collusion, even by losing bidders. Lastly, Vickrey

su�ers from monotonicity problems which means that the increased competition can

reduce sellers' revenues.

VCG and the Core

To better understand the problems above of the VCG mechanism, we model the auction

as a cooperative (coalition) game12. The question that arises is �how low must the

11A bidder needs to submit bids on all possible packages, the number of which is exponential in the

number of items.
12The game is competition among the coalition of players rather than between individuals.
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revenue be before it is considered unacceptably low? �. The threshold that answers this

question is a payo� outcome that lies in the core [Ausubel and Milgrom, 2006].

The core, as old as Walras competition, is the set of allocations of objects and money

with the property that no coalition can either be weakly or strictly Pareto optimal by

trading on its own. In other words, it is the set of payo� pro�les that correspond to

the core allocations, usually called as imputations as the payo�s are imputed from the

underlying allocation [Milgrom, 2007].

To illustrate the relationship between VCG outcome and the core, we introduce

some notation from Milgrom [2007]. Suppose N is the set of bidders plus the seller.

Let X denote the set of feasible allocations of the goods with typical element x, let xj

denote the goods allocated to bidder J with vj(xj) to be the value of j's allocation,

which is weakly increasing. For any coalition S ⊂ N , we construct the value ω(S) of

the coalition as the maximum value of the allocation of the objects among the coalition

members S.

ω(S) =


0, if seller 6= S

max
x∈X

∑
j∈S

vj(xj), if seller ∈ S

We assume that the total payo� can be arbitrarily reallocated by the coalition S

among themselves using side payments. Thus, the core of this utility game with a

coalition value function ω is

core(N,ω) = {π ≥ 0|
∑
j∈N

πj = ω(N), (∀S)
∑
j∈S

πj ≥ ω(S)}

The core of a game with a single seller is always nonempty, because it includes the

imputation at which the seller gets the whole value ω(N) and each bidder gets zero.

Now lets denote π̄ the Vickrey payo� vector i.e the payo�s associated with the

dominant strategy equilibrium of the generalized Vickrey auction. For bidders (i ∈ N)

π̄i = ω(N)− ω(N\i) while the seller's payo� is π̄0 = ω(N)−
∑

i∈N\0
π̄i.

THEOREM 1.1 (Ausubel and Milgrom [2002]). A bidder's Vickrey payo� π̄i is i's

highest payo� over all points in the core. That is, for all i ∈ N\0 : π̄i = ω(N) −

ω(N\i) = max{πi|π ∈ Core(N,ω)}.
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THEOREM 1.2 (Ausubel and Milgrom [2002]). The core contains a bidder Pareto-

dominant point, if and only if, the Vickrey payo� vector π̄ is the core. If π̄ is in the

core, then it is bidder Pareto-dominant.

Unfortunately, the Vickrey outcome might be outside the core. This is better

presented in examples 1 and 2 of Chapter 4. These outcomes might lead to several

issues, such as non-monotonicity in seller's revenues caused by the number of bidders

or the low seller's revenues or collusions among bidders.

Consequently, Day and Raghavan [2007] argue that the outcomes in combinatorial

auctions must be in the core. One can �nd a vector of core prices that are close to VCG

payments, meaning that these prices are minimal for the bidders i.e., bidder-optimal.

The notion of Bidder-Optimal-Core-Payments minimizes the incentives to deviate from

truthful bidding [Day and Cramton, 2012] and lie on the bidder-optimal-frontier.

DEFINITION 1.3 (Milgrom [2004]). A payo� vector π ∈ RN is bidder-optimal if

π ∈ Core(N,ω) and there exists no π′ ∈∈ Core(N,ω) with π′−0 > π−0.The set of such

points is called the bidder-optimal frontier of the core.

Like matching theory, it means that a payo� vector is in Bidder-Pareto-Frontier if

there is no other payo� vector that is Pareto-preferred.

Core-Selecting Package Auctions

Day and Milgrom [2008] was the �rst to propose this auction format which several

countries have adopted. For example, in the U.K. and other European Countries, it

has been used for radio spectrum auctions. Similarly to �rst-price sealed-bid combina-

torial auctions, the bidder-optimal core-selecting auctions are modeled as games with

complete information.

The mechanism is a mapping of bids to an �e�cient� allocation where the relevant

payments are chosen with the single criterion to be included in the core. Simply, it

allocates items similar to VCG auction, but replaces VCG payments with the core

payments. Unlike VCG outcomes, in core selecting auctions no bidder can earn more

by creating �shills�, and for any pro�le of rival's bids, each bidder has best-reply that

is a semi-sincere strategy [Day and Milgrom, 2008].
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Milgrom and Day [2013] showed that only if the VCG outcome is within the core

a dominant strategy is provided and truthful reporting can be an ex-post equilibrium.

Interestingly, Goeree and Lien [2016] prove a crucial negative result implying that �truly

core-selecting auctions�13 do not exist. An independent private value setting creates

an e�cient equilibrium with the same expected revenues as VCG (revenue equivalence

theorem).

In practice, the most used payment rule in core-selecting auctions is the Nearest-

VCG, introduced by Day and Raghavan [2007] and Day and Cramton [2012]. The

intuition behind this rule is to select a point in the bidder-optimal-frontier which will

minimize bidders incentives for misreporting [Parkes et al., 2001]. This point is de�ned

by minimizing the sum of square deviations from the VCG outcome i.e., Euclidean

distance. However, Erdil and Klemperer [2010] support that the justi�cation for the

�Nearest-VCG� rule is not clear, as all points in the bidder-optimal-frontier minimize

the sum of bidder's incentives to deviate from truth-telling. Thus, they propose �ref-

erence rule� which selects points in the bidder-optimal-frontier which are close to a

reference point de�ned by the auction designer (for instance, the loser's bids). They

prove that a reference rule always dominates the Nearest-VCG.

The Local - Global model. This model �rst appeared in Krishna and Rosenthal

[1996]. In this setting, the auctioneer wishes to allocate multiple items which are

auctioned simultaneously. Two types of bidders participate in the auction: the local

and the global. The �local� bidders are interested only in one item and compete against

�global�. On the other side, the �global� values multiple items, and his valuation exceeds

the sum of each item separately. Krishna and Rosenthal [1996] use a setting of bidders

who are una�ected by positive synergies with independent private values in a second-

price auction, incorporating in this way bidders' asymmetry. They prove the existence

of symmetric equilibrium, reaching some comparative static results. They show that

increasing the number of global bidders always results in less aggressive bidding by the

global bidders. Additionally, when synergies are strong, the simultaneous auction is

revenue superior to the sequential auction.

13Selection of core-outcome concerning true values than bids.
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Rosenthal and Wang [1996] build a simultaneous-auction model with synergies for

bidders with common values extending the aforementioned work of Krishna and Rosen-

thal [1996]. They simplify their assumption to the �rst-price sealed-bid auction. They

assume that there are three neighbors of objects, and for each neighbor, there three

interested groups of bidders: one group of local bidders and two of global. Objects

values are perfectly correlated with two di�erent states: one that all objects are highly

valued and the other in which they are low-valued. Bidders are unaware of the state,

and each of them receives a private signal. They construct two qualitatively di�erent

equilibrium. Few conclusions are drawn due to the limitations created by the �common

value� assumption. The conclusions are that global bidders have become more aggres-

sive, increasing the size of synergy. This improves e�ciency, increasing the number of

global bidders and decreasing the number of local bidders. Last, the seller's revenue is

increased on average but decreased in the presence of locals.

The most recent work of Ausubel and Baranov [2020] diverge from Goeree and

Lien [2016] results. They prove in �local-local-global�, and according to the structure

of speci�c pricing rules, the presence of correlations can materially a�ect (negatively

and positively) the equilibrium performance of core-selecting auctions. Thus, the core-

selecting auctions can perform reasonably well in nontrivial and empirically relevant

settings. The reason is that correlations create an environment of complete information

in which core-selecting auctions perform well.

From an experimental perspective, Bosshard et al. [2020] use some techniques to

move beyond the single-minded dimensional domains14 like �local-local-global� and dis-

cuss the di�culties of scaling the BNE algorithm to high-dimensional auctions. They

�nd that for a domain with four �local� bidders and two �global� bidders (LLLLGG) an

accurate ε-BNEs for both the VCG-nearest and �rst-price payment rules illustrating

the scalability of their algorithm.

14Bidders are interested only in a single speci�ed bundle of items and get a speci�ed scalar value if

they get the whole bundle and get zero value for any other bundle [Nisan et al., 2007].

32



1.6 Other Topics

1.6 Other Topics

1.6.1 Early Literature

The game-theoretic aspect of auctions was �rstly recognized by the Nobel prize winner

Vickrey [1961]. His work contributes to the understanding of the �revenue equivalence

theorem� in the di�erent auction formats. The theorem states that the seller can

expect equal pro�ts on average from all the standard (and many non-standard) types

of auctions and that buyers are also indi�erent among them all.

Reichert Ortega [1968] extended Vickrey's work. More speci�cally, he analyzed the

competitive bidding process as a strategic decision problem under uncertainty incor-

porating essential elements of decision-making with the use of quantitative models.

Myerson [1981] and Riley and Samuelson [1981] have shown that Vickrey's results

about the equivalence in expected revenue of di�erent auction mechanisms apply very

generally and show how to derive in optimal auctions: �Under the assumption of a given

number of risk-neutral potential buyers of an object with privately known signals, i.i.d.

to a common, strictly increasing, atom-less distribution, any auction mechanism in

which (i) the object always goes to the buyer with the highest signal, and (ii) any bidder

with the lowest-feasible signal expects zero surplus, yields the same expected revenue

(and results in each bidder making the same expected payment as a function of her

signal). Both for private-valued models and common-value models.�

Hence all �standard� auctions, the ascending, the descending, the �rst-price sealed-

bid, and the second-price sealed-bid, yield the same expected revenue under the con-

ditions above.

Myerson's result is the most available treatment and also develops the mathematics

used to prove the revenue equivalence theorem. He makes a step further to derive

conclusions for optimal auctions. However, his work seemed to have little relationship

with the traditional price theory making it hard to be understood by many economists

[Klemperer, 2003].

Next Bulow and Roberts [1989] simpli�ed the analysis of optimal auctions by �ap-

plying the usual logic of marginal revenue versus marginal cost� cited as their own
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words. They showed that under the assumption of the revenue equivalence theorem,

the expected revenue from an auction equals the expected marginal revenue of the

winning bidders. Bulow and Klemperer [1996] generalize this result and extended to

common values, non-independent private information, and risk-aversion, developing a

result about the value to an auctioneer of an additional bidder relative to the impor-

tance of constructing an optimal auction.

It particular to focus on bidders' �marginal revenues�. In the case of independent

private values, a bidder's �marginal revenue� is de�ned as the marginal revenue of this

�rm at the price that equals the bidder's actual value [Bulow and Klemperer, 1996].

Thus an optimal auction allocates the objects to the bidders with the highest

marginal revenues, similarly to a price-discriminating monopolist who sells to the buy-

ers with the highest marginal revenues (by equalizing the lowest marginal revenues sold

to across di�erent markets) - without selling below the price where marginal revenue

equals marginal cost [Klemperer, 2003]. All the above statements indicate how to run

an optimal auction in the general case.

1.6.2 Budget constraints

In many situations, bidders may encounter �nancial constraints, which is why the

revenue equivalence might fail in practice. In this section, we present an overview of the

current literature on how the presence of budget constraints may in�uence equilibrium

behavior in �rst-price and second-price auctions.

We start our discussion with Che [1998], who studied the performance of the �rst

price and second-price auctions for one object, where bidders are privately informed

about their valuation and their ability to pay. Their symmetric equilibrium bid function

depends continuously on the valuation and on the budget constraint. Their intuition

is that auctions that generate lower bids perform better since budget constraints will

bid for less. They conclude that second-price auctions yield lower expected revenues

and lower social surplus than �rst-price auctions, all else equal. Thus, the second-price

auction should not be used when such constraints exist.

Dobzinski et al. [2012] study the fundamental question of how to produce an e�cient
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allocation in an incentive-compatible15 way using the concept of dominant strategies.

Their setting is not quasilinear; therefore they focus on Pareto Optimal allocations

rules and identify those that are implementable in dominant strategies. Their result

states that there is no deterministic, incentive compatible and Pareto Optimal auction

for any �nite number m > 1 of units of an indivisible good and any n ≥ 2 number of

player. They examine the case of a �clinching auction� [Ausubel, 2004] where budgets

are publicly known, and they show that the (only) possible incentive-compatible and

Pareto-Optimal is this Ausubel's mechanism. They show that the combination of

incentive-compatible and Pareto Optimality yields the impossibility of private budgets

and public budgets' uniqueness.

