

Outcomes of studying the autonomous
hacking system Mechanical Phish

Alexandros Zarkadoulas

MTE/1715, alexandros.zark@unipi.gr

Postgraduate Program in Digital Systems Security

Under the supervision of:

Dr. Christoforos Dadoyan, dadoyan@unipi.gr

Piraeus 2019-2020

Table of Contents

1. Introduction ... 7

1.1. Cyber Grand Challenge .. 7

1.2. Shellphish ... 9

2. Technical Background ... 10

2.1. Vulnerabilities .. 10

2.2. Vulnerability Analysis Techniques .. 10

2.2.1. Static Vulnerability Discovery ... 10

2.2.2. Dynamic Vulnerability Discovery ... 11

2.2.2.1. Fuzzing ... 11

2.2.2.1.1. Types of Fuzzing .. 12

2.2.2.1.1.1. Black-box Fuzzing .. 12

2.2.2.1.1.2. White-box Fuzzing.. 12

2.2.2.1.2. Limitations .. 13

2.2.2.1.3. Existing tools .. 13

2.3. Symbolic Execution ... 14

2.3.1. Symbolic Execution Techniques .. 17

2.3.1.1. Concolic testing .. 17

2.3.1.2. Execution generated testing .. 18

2.3.2. Limitations ... 19

2.3.2.1. Path explosion... 19

2.3.2.2. Constraint solving ... 19

2.3.2.3. Environment ... 20

2.3.3. Existing tools .. 20

3. Mechanical Phish ... 22

3.1. Angr ... 22

3.1.1. Examples .. 23

3.1.1.1. Unbreakable Enterprise Product Activation ... 23

3.1.1.2. Baby-re ... 26

3.1.1.3. VeryAndroidoso ... 27

3.1.1.4. Windows Driver Analysis .. 27

3.2. Driller ... 28

3.3. Rex ... 31

3.3.1. Techniques ... 36

3.4. Patcherex .. 36

3.4.1. Patches .. 36

3.4.2. Techniques ... 37

3.4.3. Backends .. 37

3.4.4. Examples .. 38

3.5. Angrop ... 38

3.5.1. Examples .. 38

3.6. Farnsworth ... 42

3.7. Ambassador.. 42

3.8. Meister ... 42

3.9. Scriba ... 42

3.10. Worker .. 42

4. Conclusion ... 43

5. Future Work ... 44

6. References ... 45

List of figures

Figure 1 baby-re .. 16
Figure 2 Execution tree for Table 2 .. 18
Figure 3 unbreakable-enterprise-product-activation args ... 24
Figure 4 unbreakable-enterprise-product-activation functions ... 24
Figure 5 unbreakable-enterprise-product-activation length for strncpy 25
Figure 6 unbreakable-enterprise-product-activation solution ... 26
Figure 7 unbreakable-enterprise-product-activation validation of solution.................................. 26
Figure 8 baby-re solution .. 27
Figure 9 veryandroidoso solution ... 27
Figure 10 driver analysis beep.sys .. 28
Figure 11 rex example .. 32
Figure 12 rex crash types .. 32
Figure 13 rex crash explore... 33
Figure 14 rex arsenal ... 33
Figure 15 rex generate exploit in C... 33
Figure 16 rex legit3_1.c .. 34
Figure 17 rex legit3_2.c .. 35
Figure 18 rex techniques ... 36
Figure 19 angrop example gadgets ... 39
Figure 20 results of Table 8 .. 41
Figure 21 PoC of Figure 20 .. 41

List of tables

Table 1 CGC AoE ... 8
Table 2 Example for DSE ... 17
Table 3 Example for EGT ... 19
Table 4 unbreakable-enterprise-product-activation angr script .. 26
Table 5 baby-re angr script ... 27
Table 6 beep.sys IOCTL value ... 28
Table 7 Fuzzing Strategies Comparison ... 30
Table 8 patcherex generate patched binary .. 38
Table 9 angrop code example ... 39
Table 10 angrop example exploit script .. 40
Table 11 angrop complex example ... 40

Abstract

Automatic exploit generation is an essential area of research in binary analysis, and considerable

progress has been made because of DARPA’s Cyber Grand Challenge. Numerous tools were

presented that can automatically find vulnerabilities, generate exploits, and patching. This thesis

discusses vulnerability analysis techniques, symbolic execution, and Mechanical Phish. Also, this

thesis was aimed at demonstrating the main components of Mechanical Phish.

1. Introduction

Capture the Flag (CTF) is a competition about information security. Teams or individuals from all

around the globe are participating in these competitions, and quite often, zero-day vulnerabilities

are found. There are two main types of CTFs:

i. Jeopardy:

There are some categories of challenges like Reversing, Pwning (Binary Exploitation), Web,

Crypto, Forensic, and more that must be solved. Every team/individual gains points for every

solved challenge. The hard challenges give more points than the easy ones. When the CTF is

over, the winner is whoever has the most points. Famous examples of such CTFs are DEF

CON CTF Qualifier1, PlaidCTF2 , and Google Capture The Flag3.

ii. Attack-defense:

It is a competition that simulates wargame. Every team has its network with vulnerable services

that must patch them and develop exploits when the organizers connect all the teams. As long

as a team is patching their vulnerable services, they get defense points, and when they hack

other team's vulnerable services, they get attack points. Famous examples of such CTFs are

DEF CON CTF4, RuCTFE5 , and HITCON CTF (Final)6.

1.1. Cyber Grand Challenge

DARPA7 had an idea based on CTFs. Autonomous systems to compete with each other in an

attack-defense CTF without any humans engagement. This CTF was the Cyber Grand Challenge

(CGC)8. The Areas of Excellence described at CGC Technical Paper Guidelines as:

 Areas of Excellence (AoE)

CGC

Qualification

Event (CQE)

CGC Final

Event (CFE)

AoE

1

Autonomous Analysis: The automated comprehension

of computer software (e.g., CBs) provided through a

Competition Framework.

 

AoE

2

Autonomous Patching: The automatic patching of

security flaws in CBs provided through a Competition

Framework.

 

AoE

3

Autonomous Vulnerability Scanning: The ability to

construct input that, when transmitted over a network,

provides proof of the existence of flaws in CBs

operated by competitors. These inputs shall be regarded

as Proofs of Vulnerability.

