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Abstract

The present project aims to conduct video classification by training a network of stacked LSTM cells to
recognize the sport being conducted in a subset of Sports-1M Dataset. The contribution of this project is
that unlike traditional methods on video classification, that feed frame-images to the network, it attempts to
use Carnegie Mellon’s OpenPose pose-estimation library, to extract human poses from a predefined number
of frames and use them as input features to the network. This effort intends to help the network identify
and learn movement patterns from each sport. The main challenge of this undertaking was that Sports-1M
Dataset is a machine generated dataset, that contains user-produced videos and therefore is susceptible to
noise. The latter comes from possible unrelated videos mistakenly selected by YouTube’s annotation system
or the users not focusing on the sport carried out, but instead zooming randomly into the crowd, the face of a
player, zooming out on the empty field etc. Apart from common difficulties unconstrained videos introduce,
such as varied illumination, scale, camera motion, viewpoints etc., this dataset also varies substantially in
duration and resolution. The approach, followed to counter the aforementioned challenges, was to define a
fixed window of 30 frames for each video (2 frames per second - aka 15 seconds of video), with the selection
beginning after 30% of video’s run time, in order to increase the probability of encountering the sport in
action. Furthermore, to control the quantity and quality of the people selected from each frame, the people
were filtered through an index of interest, which quantifies how big, complete and central each person is, in
relation to insignificant ones in the frame and use that as a rule to pick the 2 most interesting. Finally, after
hyperparameter investigation, the network was able to produce 89% accuracy, for 5 sport-classes and 73%
for 10 sport-classes. This was achieved through a network of stacked LSTM cells, of 64 and 32 units in depth
respectively, with L1,L2 regularizers applied at each layer, followed by a densely connected Neural Network
with the same amount of units, as the sport-classes.

Περίληψη

Το παρόν έργο έχει ως στόχο να διεξάγει ταξινόμηση βίντεο, εκπαιδεύοντας ένα δίκτυο αποτελούμενο από

στοιβαγμένες stacked LSTM μονάδες, έτσι ώστε να αναγνωρίζει το άθλημα που εμπεριέχεται σε ένα υποσύνολο
των βίντεο του Sports-1M Dataset. Η συνεισφορά αυτής της εργασίας είναι ότι σε αντίθεση με τις παραδοσιακές
μεθόδους ταξινόμησης βίντεο, όπου τροφοδοτούμε το δίκτυο με καρέ-εικόνες, εδώ χρησιμοποιούμε την βιβλιοθήκη

του Carnegie Mellon OpenPose, με σκοπό να αποσπάσουμε τα ανατομικά σημεία των ανθρώπων (στάση σώματος)
από έναν προκαθορισμένο αριθμό διαδοχικών καρέ, ως μεταβλητές εισόδου του δικτύου. Η κυρια πρόκληση αυτού

του εγχειρήματος είναι ότι το Sports-1M Dataset έχει δημιουργηθεί με αυτοματοποιημένο τρόπο και η λήψη των
βίντεο έχει γίνει από απλούς χρήστες, με αποτέλεσμα αυτά να περιέχουν θόρυβο. Ο θόρυβος προκύπτει είτε

από μη σχετικά βίντεο που έχουν επιλεχθεί λανθασμένα από το σύστημα παρατηρήσεων του YouTube, είτε
από χρήστες που δεν επικεντρώνονται στο άθλημα που λαμβάνει χώρα και σε ανυποπτο χρόνο κάνουν ζουμ

στο κοινό, πρόσωπο του αθλητή, περιβάλλον χώρο κλπ. Ταυτόχρονα το παρόν σύνολο δεδομένων, εκτός από

τις καθιερωμένες δυσκολίες που παρουσιάζει ως σύνολο ελεύθερων βίντεο, όπως η έκθεση σε διαφορετικούς

φωτισμούς, κλίμακες, μη σταθερή κάμερα, σκοπιές κλπ. έχει και μεγάλες αποκλίσεις ως προς την διάρκεια

και ανάλυση των βίντεο. Η προσέγγιση που ακολουθήθηκε, για την επίλυση των παραπάνω, ήταν για κάθε

βίντεο να οριστεί ένα σταθερό παράθυρο τριάντα (30) καρέ προς εξαγωγή (2 καρέ ανά δευτερόλεπτο - δηλαδή 15

δευτερόλεπτα βίντεο συνολικά), ξεκινώντας από το 30% του βίντεο, με σκοπό να αυξήθεί η πιθανότητα να πετύχει

το άθλημα όταν αυτό εκτελείται. Επιπρόσθετα, για να τεθεί υπο έλεγχο η ποσότητα και ποιότητα των ανθρώπων

(ανατομικών σημείων) που βρέθηκαν στο κάθε καρέ, οι άνθρωποι φιλτράρονται από έναν δείκτη ¨ενδιαφέροντος¨,

που ποσοτικοποιεί το πόσο μεγάλοι σε μέγεθος, ολόκληροι και κεντραρισμένοι είναι σε σχέση με κάθε άλλο

άτομο στο καρέ. Το παραπάνω χρησιμοποιείται ως κανόνας για να επιλέξει τους δύο (2) πιο ενδιαφέροντες

ανθρώπους. Κλείνοντας, ύστερα από αναζήτηση των παραμέτρων εκείνων που θα βελτιστοποιούν το εν λόγω

δίκτυο, ηταν σε θέση να παράξει αποτέλεσμα ακρίβειας (accuracy) 89% , με 5 κλάσεις και 73% με 10 κλάσεις. Το
δίκτυο αυτό απαρτιζόταν από 2 στοιβασμένες LSTM μονάδες, με βάθος 64 και 32 κρυμμένων μονάδων αντίστοιχα
και ρυθμιστές (regularizers) L1,L2 σε κάθε επίπεδο. Τέλος, η κατηγοριοποίηση ολοκληρώθηκε από ένα πυκνά
συνδεδεμένο νευρωνικό δίκτυο με τόσες μονάδες όσε ήταν και οι αντίστοιχες κατηγορίες αθλημάτων.



Chapter 1

Introduction

A video is a series of sequential-in-time images (frames). Video classification is the task of labeling a video
with its assigned label either on the frame-level or for the whole video [75]. Video makes an interesting
classification problem because apart from spatial information (captured on the 2D frame level), it adds
temporal information encoded in the sequence of frames, revealing the relations between its frames. The
data whose points are dependent on other points are called sequential data [23] and different Machine
Learning (ML) methods were developed in order to capture those relationships. Recurrent Neural Networks
(RNNs) is one of those methods derived from the connectionist ML school of thought and is an alteration
of the conventional neural network (NN). It consists of a network of neuron-units (cells/blocks) that a
weight to each connection between the units is assigned, representing how strong/weak the connection
is. Then these weights are adjusted by the backpropagation algorithm in proportion to the gradient
error, so that the intended output matches the network output. The main idea behind RNNs is to
make the same computations for all the data points in the sequence, adding each time to the datapoint
currently being processed, all the preceding frames’ outputs [101]. In that way it is possible to create a
persistent-memory, where each datapoint takes into account all past datapoints of the sequence, the same way
a person understands the meaning of a word based on the comprehension of the preceding words in a sentence.

The achilles heel of RNNs though is the Vanishing-Exploding Gradients. This problem occurs when the
weights turn out to be very small or very large preventing the network to learn high temporal distance
relationships between data [101]. To overcome this problem, new RNN variations were introduced. One of
which was Long Short Term Memory network (LSTM). The latter consists of three (3) gates: Input, Output
and Forget, rensposible for writing, reading and resetting the unit, using an analog (sigmoid) and not binary
activation function, which keeps the gradients steep enough and permits the network to remember very long
sequences [101].

The aim of this project is to carry out video classification utilizing an LSTM network with the sequential
data to be the human poses extracted from a predefined number of frames per video. The pose estimation of
each frame is accomplished via the use of OpenPose library [14], developed by Carnegie Mellon University.
The video dataset selected is the Sports-1M Dataset [42], which consists of realistic, user produced videos,
publicly available on the internet (videos "in the wild"). This dataset provides the opportunity of testing the
classification on real world data, but it comes at a cost of added complexity due to the varied illumination,
scale, camera motion, viewpoints etc. This effort attempts to identify the patterns of movements that
correspond to specific sports and belongs to action recognition problems.
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Chapter 2

Related Work

The domain of action-recognition and action-detection come a long way with years of research. The terms
action recognition and action detection sometimes are mistakenly used interchangeably. Soo and Wildes [55]
explain that action recognition refers to the act of classifying an action in a video and action detection
concerns locating actions of interest in space and/or time. The present project is about action recognition.
On the latter, different taxonomies have been presented [57], that attempt to define what is a movement,
action, activity etc. and what’s the hierarchy between them. Moeslund et al. [57] uses a hierarchy that
consists of action/motor primitives, actions and activities. The motor primitive is any joint movement, an
action is a set of motor primitives and an activity is a set of actions. In the present project we use action as
sport-action. Poppe [68] organizes the approaches of action recognition domain under image representation
and action classification, since they are common parts of all action recognition approaches in literature.

Types of features

Image representation refers to the process of extracting useful information from raw video data (feature
extraction) and representing them (encoding) in a form that is suitable for classification. Poppe [68] divided
the different approaches of representation into two categories: global (top-down) and local representations
(bottom-up). The first, were attempting to encode the visual observation as a whole, by localizing the person
first through background subtraction or tracking. Common descriptors extracted from that category are
silhouettes or optical flow, for when background subtraction is not performed. The second, were attempting
to encode the visual observation as a collection of local descriptors or patches. The latter were divided by
whether they were derived via dense or sparse sampling.

Soo and Wildes [55] make a similar distinction between dense and sparse sampling. They address dense
sampling methods as the methods that divide videos into either rectilinear patches or more irregular
supervoxels via techniques like mean shift [44], streaming hierarchical supervoxel method [97] and SLIC [13].
Similarly they address sparse sampling methods too, as the methods that sparsely extract interest points
(spatiotemporal interest points - STIPs) or regions via a regular grid. This last group of methods is further
broken down between the methods that extend an already-known 2D detector into 3D in videos (like Harris
to Harris 3D [38, 49] and Hessian’s matrix in 3D [4]), those that use a different detector per dimension
(spatial and temporal) (like cuboid detector [24]) and tracking-based detectors that use good-features to track
criterion [76] (like dense trajectory features [30, 91]).

