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ABSTRACT

During the last decades credit risk has been proved one of the greatest risks an
institution is facing. This fact has force banks and the regulators all over the
world to reassess the importance of credit risk and establish it as a core concept
on their everyday activities. This thesis presents credit risk measurement ap-
proaches, using transition probability matrices, which have a substantial effect
on loan pricing. Through the recent years a method using Markov chains, in
order to calculate transition probabilities and probability of default has evolved
and has been established as an industry standard for both continuous and dis-
crete time periods. Moreover this thesis investigates the different assumptions,
that are crucial for our model implementation and statistical measures that help
us to investigating whether these assumptions hold true. Finally we will present
other measures related to transition probability matrices which are, crucial for
decision making in the banking sector.
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Chapter 1

Introduction

Risk management is a core concept in the financial sector because of
it’s substantial effect not only on the behavior of the financial insti-
tution, but also to the economy of a country as well as to the entire
world. For that reason, risk management nowadays attracts atten-
tion on all levels of an organization over the world. In addition,
as the financial industry becomes more competitive and complex,
bankers and financial mangers have moved away from the tradi-
tional way of making profit. In other words it is not only sufficient
to earn high returns from investments but also it is important to
know if the earned return corresponds to the risk the financial insti-
tute accepted. This is why quantifying risks and trying to find an
optimal mix between taking risks and maximizing returns is a very
important procedure.

However risk management is a broad and complex process and it is
defined as: ”the identification assessment and prioritization of risks
followed by coordinated and economical application of resources to
minimize, monitor and control the probability or impact of unfor-
tunate events or to maximize the realization of opportunities”.

The main risks faced by typical financial institutions fall into the
broad categories: credit, market, operational, liquidity risks. Among
the risks that a financial institution faces, credit risk is one of the
most important ones. Proof for that statement is the fact that
credit risk is mentioned in both Basel III (banking) and solvency II
(insurance) where a financial institution has the obligation to hold
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capital for a variety of risks. Among those risks is credit risk as well.

Having mentioned all the above it is time to define credit risk. Credit
risk is the probable risk of loss resulting from a borrower’s failure to
repay a loan or meet contractual obligations. Traditionally, it refers
to the risk that a lender may not receive the owned principal and
interest, which results in an interruption of cash flows and increased
costs for collection.

Although it is impossible to know exactly who will default on obli-
gations, properly assessing and managing credit risk can decrease
the severity of loss. Even if potential losses come from defaults ,
in credit risk it is not clear yet what default exactly means. For
some organizations such as country rating agencies default means
that the obligor is unlikely to pay its credit obligations (principal,
interest or fees) to the institution in full, while for others like banks
it means that the obligor is past due more than 90 days on any
credit obligation to the institution.

No matter whether the default is complete or partial it is a highly
unpleasant phenomenon in today’s world for both the borrower and
the lender. Due to the fact that losses in credit risk come from
defaults, we will present different types of defaults in order to un-
derstand what credit risk really is.

Sovereign defaults: Sovereign default is the failure of a government
or a country to pay back it’s debt in full or on time. One example is
Greece, which defaulted on an IMF loan in 2015 and paid it’s debt
at the end of the month. In such cases, the defaulting country and
the creditor are more likely to renegotiate the interest rate, length
of the loan, or the principal payments. Sovereign default can occur
for many reasons such as:

1. Poor macroeconomic performance

2. Political instability

3. Unwise lending

4. Rollover risk

5. Poor credit history
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6. Weak revenues

7. Rising interest rates

Orderly default: In times of acute insolvency crises, it can be ad-
visable for regulators and lenders to preemptively engineer the me-
thodic restructuring of a nation’s public debt—also called ”orderly
default” or ”controlled default”. Experts who favor this approach to
solve a national debt crisis typically agree that a delay in organizing
an orderly default would wind up hurting lenders and neighboring
countries even more.

Strategic default: A strategic default is the decision by a borrower
to stop making payments on a debt , despite having the financial
ability to make the payments. This is particularly assosiated with
residential and commercial mortages, in which case it usually occurs
after a substantial drop in the house’s price so that the debt owed is
greater than the value of the property. The property has a negative
equity and is expected to remain so for the forseeable future, such
as following the bursting of a real estate bubble.

Consumer default: Consumer default frequently occurs in rent or
mortgage payments, consumer credit, or utility payments. It is the
default of borrower who, for reasons of inability he can not pay his
obligations to the borrower. Contrary to strategic default where the
borrower intentionally refuses to pay his debt, here default occurs
due to consumer’s finance inability. A European Union wide anal-
ysis identified certain risk groups, such as single households, being
unemployed – even after correcting for the (significant) impact of
having a low income, being young (especially being younger than
around 50 years old), being unable to rely on social networks, etc.
Even internet illiteracy has been associated with increased default,
potentially caused by those households being less likely to find their
way to the social benefits they are often entitled to. While effec-
tive non-legal debt counseling is usually the preferred option, more
economic and less disruptive, consumer default can end up in legal
debt settlement or consumer bankruptcy procedures, ranging from
1-year procedures in the UK to 6-year procedures in Germany.
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Business default: Business default is the situation where a business
is unable to pay obligations to clients. There are many examples
such as:

1. A company takes a loan or issues a bond and bankrupts before
it repays it

2. A bank can not return funds to depositors

3. An insurance company is not able to pay a policy obligation

4. An option derivative agreement gets canceled because of bankruptcy

For the reasons mentioned above we can create a credit control sys-
tem which will hedge credit risk in order to minimize our losses.
There is a big variety of ways we can do that such as

• Risk-based pricing. This classical technique uses higher interest
rates to borrowers with higher probability of default.With this
way we can collect money faster and minimize our losses in case
of default

• Collateral. Banks might ask for collateral, if necessary

• Avoid risk. Lenders can decide not to give a loan if expected
losses are relatively big

• Credit insurance. Lenders and bond holders may transfer the
risk to another counterpart(insurer) by paying a premium.

• Deposit insurance. Governments can establish deposit insur-
ance to guarantee bank deposits in order to prevent a bank
default

All companies face risk, without risk there is no reward. The flip
side of this is that too much risk can lead to business failure. Risk
management allows a balance to be struck between taking risks and
reducing them. Effective risk management can add value to any
organization. In particular, companies operating in the investment
industry rely heavily on risk management as the process that allows
them to withstand market crashes. An effective risk management
framework seeks to protect an organization’s capital base and earn-
ings without hindering growth. Furthermore, investors are more
willing to invest in companies with good risk management prac-
tices. This results in lower borrowing costs, easier access to capital
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for the firm and improved long-term performance. There are four
crucial components that should be considered when creating a risk
management framework.

• risk identification

• risk measurement

• risk mitigation

• risk reporting

We provide a short description of each one of these components:

Risk identification The first step in identifying the risks a company
faces is to define the risk universe. The risk universe is simply a list
of all possible risks. Examples include IT risk, operational risk, reg-
ulatory risk, legal risk, political risk, strategic risk and credit risk.
After listing all possible risks, the company can then select the risks
to which it is exposed and categorize them into core and non-core
risks. Core risks are those that the company must take in order
to drive performance and long-term growth. Non-core risks are of-
ten not essential and can be minimized or eliminated completely.
In credit risk it is obvious that it is quite easy to identify the risk
which is loss due to failure of a borrower to meet their obligations.

Risk measurement Risk measurement provides information on the
quantum of either a specific risk exposure or an aggregate risk expo-
sure, and the probability of a loss occurring due to those exposures.
When measuring specific risk exposure it is important to consider
the effect of that risk on the overall risk profile of the organization.
Some risks may provide diversification benefits while others may
not. Another important consideration is the ability to measure an
exposure. Some risks may be easier to measure than others. For ex-
ample, market risk can be measured using observed market prices,
but measuring operational risk is considered both an art and a sci-
ence.
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Risk Mitigation Having categorized and measured its risks, a com-
pany can then decide on which risks to eliminate or minimize, and
how much of its core risks to retain. Risk mitigation can be achieved
through an outright sale of assets or liabilities, buying insurance,
hedging with derivatives or diversification.

Risk reporting It is important to report regularly on specific and
aggregate risk measures in order to ensure that risk levels remain at
an optimal level. Financial institutions that trade daily will produce
daily risk reports. Other institutions may require less frequent re-
porting. Risk reports must be sent to risk personnel who have that
authority to adjust (or instruct others to adjust) risk exposures.

In this thesis we are going to focus on calculating quantities that will
provide assistance in measurement of credit risk. Although hedging
the credit risk is very useful in our analysis we need to quantify
credit risk in order to apply the hedging techniques we mentioned
above. We can do that by using a credit migration matrices ap-
proach. Through these matrices we may quantify variables such as
credit worthiness, probability of default, expected time until default,
expected losses ect.These quantities can be used to protect share-
holders from credit events and increase firms value and credibility
by reducing it’s credit losses. The present thesis is going to describe
how to calculate these quantities . Specifically:

Chapter 2 defines the Markov property as well as credit migration
matrices and their applications. We shall also define multiple step
transition matrices and give details on how we can use them in order
to decide about our client’s future credit worthiness.

Chapter 3 deals with the construction of a transition matrix and
how to test whether a very useful property of a transition matrix
called ”time homogeneity” holds true. Moreover we our going to
introduce different methods, which can help us compare different
transition matrices with each other.