Another major work related to budget constraints is the one performed by Hafalir

et al. [2012]. Their research introduces a mechanism similar to Vickrey's, and proposes

a weakly dominant understanding of budgets and values. They suggest that since the

revenue is increasing in budgets and values, all kinds of equilibrium deviations from

the valuations turn out to be bene�cial to the auctioneer, showing that the ex-post

Nash equilibrium of their mechanism is Pareto Optimal since all full winners' values

are above all full loser's values. They consider a set of hard budget constraints meaning

that bidders cannot spend more than their budgets, and they leave a gap for further

research for soft-budget constraints in which bidders will be able to �nance further

budgets at some cost, for instance, through the modeling of marginal value up to some

budget in a linear value/budget function.

Till now, we have reviewed the literature that is concerned with exogenous con-

straints. Gavious et al. [2002] study the case of endogenous bidding constraints, where

privately informed bidders bear a cost of bidding that is an increasing function of their

bids, and bids may be capped. They have shown that for a �nite set of bidders with

linear or concave cost functions, the setting of a bid cap is not pro�table for the auc-

tioneer who wants to maximize the average bid. If a su�cient number of bidders have

convex cost functions, then e�ectively capping the bids is pro�table for the auctioneer.

In an ex-ante symmetric model, the bid caps lower the highly-valuated bid type but

increase the middle-valuated bid types. When bidders face increasing marginal cost,

they increase their average bid, respectively decreasing marginal costs associated with

15All bidders maximize their utility by reporting their private information truthfully.
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a decrease in average bid.

Finally, the most recent work on the endogenous budget constraints is this of

Ausubel et al. [2017] in which they perform some laboratory experiments to com-

pare auctions with endogenous budget constraints. The setting includes an agent (the

bidder) who wants to acquire an asset with a private bene�t, more than pro�t maxi-

mization. The �principal� imposes a budget constraint on bids which limits the bidder's

discretion. From one side, the principal chooses the budget, and from the other, the

agent chooses the bid based on their respective signals. The most interesting vari-

able in the experiment is the principal's budget choice, while the bidder's choice is

non-essential. Their results showed that when the auction format is a �rst-price, the

principal provides low bidder budgets rather than a second-price auction. The endoge-

nous choice of budgets regarding the realized e�ciency and revenues is not expected

to be greater in the �rst-price than in the second-price auction.

36



Chapter 2

Auctioning Corporate Bonds:A

Uniform-Price with Investment

Mandates

Abstract

There has been a rapid growth in the use of investment mandates for the

management of �xed-income assets. In this chapter, we examine how the

limits set in investment mandates can a�ect the bidding strategy during the

issuance of a corporate bond. We apply the uniform-price auction and prove

the existence of symmetric Bayesian Nash equilibrium. Under the presence

of an exogenous secondary market, an expectation for higher yields on resale

increases the demand of the bond. Moreover, the number of participating

investors and the oligopolistic market power of each investment manager

always a�ect the bidding strategy inversely.

Keywords - Bond Market, Auctions, Market Structure, Market Design,

Risk Limits, Budget Limits

JEL Classi�cation - D44, D47, D82, D81, G23
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2.1 Introduction

Over the last decade, the global market size of corporate bonds has more than tripled,

yet with a decline in the overall bond credit quality (25% in 2019 with non-investment

grade) combined with the longer maturities. The new environment triggered the en-

forcement of quantitative regulatory limits and self-imposed rating-based investment

mandates and policies. For these reasons, there has been a signi�cant shift in passive in-

vestment management1, with major institutional investors using external credit ratings

for their investment decisions and asset allocation [Appel et al., 2016]. For example,

corporate bond ETFs2 which typically use passive investment tools have reached from

USD 32 billion in 2008 to USD 420 billion in 2018 [Çelik et al., 2020].

This trend has also been expanded in the primary market of corporate bonds, where

the demand for the new issuance may be included in bond indexes if speci�c criteria

are satis�ed. Dathan et al. [2020] show that issuers exploit this passive demand by

issuing index-eligible bonds with favorable characteristics and a higher passive demand

increases issuers' propensity towards a new issuance.

Surprisingly, more and more investors complain that the access in the primary

markets is restricted only to ��ippers�3 supporting that �allocations always come down

to favors� [Bessembinder et al., 2020; Cornelli and Goldreich, 2001; Jenkinson and

Jones, 2004]. Resting upon this premise, the Securities Exchange Commission (SEC)

has launched an investigation on how large �nancial institutions handle the allocation

of debt during the issuance and penalized in 2020 a big institution for such violation4.

To this extent, the Securities and Exchange Board of India (Sebi) proposed in 2016 a

uniform-price auction for the pricing of corporate bonds, which would help to deepen

1These strategies refer to a buy-and-hold portfolio strategy for long-term horizons. They are

implemented by benchmarking certain market indexes (e.g. Barclays U.S. Corporate Bond Index,i

Shares Short-Term Corporate Bond ETF).
2Passive investment vehicles which track various market indexes.
3Immediately resale or ��ip� the bonds to other broker-dealers at a pro�t

(https://www.sec.gov/news/press-release/2020-159).
4https://www.ft.com/content/55406aea-a30a-11e3-ba21-00144feab7de

https://www.thetradenews.com/ubs-agrees-to-pay-10-million-to-the-sec-to-resolve-bonds-sale-

violation-charges/
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the market5.

The common practice for the pricing of newly issued corporate bonds is an open-

price process called book-building. Brie�y, the issuer assigns to the underwriter the

competitive sale and the e�cient allocation of the new issuance. The underwriter mar-

kets the o�ering to investors, asking for a non-binding indication of interest (IOIs)

[Iannotta, 2010; Nikolova et al., 2020]. This pre-market information helps the under-

writer measure the demand and adjust the o�ering's price and coupon if needed. A

vital feature of the process is that the allocation is left in the underwriter's discretion,

with the IOIs often being cheaper than the �nal price6. Due to this pre-play communi-

cation which reveals investors' valuations, the issuance's allocation weakly corresponds

to bidding while the yield not at all [Habib and Ziegler, 2007].

In this study, we develop an exploitative model for the pricing of corporate bonds

in the primary market. We adopt a common-value uniform-price auction mechanism,

which allows each investment manager to act as a bidder and submit sealed-bid demand

schedules. Each demand schedule speci�es the desired share over a fully divisible bond

at di�erent yield levels complying with the bounds set by the auctioneer.

Uniform-price auctions have been widely used in U.K. and U.S. for the selling of

Treasury securities, with much debate in auction theory to be around the optimal

choice between uniform-price and discriminatory auctions. However, neither empirical

research [Binmore and Swierzbinski, 2000; Nyborg and Sundaresan, 1996; Tenorio,

1997], nor auction theory [Back and Zender, 1993; Bikhchandani and Huang, 1993;

Wang and Zender, 2002; Wilson, 1979] o�er a constraining reason for preferring uniform

to discriminatory auctions. Ausubel et al. [2014] have shown that the uniform-price

auction creates demand reduction incentives to bidders, reversing its strategic simplicity

and e�ciency. This result favors small bidders over the large ones, and under certain

assumptions, the uniform auction outperforms the discriminatory.

We encompass in our analysis the investment mandate's parameters at which in-

vestment managers abide by the objectives of investment strategies. For the asset

5https://economictimes.indiatimes.com/mf/mf-news/sebi-proposes-uniform-pricing-for-debt-

securities/articleshow/64200207.cms?from=mdr
6Commission Expert Group on Corporate Bonds, Analysis of European Corporate Bond Markets,

November 2017.
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allocation limits, we employ a budget limit in line with a risk limit. The budget limit

is the available capital for investing in the new issuance, and the risk limit is how much

risk is acceptable for the investment's capital (e.g., invest only in investment-grade

bonds). To our knowledge, we are the �rst to address these factors in a mechanism for

the pricing of corporate bonds.

Prior literature in auction theory has studied little the topic of budget limits. Some

works [Benoit and Krishna, 2001; Che, 1998] �nd that between the standard auc-

tion formats, the second-price auction yields lower revenues than �rst-price auction in

the presence of �nancial constraint in a private-value model, and that the revenue of

a simultaneous ascending auction is lower than the revenue of a sequential auction.

Ausubel et al. [2017] study the budget constraint as an endogenous factor and result

in their experiment that the budget choices yield higher revenues and e�ciency for

second-price auctions. Hafalir et al. [2012] proposes a mechanism for divisible goods

similar to Vickrey's with a good revenue outcome and optimality properties in which it

is weakly dominated if budgets or values are understated. Dobzinski et al. [2012] show

that when budgets are public information the �clinching auction� of Ausubel [2004] is

individual-rational and dominant strategy incentive compatible.

We include the secondary market as an exogenous random variable in our model,

and we assume that all investors have the sole purpose of resale. Ex-ante, all investors

have a private valuation for the bond, based on signals received for the expected equi-

librium yield on the secondary market. Thus, at the time of the auction, the exact value

of the bond, i.e. the issuance's yield, is unknown. Theoretical research on uniform-price

auctions in treasury bills markets with resale has shown that the auctioneer's expected

revenues are higher versus discriminatory when there is an equilibrium [Bikhchandani

and Huang, 1989]. Additionally, uniform auctions favor higher information release,

reducing uncertainty before the auction [Nyborg and Sundaresan, 1996].

Henceforth, the yield of the issuance named as the stop-out yield, is a market-

clearing yield at the point where aggregate demand equals the full face value of the

issuance, and it is de�ned by the �rst rejected bidding schedule. The intuition is that

investors want to acquire a share of the face value at the highest possible yield to

maximize their return in the secondary market.
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Interestingly, the number of participating investors and a constant factor that mea-

sures the e�ective demand for the bond at di�erent yield levels always a�ect the bidding

strategy inversely. Also, it seems that the maximum spread that an investor can earn

from the resale determines his bidding. As anticipated, if stringent mandates are fol-

lowed with restricted budget limits, the bidding strategy is reduced leading to a lower

cost of capital for the issuer.

The chapter is organized as follows. The following section 2.2 contains a formal

analysis and describes the model as a direct revelation mechanism. In the same sec-

tion, we introduce the concept of risk limit. Section 2.3, studies bidders' incentives

and provides the proof of a Bayes-Nash symmetric equilibrium for independent signals

performing the respective comparative statics. The last section 2.4, discusses the out-

comes of previous sections and concludes. All proofs are expanded on the Appendix

2.5.

2.2 Model

2.2.1 Preliminaries

We assume a single unit of perfectly divisible bond for sale with a face value equal to

one, and n competitive bidders, de�ned as a �nite set I={0, 1, 2, 3 . . . n}, with n ≥ 3.

All bidders are risk-neutral, and none of them is eligible to bid for the full face value

of the bond.

Each bidder i has an upper-bound bidding stipulated by the investment mandate,

de�ned as the budget limit ci ∈ [c, c̄], as well as a risk limit r `i ∈ [r, r̄]. The type

of i is de�ned as τi = (ci, r
`
i ), with τ ∈ T , which attributes bidders' preferences

T := [c, c̄] × [r, r̄] to the eligible real intervals. Each type τi, is i.i.d. to a continuous

joint cumulative function F (τ) = Fcr`(c, r
`) commonly known to all bidders, and fully

supported by f(τ) > 0.

Ex-ante, the equilibrium yield of the secondary market, is an unknown random

variable, rs ∈ [r, r̄], with a cumulative distribution H(rs) that is common knowledge

to all bidders. Also, it is fully supported by a density function h(rs) > 0, ∀rs ∈ [r, r̄].
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The expectation over the secondary market is denoted as E[rs].

All information for the bidding strategies τ−i := (τ1, . . . , τi−1, τi+1, . . . τn) is summa-

rized in a joint cumulative function G(rs, τ−i) = H(rs)×F (τ−i), fully supported by the

density function g(rs, τ−i) > 0. Additionally, bidders receive an independent private

signal s about the actual private value of the bond and other bidders' preferences. This

information for each bidder i is embedded in si ∈ S, where S is the signal space with

an in�nite number of elements that allow each bidder's value to be a general function

of all the signals.

The strategy of each bidder i is a bid schedule, such as

bi(r, si|τi) : S × [r, r̄]→ [0, 1) (2.1)

de�ned on the signals' space S while [r, r̄] ∈ R∗+ is the domain of eligible yields set by

the auctioneer. Each schedule speci�es the quantity demanded at a speci�c yield based

on the di�erent realizations of private signals for the secondary market. Bid schedules

are assumed to be continuously di�erentiable to the yield r and an increasing continuous

function in the budget limit c and the risk limit r`.

The issuance is produced through a mechanism (α, r̂) consisting of two components:

an allocation rule α and a payment rule r̂ . The allocation is an increasing continuous

function that takes bidding strategies and parcels outs the issuance to each bidder.

Also, it is a linear increasing and di�erentiable function on the budget limit c. The

payment rule r̂ is the stop-out yield, common for all winners as resulted from the

uniform-price rule. In other words, if b(·) is a strategy pro�le for each type, then αi

is a fraction on the issuance for each type, then αi is a fraction on the issuance that

bidder i acquires paying r̂.

