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Abstract 
 

In parallel to the increase of internet usage worldwide, phishing attacks incidents have increased 

analogically. One of the ways with which phishing attacks are initiated is through sending phishing 

emails. In this thesis an attempt at creating a novel technique for detecting phishing emails is 

presented. For that purpose, a solution using machine learning algorithms is explored. In order to 

design a machine learning model that properly identifies emails as phishing or benign, the following 

directions were studied: (a) The most widely used machine learning algorithms, with their 

representative parameters, advantages and disadvantages that their usage provides, (b) Developing 

an algorithm to test different combinations of machine learning feature inputs, (c) Different 

performance evaluation metrics of the created machine learning models and developing an 

algorithm for them and (d) The structure of the emails, their different characteristics and anything 

that can be used as a feature input for the machine learning models to be able to efficiently detect 

the pattern of phishing emails. To that end, two different fundamental feature categories were 

created: (i) Properties-based features, which are retrieved from the different characteristics of the 

emails, such as the number of URLs or attachments in the emails and (ii) Text-based features, which 

are retrieved from the text part of the email which is to be read by the receiver. Today, with the 

increase of computer processing power, efficient machine learning solutions are developed for an 

increasing number of problems. Although there is related work towards phishing email classification 

using machine learning techniques, this work proposes a novel hybrid technique using the two 

aforementioned types of features. To that end, two architectures were proposed: (a) A hybrid 

“assembled” architecture, which assembles the properties-based and the text-based features as one 

consistent feature vector which is then used as input for the classification process and (b) A hybrid 

“stacked” architecture, which has two classifiers: the first one classifies the email using text-based 

features and the second one (which outputs the final classification) uses the properties-based 

features and one additional feature which is the classification output of the first classifier for the to-

be-classified email. The most widely used tools for developing machine learning based programs 

were explored and Apache Spark with its MLlib library were used. All the algorithms were written 

using the Python programming language. After developing an algorithm for testing every 

combination of classifier, their different hyperparameter values and the different architectures, it 

was found that, compared to the classification using only one type of features, the hybrid 

“assembled” architecture has an improved performance but the hybrid “stacked” architecture has a 

slightly reduced performance. 
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1 Introduction 
 

With the consistent and of exponential rate increase of internet activity and active users, it has 

helped people to connect with each other and have the whole information of the world in their 

personal computers and organizations to improve on their services and product distribution. 

However, where there is constant and consistent movement of capital, there is also interest from 

frauds and thieves. One of the ways that stealing of valuable information can be achieved is through 

phishing attacks. Phishing attacks are social engineering-based attacks and have increased in 

incident numbers with the increase of the internet users. One of the ways of initiating a phishing 

attack is through sending phishing emails. These are fraud emails which attempt to persuade the 

receiver that the email is from a trusted source but in reality they have links or code through which 

valuable information of the receiver is sent to the attacker. 

This work proposes a hybrid machine learning based classifier for phishing email classification in 

order to reduce the victims of cyber-attacks from phishing emails. More specifically, there are two 

fundamental types of information which can be used as features for the machine learning classifier 

to “learn” the pattern of phishing emails from: 

• The properties of the email, which are the characteristics of the email, such as the number 

of URLs or the number of attachments in the email. 

• The text of the email, which includes the text of the email that is meant to be read by the 

receiver of the email. 

These two types of inputs were used as features for machine learning classification, and two hybrid 

architectures are proposed: 

• A hybrid “assembled” classifier: With this architecture it was attempted to use the features 

from the properties and the text of the email together by assembling them into one 

consistent feature vector. This vector will then be used as input for the machine learning 

classifier. 

• A hybrid “stacked” classifier: With this architecture two classifiers are used for the 

classification of emails as phishing or legitimate. The first classifier uses the text-based 

features to learn the patterns of phishing and legitimate emails. The second classifier uses 

the properties-based features and an additional feature which is the prediction of the first 

classifier for the to-be-classified email. 

As it will be shown in the thesis, the hybrid assembled classifier has an improved performance when 

compared to the “simple” classifiers which use only the properties-based or the text-based features, 

but the hybrid stacked classifier has a slightly worse performance than them. 

The structure of this thesis is as follows: 

Firstly, there is the theoretical background chapter, which consists of two parts. One is the theory 

part, where every theoretical information which was considered as necessary or helpful towards 

understanding the reason for building a tool for marking phishing emails is presented. This includes 

what a phishing attack is, historic information about phishing attacks, different types of phishing 

attacks, the structure and the different types of phishing emails and already established phishing 

countermeasures which include the classification of emails as phishing or legitimate using machine 

learning techniques. Since this thesis is focused on developing a machine learning based tool, 

afterwards there is information about machine learning in general including the types of machine 
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learning algorithms, definitions relevant to machine learning, different metrics which are used for 

the performance evaluation of the built machine learning classifiers, and lastly some of the most 

widely used machine learning models with the advantages and disadvantages of their usage. The 

second part of the theoretical background includes related work of machine learning techniques for 

classification of phishing emails. 

The next chapter is the problem statement, where the problem that is attempted to be solved with 

this thesis is briefly presented, as well as the direction that is followed towards the solution of that 

problem. 

The fourth chapter is the approach chapter, where the problem statement is analyzed further, with 

information that is to be used for its solution. This chapter includes information about the structure 

of an email, which will help finding proper features/inputs of the machine learning classifiers and will 

result in lower error rates. Then, different file formats are presented. Since it is attempted to build a 

machine learning classifier, the first step towards building it is having enough data, or a data set of a 

large enough number of emails. This will ensure that the classifier will “learn” and be able to 

properly classify the emails as phishing or legitimate. For that reason, the different email file formats 

are presented, so that the email data sets that are found in the literature can be used properly, 

independently of their file formats. Afterwards the email data sets that were found in the literature 

and related research work are presented. This chapter then has different tools for building machine 

learning models with advantages and disadvantages and a few criteria for which one to choose. 

Apache Spark was chosen for building this work’s machine learning classifier, so information about it 

is presented afterwards. Lastly, a generic machine learning model building process is briefly 

described. 

The next chapter is the implementation chapter, where the process of building the proposed 

classifiers is presented. As it is described there, there are two proposed hybrid architectures, which 

use in different ways features coming from the properties and the text of the email. The properties 

of the email consist different characteristics of it such as the number of the URLs or the number of 

attachments included in it. The tools used for the development of the model and the different 

processes of the model are presented. These include processes for creating the DataFrame which is 

used by Spark, properly cleaning the email text so that it can be used by the next processes, properly 

retrieving both the properties-based and the text-based features, as well as the proposed 

architectures and the process of testing the different classifiers, their parameters, the different 

feature types and the two architectures. 

The next chapter includes the results of the implementation. This includes performance evaluation 

metrics of the different classifiers, graphs for better comparison and processing times required for 

building the different classifiers. 

The following chapter includes proposed ideas as potential future work which could be based on this 

work. 

The last chapter is the conclusion which includes what has been and what has not been achieved by 

this work. 
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2 Theoretical Background 
 

 

2.1 Phishing 
 

Phishing is a fraudulent act of stealing personal and sensitive information from a user. As the name 

suggests, Phishing as a word originates from the actual “Fishing” in the water, where a bait is used to 

trick the fish into biting the hook and getting caught. The “Ph” was first found in the first hackers 

who were called “Phreaks”. Phishing as a cyber-attack is executed through internet and mobile 

technologies, such as email, instant messaging applications, SMS and Social Networking applications. 

Phishing employs both social engineering and technical subterfuge to succeed as an attack. Social 

engineering attempts to fool the unsuspecting user into believing that the message they have 

received (email, SMS etc.) or the website they have visited is from a trusted and legitimate 

organization/source. On the other hand, technical subterfuge techniques involve installing malware 

directly onto the victims’ computers in order to directly steal the personal information as well as 

blocking the user from being able to access it in an attempt of a ransomware. 

As mentioned before, the purpose of a phishing attack is to steal personal information from the 

unsuspecting user, such as passwords and credentials from banking applications for financial gain, or 

credentials from social applications for a type of ransomware, where the attacker asks for money in 

order to give the account back to the user. Other benefits that a successful phishing attack may bring 

include impersonating the identity of the victim in order to execute other illegal activities and 

gaining the fame and the dignity as criminals who have succeeded in stealing certain sensitive 

information or getting into a certain system. 

The first known phishing attack on a financial operator was in 2001 against e-gold [1]. According to 

the Anti-Phishing Working Group (APWG) [2] and its latest report for Phishing Activity Trends, the 

total number of phishing sites detected by APWG in the third quarter of 2019 was 266,387. This was 

up 46 percent from the 182,465 seen in Q2 and almost double the 138,328 seen in Q4 2018. The 

total number of unique phishing reports received according to APWG, were 173,063 in 2005 and 

1,040,654 in 2018. Note that these numbers represent phishing reports, with each one resulting in a 

multitude of actual phishing attacks. 

 

Figure 1 APWG Phishing Activity Trends for 2019 
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The top targeted industry sectors in the third quarter of 2019 are reported to be the following. 

 

Figure 2 Most-Targeted Industry Sectors by Phishing Attacks 

 

 

2.1.1 Phishing Techniques 

 

The different types of phishing attacks are the following [3]. 

Spear Phishing: The traditional phishing attack has the logic of attacking as many targets as possible, 

by mass-sending the masqueraded message to them. Spear Phishing, on the other hand, attempts to 

learn as much information as possible about one or a few targets, in order to forge a much more 

legitimate-looking message. Whaling is a subcategory of spear phishing targeting the “whales” or 

senior and upper management positions in organizations. 

Vishing (Voice Phishing): The attacker calls the victim on the phone and imitates to be from a 

legitimate organization. They then request personal information in order to “verify” that the user is 

the correct one, in an attempt to steal that information and then use it to their advantage. 

Smishing (SMS Phishing): This type of phishing is executed using the Short Message Service (SMS). 

Following the principles of email phishing, the attacker sends a seemingly legitimate SMS from a 

trusted organization and requests the victim to provide with certain information. With the addition 

of smartphones in the last decade, these phishing SMS messages may also include URLs leading to 

malicious websites. 

Email/Spam: One of the most widely used methods is sending a phishing email to many users with a 

request of personal information, such as credentials to a banking application. Clone phishing is a 

subcategory of email phishing, where a previously delivered email from a trusted source is cloned 

and malicious URLs or attachments are inserted into it and it is resent. 
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2.1.2 Lifecycle of phishing attack 

 

The lifecycle of a phishing attack consists of the following steps: 

1. Planning and Setup: This step includes the attacker collecting information about the target 

or targets, by identifying the organization’s characteristics and anything that could help the 

attacker in executing a successful attack. 

2. Construction: In order to bait the victims into believing that the website they are visiting is 

legitimate, the attacker creates a website that is a clone of the legitimate website that is to 

be exploited. The only difference is the functionality when entering sensitive information, 

for example when the victim tries to enter their banking credentials in order to log in. While 

at the legitimate website the result is that the account information is provided, at the 

phishing website, the credentials are stored and sent to the attacker. This attack could also 

include having the phishing website ask for additional information such as location, secret 

questions etc. in order to steal as much as possible. In order for the victim to be baited into 

giving the additional information, the trick could be that this information is needed in order 

to verify that it is the actual user. 

3. Spreading: The attacker then chooses the method of phishing distribution (email, SMS, 

instant messaging etc.) and starts mass-sending phishing messages which include malicious 

links. 

4. Installation: The fake link redirects to the phishing website. By clicking the link, there might 

also be an attempt to install malicious software into the victim’s system, whether that is a 

smartphone or a personal computer. 

5. Data Collection: The attacker receives sensitive information from the victims who are 

entering it through the malicious website and by any software that is installed and attempts 

to automatically send as much sensitive information as it can find. 

6. Break-Out: The last step is for the attacker to remove all the evidence. This includes shutting 

down the phishing website’s server, deleting any messaging/email account that was used to 

send the fake link and even getting to more extreme measures depending on the level of the 

attack (e.g. destroying the computers which were used to execute the attack). 

 

 

2.2 Phishing Email 
 

A phishing email is (as the name suggests) an email that is disguised so that it looks like it is coming 

from a trusted source. For example, it could be disguised as an email from a bank or an online store. 

Such emails are created by malicious users with the purpose of obtaining sensitive information from 

the receiver. The way this works is by inserting in the phishing email a URL which leads to a malicious 

website which, in its simplest form, will ask the potential victim to enter some sort of personal / 

sensitive information, such as their bank account credentials, credit card number, social security 

number etc. An easy and representative example of a phishing email is shown in the image below. 
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Figure 3 Phishing Email Example 

 

There are a few characteristics which a phishing email has and can be used to help a user detect if 

they are a victim of a phishing attempt. A few of these characteristics are the following: 

• Generic Greeting: As can be seen from the image of the phishing email example, there is a 

generic greeting, meaning that there is not a specific name of the receiver. Usually there is a 

“flat” greeting, like that one in the figure, where there is no variable name inserted, and 

another possibility is that as a name there is the local-part of the receiver’s address (the part 

of the email name before the @ sign). 

• Reply address different than the claimed sender: In an attempt to impersonate a trusted 

and legitimate source, the attacker will forge the sender name and change it into the trusted 

organization’s name and hide the actual sender address [4]. 

• Forged Link: At the links provided in the email, even if they seem to lead to a safe and well-

known address, the text shown could be different than the actual address that is to be 

visited if the link is clicked. That is handled by inserting HTML elements into the email. For 

example, the following HTML code will result in a text of the trusted yahoo website but 

clicking the link will lead to the phishing website. 

<a href=www.phishingwebsite.com> https://www.yahoo.com </a> 

• Domain Names: In general, when an email is actually coming from a trusted source such as a 

bank, if there are any domains included in URLs in the email, they should be from the 

domain of the bank. Otherwise, the email becomes suspicious. 

• Number of URLs: Trusted sources generally hesitate to include links in their emails, because, 

as shown at the previous bullets, links are not a very trustworthy way of visiting addresses. If 

there is a need to visit a website, it is preferred to ask the user to visit the website on their 

own, instead of providing the link. 

• Using URL redirecting services: In order to hide the actual website that is to be visited by 

clicking on the link, the attacker could compress it into a smaller URL using services such as 

TinyURL [5]. That way the visited website’s domain name is seen only after visiting it, which 

might lead into the user not checking it for legitimacy. 

• SSL Certificates are not safe: According to the latest APWG’s report on phishing trends [2], 

and their contributor PhishLabs, in the third quarter of 2019, 68 percent of all phishing sites 
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were using SSL certificates. That was up from 54 percent the prior quarter. This is a clear 

indicator that users cannot rely on SSL certificates alone to indicate that a website is safe. 

 

 

Figure 4 Phishing Attacks Hosted on HTTPS 

• Using the @ symbol: When visiting a website and the URL has the @ symbol in it, the actual 

website that is visited is the one after the @ symbol. That way the attacker can have a 

trusted website before the @ symbol and then add the phishing website after it. 

• Using hexadecimal character codes: When writing a URL, one could either use the ASCII 

characters which are the normal characters that are most widely used, or their hexadecimal 

representations can be used. For every character there is an equivalent hexadecimal 

number. This can be exploited by the attacker and they can include characters which cannot 

be easily read by the unsuspecting user. 

• Requesting information: A legitimate email should never request any personal information. 

If there is such an attempt in the email, this is a clear indicator that it is a phishing attempt. 