Finally in Chapter 4 we present several associated with quantities
from transition matrices such as time until default, number of visits
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in a specific rating scale, absorbing probability, ect .
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Chapter 2

CREDIT MIGRATION
MATRIX IN DISCRETE
AND CONTINUOUS
TIME

2.1 Markov chain

In this chapter we are going to present a brief introduction to Markov
chains. Markov chains were introduced by Andrey Markov in 1906.
The Markov chain is a stochastic tool describing a sequence of possi-
ble events in which the probability of each event depends only on the
state attained in the previous event. Roughly speaking a stochastic
process satisfies the Markov property if we can make predictions for
the future based on the present state, ignoring any other information
from the past. So, conditional on the present state of the system,
its future and past states are independent. The books and papers
that are used in this chapter are from O.Chrysafinou, R.Gunnvald,
K.Chung, M.Koutras.

Nowadays the Markov property is used in a variety of applications
such as credit risk, exchange rates of currencies, queues or lines of
consumers arriving in a bank, population growth in biology, wifi
connection, gambling, sampling (Monte carlo Markov chain) ect.
Markov chain can be defined either in discrete or in continuous time.
Now we are ready to give a formal definition for the Markov chain.
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Discrete time Markov chain: A discrete Markov chain is a sequence
of random variables X0, X1, ... with the property, that the probabil-
ity of moving to the next state depends only on the present state
and not on the past states. Namely

P(Xn =j|Xn−1 =in−1,Xn−2 =in−2,....,X0 =i0)= P(Xn =j|Xn−1 =in−1)

The possible values of Xi from a countable set S called the state
space of the chain which can be either discrete or continuous.
Moreover it is very important to point out that Markov chain can
be combined with many useful properties such as time homogeneity.
By that we imply that the probability of transition from state i to
state j is independent of n.

P(Xn =j|Xn−1 =i)=P(Xn−1 =j|Xn−2 =i)= ... = P (X1 = j|X0 = i).

From now on we define p
(n)
ij =P (Xn = j|X0 = i) as the n-step tran-

sition probability. For n=1 we write pij=p(X1 = j|X0 = i) .
If time homogeneity is valid then we can write that:

pij=P (X1 = j|X0 = i) = .... = P (Xn = j|Xn−1 = i)

2.2 Rating migration matrix definition

The rating migration matrices contain the probability that an en-
tity(individual/company/country) will migrate from one rating scale
to another in a specific time period. Banks and markets are using
these matrices in order to adjust interest rates in loans and bonds.
Different credit rating agencies use different rating scales. For the
purposes of this thesis we are going to use the following rating scale:
AAA, AA, A, BBB, BB, B, CCC, CC, D where D is the default
state. The default state can be either absorbing, meaning that we
can not recover again if we enter there or it can be with recov-
ery, meaning that if we enter to this state the chain can exit the
particular rating. Most of our examples are constructed under the
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absorbing state assumption. No matter whether the default state is
absorbing or not the methodology we are going to follow is identical.

Now we are ready to define the first step transition matrix. A tran-
sition matrix P has the following form:

P =


p11 p12 . . . P1N

p21 p22 . . . p2N
. . . . . . . . . . . .
pN1 pN2 . . . PNN


where pij are the first step transition probabilities for all i=1,2,..N
and all j=1,2,..N
The transition matrix has the following properties

1.
∑N

j=1 pij=1 for all i=1,2,..N

2. pij≥ 0 for all i=1,2,..N and all j=1,2,..N

If P (n) is the n-step transition probability matrix of a time homoge-
neous discrete Markov chain. Then:

1. P (n+m)=P (n)P (m) (2.1)

2. P (n)=P n (2.2)

Example 2.1 Suppose we have the next first step transition matrix
with three states A,B,C where C is the default absorving state

P =

 97.5% 1.5% 1%
12.5% 81.5% 6%

0% 0% 100%


Then the second step transition matrix is

P 2 =

 95.25% 2.69% 2.1%
22.38% 66.61% 11.923%

0% 0% 100%


The fifth step transition matrix is
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P 5 =

 89.59% 4.91% 5.56%
40.93% 37.19% 23.61%

0% 0% 100%


The 10-step transition matrix is

P 10 =

 82.26% 6.23% 11.70%
51.89% 15.84% 34.67%

0% 0% 100%


Finally the 100-step transition matrix is

P 100 =

 22.9% 2.00% 75.10%
16.70% 1.47% 81.80%

0% 0% 100%


All the above matrix calculations have been performed in python.
The code is given below:

import numpy as np

from numpy.linag import matrix power

P=np.array([97.5%,1.5%,1%],[12.5%,81.5%,6%],[0%,0%,100%])

P2=matrix power(P, 2)

P5=matrix power(P, 5)

P10=matrix power(P, 10)

P100=matrix power(P, 100)

It is also very important not only to construct transition matri-
ces but also extract useful information from them. For example we
can see from the 5 year transition matrix to the 10 years transition
matrix that the firms in category B are moving with high probabil-
ity either in category A either in category C, due to the fact that
transition probability from state B to state B has decreased from
year five to year 10. This information gives us the feeling that the
economy will face a big future change in which companies will ei-
ther default or will grow very strong. That can happen for many
reasons(for example some type of industries might get stronger and
others not). Moreover we can observe from the matrix P 100 that
as we move in time the probability of default increases. The par-
ticular phenomenon occurs to all transition matrices and it can be
explained simply as the fact that in bigger time lengths there is a
high number of default trigger events, resulting in higher probability
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of default. The big question that raises also is whether the prob-
ability of default can reach to one, as time passes. This matter is
going to be discussed in detail in chapter 4.

2.3 Transition matrices in continuous time

Due to the fact that the economy is facing a lot of challenges nowa-
days there is a need to construct transition matrices in shorter time
horizons than one year. For this reason we would wish to construct
matrices in continuous time. This leads to the need of constructing
Markov chains in continuous time.
Let Xt be the random variable describing the state of the process at
time t and assume the process is in state i at time t. Then if Xt = i,
Xt+h is independent of the previous values (Xs:s<t) and as h→0 ,

P (Xt+h = j|Xt = i) = δij + qijh+ o(h)

where δij is the Kronecker delta, o(h) is a function of h so as

limh→0
o(h)
h

= 0 and qij indicates how quick the transition from i
to j happens.

Moreover if
P (Xt = j|Xs = i) = p(Xt+h = j|Xs+h = i)

for every t,s then the Markov chain is called time homogeneous.
For a continuous time Markov chain with the time homogeneity
property we will be using the notation P (Xt = j|X0 = i) = pij(t)

Just like the discrete transition matrices we can construct matrices
in continuous time. This is very helpful especially when we want to
monitor and update our predictions for credit risk very often in non
integer time periods. So as follows using pij(t) we can construct the
transition matrix P (t) ,t>0

P (t) =


p11(t) p12(t) . . . P1N(t)
p21(t) p22(t) . . . p2N(t)
. . . . . . . . . . . .

pN1(t) pN2(t) . . . PNN(t)


17



Now the main problem is how are we going to calculate pij(t). If the
time period we want to calculate is an integer number then we have
no problem calculating pij(t) due to the fact that this probability
can be calculated just by finding P t. But that can not be applied
for non-integer t>0. The solution to this problem is to use a matrix
called generator matrix.
The generator matrix is a matrix which, instead of having proba-
bilities as entries, it contains elements that represent how fast we
move in time from one state to another. Below we can see a matrix.

Q =


q11 q12 . . . q1N
q21 q22 . . . q2N
. . . . . . . . . . . .
qN1 qN2 . . . qNN


Q is a NxN matrix. Moreover Q is a generator matrix if and only if

qij=limh→0
pij(h)−0

h
for all i6=j and qii=limh→0

pii(h)−1
h

where pij(t) is
the transition probability from state i to j during time t.
The quantityqij represents the rate a continuous time Markov chain
moves from state i to state j.

properties of the generator matrix

1. qij≥ 0 for all i6=j

2. qii ≤ 0

3.
∑N

j=1 qij = 0 for all i

Although we defined matrix Q it is not clear yet how are we going
to calculate qij. In order to calculate the generator matrix we are
going to need some additional useful quantities such as the expo-
nential matrix, the logarithm matrix and the matrix norm.

A matrix norm (denoted as || ||) is a function || ||:Cmxn → R
(where Cmxn is the vector space of all matrices of size mxn) that
satisfies the following properties: For all matrices A and B in Cmxn

• || A ||≥ 0
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• || A ||= 0 if and only if A = 0m,n

• || aA ||= |a||| A || (absolutely homogeneous)

• || A+B ||≤ || A ||+ || B || (triangle inequality)

So a matrix norm is a vector norm whose elements represent the
distance between a given matrix and the zero vector.

The calculation of the matrix norm is the follwing: Let A be an
NxN matrix with entries aij i,j=1,2,...,N.

Then || A || = max(
∑N

j=1 |aij|)

Matrix norm is going to help us define the exponetial matrix and
the logarithm matrix.When we are dealing with real numbers we
know that

• exp(x)=
∑∞

k=0
xk

k!

• log(x)=
∑∞

k=0
(−1)k(x−1)k

k!
.

Making the above expansions we can define the same quantities for
matrices. Namely for a square matrix Q , we define:

• exp(Q)=
∑∞

k=0
Qk

k!