On top of the previous disctinction mentioned, Soo and Wildes [55] presented another taxonomy of the same
methods based on the type of feature descriptors each produces. They distinguish between the General
primitive features, that the features derived from raw input videos don’t require any additional processing
and the Specialised primitive features that do.

General primitive features are divided into three main sub-categories: filter, flow and convolutional neural
networks (CNN)-based. The filter-based methods try to represent an object’s shape and appearance by the
local intensity gradients and edge direction (gradient-based), or by using the dimension of local orientation
and scale (spatiotemporal oriented bandpass-based). Some of the most known gradient-based techniques are
Histogram of oriented gradients - HOG [21, 50], HOG3D [46], cuboid descriptor [24], scale-invariant feature
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transform (SIFT) [27] etc. Respectively, some known spatiotemporal oriented bandpass-based techniques
are 3D Gabor filters [15] and Gaussian derivate filter [39]. The flow-based descriptors try to represent
motion information. Some of the most known techniques are Kanade-Lucas-Tomasi - KLT [65], Histogram
of Optical Flow - HOF [38], Motion Boundary Histogram - MBH [30]. Lastly, CNN-based methods depend
on a neural network and its architecture based either in spatio-temportal convolutions, recurrent neural
networks or two-stream architectures.

Specialised primitive features are divided between silhouette-based and tracking-based. Silhouette-based
filters extract silhouettes which are either converted into an 1D signal via R transform [83, 93], converted
into binary images called motion energy images - MEI or scalar images called motion history images -
MHI that are then described using Hu moments [36], or stacked to form spacetime volumes - STV [11, 99].
Lastly tracking-based methods attempt to track the trajectory of the entire actor to segment him from the
background, or by tracking body parts. On the latter, Poppe [68] stress that joint locations are difficult to
derive but they constitute rich representations.

Recent work is using a mixture of filter and flow-based algorithms together and are directed towards
CNN algorithms [8, 40, 43, 77, 77, 87, 92, 100]. Additionally, since Poppe’s survey there’s been progress on
pose-estimation problems and approaches have managed to succesfully locate anatomical human keypoints
- joints with higher accuracy [14, 29]. In this project, we use as feature extraction technique the OpenPose
library of [14], that uses two-stream CNNs and through heatmaps and affinity fields is able recover very
accurately the human joints of the video actors. A big part of action-recognition with pose features was
using mainly 3D skeleton features which were restrictive to situations where such 3D data could be acquired
and used [37, 52, 89, 96]. Later, more 2D pose features with motion information were introduced [17, 18],
with the most similar to the current project to be [16], where the same OpenPose library is used to locate
human joints, colorize them based on the relative time of the frame from which the joints were acquired and
aggregate them to represent the clip-level pose motion as features to a shallow CNN. The present approach
is passing as an input to an LSTM network, the (x, y) points of each joint as provided by [14] [102], with no
further motion information and tested on raw videos in the wild provided by the Sports-1M Dataset [42].

Types of Classifiers

Classification is when a training dataset is used to predict the pre-defined classes of a test dataset. Soo
and Wildes [55] break down the classifiers between Deterministic, where the class of a test data input is
predicted without taking into account the probability distribution between classes of the training data and
Probabilitistic, where is not. Deterministic classifiers are divided further in to lazy and eager learners. To
the lazy learners belong the classifiers that postpone data processing until they receive a request to classify,
like K-nearest neighbor -KNN. To the eager learners belong the classifiers that generalize the data on the
learning process even before is attempted to classify the test data, with models like Support Vector Machines
- SVM, Adaptive Boosting - AdaBoost and Artificial neural networks - ANNs & CNNs. Respectively
Probabilistic classifiers are divided further to General classifiers, and Temporal state-space models. The
latter use temporal information of features, while genetal classifiers don’t but rather use probabilities to
map the features to their action class . Known general classificiers are Naive Bayes and Relevance vector
machines - RVMs and for Temporal state-space models are Hidden Markov Model(HMM) and dynamic
Bayeasian network - DBN.

In the present project LSTMs are used as a classifier. LSTMs have been used in action-recognition literature
in [53,94,95,100], to model longer temporal dependencies of the actions.
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Chapter 3

Long short-term memory - LSTM

Long Short Term Memory (LSTM) networks are an extension of Recurrent Neural Networks (RNN) initially
created for Machine Learning problems that involve sequential data. LSTM was proposed as a solution
to the problem of Vanishing-Exploding Gradients by extending the memory of vanilla RNNs and learning
longer sequences. In order to understand LSTM is important to explore where it comes from and how it
differentiates from plain RNNs.

LSTM on the Artificial Intelligence map

Artificial Intelligence (AI), Machine Learning (ML), Artificial Neural Networks(ANN or NN) and Deep
Learning (DNN) are some of today’s most popular terms often confused and mistakenly used interchangeably.
The reality is that AI is the field of science and engineering that encompasses the rest of the terms aiming to
understand and most importantly to build intelligent entities [71]. The idea of what constitutes intelligence
though can vary substantially depending on the scientific discipline trying to answer that question and
therefore all these other terms are just different approaches to accomplish AI.

The different theories of intelligence can be grouped into 4 main categories, each of which claims that a
program is intelligent if is [71]:

• Acting Humanly: A program can imitate human intelligence in such degree that a human can’t tell
the difference (Empirical Science-Turing Test)

• Thinking Humanly: The input-output behavior of a program matches the corresponding human
behavior according to the known human mind theories and this acts as evidence that the program
mechanisms operate like humans and therefore is intelligent (Interdisciplinary Cognitive Science and
psychology)

• Thinking Rationally (laws of thought): The program proves to have logic in the Aristotlean way of
"right thinking", where given the correct premises it yields the correct conclusions following syllogisms
(patterns for argument structures)(Logicist tradition)

• Acting Rationally: A program acts in a way to achieve the best outcome or when there is uncertaintly
the best expected outcome. This does not focus exclusively on correct inferences as the laws of thought,
but minds it as a part of possible mechanisms to achieve rationality.

The different scientific fields and their distinct perception of intelligence gave rise to different schools of
thought on how a computer can learn more efficiently. These different ways to achieve intelligence are
studied through the field of ML, which is a subfield of AI and is defined as the study of algorithms that
improve automatically through experience [56].

The main 5 school of thought in ML emerged are [25]:

• Symbolists: They believe that intelligence can be represented as symbols that can be manipulated
the same way mathematical equations do. Their main technique is inverse deduction, which seeks what
knowledge is missing in order to make a deduction and generalize. This school of thought is coined
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as G.O.F.A.I. (Good Old Fashioned AI) [32] and is connected to laws of reasoning mentioned above.
Modern application of this school is expert systems.

• Connectionists: They believe that the brain is the most efficient learning tool in nature and it
should be reversed engineered. Their approaches are inspired by neuroscience and the prefrontal
cortex paradigm, which learns by firing and creating connections among its neurons. The problem
connectionists are trying to solve is to figure out which connections are to blame for the errors and
adjust them accordingly. Their main technique is backpropagation, which compares the system’s output
with the desired one and updates the connections of the artificial layers in a way to minimize the error.
Modern algorithms of this school are Neural Networks and Deep Architectures.

• Evolutionaries: They believe that the most intelligent mechanism in nature is natural selection,
through which everything was created. They focus primarily on learning structures and not only
adjusting parameters (like backpropagation). Their approaches are inspired by evolutionary studies
and their main technique is genetic programming, where programs are encoded as a set of genes that
can be modified using the genetic algorithm.

• Bayesians: They believe that everything is uncertain and even learned knowledge is a form of
uncertain inference. The problem Bayesians attempt to solve is to deal with noise, incomplete and
often contradicting information. Their approach is inspired by probabilistic inference, derivatives and
Bayes Theory. A modern algorithm of this school is Naive Bayes.

• Analogizers: They believe that intelligence lies on recognizing similarities between situations. Modern
algorithm of this school is Support Vector Machines, which distinguish what is important to remember
in order to make the correct prediction.

Via this categorization, it is well understood that AI is the field that aims to build intelligent entities, ML is a
set of algorithms that are trying to fulfil AI and ANN, DNN are approaches of ML belonging to connectionist
school of thought. The ANN have received great attention the past years, although its algorithms were
introduced in the public (see TV show headline in 1960s in Figure 3.1 [48]) back in 1958 (birth of neural
networks with Perceptron) and 1986 (backpropagation) [33].

Figure 3.1: TV show headline about Perceptron in 1960s - repost from [48]

This rise of Artificial Neural Networks was caused by the increasing computational power and accumulation
of data that could actually realise the potential of those algorithms. LSTM belongs to the connectionist
school [51] of thought and it is a progression of Recurrent Neural Networks, which are an alteration of Neural
Networks. LSTM follow the same principles as NNs and is critical to understand how they work and how
LSTM networks are different.

How Neural Networks work

The idea of the Artificial Neural Networks starts with the idea of the perceptron, which was introduced in
1960s by psychologist Rosenblatt [48]. Perceptron was his attempt to mathematically model how a single
brain cell operates. The network of brain cells consists of millions of neurons that transmit information
via electro-chemical signaling and form connections (synaptic connections) depening on which neurons are
inhibited or fired. The same way, the perceptron receives several inputs, it performs a weighted summation
and a binary classifier determines whether the value suffice for the cell/neuron to fire -1 or not (inhibited) -
0.
The perceptron was actually a binary classifier, a function that mapped its inputs (a real valued vector)
to an output (1 or 0). One perceptron though could not represent more complex problems on its own and
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for this reason a multilayer perceptron or neural network was created. A multilayer perceptron is simply a
network with more than one layer of perceptrons. The more the layers, it resembles the solving ability of
the human brain (prefrontal cortex) and is often referred to as Deep Learning.

Each layer is a function that serves as an input to the next layer. The more we move forward the levels
of layers the more the information is abstracting as seen in figure Figure 3.2 [31]. Consequently, the neural
network is a chain of composite functions [63] and its main purpose is to find the right weights to which the
inputs would result in the desired output (optimal feature representation).