 

AoE

4

Autonomous Service Resiliency: The ability to

maintain the availability and intended function of CBs

provided through a Competition Framework.

 

AoE

5

Autonomous Network Defense: The ability to

discover and mitigate security flaws in CBs from the

vantage point of a network security device.

 

Table 1 CGC AoE

The qualifying event took place on June 3rd, 2015. Teams from all around the world were given

131 challenges with undisclosed software security vulnerabilities. The top seven teams went on to

compete in the Cyber Grand Challenge final event. On August 4th, 2016, DARPA held the final

in Las Vegas. Seven teams competed for nearly $4 million in prizes. The winning systems of the

Cyber Grand Challenge Final Event were:

i. "Mayhem" - developed by ForAllSecure, of Pittsburgh, Pa. - $2 million

ii. "Xandra" - developed by TECHx, GrammaTech Inc., Ithaca, N.Y., and Charlottesville, Va.

- $1 million

iii. "Mechanical Phish" - developed by Shellphish, UC Santa Barbara, Ca. - $750,000

The binaries were for DARPA Experimental Cybersecurity Research Evaluation Environment

(DECREE), which was created and developed, especially for the CGC. DECREE OS is a custom

Linux-derived operating system that has no signals, no shared memory, no threads, no standard

libc runtime, and only seven system calls:

i. allocate (Linux’s mmap)

ii. deallocate (Linux’s munmap)

iii. fdwait (Linux’s select)

iv. random

v. receive (Linux’s recv)

vi. terminate (Linux’s exit)

vii. transmit (Linux’s send)

1.2. Shellphish

Shellphish is an academic team at UC Santa Barbara that was founded by Professor Giovanni

Vigna in 2005. It is one of the best CTF teams worldwide, with many participates in CTFs,

especially in DEF CON CTF. The team consists of undergraduate students, graduate students,

visitors, friends, and professors.

2. Technical Background

2.1. Vulnerabilities

Vulnerabilities, weaknesses, and exploits that can be found in a computer program come in various

types. However, over the course of years, there have been attempts to categorize those types of

vulnerabilities by/or severity: Common Vulnerabilities and Exposures9 (CVE) and Common

Weakness Enumeration10 (CWE) by MITRE, Common Vulnerability Scoring System11 (CVSS)

by SIG and the Bugs Framework12 (BF) by NIST, to name but a few of the better-known attempts.

As indicated by MITRE's CVE is a rundown for common identifiers for publicly known

cybersecurity vulnerabilities. More particularly, CVE is:

 One identifier for one vulnerability or exposure

 One institutionalized depiction for each vulnerability or exposure

 A dictionary as opposed to a database

 How divergent databases and tools can "speak" the same language

 The best approach to interoperability and better security coverage

 A basis for evaluation among services, tools, and databases

 Free for public download and use

 Industry- embraced by means of the CVE Numbering Authorities, CVE Board, and

numerous products and services that include CVE

The vulnerabilities can be categorized by type such as Denial of Service (DoS), code execution,

overflow, memory corruption, SQL injection, cross-site scripting (XSS), directory traversal, HTTP

response splitting, bypass, gain information, gain privileges, cross-site request forgery (CSRF) and

file inclusion.

2.2. Vulnerability Analysis Techniques

2.2.1. Static Vulnerability Discovery

Those techniques that reason about a program without executing it are called static techniques.

Frequently, a program is interpreted over an abstract domain. Memory locations of bits of ones

and zeroes contain other abstract entities as well (which could be the more familiar integers, but,

as we will explain below, these can also include constructs much more abstract).

Additionally, program constructs such as memory layouts, or even taken execution paths, could

very well be abstract too. In this thesis, static analyses are going to split into two paradigms: those

that use graphs to present and model program properties (a control-flow graph, for instance) and

those that model the data itself. Static vulnerability identification techniques have two main

disadvantages relating to trade-offs. The first one is that the results returned are not replay-able:

one must verify detection by static analysis by hand since all information on triggering the detected

vulnerability is not recovered. Secondly, such analyses usually operate on data domains much

simpler, dramatically lowering their semantic insight. Put, they over-approximate: while they can

indeed authoritatively reason about the absence of specific program properties (such as

vulnerabilities) when making statements regarding the presence of vulnerabilities, they suffer from

a high rate of false positives.

2.2.2. Dynamic Vulnerability Discovery

Dynamic approaches are analyses that examine the way a program is executed, in a real or

emulated environment, as they inspect the way it works when given specific inputs. This

subsection primarily focuses on those dynamic techniques used for identifying vulnerabilities,

instead of the generalized binary analysis techniques which they are based on. Hence, dynamic

techniques can be split into two main categories: concrete execution and symbolic execution.

Dynamic techniques produce inputs that are highly replayable and also vary as far as semantic

insight goes.

2.2.2.1. Fuzzing

The use of random strings as inputs to monitored software with the intention of uncovering bugs

is the basic idea of fuzzing. Fuzzing is an automated or semi-automated technique where input can

be based either on knowledge of the program internals, totally random or on some type of initial

seed. Typically, fuzzing is used to test applications that take structured files as input, but it can

potentially be used differently, too, such as for a network protocol. Fuzzing aims to discover a

program’s weaknesses and vulnerabilities since some of which are critical security problems that

can be exploited to attack the program and take over. As a result, fuzzing is nowadays a much

prevalent and used technique amongst quality assurance engineers securing software and hackers

trying to break through. Fuzzing has a single goal: to crash the system, to stimulate a swarm of

inputs aimed to find any reliability or health flaws in the software. Secondarily, for those who

work security, it aims to analyze the flaws found and exploit them.

2.2.2.1.1. Types of Fuzzing

2.2.2.1.1.1. Black-box Fuzzing

When fuzzing is performed without information on either the target binary or the input format, it

is called black-box fuzzing. Black box fuzzing is the most common type of fuzzing since one of

its most key aspects is that little to no info is needed on the target program to detect its faults

through an automated process. When using black-box fuzzing on multifarious programs, however,

due to lack of insight in the target program, the fuzzer’s efficiency (the number of crashes

uncovered in a particular time frame) might be severely degraded. There can be many reasons for

low-efficiency rates when fuzzing a program, like the validation of input right after receiving it

from an external source and exiting it if anomalies are found. Run through a fuzzer, such integrity

mechanisms will abort execution. Additionally, black-box fuzzing might be unable, in some

instances, to detect a fault in a program consisted of complex logic or miss parts of the code space

(low code coverage).