• log(Q)=
∑∞

k=0
(−1)k(Q−I)k

k!
, ||Q− I||<1

From all the above we can calculate P (t) by using the next formula
P (t)=exp(tQ) (2.8)

where Q = log(P ) is a generator matrix

Also we have to mention that for t=1, we have P (1)=P=eQ and
therefore log(P ) = Q

Example 2.2

In the following example we are going to calculate a 6 month
transition matrix using formula (2.8). After that we are going to
observe that the particular relationship does not give very accurate
results and for this reason we will propose an algorithm in order to
make our results applicable. Let as start with matrix 1 as a first
order transition matrix.
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Matrix 1 Average first order transition matrix from Standar and
Poors(in %) from 1930 to 2006

1 2 3 4 5 6 7 8 D
1
2
3
4
5
6
7
8
D



91.1200 7.8020 0.8779 0.1743 0.00251 0.0000 0.0000 0.0000 0.0000
1.3430 90.7400 6.8850 0.7316 0.1864 0.394 0.0021 0.0043 0.0671
0.0859 3.1110 90.230 5.6180 0.7349 0.1145 0.0202 0.0085 0.0806
0.454 0.3170 4.9960 87.7800 5.5250 0.8395 0.1623 0.0173 0.3170
0.0079 0.0921 0.5346 6.6460 82.7100 7.8360 0.6256 0.0573 1.4870
0.0080 0.0613 0.1965 0.7155 7.1460 81.1600 5.6910 0.5702 4.4490
0.0000 0.0317 0.0418 0.244 1.0240 10.0800 70.9900 4.0120 13.5700
0.0000 0.0000 0.1338 0.0000 0.5466 3.7900 8.8770 63.7900 22.91
0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 1



|| P − I || ≤ 1
Next we calculate the generator matrix Q=log(P) by using the first
100 terms of the series . This way we obtain the next approximation
of matrix Q

1 2 3 4 5 6 7 8 D
1
2
3
4
5
6
7
8
D



–9.3630 8.5740 0.6387 0.1426 0.0132 –0.0022 –0.0002 –0.0003 –0.0033
1.4750 –9.9110 7.5980 0.5729 0.1653 0.0312 –0.0008 0.0050 0.0642
0.0680 3.4320 –10.5900 6.2890 0.6411 0.0739 0.0135 0.0095 0.0657
0.0463 0.2540 5.6010 –13.4600 6.4520 0.6779 0.1563 0.0137 0.2605
0.0059 0.0838 0.3879 7.7820 –19.6500 9.5460 0.4454 0.0295 1.3730
0.0083 0.0618 0.1888 0.4980 8.7120 –21.7800 7.4710 0.5705 4.2700
–0.0009 0.0340 0.0233 0.2322 0.7298 13.0600 –35.1500 5.9400 15.02
–0.0002 –0.0071 0.1691 –0.0595 0.4852 4.3130 13.0600 –45.3700 27.42

0 0 0 0 0 0 0 0 0


The calculation of the generator matrix has been perfomed using
Python. Below we present the related code:

import numpy as np

from scipy.linalg import logm

P=np.array([91.1200,7.8020, 0.8779,0.1743,0.00251,0,0,0,0],

[1.3430,90.7400,6.8850,0.7316,0.1864,0.394,0.0021,0.0043,

0.0671],

[0.0859,3.1110,90.230, 5.6180,0.7349,0.1145,0.0202,0.0085,0.0806],

[0.454,0.3170,4.9960,87.7800,5.5250,0.8395,0.1623,0.0173,0.3170],

[0.0079,0.0921,0.5346,6.6460,82.7100,7.8360,0.6256,0.0573,1.4870],

[0.0080,0.0613,0.1965,0.7155,7.1460,81.1600,5.6910, 0.5702,4.4490],

[0.0000,0.0317,0.0418,0.244,1.0240,10.0800,70.9900,4.0120,13.5700],

[0.0000,0.0000,0.1338,0.0000,0.5466,3.7900,8.8770,63.7900,22.91],
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[0.0000,0.0000,0.0000,0.000, 0.0000,0.0000,0.0000,0.0000,1])

Q=scipy.linalg.logm(P)

Now by using the equation (2.8) we are able to calculate transi-
tion matrices in continuous time.Just for illustrating the method we
are going to calculate a 6 month transition matrix. Applying (2.8)
we may write P (0.5)=e0.5Q and the right hand side provides the fol-
lowing result

Matrix 2 6 month transition matrix
1 2 3 4 5 6 7 8 D

1
2
3
4
5
6
7
8
D



95.4400 4.0890 0.3824 0.0789 0.0096 –0.0003 –0.0001 –0.0001 –0.0008
0.7036 95.2100 3.6150 0.3286 0.0878 0.0176 0.0004 0.0023 0.0328
0.0387 1.6330 94.9100 2.9710 0.3462 0.0472 0.0084 0.0045 0.0365
0.0229 0.1438 2.6440 93.5900 2.9830 0.3840 0.0793 0.0078 0.1444
0.0035 0.0439 0.2336 3.5930 90.7900 4.3200 0.2750 0.0222 0.7154
0.0040 0.0307 0.0959 0.3091 3.9410 89.8900 3.2560 0.2887 2.1860
–0.0002 0.0163 0.0166 0.1182 0.4503 5.7570 84.0700 2.4390 7.1340
–0.0001 –0.0016 0.0749 –0.0139 0.2598 2.0130 5.3770 79.7800 12.5100

0 0 0 0 0 0 0 0 1


The python code for matrix 2 is given below:

import numpy as np

from scipy import linalg

P0.5=linalg.expm(0.5*Q)

Looking at the last matrix we can see that the 6 month transi-
tion matrix does not fulfill all the properties of a transition matrix
due to the fact that it contains negative probabilities(although they
are very close to zero). Moreover, apart from that, there is another
reason why the 6 month transition matrix needs a correction. In the
annual transition matrix we may see that several transition prob-
abilities are equal to zero like for example from rating grade 1 to
rating grade 8 and vice versa. This means that we can not move from
grade 1 to grade 8 or from grade 8 to 1 in a year. Apparently in the
6 month transition matrix, the same should apply, because if we can
not move from grade 1 to 8 in one year then we should not be able
to move from 1 to 8 in 6 months as well. On the other hand, if there
is a positive probability moving from one rating grade to another
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in a year it does not necessarily means that the same should apply
for the 6 month matrix because of the fact that the transition can
not happen in the first semester but can happen in the second. As
a conclusion if something happens in 6 months it could also happen
in a year but the opposite is not always true. An idea for resolving
this problem was proposed by Kreinin and Sidelnikova (2001) using
a regularization algorithm. This algorithm has the following 2 steps:

1. replace all the negative elements by zero

2. all the zero elements remain zero

3. to all non-negative elements of the same row add the quantity

[bip
(t)
ij ]/ai where p

(t)
ij is the (i,j) element of the matrix P (t) , bi

is the sum of the negative elemenst of row i in matrix P (t) and
ai is the sum of the positive elements in the same row

With the help of the algorithm we now have the next 6 month
transition matrix

Matrix 3 regulized 6 month transition matrix
1 2 3 4 5 6 7 8 D

1
2
3
4
5
6
7
8
D



95.42759 4.088468 0.38395 0.078889743 0.0095987 0 0 0 0
0.7036 95.2100 3.6150 0.3286 0.0878 0.0176 0.0004 0.0023 0.0328
0.0387 1.6330 94.9100 2.9710 0.3462 0.0472 0.0084 0.0045 0.0365
0.0229 0.1438 2.6440 93.5900 2.9830 0.3840 0.0793 0.0078 0.1444
0.0035 0.0439 0.2336 3.5930 90.7900 4.3200 0.2750 0.0222 0.7154
0.0040 0.0307 0.0959 0.3091 3.9410 89.8900 3.2560 0.2887 2.1860

0 0.016299 0.016599 0.118199 0.450299 5.75698 84.06983 2.43899 7.13398
0 0 0.07489 0 0.25976 2.0127 5.3761 79.787 12.508
0 0 0 0 0 0 0 0 1


This matrix of course may not fulfill relationship (2.8) but on the
other hand it is a matrix with no significant difference from the
original one. Also this matrix is not a transition matrix anymore
because

∑N
j=1 pij 6= 1

22



Summarizing we give again the two 6 month matrices for com-
parison so as we can observe there is not a significant difference
between the 6 month transition matrix and the regulized 6 month
transition matrix

1
2
3
4
5
6
7
8
D



–9.3630 8.5740 0.6387 0.1426 0.0132 –0.0022 –0.0002 –0.0003 –0.0033
1.4750 –9.9110 7.5980 0.5729 0.1653 0.0312 –0.0008 0.0050 0.0642
0.0680 3.4320 –10.5900 6.2890 0.6411 0.0739 0.0135 0.0095 0.0657
0.0463 0.2540 5.6010 –13.4600 6.4520 0.6779 0.1563 0.0137 0.2605
0.0059 0.0838 0.3879 7.7820 –19.6500 9.5460 0.4454 0.0295 1.3730
0.0083 0.0618 0.1888 0.4980 8.7120 –21.7800 7.4710 0.5705 4.2700
–0.0009 0.0340 0.0233 0.2322 0.7298 13.0600 –35.1500 5.9400 15.02
–0.0002 –0.0071 0.1691 –0.0595 0.4852 4.3130 13.0600 –45.3700 27.42