For a strategy pro�le b(·) the payo� function of a risk-neutral bidder i given the

observed signal si ∈ S is:

E(rs,τ)[πi(b|si)] = Eτ |si
[(
r̂(b)− E[rs]

)
αi(b)

]
. (2.2)
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2.2.2 Market Mechanism

In this section, we will elaborate on the mechanism that produces the outcomes of the

auction. The process starts with the simultaneous submission of bids. Following the

uniform pricing rule [Bikhchandani and Huang, 1993; Krishna, 2010; Wang and Zender,

2002], a step function re-indexes individual bidding schedules until the issuance size is

fully covered.

After the auction is completed, bidders from 1, . . . , j − 1, are called full winners

and from j+ 1 . . . , n are called losers. A cuto� bidder j+ 1 with a bid schedule bj+1(·),

de�nes the stop-out yield r̂ and is the �rst of losers.

In the case of excess demand, D(b) > 1, there is a bidder j called partial winner

where his demand might be partially satis�ed at the point of stop-out yield. [Hafalir

et al., 2012].

DEFINITION 2.1. Winning bidders receive the stop-out yield r̂, de�ned as the high-

est losing bid in a magnitude set by the auctioneer, where

r̂ = min{r ∈ [r, r̄]
∣∣D(b) ≥ 1} (2.3)

and

r =

Θ− θD(b) , with b, θ > 0 and Θ > θD(b)

0 , otherwise

(2.4)

where D(b) =
n∑
i=1

bi(·|τi) for n ≥ 2, Θ is an exogenous parameter denoting the opportu-

nity cost of the issuer from alternative funding sources and θ is an exogenous sensitivity

factor of the yield towards a change on D(b).

Equation (2.4) is the inverse demand function of the issuance. In our analysis, the

parameter θ remains symmetric for all bidders, which means that all of them have

equal market power over the yield's structure.

Here below, we de�ne an allocation rule that speci�es how the asset is allocated so

that no bidder gets more than his demand curve i.e., bid schedule [Kremer and Nyborg,

2007].
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DEFINITION 2.2. An allocation rule is a mapping from the set of bid schedules'

pro�les bi(·)ni=1 to non-negative allocations α ∈ (0, 1), with α(0) = 0, such that D(b) ≥

1. Non-winners receive {α}nj+1 = 0, ∀j ∈ I and there is the partial winner j where

aj = ω such as ω ∈ (0, cj], for cj > 0.

We focus for tractability reasons on a direct revelation mechanism, which means

that all bidders truthfully report their types in the bidding schedule. We assume that

the risk limit is common knowledge and the bidder's type is reduced to the budget

limit only. This means that the only available action to each bidder is to announce the

budget limit to the auctioneer [Dobzinski et al., 2012; Hafalir et al., 2012].

LEMMA 2.1. The auction admits to a direct revelation mechanism, where bidders

truthfully report their budget limit.

Proof. Under the assumption of bidders' risk neutrality the payo� is linear and the

budget limit is always binding at the equilibrium. �

2.2.3 The concept of risk limits

This section will clarify the notion of risk limits since the evaluation of the payo� is only

meaningful on a risk-adjusted basis, which creates limitations in investment decisions.

The intuition behind this notion is that each asset manager complies with a set

of instructions or agreed-on constraints to manage investor's wealth. For instance,

the investment mandate of funds (such as pension funds, mutual funds, ETFs, etc.)

due to their idiosyncratic structures di�erentiate their investment strategy from retail

investors. This means that the asset manager must adhere to more rigorous guidelines

limiting the fund's ability to grab opportunities outside mandates. Baghai et al. [2019]

perform a textual analysis of mutual funds' mandates and identify that credit ratings

play a crucial role. The mandates require investments in investment-grade securities,

�xed minimum ratings, or certain rating agencies. In our analysis, we assume that

bidders' mandates are horizontal and require only investment-grade bonds.

Now, we will explain how the risk limit a�ects the in�mum bidding amount. Let us

assume a bidder i who has to comply with an investment mandate with a supremum

44



2.3 Existence of symmetric equilibrium

�yield�

�bid�ci = 0 c`i

r`i
L

r = rf

c̄i

M

r̄
Θ

Figure 2.1: Mapping of budget and risk constraints on the inverse demand curve.

risk r`i ∈ [rf , r̄], where rf is the risk-free rate. We further assume that bidder i has a

budget limit ci ∈ [0, c̄], with c`i to be the in�mum bid associated with the risk limit r`i .

Based on the instructions, bidder i will invest at least a bidding amount c`i with a

bidding strategy bi(·|c`), for an acceptable risk level r`i (e.g. bonds with at least BBB+

credit rating). This bidding strategy corresponds to point L, in Figure 2.1.

If the issuance concerns a bond with a lower probability of default (e.g. AA credit

rating), then bidder i will increase his bidding amount. As the credit risk of the issuance

is further reduced and r` = rf , the bidder will tend to invest all his budget c∗ = c̄ at the

risk-free rate, submitting a bid equal to zero. This corresponds to point M in Figure

2.1, where the bidder becomes indi�erent between investing in the bond and risk-free

rate.

In reverse, bidder i will never bid for a �high-yield� bond i.e., r̄ because it is beyond

his risk bounds. Thus, only the shaded area in Figure 2.1, expresses bidder's willingness

to participate in the auction.

2.3 Existence of symmetric equilibrium

This section proves the existence of symmetric Bayesian Nash equilibrium. Under

the assumption that all bidders choose the same strategy b∗, we examine the auction

from the bidder's i point of view. The analysis from other bidders' standpoints are

symmetric. In a set of strategies b∗i (·|τi) of n bidders, bidder i maximizes the expected

payo� for di�erent realizations of signals. On this basis of equilibrium, information
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2.3 Existence of symmetric equilibrium

updated through the signal space is the same and does not a�ect the outcome. Bidders

privately observe the same signals before bid submission.

DEFINITION 2.3. For each strategy bi ∈ B, where B is the space of all strategies,

there is an optimal strategy pro�le b∗ = (b∗i , b
∗
−i), which maximizes the expected payo�

for all i, over the joint distribution G(rs, τ) and the signal space S. That is, for pure

strategies for bidder i:

E(rs,τ)[πi(b
∗
i , b
∗
−i|si)] ≥ E(rs,τ)[πi(bi, b

∗
−i|si)]

Bidders types are independent and identically distributed in a probability function

that is common knowledge to everyone, and we assume that risk limit r`
∗
is symmetric

and common to all.

For our analysis, we assume that y = yn−1 is a random variable that attributes the

type pro�les (n−1) remaining bidders, and fy|τi denotes the conditional density function

of y given τi. Bidder i knows his type τi and that the highest value component-wise in

y is τ .

The expected pro�t of bidder i is given by:

E(πi) = αi

∫ c̄

c`

[
r̂
(
bi(τi), b−i(y)

)
− E[rs]

]
fy|τidy (2.5)

where αi is the allocation rule (De�nition 2.2), and c̄ = max
j∈N/{i}

c̄j, c
` = max

j∈N/{i}
c`j

respectively.

Let a minimum bid to participate in the auction de�ned upon the risk characteristics

of the bond. Herein, we parametrize the minimum bid by λ ∈ (0, 1). Hence, we assume

that b(c`) = λ with an allocation equal to α(c`).

Thus, bidder's decision problem is to choose a bid b to solve

max
b∗

E
[
πi(b

∗
i , b
∗
−i|si)

]
,

if b∗i solves this problem, then the strategy b∗i is the best reply to b−i . . . bn.

46



2.3 Existence of symmetric equilibrium

THEOREM 2.1. The n − tuple (b∗, . . . , b∗) is a symmetric Nash equilibrium under

uniform-price auctions when bidders follow the same bidding strategy concerning their

budget and risk limits. For ξ =
θ

Θ− E[rs]
and ξ < 1

λn
the bidding strategy is

b∗(c∗) = λ
α(c`)

α(c∗)
+

1

ξ n

[
1− α(c`)

α(c∗)

]
, (2.6)

with c∗ ∈ [c`, c̄].

Proof. See the Appendix 2.5.1. �

Alike the rationale of symmetric Cournot oligopoly, the more competitive bidders,

the lower the equilibrium strategy. Also, the bidding strategy is directly a�ected by

Θ, and it is used to calculate a spread from the resale in the secondary market. The

parameter θ in ξ factor measures the response of stop-out yield to a bid's change.

It attributes the oligopolistic e�ect of bidders upon the stop-out yield. As expected,

the instructions set on the investment mandate directly impact the bidding strategy

through the minimum bid λ and allocation α(c`). Additionally, the ratio of the mini-

mum allocation α(c`) to symmetric allocation α(c∗) positively a�ects the equilibrium

bid.

Next, we provide some basic comparative statics.

COROLLARY 2.1. In symmetric equilibrium, the higher the oligopolistic power of

bidders upon the stop-out yield, the lower their bid.

Proof. The result follows trivially since the equilibrium bid depends on inversely to

θ (recall that θ appears in the numerator of ξ). �

For an asymmetric θ, sophisticated investors with the strongest market power would

demand a lower portion on the issuance, creating a residual supply for retail investors.

COROLLARY 2.2. In symmetric equilibrium, the stop-out yield is given by,

r̂ = E[rs]− (r`
∗ − E[rs])

α(c`)

a(c∗)
,

where r`
∗
is the symmetric risk limit for a symmetric minimum bid b∗(c`).

Proof. See the Appendix 2.5.2. �
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Since bidding strategies respond to investors' signals, the stop-out yield in the

equilibrium re�ects information about bond's value. From the investors' point of view,

the degree of over-subscription and the market power of each participating investor is

not among the stop-out-yield's determinants. The outcome is a�ected by the strictness

of investment mandates that each bidder encounters, other things held constant. This

means that investment mandates with low-risk acceptance and restricted budget limits

can decrease the issuer's cost of capital. Inversely, an expectation for underpricing in

the secondary market bounces the issuer's costs upwardly.

PROPOSITION 2.1. In symmetric equilibrium, ceteris paribus, as the risk limit of

bidders become strict (lower), i.e., r` goes to rf , in the limit the equilibrium bid equals

to λ.

Proof. By the yield function, lower yields are associated with higher bids. I.e.,

for a decreasing sequence (r`k)k∈N corresponds to an increasing sequence (c`k)k∈N . By

letting c` to increase and given that c` < c∗ then the ratio α(c`)
α(c∗)

approaches to one. By

equation (2.6) the result follows immediately. �

From Proposition 2.1, it seems that a high demand guided by strict investment

mandates would result in allocating the bond to a greater number of bidders, since any

bidder who participates in the issuance in the limit would bid the minimum.

2.4 Conclusion

This study attempts to apply auction theory to the pricing of corporate bonds. The

model is consistent with a statistical independent secondary market and the exogenous

risk limits imposed by the investment mandates.

We prove the existence of symmetric Bayes-Nash equilibrium for a uniform-price

auction, when investment managers have bounded budgets and comply with certain

levels of risk. Each bidding strategy is inversely a�ected by the number of competitive

bidders, which means that the investment managers will receive a smaller share of

the bond (symmetric Cournot oligopoly) in an oversubscribed issuance. Similarly, the

oligopolistic market power exercised by each investment manager a�ects equilibrium

bids.
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We have shown how investment mandates de�ne the bidding strategy and the stop-

out yield. If stringent mandates are followed with restricted budget limits, then the

bidding will be reduced resulting in a lower cost of capital for the issuer, and the bond

will be allocated to a greater number of investors.

The lending interest rates of other debt's sources are used as a benchmark to cal-

culate a spread from the resale in the secondary market, and it seems that the bidding

strategy follows the same course with this spread.

Contrary to the current practice for pricing corporate bonds, the uniform-price

auction is a well-understood rule by all parties, and it is a mechanism already used for

the pricing of Treasury bills. Investors reveal their valuations directly in their bid, so

the �nal allocation and price re�ect each bidding strategy.

2.5 Appendix

2.5.1 Proof of symmetric equilibrium

By Lemma 2.1 bidders directly reveal their types by announcing their budget limits.

Thus, the expected pro�t from (2.5) can be rewritten as:

E(πi) = αi

∫ c̄

c`
r̂(bi(ci), b−i(y))f(y|ci)dy − αiE[rs]

∫ c̄

c`
f(y|ci)dy

= αi

∫ c̄

c`
r̂(bi(ci), b−i(y))f(y|ci)dy − αiE[rs]

[
F (c̄|ci)− F (c`|ci)

]
(2.7)

We integrate by parts the integral

∫ c̄

c`
r̂(bi(ci), b−i(y))f(y|ci)dy, on the right hand

side. By the continuity property of the distribution F , the probability of CDF for each

bidder i to bid a budget, ci ≤ c`i , equals zero. Because none of the bidders will place a

bid above their risk limit r`i (Figure 2.1).