Figure 3.2: Visualized feature abstraction per level of layer of a hand written digit-derived from Convolutional
Neural Networks - implemented by Ryerson University [31]

The way the neural networks manages to optimize the composite function is via feed-forward process and
backpropagation. The first is the process of moving forward the information from input nodes through the
levels of layers until the output node, without any cycles or loops and the second consists of the process
of moving backwards (from output to input), in order to update the weights in a way to improve the next
prediction. More Specifically:

Feed Forward Process:

The feed-forward neural network initially sets a fixed number of neurons/cells/nodes/units to represent the
input values, then the desired amount of layers (also known as hidden layers) and finally the desired number
of output nodes. Each input node is connected to all other nodes of the following layers and each connection
has a random weight assigned to it. Each input node represents an independent variable, a feature we think
it will contribute to the solution of the problem

On the first step of the training process each node of the first hidden layer calculates a weighted sum of
the input nodes, adds a predefined bias and if the produced value exceeds the required threshold of the
activation function we have assigned, it fires and activates, otherwise to remain inactive [88]. When this
process has been completed for all the hidden layers, the network outputs an estimated value. This value
will be compared to the value it should have predicted (the actual value) and generate the difference between
them (the error) via the cost function. Finally, through backpropagation the weights are adjusted in a way
that improves future predictions. Ultimately, the goal of the network is to minimize the cost function.

Backpropagation:

Intuitively speaking, backpropagation algorithm is trying through trial and error to teach the network what
the value of each weight should be in order to output the right value. For each input (iteration) the network
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makes a prediction and this prediction is compared to the correct value (or else ground truth) to find how far
the estimation was from the truth. This distance from the truth is also known as the error and is calculated
via the cost function, that reflects how wrong the network is. The goal is to minimize the cost function
and therefore decrease the distance from the ground truth. The way backpropagation minimizes this error
is by the use of optimization algorithm Gradient Descent, which technically speaking searches for the local
or global minima of a function. Intuitively speaking, gradient descent points the direction (or gradient) the
weights in the network should take so that error drop down to zero, or else to converge. At each iteration
the weight’s value is adjusted in a way and direction to reach zero error. How fast the network will converge
is defined by the learning rate, which adjusts how big the steps towards zero error would be.

Mathematically speaking, the network is actually a function of multiple or nested functions (composite
function), where each layer represents a simple function whose inputs are a weight vector and the outputs of
the previous layer [60]. So the backpropagation algorithm is accounted to optimize a differentiable function.
To achieve that, it is required to figure out the partial derivative of the error in respect to each individual
weight in the network [22]. The way backpropagation achieves this is via the mathematical formula of Chain
Rule (see figure Figure 3.3 [10] ). Chain rule is applied for all the possible paths in the networks, to find the
gradients of each weight in respect to the output, in order to update them [70].

Figure 3.3: Chain Rule - repost from [67]

The update of the weights is performed via Gradient Descent mentioned before, which given the network’s
output calculates the error of each neuron in the hidden layers moving backwards layer by layer. It finds how
much each neuron in a hidden layer is responsible for the output’s error by summing up the products between
the errors of the neurons in the next layer and the weights of the connections to those neurons multiplied
by the derivative of the activation function [10]. These errors are used to calculate the variation (delta) of
the weights as a result of the current input pattern and ideal outputs [70]. At the end of each iteration the
weights’ values are adjusted to fit the accumulated Deltas multiplied by the learning rate [70] (see formula
below Figure 3.4 [70] ) and this is how the network learns.

Figure 3.4: Formula that computes the new weights

How Recurrent Neural Networks are different to Neural Networks

Multilayer Feed-Forward Artificial Neural Networks concept is one of the most widely used tools in Machine
Learning, but its limitation is that it cannot handle sequence data. These are the data whose points are
dependent on other points [85] such as audio, text, video, time series, financial data, DNA etc. The reason
ANNs can’t handle that type of data is because they have no memory and therefore their architecture
doesn’t allow them to remember past outputs. The signals were designed to travel only one way, from input
to output without the output affecting the layer that produced it. This inability to remember past events
though, disregards all of the temporal information of sequence data [85]. Human beings don’t think from
scratch, but they rather associate past events to recent information. So they have persistent memory. To
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imitate that, RNNs were introduced, or else Feedback Artificial Neural Networks that allowed signals to
travel in both directions, giving a feedback to the node of its previous outputs [85]. As Christopher Olah
defines it [64]: a recurrent neural network is multiple copies of the same network, each passing a message to
a successor.

In reality, the recurrent cell is the same as the standard feedforward cell but it only adds the idea of loops
to the architecture. The recurrent cell has an internal memory, in a sense that outputs of the network are
conditional on the recent context in the input sequence and it’s output is taken into account by the next
input. It achieves that by feeding the previous states back to the network. In that way the RNNs take
advantage the ordered nature of sequence data.

By the same token, back propagation is conducted the same way as in conventional feedforward networks with
only a small difference, since the parameters are shared for each instance. The calculated gradients depend
not only on the processed input but on all the previous ones too [101]. In that way the input sequence is
considered to be a single element of the training set. So the error gradient for an input sequence is actually
the sum of error gradients at each time in the sequence, that is also called the Backpropagation Through
Time (BPTT) [101]. Unfortunately though, since the layers and time steps in RNNs are related to each other
through multiplication, derivatives are sensitive to a known problem called Vanishing or Exploding Gradients.
The weights’ gradients can start to become very small or very large through the numerous multiplications
for computers to learn. When sigmoid is applied to data multiple times it becomes flat with almost no slope.
The answer to this problem was Long Short-Term Memory (LSTM) network

How LSTM Networks are different to Recurrent Neural Networks

Solving the problem of Vanishing Gradients requires an architecture that allows to selectively forget states
and information that were not important. LSTM cell is a solution to this problem proposed by the German
researchers Sepp Hochreiter and Juergen Schmidhuber in 1997 [101]. It is based on its ancestors (perceptron)
but in reality its architecture is far more sophisticated.

The main idea behind the LSTM unit is that there is a separate memory or else the cell state [51], that is
being altered and updated by three (3) distinct gates that regulate what is being kept and what is discarded
from the current cell state. These gates help to avoid possible weight conflicts and separate them from the
main cell state - memory [35]. The unit takes as an input the current input, previous output and previous
memory-cell state and generates a new output and a new/altered memory-cell state for the next LSTM unit
and sequence input to process [98] (see figure Figure 3.5 [98]).
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Figure 3.5: LSTM unit - repost from [98]

More specifically the function of each gate is:

Forget Gate Layer:

This gate evaluates the previous cell state and decides what information will be discarded from the old cell
state. The decision is made by a sigmoid function and outputs a number between 0 (discard completely the
old cell state) and 1 (keep entirely the old cell state) for each number in the old cell state. This is an one
layer Neural Network with a sigmoid activation function (see below [64] ).

New Memory Gate Layer:

This gate consists of two separate steps and evaluates which information will be stored in the cell state and
updates them. The first step is called the input gate and is responsible to select which values of the old
cell state - memory will be updated. This is achieved through an one layer Neural Network with a sigmoid
activation function. The step is responsible to create new candidate values of the cell state through a different
Neural Network layer and the information of what should be stored in the cell state are ready (see below [64]).

The new cell state is updated by multiplying the old cell state, with the output of the FG, in order to keep
the amount of the old cell state it was decided and then add the amount of information it was decided to be
stored via the New Memory Gate (see below [64]).

Output Gate Layer:

This is the last layer of the LSTM unit and is responsible to form the new output. The previous output and
sequence input are filtered through an one layer Neural Network with a sigmoid activation function in order
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to decide which parts of the cell state will be selected and the output is multiplied by the new cell state after
being rescaled between the -1 and 1 via a tahn activation function (see below [64]).
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Chapter 4

Pose Estimation

Pose Estimation Problem

Pose estimation is the problem of localizing anatomical keypoints (“parts”) or human joints [14] [86] in order
to recover a representative layout of body parts from image features [61]. The problem poses challenges
on both hardware and software level. On hardware level, different viewpoints of the same pose can create
different appearances and often special equipment is required such as 3D depth camera, infrared camera,
multiple cameras or specialized equipment such as Kinect or Motion Capture [73]. On software level, some
of the basic challenges are the unknown number of people that appear on the frame and could potentially
increase the runtime complexity and false positives, along with partially occluded limbs that make part
detection trivial.

Moreover, until recently, there was a shortage of quality datasets that included people with their body
parts annotated, making the problem even more difficult to resolve. This gap was breached by the arrival
of COCO dataset [1], MPII dataset [6] and VGG dataset [2]. Each one of those introduced their own way
to represent the human pose, with different body landmarks. More specifically, as seen in Figure 4.1 1,
the COCO dataset uses 18 points (17 human joint points and 1 for the background), while MPII uses 15
(14 human joint points and 1 for the background). These datasets and Coco’s Keypoint Detection Task 2,
invited more people to approach the pose estimation problem.

There are two main approaches to pose estimation problem: a top-down and bottom up approach [61] [14].
The top-down approach aims to localize the objects-humans first and then estimate their joints-limbs
individually. Although this approach seems intuitive, it conceals the danger of overall failure in case the
person is not detected or detected incorrectly ( ex. two people being classified as one person within a
bounding box - very likely when close interactions take part). In addition, the computational time is
highly correlated to the number of people in the frame. On the other hand, bottom-up approach is done on
pixel-level (taking into account all pixels of the frame) and aims to identify body-parts first. The pixel-level
analysis is important since it forms a global context of the frame (missing from previous approach), so that
it is easier to distinguish between people. After the body parts are detected, they are combined into its
human-pose representation.

In this project, the method used for pose estimation is based on Carnegie Mellon University’s paper “Realtime
Multi-Person 2D Pose Estimation using Part Affinity Fields” and belongs to bottom-up approaches. The
paper has released the implementation of their method through the creation of a C++ library called
OpenPose.
1The COCO body landmarks were retreived by the official github of paper mentioned in Ubid., cit. 1(15) url:
"https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/output.md". The MPII’s body landmarks
were drawn based on the MPII guidelines for showcasing purposes

2COCO Keypoint Detection Task requires localization of person keypoints in challenging uncontrolled conditions, url:
http://cocodataset.org/#keypoints-2017

13



Figure 4.1: Body Landmarks of COCO and MPII datasets

OpenPose

OpenPose [14] is a C++ library using OpenCV and Caffe [41] developed by Carnegie Mellon University
using COCO and MPII datasets. It includes three sets of pre-trained models ( for body, hands and faces’
pose estimation). Each set has several models depending on the dataset they have been trained on COCO
or MPII [80]. OpenPose was the winner of 2016 MSCOCO Keypoints Challenge, 2016 ECCV Best Demo
Award, and 2017 CVPR Oral paper. Available implementations other than C++ are Tensorflow (using
CPU), Pytorch, Chainer, MXnet, MatConvnet and CNTK. In June 2018, it was released a Python API for
OpenPose [19]. In this project the Tensorflow implementation [45] (using CPU), along with OpenPose’s
Python API are compared and used.