• Sense of Urgency: It is generally wanted by the malicious users to get as much information 

as possible before their malicious website is either taken down or marked as malicious by 

popular agencies (also known as becoming “blacklisted”). This reason, in addition to adding a 

psychological factor in order to persuade the victim, results in the phishing emails having a 

sense of urgency in their text. For example, the email could mention that there is a limited 

time window to provide the information or otherwise there might be consequences such as 

termination of the victim’s account. 

The ones mentioned above are a few characteristics of a phishing email which, if a user goes through 

every email, they can be used as tools to detect an email as phishing or legitimate. 

When it comes to the content of the phishing email, or the way that the attacker attempts to 

convince the victim that it is a legitimate source, there are different types of phishing emails [6]. 

1. The Government Maneuver: In this phishing email the attacker is trying to impersonate a 

federal body, in an attempt to intimidate the victim and persuade them in giving any 

information. 

2. The Friend Tactic: The attacker, in this case, impersonates a friend of the victim. While the 

attacker most likely does not have any relevant information to impersonate the victim’s 



17 
 

friend properly (unless there is a spear phishing attack), they try to use a generic friend and 

count on the chance that the victim will have a friend who would send such an email. 

3. The Billing Problem: This phishing email states that a recent online purchase could not be 

completed for different reasons (credit card expired, incorrect billing address etc.) and it is 

required to visit the website provided for the problem to be dealt with. The link provided 

leads to a phishing website. 

4. The Expiration Date: With this type of phishing email there is a statement that the victim’s 

account with a certain service or company is about to expire. However, the expiration can be 

extended by visiting the phishing website provided in the email and providing the 

credentials. 

5. The Virus or Compromised Account Scare: In this case, the attacker attempts to scare the 

victim by stating that their computer or phone has been compromised or an account of 

theirs has been breached. In order for the problem to be solved, it is asked to visit the 

phishing website or download a malicious attachment. 

6. The Contest Winner: This is an attempt to persuade the victim into thinking that they have 

won a prize. In order to receive the prize, they have to visit a website and enter certain 

information such as location, which is then used against them. 

7. The Friendly Bank: Banks offer account notifications when certain amount of money has 

been withdrawn. This phishing email impersonates a bank and they mention that the 

withdraw cap has been exceeded, and for verification purposes certain pieces of information 

need to be entered. 

8. The Victim: The attacker in this case impersonated a customer who has return a certain 

amount of money to the supposedly company which happens to be the victim. There is a 

threat involved of involving authorities if there is no answer. 

9. The Tax Communication: This phishing email mentions that the victim is either enabled to 

receive a tax refund or has been selected to be audited. In both cases there is a requirement 

to provide with certain sensitive information. 

10. The Checkup: In this case, a company is supposedly having a security checkup and ask the 

victim to provide their personal credentials for the checkup to be completed. 

 

 

2.3 Phishing Countermeasures 
 

There is already a plethora of proposed phishing countermeasures [7]. In the following chapter a 

description of each type of countermeasure is presented. 

User Education 

Both cyber security experts and cybercriminals make an effort to be one step ahead of one another. 

This results in both of the parties being constantly educated with every new technology and 

vulnerability that appears and are ready to either use it and secure it or exploit it respectively. 

While the cyber experts are quickly aware of any change that happens in the cyber security sector, 

the regular user is their base target. And the regular user is the one that will eventually be a victim of 

a phishing attack. Even though there might be vulnerabilities and exploits which happen because of 

a technical imperfection, the human is the weakest link to the cyber security chain.  
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The fact that the average user is the reason that phishing attacks succeed (because they are the ones 

that will have to click on the phishing website link) results in a new relation of attacker-defender, 

where the attackers now also educate themselves in way to be more persuasive to that user. On the 

defender side, in order for the users to be able to recognize phishing attempts, there needs to be 

relevant education. There are already established education programs and services [8] [9]. The user 

education is very effective as a countermeasure because enhancement is provided to the base of the 

problem (the human factor from which the attacks start). 

Machine Learning Techniques 

Machine learning is the process of training a classifier by inputting an adequate number of examples. 

The examples are related to the classification that is desired. For example, if a phishing email 

classifier is to be designed, which will be able to determine whether an email is phishing or not, then 

the examples will be emails hand-classified as phishing or legitimate. The result is a trained classifier 

with the use of which it is possible to detect (classify) new examples for which a classification has 

not been done yet. The proposed tool in this thesis is based on Machine Learning Techniques. More 

details will be provided in the related work, the approach and implementation chapters. 

Search engine based techniques 

The idea of this way of determining a website as phishing or not is that certain keywords and pieces 

of information (images) are extracted from the website and are queried into search engines. If the 

domain name of the organization is returned within the first certain number of search results, then 

the website can be considered as legitimate. However, if the to-be-determined website is a phishing 

one, then the domain will not appear within these first results. The drawback to this approach is that 

there is a high false positive / alarm rate because newly created legitimate websites have a high 

chance of not being high in the search results. 

List based anti-phishing solutions 

This type of protection approach used blacklists and whitelists in order to protect against visiting a 

phishing website. A blacklist is a list of websites which have been identified and confirmed as 

phishing websites. On the contrary, a whitelist is a list of websites which have been identified as 

legitimate websites.  

The advantage of the list based approach is that the true positive (correct alarm) when using a 

blacklist approach is 100 percent, because every website which is determined as phishing will be in 

the blacklist which means that it has been confirmed as phishing. When using a whitelist, the true 

negative rate is a 100 percent, because every website which will be determined as legitimate will 

actually be included in the whitelist, so it is confirmed as legitimate. On the other hand, these 

methods have their drawbacks. Firstly, the maintenance of the lists is a service in itself, meaning that 

it requires processing power. Secondly, while the aforementioned alarms are 100 percent correct, 

the false negative rate for the blacklists and the false positive rate for the whitelists will be 

significant. That is because, for the blacklists, if there is a phishing website which has not yet been 

included in the blacklist it will be wrongfully categorized as a legitimate one. With whitelisting, a 

website that is not in the whitelist will be categorized as phishing, regardless if it actually is a 

phishing or a legitimate one. 

There are list based services which provide the ability to use for applications and normal use (Google 

Safe Browsing [10], PhishTank [11]) 

Visual similarity based approaches 
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This technique employs visual features to compare a webpage with verified authenticated 

webpages. The visual features include textual content, text formatting, presence and usage of CSS, 

screenshots of the website and images included in it. The base of this approach is the assumption 

that two pages cannot have similar looks, so that when a website is compare based on these visual 

features and it ends up being similar to another verified webpage, then it can be considered that this 

is an attempt to make a clone for a phishing website. 

 

 

2.4 Machine Learning 
 

The proposed solution towards detecting phishing emails uses Machine Learning technologies to 

help in the classification process. In this chapter there will be a description of the machine learning 

fundamentals, the types of machine learning techniques and the different most used Machine 

Learning classifiers found in the literature. 

Machine Learning is considered to be a subset of the studies of Artificial Intelligence. Machine 

Learning consists of algorithms which are designed to be used by computers in order to complete 

certain tasks without a specific set of commands, but rather by detecting patterns from given 

examples. 

The reason that machine learning has been successful in the recent years is the following. The 

machine learning algorithms generally require a lot of processing power because they rely not on 

just following specific commands and executing them, but rather on iterating over a large number of 

examples and adapting certain parameters and weights in order to be able to detect a certain 

pattern based on these examples. The end result should be a model/classifier which has their 

weights adjusted so that they are able to “generalize” and identify new examples (which have not 

yet been classified) with a minimal error. The processing power of computers has increased 

significantly, making the whole process more feasible [12]. 

Machine learning as a programming and problem solving technology is useful for the following 

reasons: 

• Less time programming: When designing a traditional algorithm and program, the developer 

needs to take into account every possible case that might occur and provide a piece of code 

to solve them. However, with the use of a machine learning algorithm, the only basic 

requirement is to collect or find and already built data set with the desired examples and 

use them against the classifier for it to be able to train for them. The only additional 

requirement is the tuning of additional hyperparameters that the machine learning 

algorithm might have. 

• Customization and scaling of final products: Because the machine learning algorithms are 

trained against certain examples, a developed design which is design for a specific type of 

examples could be easily adjusted for another set of examples just by using the machine 

learning algorithm from scratch and passing the new examples through it. For example, if a 

program is made for grammar or text based functionality, it can be instantly transported to 

another language by getting enough data examples in that language. 

• Solution to previously unsolvable problems: With the addition of machine learning, a new 

direction towards problems like face recognition and voice recognition is provided. 
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2.4.1 Types of Machine Learning algorithms 

 

The different types of machine learning are the following: 

Supervised Learning 

A supervised machine learning algorithm trains and learns the desired pattern from examples which 

have already been classified. The algorithm uses the example as an input and the already 

determined output of each example as a guideline to calculate an error and adapt the parameters. 

A common way to evaluate the performance of such a classifier (more information about ways of 

performance evaluation will be provided in a later chapter) is to split the classified data set into two 

parts: one part to train the classifier (training set) and one part to evaluate its performance (testing 

test). First the classifier is trained using the training set and then the classifier attempts to classify 

the examples of the testing set without using the information regarding their already established 

classification. The next step is to compare the predictions of the classifier with the actual established 

classifications for performance evaluation purposes. 

Supervised learning algorithms are categorized into classification and regression algorithms. In the 

case of classification algorithms, the purpose of those is to choose a value from a predetermined set 

for every example. For example, in the case of classifying an email as phishing or legitimate, the 

classification algorithm will give a value of either zero for a legitimate email prediction and a one for 

a phishing email prediction. Regression algorithms are used when outputs have a numerical value 

within a range. 

Unsupervised Learning 

Unsupervised algorithms take a set of input examples that are not classified and attempt to find a 

pattern by grouping them together or clustering them into neighbors of data points. The purpose of 

these algorithms is to find information or patterns which are unknown at the start of the operation, 

in order to provide insight for the data provided, for example by highlighting outliers which could 

not be grouped into any cluster or showing certain trends depending on different inputs. 

 

 

2.4.2 Definitions 

 

When choosing a machine learning model to use for a design or for a detection of a pattern, there is 

an overwhelming number of parameters and hyperparameters to choose and finetune in order to 

design and produce the best classifier. Also, the term “best” classifier has a lot of different 

interpretations and ways to calculate. In this chapter the fundamentals of machine learning 

performance evaluation as well as certain needed definitions are presented. 

The case that is attempted to be solved through this thesis is the classification of emails as phishing 

or legitimate. This is a classification problem and the learning is supervised. This means that there 
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will be an already classified data set which will be used to train a model in order to be able to classify 

new unclassified emails. 

In supervised machine learning inputs are provided to train a model to predict outputs. In order to 

be able to explain the different models and how machine learning works in a more detailed manner, 

a few relevant definitions are presented. 

• Label is the variable y that is to be predicted. In the case of emails, the label is a variable 

which could be called “Phishy” and has a value of one if the email is phishing and zero if it is 

legitimate. 

• Example is one particular instance of data (row). For the purposes of the thesis, an example 

is one email that is in the data set. Examples can be labeled or unlabeled, depending on 

whether they have already been classified by a previous source (most times hand-classified). 

• Features are the input variables xi, i = 1, 2, …, n, where n is the total number of features, of 

the machine learning model. Features are characteristics or properties of the emails (in our 

case) which are retrieved from each example that is to be classified. Each feature provides a 

certain piece of information in its own way and in total they provide a whole picture of the 

email, something that will hopefully highlight the pattern that is to be detected. 

In the case of the emails, features may include the properties of the email (number of URLs 

in the email, number of attachments, whether the email has HTML content etc.) as well as 

textual features (frequency of specific words, similarity of sentences between each email 

etc.). A detailed presentation of the features that were retrieved is at the approach chapter. 

• A model is the resulting classifier from the machine learning process and maps each 

example to a prediction y’. 

For better understanding, the Linear regression model will be used at this point as an example. 

In this model, the n features xi are retrieved from each example with a feature retrieving 

algorithm, there are the provided labels/outputs y for each example, and base model has that 

following formula: 

 

y’ = b + w1x1 + w2x2 + … + wnxn, 

 

where b is the bias and wi, i = 1, 2, …, n are the weights for each respective feature. In supervised 

learning, the algorithm builds a model by changing the values of the bias and the weights after 

every example is passed through the model so that an error is minimized using a specific loss 

function. 

A widely used loss function is the Mean Square Error (MSE) which is the average of the sum of 

squared errors of every prediction. 

 

• Overfitting is the process of training the model so that the error is exceptionally low using 

the training data, but the resulting model is bad at generalization, meaning that although 
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the error from the training and testing data is very low, the model is not good at predicting 

new examples. The proper way of training is to fit the training data well (have a relatively 

small value from the loss function) but also fitting it in a simple manner, so that the resulting 

model is able to “generalize”, meaning that it is able to detect the pattern that is desired to 

be detected. 

• Test and Training sets: In order to train the model and properly evaluate its performance, 

the available already classified data set needs to be split into two sets: a test set and a 

training set. These two sets must be independent from each other and randomly picked 

from the original data set. This will ensure that the model is trained without any bias and 

that the performance evaluation is properly executed. 

• Cross Validation: Is a training and performance evaluation technique with the purpose of 

removing any random bias that might appear because of the test and training sets being a 

random choice of examples. The process is as shown in the figure below [13]: 

o The data set is split in n equal, independent and random subsets. 

o Choose one of the subsets as a test set and merge the other subsets into one 

training set. 

o Train the classifier, make predictions and evaluate performance. 

o Repeat the process by setting each time the next subset as a training set and 

merging the other subsets into a training set. 

o In the end, there are performance results for every subset of the data set. The total 

performance results consist of the mean values of every subset performance. 

This will ensure that, if there is any bias in any of the test subsets, that will be minimized 

after calculating the mean values with the other subsets’ performance results. 

 

Figure 5 Cross Validation 

• Validation set: The validation set is used when optimizing the hyperparameters of the 

machine learning model. It is an additional set which is retrieved from the original data set, 

meaning that if it is used, the original data set will be split into 3 subsets: test, training and 

validation. The process when using the additional validation set is as follows: 

o The training data set is used to train the model. 

o The validation data set is used to evaluate the performance of the model and use 

that information to tune any hyperparameters of the training process and of the 

model itself. 
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o After all the tuning is finished, then the test data set is used to evaluate one last 

time the performance of the machine learning model. 

The purpose of the additional data set is to reduce the chance of overfitting which might 

occur while tuning every parameters too much so that it performs exceptionally well in the 

validation set, but when the model is evaluated using the test set, it will become apparent 

that overfitting has indeed occurred. 

 

 

Figure 6 Training Process using Training, Validation and Test Sets [12] 

 

• Feature Engineering is the process of retrieving features and choosing what features to retrieve 

from a data source (from raw data – emails in our case). Depending on the type of feature that is 

chosen to be retrieved from the data source, there needs to be some after-processing. 

o Numerical values can be passed as is. 

o Strings need to be encoded for the classifier to be able to interpret them properly. A 

frequently used algorithm for encoding strings is called One-hot encoding. Using this 

algorithm, each different string value that the feature can get is represented as an index 

in a boolean vector. The vector has a value of zero at every index and a value of one only 

at the index that represents the string value that is found at the specific example. 