2.2.2.1.1.2. White-box Fuzzing

The other principal form of fuzzing is white-box fuzzing, where the fuzzer has knowledge of the

running binary, and can thus create knowledge-based test inputs. However, there is no need for

any prior knowledge of the target program. White box fuzzing can use symbolic execution during

dynamic testing and collect constraints on the inputs used in conditional branches. These

constraints are subsequently used to execute different code paths by systematically negating the

constraints before solving them. Theoretically, this should lead to a complete scan of the target

program. However, this is usually not the case in practice due to certain limitations. Such imitations

that reduce the efficiency of white-box fuzzing are mainly caused due to the fact that symbolic

execution, constraint generation and solving can be imprecise as a result of multifarious

programming logic such as pointer manipulation, external calls, and library functions. Enormous

programs also limit efficiency due to the time needed to solve all constraints within a realistic and

accepted time frame. It is possible to achieve higher code coverage, though, and to detect faults

and identify vulnerabilities much more swiftly, with a better understanding of the program flow

and the generated insight from the most important branches.

2.2.2.1.2. Limitations

Fuzzing might seem like the perfect tool for finding bugs and faults, but there are some limitations

to the technique nonetheless. A fuzzer will be unable to detect some types of vulnerabilities. One

such vulnerability that might be missed is a flaw called “Access Control Flaw”. Fuzzing a target

program with parts of the software available only to users with admin rights might bypass the

access control mechanism with corrupted data. However, the fuzzer will continue its process

without having reported the flaw, since it has no way of acknowledging that it has entered the part

of the software which should be restricted to users without privileged access. Most software attacks

are deployed by exploiting more than one instance of vulnerability in succession to achieve the

anticipated action. For example, one vulnerability might be exploited to get unprivileged rights to

access a program, followed by exploiting another vulnerability to heighten the level of privileges

further. Even though a fuzzer might be able to detect the individual flaws, or a number of them, in

specific scenarios, the flaws, individually, might not be considered to be security risks. There is

no way for the fuzzer to comprehend the concept of and thus identify such multistage

vulnerabilities. There are, of course, more examples of the limitations of fuzzing, such as memory

corruptions handled by special memory corruption handlers, but for this paper, only some of them

are mentioned. The goal is to illustrate some instances when fuzzers might not identify all program

flaws and give some insight into fuzzing limitations and how to circumvent them.

2.2.2.1.3. Existing tools

There is a number of tools commonly used by analysts to integrate into other frameworks or

conduct fuzzing campaigns. AFL, Radamsa, Spike, and Boofuzz are some of the most popular

open-source tools. Each of these fuzzers carries several features or design decisions that deem

them viable for different fuzzing campaigns. AFL and Radamsa even include a table of bugs found

using their implementations. All of these tools allow the fuzzing of many different types of

programs easily, as they are designed in a user-friendly mindset. AFL aims to have the user up-

and-fuzzing efficiently with as little pre-configuration or special setup as possible.

On the other hand, Radamsa was primarily developed as a black-box fuzzer to explore file formats

and protocols using various heuristics and input mutations. Thirdly, Boofuzz focuses on

customized fuzzing through easy extensibility. Peach Fuzzer, a commercial fuzzing framework,

uses peach pits that contain test definitions and specifications for protocols most commonly used

in software. Of course, there is much more to be said about the heuristics and techniques used by

each tool to speed up progress and attain maximum efficiency, which will not be examined in this

thesis. Please refer to each tool’s documentation to learn more.

2.3. Symbolic Execution

A typical automatic approach for testing software and finding bugs is symbolic execution. Over

the last decade, numerous symbolic execution tools have been developed, both academic and

industrial, demonstrating the technique’s efficiency in finding crashing inputs, generating test

cases with high coverage, exposing software vulnerabilities, and generating exploits. The primary

purpose of symbolic execution in software testing is to explore as many different program paths

as possible in a fixed timetable. For each path might generate a set of concrete input values

exercising that path, and then check for the existence of various types of errors such as assertion

violations, undiscovered exceptions, security vulnerabilities, and corruption of memory. This

ability to generate concrete test inputs is one of symbolic execution’s significant strengths. From

the perspective of test generation, it allows the creation of high-coverage test suites, while from a

bug-finding perspective, it provides developers with the concrete input that triggers the bug. Then

can be used to confirm and debug the error regardless of the symbolic execution tool that generated

it. Finally, unlike most other techniques for program analysis, symbolic execution does not limit

itself to finding generic errors such as buffer overflows, but it can also reason about higher-level

program properties, such as complex program assertions. The main idea behind symbolic

execution is to use symbolic values as input data, instead of concrete data values and to represent

the program’s variables’ values as symbolic expressions over the symbolic input values.

Consequently, the output values generated by a program are expressed as functions of the symbolic

input values. Principally, in software testing, symbolic execution is used to generate a test input

for a program’s each execution path. An execution path is a true or false sequence, where a value

of true or false at the nth position in the sequence denotes that the nth conditional statement faced

the execution path took the “then” or the “else” branch. For example, the function main in Figure

1, from the binary baby-re of DEFCON qualifiers in 2016, has two execution paths. The only path

which can print the flag can only be executed if all the above checks are correct.

Figure 1 baby-re

2.3.1. Symbolic Execution Techniques

A key element of modern symbolic execution techniques is their ability to mix concrete and

symbolic execution. Below, is a presentation of two such extensions, and then a discussion of the

essential advantages they provide.