This means that when b−i(c
`, r`) = 0, the bond will not be issued, as none

of the bidders can buy the whole issuance. In other words, the stop-out yield

r̂(bi(τi), b−i(c
`, r`)) = r̂(bi(τi), 0)) = 0.

Substituting in equation (2.7), the optimization problem is:
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max
ci

E(πi) = αi

[
r̂(bi(ci), b−i(c̄))F (c̄|ci)−

∫ c̄

c`
r̂′(bi(ci), b−i(y))F (y|ci)dy − E[rs]F (c̄|ci)

]

s.t.

∫ c̄

c`
r̂′(bi(τi), b−i(y))F (y|ci)dy ≤ 0

To be a symmetric Bayesian Nash equilibrium, it is necessary that the �rst-order

conditions to be zero. Ex ante, at the optimum, the expected stop-out yield can not be

further diminished, hence the aforementioned constraint is satis�ed with the equality.

Because of the symmetry, all bidders share the same type c∗. By Lemma 2.1 bidders

maximize with respect to their budget limit.

0 =
∂E(πi)

∂ci

∣∣∣
(ci=c∗)

=
([
r̂(bi(ci), b−i(c̄))F (c̄|ci)− E[rs]F (c̄|ci)

]
αi(ci)

)′
= α′i(c

∗)r̂(bi(c
∗), b−i(c̄ = c∗))F (c̄ = c∗|c∗)− α′i(c∗)E[rs]F (c̄ = c∗|c∗)

+ αi(c
∗)r̂′(bi(c

∗), b−i(c̄ = c∗))F (c̄ = c∗|c∗) (2.8)

We substitute (2.4) to (2.8) and for simplicity reasons we denote ρ(c∗) =
α′i(c

∗)

αi(c∗)
,

which is the relative rate of change for the symmetric allocation αi = α∗, and with b∗

the symmetric bidding strategy. Thus,

ρ(c∗) [Θ− n θ b∗(c∗)] + [−θ n b∗′(c∗)] − ρ(c∗)E[rs] = 0

Denominating with (−θn) and by substitution of ξ =
θ

Θ− E[rs]
, where ξ < 1

λn
, we

result to a �rst-order non-homogeneous di�erential equation:

b∗′(c∗) + ρ(c∗) b∗(c∗) =
ρ(c∗)

ξ n

The solution to the �rst-order di�erential equation is given by
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b∗(c∗) = e−
∫
ρ(c∗) dc∗

(∫
e
∫
ρ(c∗) dc∗ ρ(c∗)

ξ n
dc∗ + Γ

)
= elnα−1(c∗)

(∫
elnα(c∗)ρ(c∗)

ξ n
dc∗ + Γ

)
=

1

α(c∗)

(∫
α′(c∗)

ξ n
dc∗ + Γ

)
=

1

α(c∗)

(
α(c∗)

ξ n
+ Γ

)

where Γ is an arbitrary constant. Thus, we conclude

b∗(c∗) =
1

ξn
+

Γ

a(c∗)
, with c∗ ∈ [c`, c̄] (2.9)

Now since b(c`) = λ is the initial condition of our di�erential equation, then the

value of the constant Γ = α(c`)[λ − 1
ξ n

], where α(c`) ∈ (0, 1) and corresponds to the

minimum allocation of the winning bidder. Thus, the solution of equation (2.9) is

unique and can be re-written:

b∗(c∗) =
1

ξ n
+
α(c`)[λ− 1

ξ n
]

a(c∗)

=
1

ξ n
+
α(c`)λ

α(c∗)
− α(c`)

α(c∗) ξ n

= λ
α(c`)

α(c∗)
+

1

ξ n

[
1− α(c`)

α(c∗)

]
.

�

2.5.2 Proof of Corollary 2.2

In the symmetric case, the symmetric equilibrium yield from (2.4) is:

r̂ = Θ− θ n b∗(c∗)
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Substituting equation (2.6) in (2.4) we can rewrite equivalently:

r̂ = Θ− θn
(
λ
a(c`)

a(c∗)
+

1

ξn

[
1− a(c`)

a(c∗)

])
= Θ− θ n λα(c`)

α(c∗)
−Θ + E[rs]− (Θ− E[rs])

α(c`)

α(c∗)

= E[rs]−
(
Θ− θ n λ− E[rs]

)α(c`)

α(c∗)

= E[rs]−
(
Θ− θ n b∗(c`)− E[rs]

)α(c`)

α(c∗)

By substituting with the symmetric minimum bid b∗(c`) = λ, we result in a equilibrium

yield equal to the symmetric risk limit that is r`
∗

= Θ− θ n b∗(c`). Thus, we conclude

that

r̂ = E[rs]−
(
r`
∗ − E[rs]

)α(c`)

α(c∗)
.

�
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Chapter 3

Blind portfolios' auctions in

two-rounds

Abstract

This chapter proposes a two-stage sealed-bid model for the execution of

portfolios. An asset manager auctions a portfolio of securities to a set of

brokers who are unaware of the speci�c details about individual securi-

ties. We prove that our mechanism may reduce the costs of execution for

the asset manager and may mitigate the �winner's curse� for participating

brokers.

Keywords - Two-round auctions, A�liated signals, Pricipal blind bidding

JEL Classi�cation - D44, D47, D53, G10
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3.1 Introduction

3.1 Introduction

One of the most challenging mechanisms in the modern investment trading strategies

is the auction of portfolios. Here, we are concerned with the case of principal blind

bidding, as it can reduce execution costs up to 48% relative to traditional channels

[Kavajecz and Keim, 2005]. This type of strategy has reached about 11% of the average

daily trading volume of NYSE in the last few years [Giannikos et al., 2012]. However,

our proposed mechanism can be extended in all portfolios1.

Under the rule of a �rst-price sealed-bid auction, an asset manager demands liquid-

ity for a portfolio at an execution price and a group of brokers competes to undertake

this execution for the lowest commission fee. Ex ante, brokers receive public informa-

tion about the aggregate characteristics of the portfolio (e.g. the total value of the

portfolio, sector exposure, volatility e.t.c.) and only the winning broker becomes aware

of the actual securities included in the package. Also, brokers observe private signals

regarding the expected value of the portfolio in case of winning.

Each broker's bid is the charged commission fee for executing the trades of secu-

rities upon the agreed price [Kavajecz and Keim, 2005; Padilla and Van Roy, 2012].

It is optimal for the asset manager to reveal portfolio's characteristics after market-

closing and the agreed execution price to be the last closing price [Forsythe et al., 1989;

Giannikos et al., 2012].

Asset manager's incentive to participate in principal blind auction is to reduce the

costs of liquidation especially when there is an immediate need. Executing the portfolio

in a mutually agreed price, mitigates and reduces asset manager's risk exposure, from

any trading extensions.

Brokers' interest in the auction is not only to earn a commission fee, but likely to

obtain a pool of reverse transactions which o�set their own exposure or to open new

positions. Brokers' challenge is to maximize pro�ts by submitting the lowest possible

bid (fee) to win the auction and, at the same time, to cover any risks associated with

portfolio's acquisition.

1For instance, in ICE bonds' portfolios the investment managers auction a portfolio of bonds on

all-or-nothing basis to one or multiple bidders in a discrete, pre-determined period.
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To our knowledge, the current literature for blind portfolios is limited due to data

restrictions. The most important work is the one of Kavajecz and Keim [2005] who

use historical data from an asset manager to model empirically the economic viability

and performance of this trading mechanism. They �nd that broker's ability to cross

shares with internal inventory and the longer trading out period reduce costs relative

to traditional channels. Giannikos and Suen [2007a,b] and Giannikos et al. [2012] make

one step further to explain the perception of brokers to risk exposure in the stock's

spread. They use proxies to measure the two major categories of inventory risk and

information asymmetry risk in order to predict the winning bids. Finally, Padilla and

Van Roy [2012] use a theoretical model of a �rst-price auction to compute the impact

of a trusted intermediary on transaction costs. They perform a comparative analysis

on the number of participating brokers and broker's risk aversion.

Our work is the �rst study that discusses the �winner's curse� in principal blind bid-

ding. We propose a two-stage auction under the frame of �a�liated values� by Milgrom

and Weber [1982] and Perry et al. [2000]. Initially, brokers submit simultaneously their

fees as a sealed-bid knowing only the aggregate characteristics of the portfolio. Only

brokers with the two lowest fees move on the second stage. Then, ineligible bidding

fees for the next stage are revealed. In the second stage, the two remaining brokers

participate in a sealed second-price auction constrained by their �rst-round bidding

fees.

This mechanism performs better than �rst-price auction, since information release

for the losing bids at the interim can further lower costs for the asset manager. Ad-

ditionally, the revelation of losing bids discloses others' private information about the

change in securities' prices [Milgrom and Stokey, 1982] and addresses to the problem of

�winner's curse� associated with portfolio's valuation. Yet, too much information can

be detrimental [Kavajecz and Keim, 2005; Milgrom and Stokey, 1982]. If the bidders

are aware of the actual securities included in the portfolio, they can quote the entire

trading cost of the asset manager, while, if the trading costs of the bidders are revealed

to the asset manager, the latter can extract the bidding surplus.

The chapter is organized as follows. Section 3.2 introduces concepts and notation

used in the model and market's mechanism. Section 3.3 derives the intuitive form for
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the conditions that enable the equilibrium analysis. Finally, section 3.4 concludes and

discusses the results.

3.2 Preliminaries

An asset manager puts at auction m > 2 securities packaged in an indivisible portfolio

θ ∈ Rm. We denote by θ+ = max{0, θ} the long part of the portfolio and θ− =

min{0, θ} the short part. We assume that a set of risk-neutral brokers, N = {1, . . . , n},

are competing2 for θ.

The auction occurs in two rounds: t = 1, 2. Each broker i ∈ N submits consecutively

a bid (fee) φti ∈ [0, 1]. For arbitrary security k, brokers form expectations on the

percentage change of its price, ∆pk
p∗k

, with ∆pk = E(pk) − p∗k, where p∗k ∈ R+ denotes

the agreed exercise price and E(pk) ∈ R+ the anticipated price of the security when

delivered, conditional on broker's private information.

Information is revealed in two stages. Initially, each broker i observes a private

signal si ∈ [−s, s] ⊂ R for the random variables ∆pk and θk and a public signal z ∈ Z

for the aggregate characteristics of portfolio. Denote by s the vector of private signals

for all brokers. Random variables (s, z) are drawn from a continuous and symmetric

joint distribution F (·), which is fully supported by the density f(·) > 0 that satis�es

the a�liation properties of Milgrom and Weber [1982]. After the completion of the

�rst round, the asset manager updates public information. We denote respectively the

order statistics Y1, Y2, . . . for the bids of the losing participants.

3.2.1 The Mechanism

The auction occurs in two rounds:

1st round. The asset manager puts up the portfolio for bidding in a �rst-price

sealed-bid auction, where the two lowest bids are quali�ed for the second round. At

the outset, broker i receives information (si, z) and submits a fee (in basis points)

φ1
i to execute the portfolio trade at p∗ ∈ Rm

+ . Each bidding strategy at the restricted

2Without loss of generality we assume no entry costs for participating brokers.
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game φti is monotonically decreasing on the private signal si and E(pk) is monotonically

increasing.

2nd round. The asset manager updates the available public information by revealing

Y1, Y2 . . ., which is related to the losing bids of the �rst-round participants. A sealed-

bid second-price auction takes place for the two winners. Each winner i ∈ N submits

a fee φ2
i ∈ [0, φ1

i ]. The auction design does not allow any bid to exceed the �rst-round

bidding. The lowest bid wins the auction and the winning broker charges the second

lowest bid.

The standard tie-breaking rule applies to both rounds. Figure 3.1 presents the

two-round auction design comparatively to the existing auction format.

Figure 3.1: Two-round auction design.

The broker aims to submit a fee which neutralizes potential losses. The expected

payo� of the selected winner i for security k is given by

πi,k(φ
2|si, z) = E

[
|θk(si, z)| · p∗k · φ2

j − θk(si, z) ·∆pk(si, z)
]
· 1{φ2i<φ2j} (3.1)

where the last term is an indicator function for φ2
i < φ2

j .