When it comes to choosing a feature, there is a set of good methods that should be followed in 

order to provide the classifier with a set of features which will highlight the pattern in a clearer 

manner. A good feature should have the following properties: 

o It should have a value in most examples. There are cases in which a feature cannot be 

retrieved from the example, which might occur for several reasons one of which is that 

the data set is slightly corrupt. For example, in an email data set, there might be an 

email in which the receivers’ addresses were removed. In that case, a feature cannot be 

retrieved. There are methods with which missing values could be filled. In the case of a 

numerical type feature, the missing value could be replaced by the average of the other 

examples’ values, the minimum, maximum etc. However, features that end up not being 

able to be retrieved from most examples and end up being replaced by artificial values 

provide little information and are not useful for pattern detection. 

o It should have a meaningful value. When choosing features for detecting a certain 

pattern, there should be a critical thinking process, in which the features that actually 

provide relevant information should be chosen. For example, when choosing features 

for classifying an email as phishing or legitimate, choosing a feature like how many URLs 

are present in the email, or how many of the URLs have a domain name or are plain IPs 

provide valuable information for the classifier, because a IP URL usually means that the 
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respective web page is created in rush and there is a possibility that it will lead to a 

phishing website. 

o Following the mentality of the previous method, unique identifiers (IDs) should never be 

used as features, because, although they are useful when it comes to searching the 

database for certain examples, they are different for each example and do not provide 

information that helps in terms of pattern recognition. 

o Features should not have values that have a different meaning in a certain range and 

another meaning in another certain range. For example, a feature that represents the 

years that a house has been on a market should just be that. If a house has never been a 

market, it is not good practice to give a value of, for example, -1 to show that fact. It is 

good practice to set an additional feature with boolean value which will represent 

whether the house has been on the market or not. 

o Features’ represented values should not change over time. For example, if a feature 

describes a time value and the source model happens to have certain changes, it should 

not change the unit that the time is outputted as. If the source model used to output 

that time value in seconds, it should not change to, for example, minutes, as that would 

change the way that the time is represented and disrupt the ability of the classifier to 

detect and learn the pattern that is set to learn. 

o Features should not have extreme outliers. That is because examples with extreme 

values will result in the loss function having an extreme output value. This value will 

result in an extreme tuning to the parameters and possibly disrupt the almost trained 

model. 

 

 

2.4.3 Performance Evaluation Metrics 

 

In order to evaluate the performance of a trained machine learning model, there is a plethora of 

formulas to calculate metrics which represent that [14]. These a presented below. 

Confusion Matrix 

A confusion matrix is a 2x2 matrix in which all the possible combinations of predictions and actual 

outcomes are listed. The values for each cell of the confusion matrix are equal to the number of the 

respective predictions which were executed on a test set. For example, if the model is built to detect 

phishing emails, the confusion matrix is like follows: 

True Positive (TP): 

• Prediction: Phishing Email 

• Reality: Phishing Email 

False Positive (FP): 

• Prediction: Phishing Email 

• Reality: Legitimate Email 

False Negative (FN): 

• Prediction: Legitimate Email 

• Reality: Phishing Email 

True Negative (TN): 

• Prediction: Legitimate Email 

• Reality: Legitimate Email 
Table 1 Confusion Matrix 

 

Accuracy is the ratio of correct predictions: 
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Accuracy =
Number of correct predictions

Total number of predictions
=

TP + TN

TP + TN + FP + FN
 

 

Precision is the ratio of the correctly predicted positive examples over the total positive predictions: 

 

Precision =
TP

TP + FP
 

 

Recall or probability of detection (PD) is the ratio of the amount of correctly predicted phishing 

emails over the total amount of phishing emails: 

 

Recall = PD = Proportion of actual positives was identified correctly =
TP

TP + FN
 

 

 

Figure 7 Precision and Recall 
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Probability of false alarm (PF) is the probability that a positive prediction is incorrect: 

 

PF =
FP

FP + TN
 

 

F1 score is the harmonic mean of the precision and recall. F1 score has value range from 0 to 1, 

where 1 is equal to having perfect precision and recall both equal to 1. F1 score is useful for 

providing a relation metric between precision and recall, as these two values have a reverse analogy 

in a way, which is represented with the ROC curve which is described below. 

 

F1 =
2

recall-1 + precision-1
= 2 ∙

precision ∙ recall

precision + recall
 

 

A ROC curve (Receiver Operating Characteristics curve) is a plot of sensitivity vs. (1-specificity) or the 

probability of false alarm (false positive rate) on the X-axis and the probability of detection (true 

positive rate) on the Y-axis. This curve passes through the points (0,0) and (1,1). Descriptively, this 

curve plots how well a model classifies correctly different examples compared to how many false 

alarms will happen. A perfect ROC curve would have a value of 1 for every X in (0,1] and is shown at 

the following figure. 

 

Figure 8 ROC curve of a perfect classifier 

 

A more usual case of a ROC curve is the following figure [15]. As shown, the different points of the 

ROC curve are created from different decision thresholds of the classifier. The important regions of 

the ROC curve are shown in the next figure. If the ROC curve is a straight line from the points (0,0) 

and (1,1), that is when the false positive rate and the true positive rate are equal in value for every 

decision threshold. That means that the classifier does not recognize any pattern and does not go 
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through any operation in order to predict examples. A negative curve is an unacceptable curve, and 

something is wrong on a fundamental level. A ROC curve is a monotonically increasing function. 

The Area under the ROC curve (AUC) is a widely used performance metric for imbalanced datasets. 

It is a useful numerical representation of the ROC curve itself, which provides the relevant needed 

information that a ROC curve provides in cases where a curve is not possible to be presented or 

cannot be handled (e.g. in a program as input). Since the perfect ROC curve creates a 1x1 square, the 

AUC has values from 0 to 1. 

The ROC curve and the produced AUC metric provide a more generalized metric for the classifier. For 

example, if in an email data set there were 99 legitimate emails and 1 phishing and the classifier just 

outputted a value of zero (legitimate email) for every email, then the accuracy would be 99% for this 

data set. However, the ROC curve will display that fact by it being a straight line from (0,0) to (1,1). 

 

Figure 9 ROC curve 

 

 

Figure 10 Regions of ROC curve 
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The Precision-Recall (PR) Curve is a curve with the precision value on the y-axis and the recall values 

on the x-axis on different classification thresholds. Similar to the ROC curve, the PR curve is useful 

because, while in every classification problem it is desired to have both high precision and high 

recall, there is a tradeoff between the two. The PR curve gives a visual and more generalized 

representation of the precision and recall performance of the corresponding classifier. Note here 

that a classifier with a better ROC curve will have a better PR curve, too. Opposite to the ROC curve, 

a PR curve is monotonically decreasing. The following figure is a typical PR curve [16]. 

 

Figure 11 PR Curve 

 

The False Positive Rate (FPR) and False Negative Rate (FNR) are statistical representations of the 

false positive and false negative numerical results: 

 

FPR =
FP

FP + TN
 

FNR =
FN

FN + TP
 

 

The Error is the ratio of wrong predictions over the total number of examples: 

 

Error =
Wrong Predictions

Total number of examples
=

FN + FP

TP + FP + FN + TN
 

 

The previous three metrics should be minimized, but there is a tradeoff between the FPR and FNR. 

When it comes to the classification of emails as phishing or legitimate, there is, on the one hand, the 

idea that the minimization of FPR is more important because the chance of wrongfully classifying 

legitimate emails as phishing emails is the main reason for users’ resistance to such types of emails 

filters [17]. That is because the users will feel like they will lose useful information from legitimate 

emails because they were wrongfully classified as legitimate. On the other hand, there is also the 

idea that there should be an attempt towards minimization of the FNR in the expense of a relatively 
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higher FPR, because it is more important to let as few phishing emails as possible pass classified as 

legitimate than a few legitimate emails be classified as phishing. That is because these few phishing 

emails that will pass as legitimate might cause more problems than the few legitimate ones that will 

be classified as phishing. 

 

Average Absolute Error (AAE) is the average of the absolute differences of predictions and labels: 

 

AAE =
1

n
∑|predictioni-labeli|

n

i=1

 

 

 

2.4.4 Machine Learning Models 

 

In this chapter there will be a description of the base machine learning models with certain 

advantages and disadvantages. 

 

Logistic Regression 

As mentioned in a previous chapter, regression is the type of machine learning algorithm the 

produced model of which is aimed to predict values not from a finite set of values, but rather a 

continuous space of values. However, regression models can be used for classification, too, by using 

the continuous outputted value and set various thresholds. Depending on the thresholds and the 

continuous output, a value from the set classification values is set as the final output. For example, 

in the case of phishing emails, one threshold is set and if the continuous output is higher than the 

threshold then the email is classified as phishing and legitimate otherwise. 

As described before, linear regression attempts to adapt a linear function so that it represents the 

pattern as well as possible and minimize errors. However, linear regression is limited to numerical 

values only. Logistic Regression is a type of non-linear regression that can accept categorical data 

and predicts the probability of occurrence using logit function. Logistic Regression does not consider 

linear relationship between variables/features.  

A logistic regression base logit function is shown at the figure below and has the following formula. 

 

P(y = 1) =
1

1 + e-(β0+β1x1+⋯+ βnxn)
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Figure 12 Logit Response Function 

 

The bias and the feature weights are tuned to minimize error. 

The advantages of logistic regression are [18]: 

• Good performance with small datasets 

• Its output can be interpreted as a probability 

Disadvantages of logistic regression are: 

• Data assumptions are needed to be complied 

• It can only provide linear solutions 

 

K-Nearest Neighbors 

K-nearest neighbor is a non-parametric, instance-based learning method [19]. Instance based 

classifiers are also called lazy learners, because they do not train but rather just store all the training 

examples. The examples are store as points in a feature space, each coupled with its respective label 

value (for example 0 for legitimate email and 1 for phishing email). When a new example is to be 

classified, its feature values are used to place it in the feature space. Then its k nearest neighbors are 

considered and the classification value is equal to the label value which is the majority. For example, 

assume that k=5. A new email is put on the feature space where its 5 closest neighbors consist of 3 

legitimate emails and 2 phishing emails. The new email will be classified as a legitimate one. This 

process is shown at the figure below [20]. 
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Figure 13 k-Nearest Neightbors Classifier 

 

The choice of k affects the performance of the k-nearest neighbor algorithm. If the value of k is too 

small and there is noise, then the noise might be the majority in specific regions resulting in wrong 

predictions. On the other hand, if the value of k is too large, then there might be neighbors from 

other label values included, resulting again in wrong classifications. 

The advantages with the k-nearest neighbors algorithm are: 

• It is an easy to understand algorithm and to implement. 

• Lazy learning methods have a shorter training time. 

• It performs well on applications where a sample has many class labels. 

However, this algorithm has several disadvantages: 

• Even though the training time is short, this comes with a drawback. That is the classification 

of new examples is generally computationally expensive, especially if the value of k is high, 

because the distance between the new example and every neighbor needs to be calculated. 

• It has large storage requirements, because every example during the training process is 

stored. 

• There is not a specific way of choosing the optimal value for k. The only way is by trial and 

error. 

 

Artificial Neural Networks 

An artificial neural network is a set of connected input/output units where each connection has a 

weight and every node has a bias. Artificial Neural Networks consists of an input layer from which 

the inputs/features are fed into the ANN, one or more hidden layers, which help with the 

classification process and an output layer which outputs the desired classification value. 
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Figure 14 Artificial Neural Network 

 

Every node calculates the output as follows (also shown at the figure below [21]): 

Output = f(∑ weighti ∙ inputi

i

+ bias) 

 

Figure 15 Node in ANN 

 

The function f is called an activation function. There are different activation functions depending on 

the application. The activation functions output range is between 0 and 1. The simplest activation 

function is the step function [22]. 
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Figure 16 Step Function 

 

More complex functions are used to produce more consistent and accurate results. A widely used 

activation function is the sigmoid function [23]. 

 

 

Figure 17 Basic Sigmoid Function 

 

A popular way to train an ANN is called Back Propagation. The training process is as follows: 

1. Initialize the weights and the biases. 

2. Feed the training sample into the ANN. 

3. Calculate the output and the error of it with the desired output. 

4. For each neuron, calculate what the output should have been and the difference between it 

and the actual output (local error). 

5. The error is propagated backwards by updating the weight and biases to reflect the error of 

the network’s prediction. 

The process is repeated until a specified error threshold is reached, or a specified number of epochs 

(iterations of the whole training process) is reached, or the error metric has not improved over the 

last certain number of epochs, or when there are signs of overfitting (error value on validation set is 

more than a certain amount than the error on the training set). 
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Advantages of artificial neural networks include: 

• Able to tolerate noisy data. 

• Can be used when there is not clear relation between the features and the label. 

• Parallelization techniques can be used to speed up the process. 

• Successful on otherwise hard tasks, such as handwritten text recognition, image and voice 

recognition etc. 

Disadvantages of ANNs include: 

• Long learning time 

• Difficult to interpret (complicated network from which the weights and biases do not 

necessarily represent anything specific) 

 

Recurrent Neural Network 

RNNs are a type of ANNs which improve on the memory capabilities of traditional ANNs [24]. 

 

 

Figure 18 Recurrent Neural Network 

 

The additional feature of RNNs is the feedback loop in the hidden layer. This provides additional 

insight in sequential data. For example, if the input in the neural network is a sentence of words and 

each input is a word, with the feedback loop in the hidden layer the RNN is able to take into account 

the whole sentence to train and update its nodes’ weights and biases, something which would not 

be possible if there was no feedback loop. 

 

Decision Trees 

Decision tree classifies data into discrete ones using tree structure algorithms [19]. The idea behind 

these machine algorithms is to highlight the structure behind the data/features. The training set is 

recursively partitioned into subsets which are purer than the original, meaning that the subsets are 

split in an as equal manner as possible. Each node of the produced decision tree represents a 

feature. Each branch represents a certain value range of that feature. An optimal case of splitting the 

data set (which is practically never occurring) would be a feature which has a 1-1 relation with the 

label, meaning that with this one feature it would be possible to classify every example. However, 

this case is never apparent, and would also mean that there is no practical need of machine learning 
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because it is just a case of if-else. The leaf nodes represent a classification result. The decision tree, 

as a classifying algorithm, works by getting each example through the tree, depending on the 

respective feature values, and classifying the example based on the leaf node value. 

When it comes to splitting the data, on the root node and the internal nodes, the feature that is 

chosen to be used as the one to split the data is the one that best divides the training data. There 

are different metrics to find which feature does that including Information gain, Gain ratio, Gini 

index, Chi square, C-SEP, G-statistics and Minimum description length (MDL). 

Overfitting can occur if the parameter of maximum tree depth is set to a too high value. To counter 

overfitting there is the tree pruning method, which includes two approaches: 

• pre-pruning: The decision tree is pruned by halting its development early, when a certain 

threshold value is reached. 

• post-pruning: The decision tree is pruned after the tree is complete, by remove certain sub-

trees which do not help with the accuracy, or split the tree too much for slight gain in 

accuracy (which probably means that overfitting is happening at that sub-tree). 

An example of a built decision tree for the classification of phishing emails is shown at the figure 

below. 

 

 

Figure 19 Decision Tree for phishing emails 

 

The advantages of Decision Trees are the following: 

• Decision trees are simple and fast on the classification (each new example that is to be 

classified only goes through the tree, which is basically a few if-else cases). 

• They are able to handle high dimensional data. 

• The built decision tree is easily comprehensible. 

• They can handle features of different values, because the splitting happens based on how 

well each feature splits the training set and not on what value each feature has. 

The disadvantages of Decision Trees are the following: 

• High training time, because for each node branching of the tree, every example is needed to 

be used to decide which feature to choose. 
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• Lack of available memory, when dealing with large databases. 