As stated in the official github README.md file, OpenPose implements bottom-up approach for realtime
multi-person pose estimation, without using any person detector. In a nutshell, the strategy the paper follows
is to detect the position of each of the body parts for every person appearing in a frame and represent
human pose as a graph of parts. The detection of the body parts and limbs is done through a 2 branch
neural network, a new idea introduced called Part Affinity Fields (PAF). Moreover, the connection of the
limbs to a human pose model is represented as a k-partite graph assignment problem. This is not a new idea
and is dating back to Pictorial Structures (PSs), introduced by Fishler and Elschlager [86]. The challenge
of this technique though, is that finding the right part connections that forms a full human through a fully
connected graph is an NP-hard problem and it could take hours depending on the number of people present
in the frame. OpenPose approached this problem in a greedy manner 3, by decomposing the fully-connected
graph into a set of bipartite graphs.

The paper includes two models, one trained on Multi Person Dataset (MPII) and one on the COCO dataset.
So one can choose the desired body-landmarks output to be like MPII, COCO or BODY_25. The last is a
25 body parts representation (24 joint points and 1 for backgroun) which consists of foot landmarks added
to COCO body points, as seen in Figure 4.2 [14].
3A Greedy strategy completes a task of size n by incrementally solving the problem in steps. At each step, a Greedy algorithm
will make the best local decision it can given the available information, typically reducing the size of the problem being solved
by one. Once all n steps are completed, the algorithm returns the computed solution. [34]
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Figure 4.2: Body Landmarks of BODY_25 - repost from [14]

The output is a 25-dimensional array, where each sub-array represents a body-part position in the pixel
coordinate system 4. It is important to examine each step of the OpenPose pipeline and understand all the
stages the image-frame undertakes before the result described above is reached.

Pipeline
The overall Open Pose pipeline is summed up in the diagram below Figure 4.3 [14]:

Figure 4.3: OpenPose Architecture - repost from [14]

Feature Extraction:

The first step of the pipeline is the feature extraction from the input image-frame. This is accomplished via a
Convolutional Neural Network (CNN) structured by VGG-19 architecture. There are different architectures
a CNN can be structured, but VGG-19 was preferred. The latter is the winner of ImageNet Challenge 2014
and one of the most commonly used architectures. It comprises of a 19 layer depth network that uses very
4A digital image is made up of rows and columns of pixels. A pixel in such an image can be specified by saying which column and
which row contains it. In terms of coordinates, a pixel can be identified by a pair of integers giving the column number and the
row number. For example, the pixel with coordinates (3,5) would lie in column number 3 and row number 5. Conventionally,
columns are numbered from left to right, starting with zero. Most graphics systems, including the ones we will study in this
chapter, number rows from top to bottom, starting from zero. Some, including OpenGL, number the rows from bottom to top
instead. [26]

15



small (3x3) convolution filters along with aggregating techniques such as pooling [78]. The features are then
fed into a two-branch multistage CNN for body part and limb detection.

Body part and limb detection:

The features from the VGG-19 Convolutional network are fed into a two branch multi stage CNN, for further
body part and limb prediction. To achieve that, a special feedforward network is used as feature extractor
that is trying to simultaneously calculate heatmaps and affinity fields, that are used to detect body joints
and associate them to form body parts. More specifically:

• Heatmap: [81] (beige color- Branch1) is a detection confidence map, aka a matrix that stores the
confidence the network has that each pixel belongs to a certain body joint . If we use the BODY_25
body landmark representation, 25 (+1 for background) heatmaps would be produced, each for every
body joint and indexed as mentioned earlier in the chapter in Figure 4.2. So, if there were 2 people
in a picture, the heatmap for "head" would had to include very high probabilities for at least 2 pixels,
while the heatmap for "elbows" would need to include atleast 4 pixels, since 2 people have 4 elbows in
total.

• Part Affinity Fields: [81] (blue color - Branch2) is a set of 2D vector fields that encode the location
and orientation of the limbs (body parts) . For each part there is a Part Affinity Field (PAF) in the x
direction and one in the y direction. There are 50 PAFs for each pair.

At the end of this part of the pipeline, for one picture, the network would have produced 25 heatmaps and
50 (25*2) Part Affinity Maps.

Non Maximum Suppression:

After we have the confidence map for each body part, the algorithm Non Maximum Suppression (NMS) is
applied to turn the pixel probabilities into specific points. The NMS algorithm steps [81] are:

• Take the first pixel of heatmap of x body part

• Surround the pixel with a filter (pixel window) of size 5 and keep the maximum value

• Use the max value to replace the center pixel value

• Slide filter one pixel and repeat in entire heatmap

• Compare original heatmap and new heatmap. The pixels that have the same value in both are the
peaks and final points Suppress the other pixels by setting their value to 0.

After this process we end up with body part points.

Bipartite graph:

In this part, all candidate body parts find the right pair to connect and form a limb. This is solved as a
regular assignment problem from graph theory. Since the assignment problem in fully connected graph is an
NP-hard problem OpenPose approaches it in a greedy manner, by decomposing the fully-connected graph
into a set of bipartite graphs. Each body part is considered a vertix and each pair candidate is considered
an edge. All the sets of body parts will be connected with one another and form a complete bipartite graph.

Line Integral:

Line Integrals extend the concept of simple integrals by doing what integrals do (only applicable in 2D)
but into 3 Dimensions [12]. Integrals help us combine-integrate quantities when multiplication can’t, such
as changing numbers or vectors [7]. In our case, we have vectors in Part Affinity Fields that capture the
position and direction from one body part to other, forming possible limbs. With the line integral we can
measure their effect, by giving each connection a score that will be saved as a weight between the body parts
detected and represented in the bipartite graph.

The candidate limb formed by connection of certain pair of points is examined on whether is aligned with
the corresponding PAF and if so, it is considered a true limb. By the end of this process, we would have
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gathered all possible body part connections broken down into pairs, with its equivalent scores. This will allow
us to solve the assignment problem, in order to create the final full body model. A simplified version of the
problem is seen in Figure 4.4 [14] below:

Figure 4.4: repost from [14]

In the end, this graph forms a matrix and is solved by the connections with the higher scores and others are
dropped. By the end of this process we have the body parts and their correct connections between them. It
is only left to merge them together.

Merging:

The last step of this pipeline is merging, so that we form the final skeleton. The way this is achieved, a
naive assumption is made that each part is a Human. So its human has an index, and a coordinate x and y,
represented into tuples. If there are 2 tuples with the same part index it means that they belong to the same
person, so these tuples are merges and the human was represented ceases to exist. This process repeats until
there are no more tuple parts.
Finally, the pipeline can be summed up in Figure 4.5 below:
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Figure 4.5: OpenPose Pipeline - repost from [81]
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Inference Time
The inference time of a model can vary depending on the hardware the processes are run on, along with the
architecture and efficiency of the model itself. On the hardware part, this project was ran on Lenovo Y700
laptop, with Ubuntu 16.04 Operating System. The specifications of it can be seen in Figure 4.6, Figure 4.7
below:

Figure 4.6: Lenovo Y700 system specifications

Figure 4.7: System GPU information

On the model part, Tensorflow implementation of OpenPose that is run on CPU and the original OpenPose
Python API that uses GPU, were selected as candidate pose-estimation models.

Tensorflow implementation of OpenPose:

It provides multiple variations of the OpenPose’s VGG pretrained network models mentioned in the original
paper. More specifically:

• CMU: the original paper’s model, with weights converted in Caffe format to use in tensorflow

• DSCONV: a trained model using transfer learning that uses the same architecture as CMU. The author
notes that speed and accuracy are unsatisfactory

• MOBILNET: these models are a product of a network architecture that on the feature-extraction part
of the pipeline uses 12 convolutional layers instead of 19 in the original paper.

– mobilnet

– mobilnet_fast

– mobilnet_accurat

According to the github documentation, the time inference for each model is (Figure 4.8):
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Figure 4.8: Time Inference Benchmark for models in TensorFlow OpenPose version

The models run for this project was CMU and MOBILNET, with CMU’s mean time inference to be 2.98
seconds per frame and MOBILNET’s mean time inference 0.21 second per frame. Indicatively, the run time
logger of both models can be seen in Figure 4.9

Figure 4.9: Run time Logger of Inference Time for CMU (up) and MOBILNET (down)
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Original OpenPose Python API:

It uses the architecture and pretrained model of the original paper. According to its documentation,
depending on the infrastructure the network speed changes. Indicatively, more detailed information can
be seen in the OpenPose Benchmark for each GPU model in Figure 4.10 [20] below:

Figure 4.10: Time Inference Benchmark for original OpenPose model per GPU

Taken into account OpenPose’s GPU Benchmark, the laptop used for the present project could produce pose
estimates for almost 3.4 frames per second.
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Chapter 5

Dataset

Datasets for Video Classification

The problem of video classification is studied with the help of video data. The datasets have different
characteristics, depending on the problem they were created to solve. More specifically, video datasets can
vary in size, quality, degree of constrain and label type [75]. Consequently, the videos can be rather short
or long in length, have different resolutions, frames per second and be temporally segmented depending on
the action performed or left unconstrained with no processing("in the wild" [72] [82]). The last, has the
advantage of testing models on realistic, user-produced videos publicly available. However, it comes at a cost
of added complexity created by large variations in illumination, scale, camera motion, viewpoints etc. Among
the publicly available "in the wild" video datasets, that are large enough for deep learning architectures and
don’t require techniques such as transfer learning, are:

• UCF101 - Action Recognition Data Set [82]:
UCF stands for University of Central Florida and is a collection of 13.320 Youtube videos from 101
categories, grouped in 25 groups, where each group consists of 4-7 videos of an action. The categories
are divided into 5 types:

– Human-Object Interaction
– Body-Motion Only
– Human-Human Interaction
– Playing Musical Instruments
– Sports

As shown in Figure 5.1 [82], the videos’ length vary. The dataset consists of unprocessed Youtube
Videos. The only processed element is the labels, since the video content is known.