For each security k, the expected payo� of the broker is a fee received upon the

value of the trade (|θk(si, z)| ·p∗ ·φ2
j) minus the potential losses from the price variation

(θk(si, z) · ∆pk(si, z)), if exist. For the aggregate portfolio θ winner's payo� results

immediately from (3.1) and follows the same rule. For portfolio θ ∈ Rm and security

prices p∗ ∈ Rm
+ , the payo� becomes
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πi(φ
2|si, z) = E

[
|θ(si, z)| · p∗ · φ2

j − θ(si, z) ·∆p(si, z)
]
· 1{φ2i<φ2j}. (3.2)

3.3 Equilibrium

Since fees come to countervail potential losses, competing fees will most likely tend to

become zero. Two cases are legitimate, either when it is a long position (θ+
k ) and the

expected price di�erential is negative, i.e., E(pk) < p∗k, or when it is a short position

(θ−k ) and the expected price di�erential is positive, i.e., E(pk) > p∗k. In both cases, the

expected pro�t turns to be nonnegative for a nonnegative fee. The following proposition

suggests this result for the symmetric case (i.e., si = sj for all i 6= j).

PROPOSITION 3.1. For any arbitrary security k, when brokers anticipate a long

position θ+
k and ∆pk(si, z) < 0 or a short position θ−k and ∆pk(si, z) > 0, brokers

submit a fee φ1 = 0, with φ1 ∈ Rn
+.

Proof. Under these assumptions, the expected pro�ts are always nonnegative. We

claim that in the �rst round they will bid a fee equal to zero. Suppose that this is not

the case and in the �rst round brokers submit φ1 > 0. Then any arbitrary broker i

has an incentive to submit a lower fee to ensure his participation in the second round.

Thus, the bidding pro�le φ1 > 0 cannot be the �rst-round equilibrium. Necessarily, it

is φ1 = 0. �

By Proposition 3.1 an interesting corollary follows.

COROLLARY 3.1. In the second round, φ2 = 0 for φ2 ∈ R2
+, is a weakly dominant

strategy symmetric equilibrium.

Proof. The proof follows directly from the assumption that φ2
i ∈ [0, φ1

i ], with i = 1, 2

the winning broker of the �rst round. �

Next, we prove the symmetric equilibrium for the remaining cases i.e., θ+
k with

∆pk(si, z) > 0 and θ−k with ∆pk(si, z) < 0. In both cases, the expected pro�t can be

negative. The φ is activated as a countervailing mechanism.

Now we will show the restricted second-round symmetric equilibrium.
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PROPOSITION 3.2. Suppose θ+
k with ∆pk(si, z) > 0 and θ−k with ∆pk(si, z) < 0,

for all k. The symmetric equilibrium of the restricted second-round auction is

φ2(s∗, s∗, z) = min
{
φ1
k(s
∗, s∗, z),

∆pk(s
∗, s∗, z)

p∗k

}
and it is unique for monotonically decreasing bidding strategies.

Proof. We prove the result for arbitrary security k. Without loss of generality, sup-

pose bidder j is the loser of the second-round auction. Generally in Vickrey auctions,

bidding your valuation is a weakly dominant strategy equilibrium and bidders achieve

no surplus.

In our case, it is E
[
|θk(si, z)| · p∗k · φ2

j − θk(si, z) ·∆pk(si, z)
]

= 0 or equally φ2
i =

∆pk(si, z)

p∗k
. Following Milgrom and Weber [1982] (Theorem 6) for the symmetric equi-

librium and since φ2(s∗) is monotonically decreasing, the conditional expected payo�

by (3.1) for the winning bidder i becomes:

E
[(
|θk(si, Y1, z)| p∗k φ2

j − θk(si, Y1, z)∆pk(si, Y1, z)
)
· 1{φ2i<φ2j (Y1)} | si = s∗

]
=E
[
E
[(
|θk(si, Y1, z)| p∗k φ2

j(Y1)− θk(si, Y1, z)∆pk(si, Y1, z)
)
· 1{φ2i<φ2j (Y1)}

| si = s∗, Y1 = s∗, z
]
| si = s∗

]
=

∫ s∗

−s

[
|θk(s∗, α, z)| p∗k φ2

j(α, α, z)− θk(s∗, α, z)∆pk(s∗, α, z)
]
fY1(α|s∗, z)dα.

where fY1 denotes the conditional density of Y1 given si = s∗ (with s∗ to be the

symmetric signal) and public information z. By substituting the symmetric bidding

strategy where φ2
j = φ2

i =
∆pk(s

∗, s∗, z)

p∗k
we have

∫ s∗

−s

[
|θk(s∗, α, z)|

p∗k∆pk(α, α, z)

p∗k
− θk(s∗, α, z)∆pk(s∗, α, z)

]
fY1(α|s∗, z)dα

=

∫ s∗

−s
[|θk(s∗, α, z)|∆pk(α, α, z)− θk(s∗, α, z)∆pk(s∗, α, z)] fY1(α|s∗, z)dα

Since ∆pk is increasing in the �rst argument, the integral is negative for a < s∗ and

positive for s∗ < a. Indeed, the integral is maximized by choosing φ2
i (s) = φ2

j(s
∗).
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This proves that φ2
i (s
∗) is the best response for bidder i. Mutadis mutandis the result

generalizes for the portfolio. �

Similarly, in the restricted �rst-round game, the brokers' incentive is to participate

in the auction without understating their valuations. At the same time, they want to

avoid being excluded from the second round. The following lemma suggests that if

there is a strict best response towards rivals' bidding, then brokers ask for a higher fee.

LEMMA 3.1. Suppose a signal s and φ1(s) the �rst-round bid function for all brokers.

Then, φ̃1
i (s) is the strictly best response to φ1

−i(s), only if φ̃1
i (s) > φ1

i (s).

Proof. We prove this by contradiction. Suppose φ̃1(s) < φ1(s), then this response

quali�es broker i for the second round. Because bidding strategies are monotonically

decreasing, it must be true that s > Y1. Yet, ∆pk is increasing in the �rst argument

with
∆pk(s, Y1, z)

p∗k
>

∆pk(Y1, Y1, z)

p∗k
, for all k. If this is the case, the expected payo�

turns to be negative.

In exposition, if πi(Y1, Y1, z) = 0 then πi(s, Y1, z) < 0. Thus, it is not the best response

for broker i to bid lower. �

Now, we examine the �rst-round restricted game equilibrium.

PROPOSITION 3.3. Suppose the symmetric case, where all receive signal s∗. Then,

for an expected percentage change in prices
∆p(s∗, s∗, z)

p∗
=

(
∆p1

p∗1
, . . . ,

∆pm
p∗m

)
, all strict

monotone decreasing strategies φ1(s∗) such that

φ1(s∗) ≥ ∆pk(s
∗, s∗, z)

p∗k

are symmetric equilibria, for each security k.

Proof. A quali�ed broker for the second round with signal s∗, never regrets bidding

φ1(s∗) >
∆pk(s

∗, s∗, z)

p∗k
in the �rst round. By Lemma 3.1, a deviation from φ1(s∗) must

satisfy φ̃1(s) > φ1(s∗) to be pro�table. Under this condition, bidding φ̃1(s) does not

qualify him for the second round, and this deviation makes sense only when s < s∗.

Thus, he forgoes a net cost
∆pk(s, Y1, z)−∆pk(s

∗, Y1, z)

p∗k
< 0 for not participating

in the second round. It is evident that if the condition is satis�ed with equality the

symmetric equilibrium is strict. �
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3.3.1 Cost E�ects

Next, we examine how the asset manager's decision in the second round to update

brokers with credible public information may a�ect the auction's outcomes. Following

the same analysis, the symmetric equilibrium given by Proposition 3.2 holds.

PROPOSITION 3.4. Information revelation at interim may induce lower execution

costs for the asset manager.

Proof. The asset manager's incentive is to minimize the execution costs. By design,

the second-round fee is always bounded in [0, φ1]. Next, we prove that in some occa-

sions, fees may be lower. At interim, public information z ∈ Z is updated by encompass-

ing the order statistics of �rst-round losing participants, Y1, Y2, . . .. It turns out that

random variable z takes a new value z′. First, suppose z′ > z, and the broker i updates

his private information to s′i > si by the a�liation property. Let an arbitrary security k

in a �short� position (θ−k ). This results in
∆pk(s

′
i, z
′)

p∗k
>

∆pk(si, z)

p∗k
. In the second round,

new information admits a lower bid by the di�erence of
∆pk(s

′
i, z
′)−∆pk(si, z)

p∗k
> 0.

Hence, φ2
i (si, z) ≥ φ2

i (s
′
i, z
′). If the security k is �long� (θ+

k ), the broker i incurs a loss,

still φ2 ∈ [0, φ1], i.e., the broker cannot make an upward correction. Second, z′ < z

the broker updates information with s′i < si. This results in
∆pk(s

′
i, z
′)

p∗k
<

∆pk(si, z)

p∗k
.

If the security is �long� (θ+
k ), an update in information allows a lower bid again by

the di�erence
∆pk(s

′
i, z
′)−∆pk(si, z)

p∗k
. This means that φ2

i (si, z) ≥ φ2
i (s
′
i, z
′) while if

�short� (θ−k ) broker i experiences a loss bounded by φ1. �

Remark. By updating public information at the beginning of the second round,

the asset manager apprises �rst-round winners of others' unwillingness to bid low.

This information is unfavorable for the valuation of
∆p(si, z)

p∗
and reveals the �winner's

curse� that was induced by the �rst-round bidding. However, this information release

can mitigate �winner's curse� from second-round bidding e.g. if the winner did not

have information for the unfavorable valuation he could bid lower and he would have

a worse payo� than anticipated. On the other side, the �rst-round bids constrain the

asset manager's costs to any increase. Contrariwise, releasing favorable information for

winners, curtails the asset manager's cost and mitigates �winner's curse�.
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3.4 Concluding Remarks

This research represents the �rst attempt to explore the �winner's curse� phenomenon

in blind portfolios as a two-stage sealed-bid trading mechanism. We have shown for

both stages the existence of symmetric equilibrium. This approach elegantly sidesteps

bidding complexity and any computational problems arising in practice, as it is a direct

incentive-compatible mechanism [Perry et al., 2000]. It promotes competition among

brokers and ensures that this auction format meets the requirements set by the asset

manager.

Information disclosure after the �rst-round bidding, can further reduce asset man-

ager's costs. On top of that, it allows brokers to access spot market signals and to

update their valuations. Thus, the broker can predict more accurately the true value

of the portfolio. This mitigates �winner's curse� e�ect, and in that sense improves

brokers' e�ciency in blind portfolio auctions.

A possible extension of the model could be a package auction of a fully divisible blind

portfolio. This can be conceptually viewed in the framework of Day and Milgrom [2008],

in which a mechanism is designed to maximize the social welfare of all participants.
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Chapter 4

A core-selecting auction for portfolio's

packages

Abstract

We introduce the �local-global� approach for a divisible portfolio, and per-

form an equilibrium analysis for two variants of core-selecting auctions. Our

main novelty is extending the Nearest-VCG pricing rule in a dynamic two-

round setup, mitigating bidders' free-riding incentives and further reducing

the sellers' costs. The two-round setup admits an information-revelation

mechanism that may o�set the �winner's curse�, and it is in accord with the

existing iterative procedure of combinatorial auctions. With portfolio trad-

ing becoming an increasingly important part of investment strategies, our

mechanism contributes to increasing interest in portfolio auction protocols.

Keywords - Package auction · VCG payments · Portfolio Trading

JEL Classi�cation - D44 · D47 · G11
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4.1 Introduction

Portfolio Auctions (PA) have recently been in the limelight due to their rapid growth

in �xed-income markets. The growth approximates 5% of total market trading volume

based on the recent estimates of TRACE1. The changes in the market behavior have

been driven by the various developments in ETFs and the surge of algorithmic trading,

which has facilitated the vertical slicing of portfolios2. The automated execution pro-

tocol for portfolio trading by ICE Bonds Portfolio Auction and Tradeweb's portfolio

trading platform are examples of the current investment strategies in using auctions

for trading portfolios.

More commonly known as basket or program trading, it has been in the investment

landscape for a while and has accounted for 50% to 60% of the total daily trading

volume at the NYSE3. It operates in two formats called principal and agency. The

portfolios are o�ered to a discrete group of broker-dealers who can o�er bids fast for a

bundle of trades executed as a single transaction.

In this chapter, we focus on principal trade in which a broker undertakes the risk

price on behalf of the asset manager and executes the portfolio at an agreed price plus a

commission fee. After acquiring the portfolio, the broker must attempt to minimize any

de�cit caused by the actual execution versus the agreed price with the asset manager

(a price equal or better in the market).

The impact for asset managers is vast, especially in periods of high volatility where

cost savings and speedy risk transfer are imperative. Even though the asset managers

always have the option to execute those trades at their discretion, using a portfolio

auction trading tool enables them to have access to multiple liquidity providers simul-

taneously, to reduce any information leakage and to guarantee execution's e�ciency-

an e�cient way to deal with large and complex transactions.

From the broker's perspective, this strategy is an opportunity to gain access to new

1https://www.�nra.org/�ling-reporting/trace
2When considering liquidity management a portfolio can be sliced horizontally or vertically. A

slice of liquid assets is described as slicing the portfolio horizontally, while a proportional slice on the

entire portfolio is considered as vertical slicing.
3In periods with high volatility, it can reach up to 90%. Since 2012, the NYSE no longer publishes

weekly program trading reports.