2.3.1.1. Concolic testing

Concolic (concrete + symbolic) execution, is based on two ideas to achieve higher levels of

coverage in a program. First, executing a test program with concrete value and then seeding the

symbolic execution process with a feasible path. Second, if symbolic reasoning is hard or not

desire, then symbolic expressions are substituted by concrete values. For example, we have the

below code:

int main(int argc, char* argv[]) {

 char buffer[5] = { 0 };

 int i;

 int* null = 0;

 read(0, buffer, 5);

 if (buffer[0] == 'a' && buffer[1] == '@' && buffer[2] == '7') {

 i = *null;

 }

}

Table 2 Example for DSE

Figure 2 Execution tree for Table 2

The execution will begin with the random input ‘fuz’ and will take the branch with the first exit.

Then symbolically, a new path constraint will be generated with ‘buffer[0]==a’, and a different

execution path will be executed. Concrete execution will test with a new test input that begins with

‘a’, for example, ‘auz’, and it will take the branch with the second exit. The same process will

continue until all the execution paths have been explored. Well-known concolic testing tools are

Dart, CUTE, SAGE, and CREST.

2.3.1.2. Execution generated testing

Execution generated testing (EGT) was first introduced from Cristian Cadar and Dawson Engler.

It is a combination of concrete and symbolic execution, like concolic testing, but the main

differences are that it is guided by symbolic execution, and we have fork execution for each path.

Also, if an operand is concrete, then the operation is going to be executed in concrete. For the

above example, the execution will begin with a symbolic value. At the first branch, it will fork the

execution by setting “buffer [0] = an” on the true path and “buffer [0] ≠ an” on the false path.

Similarly, at the second branch we will have “buffer [1] = @” on the true path and “buffer [1] ≠

@” on the false path and at the third branch we will have “buffer [2] = 7” on the true path and

“buffer [2] ≠ 7” on the false path. For another example, with the below code:

buffer[0]==a

exit buffer[1]==@

exit buffer[2]==7

exit crash

int pythagorean_theorem(int c)
{
 int a = 3;
 int b = 4;

 if (c == 5) {
 return 0;
 }
 else {
 return 1;
 }
}

Table 3 Example for EGT

The first two operations (a, b) are going to be executed in concrete, and the third operation (c) is

going to be executed symbolically.

2.3.2. Limitations

Symbolic execution is compelling for generating test cases with high coverage but suffers from

some critical limitations.

2.3.2.1. Path explosion

The number of available paths can be exponential in program size, as more conditional statements

are nested within others, especially if the program is large, complex, and has infinite loops. The

time that it will take to explore all execution paths with symbolic execution can be infeasible.

2.3.2.2. Constraint solving

Constraint solving is another crucial component in symbolic execution, but it must be solvable by

satisfiability modulo theories (SMT) solver. The most known SMT solver is z313. Symbolic

execution fails to scale because of some functions that are externally referenced or because of a

symbolic expression that may not be solvable from a constraint solver.

2.3.2.3. Environment

Programs interact with their runtime environment like system calls, I/O interrupt events, drivers,

libraries. So the behavior of the program is also dependable from operations that are not under

control of a symbolic execution engine.

2.3.3. Existing tools

A few distinguished projects that have implemented symbolic and concolic execution are angr14,

KLEE15, Mayhem16, Manticore17, S2E18, SAGE19, and Triton20. Angr is going to be discussed

further below. KLEE introduced from Stanford in 2008 with average coverage over 90% per tool

of Coreutils utility suite and found three critical bugs. Also, KLEE achieved 100% coverage on 31

tools out of 75 of the Busybox embedded system suite. In general, KLEE was applied to 452

applications and found 56 bugs. Mayhem presented from Carnegie Mellon Univerity in 2012 and

demonstrated 29 vulnerabilities in Windows and Linux programs. All of them were exploitable

and accompanied by a shell-spawning exploit. The team has founded ForAllSecure21 offering

services about vulnerability detection by integrating Mayhem and has partnered with the US

Department of Defense, among others. Manticore that developed from Trail of Bits can analyze

Linux ELF binaries for x86, x86-64, and ARMv7 architectures, but the breakthrough was that it

could also analyze Ethereum smart contracts achieving 66% code coverage with a default smart

contract analysis. S2E is a modular library, can run x86, x86-64, and ARM software and can find

bugs for both user-mode and kernel-mode binaries. Some critical vulnerabilities that have been

found by using S2E are CVE-2015-1536 (Android), CVE-2015-6098 (Windows), CVE-2016-0040

(Windows), CVE-2016-7219 (Windows), CVE-2016-5400 (Linux), and CVE-2017-15102

(Linux). In 2008, Microsoft published a paper about the Scalable Automated Guided Execution

(SAGE) project that was used to discover vulnerabilities in its Windows software. It has discovered

more than 30 bugs that were potentially exploitable even at the early stage that it was back in 2008.

In 2015 Springfield was founded and became the first commercial cloud fuzzing service that

SAGE was offered along with other program analysis tools. In May of 2017 was renamed to

Microsoft Security Risk Assessment22. Triton released as a binary analysis framework and has

started in 2015 by Univerité de Bordeaux and Quarkslab. Triton provides taint analysis, dynamic

symbolic execution, SMT solver interface, AST representations of semantics, SMT simplification

passes, and python bindings.

3. Mechanical Phish

Mechanical Phish23 was the Cyber Reasoning System (CRS) for the DARPA Cyber Grand

Challenge developed by Shellphish. It is the only system that went open-sourced. It has many

components, such as:

 Angr

 Driller24

 Rex25

 Patchrex26

 Angrop27

 Meister28

 Ambassador29

 Scriba30

 Worker31

3.1. Angr

First of all, angr is accomplished by plural researchers in the Computer Security Lab at UC Santa

Barbara and SEFCOM at Arizona State University. The core developers are:

 Yan Shoshitaishvili

 Ruoyu (Fish) Wang

 Audrey Dutcher

 Lukas Dresel

 Eric Gustafson

 Nilo Redini

 Paul Grosen

 Colin Unger

 Chris Salls

 Nick Stephens

 Christophe Hauser

 John Grosen

Angr would never have occurred if it were not for the spirit, enlightenment, leadership, and

assistance of the professors:

 Christopher Kruegel

 Giovanni Vigna

Angr is a python framework for analyzing binaries. It consolidates both static and dynamic

symbolic analysis, making it suitable for a variety of tasks. Some of angr's capabilities that

everyone can do using angr, and the tools built with it are:

i. Control-flow graph recovery

ii. Symbolic execution

iii. Automatic ROP chain building using angrop

iv. Automatically binaries hardening using patcherex

v. Automatic exploit generation using rex

vi. GUI for angr to analyze binaries using angr-management

Angr is composed of various subprojects, all of which can be used separately in other projects:

 CLE: an executable and library loader

 archinfo: a library describing various architectures

 PyVEX: a Python wrapper around the binary code lifter VEX

 Claripy: a data backend to abstract away differences between static and symbolic domains

 angr: the program analysis suite itself

3.1.1. Examples

3.1.1.1. Unbreakable Enterprise Product Activation

The first example is from Google Capture The Flag 201632. The challenge’s name was

Unbreakable Enterprise Product Activation.