Figure 5.1: UCF101 dataset videos’ duration distribution - repost from [82]

• UCF50 - Action Recognition Data Set [82]:
This is the same as UCF101 consisting of 50 categories instead of 101. The categories are grouped into
25 groups where each group consists of 4 action clips.
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• YouTube-8M: [3]
The dataset was created by Video Understanding group of Google AI Perception and consists of
6.1 million video Youtube URLs and 3.862 class labels1. It is machine-generated by YouTube video
annotation system in addition to human-based filtering on metadata and query click signals to ensure
the quality of label-video matching [43]. The dataset is accompanied with its pretrained model.

Figure 5.2: YouTube-8M Dataset histogram showing the number of videos per category. Each video may be
annotated with more than one class - repost from [3]

• Sports-1M Dataset [43]:
This is a subset of the Youtube-8M dataset (see above), focusing on sports. It consists of 1.113.158
videos with 487 sport label classes. The dataset is accompanied with its pretrained model. Since the
dataset is focused in sports is a good candidate for pose estimation analysis.

• HMDB51 [47]:
HMDB stands for Human Motion database. It was created by Brown University Research Group,
consisting of 6.849 videos divided into 51 action categories, each containing a minimum of 101 clips. It
was collected by movies and public databases such as Prelinger archive, Youtube and Google videos.
The human motions included concern action that incporporate both face and body. As shown in
Figure 5.3 the body parts included in the video are identified, making it useful to select the appropriate
data for human pose estimation analysis.

• Hollywood2 [54]:
The dataset was created by IRISA (Institut de recherche en informatique et systèmes aléatoires) the
joint computer science research center of CNRS, University of Rennes 1, ENS Rennes, INSA Rennes
and Inria located in Brittany, France. It was composed of video clips from 69 movies and consists of 12
human actions’ classes and 10 classes of scenes, distributed over 3.669 videos 2. See below in Figure 5.4
for more details on the actions and scene information.

For cases where dataset size is not important, there are more available video-datasets. Indicatively:
1The amount of data has changed from the release of the dataset’s official paper. Data taken from updated dataset site:
https://research.google.com/youtube8m/

2Data taken from the official and updated dataset site: http://www.di.ens.fr/ laptev/actions/hollywood2/
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(a) Distribution of body part per category (b) Duration Distribution per time threshold

Figure 5.3: Indicative statistics of HMDB51 database - repost from [47]

Figure 5.4: Action and Scene categories of the Hollywood2 dataset - repost from [54]
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• KTH Dataset [74]:
It was created by KTH Royal Institute of Technology, containing 600 artificial videos (data was staged
by actors and is not realistic). It consists of 6 types of actions and 100 clips per category.

• Weizmann Institute Dataset [11]:
It was created by Weizmann Institute and consists of 10 action categories and 9 clips each.

Dataset Selection

The current project aims to use anatomical points of people in frames as features to a sequential deep
learning architecture, such as this of LSTM (Long short-term memory). Consquently, the desired video
dataset should contain full human bodies, performing different actions. The pose-estimation module includes
additional models for head and upper body pose estimation. Consequently, a dataset where the videos’
human body parts are annotated and known(like HMDB51 dataset), could be taken into account so that the
appropriate model is used for the pose estimation process. However, since in realistic unconstrained videos
the human body parts included in the video are not known in advance, this idea was abandoned.
In place of this, an unconstrained dataset with category actions that theoretically utilize full human body
was preferred, aiming to result in a realistic classification model. For this reason, the Sports-1M Dataset
was chosen.

The Sports-1M Dataset is a subset of the Youtube-8M dataset focusing on sports. It consists of
1.113.158 videos with 487 sport label classes. The positive aspects of this dataset are:

• Size:
Each sport’s category has more than 1000 videos each.

• Topic:
The dataset’s topic is sports, where sports incorporate, most often than not full body utilization, making
it suitable for human pose estimation.

The challenges of this dataset are:

• "In the wild" obstacles:
The unconstrained videos add extra complexity due to large variations in illumination, scale, camera
motion, viewpoints etc.

• Machine-generated dataset:
Since the dataset is machine-generated by YouTube video annotation system, there is a high margin
of error during the selection of the videos’ urls. It is possible that a lot of videos include in their titles
sports not because they are executing them, but rather talk about them. Moreover, with a random
selection of videos to preview, a lot were found to be unrelated to the sport assigned to, in other cases
the camera motion was so high that no clear image could be formed whatsoever and in worst cases
the video was not available to preview. For this reason, it is difficult to determine the percentage the
dataset’s error is contributing to the overall model performance’s error.

Exploratory Analysis of Dataset
Sports-1M Dataset contains more than 1 million videos with 487 sport label classes. For the purposes of
this project, it was decided that the use of all the sports’ labels would not bring any additional value for the
extra processing time, computational power and memory usage that would require. As a result, 5 labels were
selected, that fulfilled the criteria:

1. the sport category must include more than 1000 video clips:
The higher the videos assigned to the label, the higher the probability of actually acquiring 1000 videos
as an end result. This is important for future data loss from unavailable videos listed in the dataset,
and from post processing.

2. the sport must require full of half-full body to be executed:
This is imperative since the purpose of the project is to analyse the poses of people in frames as they
progress in time.
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The sports labels’ selected are:

• Bowling

• Olympic Weightlifting

• Squash

• Table Tennis

• Wing Chun

The video urls were downloaded and both statistical and graphical exploratory data analysis was applied, to
create a better understanding of the characteristics of the dataset. The indicators measured were duration,
frames per second (fps) and resolution.

Within Differences

The within differences examine the vertical differences of the overall dataset as a unit and not in-between its
categories. To investigate the within differences both quantitative and graphical representations of the data
were analysed.

Figure 5.5: Quantitative within-differences of subset selected from Sports-1M dataset

According to Figure 5.5 and Figure 5.6, we can observe:

• 10.646 videos were downloaded from the 12.979 urls initially selected

• As seen in Cumulative distribution in Figure 5.6, close to 90% of videos’ duration is around 5 minutes

• Videos’ duration:

– the average video in all categories is approximately 5 minutes long

– the range of videos’ duration is between 0 seconds to 8.8 hours long (529 minutes)

– 25% of videos’ duration is almost 1 minute

– 50% of videos’ duration is 2.5 minutes

– 75% of videos’ duration is 5.9 minutes

– most videos’ duration (68% of data) appear unintuitively to be 12.67 minutes longer or shorter
than the mean duration (1 STD) biased by the dispersion of data. The dispersion of dataset’s
duration expressed in Coefficient of Variation (CV) is approximately 2.7 units (std/mean)

• Videos’ Frames per Second(fps):

– the average fps are 27

– the range is between 6 to 60 fps

– 25%, 50% and 75% of videos have from 25fps to 30fps

– most videos’ fps (68% of data) are within range of 21 to 31 fps (5 fps 1 STD). Its Coefficient of
Variation is 0.2 units
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Figure 5.6: Graphical within-differences of subset selected from Sports-1M dataset. Normal and Zoomed In
Histogram and Cumulative Distribution

• Videos’ Resolution:

– the average resolution is 295.499 overall pixels, aka a little less than 480p (720 x 480)

– the range is between 12.288 (aka a bit more than 120 x 90) and 2.764.800 (1920 x 1440)

– 25% of videos’ resolution 97.200 pixels (a little less than 240p: 426 × 240)

– 50% of videos’ resolution 172.800 pixels (close to 360p: 380 x 360)

– 75% of videos’ resolution is 230.400 pixels (aka 480p)

– most videos’ resolution (68% of data) are going as high as 620.518 pixels (close to 720p: 1280 x
720) (1 STD)

The big picture of dataset’s within-differences is normal, since the mean and 50%, 75% percentiles for all
indicators (duration, fps, resolution) don’t vary substantially. A few outliers are noticed (min and max
values are very different to the mean and percentiles), but they are not enough in number to distort the
overall dataset’s statistics.

In-Between Differences

The in-between differences refer to horizontal differences that seeks to find the differences between its
distinct categories. To investigate that both quantitative and graphical exploratory analysis was conducted.
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Figure 5.7: Graphical in-between-differences of dataset’s sports categories - Violin Plot

Figure 5.8: Zoomed In: Graphical in-between-differences of dataset’s sports categories - Violin Plot

As seen in Figure 5.7, duration appears to have around 9 major outliers in bowling, squash and table
tennis categories. Similarly, frames per second have a small amount of outliers concentrated around bowling
category. Lastly, resolution’s major outliers appear mainly in bowling category with the rest sharing the
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same outliers among all categories, creating uniformity.

Additionally, by zooming into violin plots in Figure 5.8, we can observe that the shapes of mainly squash
- table tennis,bowling and olympic weightlifting - wing chun seem to be alike, indicating similarities in
dispersion of videos’ duration. In the same way, olympic weightlifting - squash, bowling and table tennis
- wing chun appear to share similar distributions of their videos’ frames per second. Finally, olympic
weightlifting - table tennis - squash -wing chun show similarities on their videos’ resolution distribution.

As verified in Figure 5.9 the overall differences don’t appear to be extreme, but rather mild.

Moving on to quantitative analysis in Figure 5.10 we can make the following observations:

• the number of videos per category is close to 2000 with table tennis being the smallest in number (2046
videos)

• duration per category varies, with 68% of videos be within the range of 2 to 7 minutes. Table Tennis
is the category with the longest videos in average(mean duration almost 7 minutes) and olympic
weightlifting the category with the shortest videos in average ( mean duration 2.1 mins)

• we confirm that squash, table tennis and bowling are the categories with the major outliers (8.8h, 8.25h
and 8.35 long videos accordingly), which affects their means and stds. These are also the most variant
with Coefficient of Variance of 3.6, 3, 2.3 units, compared to 1.2, 2, 1 of bowling, olympic weightlifting
and wing chun accordingly

• frames per second (fps) shows small differentiation with mean values be within the range of 25 to 27
fps. Almost all categories have max 30fps with the exception of bowling (max: 60)

• resolution varies too, with average videos of categories exist within the range of less than 360p to more
than 480p

Figure 5.9: Radar Chart of duration, fps and resolution per category
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Figure 5.10: Quantitative in-between-differences of dataset’s categories

Lastly, the exact amount of duration outliers was investigated, by counting the number of videos per
category that fell into the different duration ranges defined (longer than 1h, 1h-30mins, 30mins-15mins,
15mins-10mins, 10mins-5 mins, 5 mins-1min).

As seen in Figure 5.11 there are only 44 videos over 1 hour and 56 between 30minutes and 1 hour. Most
videos appear between 0 to 10 minutes (7.729 videos : adding ranges of 0-1min, 1-5mins and 5-10minutes).
Once again we confirm that the biggest outliers appear in categories squash, table tennis and bowling.