0 0 0 0 0 0 0 0 0



1
2
3
4
5
6
7
8
D



95.42759 4.088468 0.38395 0.078889743 0.0095987 0 0 0 0
0.7036 95.2100 3.6150 0.3286 0.0878 0.0176 0.0004 0.0023 0.0328
0.0387 1.6330 94.9100 2.9710 0.3462 0.0472 0.0084 0.0045 0.0365
0.0229 0.1438 2.6440 93.5900 2.9830 0.3840 0.0793 0.0078 0.1444
0.0035 0.0439 0.2336 3.5930 90.7900 4.3200 0.2750 0.0222 0.7154
0.0040 0.0307 0.0959 0.3091 3.9410 89.8900 3.2560 0.2887 2.1860

0 0.016299 0.016599 0.118199 0.450299 5.75698 84.06983 2.43899 7.13398
0 0 0.07489 0 0.25976 2.0127 5.3761 79.787 12.508
0 0 0 0 0 0 0 0 1



23



In addition we can also compare the annual matrix with the reg-
ulized 6 month matrix

91.1200 7.8020 0.8779 0.1743 0.00251 0.0000 0.0000 0.0000 0.0000
1.3430 90.7400 6.8850 0.7316 0.1864 0.394 0.0021 0.0043 0.0671
0.0859 3.1110 90.230 5.6180 0.7349 0.1145 0.0202 0.0085 0.0806
0.454 0.3170 4.9960 87.7800 5.5250 0.8395 0.1623 0.0173 0.3170
0.0079 0.0921 0.5346 6.6460 82.7100 7.8360 0.6256 0.0573 1.4870
0.0080 0.0613 0.1965 0.7155 7.1460 81.1600 5.6910 0.5702 4.4490
0.0000 0.0317 0.0418 0.244 1.0240 10.0800 70.9900 4.0120 13.5700
0.0000 0.0000 0.1338 0.0000 0.5466 3.7900 8.8770 63.7900 22.91
0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 1





95.42759 4.088468 0.38395 0.078889743 0.0095987 0 0 0 0
0.7036 95.2100 3.6150 0.3286 0.0878 0.0176 0.0004 0.0023 0.0328
0.0387 1.6330 94.9100 2.9710 0.3462 0.0472 0.0084 0.0045 0.0365
0.0229 0.1438 2.6440 93.5900 2.9830 0.3840 0.0793 0.0078 0.1444
0.0035 0.0439 0.2336 3.5930 90.7900 4.3200 0.2750 0.0222 0.7154
0.0040 0.0307 0.0959 0.3091 3.9410 89.8900 3.2560 0.2887 2.1860

0 0.016299 0.016599 0.118199 0.450299 5.75698 84.06983 2.43899 7.13398
0 0 0.07489 0 0.25976 2.0127 5.3761 79.787 12.508
0 0 0 0 0 0 0 0 1



In matrix 3 we can see that the probability of default for each grade
is lower in the 6 month matrix than in the annual one.

As a conclusion from chapter 2 we can state that the construction
of the first order transition matrix is crucial to our analysis. Having
this matrix we can calculate the generator matrix from which we
can calculate continuous transition probabiliies. In chapter 3 we are
going to focus on multiple ways we can construct first order transi-
tion matrix as well as testing if time homogeneity assumption holds
for a variety of transition matrices.
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Chapter 3

CONSTRUCTION OF
TRANSITION MATRICES
AND TIME
HOMOGENEITY
TESTING

There are different methods of estimating the entries of a transition
matrix. The two most commonly used are the so called cohort (dis-
crete time) and duration (continuous time) methods.We shall next
present these two methods. The books and papers that are use for
this chapter include the following authors: Y.Jafry- T.Schuermann,
D.Lando, P.Lencastre-P.Lind- F.Raischel- T.Rogers, K. Papaioan-
nou, T. Ferendinos.

3.1 cohort method

Cohort is a very popular method of estimating transition proba-
bilities due to it’s simplicity. The cohort method has been widely
used as it applies simple calculations, although sometimes the re-
sults are less efficient. It is not an advanced stochastic method,
instead it simply uses frequencies for estimating transition proba-
bilities. Moreover the particular method is distribution free and
calculations can be made for any discrete time horizon.
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Let T be a specific time period. Then the estimator of pij(T ) is
given by the expression :

p∗ij(T )=
nij(T )

ni(T )
(3.1)

where

• nij(T ) is the number of entities that moved from rating i to
rating j at the end of period T

• ni(T ) is the number of entities that where in rating i at the
beginning of the period T

When applying the cohort method , one has to know that there are
certain advantages and disadvantages.

Advantages of the cohort method

1. Simple method for calculations. The Cohort method is just a
simple ratio method and for that reason there is no need for
complicated calculations, like using stochastic processes and
probability theory.

2. No time homogeneity assumption needed. So we can always
proceed to the estimation results no matter whether there is
time homogeneity or not.

3. It calculates directly the first order transition matrix without
having to calculate the generator matrix first.

Disadvantages of the cohort method

1. One drawback of the cohort method is that the estimators as-
sign zero probability to an event if there are no records of such
an event in the data. This makes the estimators poor in cap-
turing rare events such as moving from very high rating grades
to very low rating grades

2. The cohort method uses the grades at the beginning and at the
end(discrete time method) of the time period. That means that
the model does not take into consideration the total migrations
happening to each company in all the duration of time period,
a fact that can affect the model’s accuracy.

3. We can not calculate transition matrices in continuous time, as
this method applies for discrete time periods.
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4. Sometimes data are not in an accessible form. By that we mean
that there is not a rating from the beginning of the period a
company or client. In that case the observation can not be used
by this model

3.2 Duration method

In the duration method, instead of estimating the transition matrix,
we try to estimate the generator matrix Q. The basic assumption
here is that there is time homogeneity. The estimator of qij(T ) is:

q∗ij(T )=
mij(T )∫ T
0 Yi(s)ds

(3.2)

where

• mij(T ) is the number of transitions from grade i to j during
period T

• Yi(s) number of firms with rate i at time s

Just like the cohort method, the duration method has some benefits
and drawbacks.

Advantages of the duration method

1. Solves the zero probability problem for rare events that occurs
in the cohort method. As a consequence the estimations for
the first step transition matrix become more realistic.

2. Estimates the generator matrix Q directly without calculating
the series expansion of log making this way easy calculation for
any transition matrix.

3. It takes into account all the transitions made during the period,
extracting more realistic results.

4. The duration method is a continuous time method. So if a
company has a grade during time period T but not at the be-
ginning of the period it still can be used in our model. In other
words we do not need to have a rating for all entities at time
t=0 as far as we have some rating until period T.
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Disadvantages of the duration method

1. Time homogeneity assumption required. This means that if
time homogeneity does not hold the method becomes useless
and can not be used.

2. If we are talking about the annual transition matrix, the cohort
method is faster because it estimates directly the matrix and
the duration method needs to calculate eQ

3.3 Time homogeneity testing

As already mentioned the duration method works only if time ho-
mogeneity exists. Moreover all the results from chapter 2 work also
under the time homogeneity assumption. For this reason it is cru-
cial to test whether time homogeneity is justified by our data. In
the next section we are going to present 3 methods for testing time
homogeneity. The chi-square test, the coefficient intervals method
and the metrics method.

3.3.1 coefficient intervals

The basic idea in this method is that by spiting time period T
into smaller equal time periods T1<T2<........<T, and by calculat-
ing pij(Tk) for every k=1,2,... and constructing a confidence inter-
val, then we can check if these probabilities belong to the confidence
interval. If they do, then we have time homogeneity, because the
transition probabilities in equal time periods have no statistically
important difference.
For example if T=12 years then we can construct 12 different time
periods with length one year each. Then we calculate pij for each
period using the cohort method and compare these probabilities
with the coefficient interval’s we have constructed. The coefficient
intervals are made by using our data under the assumption that the
time homogeneity assumption is valid. Two method exist for con-
structing the confidence interval, the historical simulation method
and the binomial method.
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a. Historical simulation or bootstrap method

In this method we construct coefficient intervals without any dis-
tributional assumption. The empirical distribution constructed by
the use of observed values serves as an approximation of the true
distribution, from which values are drawn with replacement. The
bootstrapping technique allows for the estimation of the accuracy
of some distribution parameter, such as the mean. This can then be
used to calculate confidence intervals.
The standard bootstrapping procedure is the one used in this the-
sis to estimate confidence intervals for every pij. Consider having a
sample of k observations, which represent the various rating transi-
tions within a specific time period. Then, out of the original sample,
observations are drawn with replacement one at a time to construct
a new sub-sample of size n. The new sample gives an estimate of
the pij using either cohort or duration method. Then this proce-
dure is repeated N times to get N estimates of the PD. These N
values now form an estimate of the pij distribution. Constructing
a (1-a)%=95% two-sided symmetric confidence interval out of this
distribution is done by simply ordering the values from the lowest
to the highest and choosing the a

2
percentile and the 1-a

2
percentile.

b. Binomial method

In this method we construct coefficient intervals of every tran-
sition probability of the transition matrix based on binomial distri-
bution. After that we shift from the binomial to the normal distri-
bution using the central limit theorem.
Due to the fact that the transition probabilities can be written as
sum of other random variables, if pij is the first step transition prob-
ability from i to j then:

pij=
X1+X2+...Xn

n
,

where

Xk=

{
1, if the k − th company with rating grade i moves to j in one year
0, if the k − th company with grade i doesn′t move to j in one year

}
Then Xk∼Bernouli(p∗ij) and assuming that X1, X2, ....., Xn are in-
dependent random variables and for ”large” n, we obtain by the
central limit theorem
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pij∼N(p∗ij,
p∗ij(1−p∗ij)

n
). Therefore we can construct confidence inter-

vals for all pij i,j=1,2,3,...N

Taking many different samples or by using Monte Carlo simula-
tion we may create a vector with multiple pij. Then the confident
interval is

(pijavg-za/2S,pijavg-za/2S) (3.3)
where

• pijavg is the average value of all different pij

• S is the standard deviation of the observations

• za/2 is the percentile of the standard normal distribution.