Figure 3 unbreakable-enterprise-product-activation args

As we can see, the binary takes one argument that must be a valid product key so we can activate

the product. We fire up radare233.

Figure 4 unbreakable-enterprise-product-activation functions

We have already identified two important functions. The function Product_activation_failure is

the one we have to avoid, and the function Thank_you___product_activated is the function that

we have to find.

Figure 5 unbreakable-enterprise-product-activation length for strncpy

In main, we can see the length that is going to be copied with strncpy. Now we are ready to begin

writing the angr script that is going to solve multiple arithmetic operations and return a valid

product key.

import angr
import claripy

project = angr.Project('./unbreakable-enterprise-product-activation', load_options =
{"auto_load_libs": False})

The length we found
input_size = 0x43;
argv1 = claripy.BVS("argv1", input_size * 8)

initial_state = project.factory.entry_state(args = ["./unbreakable-enterprise-product-activation",
argv1], add_options = {angr.options.LAZY_SOLVES})
initial_state.libc.buf_symbolic_bytes = input_size + 1

We add these constraints so we can have printable characters
for byte in argv1.chop(8):
 initial_state.add_constraints(byte >= '\x20')
 initial_state.add_constraints(byte <= '\x7e')

sim_mgr = project.factory.simulation_manager(initial_state)

Find parameter has the address of Thank_you___product_activated and avoid has the
address of Product_activation_failure
sim_mgr.explore(find=0x400830, avoid=0x400850)
found = sim_mgr.found[0]

solution = found.solver.eval(argv1, cast_to=bytes)
print(solution)

Table 4 unbreakable-enterprise-product-activation angr script

We run the above script, and after a few seconds, we have the solution.

Figure 6 unbreakable-enterprise-product-activation solution

Figure 7 unbreakable-enterprise-product-activation validation of solution

3.1.1.2. Baby-re

The next example is baby-re of DEFCON qualifiers in 2016 that is shown in Figure 1 baby-re. The

address of the function we should avoid is 0x402941, and the address of the function we should

find is 0x4028E9. Also, we can see many calls to __isoc99_scanf, and with angr, we can hook

them.

import angr
import claripy

project = angr.Project('./baby-re', auto_load_libs = False)
flag = [claripy.BVS('%d' % i, 32) for i in range(13)]

class Replacescanf(angr.SimProcedure):
 def run(self, format, ptr):
 self.state.mem[ptr].dword = flag[self.state.globals['scanf_count']]
 self.state.globals['scanf_count'] += 1

scanf_symbol = '__isoc99_scanf'
project.hook_symbol(scanf_symbol, Replacescanf())

sim_mgr = project.factory.simulation_manager()
sim_mgr.one_active.options.add(angr.options.LAZY_SOLVES)
sim_mgr.one_active.globals['scanf_count'] = 0

sim_mgr.explore(find = 0x4028E9, avoid = 0x402941)

solution = ''.join(chr(sim_mgr.one_found.solver.eval(char)) for char in flag)

print(solution)
Table 5 baby-re angr script

We run the script, and the solution is Math is hard!.

Figure 8 baby-re solution

3.1.1.3. VeryAndroidoso

Except from ELF binaries, angr can also be useful for Android Packages (APKs). APK is the

package file format used by the Android operating system. At DEF CON CTF Qualifier 201934,

there was the “veryandroidoso” challenge. It was an Android crackme, written in Java and native

code. Antonio Bianchi, assistant professor at Purdue University and core member of Shellphish

and OOO teams, wrote this challenge and provided a solution35 by using angr.

Figure 9 veryandroidoso solution

His solution is an excellent example of how to specify different Java code locations, run angr from

one of these code locations with specific symbolic values, redefine Java methods, and read and

write values from symbolic Java memory.

3.1.1.4. Windows Driver Analysis

Angr is used even for Windows driver analysis. Spencer McIntyre presented the talk “Automating

Windows Kernel Analysis With Symbolic Execution”36 at BSides Cleveland 2019. This project37

helps to identify the name of the device(s), control routine(s), and even valid IOCTL(s). I/O

control codes38 (IOCTLs) are used for communication between user-mode applications and

drivers, or for communication internally among drivers in a stack.

Figure 10 driver analysis beep.sys

If we investigate further, we can find that the above IOCTL value found from driver-analysis is

correct.

// ntddbeep.h
#define IOCTL_BEEP_SET CTL_CODE(FILE_DEVICE_BEEP, 0,
METHOD_BUFFERED, FILE_ANY_ACCESS)

// winioctl.h
#define CTL_CODE(DeviceType, Function, Method, Access) (\
 ((DeviceType) << 16) | ((Access) << 14) | ((Function) << 2) | (Method) \
)

#define FILE_DEVICE_BEEP 0x00000001
#define METHOD_BUFFERED 0
#define FILE_ANY_ACCESS 0

Table 6 beep.sys IOCTL value

3.2. Driller

Firstly, you must find bugs. Bugs are usually hidden in paths of the code that infrequently gets

executed. The three main categories for automated vulnerability analysis are:

i. Static: You can be sure if a block of code is secure, but you can not have generated inputs

that trigger bugs.

ii. Dynamic (Fuzzing): You can have generated inputs that trigger bugs, but you may not get

concrete values that can explore all the instructions paths.

iii. Concrete and symbolic (concolic) execution: You can have concrete values that can pass

difficult checks and explore all the instructions paths, but the scalability is reduced in large

programs.