 

Support Vector Machines 

SVMs are based on statistical learning theory and structural risk minimization principal and aim in 

determining the location of decision boundaries. The basic idea is that a support vector classifier 

attempts to find a straight line which separates the different classes with the maximum possible 

distance between the line and each class, as shown in the following figure. 

 

 

Figure 20 Support Vector Classifier 

 

In the simplest case of linearly separable data, only one straight line is required to properly separate 

the data and determine the final classifier. In the case that the data is not separable with one 

straight line, the SVM finds the hyperplane that maximizes the margin while minimizing the number 

of misclassification errors. 

Advantages of SVMs are: 

• Robust and accurate method compared to the other classifiers 

• Theoretical foundation, requires small training data set, operates well with high dimensions. 

• Less prone to overfitting 

Disadvantages of SVMs include: 

• Requires high computational power and processing time. 

• Long training time. 

• Memory requirements are analog to the square of the number of training examples. 

• The results are difficult to interpret. 

 

Naïve Bayes 

The Bayesian are statistical classifiers. They classify by calculating the probability that an example 

belongs to a specific class. The Naïve Bayes classifier assumes that all variables contribute towards 

classification and are mutually correlated. It is based on the Bayesian theorem, where if H is a 

hypothesis that certain data X belongs to a class C, then 
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P(H|X) =
P(X|H)P(H)

P(X)
 

P(H|X) is the probability of hypothesis H if X is true, P(H) is the probability of H independent of X and 

P(X|H) is the probability of X if H is true. 

The algorithm calculates the probability of each class – hypothesis and classifies the example with 

the class with the highest probability. 

The advantages of the Naïve Bayes classifier are the following [19]: 

• Low training and classification time, easy to construct. 

• Does not involve any iterative parameter which would have to go through every example, so 

operates well against big data sets. 

The disadvantages of the Naïve Bayes classifier are the following: 

• It is generally less accurate than other classifiers. 

 

Ensemble Classification 

Ensemble employs more than one classifier, takes their outputs and combines them in different 

ways to produce the final prediction. 

 

Random Forest 

The Random forest is a classifier which combines many decision tree classifiers, where each tree 

depends on the values of a random vector sampled independently. During training, a number of 

decision trees are constructed which are then used for the class prediction. This is achieved by 

considering the voted classes of the decision trees and the class with the highest vote is considered 

to be the output [25]. 

 

AdaBoost 

Boosting is a type of ensemble training using decision trees, where each new tree is trained on a 

modified version of the original data set [26]. AdaBoost trains the first decision tree with each 

observation being assigned a weight value. At the first tree every example has the same weight 

value. After the evaluation of the first tree, the examples which were difficult to correctly classified 

have their respective weight values increased and the easily classified examples weights are 

reduced. The process is repeated, and an ensemble tree model is built from which the classification 

output is the weighted sum of the previous created sub-trees. 

 

Gradient Boosted Trees 

Gradient boosting machines operate the same way as AdaBoost, with the only difference being how 

the adaptation of the newly created trees is done. Instead of adapting weight values for the different 

examples, GBM uses gradients in the loss function. The loss function could be a user specified cost 

function instead of a generic uncontrollable loss function which offers less control. 
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Majority Voting 

With majority voting, the classifiers are trained on independently, and then a voting process is 

executed, where the class that most of the classifiers predicted that the example is will be the final 

output [27]. 

 

 

Figure 21 Majority Voting 

 

Stacking 

Stacking is a meta classifier, where the first step includes training a variety of different simple 

classifiers, and then using their outputs as features to train a last classifier which will output the final 

prediction [28]. 

 

 

Figure 22 Ensemble Stacking 

 

 

2.5 Related Work 
 

In this chapter relevant work will be presented in the field of phishing email and website detection 

with machine learning techniques. 
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2.5.1 Classification of Phishing Email Using Random Forest Machine Learning Technique [25] 

 

This paper investigates the use of the random forest technique machine learning algorithm in 

classifying emails as phishing or legitimate. In the proposed classification method, the features are 

extracted directly from each email. There are no queries sent over the network or large data stored, 

thus reducing the memory and processing time required. The features retrieved are based on the 

properties of the email and do not take into account the text itself of the email. 15 features were 

identified: 

• URLs containing IP address 

• Disparities between “href” attribute and link text: When writing HTML code, it is possible to 

have the text of a link be different than the actual URL that is to be visited. 

• Presence of the words “link”, “click” and “here” in the link text 

• Number of dots in domain name: The number should not be more than three. If it is, a 

binary value of 1 is recorded. 

• HTML email: The MIME standard defines the type of content contained in the email. If it is 

“text/html” then a binary value of 1 is recorded. 

• Presence of Javascript 

• Number of links 

• Number of linked to domain: The number of distinct domain names present in the URLs is 

counted. 

• Word list features: This accounts for the only textual features of this classifier. It does not 

take into account the whole text of the email, but rather the counts the presence of specific 

words which indicate a possible attempt of persuasion of the email receiver. They are 

separated into different subcategories: 

o Update, confirm 

o User, customer, client 

o Suspend, restrict, hold 

o Verify, account, notif 

o Login, username, password, click, log 

o SSN, social security, secur, inconvinien 

Before the decision trees of the random forest algorithm were constructed, the information gain (IG) 

from all the 15 features is calculated and the eight features with the best IG are selected for the 

training and classification process. 
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Figure 23 Random Forest Performance 

 

 

2.5.2 Analysis and detection of e-mail phishing using PySpark [29] 

 

In this paper the Spark tool, and more specifically PySpark, which is a python-based implementation 

of Spark, is used with machine learning classifiers to classify phishing emails. The Spark Python API 

exposes the Spark programming model to Python. Spark applications run by having a Spark driver 

that runs the main function and executes parallel operations on a cluster. 

The components used for the machine learning algorithm are the following: 

• Natural Language Toolkit (NLTK), which is a collection of libraries and programs for natural 

language processing (NLP) for English written in Python. 

• Virus Total API, which allows to build scripts to access the information provided by Virus 

Total, an online tool which combines many antivirus products and online scan engines to 

check for viruses or to verify against any false positives [30]. 

• The Naïve Bayes classifier is used for the classification of the email, which is described in a 

previous chapter. 

 

 

2.5.3 A Comparison of Machine Learning Techniques for Phishing Detection [31] 

 

In this paper a variety of different machine learning algorithms were compared for detecting 

phishing emails. 2889 emails in total were user, 59.5% of which were legitimate, and the rest were 

phishing emails. 43 features were used for the classification process. 

According to the Anti-Phishing Working Group (APWG), there are three categories of defense 

mechanisms against phishing: detective, preventive and corrective. 
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Figure 24 Phishing and fraud solutions 

Anti-phishing toolbars are mentioned as related work against phishing attacks, but the results are 

not satisfactory (50% - 75% detection rates). 

The machine learning algorithms which were tested are the following: 

• Logistic Regression 

• Classification and Regression Trees (a category of decision trees) 

• Random Forests 

• Neural Networks 

• Support Vector Machines 

• Bayesian Additive Regression Trees 

The features used in this paper represent the frequency of the most frequent terms that appear in 

phishing and legitimate emails. This method of choosing words as features is widely applied in text 

mining and is called “bag-of-words” method. The features in this paper are words. The process that 

every email goes through in order to have their features retrieved is the following: 

1. The attachments of the email are removed. 

2. Header information, HTML tags and elements are extracted. 

3. The stop words (I, you, the, is, there, in, on etc.) are removed from the text. 

4. Stemming is applied to the text (removal of prefixes/suffixes, e.g. “running” becomes “run”). 

5. The most frequent terms are detected with TF-IDF (term frequency – inverse document 

frequency) and the features are created from them. TF-IDF works by giving set higher weight 

to words that appear frequently in one example and not frequently in the whole data. 

The results are in the following tables and figure. 

 

 

Figure 25 Performance of model of paper 
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Figure 26 ROC curve for all classifiers of the paper 

 

 

2.5.4 Deep Learning Based Phishing E-mail Detection [32] 

 

The paper proposes a model using the Keras Word Embedding and Convolutional Neural Networks, 

followed by a Pooling layer, a fully connected layer, a non-linear activation function (sigmoid) and 

one output neuron for classifying the emails as legitimate or phishing, as shown in the following 

figure. 

 

Figure 27 Deep Learning based model 

 

The components of this model are the following: 

• Keras word embedding: Word embedding is function operating on texts. With it, every word 

is transformed into a vector, where the vector space axes represent different 

attributes/aspects of words. Every word has a value for each attribute and the final vector is 

produced. Each word being represented by a vector means that words with similar meanings 

will have neighboring vectors, thus making word embedding a more sophisticated version 

that a regular word frequency function. 
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Keras is a high-level neural networks API, written in Python and capable of running on top of 

TensorFlow, CNTK or Theano. 

• Convolutional neural network: The emails are first passed through word embedding, so now 

the text is a series of numbers. This number-type file can be interpreted as an image (since 

images are also series of numbers as a file which represent the colors of pixels) and thus can 

be processes as one. First, they are convoluted, then pooled (by taking either the maxes or 

the averages) and then processes as vectors through a neural network classifier. 

The results of this paper’s proposed model are the following. 

 

Figure 28 Accuracy of word embeding + deep learning model 

 

Figure 29 Statistics of test result in relation to the number of epochs 

 

 

2.5.5 An Approach to Detect Spam Emails by Using Majority Voting [33] 

 

This paper proposes an ensemble model (majority voting) to detect spam emails. Note here that 

although the paper attempts to classify spam emails and not phishing ones, the majority voting 

method is a useful one and was considered useful for the purposes of this work. 

The classification algorithms used in the paper are Naïve Bayes, Support Vector Machines, Random 

Forest, Decision Stump and k-Nearest Neighbors. As mentioned in a previous chapter, majority 

voting operates by first training several simple classifiers and then using their outputs as votes in 

order to make the final classification. The sample data set that was used is taken from the UCI [34] 

and the tool used to create and train the models was RapidMiner [35]. More about RapidMiner will 

be provided in the Approach chapter, where there is a description of the tools found in the 

literature. The proposed model is shown in the following figure. There are five inner classifiers and if 

four out of the five predict the email to be spam, then the final output labels the email as spam. 
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Figure 30 Majority Voting for spam email classification 

 

Initially several different classifiers were trained and tested, with the following results. 

 

 

Figure 31 Classifier test results 

 

The 5 best performing classifiers were selected (highest accuracy): Decision Stump, k-Nearest 

Neighbors, Random Forest, Support Vector Machine and Naïve Bayes. 

Lastly, the ensemble model with the voting technique was built, trained and tested. The 

performance results proved that majority voting is a performance improvement. 
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Figure 32 Majority Voting Model Results 

 

 

2.5.6 Employing Machine Learning Techniques for Detection and Classification of Phishing Emails 

[36] 

 

In this paper a neural network-based classifier is proposed, with the preprocessing steps being word 

embedding or vectorization. The model is made of six parts and uses five features. For the training 

process there was a ten-fold cross validation. The email data sets that were used were from Spam 

Assassin for the legitimate emails [37] and the Jose Navario phishing email corpus [38]. 

The process that every email goes through with the aforementioned six components is in the 

following figure. 

 

 

Figure 33 6 Components Neural Network Classifier 

 

The five features that are retrieved from emails are the following: 

• URL counter 

• Whether the email has HTML content 

• Whether the email has JavaScript code in it 

• The number of the email’s parts (attachments, HTML text, plain text etc.) 
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• Vector Average 

For the Vector average: First the emails pass through the Email Sanitizer, which purifies the emails 

and makes them ready for vectorization. Vectorization or Word Embedding is a set of language 

modelling and feature learning techniques in Natural Language Processing (NLP) where words or 

phrases from the vocabulary are mapped to vectors of real numbers. Once all the words have been 

vectorized, the vectors for a message are summed and the average is calculated. 

The resulting data set after retrieving the features from the emails is a csv file with 6 columns (5 

features and 1 label) and 14370 rows/emails (6656 benign and 7714 phishing emails). Matlab [39] 

was used for the implementation of the Neural Network. 70% of the data was used for training, 15% 

for validation and 15% for testing. The confusion matrix with the results is the following. 

 

Figure 34 Confusion Matrix of 6 component NN classifier 

 

 

2.5.7 Phishing Detection: A Case Analysis on Classifiers with Rules using Machine Learning [40] 

 

This paper is not focused on phishing emails but rather on phishing websites. While this is not 

directly the purpose of the work of this thesis, it is a neighboring field of study which provides useful 

information about relevant methodologies. 

The paper proposes the idea that a necessary step which should improve the performance of a 

predictive system is to pre-process the features in order to select the most effective ones. Feature 

effectiveness can be measured using different algorithms such as information gain, correlation 

analysis, Chi Square etc. 

The paper is focused on rule-based classification systems, because it is believed that they are more 

suitable for phishing classification for the following reasons: 

• The content of the models is straightforward human knowledge. 

• The rules formed are usually in the “if-then” form, which is easily controllable by the users. 

• Rule based classifications have performed well in many domains. 
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The machine learning classification algorithms used are eDRI (Thabtah et al., 2016A), RIPPER (Cohen, 

1995), C4.5-Rule (Quinlan, 1993) and RIDOR (Gaines and Compton, 1995). The following figures show 

the error rate of each algorithm and the runtime required to build the respective models. 

 

Figure 35 Error rate and runtime required to build the predictive models of the considered algorithms 

 

 

2.5.8 Identifying the Most Effective Feature Category in Machine Learning-based Phishing Website 

Detection [41] 

 

In this paper, a variety of different features are retrieved from websites and are tested for accuracy 

(which set of features results in the best accuracy). The features were selected from related work on 

machine learning based phishing website detection. They are based on 18 research papers published 

between 2006 and 2016. The features were split into five different categories to determine which 

category yields the best results. These features are the following: 

• Features related to content URL obfuscation: 

o Count percentage of external and resource URLs in the HTML code. 

o Check if the favicon is loaded from a different domain name. 

o HTML forms the actions of which lead to a different domain name. 

o Count the percentage of hyperlinks which contain empty values, self-direct value, 

the URL of a current webpage or some abnormal value. 

o JavaScript code with onMouseOver to display a fake URL in the status bar. 

o Check if any HTML form has abnormal actions. 

• Features related to domain obfuscation: 

o Number of “-“ characters in hostname part of URL 

o URL is an IP address. 

o Check if the TLD (Top-level domain) or ccTLD (country code TLD) is used as part of 

the subdomain. 

o Check if the TLD or ccTLD are used as the path in the URL. 

o Obfuscated HTTPS 

o Check if the most frequent domain name in the HTML source code does not match 

with the webpage’s URL domain name. 

• Features related to HTML content: 

o HTML form actions containing URLs without HTTPS protocol. 
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o Form action contains a relative URL. 

o Form action contains “#”, “about:blank”, empty string or “javascript:true”. 

o JavaScript code that disables right-clicking capabilities. 

o JavaScript code that launched pop-ups. 

o HTML code containing the HTML “mailto” function. 

o Usage of iframe or frame. 

o Check if the title tag is empty. 

o Check if the form scope contains no text but only images. 

• Features related to symbol exploit: 

o Number of dots in the URL 

o Number of “-“ in the URL 

o Check if the “@” symbol exists in the URL. 

o Check if the “~” symbol is in the URL. 

o Number of “_”, “%”, “&”, “#” and numeric characters are in the URL (different 

feature for each). 

o Check if “//” is in the URL. 

o Number of sensitive words (i.e. “secure”, “account”, “confirm” etc.) in the URL. 