Figure 5.11: Videos found per category per duration ranges
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Conlusion

In conclusion, the selected subset of Sports-1M Dataset does not include videos of fixed duration and resolution
but appears to have quite similar fps. On the duration variance, is important to decide how to fix duration at
a certain time window, so as to extract the same amount of frames from all videos and use this to define the
shape of the LSTM network’s input. On the resolution variance, is necessary to understand how is affecting
the ability of candidate models to pose estimate accurately, in order to discard videos that produce low
quality pose results. All these findings will unravel the constraints of the system to be built. Finally, due to
a lot of inherent errors residing in the dataset (since it is a machine-generated dataset and not a manually
selected one), some extra basic natural language preprocessing is required, to spot possible non-sport videos.

Dataset Cleaning

As mentioned previously in the chapter, the dataset is highly likely to include a lot of videos that are not
related directly to the label attached to. This is because it is a machine generated dataset and was not
manually selected by humans. For this reason, in order to minimize the error as much as possible, a very
basic Natural Language Processing (NLP) technique was utilized.

More specifically, all the video titles were represented as a bag of words. The bag of words(BoW) creates a
vocabulary of unique tokens [69] of a given text. The goal was to create a vocabulary of unique words that
we would be able to manually examine. The produced bag of words was a 8.582 long list of unique words, a
fragment of which can be seen in Figure 5.12.

Figure 5.12: Bag of Words representation of Videos’ title

From the list of unique words found in the dataset, there was a word and its variations, that could imply
that the content of those videos are not likely to actually perform a sport, but rather talk about it. The
words are: interview, interviewing, interviews, inteview, interview_.
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Figure 5.13: Number of videos per category found to have the word ’interview’, ’interviewing’, ’interviews’,
’inteview’ and ’interview_’

As seen in Figure 5.13, 139 videos had the word interview, 2 interviewing, 3 interviews,1 inteview and 1
interview_. Those videos will not be included in the training process.
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Chapter 6

System Constraints

In subsection 5.2.1, exploratory analysis was applied on the dataset to understand its main characteristics.
The dataset was examined through the prism of three (3) variables: duration, fps and resolution, which they
were found to vary substantially from video to video. The dataset is to be used to extract human poses from
each frame of the video and then use that collection as features to an LSTM model, in order to recognize
the sport label the video belongs to. To achieve high accuracy, is important to understand how much video
duration is ideal to obtain good classification results and how much resolution is necessary to produce quality
pose-estimates. In this section is evaluated how the dataset’s variability in duration and resolution affects
the overall system and set its constraints.

Resolution

The dataset’s videos were found to have varied resolutions, ranging from less than 120x90p up to 1920x1440p.
Those videos are used to extract the peoples poses from each frame using a pose-estimation model of choice
and is important that the model functions properly irrespective of the video’s resolution. In this section, is
examined how the predictions of each pose-estimation model are affected depending on the resolution. The
candidate models (analysed in chapter 4) are: mobilenet-thin, tensorflow cmu and cmu Python Wrapper.
Indicatively three (3) videos were selected from the dataset, of different difficulty. The level of difficulty is
defined by how many people and objects are in the video. More specifically, the levels are:

• High Difficulty: video multiple people

• Medium Difficulty: video with few people and objects interfering

• Low Difficulty: video with one person

Each video selected had a resolution as high as 1920x1080 and downsized to four (4) different resolutions.
The resolutions available for each video are:

• 256 x 144 p (144p)

• 352 x 240 p (240p - SD)

• 640 x 480 p (480p)

• 1280 x 720 p (720p) (Half HD)

• 1920 x 1080 p (1080p) (Full HD)

In Figure 6.1, Figure 6.2 and Figure 6.3 are presented the model comparisons per resolution and different
level of frame difficulty.

In High-Difficulty Frame (Figure 6.1), there are 10, small in size people to be detected. Mobilnet model
appears to be the weakest in detecting people, not making any detections until 480p (1 of 10 people) and
with not satisfying results even in 1080p (3 of 10 people). Better results seem to show the cmu model
implemented using tensorflow with some mild detection in 240p (1/2 of 10 people), with more sufficient
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detections after 480p (2 of 10 people) and not great differences from that point after. Finally, the best
results are granted to cmu model of the original Caffe implementation with Python Wrapper, that detects
people even in 140p (2 of 10 people), with more detections than any other model at 240p (4 of 10 people)
and increasing ever after making almost no difference after 720p (9 of 10 people).

Figure 6.1: Model Comparison per Resolution on frame with multiple People - High Difficulty
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Figure 6.2: Model Comparison per Resolution on frame with few people and objects interfering - Medium
Difficulty
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Figure 6.3: Model Comparison per Resolution on frame with one person - Low Difficulty

In Medium-Difficulty Frame (Figure 6.2), there are 2 people and 1 person’s leg, with the central person
holding a barbell, which could possibly confuse the detection. All three (3) models detect accurately the
central person, which is also the main subject, but cmu Python Wrapper’s model detects both people in the
frame and the person’s leg from 140p, while the second person is detected only by cmu model with tensorflow
in 1080p.

Lastly in Low-Difficulty Frame (Figure 6.3), there is only one person. All three (3) models detect accurately
the person, which is also the main subject, but cmu Python Wrapper’s model detects both people in the
frame and the person’s leg from 140p, while the second person is detected only by cmu model with tensorflow
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in 1080p.

In conclusion, the best model appears to be cmu Python Wrapper, which in higher difficulty frames it appears
to have the best results after the resolution of 720p.

Video Duration

As seen in subsection 5.2.1, the videos of the dataset have durations that are within the range of a few seconds
up to 8.8 hours long. If a brute-force approach was followed and only 10 seconds were used from each video,
aka approximately 270 frames ( based on the foundings in subsection 5.2.1 indicating that the average video
has 27 frames per second ), with OpenPose Python API cmu model being the fastest and most accurate,
with 1 second per pose extraction (as seen in subsection 4.2.2), it would require 35 days before we had the
pose features. Additionally, during the random selection of 10 second video fraction, it would be unknown
whether the video contained people conducting the actual sport or noise, such as zooming into the audience,
on player’s face or just showing the room during break time. Ideally, we could double our sample to increase
the probability of actually capturing the sport, but that comes at a cost of doubling the processing time. As
is well understood, it is a multivariate problem and the decisions on how the features are extracted would
affect directly the accuracy of the classification model. For these reasons, it was attempted to ensure quality
video features for the least amount of necessary time, by applying minimal filtering on the frames before
selection and restrict the frames into a specific number for each video.

Quantity of frames selected:
Intuitively, it seems computationally expensive and reduntant to use all frames within the second fraction of
the video, since the changes in human motion doesn’t change as fast. For this reason, it was decided first to
select two (2) frames per second, in order to capture the possible pose changes that may happen in a second,
without increasing too much the processing time.

In order to gain more control over the processing time and due to the high variability of videos’ durations,
it was also important to determine the maximum frames to be selected from each video. This approach was
trying to prevent the excessive load of processing time on the longer videos. As seen in subsection 5.2.1,
there are 44 videos between 30 minutes and 1 hour and if an one (1) hour video would take two (2) hours to
process (at a 2 fps rate), then for the 56 videos alone would require approximately 4.5 days. Additionally,
this approach allowed the utilization of the whole dataset, even the 44 videos that are over 1 hour, that in
other case would might be wiser to discard.

The window of frames selected for each frame was set to 30, which corresponds to 15 seconds of video time
and approximately 4 days of processing time for the entire dataset. A smaller window to this would risk to
not capture the sport in action, so it was preferred to increase the number of frames and the probabilities
accordingly.

Quality of frames selected:
The approach of the 30 frames window was thought as a way to increase the probabilities of capturing the
sport in action, but at the same time it also increased the probability of those frames containing noise.
For that reason it was attempted to filter each frame before selection and those that were lower than the
determined threshold of frame interest to be discarded while the rest to be added in the list of selected
frames.

Index of Interest: In a controlled environment where the people conducting the sport were isolated and
centered towards the camera, the sport motion is sure that it would be captured successfully, as there are no
unrelated information interrupting it. On the other hand, on videos with unconstrained environments the
behavior of the person recording the video is uncertain. More specifically, the video can contain zooms into
the face, hands etc. of the person who conducts the sport, or shift the focus into the reaction of the crowd
and even focusing on the empty field, course, track etc. The pose estimation model does not distinguish
between people of interest and unrelated noise people, so it will extract the poses of all people in the frame.
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Feeding all the people of the frame into the classification model, would introduce a lot of noise, increase its
computational complexity and processing time and decrease the accuracy of the model. To avoid that, the
frames were filtered and only up to two (2) most relevant people were kept as features for the classification
model. This will not necessarily prevent the model to save poses from frames with crowd but it will make it
harder and will ensure that when it does, it selects the least amount possible. Finally, it will make sure that
frames without people, or a few not important people, along with zooms into a person’s face or body part
would be discarded.

The technique used to achieve that was the Index of Interest, which aimed to keep only the most interesting
people of the frame, as can be seen in Figure 6.7. What makes a person interesting is how complete,
central and big is in relation to the rest of the people in the frame. These are represented by the indexes
of completeness, size and centrality that are calculated for each person in the frame.

Figure 6.4: Before and After applying Index of Interest on Frame

The completeness of each person is calculated based on the body landmarks of BODY_25. Each body
point is assigned with a weight depending on the importance of the joint capturing the motion of a person.
All weights sum up to 1, with 1 meaning that the person is 100% complete and 0 as 0% complete. As seen
in Figure 6.5, points like nose, ears and feet were considered less important and were assigned the lowest
weights. On the other hand points like shoulders, arms, forearms, pelvis and thighs had higher weights.
Finally, if the person doesn’t have a torso (aka the points of the neck and the pelvis) then it is immediately
considered an incomplete person and therefore is assigned a 0 completeness score.

The size of each person was calculated by comparing the person’s torso to the torso of the biggest person
that could hypothetically appear on the frame. In order to determine the biggest possible person, a picture
of a person in a relaxed pose was taken and pose estimated. After acquiring the body parts of the person,
they were summed up and then divided by each individual part, in order to find the ratios of each in relation
to the overall body part summation. Then the torso’s ratio was used as a rule to extract the same proportion
from the diagonal line of the frame (starting from one corner of the frame to the other) - which was serving as
the biggest possible distance existing in the current frame - and estimate the biggest possible person’s torso.
Finally, the person’s size was expressed as the ratio of the person’s torso to the biggest possible person’s torso.