Fuzzing is an automated or semi-automated technique where the input can be based on information

of the program internals, completely random, or based on some sort of initial seed. This technique

is used to see how well a program handles unexpected inputs and thereby leak bugs. Fuzzing

generates input randomly and feeds it to the program. The input might cause an exception, make

the program do something legitimate, or even put the program in an illogical state that was not

supposed to, consequently, unveil a bug. The execution of the program is then monitored, and if a

crash occurs, ideally, the input data which generated the crash, along with the location of the crash,

is recorded. Numerous iterations with various input data are then executed to unveil as many bugs

as possible and to increase as much possible the coverage of the targeted code as possible. When

fuzzing, the primary interest is to find any inputs that can trigger undefined or insecure behavior.

Even though fuzzing is a highly automated technique, considerable time and effort are still required

to test a program wholly. There are three main ways to produce samples. A comparison of these

cases is shown in the table below.

 Random Mutation Based Model-based

Advantages

Simple

Relatively

simple

Potentially

efficient

(if the target is

well modeled)

Quick

Reusable

across different

software

Low cost

Disadvantages

Attacks only

the application

surface

Needs

numerous valid

inputs to get a

good coverage

Time-consuming to

set up

Useless with

Checksums

Requires

knowledge of

the format/

protocol

Poor coverage

Reusable only

with the same

format

Table 7 Fuzzing Strategies Comparison

Driller is a system that combines fuzzing and concolic execution. The main components are:

i. American Fuzzy Lop39 (AFL) is a popular fuzzer with great success and essential features

such as genetic fuzzing, state transition tracking, loop ‘bucketization,’ and

derandomization.

ii. Angr is a binary analysis framework that is used to trace the program symbolically.

AFL has found bugs in many different pieces of software and has multiple CVEs dedicated to bugs

found by AFL.

We are going to use the shellphuzz40 script for our examples. Shellphuzz is a Python wrapper for

starting an AFL instance, adding AFL and driller workers, injecting and retrieving test cases, and

checking various performance metrics.

The binary test1 reads 5 bytes of input, checks them one by one against a sequence of characters,

and crashes if all 5 of them match., and its source code is:

int main(int argc, char* argv[]) {

 char buffer[5] = { 0 };
 int i;
 int* null = 0;

 read(0, buffer, 5);
 if (buffer[0] == 'a' && buffer[1] == '@' && buffer[2] == '7' &&
buffer[3] == '4' && buffer[4] == 'Z') {
 i = *null;
 }

}

We used four AFL workers and two driller workers, and the crash that was found with the name

“id:000000,sig:11,src:000004,op:havoc,rep:2” is “a@74Z@74”. We can see that the result fulfills

the requirements that are needed for the program to be crashed.

Now we are going to test legit_00003, which is one of DEF CON 24 CTF qualification binaries.

We used again four AFL workers and two driller workers, and the crash that was found with the

name “id:000000,sig:11,src:000000,op:havoc,rep:128” and is

“312028313628002d06c3c3c3c3c3c3c3c3c3c3c3c3c3c3a5c3c3c3c3c3c3c300d12d16281c35640

0f2206670510031362d0600002d91631c3564002d16”, that we are going to use it later for Rex.

3.3. Rex

Rex is Shellphish's automated exploitation engine initially created for the Cyber Grand Challenge.

Rex offers a couple of features, such as crash triaging and exploration, plus exploitation for certain

kinds of crashes. The example below demonstrates a crashing input that was previously discovered

by Driller for legit_00003. The vulnerability is a buffer overflow, but before the vulnerable

function return, it calls memcpy with a parameter that can be overwritten during the stack smash.

Rex can explore the crash until it finds an exploitation primitive and uses it for further exploitation.

Figure 11 rex example

The vulnerabilities can be:

1. ip overwrite

2. partial ip overwrite

3. uncontrolled ip overwrite

4. bp overwrite

5. partial bp overwrite

6. write what where

7. write x where

8. uncontrolled write

9. arbitrary read

10. null dereference

11. arbitrary transmit

12. arbitrary receive

We can see what type of crash we have and if it is explorable:

Figure 12 rex crash types

Then we can explore the crash, and depending on the vulnerability, it will point the violating

address at a symbolic memory region, or it will try to find a more valuable crash by finding a

writable data segment and point the write there.

Figure 13 rex crash explore

The vulnerability allows us to control the instruction pointer, and new exploits can be generated

based on this crash.

Figure 14 rex arsenal

For type1, there were generated one shellcode and one circumstantial register setter. With type2,

we can leak arbitrary memory. The two best exploits are put into the 'best_type1' and 'best_type2'

attributes. The register that is used for best_type1 is ‘ebp’. Last but not least, we can dump the

exploits in C, Python, or as a compiled POV.

Figure 15 rex generate exploit in C

Figure 16 rex legit3_1.c

Figure 17 rex legit3_2.c

Figure 16 and Figure 17 shows some part of the code generated as proof of concepts (PoCs).

3.3.1. Techniques

Figure 18 rex techniques

3.4. Patcherex

Shellphish's automated patching engine initially created for the Cyber Grand Challenge. There are

three key concepts in patcherex:

 patches

 techniques

 backends

3.4.1. Patches

A patch is a single adjustment to a binary. Below are some different types of patches that exist:

Instruction
pointer control

Jump to
shellcode

Pivot to ROP
chain

Circumstantial

Arbitrary Write

Point to Data

Explore for
Exploit

Arbitrary Read

Point to Flag

Point to Data

 InsertCodePatch: inserts code that is executing before an instruction at a particular

address.

 AddEntryPointPatch: inserts code that is executing before the original entry point of the

binary.

 AddCodePatch: inserts code that separate patches can apply.

 AddRWData: inserts RW data that separate patches can apply.

There are also InlinePatch, AddRODataPatch, AddRWDataPatch, AddRWInitDataPatch,

AddLabelPatch, RawFilePatch, RawMemPatch, SegmentHeaderPatch, AddSegmentHeaderPatch,

PointerArrayPatch and RemoveInstructionPatch. Every patch has its name, and it is permissible to

mention from a patch to different patch using the name.

3.4.2. Techniques

A technique is a component investigating a binary and delivering a list of patches. For instance:

 StackRetEncryption: encrypts the return pointers of "unsafe" functions.