The results showed that the URL obfuscation creates the best performing classifier. 

 

Figure 36 Performance of different feature categories on C4.5 classifier 

 

 

2.5.9 Feature Extraction or Feature Selection for Text Classification: A Case Study on Phishing Email 

Detection [42] 

 

In this paper a test was performed on which feature dimensionality reduction method yields the 

best results in terms of classification performance. The classification on which these experiments 

were completed was phishing email classification. The classifier which was used was a bagging 

classifier which is a combination of classifiers trained by randomly generated training sets to form a 

final prediction. As a base classifier the J48 decision tree algorithm was used. 

There are two basic categories for dimensionality reduction: feature extraction and feature 

selection. 

• Feature Extraction: The original feature space is converted to a more compact new space. 

o Principal Components Analysis (PCA): The idea is to derive new variables that are 

combinations of the original variables and are uncorrelated. Firstly, the mean of the 

dataset is calculated and then the covariance matrix of the original attributes is 

calculated. Then the eigenvectors are extracted. They are a linear transformation 
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from the original attribute space to a new space in which attributes are 

uncorrelated. The best n eigenvectors are selected as new features and the rest are 

discarded. 

o Latent Semantic Analysis (LSA): useful to overcome problems with multiple words 

with similar meanings and words that have more than one meaning. 

• Feature Selection: A subset of the original features is selected, and only this subset is used 

to train the Machine Learning model. 

o Chi-Square: This produces a score for each attribute depending on the dependency 

between the term and the class. 

o Information Gain: The amount of information gained about a random variable or 

signal from observing another random variable. The result is a score for each 

feature, and the features with the highest scores are chosen. 

The model architecture of the paper is the following: 

 

Figure 37 Feature Extraction/Selection Architecture 

 

The steps taken towards the classification of the emails are the following: 

1. The data set is prepared by collecting emails from public emails corpora, labeled as phishing 

or legitimate. 

2. Tokenization is performed to separate the words of the email into an array. 

3. Stop word removal is applied to remove words that do not have any significant importance 

in building the classifier. 

4. Stemming is applied to remove the flexional ending from the words. 

5. The Term-Document-Frequency (TDF) matrix is created where the rows represent different 

examples (emails) and the columns represent different terms (words) and their frequency 

that they appear in the corresponding example. 

6. Dimensionality reduction is applied to each row, which is practically a vector, from the 

aforementioned possible techniques. 

7. Classification is done on the emails. 
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The paper’s model considers the whole email itself, so the feature vector contains different kinds of 

features like header-based, URL-based and body-based features. The performance results show that 

there is a maximum performance at about 1500 features. 

 

Figure 38 Feature Dimensionality Reduction Performance Results 

 

 

2.5.10 Using Syntactic Features for Phishing Detection [43] 

 

This paper reports on the comparison of the subject and object of verbs in their usage between 

phishing email and legitimate emails. The email data sets used are one phishing from 2005, one 

phishing from 2014 and one legitimate. The purpose of using two different phishing email data sets 

was to perform comparisons between phishing emails throughout the years as well as between 

phishing and legitimate emails in general. 

This paper attempts to find if there is a difference in the subject and objects of the same verbs 

between phishing and legitimate emails. While there has been research related to using the words 

themselves for phishing classification, this should provide additional insight and a more 

sophisticated classification. For example, in the case of the verb “update”, there could be the 

following two cases depending on the legitimacy of the email: 

• Legitimate email: “I’ll update the document.” 

• Phishing email: “Update your account.” 

The first experiment calculated the syntactic similarity using the parse tree paths. For example in the 

figure below, the parse tree path from the frame element ‘He’ to the target word ‘ate’ is 

represented as ↑VB↑VP↑S↓NP. 

 

Figure 39 Parse tree path from 'He' to 'ate' 
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The abbreviations used are part of part-of-speech tags. A few of them are: 

• PRP: personal pronoun 

• NP:  noun phrase 

• S: sentence 

• VB: verb 

• VP: verb phrase 

• DT: determiner 

• NN: common noun 

The top parse tree paths for various verbs were explored. As a similarity measure for the created 

parse tree paths from the phishing and the legitimate corpus the cosine similarity coefficient was 

used. This metric works by plotting the two sets which are to be compared as vectors, and the cosine 

of the angle between them is equal to the similarity metric. The results showed that the syntactic 

structures were not drastically different between the two types of emails. Therefore, the syntactic 

structure of a sentence was not a good indicator. 

The next experiment compared the subjects and objects of target verbs between sentences in the 

phishing and legitimate data. The idea is that the subjects and objects used for the same verbs are 

different for the two different categories of emails. 

The most frequent subjects between the two corpora were relatively similar. The distribution of the 

subjects showed that the most frequent subjects were even more frequent in the phishing emails 

than in the legitimate emails. 

Unlike the subjects, the most frequent objects between the two corpora were all different except for 

the verb “click”. 

The same experiment was concluded between the phishing data sets of 2005 and 2014 to explore 

any differences that may have happened throughout the ages. Most verbs have similar subject and 

objects between the two data. It was concluded that the patterns in phishing emails have not been 

substantially altered in terms of text contents. 

Concluding, the similarity scores were not consistent, and their characteristics seemed to depend on 

the verbs themselves. 

 

2.5.11 Automated email Generation for Targeted Attacks using Natural Language [44] 

 

This paper proposes a system for email masquerading attacks using Natural Language Generation 

(NLG) techniques. The proposed deep learning system uses legitimate and a varying amount of 

malicious content to generate fake emails with malicious content. The deep learning model is a 

Recurrent Neural Network (RNN) for automated text generation. The focus is on the performance of 

these generated emails against statistical detectors. 

The email texts from both legitimate and phishing emails were used to train the model. The emails 

were cleaned by removing special characters and replacing URLs, email addresses and names with 

<LINK>, <EID> and <NET> respectively. For that purposes the NLTK NER (Natural Language Toolkit 

and Name Entity Recognition) Python library was used. Different data sets were used in terms of the 
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percentage of phishing emails in them to train the neural network (5%, 10%, 30% and 50% phishing 

emails). Two examples of created emails are the following: 

 

 

Figure 40 Emails generated using RNN 

 

The blue colored letters represent the injected malicious part. These examples show that there are 

small substrings which make sense, but the whole string does not make much sense. While they do 

not make sense to a human, statistical classifiers were used to classify the generated emails, and the 

results were the following: 

 

Figure 41 Statistical Classifiers on Generated Emails 

 

 

2.5.12 Catching the Phish: Detecting Phishing Attacks using Recurrent Neural Networks (RNNs) [17] 

 

This paper uses Recurrent neural networks and the email’s text structure to classify emails as 

phishing or not. The reason for using RNNs is that they are specialized NNs for processing sequential 

data and account the order of the data. In the case of emails, the order of the words in the text will 

be taken into account thanks to the RNNs. The paper proposes a sophisticated word tokenization as 

the first step towards classification: 

1. Lowercase all the characters 

2. Remove all characters that the RFD 3986 standard does not allow in URLs, i.e. only keep the 

unreserved a-z, 0-9, -, ., _, ~ and the reserved :/?#[]@!$&’()*+,;= and %. But not “ which is 

used in emails. 
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3. URLs starting with http:// or https:// are replaced by the indicator word <url>. URLs starting 

with www are replaced by <www>. Three or more consecutive non-alphanumeric characters 

are replaced by <threespecial>. 

The final text includes only lowercase alphanumeric words and tokens. 

The size of the dictionary used by the model is limited to the 4995 most common words in the data 

sets’ emails. Stemming is done using the Snowball Stemmer. Five more tokens are added: 

<unkalpha>, <unknum>, <unk> for unknown words to the dictionary, such as those that consist of 

only alphabetical or numerical values, or fit none of the first two, respectively. 

The other two tokens which are introduced are <cuts> and <cute>, which represent the “cut start” 

and “cut end”. These tokens are used for too long emails, the length of which causes training 

inefficiency. The solution that is proposed by the paper is to keep the beginning, most middle and 

ending parts of the emails. For the model to understand the anomaly that is introduced by that 

transformation these tokens are replacing the parts where the text was removed. 

The performance of this architecture is compared with the textAnalysis sub-classifier of the 

PhishNet-NLP email classifier by Verma et al. [45] and the Dynamic Markov Chain (DMC) model 

proposed by Bergholz et al. [46] and the results are the following: 

 

 

Figure 42 Results of paper's model compared to related work 

 

 

2.5.13 A Survey of Phishing Email Filtering Techniques [47] 

 

This survey explored related work in filtering techniques against phishing emails. Amongst the 

different techniques, a few machine learning based filters were mentioned. These are the following: 

• Bergholz et al. [48] proposed a classifier with features obtained from a dynamic Markov 

chain and class-topic models. The features extracted from the emails are from the following 

categories: 

1. Four structural (total number of body parts) 

2. Eight link features (total number of links) 

3. Four element features (HTML or JavaScript code) 

4. Two spam-filter features (passing the email through established spam filter and 

having their output as a feature) 

5. Nine word list features (words: account, update, confirm, verify, secure, notify, log, 

click, inconvenient) 

The second step is the features retrieval by the dynamic Markov chain, which depend on the 

likelihood of capturing a message belonging to a specific class. Third, 50 latent topic model 

features are retrieved (clusters of words appear together in emails). 
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• Ma, Ofoghi et al. [49] proposed a model which uses only seven features after ranking many 

features using the information gain algorithm. These features represent the most powerful 

ones. The steps followed to build the model are the following: 

1. A feature generator which includes the seven features 

2. A machine learning selection method by an adaptive five-machine learning 

algorithm 

3.  Information gain is created by induction 

4. A feature evaluation method which selects a smaller vector space of features 

5. A refined feature matrix to optimize feature sets 

Decision trees algorithm was used as a classifier and the accuracy reached was equal to 

99.8%. 

• Castillo et al. [50] proposed a hybrid system called FRALEC. A hybrid system are multi-

layered systems, which are based on combining different algorithms together to enhance 

results. The system consists of the following: 

1. A Naïve Bayes classifier for textual content of emails 

2. A rule-based classifier for separation of non-grammatical features of emails into 

three categories: fraudulent, legitimate and suspicious 

3. An emulator-based classifier that classifies the responses from URL websites. 

▪ The email is assigned as phishing if the body of a previously legitimate-

classifier email includes forms. 

▪ The email is assigned as legitimate if the body of a legitimate-classifier email 

does not include forms, links or images. 

The model was tested against 1038 emails, 10 of which were legitimate and the rest 

phishing, and a precision of 96% was achieved. 

• Islam et al. [51] proposed a multi-tier classification method. The email features are extracted 

and classified in a sequential fashion by an adaptive multi-tier classifier, and the outputs are 

sent to a decision classifier. If the message is misclassified by any of the tiers of the 

classifiers, the third tier will make the final decision in the process. The models used in the 

three tiers were SVM, AdaBoost and Naïve Bayes. The model achieved an accuracy of 97%. 

 

Figure 43 Multi-tier classification method 
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• Almomani et al. [52], proposed a framework called Phishing Evolving Neural Fuzzy 

Framework (PENFF) for detecting and predicting zero day phishing emails. It is based on 

adaptive Evolving Fuzzy Neural Network (EFuNN) [53]. The architecture is shown below. 

 

 

Figure 44 Phishing Evolving Neural Fuzzy Framework (PENFF) 

• Almomani et al. [54] [55] proposed a framework called PDENFF (Phishing Dynamic Evolving 

Neural Fuzzy Framework) that adapts the “evolving connectionist system”. It is an 

improvement on the PENFF and has achieved a 3%-13% improvement compared to the 

previous work. The architecture is shown in the figure below. 

 

Figure 45 Phishing Dynamic Evolving Neural Fuzzy Framework (PDENFF) 
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Having a thorough understanding of the theory behind machine learning classifiers and having 

presented several relevant works, the next step towards building the proposed hybrid classifier is a 

brief but clear problem statement and the approach that it is attempted to be solved. 
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3 Problem Statement 
 

As mentioned in the previous chapter, there are already established countermeasures against 

phishing emails including: 

• User education 

• Search-engine-based techniques 

• List based anti-phishing solutions 

• Visual-similarity-based solutions 

• Machine Learning techniques 

When it comes to the machine-learning-based tools and relevant research work, there are two 

fundamental categories which are used as input features of the machine learning classifier: 

• Properties: This category includes any characteristic of the email which has a specific value, 

e.g. number of URLs in the email, content transfer encoding of the email, number of 

attachments, whether the email has any part with HTML etc. 

• Text: This category includes every part of text of the email that is to be read by the receiver 

of the email, or the body of the email. This does not include any header field value or the 

contents of any webpage the URL of which is in the email. It only includes the text that is to 

be presented as plain text as the email body. 

Although there is relevant work for classifying emails as legitimate or phishing using machine 

learning techniques for both properties-based and text-based solutions, there is no work found 

which combines the two. 

It is attempted in this work to build a hybrid model using both feature categories together as input. 

The purpose of experimenting with a hybrid architecture is to test whether there is improvement of 

the performance compared to simple classifiers when it comes to detecting phishing emails. 

In order to build a hybrid classifier of this type, the following directions were studied:  

• Emails: In order to understand the email and properly retrieve both the properties-based 

and the text-based features, a proper understanding of how an email is structured, its 

components and different characteristics is required. The structure of the email was studied 

thoroughly and presented in this thesis. Afterwards the data sets which include legitimate 

and phishing emails were discovered from the relevant work and the web. 

• Machine Learning: After learning the email’s components, the next step is to start building 

an algorithm to retrieve the best features and a proper machine learning classifier which will 

detect phishing emails in the most efficient and best performing manner. For that purpose, 

different machine learning tools are presented as well as criteria as to which one to choose 

and the one that was chosen. For the chosen tool there is detailed information for what it 

provides and how it can be used for the purposes of phishing email classification. 

• Architecture: On a higher level, the architecture which will be used for involving both the 

properties-based and the text-based features was searched upon. Two architectures were 

tested, and they are called “assembled” and “stacked” hybrid architectures. They are 

presented in the following chapters. 

• Performance: To thoroughly test whether there is an improvement in performance in 

classifying emails as phishing or legitimate, all the combinations of feature inputs, machine 
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learning classifiers and their corresponding hyperparameters were tested, as well as the 

different proposed architectures. 

The findings of these directions are presented in the following approach and implementation 

chapters. The results are then presented in the numerical results chapter and the conclusion and 

potential future work are presented next. 
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4 Approach 
 

In this chapter the approach method will be presented, including the steps taken to determine the 

email data sets that were chosen, the classification procedure of the emails as phishing or 

legitimate, the criteria that were used to choose the most suitable for this work’s purposes machine 

learning tool of the literature. Lastly, a high-level description of a generic machine learning training 

and testing architecture will be presented. 

 

 

4.1 Email Structure 
 

The main focus of this project is to classify emails as phishing or benign. The first step towards the 

classification of an email is a proper preprocessing process, which will analyze the email and retrieve 

all the useful information which will be needed by a machine learning classifier in order for it to 

identify emails with the minimum error rate. In order to properly preprocess the email, in this part 

of the thesis the fundamental and needed characteristics of an email will be presented. 

 

The following text is a simple form of an email as a plain text. 