The matrices below show annual transition matrices using the co-
hort and the duration method respectively.

Example 3.1

97.35 1.47 0.19 0.3 0.58 0.05 0.03 0.02
2.98 82.56 12.59 0.91 0.91 0.01 0 0.04
0.15 3.37 83.95 10.45 1.85 0.17 0.01 0.05
0.08 0.36 7.36 80.66 10.17 0.97 0.09 0.3
0.18 0.11 1.08 13.38 79.13 4.42 0.69 1.01
0.11 0.05 0.33 3.11 15.78 73.27 3.46 3.88
0.04 0.06 0.34 1.22 5.31 11.8 73.81 7.35
0 0 0 0 0 0 0 1


Matrix 1 Annual transition matrix calculated by cohort method



97.02 1.4 0.27 0.49 0.05 0.14 0.02 0.02
2.49 81.24 13.31 1.63 1.18 0.08 0.03 0.04
0.18 3.41 83.37 10.28 2.33 0.29 0.05 0.09
0.1 0.56 7.12 80.88 9.76 1.11 0.16 0.31
0.16 0.31 1.67 12.31 79.22 4.62 0.71 1.01
0.14 0.13 0.63 3.92 14.54 71.03 4.31 5.03
0.06 0.19 0.43 1.91 5.95 10.022 70.54 10.71
0 0 0 0 0 0 0 1


Matrix 2 Annual transition matrix calculated by duration method

Now having two transition matrices one calculated by the cohort
method and one using the duration method we are going to test
time homogeneity with the binomial approach. So what we will do
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is using the probabilities from the duration method(it can be done
also with probabilities from the cohort method), we will construct
95% interval coefficients for each pij. Then we are going to test if
the probabilities from the cohort transition matrix belong to these
intervals. Due to the fact that we do not have any real data available
we are going to generate random numbers from the normal distri-
bution because from the binomial model we know that pij follow
the normal distribution. Also this is the advantage of the binomial
method whereas in the historical simulation we need real data. Be-
cause the whole process can take long time, due to the fact that we
have to calculate coefficient intervals for every rating scale, we are
going to perform the test only for the default state.
Using the Anaconda Python program and by simulating 1 million
random numbers from the normal distribution with parameters dif-
ferent from each piD and using a sample of 50.000 firms we have the
following results(in %):

− default pavg S minimal maximum
1 0.02 0.02000003 4.01 ∗ 10−5 0.0806211 0.0993774
2 0.04 0.0399998 7.98 ∗ 10−5 0.03994421 0.04005776
3 0.09 0.0899994 0.1342003 0.08062126 0.09993774
4 0.31 0.3100186 0.02487375 0.2926443 0.323939
5 1.01 1.010039 0.04967205 0.9788353 1.041242
6 5.03 5.029985 0.009558851 5.023308 5.03662
7 10.71 10.71001 0.01914027 10.69664 10.72338

The above calculations, have been performed using Anaconda Python.
The code is given below:

import numpy as np

from numpy.random import randn

import scipy.stats

probability default=np.array([0.0002,0.0004,0,0009,0,0031,0.0101,0.0503,0,1071])

p avg=[0]*7

S=[0]*7

lowerl bound[i]]=[0]*7

upper bound[i]=[0]*7

n=50000

z 0.025=scipy.stats.norm.sf(0.025,0,1)
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for i in range(0,6,1):

p avg[i]=(np.sqrt((probability default[i]*(1-probability default[i]))/n)*randn(10000)

+probability default[i]).mean()

S[i]=(np.sqrt((probability default[i]*(1-probability default[i]))/n)*randn(10000)

+probability default[i]).std()

lowerl bound[i]=p avg[i]-S[i]*z 0.025

upper bound[i]=p avg[i]+S[i]* z 0.025

Comparing now this with the entries of the cohort matrix we can
see that time homogeneity exists only in rating 1D, 2D, 4D, 5D.
So the Markov chain does not have time homogeneity. Repeating
the same process for each pij we give again the cohort matrix point-
ing out in which cells time homogeneity does not exist.

97.35 1.47 0.19 0.3 0.58 0.05 0.03 0.02
2.98 82.56 12.59 0.91 0.91 0.01 0 0.04
0.15 3.37 83.95 10.45 1.85 0.17 0.01 0.05
0.08 0.36 7.36 80.66 10.17 0.97 0.09 0.3
0.18 0.11 1.08 13.38 79.13 4.42 0.69 1.01
0.11 0.05 0.33 3.11 15.78 73.27 3.46 3.88
0.04 0.06 0.34 1.22 5.31 11.8 73.81 7.35

0 0 0 0 0 0 0 1


Matrix 3 Entries in bold show as the ratings where there is no time
homogeneity in those transitions

The only model weak point of this method is that we consider Xi

as independent variables something that is not always true, because
default events are triggered not only for a company’s unique char-
acteristics but from market conditions and macroeconomic factors
as well.

3.3.2 The Chi-square test

The basic idea of this test is to see if the transition probabilities are
constant. The full sample is divided into equal length smaller sub
samples. We now wish to check if the migration matrix calculated
by the sub samples has any statistical difference from the transition
matrix calculated using the whole sample.
Let p∗ij(t) be the transition probability from rating i to j during year
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t and p∗ij the transition probability calculated using the whole sam-
ple. Moreover let ni(t) be the number of firms with rating i during
time t. Our null hypothesis is

H0:p
∗
ij(t)= p∗ij H1:p

∗
ij(t)6= p∗ij

and the test statistic is:

X2=
∑T

t=1

∑N
i=1

∑N
j=1 ni(t)

(p∗ij(t)−p∗ij)2

p∗ij
(3.4)

where X2 follows the x2 distribution with N(N − 1)(T − 1) de-
grees of freedom. In our case we have 9 states, so N=9.
If X2 > X2

72 then we reject the null hypothesis of time
homogeneity

3.3.3 The metrics method

Another method to test time homogeneity is by using a metric. The
metric is a function that has all the properties of distance. Time
homogeneity is tested by measuring the distance between the cohort
matrix and the duration matrix. In the case where this distance is
zero or relatively close to zero there is evidence that time homogene-
ity exists
A metric on a set X is a function M:X × X->[0,∞) so that, the
following conditions are satisfied:

1. M(x, y) ≥ 0

2. M(x, y) = 0 ⇐⇒ x = y

3. M(x, y) = M(y, x)

4. M(x, z) ≤M(x, y) +m(y, z)

There are many metrics we can use for our analysis. Each one of
them has its own benefits and drawbacks and it is up to the user to
decide which one he/she will use.

3.3.4 The euclidean distance

One of the metric that we can use is the euclidean distance.With this
metric the distance between two matrices P=(pij) and G=(gij)of the
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same dimension can be defined as

Meuc(P,G) =

√∑N
j=1

∑N
i=1(pij−gij)2

N2 (3.5)

So what we need to do is to compare different transition matrices
with each other and try to investigate which matrices have similar
behaviour(which matrix is closer to another matrix).

Example 3.2

In this example we consider three different transition matrices
P,G,K which they represent the migrations in consumer loans,
credit cards, house loans,with 4 ratings A,B,C,D where D is the
absorbing state

P =


0.9 0.06 0.035 0.0005
0.1 0.7 0.15 0.05

0.0003 0.047 0.65 0.3
0 0 0 1

G =


0.91 0.05 0.025 0.015
0.1 0.8 0.05 0.05

0.0003 0.047 0.6 0.35
0 0 0 1


K =


0.9 0.04 0.03 0.03
0.1 0.7 0.06 0.04

0.0001 0.019 0.65 0.33
0 0 0 1


Using (3.5) we have that Meuc(P,G) = 0.00996 and Meuc(P,K) =
0.006537

So matrix P is closer to matrix K than matrix G which means that
consumer loans and credit cards have more similar behaviour than
house loans within a year. That does not necessarily mean that the
long term behaviour is similar. In order to say something like that
we need to do the same analyses using the n-step transition matrices
But someone in this stage might think the euclidean metric is the
most accurate for our analysis or there is a more effective one?In
order to answer to this question let’s first make some observations.
Firstly we can see that the euclidean metric ”treats” all entries as
having the same significance. In reality this is not very practical
due to the fact that the off-diagonial entries play a more significant
role in our analysis.
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3.3.5 Introducing the MI metric

Since the migration matrix, by definition, determines how a given
state vector (or probability distribution) will migrate from one epoch
to the next, a central characteristic of the matrix is the amount
of migration (or “mobility”) imposed on the state vector from one
epoch to the next. We can highlight this characteristic by sim-
ply subtracting the identity matrix before proceeding with further
manipulations. This apparently trivial observation turns out to be
crucial . The identity matrix (of the same order as the state vec-
tor) corresponds to a static migration matrix, i.e. the state vector
is unchanged by the action of the matrix from one epoch to the
next. Subtracting the identity matrix from the migration matrix
leaves only the dynamic part of the original matrix, which reflects
the “magnitude” of the matrix in terms of the implied mobility.
Another metric we can use is the MI metric which is a special case
of the euclidean metric Let I = (δij) be the identity matrix and
P = (pij) a NxN matrix. We define the metric MI(P ) as follows :

MI(P ) =

√∑N
j=1

∑N
i=1(pij−δij)2

N2 (3.6)

We can use this metric in order to count a matrix mobility. Ma-
trix I is a matrix with all the properties of the transition matrices.
Moreover the identity matrix has all the diagonal entries equal to
one. That means that if we start at a specific rating we stay in
the same rating for ever. So matrix I is a matrix which represents
the perfect stability and therefore the ”closer” the matrix is to the
identity matrix the less are the transitions inside the matrix. On the
other hand if the distance between a transition matrix and matrix
I is large, then there is a lot of mobility in the matrix which means
that things tend to change in our Markov chain.