 Backdoor: inserts a backdoor to a binary.

There are also Adversarial, Binary Optimization, Bitflip, CpuId, IndirectCFI, Malloc Ext Patcher,

NoFlagPrintfPatcher, NxStack, Packer, ShadowStack, Simple Ptr Enc, SimpleCFI, and

Uninitialized Patcher.

3.4.3. Backends

A backend is a component liable to "inject" a list of patches, that produced from a technique, in a

binary and generate a new binary. There are two backends:

 DetourBackend: inserts jumps inside the original code.

 ReassemblerBacked: inserts code by disassembling and then reassembling the original

binary.

The DetourBackend creates bigger and slower binaries, or even it cannot insert some patches.

Nevertheless, it is slightly more reliable than the ReassemblerBackend.

3.4.4. Examples

We are going to use again legit_00003, as we did with Driller and Rex. The vulnerability was a

buffer overflow on the stack. ShiftStack was chosen as the technique and ReassemblerBacked as

the backend.

import patcherex
from patcherex.backends.reassembler_backend import ReassemblerBackend
from patcherex.patches import *

intermediate = "/home/name/angr/binaries/tests/defcon24/legit_00003"
backend = ReassemblerBackend(intermediate)
patches = []
patches.extend(ShiftStack(intermediate,backend).get_patches())
backend.apply_patches(patches)
backend.save("/tmp/legit_00003_ShiftStack")

Table 8 patcherex generate patched binary

Driller found the first crash in the first few seconds when used against the original binary. Contrary

to the original binary, Driller, even though we let it run from almost an hour, did not found any

crash when used against the patched binary.

3.5. Angrop

Angrop is a tool to generate rop chains automatically. It is developed on top of angr and uses

constraint solving for creating chains and understanding the outcomes of gadgets. It should support

all the architectures supported by angr, although more testing needs to be done. Typically, it can

create rop chains faster than humans. It involves functions to generate chains that are usually used

in exploitation and CTF's, such as setting registers and calling functions.

3.5.1. Examples

#include <stdio.h>

#include <unistd.h>

int main(int argc, char *argv[]) {
 char buf[256];
 int r = read(0, buf, 400);
 return 0;
}

Table 9 angrop code example

The example of Table 9 is a simple buffer overflow, and we are going to need the gadget “pop rdi;

ret” so the parameter of system will be “/bin/sh” and the gadget “pop reg; pop reg; ret” for stack

alignment.

Figure 19 angrop example gadgets

from pwn import *

buf = p8(0x41)*280
buf += p64(0x5555555546e0) # pop rdi; ret
buf += p8(0x42)*8
buf += p8(0x43)*8
buf += p64(0x5555555546e3) # pop r14; pop r15; ret
buf += p64(0x7ffff7b97e9a) # /bin/sh
buf += p64(0x7ffff7a33440) # system

r = process("./rop")
r.sendline(buf)
r.interactive()

Table 10 angrop example exploit script

The gadgets we wanted are shown in Figure 19, and so the exploit script in Table 10 is ready to

run and get us a shell.

A more complex example for angrop, and at real case scenario, is to use it for a dynamically linked

shared object library41 of Mozilla Firefox, the libmozsandbox.so, and it could be:

for g in rop.gadgets:
 if g.mem_changes:
 for mem_access in g.mem_changes:
 if (mem_access.op == "__add__") and (g.stack_change == 0x10) and
'rbx' in g.popped_regs and 'rax' in mem_access.addr_dependencies:
 print(g)

Table 11 angrop complex example

We are looking for gadgets that rbx is one of the popped registers, rax is used for an add instruction,

and the stack is changed for 0x10.

Figure 20 results of Table 11

There were more results than shown in Figure 20, and in Figure 21 is a PoC for the first result with

the help of radare2.

Figure 21 PoC of Figure 20

3.6. Farnsworth

Farnsworth is a Python-based wrapper around the PostgreSQL database and was the knowledge

base. All data shared between components were stored there, as all the communications between

components were happening through Farnsworth.

3.7. Ambassador

Ambassador was the component to report info from and to CGC Team Interface TI API. Except

for retrieving CBs, obtaining feedback, and submit RBs and POVs, was also updating Farnsworth.

3.8. Meister

Meister was the central scheduler component, as it decided which component should run jobs at

any point in the CGC. This was feasible because, for every component, there was a component-

specific creator, and Meister could ask these creators for jobs and schedule them based on priority.

3.9. Scriba

Scriba decided what POVs and patches to submit based on their performance results, and then the

Ambassador was responsible for submitting them to CGC TI.

3.10. Worker

Worker was responsible for launching the various analysis, exploitation, and patching tasks. It

wrapped angr, Driller, Rex, Patcherex, and other tools to be easily manageable.

4. Conclusion

The present findings confirm that Cyber Reasoning Systems are proficient automated systems that
can distinguish exploitable bugs, generate exploits, and patch software. These systems are
complicated and demand a skillful experience of the problem to develop them.

To my knowledge, fuzzing has a crucial role and is trending more towards the grey-box style. This
is a result of the dominant tools that exist and can perform binary analysis. The availability of
state-of-the-art open-source tools, like AFL, allows research to be consolidated and analyzed using
these tools and consequently drives to progress.

Despite the limitations of symbolic execution, it is a vital part of most of these state-of-the-art
CRSs and an effective program testing technique, implementing an approach of automatically
generating inputs that trigger software flaws varying from low-level to higher-level software
crashes. Additionally, it can accomplish high coverage. Despite the fact that more research is
required in this area, current tools have proved beneficial in testing and finding bugs in a variety
of software, ranging from simple applications to operating systems code. One of these tools is
Driller, and with the underlying use of angr, it combines the best of dynamic fuzzing and concolic
execution to find bugs in a binary efficiently. Also, can effectively explore loops and simple
checks, but often fails to transition between branches. Selective concolic execution gets into path
explosions when regarding loops and inner checks, but is highly effective at finding paths of a
binary.

Nevertheless, there are still several well-known obstacles in order for CRSs to be deployed against
complex real-world applications. Binary analysis complexity is affiliated with the diversity and
complexity of the assembly instructions, the registers, no types, and the lack of functions. In
summary, the current state-of-the-art systems can demonstrate tremendous results, and the
potential to develop such systems without human intervention is limitless.