From: Mendez, Nicole  
Sent: Friday, March 30, 2001 10:51 AM 
To: Rance, Susan 
Subject: RE: REMINDER: Please fill our your time sheets today 
 
  
Great.  Thanks.  Here's how: 
 
Tools  
Options  
Mail Format 
 
Send in this message format:    HTML 
(Under Stationery & Fonts) 
    Use this stationery by default (use dropdown to pick your stationery) 
 
Nicole Mendez  

Table 2 Email Example 

 

The Internet Message Format (IMF) is a syntax for text messages that are sent between computer 

users as “electronic mail” messages (emails) and is defined by RFC 5322 (Request For Comments) 

standard [56]. Non-ASCII data and multimedia content attachments are defined in RFC 2045-2049. In 

total they constitute the Multipurpose Internet Mail Extensions (MIME). 
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Emails are made up of two sections, the message’s headers and the message body. The email 

headers are written in a specific format. They are lines beginning with a field name, followed by a 

colon (“:”), followed by a field body (a value for the field name) and terminated by CRLF (Carriage 

Return – ASCII value of 13 or “\r”, Line Feed / New Line – ASCII value of 10 or “\n”). In the email 

shown before a header example is the “Sent” header field, followed by the colon and the value of 

the date that the email was sent at. The body of a message is written after the headers and simply 

includes US-ASCII characters, with the following limitations: The CR and LF characters must be 

written only together, the lines of characters must be limited to 998 characters and should be 

limited to 78, excluding the CRLF. The aforementioned MIME documents extend this specification to 

allow for different sorts of message bodies. 

Multipart emails are messages with multiple parts, in which one or more different sets of data are 

combined in a single body. In this case a “multipart” Content-Type filed must appear in the entity’s 

header. The body will contain one or more “body parts”, with each one having a preceding and a 

closing boundary. The multipart emails’ parts follow a tree structure, where there is a root part 

which branches into other parts which could either be leaf nodes or be roots for other multiple 

parts. A multipart email’s structure is shown in the following figure. 

 

Figure 46 Multipart email structure 

 

An example of a multipart email is shown in the following [57]. 

 

// Example Multipart Email: 
From: sender@example.com 
To: recipient@example.com 
Subject: Multipart Email Example 
Content-Type: multipart/alternative; boundary="boundary-string" 
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--your-boundary 
Content-Type: text/plain; charset="utf-8" 
Content-Transfer-Encoding: quoted-printable 
Content-Disposition: inline 
 
Plain text email goes here! 
This is the fallback if email client does not support HTML 
 
--boundary-string 
Content-Type: text/html; charset="utf-8" 
Content-Transfer-Encoding: quoted-printable 
Content-Disposition: inline 
 
<h1>This is the HTML Section!</h1> 
<p>This is what displays in most modern email clients</p> 
 
--boundary-string-- 

Table 3 Multipart Email 

 

 

4.1.1 Email clients (mail user agent) 

 

An email client, email reader or maul user agent (MUA) is a computer program used to access and 

manage a user’s email. There are web applications and specific computer hardware or software 

pieces with a primary role of working as email clients. 

In an email the header which states the program that was used to draft and send the original email is 

the “X-Mailer” header. 

 

4.1.2 Email Headers 

 

As mentioned before, the email headers are written in a specific format and determine a certain 

characteristic of the email. They can be interpreted as variables of the email. There is a wide 

plethora of different email headers and a user can create custom headers for their specific needs. 

The “Content-Type” header indicates the media type of the message content. The header value 

consists of a type and a subtype in the format “type/subtype” (e.g. “text/plain” or “text/html”). This 

mechanism supports the following types: 

• multipart: This is the type which is used as a root when there are other parts of the email. 

This part must be included in any case where the email has multiple parts as the root part of 

the email. Multiple multipart parts can be used in one email to complicate the tree 

structure. The subtypes are the following: 

multipart/mixed (the primary subtype) 
multipart/alternative (used for representing the same data in multiple formats) 
multipart/related (used by MHTML (HTML mail))   
multipart/parallel (for parts which are to be presented simultaneously) 
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multipart/digest (for multipart parts in which each part is of type “message) 

 

• text: This type includes any type of textual information. The base subtype is “text/plain” 

which includes unformatted text. The other subtypes are used for enriched text, where an 

application could enhance the appearance of the text. The subtypes are: 

text/css     
text/csv     
text/html     
text/javascript (obsolete)     
text/plain     
text/xml   

 

• message: This type is an encapsulated message. A part of type “message” is an RFC 822 

conformant message and may include its own different type header field. The subtypes are: 

message/rfc822 (primary subtype) 
message/partial (used for partial message, for sending messages in parts) 
message/external-body (for defining large bodies by reference to an extrernal data 
source) 

 

• image: As this name indicates, this type includes image data. To view the information, a 

display device is need (monitor, printer etc.). The subtypes include image file formats: 

image/jpeg 
image/gif 
image/png 
image/bmp 
image/svg+xml 

 

• audio: This type includes an audio file. The primary subtype is “audio/basic” and more 

complex subtypes include the file format, such as “audio/mpeg”. Audio requires an audio 

device to reproduce the contents. 

 

• video: This type includes a video file. The primary subtype Is “video/mpeg”. Video requires a 

display device to display the contents. 

 

• application: This includes data that cannot be included in the other types. A typical type of 

data is uninterpreted binary data or other data which are to be processed by a mail-based 

application. Other uses include spreadsheets and data for mail-based scheduling systems. 

The application subtypes are the following: 

application/octet-stream (for uninterpreted binary data) 
application/ODA 
application/PostScript 

 

The “Content-Disposition” header describes the that a mail message is presented. A MIME part can 

have: 
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• Inline content-disposition: the message part should be automatically displayed when the 

message is displayed. 

• Attachment content-disposition: the part is not displayed automatically but requires action 

to open it (traditional attachment which has to be clicked to either open/show or 

download). 

The “Content-Transfer-Encoding” header defines the method for representing the binary data that 

an email (and any file for that matter) has. 

If there is some sort of binary to text encoding used for the email, this header defines what that 

transformation algorithm was used, so that the mail client can decode it and present the information 

of the email. If there is not any transformation, this header provides a descriptive label for the 

format of the content. 

The most widely used values of the Content-Transfer-Encoding header, and correspondingly the 

most widely used encodings of emails are: 

• 7bit, which is the traditional format of email encoding. The format allows up to 998 

characters per line of the ASCII number range from 1 to 127, with the CRLF characters 

appearing only together and only at the end of the line. 

• quoted-printable: This encoding is used to encode arbitrary byte sequences so that the rules 

of 7bit encoding are satisfied. This encoding is useful when most of the characters are of US-

ASCII type and none to a few characters are outside that range, and the purpose is to 

convert the sequence of bytes to a mostly human readable form. 

• base64: Used to encode bytes to a form that satisfies the 7bit rules. This encoding is more 

useful for bytes which do not consist of US-ASCII characters (non-text 8 bit and binary data). 

• 8bit: This is for use with SMTP servers that support the 8BITMIME SMTP extension, is the 

same type as the 7bit. The reason of the 8bit’s existence is that, prior to it, the original SMTP 

supports transport of only textual data. Therefore, any binary data needed to be encoded 

into a text. The 8bit encoding was developed to alleviate this limitation. 

• binary: This is any sequence of bytes. 

 

Other email headers which do not require detailed analysis are listed in the following extensive table 

[58]. 

 

Table 4 Mail Header Fields 

Header Description 

Data Message date and time 

From Mailbox of message author 

Sender Mailbox of message sender 

Reply-To Mailbox for replies to message 

To Primary recipient mailbox 

Cc Carbon-Copy recipient mailbox 

Bcc Blind-carbon-copy recipient mailbox 

Message-ID Message Identifier 

In-Reply-To Identify replied-to message(s) 

References Related message identifier(s) 
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Subject Topic of message 

Comments Additional comments about the message 

Keywords Message key words 

Resent-Date Data and time message is resent 

Resent-From Mailbox of person for whom message is resent 

Resent-Sender Mailbox of person who actually resends the 
message 

Resent-To Mailbox to which message is resent 

Resent-Cc Mailbox(es) to which message is cc’ed on 
resend 

Resent-Bcc Mailbox(es) to which message is bcc’ed on 
resend 

Resent-Reply-To Resent reply-to 

Resent-Message-ID Message identifier for resent message 

Return-Path Message return path 

Received Mail transfer trace information 

Encrypted Message encryption information 

Disposition-Notification-To Mailbox for sending disposition notification 

Disposition-Notification-Options Disposition notification options 

Accept-Language Language(s) for auto-responses 

Original-Message-ID Original message identifier 

PICS-Label PICS rating label 

Encoding Message encoding and other information 

List-Archive URL of mailing list archive 

List-Help URL for mailing list information 

List-ID Mailing list identifier 

List-Owner URL for mailing list owner’s mailbox 

List-Post URL for mailing list posting 

List-Subscribe URL for mailing list subscription 

List-Unsubscribe URL for mailing list unsubscription 

Message-Context Type or context of message 

DL-Expansion-History Trace of distribution lists passed 

Alternate-Recipient Controls forwarding to alternate recipients 

Original-Encoded-Information-Types Body part types in message 

Content-Return Return content on non-delivery 

Generate-Delivery-Report Request delivery report generation 

Prevent-NonDelivery-Report Non-delivery report required 

Obsoletes Reference message to be replaced 

Supersedes Reference message to be replaced 

Content-Identifier Message content identifier 

Delivery-Date Message delivery time 

Expiry-Date Message expiry time 

Expires Message expiry time 

Reply-By Time by which a reply is requested 

Importance Message importance 

Incomplete-Copy Body parts are missing 

Priority Message priority 

Sensitivity Message content sensitivity 

Language X.400 message content language 

Conversion Conversion allowed? 
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Conversion-With-Loss Lossy conversion allowed? 

Message-Type Message type: delivery report? 

Autosubmitted Automatically submitted indicator 

Autoforwarded Automatically forwarded indicator 

Discarded-X400-IPMS-Extensions X.400 IPM extensions discarded 

Discarded-X400-MTS-Extensions X.400 MTS extensions discarded 

Disclose-Recipients Disclose names of other recipients? 

Deferred-Delivery Deferred delivery information 

Latest-Delivery-Time Latest delivery time requested 

Originator-Return-Address Originator return address 

X400-Content-Identifier X400-Content-Return 

X400-Content-Type X400 content type 

X400-MTS-Identifier X400 MTS-Identifier 

X400-Originator  

X400-Received  

X400-Recipients  

X400-Trace  

 

Permanent MIME Header fields are the following. 

 

Table 5 Permenent MIME Header Fields 

Header Description 

MIME-Version MIME version number 

Content-ID Identify content body part 

Content-Description Description of message body part 

Content-Transfer-Encoding Content transfer encoding applied 

Content-Type MIME content type 

Content-Base Content-Location 

Content-features Indicates content features of a MIME body part 

Content-Disposition Intended content disposition and file name 

Content-Language Language of message content 

Content-Alternative Alternative content available 

Content-MD5 MD5 checksum of content 

Content-Duration Time duration of content 

 

 

4.1.3 Email File Formats 

 

There are many different file formats when it comes to storing emails. The most popular file formats 

are the following [59]: 

• EML (E-Mail Message File): emails saved using Outlook and other relevant applications. 

Microsoft Outlook is the default software for opening EML files. 

• VCF (Virtual Card Format) is a digital file format for storing contact information. 
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• TNEF (Transport Neutral Encapsulation Format) is a Microsoft-based format for 

encapsulating email attachments based on the Messaging Application Programming 

Interface (MAPI). 

• PST (outlook Personal Storage File) is a file that stores a variety of user’s information. 

• OST (Offline Storage File) consist of a user’s mailbox data on a local machine when 

registered with Exchange Server using Microsoft Outlook. 

• EMLX is a file format implemented and developed by Apple. The Apple mail application uses 

the EMLX file format for exporting the emails. 

• MBOX (Mail box) is a file format for collection of emails. The emails are stored inside the 

container along with their attachments. The MBOX file is practically a text file with emails, 

one written after another and are separated by a few new lines. In this file a new email is 

started right the “From” header field, and that is the line that applications and programs are 

searching when they access and MBOX file. This project operates on email data sets with 

mbox format. 

• Maildir (mdir) is a format for storing emails, where each message is kept in a separate file 

with a unique name and each mail folder is a file system directory. The Maildir directory 

usually has three subdirectories: tmp, new and cur. The maildir file format structure is show 

in the following figure. A few data sets found in the literature of machine learning against 

phishing emails were of this file format but were converted to mbox for concistency. 

 

Table 6 Maildir Email File Format 

 

 

 

     

         

   

   

        

         

   

   

        



67 
 

4.1.4 Email Data Sets 

 

The first step towards building a machine learning classifier is having a proper data set. After 

research in relevant work, the following data sets were found: 

• Spam Assassin public mail corpus [60]: Spam Assassin is an open source anti-spam platform 

that gives a filter to classify email and block spam [61]. The data set provided by Spam 

Assassin includes legitimate and spam emails with the purpose of building classifiers for 

spam email classification and, more generally, to test spam filtering systems. Even though 

the purpose of this project is not to classify spam emails but rather detect phishing emails, 

this data set’s legitimate emails can be of use for building an email data set which will 

include phishing and legitimate emails. 

• Jose Nazario Phishing email Corpus [62]: This data set includes phishing emails in different 

mbox format files. The emails are classified by the creator of the data set and they are 

emails which were sent to them. It is not meant to be an exhaustive representation of 

phishing emails, but rather a representation. 

• Enron Email Dataset [63]: Enron was one of the largest integrated natural gas and electricity 

companies in the world [64]. Before its bankruptcy in 2001, Enron employed 29,000 

employees with a revenue of approximately $101 billion during 2000. At the end of 2001 it 

was revealed that Enron’s reported financial condition was sustained by systematic and 

planned accounting fraud, known since then as the Enron scandal. Because of the scandal, 

all the emails of the corporation were made public by the Federal Energy Regulatory 

Commission during its investigation for said scandal. This data set contains data from about 

150 users, mostly senior management of Enron, organized into folders. The corpus contains 

about 500,000 emails in total. These emails are used by the literature as a legitimate email 

data set for machine learning algorithm training and testing purposes. 

• Data sets with already retrieved features: There are two data sets which were used with 

their features already retrieved. These are: 

o Diego Ocampo Machine learning phishing data set [65]: This GitHub project includes 

a process of training and testing different machine learning algorithms on phishing 

emails. It has an already built data base of phishing and legitimate emails, with 

twelve features for each one. 

o UCI Spambase Data Set [66]: The University of California, Irvine (UCI) Machine 

Learning Repository provides a plethora of different data sets for building machine 

learning and intelligent systems. The UCI Spambase data set is an already built data 

set that contain spam and legitimate emails. Although its purpose is towards spam 

email filtering, the data set can be used as a quick test for other applications. It 

contains 57 features, including word-type features and properties-type features. 

 

 

4.2 Machine Learning Tools in the Literature 
 

To develop a machine learning algorithm for classifying emails as phishing or not, there needs to be 

a relevant tool for such purpose. The tools used in the literature for training and testing machine 

learning algorithms are presented in this chapter. 
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4.2.1 Rapid Miner 

 

Rapid Miner is a data science software platform that provides an environment for all the steps 

towards data science: data preparation, machine learning, deep learning, text mining and predictive 

analytics. It supports all the steps of the machine learning process as well as results visualization, 

model validation and optimization. The RapidMiner Studio has different versions: 

• Free Edition is limited to 1 logical processor and 10,000 data rows (examples) in the data set. 

This edition does not include the more sophisticated capabilities that RapidMiner Turbo Prep, 

Auto Model and Model Ops provide, which are included in the commercial and the education 

editions. 