Example 3.3

Suppose we have the next 3 transition matrices with two states

P =

(
0.8 0.2
0.4 0.6

)
G =

(
0.9 0.1
0.5 0.5

)
K =

(
0.7 0.3
0.5 0.5

)
By using the euclidean metric we have thatMeuc(P,G) = Meuc(G,K)
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Now lets see how our new metric will work
MI(P ) = 0.1838 MI(G) = 0.3606 MI(K) = 0.2062
That means that matrices P and K are far more similarwith the
perfect imobility matrix than matrix G. Moreover matrix G has a
lot more mobility than the other two matrices.

Of course we have to mention that when we calculate the MI metric
we pay more attention in the off- diagonal elements but in reality
each element and generally each row of our matrix does not give us
the same amount of information. So it would be even better if we
could give different weights in our rows. The amount of information
that each row gives us can be assessed by matrix eigenvectors. For
this reason we can use eigenvectors as weights.

3.3.6 the MSDV metric

Suppose we have a transition matrix P and I is the identity matrix,
then we denote the matrix PI = P − I . We call matrix PI as
the mobility matrix of matrix P, due to the fact that this matrix
is a measure of distance between matrix P and the identity matrix,
which it represents the absence of mobility. So we want to create
a metric which will count the mobility of a matrix. For this reason
we define the MSDV (P ) as follows:

MSDV (P ) =
∑N

i=1

√
λiPIP

′
I

N2 (3.7)

where λi i = 1 , 2 , ..,N are the eigenvalues of matrix PI . Note that
(3.7) applies only when λi≥ 0

So as we mentioned before this metric is a measure of mobility. But
that is not very clear from the beginning when someone observes
the particular metric and for that we are going to give more details
about this metric. We can see that formula (3.7)involves a product
between the mobility matrix and the transpose mobility matrix us-
ing also as weights the eigenvalues of matrix P. The multiplication
of those matrices represents the distance between transition matrix
and identity matrix, so they seem pretty reasonable. The only thing
it is not yet clear is why we use the eigenvalues as weights. Generally
eigenvalue of a vector is the number which when multiplied with the
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vector gives us a new vector which will be just stretched and not
rotated. In a transition matrix eigenvalues have also the physical
meaning that the new rotated vectors will be uncorrelated. Because
transition probabilities might be correlated with each other (for ex-
ample transition probabilities of low rating firms are usually corre-
lated) by multiplying with eigenvalues makes data uncorrelated. As
a result we do not add information that already exists in our metric.
MSDV also has a set of properties that make our metric very ”at-
tractive”
Let P and G be tranistion matrices of the same dimension then:

1. MSDV (P ) ≥ 0

2. MSDV (P ) ≥MSDV (G) if pij ≥ gij for alli 6= j (Monotonicity)

3. If pii = gii and pij 6= gij for every i 6= j then MSDV (P ) 6=
MSDV (G) (distribution discriminatory)

3.3.7 Additional metrics

Some other metrics that can be used are the following:

1. MT (P ) = 1
N−1(N − tr(P ))

2. MD(P ) = 1− | det(P ) |
3. ME(P ) = 1

N−1(N −
∑N

i=1 | λi(P ) |), where λi are the eigenval-
ues of matrix P

Note that in the special case when all the eigenvalues of P are non-
negative then ME(P ) = MT (P ).

The reason why we use those metrics is due to their simplicity.
More specifically note that MT (P ) measures the distance between
N = tr(I) and tr(P). For this reason the particular metric indicates
the tendency of the matrix to move to another rating. Keep in mind
that the identity matrix is a transition matrix which indicates the
absence of mobility in a Markov chain. So what we try to quan-
tify is the mobility of a matrix and compare the results with other
matrices. The disadvantage of this metric is that it gives a lot of
significance in the diagonal entries. The problem with that is that in
case two transition matrices have the same diagonal then the metric
fails to measure the difference between them. The same applies for
ME(P ) with the only difference being that instead of the trace we
use the sum of the eigenvalues which is pretty similar with the trace
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of the matrix.
Last but not least the MD(P ) metric gives another perspective into
our analysis because it counts the distance between the determinant
of the identity matrix and the determinant of the given transition
matrix. In linear algebra the determinant can be viewed as the
volume scaling factor of the linear transformation described by the
matrix. That is a good measure of a matrix mobility due to the
fact that we are comparing the volume scaling factor of the identity
matrix and the given transition matrix P. On one one hand we solve
the problem with the diagonal entries but from the other the metric
starts to loose it’s meaning when det(P)=0.

Moreover these metrics have a very useful property. If M(P ) ≥
M(G) then M(P n) ≥M(Gn) (period consistency)
This means that if matrix P has greater mobility than matrix G
then the same applies for their higher order matrices. This is a
very convenient property because once we check the mobility of two
matrices and find out that mobility of matrix P is greater than mo-
bility of matrix G, then the same applies for all their higher order
transition matrices.

Example 3.4

Now we are going to compare all the different metrics using some
matrices as examples in order to see pros and cons of each metric
and see in which cases it is wiser to use one instead of another.

Let us consider the following two first order transition matrices

P =


0.5 0.2 0.1 0.1 0.1
0.2 0.5 0.1 0.1 0.1
0.1 0.2 0.5 0.1 0.2
0.1 0.1 0.2 0.5 0.1
0.1 0.1 0.1 0.2 0.5

G =


0.5 0 0 0 0.5
0 0.5 0 0 0.5
0 0 0.5 0 0.5
0 0 0 0.5 0.5

0.5 0 0 0 0.5


Notice that the two matrices have the same diagonal entries. Now
we are going to calculate all the metrics for each matrix and com-
pare the results

MSDV (P ) = 0.50208 MSDV (G) = 0.5785
MI(P ) = 0.5060 MI(G) = 0.6325
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MT (P ) = 0.625 MT (G) = 0.625
ME(P ) = 0.625 ME(G) = 0.625
MD(P ) = 0.9808 MD(G) = 1

MSDV and MI discriminate between P and G (with a larger value
for the more extreme matrix,G) whereas MT and ME are “blind” to
the variations in the distribution of the off-diagonal elements.MD is
different for each matrix but still very close to each other.

From the above examples, it is clear thatMSV D and MI are prefer-
able to the others from the distribution discriminatory point of view.
However, it is not immediately apparent which is preferable between
MSV D and MI . To answer this, consider the following two matri-
ces which differ only in the permutation of the non-diagonal entries
within each row

P =

 0.8 0.2 0
0.3 0.7 0
0 0.4 0.7

 G =

 0.8 0 0.2
0 0.7 0.3

0.4 0 0.6


Then:
MSDV (P ) = 0.3463 MSDV (G) = 0.34072
MI(P ) = 0.3590 MI(G) = 0.3590

Since MSV D distinguishes between these matrices ( satisfies distri-
bution discriminant property) whereas MI does not, we therefore
prefer MSV D over Meuc on the grounds that it satisfies distribution
discrimination property more generally than does MI

3.3.8 testing time homogeneity through the metric

We can use the MSDV metric in order to test time homogeneity.
What we actually are going to do is to separate our sample in sub
samples (for example annual samples) and calculate for each year
the transition matrices using both the homogeneity assumption and
the inhomogeneity assumption with the duration and the cohort
method. Then what we actually are going to do is calculate the
quantity DM i

SDV = M i
SDV (Phomogeneous)−M i

SDV (Pinhomogeneous) for
each year i. Then using the bootstrap method we can create 95%
confidence interval. Finally by using by the whole sample we can
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see:
DMSDV = MSDV (Phomogeneous) −MSDV (Pinhomogeneous) = 0. So we
investigate if 0 belongs to the interval. If it does it means that the
matrices have no statistical difference so time homogeneity holds if
not then the opposite applies.
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Chapter 4

EXTRACTING
ADDITIONAL
INFORMATION FROM A
MARKOV CHAIN

In the previous chapter we saw how to use metrics in order to test
time homogeneity of a transition matrix. In this chapter we are go-
ing to introduce useful quantities that we can extract from a transi-
tion matrix.This way we can transform the probabilities into more
meaningful quantities, which can lead us to take more informative
decisions. In the sections below we are going to calculate quanti-
ties such as occupancy times, expected time to default, absorbing
probability, first entrance probabilities and other various concepts as
well. These quantities will assist us understand how we can connect
transition probabilities with other measures that can be extracted
from these probabilities. The books, papers and notes used for our
analysis are from: I.Dimitriou, D.Lando.

4.1 Occupancy times

Occupancy is a quantity which indicates how many times we are
going to visit a particular state for a particular time horizon. This
way we know in a specific time horizon the percentage of time the
chain is going to be in a particular state.
Suppose we have a discrete time Markov chain (DTMC) (xn)n∈N
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and v
(n)
j is a random variable which represents the number of visits

in rating scale j within n years with

v
(0)
j =

{
1 if x0 = i
0 if x0 6= i

}
.