The centrality of each person was calculated by how many of its body parts were located in the center of
the frame. More specifically, two centers were created, the outer and the inner. For the outer center the
frame is divided into 6 pieces in both x and y axis and a rectangle is drawn from 1 to 5 in both axes creating
the center and excluding the padding left around it. Lastly for the inner center, the rectangle is drawn from
2 to 4 in both axes again, serving as a stricter center. Based on those two centers, if the person’s body
joint is located inside the inner center, is multiplied by a coefficient to increase the importance of those
body joints. Lastly, the inner and outer center’s body joints are summed with the final score signifying the
centrality of the person. As seen in Figure 6.6, the people that are further away from the outer and inner
center are not taken into account (only the torso of the people was drawn on the figures).

By the end of these calculcations, each person would be represented as an array of their completeness, size and
centrality indexes. These indexes will determine who is selected as the most interesting. More specifically,
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Figure 6.5: Weights assigned to each body joint of BODY_25’s body landmarks model

the control flow will first find people that their level of completeness is greater than 0.7 (aka 70% complete).
Then, from the pool of the complete people found, only the people with level of centrality of 1 (aka 100%
central) are selected. Then, central peoples’ deviation is calculated along with the deviation of each person’s
size. The deviation of the top 2 biggest and most central people is set as a threshold of minimum deviation
a person should have before is considered adequately big and central. At the final stage, the people who can
meet both the deviation threshold of size and centrality are selected from the pool of complete people. The
maximum number of interesting people that can be selected is either 1 or 2.

Sequences of Frames: The examination of each frame before selection with the index of interest would
filter out noise and avoid possible unrelated frames, but at the expense of additional time. More specifically,
in terms of processing time, the worst case scenario is that a large video would not contain the sport at all
and it would have to go through the entire video without finding any interesting frame, adding up empty
time. Additionally, in terms of quality of frames, the worst case scenario is to go through an entire long
video and attain 30 sporadically selected frames, in which case the goal of capturing the motion in poses
would fail. For this reason it was decided that only the 30 sequential frames of each video would be kept for
processing, risking to lose the videos that don’t suffice.

The dataset was processed and from each video was attempted to acquire 30 frames, depending on their
index of interest. As seen in Figure 6.7 from the 10.646 overall videos of the dataset, 10.327 were found to
have at least 1 interesting frame. From those 10.327 videos, 8.572 were found to have 30 interesting frames
and 414 to have less than 10 as seen in Figure 6.8. The fact that not all videos found to have interesting
frames, indicated and was manually confirmed, that probably the remaining 319 videos didn’t include people
conducting a sport.

Lastly, the 10.327 interesting videos, were investigated further to see how many of those had sequential

39



Figure 6.6: Results from the Centrality Measurement

frames, which would increase the probability that the sport’s motion was captured. As seen in Figure 6.9,
9.126 videos were found to have 10 sequential frames (seq.fr.) and with those relatively enough videos
maintained up until the 15 seq.fr. with 7665 frames. After the 15 seq.fr. it appears in Figure 6.10 that the
number of videos declines further with 5.974 videos found to have 20 seq.fr., 4.763 with 25seq.fr. and finally
3.836 with 30 seq.fr.

As important the number of videos found to have sequential frames is, it is not the only criteria to decide on
the configuration of the features fed into the LSTM classification model. It is equally important to observe the
way those numbers of videos are distributed per category. It is apparent that in 10 and 11 seq.fr the catogories
seems quite balanced and after 12 seq.fr the bowling category starts to have less than 1000 observations and
goes all the way down to 140 for 30 seq.fr. while the rest categories seem to join but with much slower pace.
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Figure 6.7: Videos per category that were found to have at least 1 frame interesting

Figure 6.8: Videos per category that were found to have at least 30, 25, 20, 15, 10 and less than 10 interesting
frames

Figure 6.9: Videos per category that contain sequences of 10, 11, 12, 13, 14 and 15 frames
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Figure 6.10: Videos per category that contain sequences of 20, 25 and 30 frames

Distance between the Frames: Another important matter, that had to be examined, was the number
of frames each frame would have to be away from the next in the sequence of the 30 selected frames per
video. Hypothetically speaking, the closer the frames are to one another, the more probable would be that
the video segment selected had captured the sport motion. For this reason the accuracy of the model was
tested for 1, 10 and 20 frames away (10 seconds).
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Chapter 7

Results

To create an accurate model it was important to investigate the optimal hyperparameter values that would
work at the benefit of the model. The highest accuracy achieved was 89% through a network of stacked
LSTM layers (for visual description of the model and features see Figure 7.2, Figure 7.3 and Figure 7.4).
More specifically, the model consisted of 2 LSTM layers, with 64 and 32 units of depth respectively and L1
(Lasso Regression), L2 (Ridge Regression) regularization techniques applied on each layer. The last layer was
a densely connected Neural Network with 5 units, same as the number of sport-classes. The optimization
algorithm used to update the network weights was Adaptive Moment Estimation (adam), with categorical
cross entropy as the loss function. The network received as input batches of 32 sequences of 30x100 datapoints
per video, rescales to be within the range of -1 and 1. These points represented the human poses (x,y joint
coordinates - 25 pairs/50 points per person) of 30 frames, where at least 1 or 2 interesting people were found
(see Figure 7.1). These 30 frames were selected in a way to not be more than 20 frames away (10 seconds)
from one another based on the way it was ordered on the video.

Figure 7.1: Feature Extraction from videos
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Hyperparameter Tuning

When defining a new model it is important to determine those hyperparameters that will optimize the
parameters of our model. More specifically, values that are external to the inner workings of the model and
cannot be estimated from data, such as the number of hidden layers, hidden units, regularization techniques
e.t.c. are considered to be hyperparameters, because ultimately they control the actual parameters of the
model, such as model weights, bias that are internal to the model and are estimated from the learning process
of the given data [58] [66]. In order to tune the hyperparameters, different experiments were conducted
concerning the:

1. Format of the features

2. Regularization Techniques

3. Network Architectures

4. Number of frames to represent a video

5. Distance between frames that represent the video

6. Dataset Augmentation

The metrics used to measure the efficiency of the model are accuracy, precision, recall, f1-score along
with their confusion matrices. The initial experiments were conducted with a network architecture that
consisted of a single LSTM cell with 2048 units depth layer, followed by a regular densely-connected NN
with 5 nodes, the same number as the sports’ classes. The network was tested on different hyperparameters
to understand how it behaves. After getting a grasp of what favors the model, different architectures were
examined. The aforementioned variables are analysed below:

Format of features: The training features were transformed and rescaled to be within different ranges, in
order to understand how they affect the accuracy of the model. A network that consisted of a single LSTM
cell with 2048 units depth layer, followed by a regular densely-connected NN with 5 nodes, as the number
of sport classes, was set up and trained with different formats each time, to understand how it affects the
accuracy:

• Rescaled data to be within the range of 0 and 1 by dividing each data point with the maximum value.

z = (max(X)− x)

• Normalized data to be within the range of 0 and 1 & between -1 to 1 with the equation below:

xi −min(x)
max(x)−min(x)

• Standardized data to have a distribution with mean value of 0 and standard deviation of 1, using this
equation:

z = (x− u)/s

u = mean of training samples and s = standard deviation

The accuracy of each transformation was 63%, 54%, 72% and 64% respectively. Consequently, the feature
transformation selected was the rescale of data within the range of -1 and 1.
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Regularization Techniques: A substantial difference between validation and test accuracy was observed,
indicating overfitting. The latter happens when during training the model takes into account too many
parameters to describe the data and although it captures the structure of the training data, it cannot
generalize well into new data. This way the model ends up becoming too complex and tailored for the training
data’s needs. To combat overfitting, different regularization techniques are used across literature [9,62] that
either penalize the loss function, in order to select the most important parameters (L1 & L2 norm [5, 59],
or randomly droping nodes and their connections accordingly in order to form a simpler, less noisy and
generalizable model (dropout) [84,90].

Again a network that consisted of a single LSTM cell with 2048 units depth layer network , followed by a
regular densely-connected NN with 5 nodes, as the number of sport classes, was trained with the different
regularization techniques, to understand how it affects accuracy:

• L1 - Lasso Regression values between 0.1

• L2 - Ridge Regression values between 0.1

• Dropout values of 0.5

• L1=0.1 & L2=0.1

• L1=0.1 & L2=0.1 & Dropout=0.5

The accuracy of each regularization technique was 78%, 76%, 65%, 79% and 64% respectively. Consequently,
the regulization technique-combination selected was the L1 & L2.

Network Architecture: Deep architectures are not yet well studied, documented and tested, so a
trial-and-error approach is often adopted. To test the different network architectures, we used as features
the x,y coordinates of the anatomical joints of the two most interesting people in 30 selected frames, that
could have maximum 20 frames (10 seconds) distance between them. The features were formatted to be
within the range -1 and 1 and L1,L2 regularization techniques were used, as selected previously. The first
set of network architectures consisted of an LSTM cell with different, proportionally increasing, unit depths,
followed by a regular densely-connected NN of 5 nodes, as the number of sport classes. Finally, LSTM cells of
proportionally decreasing depths were stacked in a descending order, as an attempt to achieve dimensionality
reduction on our way to the last layer that conducts the classification. Mode specifically, the architectures
examined were:

• LSTM cell with 32 units depths

• LSTM cell with 64 units depths

• LSTM cell with 128 units depths

• LSTM cell with 256 units depths

• LSTM cell with 512 units depths

• LSTM cell with 1024 units depths

• LSTM cell with 2048 units depths

• stacked LSTM network of LSTM cells of 2048-1024-512-256-128-64-32 units depth

• stacked LSTM network of LSTM cells of 1024-512-256-128-64-32 units depth

• stacked LSTM network of LSTM cells of 512-256-128-64-32 units depth

• stacked LSTM network of LSTM cells of 256-128-64-32 units depth

• stacked LSTM network of LSTM cells of 128-64-32 units depth

• stacked LSTM network of LSTM cells of 64-32 units depth
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Architecture Accuracy

LSTM(32) + FCNN(5) 87.2%
LSTM(64) + FCNN(5) 86.9%
LSTM(128) + FCNN(5) 87.5%
LSTM(256) + FCNN(5) 88.7%
LSTM(512) + FCNN(5) 87.8%
LSTM(1024) + FCNN(5) 87.9%
LSTM(2048) + FCNN(5) 87.7%
LSTM(2048) + ... + LSTM(32) + FCNN(5) 88%
LSTM(1024) + ... + LSTM(32) + FCNN(5) 88.1%
LSTM(512) + ... + LSTM(32) + FCNN(5) 88.1%
LSTM(256) + ... + LSTM(32) + FCNN(5) 88.4%
LSTM(128) + ... + LSTM(32) + FCNN(5) 88.6%
LSTM(64) + LSTM(32) + FCNN(5) 89%

The accuracy for each architecture was:

The best architecture selected consisted of an LSTM cell of 64 units depth, an LSTM cell of 32 units depth
and a regular densely-connected NN of 5 nodes, as the number of sport classes (see Figure 7.2).