• Commercial version pricing starts at $5,000 

• Education Licenses are available for certain institutions, which provide the full version for free 

and educational purposes. 

The operation of the Rapid Miner Studio tool is with a graphical user interface, where the user puts 

boxes and connects them, which represent processes and data pipes respectively, in order to create 

the whole system process to train, test classifiers and output results. Firstly, this graphical interface 

will be presented and then the additional features including the Auto Model, Model Ops and Turbo 

Prep will be presented. 

Rapid Miner Studio: To better understand the interface of the Studio, a process example follows. 

 

Figure 47 Rapid Miner Studio 

As can be seen, there are processes represented as boxes. These processes handle the data which is 

inputted to them in some way and output the transformed values. The inputs and outputs are 

represented by the connections between the processes. Note here that Rapid Miner handles already 
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created data sets and does not provide functionality for retrieving features from the data sources 

(from the emails in the case of this project). The processes of Rapid Miner Studio include the 

following: 

• Import Data 

• Filter examples: Filter out the example set depending on a parameter value. 

• Sort: Sort by an attribute by giving its name 

• Join: Joins two input sources 

• Aggregate attributes 

• Generate Attributes as combinations of the original ones. 

• Select Attributes as a subset of the original ones. 

• Replace Missing Values, with a defined function (e.g. average of the other values) 

• Detect Outlier, to identify examples which are the farthest away from all the other values. 

These can be then filtered out because they do not help in training the classifier but rather 

promote overfitting. 

• Loop values: Just like in programming, provides a method for looping a process until a 

condition is met. 

• Branch: This is the process equivalent to the if-then-else logic. 

• Classifier: In order to train a classifier, its corresponding process is used and has as input the 

cleaned data set. 

• Apply Model: The now trained classifier, as a process, has two outputs: the predictions and 

the model itself. The model can be used to make predictions on new examples with the 

“Apply Model” process. 

• Performance: This process takes the predictions and evaluates the performance of the 

corresponding trained classifier. 

• Cross Validation divides the example set into equal parts and rotates through all parts, 

through all parts, always using one for testing and all others for training the model. At the 

end, the average of all testing accuracies is delivered as a result. 

• Compare ROCs: Takes as inputs an arbitrary number of models and produces a single graph 

with one ROC curve for each model, as shown in the figure below. 

 

Figure 48 Compare ROCs process of Rapid Miner Studio 

A Rapid Miner Studio model was created as a test, using some previous relevant work [65]. The 

process is the following. 
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Figure 49 Rapid Miner Studio created process 

The data set was the already created csv file from the aforementioned relevant work. There is the 

“Handle Input” Process which will take the csv data and prepare it for training and testing, the 

“Multiply” part is just a system to get multiple outputs of the same input, and the “Opt RF” is a 

Process which trains and tests a Random Forest model and optimizes (hence the Opt) its parameters 

to maximize the performance. Note here that the other boxes are grayed out because they were 

inactive to test one of them at a time. 

The “Handle Input” process, when opened, has the following process in it. 

 

Figure 50 "Handle Input" Process 

First the csv files which have the attributes are read and appended so we have one csv file with all 

the emails (both non-phishy and phishy) totaling at 4511 emails at a ratio of 50 phishing - 50 non-

phishing. Then the “Set Role” box sets a role for a specified attribute/column. In our case, we set the 

attribute “Phishy” as “label”, which is the column that label column and determines whether the 

email is phishing or not. This is used when training and testing the models to let them know that this 

is the attribute that we want to train for. By using all the other attributes, we want to predict what 

value the “Phishy” attribute will have. Then the “Select Attributes” just removes the attribute 

(column) of the unique identifier which was provided to each email (which is useless for training). 

The Normalize process, as the name indicates, normalizes the values of selected attributes so that 

they fit in a specific range. It did not change the results at all, so it is disabled. 
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Opening the “Opt RF” process, we have the following. 

 

Figure 51 "Opt RF" process 

We just have a “Cross Validation” process. Inside the Cross Validation we have the following. 

 

Figure 52 "Cross Validation" Process 

For the Cross-Validation process, there is a parameter called “Number of folds”. We put, for 

example, a value of 10. What happens is that the data will be split at a ratio of 90-10 and the model 

that is inside the Cross-Validation process will be trained with the 90% and then tested with the 10%. 

This will be done 10 times, with each time using a different 10% of the data. This is done to have a 

more general performance information, removing the possibility of the first 10% of the data being 

too easy or too hard to predict. 

Getting a bit more specific inside the Cross Validation, as it can be seen, there is a “Training” sub-

process and a “Testing” sub-process. Firstly, the Training sub-process is run using the 90% of the 

data. In this case, a Random Forest prediction model is used. After the model is trained, the output 

of the “Random Forest” process called “mod” is the trained Model, which is then used as input at 

the “Apply Model” together with the 10% of the data. At the Apply Model process, the model is used 

to predict the outcome of the 10% of the data and afterwards it is sent to the “Performance” 

process, where the performance is checked there. We get information about the accuracy, the recall 

and the precision of the model. 

As shown before, the Cross-Validation process is inside an Optimization process. This means that all 

this will be run for every combination of parameters specified at the “Opt RF” process, and the best 

performance combination will be selected. 

We ran this whole process for a few of Supervised Machine Learning algorithms and we have the 

following results. 

 
 

Accuracy Precision Recall 
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Decision Tree 96.28%+-1.04% 94.95%+-1.7% 97.78%+-1.2% 

k-Nearest Neighbour 97.07%+-1.19% 96.27%+-1.54% 97.96%+-1.48% 

Gradient Boosted Trees 97.01%+-0.8% 96.4%+-1.5% 97.7%+-1.43% 

 

Rapid Miner Auto Model: Rapid Miner also provides with the “Auto Model” feature. This is an 

advanced high layer process to select the best model for the given data. The operation of this 

feature is very simple, where the user provides the data, selects the attributes to be trained and 

tested, select the Machine Learning algorithms to test and receive the performance results. Figures 

for each step are provided below. 

1. Load the data 

2. Select Task

 

Figure 53 Select Task 

Here we choose what we want to do with the data. In our case we want to Predict the values 

of a column, so we choose that and then choose which column we want to predict, which is 

the “Phishy” column which specifies whether the email is phishing or not. 

3. Prepare Target: In this step nothing was needed to be done. It is more useful for targets 

which have different values that are to be classified differently (for example if the column 

had values of -1 and 1 and it was needed to be changed to true/false). 

4. Select Inputs: 

 
In this step the columns to be used for the training and testing are selected. There is 

information for every column about the correlation, ID-ness (how unique is each value), 

stability, if there are any missing values, text-ness (values which have free text, meaning that 
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it is difficult to use them for training). The column “Quality” has a visual representation of 

each other column. 

• (C) Columns that too closely mirror the target column, 

• (I) Columns where nearly all values are different, 

• (S) Columns where nearly all values are identical, 

• (M) Columns with missing values, 

• (T) Columns which look like they contain free text. 

5. Model Types: In this step a variety of classifiers is provided as a checklist and the desired 

classifiers are chosen.  

 

Figure 54 Rapid Miner Model Types 

6. Results: After running the process the models are trained and performance results are 

printed for them. 

 

Figure 55 Rapid Miner Auto Model Results 
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With the Auto Model tool, the optimal parameters can be found for each classifier, by testing the 

performance of parameter values combinations. 

In conclusion, Rapid Miner is a useful tool when trying to choose a Machine Learning with the 

following advantages: 

• Easy to build and comprehend processes with the provided graphical interface. 

• Easy to test classifiers and optimize their parameters with the graphical interface and Auto 

Model Feature. 

The disadvantages of Rapid Miner Studio are: 

• The full functionality comes as a commercial licensed package. 

• It does not provide functionality when it comes to retrieving features. It can only use an 

already built feature data set. 

 

 

4.2.2 Weka 

 

Weka [67] (Waikato Environment for Knowledge Analysis) is an open-source software of visualizing, 

data analysis and predictive modeling tools. It provides with graphical user interfaces for accessing 

these functions. It is written in Java and provides APIs for code writing for Java as well as for Python 

with a wrapper [68], R with the RWeka package [69] and for Spark with the distributed Weka for 

Spark package [70]. 

Weka has a few user interfaces, with the primary one being the Explorer. There is also the 

“Knowledge Flow”, a command line interface and the “Experimenter”, which enables an automated 

comparison of the performance of different machine learning algorithms on the provided dataset. 

The “Explorer” interface has the following different sub-interfaces as panels: 

• Preprocess provides functionality for importing data from a database, a csv file etc. and for 

preprocessing the data by filtering it, filling missing values, transforming values to a desired 

type etc. 

• Classify is for applying classification algorithms to the preprocessed now data set and 

produce predictions and performance evaluation. 

• Associate provides association rule learners for finding any possible 

relationships/(in)dependencies between features of the dataset. 

• Cluster enables clustering techniques (k-means clustering). 

• Select attributes includes algorithms for feature selection/extraction. 

• Visualize show a scatter plot matrix of predictions and other relevant information. 

The Weka’s advantages include: 

• Open source – Free license (GNU General Public License) 

• Easy testing of machine learning algorithms and comprehension of the process, with the 

graphical user interface. 

However, Weka’s disadvantages are: 
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• No functionality when it comes to feature retrieving for a raw data source (e.g. an email data 

set). It requires as input the data set of feature values for the examples of the raw data 

source (e.g. the features retrieved from the emails and transformed to a csv file). 

• Although it provides APIs for programming languages, there are already libraries, packages 

and modules for machine learning languages which will naturally be more efficient when it 

comes to processing time because there are less commands executed. 

 

 

4.2.3 TensorFlow 

 

TensorFlow [71] is an open-source platform for machine learning. It provides tools and libraries for 

building, testing and deploying machine learning powered applications. It was developed by the 

Google Brain team, a deep learning artificial intelligence research team at Google. 

There are lower level APIs which can be used to build models by defining a series of mathematical 

operations, and there are high level APIs like the tf.estimator API which provides with already built 

machine learning models which can be used to train and make predictions. 

TensorFlow has the following advantages: 

• Can develop the whole machine learning process through it, because it is part of code so at 

first the preprocessing can happen with the result being the retrieved from the emails 

features, and then apache spark can be used for the classification. 

• It is open source software. 

Disadvantages of TensorFlow include: 

• Since it is practically a software library, it can seem daunting at start. 

 

 

4.2.4 Apache Spark 

 

Apache Spark [72] is an open source general-purpose cluster computing system. It provides APIs in 

Java, Scala, Python and R. It supports high-level tools including Spark SQL for SQL data processing, 

MLlib for machine learning, GraphX for graph processing and Spark Streaming. 

Spark offers the ability to combine discrete tasks on data such as selecting data, transforming the 

data in different ways and analyzing the resulting data with several methods. Spark jobs perform 

multiple operations consecutively in the memory of the computer. The way that Spark provides easy 

implementation methods of multiple operations on data is with the Data Pipelines. A data pipeline 

can include many different processes and, as a whole, be a complex transformer, combining large 

number of inputs and processing steps and produce the desired results. 

Spark runs multi-threaded light tasks inside Java Virtual Machine (JVM) processes, enabling easy 

parallelization of them in a multi-core CPU environment. It caches the data in the memory of the 

computer, thus improving the processing times of parallelized processes. 
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Apache Spark has the following advantages: 

• Fast processing time 

• Rich variety of available processes and tools that facilitate the development and 

implementation of projects 

• Open source 

• Can develop the whole machine learning process through it, because it is part of code so at 

first the preprocessing can happen with the result being the retrieved from the emails 

features, and then apache spark can be used for the classification. 

• It has a very active online community, from which solutions to any kind of problem can be 

found. 

The Spark’s disadvantages are: 

• Could be difficult to comprehend at start, both as a cluster computing system (its 

architecture) and as a software library (the relevant pieces of code to use and run it) 

 

 

4.2.5 Criteria for choosing the most suitable tool for the purposes of this work 

 

In order to select the most appropriate tool for developing the phishing email classifier, the 

following criteria have to be considered: 

• User comprehensibility: A basic criterion for development is how easily and how well a new 

developer and a generic user can understand the tool. This includes understanding the 

underlying architecture of the tool’s processes and procedures, understanding the functions 

on a higher-level as well as the relevant code/building blocks when developing a program 

with the tool. 

• Distribution Method: An important factor to determine the right tool is the way that a user 

can have access to the tool and use it. More specifically, an open-source licensed product is 

preferred as there is permission to use the source code, the design documents and the 

content of the product. This enables the free development, implementation and deployment 

of the tool with practically no restriction. 

• Open ended-ness/Restrictions: For the proper development of a process like the machine 

learning classification that is the purpose of this thesis, there needs to be as few restrictions 

as possible when it comes to how the tool is used. This includes the ways that the tool’s 

parts are allowed and meant to be used. A tool that might seem to be useful at start might 

end up not providing enough freedom to develop the intended project. 

• Basic functionalities: This criterion is particularly important in the case of machine learning 

because there is a series of steps which need to be completed in order to build a model. This 

includes functionality for handling the raw data source, processing it and retrieving the 

features, as well as building, training and testing a machine learning model with the resulting 

features. Having these functionalities can be achieved by using different programs, tools and 

programming languages, but it is more efficient to be able to complete these steps in one 

seamless stream of procedures. 

• Online Community: Last, but not least, it is important to have activity in the internet when it 

comes to the usage of the tool, because this means that there will be a higher chance that 
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any question that may come when using the tool is already answered in a relevant forum 

and that if there is a question without an answer it can be asked in the forums and have an 

answer relatively shortly. 

 

Taking into account these criteria and applying them to the aforementioned tools that were found to 

be used in relevant work and literature resulted in the following table. A simple rating of 1-3 was 

assigned to each criterion for every tool. 

 

Table 7 Machine Learning Tool Criteria 

Tool Rapid Miner Weka TensorFlow Apache Spark 

User 
Comprehensibility 

3 3 2 2 

Distribution 
Method 

1 3 3 3 

Open ended-ness 2 2 3 3 

Functionalities 1 1 3 3 

Online Community 1 1 2 3 

Total 8 10 13 14 

 

Following the table and the fact that Apache Spark is a competitive tool when it comes to processing 

speed (because of the parallelization techniques that it employs) the tool that is used for the 

implementation of this thesis is the Apache Spark. In the following chapter more details about this 

tool will be provided, including its underlying architecture and the libraries that are included. In the 

implementation chapter there will be more specific information at the parts of the code where it 

was determined necessary. 

 

 

4.3 Detailed Presentation of Spark and its Features 
 

Spark can run as a standalone program or in cluster mode. Cluster mode is where Spark application 

can run on multiple processing units, either on the same system or on different ones that are 

connected to a network. The architecture of spark running in cluster mode is shown in the following 

figure [73]. 
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Figure 56 Apache Spark Cluster Mode 

 

Spark applications run as sets of processes on a cluster. These processes are coordinated by the 

SparkContext object in the main program, which is the Driver Program in the figure. There needs to 

be Cluster Managers which will handle which process will run on which node of the network. Cluster 

Managers which are supported by spark are the following: 

• Standalone: this is a simple cluster manager which is included in spark for easier and simpler 

implementations. 

• Apache Mesos [74] 

• Hadoop YARN [75]: the resource manager in Hadoop [76] 

• Kubernetes [77]: an open source system for automating deployment and management of 

containerized applications 

The process continues as follows: 

1. Spark acquires Executors from the network, which are processes which will execute what 

SparkContext assigns them to and also store data in the memory. 