Then we define M
(n)
ij = E(v

(n)
j /x0 = i) as the expected number of

visits in rating j within n years given that we start from rating i .

Also we define as M (n) = (M
(n)
ij )i,j∈0,1,..N

Then we can also write that
M

(n)
ij =

∑n
r=0 p

(r)
ij (4.1)

or alternatively we can write equation (4.1) as:

M (n) =
∑n

r=0 P
(r)

Occupancy is a great tool which can help us see more things than just
probabilities. For instance we can see more clear how the Markov
chain is going to move until it defaults. So if we have a loan or a
bond we can see until maturity time how the loan is going to move.

Example 4.1

Suppose we have the following annual transition matrix P under
the time homogeneity assumption. The particular matrix is going
to be used in order to give loans to companies with 10 years maturity.

42



1 2 3 4 5 6 7 8 D
1
2
3
4
5
6
7
8
D



91.1200 7.8020 0.8779 0.1743 0.00251 0.00029 0.00033 0.0002 0.00033
1.3430 90.7400 6.8850 0.7316 0.1864 0.394 0.0021 0.0043 0.0671
0.0859 3.1110 90.230 5.6180 0.7349 0.1145 0.0202 0.0085 0.0806
0.454 0.3170 4.9960 87.7800 5.5250 0.8395 0.1623 0.0173 0.3170
0.0079 0.0921 0.5346 6.6460 82.7100 7.8360 0.6256 0.0573 1.4870
0.0080 0.0613 0.1965 0.7155 7.1460 81.1600 5.6910 0.5702 4.4490
0.0008 0.0317 0.0418 0.244 1.0240 10.0800 70.9900 4.0120 13.5700
0.0003 0.00055 0.13352 0.0446 0.5476 3.733 8.8690 63.7900 22.89
0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 1


Calculating the matrices P 2, P 3, ...P 10 and using (4.1) we have the
following matrix M (10) =



7.31572815 2.571469 0.812303 0.212175 0.05454 0.016059 0.0028767 0.00068850 0.015347
0.44447470 7.4021756 2.271970 0.592870 0.16564 0.053311 0.0099289 0.00232827 0.057430
0.07084623 1.0297912 7.399492 1.752830 0.45785 0.147850 0.0295595 0.00542818 0.107659
0.0263789 0.2480643 1.551356 6.766750 1.44008 0.508631 0.1051244 0.01609544 0.336774
0.00834951 0.0789891 0.426348 1.710459 5.66486 1.693230 0.3229349 0.04968715 1.040451
0.0046170 0.0372813 0.148823 0.508441 1.53889 5.382146 0.9002047 0.14826999 2.329558
0.00160912 0.0166287 0.053973 0.182726 0.52877 1.614444 3.6796049 0.38992530 4.530755
0.00080850 0.0087834 0.043202 0.085679 0.26843 0.785141 0.8912101 2.82951276 6.085752
0.0000000 0.00000 0.000000 0.000000 0.0000 0.00000 0.000000 0.0000000 11.00000



(4.1) can be applied in situations where there is no time homo-
geneity.
So in this caseM (n) = P (1)+P (2)+....+P n) In addition ifM=limn→∞M

(n),
is the long-term matrix of the expected number of visits from one
rating to another one, then:

M =
∑∞

r=0 P
(r) (4.2)

Finally if I is the identity matrix and I-P is invertible then
M = (I − P )−1 (4.3)

Note that formula (4.2) equals with formula (4.3) when there is time
homogeneity.

4.2 Expected time of default

Another quantity we can use in order to make our analysis more ef-
ficient is the expected time of default. The expected time of default
is the number of steps (time periods) needed in order to default.
So suppose we have a DTMC and T = min(n : xn = D) is the time
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of default. Then mi = E(T |x0 = i) is the expected time of default
given that we begin from rating i6= D. For i=D mD = 0

Furthermore if m =


m1

m2

......
mN−1

 Then

m = l +Bm (4.4)
where B is the transition probability matrix without the default vec-
tor and row and l is a vector with all it’s entries equal to one.

Example 4.2

Using the same transition matrix with Example 4.1 we may form
matrix B as follows

1 2 3 4 5 6 7 8 D
1
2
3
4
5
6
7
8
D



91.1200 7.8020 0.8779 0.1743 0.00251 0.00029 0.00033 0.0002 0.00033
1.3430 90.7400 6.8850 0.7316 0.1864 0.394 0.0021 0.0043 0.0671
0.0859 3.1110 90.230 5.6180 0.7349 0.1145 0.0202 0.0085 0.0806
0.454 0.3170 4.9960 87.7800 5.5250 0.8395 0.1623 0.0173 0.3170
0.0079 0.0921 0.5346 6.6460 82.7100 7.8360 0.6256 0.0573 1.4870
0.0080 0.0613 0.1965 0.7155 7.1460 81.1600 5.6910 0.5702 4.4490
0.0008 0.0317 0.0418 0.244 1.0240 10.0800 70.9900 4.0120 13.5700
0.0003 0.00055 0.13352 0.0446 0.5476 3.733 8.8690 63.7900 22.89
0.0000 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 1


and solving the system of equations we have

m =



117.0996
107.591941
96.91762
80.7484
39.2482
21.98833
13.55768


We can use this information in order to decide about maturity time.
For example it would not be wise to buy a firm bond belonging to
rating 8 with more than 13 years maturity or give a loan with more
than 13 years duration due to the fact that these type of company
has an expected default time approximately equal to 13,5 years, as
seen from the vector above.
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4.3 First entrance probabilities

Another useful quantity for our analysis is the first entrance prob-
ability. The first entrance probability will help us determine in
which time an entity is going to pass through a specific rating scale.

Let f
(n)
ij = p(xn = j, xr 6= j r = 1, ..., n − 1|x0 = i) be the first

entrance/re-entrance probability in rating j in n-steps given that we

start from rating i. Then f
(n)
ij is computed by solving the following

system of equations

p
(n)
ij = f

(n)
ij +f

(n−1)
ij p

(1)
jj +f

(n−2)
ij p

(2)
jj +.....+f

(1)
ij p

(n−1)
jj for every n=1,2,....

Giving a more analytical form we can write the system as

f
(0)
ij = 0 p

(0)
jj = 1

f
(1)
ij = pij

p
(2)
ij = f

(2)
ij + pjjf

(1)
ij

p
(3)
ij = f

(3)
ij + pjjf

(2)
ij + p

(2)
jj f

(1)
ij

.....................................................
p
(n)
ij = f

(n)
ij + f

(n−1)
ij p

(1)
jj + f

(n−2)
ij p

(2)
jj + .....+ f

(1)
ij p

(n−1)
jj

Example 4.5

In our example we are going to use the first order transition ma-
trix used in Example 2.2

We are going to calculate f
(3)
12 . So we need to solve the following

system

f
(1)
12 = p12
p
(2)
12 = f

(2)
12 + p22f

(1)
12

p
(3)
12 = f

(3)
12 + p22f

(2)
ij + p

(2)
22 f

(1)
12

In our case by calculating P 2 and P 3 we have that p22 = 0.9074

p
(2)
22 = 0.826589 p12 = 0.07802 p

(2)
12 = 0.142111 p

(3)
12 = 0.19447

So as a result we have
f
(1)
12 = 0.07802

0.14221 = f
(2)
12 + 0.9074f

(1)
12

0.19477 = f
(3)
12 + 0.9074f

(2)
ij + 0.826589f

(1)
12

The final results are
f
(1)
12 = 0.07802
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f
(2)
12 = 0.07141

f
(3)
12 = 0.068123

Although first entrance probabilities in n steps do not have a very
significant practical meaning for our analysis they will help us ana-

lyze the general first entrance probability f ∗ij =
∑∞

n=1 f
(n)
ij This prob-

ability is very important especially in the scenario where i=j. It i
very useful to examine whether f ∗jj is equal to one or not. If it is
equal to one that means that we are sure that we are going to return
to rating j. Especially in models with re-defaults f ∗DD is an impor-
tant quantity. Of course the calculation of f ∗ij is not easy using the
series.
Moreover the expected number of visits is connected with the first
entrance probability. Through the formula Mij = f ∗ijMjj

We can also write an equation which relates the first entrance prob-
abilities to the first order probabilities:

f ∗ij = pij +
∑

k 6=j pikf
∗
kj (4.5)

So in case we have matrix M we can calculate f ∗ij for every i 6= j
and for i=j we can also calculate f ∗jj

Finally keep in mind that f ∗iD = ui, where ui is the long term prob-
ability of default given that we start from rating i.

Example 4.6

Here we have the same first order transition matrix used in Ex-
ample 2.2

In our example we are going to find f ∗i2 for every i=1,2,...D
Using formula (4.5) we have the following system of equations
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f ∗12 = p12 + p11f
∗
12 + p13f

∗
32 + p14f

∗
42 + p15f

∗
52 + p16f

∗
62 + p17f

∗
72 + p18f

∗
82 + p1Df

∗
D2

f ∗32 = p32 + p31f
∗
32 + p33f

∗
32 + p34f

∗
42 + p35f

∗
52 + p36f

∗
62 + p37f

∗
72 + p38f

∗
82 + p1Df

∗
D2

.

.

.