64



4.1 Introduction

order �ows that might match their inventory or facilitate new business [Padilla and

Van Roy, 2012]. The challenge is to bid low enough to win the auction and at the same

time to cover the assumed price risk from the execution.

In the current form, the auction rule is a single round �rst-price sealed-bid, and the

entire portfolio is awarded to one winning broker. However, it might be possible that

some brokers have a higher valuation for a slice of the portfolio. In this case, the asset

manager might receive a lower overall bid for the whole portfolio if he attributes the

di�erent slices to various brokers.

We divide the portfolio into packages for a discrete number of brokers with di�erent

valuations in this context. We characterize those who compete for the packages as

�local� brokers and those who bid for the whole portfolio as �global� brokers. Each of

the brokers is aware of the individual securities included in the portfolio, which takes

long positions in all securities.

The auction occurs in two rounds. In the �rst round, the asset manager performs

simultaneous sealed-bid �rst-price auctions (a) for �local� brokers who compete for

each package separately, and (b) for �global� brokers who compete for the aggregate

portfolio. The �rst round quali�es one global broker and one local broker for each

package to participate in the second round. The asset manager releases information

with the quali�ed bids for the discrete number of local brokers and the global broker.

This attribute in the design provides a solution to brokers' information asymmetries

by revealing valuations.

In the second round, the local brokers jointly compete for the whole portfolio against

the global, who values packages as perfect complements4. If the coalition of local

brokers submits a bid lower than that of global, the coalition wins, and the fees are

awarded to each local broker based on a pricing rule that ensures a core outcome.

The core is a set of payo� vectors that correspond to a set of allocations of packages,

where no better outcome exists both for the asset manager and the local brokers. In

other words, the coalition of local brokers is unblocked and feasible [Day and Milgrom,

2008]. Any payo� vector for the coalition of local brokers is obtained in the core is

4The utility of the whole portfolio has a higher utility than the sum of the utilities for the individual

packages [Cramton et al., 2006].
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bidder-optimal only if there is no other payo� vector which is Pareto-optimal. The set

of such points is called the bidder-optimal-frontier of the core [Milgrom, 2004].

We perform an equilibrium analysis for two core-selecting auctions: the well-known

Nearest-VCG rule [Day and Cramton, 2012] and a �Dynamic� version of Nearest-VCG

rule that �ts multiple round auctions that we are introducing here.

4.2 Related Literature

Most literature in package auctions (or combinatorial auctions) focuses on technicalities

for developing fast heuristics to solve the complex winner's determination problem

[De Vries and Vohra, 2003; Rothkopf et al., 1998], while economists focus on speci�c

properties by using simpli�ed theoretical models.

The theory of package auctions can be traced to the seminal paper of Vickrey [1961],

in which each bidder is asked to pay an amount equal to the externalities he exerts on

the competing bidders. Vickrey showed that this payment rule motivates bidders to

submit a �bid� according to the actual demand schedules, regardless of the bids made

by others. After some years, Clarke [1971] and Groves [1973] generalized the Vickrey

mechanism to other applications.

It is easy to think that a Vickrey auction could generate an e�cient outcome for

package auctions due to its appealing property of incentive compatibility. Nevertheless,

in practice, the Vickrey auction is never used because this mechanism can lead to low

payo�s for the auctioneer, even if bids are high enough [Milgrom, 2007]. Also, the

Vickrey pricing is determined by a non-monotonic function of broker's values in the

sense that an increase in the number of brokers can reduce equilibrium revenues for the

asset manager up to zero. Thus, brokers can use pro�tably �shill brokers� to increase

competition in order to �nally charge higher fees [Ausubel and Milgrom, 2002, 2006].

To mitigate the aforementioned shortcomings, the existing literature has proposed

alternative procedures. Ausubel and Milgrom [2002] developed a mechanism called the

ascending proxy auction, while, Day and Milgrom [2008] and Day and Cramton [2012]

suggested a new cluster of payment rules for core-selecting auctions with respect to the

reported values.
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Recently, Ausubel and Baranov [2020] provide a theoretical justi�cation for the use

of core-selecting auctions. They propose an incomplete-information setting in which

bidders' values are correlated and analyze the equilibrium under a �local-local-global�

approach. They found that in environments with positive correlations, core-selecting

auctions can be signi�cantly closer to the true core than the VCG outcome5. To our

knowledge, Krishna and Rosenthal [1996] were the �rst to explore an independent

private value setting6 for the simultaneous sale of multiple items in the �local-global�

setting.

Since package auctions have this cooperative �avor, the problem that arises when

the coalition wins is the distribution of payments, when the VCG outcome is not in

the core7. Then, the closer the bidder-optimal frontier gets to VCG pricing, the fewer

incentives for misreporting [Ausubel and Milgrom, 2002; Day and Milgrom, 2008]. Day

and Raghavan [2007] and Day and Cramton [2012] �nd alternative payment rules which

minimize bidder's incentives for this strategic manipulation. The rule that they discuss

is called the Nearest-VCG, which is a point in the bidder-optimal-frontier where the

maximum deviation from VCG pricing is minimized.

Alternatively, Erdil and Klemperer [2010] have proposed a new class of pricing rules

for core-selecting package auctions focusing on the marginal incentives to deviate from

�truthful bidding�. Those rules are called �reference rules� and are determined, as fas

as possible, independently by bidders' bids. The idea is to select a point in the bidder-

optimal frontier that is close in a reference point. Motivated by their suggestion,

we construct a new payment rule, the Dynamic-Nearest-VCG, using an endogenous

reference point suggested by the brokers' own strategic bidding behavior.

One of the merits of an iterative combinatorial auction,8 is their ease of deploy-

ment. It allows bidders to learn about rivals' valuation, and it is the most popular

combinatorial auction format used in practice. For example, the FCC has used only

multi-round formats for its auction design [Peke£ and Rothkopf, 2003].

5Goeree and Lien [2016] showed that core-selecting auctions concerning true values do not exist.
6Rosenthal and Wang [1996] extended the setting with common values.
7If the VCG outcome is in the core, it is the unique bidder-optimal allocation.
8A multiple-round bidding process at which the auctioneer releases information regarding the

provisional winners and the actual prices, at the end of each round. Bidders obtain information

regarding the bids of their rivals and can modify their bids in the following rounds [Parkes, 2006].
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Our chapter proceeds as follows. Section 4.3 presents the model and describes

the mechanism for the two rounds. Section 4.4 derives to the intuitive form of the

optimality conditions and analyses the equilibrium. Finally, section 4.5 discusses the

results and concludes. All proofs can be found in the Appendix 4.6.

4.3 Model

An asset manager sells m > 2 securities packaged in a divisible portfolio Θ ∈ Rm
+ . A

set of risk-neutral brokers, N = {1, . . . , n} are competing9 for a portfolio Θ. There

are two types of brokers who participate in the auction, a set of local brokers denoted

by the generic element ` ∈ L, and a set of global brokers g ∈ G, where L,G ⊂ N are

disjoint and L ∪G = N.

We assume that Θ is divided in a �nite set of q packages θj, with j = 1, . . . , q, such

as θj ∈ Rm
+ and Θ =

q∑
j=1

θj. Each broker i ∈ N observes a private signal si ∈ S about

the value of the Θ or θj and a public signal z ∈ Z for the aggregate characteristics of

portfolio. Information (s, z ), where s = (si, s−i, sg) ∀i ∈ L and g ∈ G, is distributed

according to a continuous i.i.d. function F`(·), with the density function f`(·) > 0 for

local brokers, and Fg(·), with fg(·) > 0 for global brokers respectively.

All brokers form expectations for the percentage change of the securities' prices

given by the vector,

E[
∆p

p∗
|si, z] =

(
p∗k − E[pk|si, z]

p∗k

)
k≤m

,

where the vector p∗ ∈ Rm
+ includes the agreed exercise price for m securities, and the

vector p ∈ Rm
+ the anticipated price of m securities when delivered. Both random

vectors are conditional on the signal received and the available public information.

Evidently, when E[∆p
p∗
|si, z] > 0 brokers anticipate to incur a loss. Also, we denote by

ωj =
p∗ · θj
p∗ ·Θ

, the weight of θj's value over Θ with ωj ∈ (0, 1].

9Without loss of generality, we assume no entry costs for participating brokers.
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4.3.1 Mechanism

The auction takes place in two rounds t = 1, 2. Each broker i ∈ N submits consecutively

a single10 bid (fee) in basis points φti ∈ [0, 1], with φ1
i (si, z) to be the �rst-round bid and

φ2
i (si, z

′) be the second-round bid for z ′ an update in public information. The fee is

calculated ad valoren on the portfolios value. The standard tie-breaking rule (in which

the winner is selected at random) applies to both rounds.

First round. The asset manager initiates q + 1 simultaneous sealed �rst-price auc-

tions for the q packages and the aggregate portfolio Θ. Each local i ∈ L competes for

the package θj that he is interested in and receives no extra utility from owning more

than one package. Accordingly, each global g ∈ G competes for the aggregate Θ and

receives no utility from owning a single package. The quali�ed brokers for the next

round are q local winners and one global winner with the lowest bids.

Second round. At the outset, the asset manager, updates the available public infor-

mation to z ′, by revealing the winning bids of the previous round. Then, the quali�ed

�local� winners of the �rst round, de�ned as Q ⊂ L with cardinality |Q| = q i.e. the

number of local packages, jointly compete against the quali�ed �global� winner g .

In all cases, the second-round bids are bounded from above by the �rst-round

bidding. This round follows the rules of core-selecting auctions with two possible

outcomes11: the global broker g wins all packages as Θ when φ2
g <

∑
i∈Q

ωiφ
2
i , and each

local broker i wins one package θi if φ
2
g >

∑
i∈Q

ωiφ
2
i .

The payo� of a local broker i, who wins a package θj with m securities for the

charged commission ci ∈ R+ is given by:

E[πi(φ
2|si, z)] =

[
(θi · p∗) · ci − θi · E[∆p(si, z)]

]
· 1{∑

i∈Q
ωiφ2i<φ

2
g} (4.1)

where the last term is an indicator function for
∑
i∈Q

ωiφ
2
i < φ2

g, when the whole portfolio

Θ is assigned to local brokers for execution.

For each package θi the expected payo� of each local broker i results from the

10For simplicity we restrict our analysis to this class of auctions.
11Without loss of generality ties are resolved.
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charged commission upon the trading value (θi · p∗ · ci) minus the potential losses from

the price variation (θi ·E[∆p(si, z)]), if exists. We denote the private valuation of each

local broker i for θi with αi = E
[
θi ·∆p
θi · p∗

|si, z
]
, with αi ∈ R.

On the other hand, if the global broker wins the aggregate portfolio Θ, for∑
i∈Q

ωiφ
2
i > φ2

g, he charges C =
∑
i∈Q

ωiφ
2
i and follows a similar payo� function. We

denote the private valuation for Θ of each global broker g with υ = E
[

Θ ·∆p
Θ · p∗

|sg, z
]
,

with υ ∈ R. The broker-optimal-frontier, for any local broker i, is satis�ed when∑
i∈Q

ci = φ2
g.

The VCG pricing function c(φ2
` , φ

2
g), where φ

2
` = (φ2

1, . . . , φ
2
q), is given by:

c(φ2
` , φ

2
g) =


(cV1 , . . . , c

V
q , 0) if φ2

g >
∑
i∈Q

ωiφ
2
i ,

(0, . . . , 0, C) if φ2
g <

∑
i∈Q

ωiφ
2
i .

(4.2)

where cVi = max

{
0,

φ2
g −

∑
j 6=i

ωjφ
2
j

ωi

}
.

Respectively, the core-selecting pricing rule is given by:

c(φ2
` , φ

2
g) =


(c1, . . . , cq, 0) if φ2

g >
∑
i∈Q

ωiφ
2
i ,

(0, . . . , 0, C) if φ2
g <

∑
i∈Q

ωiφ
2
i .

(4.3)

such that ci ∈ [φ2
i , c

V
i ] with

∑
i∈Q

ci ≤ φ2
g and C ∈

[
φ2
g,
∑
i∈Q

ωiφ
2
i

]
.

If the VCG outcome is in the core, no broker has an incentive to deviate from his

truthful preferences and it is the only selected Pareto-dominant outcome [Ausubel and

Milgrom, 2002]. However, when the VCG is outside the core, a di�erent pricing rule is

necessary if we are to minimize the incentives for deviation [Day and Raghavan, 2007].