Figure 7.2: Model Architecture

Distance between frames: Previously, different network architectures were tested on features that
consisted of coordinates to each anatomical joint of the 2 most interesting people found in 30 frames selected
and were not more than 20 frames (10 seconds) away from one another. Different distances were examined:
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• 1 second away - 2 frames

• 10 seconds away - 2 frames

• 20 seconds away - 40 frames

• 30 seconds away - 60 frames

The accuracy for each distance was 87.9%, 89%, 88.3% , 88% respectively. The distance selected was 10
seconds away or 20 frames.

Number of frames to represent a video: Until now the network was tested on features extracted from
30 frames. Different lengths of frames were examined:

• 10 frames with 12928 train, 4032 test and 3232 validation videos

• 20 Frames with 3072 train, 928 test and 736 validation videos

• 30 Frames with 2432 train, 768 test and 608 validation videos

The accuracy for each length was 55.5%, 86.4% and 89%. The 30 frames were confirmed to be the best 1.
The feature shape can be seen in Figure 7.3.

Figure 7.3: Model Architecture

1The reason the number of videos doesn’t sum up to the video results in subsection 6.2.2 is because in a 30-frame sequence there
might exist three (3) 10-frame sequences, or two (2) 15-frame sequences. Also in order to make the number of videos divisible
to the batch size, some videos had to be discarded.
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Dataset Augmentation: Due to imbalanced dataset, there was an attempt to increase the samples of the
underepresented sport-classes with data-augmentation. The dataset was shifted up, down, left and right by:

• 1, 5, 10 and 15 pixels

• 10, 20, 30, 40 and 50 pixels

Unfortunately, it did not increase the accuracy of the model.

The final model’s architecture can be inspected in detail in Figure 7.4 below:

Figure 7.4: Detailed Model Architecture
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In conclusion, the different tests conducted indicate that the number of sequential frames affect the accuracy
of the model. It was observed that the higher the number of sequential frames, the higher the accuracy.
Possibly an increase on the frame level by selecting more than 2 frames per second or on the video level by
adding more than 30 sequential frames, can affect the accuracy in a similar manner. Additionally, as seen in
subsection 6.2.2, the number of videos were not balanced for 30 sequential frames, with bowling appearing
to be highly reluctant, with only 140 videos. This could possibly has affected model’s accuracy.

Model Consistency

The model was able to achieve accuracy as high as 89%, but it was tested only on 5 from the 487 sport
categories of Sport-1M dataset. To investigate the model’s consistency to accurate predictions, 5 more
sports-categories were added to the dataset. The sport-categories added were:

• wrestling with 1378 videos

• golf with 668 videos

• skateboarding with 426 videos

• marathon with 1036 videos

• fencing with 2108 videos

The model’s accuracy dropped from 89% to 73%, see comparison in ?? below:

Figure 7.5: Model Accuracy with 5 and 10 sport categories

Study of Errors

The model achieved an accuracy of 89% for 5 sport classes and 73% for 10 sport classes. Although high
accuracy is an indicator of good performance, it can be misleading, especially for datasets with large class
imbalances. The predictive power of a model derives from its ability to classify correctly, while is avoiding
Type I errors, or false-positive (FP) prediction. This can become more clear when the classification task
concerns a medical prediction, where ones life depends on it. Other metrics that can shed more light on the
predictive ability of the model is:

• Precision is the ratio of the correctly classified samples of a class x to the total number of samples
that were classified as class x (True Positive (TP) / TP + False Positive (FN)). Another way to see
precision is as the fraction of correctly classified samples of a class. The question it answers is: How
many of the samples my model classified as class x, were actually class x? High precision indicates a
low FP rate. So high precision would mean that from 12 videos that were classified as sport x, the 10
were actually sport x.
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• Recall is the ratio of the correctly classified samples of class x to the total number of samples that
actually belong at class x (TP/TP+FN). The question it answers is:How many of the samples that
actually belong in class x were identified/recalled? So high recall would mean that from 10 videos of
sport x, my system identifies the 9.

• F1-score is the harmonic mean of precision and recall.

F1 =
2 · precision · recall
precision+ recall

These metrics are presented in Table 7.1 and Table 7.2, for 5-class and 10-class model, respectively. On both
tables, it can be observed that the sport-classes with the most samples, achieved higher precision, recall and
f1-score. For facilitation, the sport-categories are enumerated below, in descending order, by their number
of samples:

1. fencing

2. table tennis

3. wing chun

4. squash

5. olympic weightlifting

6. wrestling

7. marathon

8. bowling

9. golf

10. skateboarding

Table 7.1: Mean Precision - Recall - F1 score of 5 sport classes

Sport precision recall f1 score

wing chun 0.924 0.924 0.922
squash 0.864 0.852 0.858

table tennis 0.92 0.924 0.92
olympic weightlifting 0.89 0.884 0.882

bowling 0.638 0.646 0.638
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Table 7.2: Mean Precision - Recall - F1 score of 10 sport classes

Sport precision recall f1 score

golf 0.492 0.452 0.464
fencing 0.688 0.66 0.672
wrestling 0.684 0.712 0.694

skateboarding 0.646 0.672 0.656
marathon 0.508 0.516 0.51
wing chun 0.894 0.858 0.872
squash 0.692 0.716 0.7

table tennis 0.856 0.834 0.844
olympic weightlifting 0.798 0.796 0.794

bowling 0.558 0.63 0.59

To examine, in greater detail, the model’s misclassifications, it was important to inspect the confusion
matrices of both the 5-class and 10-class models. As observed in Table 7.3 and Table 7.4, the model was
confusing squash to table tennis, mainly because they are both the same sport, played mainly on different
courts. So they both incorporate the same movement patterns. Similar confusion can be observed on other
sports, like golf and bowling, because they are both performed standing and utilize their upper half of
the body to throw or kick the ball. Additionally, marathon running is sometimes confused with fencing,
squash and bowling, because move pattern of running resembles a lot or can be a subset of other movements
incorporated in other sports.

Table 7.3: Mean Confusion Matrix of 5 sport classes

Sport wing chun squash table tennis olympic weightlifting bowling total

wing chun 1462 35 13 39 31 1580
squash 34 1394 91 55 61 1635

table tennis 12 84 1703 15 31 1845
olympic weightlifting 45 54 17 1109 30 1255

bowling 33 47 32 32 261 405

Table 7.4: Mean Confusion Matrix of 10 sport classes

Sport golf fencing wrestling skateboarding marathon wing chun squash table tennis olympic weightlifting bowling total

golf 282 47 30 21 39 17 61 18 47 63 625
fencing 42 1387 121 23 112 30 181 125 32 52 2105
wrestling 12 88 979 22 68 51 37 24 47 47 1375

skateboarding 17 16 23 285 19 0 34 4 16 11 425
marathon 35 107 67 17 535 30 100 20 42 82 1035
wing chun 31 34 52 8 59 1672 23 9 26 36 1950
squash 46 142 35 28 86 11 1299 63 49 56 1815

table tennis 15 138 33 8 26 7 62 1668 10 33 2000
olympic weightlifting 34 28 42 18 50 34 42 7 1143 42 1440

bowling 38 25 55 12 66 21 42 19 28 524 830
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Future Improvements

For future improvements it would be attempted to:

1. increase the number of frames selected per second (from 2 to three 3)

2. increase the time of video sample more than 15 seconds, or decrease it to less than 15 seconds, to
capture the videos that are less than 15 seconds in length and decrease the dataset’s class imbalance.

3. try Cyclical Learning Rate technique, developed by Leslie Smith [79]

4. convert each x,y coordinates of human joints into a value that would represent its distance from the
pelvis of the person. In that way, the feature array of each person would not represent [x,y] coordinates
in a 2D plane, but more meaningful values. This approach would aim to map how the distance of each
body part change, as the movement on the video progresses

5. try other LSTM variants such as Peephold Connections, Full Gradient etc., although it is suggested
that none of them significantly improves performance [28]
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Chapter 8

Conclusion

In this project, it was presented a way to conduct video classification by using human poses, represented as
[x,y] joint coordinates, as features in a network of stacked LSTM cells. Previous work on video classification,
has involved the utilization of frames as images for features to the network. Here is shown that extracted
poses from video frames via Carnegie Mellon’s OpenPose library can produce an accuracy of 89% when
trained on 5 sport classes and 73% on 10 sport classes.

The main challenges of this project involved that the selected Sports-1M Dataset consists of realistic, user
produced videos, publicly available on the internet. That means that it could contain user-noise in the form
of varied illumination, scale, camera motion, viewpoint etc. along with content-noise in the form of focusing
in unrelated topic to the one of interest, like capturing the crowd, zooming into players’ face or zooming out
on the surrounding environment etc. Additionally, the dataset was found to contain completely unrelated
videos to the topic of interest because it is machine-generated. Lastly, the rest videos didn’t have a fixed
duration and resolution adding to the complexity and processing time of the problem.

The challenges were addressed by determining a fixed window of frames, that would be selected from each
video (30 frames), with a specific amount of frames per second (2 fps), starting after the 30% of the video’s
duration. Additionally, to filter out as much as possible the aforementioned noise, there was constructed an
index of interest with the goal to keep the most interesting or relevant people. The latter, were the people
who were the biggest, most complete and central, compared to the rest of the frame.

The different experiments conducted in order to define the best hyper-paraneters of the network, indicated
that a higher number of frames, either by selecting more than 2 frames per second, or by addind more than
30 frames, affects the accuracy of the model. Additionally, among the regularization methods, L1 and L2
seemed to perform best with LSTM units compared to Dropout.

This is a promising approach to other problems of the same domain, because it suggests an alternative way
of achieving video classification and action recognition.
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