5. Future Work

The present thesis has been mainly focused on the use of the components of Mechanical Phish,
leaving the study of other Cyber Reasoning Systems outside the scope of the thesis. The object of
this chapter is to provide some proposed areas of future research. One significant barrier of the
state-of-the-art CRSs is that they are not so capable of analyzing large and complex real-world
applications. The path explosion for large and complex applications can be limitless, and CRSs
that are attempting to perform analysis on such applications with high coverage must further
enhance the effectiveness to minimize the path explosion. Subsequently, an analysis will achieve
higher code coverage, and therefore more possibilities to find more deep-seated vulnerabilities.

Moreover, it will be important that future research can investigate in developing a system that can
identify, for example, C and C++ functions that are known to be related to buffer overflows like
gets, strcpy, and sprintf. Afterward, paths must be explored that contain these functions and
generate test cases capable of going directly to these branches and continue the analysis for
detecting exploitable vulnerabilities. The above-proposed measure will not achieve higher code
coverage but aims at the, statistically, more vulnerable paths.

Conclusively, a vulnerability researcher can investigate a CVE and develop an exploit for the
reported vulnerability. As a human being, an expert will not only use the information provided by
the CVE's description but also will gain insight by researching similar cases, utilizing his
knowledge and experience to develop an exploit for the reported vulnerability. This is an
interesting topic for future work to create an artificial intelligence system that takes advantage of
the knowledge of human experts about bug hunting and exploitation techniques. This system will
collect information and produce a generic exploit for every vulnerability type. This will be a case-
based reasoning system that, for a given vulnerability type, will generate an exploit, regardless of
the binary or the source code.

6. References

1 DEF CON CTF Qualifier, https://ctftime.org/ctf/1, last accessed on February 23, 2020
2 PlaidCTF, https://ctftime.org/ctf/10, last accessed on February 23, 2020
3Google Capture The Flag, https://ctftime.org/ctf/141, last accessed on February 23, 2020
4 DEF CON CTF, https://ctftime.org/ctf/2, last accessed on February 23, 2020
5RuCTFE, https://ctftime.org/ctf/6, last accessed on February 23, 2020
6 HITCON CTF, https://ctftime.org/ctf/79, last accessed on February 23, 2020
7 DARPA, https://www.darpa.mil/, last accessed on February 23, 2020
8 Cyber Grand Challenge, http://archive.darpa.mil/CyberGrandChallenge_Corpus/, last accessed
on February 23, 2020
9 Common Vulnerabilities and Exposures, https://cve.mitre.org/, last accessed on February 23,
2020
10 Common Weakness Enumeration, https://cwe.mitre.org/, last accessed on February 23, 2020
11 Common Vulnerability Scoring System, https://www.first.org/cvss/, last accessed on February
23, 2020
12 The Bugs Framework, https://samate.nist.gov/BF/, last accessed on February 23, 2020
13 Z3 theorem prover, https://github.com/Z3Prover/z3, last accessed on February 23, 2020
14 Angr, http://angr.io/, last accessed on February 23, 2020
15 Klee, http://klee.github.io/, last accessed on February 23, 2020
16 Unleashing Mayhem on Binary Code https://ieeexplore.ieee.org/document/6234425, last
accessed on February 23, 2020
17 Manticore, https://github.com/trailofbits/manticore, last accessed on February 23, 2020
18 S²E, http://s2e.systems/, last accessed on February 23, 2020
19 Automated Whitebox Fuzz Testing,
https://patricegodefroid.github.io/public_psfiles/ndss2008.pdf, last accessed on February 23, 2020
20 Triton, https://triton.quarkslab.com/, last accessed on February 23, 2020
21 ForAllSecure, https://forallsecure.com/, last accessed on February 23, 2020
22 Microsoft Security Risk Detection, https://www.microsoft.com/en-us/security-risk-detection/,
last accessed on February 23, 2020
23 Mechaphish, https://github.com/mechaphish, last accessed on February 23, 2020
24 Driller, https://github.com/shellphish/driller, last accessed on February 23, 2020
25 Rex, https://github.com/shellphish/rex, last accessed on February 23, 2020
26 Patcherex, https://github.com/shellphish/patcherex, last accessed on February 23, 2020
27 Angrop, https://github.com/salls/angrop, last accessed on February 23, 2020
28 Meister, https://github.com/mechaphish/meister, last accessed on February 23, 2020
29 Ambassador, https://github.com/mechaphish/ambassador, last accessed on February 23, 2020
30 Scriba, https://github.com/mechaphish/scriba, last accessed on February 23, 2020
31 Worker, https://github.com/mechaphish/worker, last accessed on February 23, 2020
32 Google Capture The Flag 2016, https://ctftime.org/event/303, last accessed on February 23,
2020
33 Radare2, https://rada.re/n/radare2.html, last accessed on February 23, 2020
34 DEF CON CTF Qualifier 2019, https://ctftime.org/event/762, last accessed on February 23,
2020

35 Solution of veryandroidoso, https://github.com/angr/angr-
doc/tree/master/examples/defcon2019quals_veryandroidoso, last accessed on February 23, 2020
36 Automating Windows Kernel Analysis With Symbolic Execution,
http://www.irongeek.com/i.php?page=videos/bsidescleveland2019/bsides-cleveland-c-03-
automating-windows-kernel-analysis-with-symbolic-execution-spencer-mcintyre, last accessed
on February 23, 2020
37 Driver analysis, https://github.com/zeroSteiner/driver-analysis, last accessed on February 23,
2020
38 Introduction to I/O Control Codes, https://docs.microsoft.com/en-us/windows-
hardware/drivers/kernel/introduction-to-i-o-control-codes, last accessed on February 23, 2020
39 American fuzzy lop, http://lcamtuf.coredump.cx/afl/, last accessed on February 23, 2020
40 Fuzzer, https://github.com/shellphish/fuzzer/, last accessed on February 23, 2020
41 Static, Shared Dynamic and Loadable Linux Libraries,
http://www.yolinux.com/TUTORIALS/LibraryArchives-StaticAndDynamic.html, last accessed
on February 23, 2020