In the following, we present the two core-selecting pricing rules: the nearest-VCG

rule [Day and Cramton, 2012] and the Dynamic-Nearest-VCG, a slight modi�cation of

the former that we introduce to accommodate our two-round set up. In both cases, the

global broker receives a fee equal to
∑
i∈Q

ωiφ
2
i upon winning. Whereas if local brokers
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win, they apportion φ2
g as follows:

1) Nearest-VCG rule

This pricing approach was �rstly introduced by Day and Raghavan [2007] and

Day and Cramton [2012]. The fundamental notion is to select a point in the

broker-optimal-frontier which will minimize the euclidean distance from the VCG

outcome [Ausubel and Baranov, 2020]. For a �nite set of locals the payments for

the weighted-packages are divided into:

ci(φ
2
` , φ

2
g) = (ω1c

V
1 −∆1, . . . , ωqc

V
q −∆q, 0), (4.4)

where ∆i =
( ∑
i∈Q

ωic
V
i − φ2

g

)
ωi is the minimum downward correction on the VCG

outcome that corresponds to each local broker i.

2) Dynamic-NVCG (D-NVCG) rule

This rule selects a vector of payments in the broker-optimal-frontier determined

by local brokers' �rst-round bidding. The rationale is that overbidding incentives

in the �rst round are penalized for deviating from the VCG pricing.

Suppose Q = Qu ∪ Qd and Qu ∩ Qd = ∅, where Qu = {j ∈ Q|φ1
j > cVj } and

Qd = {i ∈ Q|φ1
i ≤ cVi }. Then, for any bidder i, the �nal fees of all bidders are

readjusted by εi = ωi(φ
1
i − cVi ).

ci(φ
2
` , φ

2
g) =


[
ωic

V
i −∆i

]
+ ωi

∑
j∈Qu

εj∑
i∈Qd

ωi
if φ1

i ≤ cVi

[
ωic

V
i −∆i

]
− εi if φ1

i > cVi

(4.5)

where ∆i =
( ∑
i∈Q

ωic
V
i − φ2

g

)
ωi.

Each bidder with φ1
i > cVi will receive a downward adjustment on the nearest-VCG

pricing equal to the deviation εi, while a bidder with φ1
i ≤ cVi will be rewarded for his

strategy in the �rst-round with an increase in the nearest-VCG fee.
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4.3.2 Examples

We provide two examples for the implementation of the payment rules.

Example 1 Assume an asset manager demands liquidity for a portfolio Θ. He decides

to divide the portfolio into two packages: the �rst package is θ1 with a weighted-value

ω1 = 0.6 over the nominal value of Θ, and the second package is θ2 with a weighted-

value ω2 = 0.4 over the nominal value of Θ. The quali�ed winners of the �rst round

are: the local broker 1 for the package θ1, the local broker 2 for the package θ2 and the

global broker g for portfolio Θ.

In the second round, lets suppose that brokers submit the following bids:

Local 1 Local 2 Global

φ1
`1

φ2
`1

φ1
`2

φ2
`2

φ2
g

27 25 19 10 22

Since the aggregate bid of the local brokers equals to ω1φ
2
`1

+ω2φ
2
`2

= 19, they win.

Thus, the asset manager assigns to the local brokers to execute the portfolio Θ jointly.

At this point, the question that arises is how much the asset manager will have to

pay each local broker to execute each assigned package. If the asset manager applies

the VCG pricing rule from equation (4.2), he will have to pay the local broker 1 with

cV1 = 30 and broker 2 with cV2 = 17.5. However, for the asset manager their total

payment ω1c
V
1 +ω2c

V
2 , would be higher than if the portfolio was assigned to the global

broker. Thus, the total payment of the two locals must not exceed the biding φ2
g of the

global bidder (�second-price� rule).

Figure 4.1 maps the payo� vectors for which the coalition of locals is not blocked.

Following equation (4.3), the core corresponds to c1 ∈ [25, 30] for local broker 1, c2 ∈

[10, 17.5] for local broker 2, and C ∈ [19, 22] for the global.

One can readily notice that the constraints de�ning upwardly the core are simply

the tie-breaking bids. Suppose that the local broker 1 bids φ2
1 > 30. This outcome

would be blocked by the global's bid φ2
g = 22 and broker 2's bid φ2

2 = 10. The same

applies if the local broker 2 bids φ2
2 > 17.5. The lower bounds on the local brokers'

pricing are their bids, consistent with the assumption of individual rationality.
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Figure 4.1: Core point closest to VCG payments
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Using the Nearest-VCG pricing rule from equation (4.4), we will minimize the

distance from the VCG pricing rule to obtain an outcome that will be included in

the core intervals. In the core interval, local brokers' payo� is maximized at broker-

optimal-frontier where the tie-break occurs. Thus, the asset manager will pay broker

1 with a commission c1 = 16.2 (that is ω1c
V
1 = 18 and ∆1 = 1.8) and broker 2 with a

commission c2 = 5.8 (that is ω2c
V
2 = 7 and ∆2 = 1.2).

One shortcoming of the Nearest-VCG pricing rule is that has been designed for

single-round auctions without encompassing the bidding behavior of the previous

round. With the Dynamic-Nearest-VCG, incentives for bidding close to truthful val-

uations in the �rst round are rewarded, while those who misreport are �punished� by

receiving a lower commission fee when the auction ends. For instance, the local broker

2 submits φ1
2 = 19 in the �rst round. This bid quali�es him for the second round, yet

in the second round, he has a larger interval 19 ≤ φ2
2 ≤ 10 to reduce. By the informa-

tion release at the interim, each broker is updated for the prices' estimates of others.

According to equation (4.5) the asset manager will pay the Nearest-VCG prices minus

any deviation between �rst-round bidding and the VCG outcome, c2 = 5.2 for broker

2 and c1 = 16.8 for broker 1.

In the next example, we illustrate the pricing rules for ` > 2 local brokers:

Example 2 Assume that the quali�ed winners for the second round are 5 local bro-

kers who compete against 1 global. Table 4.1 presents each local broker i's bid for each

package θi with a weight ωi, respectively. Since
∑
i∈Q

ωiφ
2
i < φ2

g, with
∑
i∈Q

ωiφ
2
i = 23 and

φ2
g = 25, the asset manager assigns the portfolio's execution to local brokers. The VCG
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Local Weights Bids VCG Core Nearest Dynamic

Brokers ωi φ1
i φ2

i cVi Interval VCG NVCG

1 0.15 34 20 40 [20, 40] 4.2 4.725

2 0.1 24 20 50 [20, 50] 3.8 4.15

3 0.4 24 15 22.5 [15, 22.5] 4.2 3.6

4 0.2 44 25 40 [25, 40] 5.6 4.8

5 0.15 48 40 60 [40, 60] 7.2 7.725

Global 28 25 [22, 25]

Table 4.1: Example 2 with 5 local bidders and 1 global

outcome cVi is calculated for each local broker i based on equation (4.2) and presented

in the relevant column.

Similarly to the previous example, for the local broker i, a fee higher than φ2
i > cVi

is blocked by the coalition of locals given that others submit a bid equal to φ2
−i and

the global's bid φ2
g = 25. The broker-optimal-frontier is satis�ed for

5∑
i=1

ωiφ
2
i = 25

maximizing the local brokers' pay-o�s, for every core interval de�ned by equation (4.3).

With Nearest-VCG pricing rule from equation (4.4) the asset managers pays a

commission fee to the local broker 1 equal to 4.2 (ω1c
V
1 = 6, ∆1 = 1.8). This means

that the local broker 1 sacri�ces 1.8 basis points of the charged commission fee to win

the package. For the local brokers 2,3,4,5, the Nearest-VCG fees are presented in Table

4.1.

In this example, we see that two local brokers have submitted a higher fee in the

�rst round: local broker 3 with φ1
3 > cV3 and local broker 4 with φ1

4 > cV3 , respectively.

This results in high fees in the �rst round, while the anticipated bids for both brokers

are low. The last pricing rule restricts brokers from manipulating the outcome of the

auction.

Applying the Dynamic-Nearest-VCG pricing rule from equation (4.5) for the local

brokers 3 and 4 who have bidden excessively in the �rst round, the asset manager will

pay the local broker 3 a commission equal to 3.6 (ε3 = 0.6) and the local broker 4 a

commission equal to 4.8 (ε4 = 0.8). Both local brokers 3 and 4 will bear an extra cost

for their misreporting incentives in the �rst round.

Those local brokers who bid prudently in the �rst round will receive an increase
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in the commission fee. Speci�cally, the local broker 1 will receive a fee equal to 4.725

(
∑
j∈Qu

εj = 1.4 and
∑
i∈Qd

ωi = 0.4). The same rule works for local brokers 2 and 5.

4.4 Analysis

We start our analysis by characterizing our mechanism in the second round as pivotal.

This means that the fee received by any local broker i is equal to the loss imposed on

other locals by adjusting φ2
` to attribute i's values. We de�ne a bid φ2

i submitted by

broker i as pivotal, if and only if φ2
g =

∑
i∈Q

ωiφ
2
i holds and if for any γ > 0, a bid φ2

i − γ

attributes a non-empty package θi, while φ
2
i + γ yields the null package.

If an auction satis�es the pivotal pricing property, then if the pivotal broker wins,

he receives a commission equal to the bidding fee [Ausubel and Baranov, 2020]. In a

local-global setting, this property is satis�ed for any core-selecting auction.

LEMMA 4.1 (Ausubel and Baranov [2020]). Every core selecting auction satis�es the

pivotal pricing property.

It is not hard to prove that the Dynamic-NVCG pricing rule results in allocations

that belong to the broker-optimal-frontier and minimizes any misreporting incentives.

LEMMA 4.2. Any auction with a Dynamic-NVCG pricing rule c(φ2
` , φ

2
g) is a core-

selecting auction.

Proof: See the Appendix 4.6.1. �

We do not disregard the Nearest-VCG, but instead, we are using it as a touchstone

to improve incentive compatibility further and reduce the degree of manipulation free-

dom in a two-stage framework [Parkes et al., 2001]. The following Proposition explains

why the Dynamic-NVCG rule is optimal for distributing the commission of local bro-

kers when there are perverse incentives by some brokers in the �rst round.

PROPOSITION 4.1. For any local bidder i bidding above E[cVi |si, z] in the �rst

round is always a weakly dominated strategy.

Proof: See the Appendix 4.6.2. �
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The following Assumption 4.1 imposes continuity and monotonicity for all pricing rules,

and this will simplify our analysis.

ASSUMPTION 4.1. For any winning bidder i and any bidding vector

(φ2
1, . . . , φ

2
q, φ

2
g), the pricing function ci(φ

2
1, . . . , φ

2
q, φ

2
g) is continuous in all bids, dif-

ferentiable and non-decreasing in bidder's i bid.

Bosshard et al. [2017] have proved that the N-VCG rule does not always satisfy the

non-decreasing condition. This seems to be not the case in our mechanism. This can be

easily con�rmed from equation (4.5) and by Example 2 in Table 4.1. In particular, an

increase of broker 1' bid from 3 to 3.3, increases the NVCG to 4.38 and the Dynamic-

NVCG from 4.72 to 5.13.

In the VCG mechanism, brokers bid their valuation truthfully, and it is their weakly

dominant strategy with no surplus. The following lemma suggests the global broker

has a weakly dominant strategy in the second round.

LEMMA 4.3. Suppose that Assumption 4.1 is satis�ed. Then, for the restricted

second-round auction and for υ(sg, z
′) > 0, φ2

g = min{φ1
g, υ(sg, z

′)} is a weakly domi-

nant strategy for the global broker.

Proof: See the Appendix 4.6.3. �

Whereas for the local bidders, it is always worse o� to bid lower than their expected

losses, αi(si, z
′) > 0.

LEMMA 4.4. Suppose that Assumption 4.1 and the pivotal pricing property are sat-

is�ed. Then, for each local broker i any bid φ2
i ∈

[
0,min{φ1

i , αi(si, z
′)}
)
is a weakly

dominated strategy.

Proof: See the Appendix 4.6.4. �

Suppose now that all local brokers j 6= i bid according to the pro�le (φ2∗
j )j 6=i. Let

Hi ≡ Hi

[
φ2
i , αi(si, z

′)
]
be the probability of winning for a local bidder i who bids

φ2
i ∈ [αi(si, z

′), φ1
i

]
, and its marginal probability hi ≡ hi

[
φ2
i , αi(si, z

′)
]
:
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Hi = Pr
(
ωiφ

2
i +

∑
j 6=i

ωjφ
2∗
j ≤ υ(sg, z

′)
∣∣αi(si, z′))

hi =
∂Hi

(
φ2
i , αi(si, z

′)
)

∂φ2
i

(4.6)

Also, we denote the expected commission fee of each local bidder i with

ci ≡ Ci
(
φ2
i , αi(si, z

′)
)
and with MCi ≡ MCi

(
φ2
i , αi(si, z

′)
)
the expected marginal

commission when each local broker i bids φ2
i ∈

[
αi(si, z

′), φ1
i

]
.