.
f ∗82 = p82 + p81f

∗
12 + p83f

∗
32 + p84f

∗
42 + p85f

∗
52 + p86f

∗
62 + p87f

∗
72 + p88f

∗
82 + p8Df

∗
D2

Solving the 9x9 system of equations we have all f ∗i2 for every i=1,2,...D

4.4 Absorbing probability

In this subsection we are going to discuss absorbing probabilities
which will help us define long term probabilities of default. Sup-
pose we have a DTMC and T = (min n : xn = D) and also
vi(n) = p(T > n|xo = i) is the absorbing probability in more than
n steps(years) given that we start from rating i6= D
Also let

V (n)=


v1(n)
v2(n)
.........
vN−1(n)

.

Then
V (n) = Bnl (4.6)

Example 4.7 Again we give the same transition matrix as in exam-
ple 4.2 and example 4.1

Then by using (4.6)for n = 10 we have the matrix V (10)

V (10) =



0.9959166
0.9870675
0.974318
0.9261154
0.7999061
0.6061614
0.3525641
0.2068218


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Using vi(n) we can calculate the long term probabilities of default.
But before we move to this procedure we need to give the definition
of some terms.
Suppose we have a transition matrix with N different states. Let i
be a state in the transition matrix.

1. We say that i is recurrent if and only if f ∗ii = 1

2. We say that i is transient if and only if f ∗ii < 1

3. We say that i is positive recurrent if and only if it is recurrent

and µi =
∑∞

n=1 nf
(n)
ii <∞

4. We say that i is zero recurrent if and only if is recurrent and
µi =∞

Another additional term in order to understand how a Markov chain
works is the period of a state. We call period(di) of a state i the

greatest common divisor(GCD) of all integers n ≥ 1 so that p
(n)
ii > 0.

If

1. di = 1 then state i is called aperiodic

2. di = m > 1 then the chain returns to i in times multiple of m

Moreover it is also very important in order to continue our anal-
ysis to define the accessibility between two states. So suppose we
have two different states in a Markov chain i and j. State j is accessi-

ble from state i if and only if there exists an n ≥ 0 so as p
(n)
ij > 0.We

symbolize this as i− > j. Having in mind the above if we have
two different states in a Markov chain i and j, then state i and j
communicate with each other if and only if i− > j andj− > i.

More analytically if and only if there are n,m ≥ 0 so as p
(n)
ij > 0

and p
(m)
ji > 0. We denote that i < − > j. When two states com-

municate with each other then all the properties owned by one of
the state(aperiodic, positive recurrent, transient ect...) are auto-
matically transferred to the other one. So if are give a family of
communicative states then all the properties of one of the states,
are shared automatically with all the other states of the family.
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Example 4.8

Let P be the transition matrix with 3 states 1,2,3

P =

 0.5 0.5 0
0 0 1
1 0 0


Then p11 = 0.5 > 0, p

(2)
11 = p11p11 = 0.025 > 0, p

(3)
11 = p11p11p11 +

p12p22p23 > 0
GCD(1, 2, 3, ...) = 1 = d1. So state 1 is not periodic and because
1< − >2< − >3 then 2 and 3 are also not periodic.

From the above we can understand that if p
(1)
ii > 0 then state i

is not periodic.

example 4.9

Let P be a transition matrix with 3 states 1,2,3

P =

 0 1 0
0 0 1
1 0 0


p11 = 0, p

(2)
11 = 0, p

(3)
11 = p11p12p13 = 1 > 0, p

(4)
11 = 0, p

(5)
11 = 0, p

(6)
11 =

1 > 0
So GCD(3, 6, 9, 12, ...) = 3 = d1 = d2 = d3

Suppose we have a Markov chain.We say that state j is ergodic
if and only if it is positive recurrent and not periodic.

Suppose we have a Markov chain (xn) and state i has the ergod-
icity property. Let vi = limn→∞ vi(n) =p(T =∞|x0 = i) be the non
absorbing long term probability and

V =


v1
v2
.......
vN−1

.

In that case vector V is given by solving the following equation.
V = BV

Example 4.10

Once more we are using the same matrix as in Example 2.2.
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From the transition matrix we can see that p11 = 91.1200 > 0
so state 1 is aperiodic. Due to the fact that all states except D
communicate with each other then the not periodic property gets
transferred to all the other states except D.pDD = 1 > 0 so state D
is also not periodic.
Also f ∗DD = 1, indicating that state D is a positive recurrent state.
For the other states f ∗ii < 1, so they are transient. After solving the
system from theorem 4.6

V =



51.65772
51.62803
51.63025
51.55889
51.06355
49.73983
43.61159
35.54558


This vector can give us useful information about the probability of
default for a ”very big n”(n → ∞).With this matrix we are in a
position to know how many companies are going to default in a
long term period from each rating just by calculating the quantities
ui = 1 − vi = p(T < ∞|x0 = i) which is the probability of default
in a long term time horizon. So

U =



48.3423
48.37197
48.37975
48.44111
48.93645
50.26062
56.38841
64.45442


Furthermore it is very useful to give some relationships about tran-
sition probabilities in an infinite number of steps, in order to under-
stand the chain’s long term behaviour.
Let (xn) be a Markov chain which represents the state of an entity

in time n. Also let limn→∞ p
(n)
ij =limn→∞ p(xn = j|xo = i). Then:
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1. limn→∞ p
(n)
ij = 0 if i and j are transient states.

2. limn→∞ p
(n)
ij = 0 if i is an absorbing state and j a transient state

3. limn→∞ p
(n)
ij = vi if i is a transient state and j the absorbing

state
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4.5 A model with re-defaults

As we mentioned in Chapter 1 the word default does not always
mean bankruptcy. There are many times where a new investor
comes and pays the debt of a firm and the firm starts again it’s
function. In practice that seems a more realistic model. In our
model where there is an absorbing state when a firm defaults if this
firm re-opens again then we record that firm as a whole new firm
we give a starting rating and we proceed as mentioned in the previ-
ous chapters. Moreover many times by the term default we mean a
delay of a particular payment usually for over 90 days

What’s really interesting in the transition matrices whether they
have an absorbing default state or not is to analyze their asymp-
totic distribution and observe the differences from the transition
matrices with absorbing states. Another thing important to men-
tion is that all the results that we found in the transition matrices
with absorbing state(Mij,f

(n)
ij ,f ∗ij) can be also applied in transition

matrices with re-defaults. Of course now quantities such as mi,vi
have no meaning.
Moreover what is different when we have chains with re-defaults is
that if (xj) is a time homogeneous Markov chain, P the annual tran-

sition matrix and limn→∞ p
(n)
j = limn→∞ P (xn=j) = πj,then

limn→∞ p
(n)
ij = πj

The statements above prove that in case of re-defaults the initial
state i is not significant at all for the value of the long-term proba-
bility. So the chain tends to forget from where it started. But how
can we find πj? The way we can find it is by using the vector π,
which contains all πi . Then by solving the equation

π = πP (4.7)

we are able to compute all πi, where P is the annual transition
matrix. Note that in order to use this equation we need a time
homogeneous Markov chain with the ergodicity property .
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Example 4.11

Let P be an annual transition matrix with time homogeneity,4
rating states,where state D stands for a delay of a payment or a
series of payments for over 3 months

1 2 3 4 5 6 7 8 D
1
2
3
4
5
6
7
8
D



91.1200 7.8020 0.8779 0.1743 0.00251 0.00029 0.00033 0.0002 0.00033
1.3430 90.7400 6.8850 0.7316 0.1864 0.394 0.0021 0.0043 0.0671
0.0859 3.1110 90.230 5.6180 0.7349 0.1145 0.0202 0.0085 0.0806
0.454 0.3170 4.9960 87.7800 5.5250 0.8395 0.1623 0.0173 0.3170
0.0079 0.0921 0.5346 6.6460 82.7100 7.8360 0.6256 0.0573 1.4870
0.0080 0.0613 0.1965 0.7155 7.1460 81.1600 5.6910 0.5702 4.4490
0.0008 0.0317 0.0418 0.244 1.0240 10.0800 70.9900 4.0120 13.5700
0.0003 0.00055 0.13352 0.0446 0.5476 3.733 8.8690 63.7900 22.89
0.0002 0.00044 0.011 0.0446 0.5 4.2 12.7437 22.4 60.1



Firstly the chain has the ergodicity property because:

1. all states are positive recurrent because all states communicate
with each other.

2. all states are not periodic because p11 > 0 so state 1 is not
periodic and because all states communicate the whole chain is
not periodic

So because of the above we can compute π by using that π = πP
and also that

∑D
j=1 πj = 1, we have that:

π
′
=



2.180018%
7.774842%
15.20319%
16.1964%
13.76484%
16.18434%
10.51168%
7.846051%
10.3335%


The quantity πj has another meaning apart from the long term

probability. It also represents the amount of time that our chain is
going to be in state j.
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Chapter 5

Summary and future
research

5.1 Synopsis

Although quantifying credit risk is a continuous process, this thesis
aims to present some major problems concerning credit risk. First
we construct transition probability matrices for different time frames
in both discrete and continuous time, and try to explain their phys-
ical meaning. Secondly we explain how a first order transition ma-
trix is calculated using two different methods and analyze their ad-
vantages and disadvantages for each one of them. Furthermore we
present different methods for testing the time homogeneity property,
which is crucial for transition matrices construction. Finally we ex-
plain how transition matrices are used in order to create alternative
default measures.
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