Ci = E
[
ci
(
φ2
i ,
∑
j 6=i

φ2∗
j , υ(sg, z

′)
)∣∣αi(si, z′)]

(4.7)

MCi = E
[∂ci(φ2

i ,
∑
j 6=i

φ2∗
j , υ(sg, z

′)
)

∂φ2
i

∣∣αi(si, z′)]

The expected marginal commission expresses any change in the expected commis-

sion arising by the incremental increase in the bidding φ2
i . For instance, if brokers

anticipate a loss in the expected prices, they will counterbalance their payo� by mov-

ing their bid upwardly.

Next, we de�ne the �rst-order optimality conditions for the local broker's maxi-

mization problem on the steps of Ausubel and Baranov [2020].

PROPOSITION 4.2. Under Assumption 4.1 and the pivotal pricing property, the

optimality condition for choosing 0 < φ2
i ≤ φ1

i for a local bidder i is given by:

MCi =

(
αi(si, z

′)− φ2
i

)
hi. (4.8)

Proof: See the Appendix 4.6.5. �

Intuitively, if MCi < 0 it means that αi(si, z
′) < φ2

i , and broker i is not included

among the winners. Otherwise, if φ2
i < αi(si, z

′), broker i will have to increase his

bidding fee to reach the optimal payo� where MCi = 0.
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THEOREM 4.1. For each pricing rule, it exists an equilibrium where the bidding

function of each broker is given by:

(a) for the NVCG rule

φ2
i =

αi(si, z
′)− σiω2

i (q − 1) ,if αi > 0

0 ,if αi ≤ 0

(4.9)

(b) for the D-NVCG rule

φ2
i =



αi(si, z
′)− σiω2

i (q − 1) ,if φ1
i > φVi and αi > 0

αi(si, z
′)− σiω2

i

[
`∑

i∈Qd

ωi
+ (q − 1)

]
,if φ1

i ≤ φVi and αi > 0

0 ,if αi ≤ 0

(4.10)

where
1

σi
≡ hi

Hi

is a reverse hazard rate and with ` to be the number of local

bidders with φ1
i > φVi .

Proof: See the Appendix 4.6.6. �

In Theorem 4.1 we proved the existence of equilibrium for nearest-VCG and the

Dynamic-Nearest-VCG. In both cases, we have shown that when the portfolio is sliced

in many packages, the equilibrium bid of a winning broker is negatively a�ected by the

number of packages and the size of his package in the overall portfolio.

4.5 Conclusion

This research has studied a stylized model for a portfolio's auction, which is divided

into packages. We design a �local-global� environment with a �nite set of locals, each

one interested in a single package. We introduce a dynamic setup for the Nearest-

VCG pricing rule, which conforms to a multiple-round auction. This new pricing setup

aligns brokers' incentives to lower bids mitigating the free-riding opportunities of the

�rst round. Using an endogenous reference rule for the expected VCG pricing outcome,

the brokers are motivated to submit bids close to their truthful valuations in the �rst

round, squeezing execution costs downwardly.
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Additionally, we proved that our mechanism allows the asset manager to engage

many brokers in the auction process, resulting in lower transaction costs. The informa-

tion update at the interim for others' valuations mitigates the �winner's curse� [Zarpala

and Voliotis, 2021]. Also, it increases broker's trust in the sense that the auction's rules

have been followed.

Finally, we propose a simple iterative mechanism that provides transparency in the

auction process to eliminate the complexity of the winner's determination problem and

keeps the brokers' problems manageable, incorporating their strategic incentives.

4.6 Appendix

4.6.1 Proof of Lemma 4.2

From equation (4.5), the total sum of local brokers' commission is:

∑
i∈Qd

ωi

[
cVi +

∑
j∈Qu

εj∑
i∈Qd

ωi

]
−
∑
i∈Qd

∆i +
∑
j∈Qu

[ωjc
V
j − εj]−

∑
j∈Qu

∆j

=
∑
i∈Q

ωic
V
i −

∑
i∈Q

∆i = φ2
g

Consequently, the Dynamic-NVCG rule always lies on the broker-optimal frontier. �

4.6.2 Proof of Proposition 4.1

Suppose not. Then for any broker i, a bidding strategy φ1′
i ≤ E[cVi |si, z] is weakly

dominated by φ1
i > E[cVi |si, z]. By substitution in equation (4.1) the pricing rule of

(4.5) for πi(φ
2
i |si, z′) ≥ π′i(φ

2
i |si, z′) we have:

θi · p∗
(
ωic

V
i −∆i − εi

)
≥ θi · p∗

ωicVi −∆i + ωi
εi∑

i∈Qd

ωi


By solving this inequality we result φ1

i ≤ cV . Thus, any bidding in the �rst round

above VCG price is a weakly dominated strategy. �
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4.6.3 Proof of Lemma 4.3

By design no broker can bid in the second round higher than his �st-round bid. For

the VCG mechanism, it is a weakly dominant strategy for the global bidder to bid his

�valuation�, which in our case equals to υ(sg, z
′). The result follows directly. �

4.6.4 Proof of Lemma 4.4

For an arbitrary broker i, let αi(si, z
′) ≥ φ1

i . Then, for any strategy φ2
i ≤ φ1

i is trivially

weakly dominated and obtains negative surplus. Suppose now that for broker i, it

is αi(si, z
′) < φ1

i . For the local broker i with φ̂2
i = αi(si, z

′) and φ̂2
i > φ2

i , we prove

that bidding φ2
i is weakly dominated. By Assumption 4.1, it will always result in

ci(φ
2
` , φ

2
g) ≤ ci(φ̂2

` , φ
2
g), and from the pivotal pricing property, it follows:

E
[
θi · p∗ · ci(φ2

` , φ
2
g)− θi ·∆p(s, z′)

]
≤ E

[
θi · p∗ · ci(φ̂2

` , φ
2
g)− θi ·∆p(s, z′)

]
≤ E

[
θi · p∗ ·

θi ·∆p(s, z′)
θi · p∗

− θi ·∆p(s, z′)
]

= 0

Thus, any φ̂2
i > φ2

i is weakly dominated. �

4.6.5 Proof of Proposition 4.2

We apply the optimality condition on the expected payo� of equation (4.1) upon the proba-

bility of winning

E[πi(φ
2
i |si, z′)] =

[
θi · p∗ · ci − θi · E[∆p|si, z′]

]
Hi

with 0 ≤ φ2
i ≤ φ1

i

∂E[πi(φ
2
i |si, z′)]

∂φ2
i

=
[
θi · p∗ ·

∂ci
∂φ2

i

]
·Hi +

[
θi · p∗ · ci − θi · E[∆p|si, z′]

]
· hi

= θi · p∗MCi + θi · p∗ · ci · hi − θi · E[∆p|si, z′] · hi = 0

By Lemma 4.4, φ2
i is always nonnegative. Due to Assumption 4.1 and the pivotal pricing

property the following is in e�ect:

ci ≡ ci
(
ωiφ

2
i ,
∑
j 6=i

ωjφ
2∗
j , φ

2
i +

∑
j 6=i

ωjφ
2∗
j

)
= φ2

i
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Thus, it is easily to conclude that:

MCi = θi · E[∆p|si, z′] · hi − θi · p∗ · φ2
i · hi

MCi =

(
θi · E[∆p|si, z′]

θi · p∗
− φ2

i

)
· hi

�

4.6.6 Proof of Theorem 4.1

The optimality conditions are given by equation (4.8).

(a) From equation (4.4) of the Nearest-VCG rule, the expected marginal commission of

equation (4.7) for a broker i is:

MCi = [ωic
V −∆i]

′Hi

= ω2
i (q − 1)Hi

Replacing the above to (4.8) we result to the equilibrium bid:

φ2
i =

θi · E[∆p|si, z′]
θi · p∗

− ω2
i (q − 1)

Hi

hi

(b) For the D-NVCG if φ1
i > φVi the equilibrium bidding is similar to the Nearest-VCG of

equation (4.9). However, if there are ` number of locals with φ1
j > φVj and bidder's i bid

in the �rst round is φ1
i ≤ φVi , then the expected marginal commission from equation

(4.5) is given by:

MCi = ω2
i

[
`∑

i∈Qd

ωi
+ (q − 1)

]
Hi

By substitution in the optimality conditions of equations (4.8) we conclude:

φ2
i =

θi · E[∆p|si, z′]
θi · p∗

− ω2
i

[
`∑

i∈Qd

ωi
+ (q − 1)

]
Hi

hi

�
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Chapter 5

Summary and Conclusions

The objective of this research was to associate auction theory with corporate �nance. In three

separate essays, we investigated how the auction-theoretical tools (Chapter 1) can be applied

under three �nancial aspects: (a) corporate bonds, (b) blind portfolios, and (c) divisible

portfolios. While recognizing the limitations of our analysis, we believe that we have largely

achieved our goal. Our contribution is presented in each chapter separately, here below we

present a summary of our results.

In Chapter 2, we have attempted to apply auction theory in the pricing of corporate bonds

under the presence of investment mandates, and to our knowledge, we are the �rst to address

this issue in the current literature. We employed the risk limits imposed by the investment

mandates because we wanted to adjust our design in the corporate bond market, where credit

ratings play a crucial role. Also, we modeled a statistical independent secondary market to

capture the value of the bond for each investment manager who participates in the auction.

Our market design is a uniform-price auction in which investment managers directly reveal

their budget limits in their bidding strategies, bound by the risk limits set on the invest-

ment mandates. We have proven that under this setting, it exists a symmetric Bayes-Nash

equilibrium.

The result shows that the symmetric equilibrium bidding strategy is inversely a�ected by

the number of competitive bidders, which means that the investment managers will receive

a smaller share of the bond (symmetric Cournot oligopoly) in an oversubscribed issuance.

Similarly, the oligopolistic market power exercised by each investment manager a�ects equi-

librium bids. Other factors like the lending interest rates of other debt sources are used as a

benchmark to calculate a spread from the resale in the secondary market, and it seems that
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the symmetric bidding strategy follows the same course with this spread.

The yield of the issuance in the symmetric equilibrium re�ects that the degree of over-

subscription and the market power of each participating investor is not among the yield's

determinants, yet it is a�ected by the strictness of investment mandates that each bidder

encounters, other things held constant. This means that investment mandates with low-risk

acceptance and restricted budget limits can decrease the issuer's cost of capital. Inversely, an

expectation for underpricing in the secondary market bounces the issuer's costs upwardly.

Also, a high demand guided by strict investment mandates would result in allocating the

bond to a greater number of investors, since any bidder who participates in the issuance in

the limit would bid the minimum.

Contrary to the current practice for the pricing of corporate bonds, the uniform-price auction

is a well-understood rule by all parties, and it is a mechanism already used for the pricing of

Treasury bills. Investors reveal their valuations directly in their bid, so the �nal allocation

and the price represent each bidding strategy.

The second essay presented in Chapter 3 was about the auction of blind portfolios. We have

investigated this investment strategy and proposed a two-stage sealed-bid market design with

information release in the interim. Relatively to the current one-stage auction design, our

proposal may eliminate the �winner's curse� for the participating brokers as it allows them

to access spot market signals and update their valuations. Thus, the broker can predict the

actual value of the portfolio more accurately and mitigate the �winner's curse� e�ect. In

that sense, a two-stage design may improve brokers' e�ciency in a blind portfolio auction.

Additionally, we have shown that it can reduce the liquidation costs of the asset manager.

Our approach elegantly sidesteps bidding complexity and any computational problems aris-

ing in practice, as it is a direct incentive-compatible mechanism [Perry et al., 2000]. Also,

it promotes competition among brokers and ensures that this auction format meets the re-

quirements set by the asset manager. As a possible extension of the model mentioned above,

we conceptualized the framework of Day and Milgrom [2008] and divided the portfolio into

packages. We analyze this framework in the last essay of this thesis, where we auctioned a

divisible portfolio into packages.

In Chapter 4, we have designed a �local-global� environment with a �nite set of locals, each

interested in a single package, and introduced a novel dynamic set-up for the Nearest-VCG

pricing rule conforming to a multi-round auction. This new pricing-rule set up aligns brokers'

incentives to lower bids mitigating the free-riding opportunities for investors on the the �rst
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round. Using an endogenous reference rule for the expected VCG pricing outcome, the brokers

are motivated to submit bids close to their truthful valuations in the �rst round squeezing

execution costs downwardly.

We proved that our mechanism allows the asset manager to engage many brokers in the

auction process, resulting in lower transaction costs. The information update in the interim

for others' valuations mitigates the �winner's curse� [Zarpala and Voliotis, 2021]. Also, it

increases broker's trust in the sense that the auction rules have been followed.

Finally, it is a simple iterative mechanism that provides transparency in the auction process

to eliminate the complexity of the winner's determination problem and keeps the brokers'

problems manageable, incorporating their strategic incentives.
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