2. Spark sends the application code to the executors. 

3. SparkContext sends tasks to the executors to run. 

The main abstraction that spark provides is the resilient distributed dataset (RDD). It is a collection of 

elements which are spread across the nodes of the cluster and they can be accessed in parallel from 

one another. RDDs can be created either with a file in the Hadoop file system, or an existing Scala 

collection in the driver program and transforming it to an RDD. 

Each application gets its own executor processes for the duration of the whole application. That way 

each application is isolated from another. The isolation has the drawback that applications cannot 

directly share data with each other. 

Spark does not take into account the type of cluster manager that is used. For spark what matters is 

that there is a cluster manager which will properly provide with executors that spark needs for its 

applications. 

Because the cluster architecture requires a network for it to operate and exchanges to happen 

between driver and executors, the driver needs to have a known address/port for the executors to 

be able to directly send to it data, requests and results. 
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For efficiency reasons, the driver program should be in a local network with the executors, for the 

communications to be as short as possible. 

As mentioned before, spark uses a stack of libraries including SQL and DataFrames, MLlib, GraphX 

and Spark Streaming. 

• Spark SQL and DataFrames: Spark SQL is spark’s module for working with structured data. 

This module allows querying structured data inside spark programs using SQL queries or a 

familiar DataFrame API. As a clarification: 

o A Dataset is a distributed collection of data. 

o A DataFrame is a Dataset organized into named columns. DataFrames can be 

created from a variety of sources, including structured data files (csv, json etc.), 

tablies in Hive, external databases and existing RDDs. The DataFrame API is available 

in all the languages of spark (Scala, Java, Python and R). The features array for this 

work’s purposes will be stored as a DataFrame. 

• Spark Streaming’s purpose is to build scalable steaming applications. It brings a language-

integrated API for stream processing in Java, Scala and Python. It can read data from various 

sources including Kafka, Twitter and HDFS, as well as custom created data sources. 

• GraphX is a Spark API for graphs and graph-parallel computation. In a single system one can 

use iterative graph computations, exploratory analysis and ETL (Extract, Transform, Load). It 

provides capabilities to displaying data as graphs and arrays, transform and join the graphs 

using RDDs and write iterative graph algorithms. 

• MLlib is Spark’s scalable machine learning library. Using Spark’s iterative computation 

capabilities help MLlib train classifiers efficiently. More information about MLlib wil be 

presented in the following chapter. 

 

 

4.3.1 Spark’s MLlib library for Machine Learning Applications 

 

MLlib is a library of Apache Spark for machine learning purposes. It provides the following 

functionality: 

• Machine Learning algorithms, including classification, regressing, clustering, collaborative 

filter and deep learning with neural networks. 

• Featurization, including feature extraction and selection, transformation of features and 

dimensionality reduction 

• Pipelines are tools for merging series of processes for machine learning purposes in one 

seamless process. 

• Persistence: can save and load algorithms, models and Pipelines. 

• Utilities, including statistics, data handling and others. 

 

 

4.3.1.1 Basic Statistics 
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In the following the functions of MLlib will be presented. 

Correlation: It is useful to calculate the correlation between a feature and the label we want to 

predict, because if the correlation is close to 1 this means that the label can be found with almost 

100% certainty just from this 1 feature. This means that there is nothing to be taught to the machine 

learning model which is supposed to be trained using all the features. We can just use a function 

which will take as input the feature and produce the label output. If, on the other hand, the 

correlation is close to 0, then there is no information provided by this feature, so it is pointless to 

include it in the training. The function Correlation of MLlib computes the correlation matrix for the 

input Dataset of vectors using a specified method (the currently supported methods are Pearson’s 

and Spearman’s correlations). 

Hypothesis testing is a tool to determine if a result is statistically significant. Spark’s ChiSquareTest 

executes Pearson’s independence test for every feature against the label and a contingency matrix is 

made for each statistic. 

Summarizer vector column summary statistics. The metrics that it provides are column-wise 

maximum, minimum, mean, variance, number of non-zeros and total number of examples. 

 

 

4.3.1.2 Pipelines 

 

ML Pipelines are a fundamental part of the Spark MLlib library and provide functionality on the 

DataFrames for building and tuning machine learning processes. The use of Pipelines helps with 

combining multiple transforming and machine learning algorithms into one single pipeline or 

workflow. The components that are used in building and operating Pipelines are the following. 

• DataFrame: As mentioned before, a DataSet is a distributed collection of data. A DataFrame 

is a DataSet organized into named columns. This ML API uses the DataFrame from Spark SQL 

as a dataset for machine learning purposes. Such DataFrame can include any type of data in 

its columns including text, feature vectors, labels and predictions. The DataFrame is used as 

an input for the machine learning algorithms, which use practically any type of data and 

transform them into useful and informative (for the classifier) features. 

• Transformer: A Transformer is the part of the Pipeline which will transform a DataFrame to 

another. The most common case would be to transform a DataFrame of features to one of 

predictions. Technically, a Transformer is a method called transform which will execute the 

transformation. For example, a transformer which builds features for a classifier can take a 

column of text, transform it to a numerical representation. Afterwards, it will take this 

column and any other feature column of numerical and boolean type values and assemble 

them all into one feature vector column to be used as input for the machine learning 

classifier. A second, follow-up of the first, transformer would be a classifier. One that takes 

as input these features and makes a prediction/classification, by adding to the DataFrame a 

column “predictions”. 

• Estimator: The Estimator “fits” in a DataFrame to produce a Transformer. Using the example 

of the Transformer, an Estimator could be used in the Pipeline prior to making the 

predictions with the classifier. The Pipeline would have the untrained classifier as its last 

stage. The DataFrame would be split into a training and a test set. The Pipeline would be 
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used first on the training set to fit on the DataFrame. In other words, the classifier would be 

trained using the training set and the label column which should be in the DataFrame. Then 

a transformer, or model/classifier, is produced, which can then be used to transform the test 

set and make predictions, with the purpose of testing the model’s performance. When it 

comes to coding, the Estimator is a Pipeline method called fit, which takes a DataFrame as 

input and outputs a Model/Transformer. 

• Pipeline: A Pipeline appends a series of Transformers and Estimators to build a series of 

processes which are to be executed on a DataFrame. When it comes to coding, a Pipeline 

consists of a series of stages. The stages are run in order on the input DataFrame and it is 

transformed at each stage. The Pipeline is an Estimator, so at first it is called with the fit 

method and a Transformer will be produced which is called Pipeline Model. The Pipeline 

Model will be called on the DataFrame with the transform method, and the DataFrame will 

be transformed each stage at a time. 

• Parameter: Estimators and Transformers use the same API for setting parameters. The 

parameters can be set at the initialization phase of an Estimator or Transformer instance, by 

using the API to set parameters on already initialized ones or by passing pairs of parameters 

and values on fit and transform methods.  

 

 

4.3.1.3 Feature retrieval, transformation and selection/extraction 

 

A fundamental part of machine learning is to create an efficient and purposeful algorithm for 

transforming the raw input data which is to be classified into representative features. Spark’s MLlib 

provides a wide plethora of feature related algorithms from the following categories: 

• Retrieval: Retrieving feature from the raw input data. 

• Transformation: These including feature modification algorithms including scaling and 

normalizing. 

• Selection/Extraction: With feature selection a subset of the features is selected to be used 

as input for the classifier. With feature extraction the features which can be relatively 

dependent on each other are transformed into a set of independent features that will be 

used for the classification process. 

The following algorithms are not every algorithm from this section of MLlib but rather the ones that 

were used in this work for classifying phishing emails: 

 

Feature Retrievers 

• TF-IDF: Term frequency-inverse document frequency is a feature retriever method for text 

classification. With it the resulting features represent words and words that appear 

frequently in one example but not frequently in the whole document of examples will have a 

higher weight. The methods in MLlib are HashingTF and IDF. HashingTF is a Transformer 

which takes sets of terms (words) and transforms them to feature vectors of fixed length. 

IDF, on the other hand, is an Estimator which is fit on the HashingTF’s output and produces 

an IDFModel. This Model takes feature vectors and scales each feature. As the name 
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“inverse document frequency” suggests, this Model will reduce the weight of features that 

appear frequently in the examples of the document. 

• Word2Vec: This is an Estimator which implements the Word Embedding. Word Embedding 

is a text feature retrieving method with which every word is mapped to a vector. This is a 

more sophisticated text feature method in the sense that, in addition to providing 

frequency-based information (because if a word exists then the corresponding vector will 

exist, too), words with similar meanings will have neighboring vectors. Word2vec is a 

method created and published in 2013 by researchers at Google. In Spark, Word2Vec is an 

Estimator which takes sequences of words and trains a Word2VecModel. This Model will 

map each word to its corresponding vector and transforms each text examples into a vector 

using the average of all words in the document. 

• Other types of features for the case of emails which are based on the properties of the 

emails, such as number of URLs in the email or number of attachments of the email, are 

specific to emails, so specific methods were created for these purposes. These methods are 

described in the Implementation chapter. 

 

Feature Transformers 

• Tokenizer: A Tokenizer takes a text as input and breaks it into individual terms, creating an 

array. There is a delimiter parameter which states the character which is the delimiter 

between the terms. A RegexTokenizer executes the same operation, with the difference 

that the delimiter is now a regular expression. There is a parameter which can be set to true 

and then the RegexTokenizer will instead use the regular expression to find the terms 

themselves instead of as a delimiter. 

• StopWordsRemover: Stop words are words which do not provide useful information when it 

comes to the context of a text document, such as “I, you, the, in, as, on, a” etc. The method 

StopWordsRemover takes as input a vector of words, such as the output of the Tokenizer 

method, and removes the Stop Words. There are a few available options when it comes to 

language: “danish”, “dutch”, “english”, “finnish”, “french”, “german”, “hungarian”, “italian”, 

“norwegian”, “portuguese”, “russian”, “spanish”, “swedish” and “turkish”. 

• StringIndexer: This method takes as input a column of strings or numbers and transforms 

them to indices. The indices are number from 0 to the number of different values in the 

column. This method is particularly useful if a feature is of string type and has a limited 

number of different string values. Then it can be transformed to a numerical feature using 

the StringIndexer, and the numerical values could then be used for training the different 

machine learning algorithms. 

• OneHotEncoderEstimator: One-Hot encoding maps a categorical feature (of string type 

value) which is represented as an index (typically using the output of StringIndexer) to a 

binary vector which has zeroes at every index except one which has one. This index 

represents the specific value of the index which was the input of the encoder. 

• Normalizer: This is a Transformer which transforms a dataset of Vector rows so that every 

vector has a unit norm. 

• StandardScaler: This method transforms a dataset of vector rows, typically features, so that 

each feature has unit standard deviation and/or zero mean. 

• VectorAssembler: This transformer takes as input a list of columns of the input DataFrame 

and converts them into a single vector column. It accepts columns with types of numeric, 

boolean and vector type. This is a crucial step towards machine learning classification, 
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because the machine learning algorithms in Spark are designed to take as input one feature 

vector column and use it to either train or classify. 

 

Feature Selectors/Extractors 

• PCA: Although this method is categorized as a Feature Transformer in the spark 

documentation page, PCA is considered as feature extractor by relevant research work [42]. 

Principal Component Analysis is a feature extraction algorithm which takes a set of inputs 

and produces a new set based on the input, but the output is a set of linearly independent 

values. The PCA method is an Estimator which creates a Model that projects vectors to a 

low-dimensional space using the PCA algorithm. The number of dimensions can be set as a 

parameter. 

• ChiSqSelector: This Estimator creates a Transformer which uses the Chi-Squared test of 

independence to select the most relevant features. The Chi-Square test of independence is a 

procedure to test if two features are related. The relation is found by comparing the 

frequency of each value of the first feature with all the values of the second feature. The 

number of the resulting features can be either set as a fixed number or as a percentage of 

the number of total input features. 

 

 

4.3.1.4 Classification and Regression 

 

This chapter includes the classification and regression algorithms which are included in the Spark’s 

MLlib module. 

 

Classification 

• Logistic regression: This classifier has been mentioned in the Theoretical Background 

chapter. It supports both binomial and multinomial (multi-class) classification, with the same 

classifier class. The class definition, which showcases the parameters of this class, is the 

following: 

class pyspark.ml.classification.LogisticRegression(featuresCol='features', labelCol='label', 
predictionCol='prediction', maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-
06, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol='probability', rawPre
dictionCol='rawPrediction', standardization=True, weightCol=None, aggregationDepth=2, f
amily='auto', lowerBoundsOnCoefficients=None, upperBoundsOnCoefficients=None, lower
BoundsOnIntercepts=None, upperBoundsOnIntercepts=None) 

The parameters featuresCol, labelCol and predictionCol have the names of the corresponding 

columns of features and label which are taken as input from the DataFrame and the 

predictions column which is to be created after Transforming the DataFrame. 

o Binomial logistic regression 

o Multinomial logistic regression 

• Decision tree classifier: The class definition is the following: 
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class pyspark.ml.classification.DecisionTreeClassifier(featuresCol='features', labelCol='lab
el', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPredictio
n', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInM
B=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini', seed=None) 

 

• Random forest classifier 

class pyspark.ml.classification.RandomForestClassifier(featuresCol='features', labelCol='la
bel', predictionCol='prediction', probabilityCol='probability', rawPredictionCol='rawPredicti
on', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryIn
MB=256, cacheNodeIds=False, checkpointInterval=10, impurity='gini', numTrees=20, featu
reSubsetStrategy='auto', seed=None, subsamplingRate=1.0) 

 

• Gradient-boosted tree classifier 

class pyspark.ml.classification.GBTClassifier(featuresCol='features', labelCol='label', predic
tionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0
, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType='logistic', 
maxIter=20, stepSize=0.1, seed=None, subsamplingRate=1.0, featureSubsetStrategy='all') 

 

• Multilayer perceptron classifier: The MLPC is a classifier based on the feedforward artificial 

neural network. It is an ANN with multiple layers of nodes. Each layer is fully connected to 

the next layer. As is the case with other ANNs in the case of classification, the first layer is 

the input layer where the features are the inputs and the last layer is the output layer where 

the classification happens. 

class pyspark.ml.classification.MultilayerPerceptronClassifier(featuresCol='features', label
Col='label', predictionCol='prediction', maxIter=100, tol=1e-
06, seed=None, layers=None, blockSize=128, stepSize=0.03, solver='l-
bfgs', initialWeights=None, probabilityCol='probability', rawPredictionCol='rawPrediction')  

 

• Linear Support Vector Machine: As it has been already explained in the Theoretical 

Background chapter, the linear is the simplest version of the Support vector machines.  

class pyspark.ml.classification.LinearSVC(featuresCol='features', labelCol='label', predictio
nCol='prediction', maxIter=100, regParam=0.0, tol=1e-
06, rawPredictionCol='rawPrediction', fitIntercept=True, standardization=True, threshold=
0.0, weightCol=None, aggregationDepth=2)  

 

• One-vs-Rest classifier (a.k.a. One-vs-All): This classifier performs multiclass classification 

given a base classifier that can perform binary classification efficiently. It takes the binary 

classifier and creates a binary classification problem for each of the k classes. The classifier 

for every class is trained to predict where the label is i or not. The corresponding predictions 

are done by evaluating each binary classifier and the classifier with the highest confidence in 

its prediction will be the final output classification. 

class pyspark.ml.classification.OneVsRest(featuresCol='features', labelCol='label', predictio
nCol='prediction', classifier=None, weightCol=None, parallelism=1)  

 

• Naive Bayes 

class pyspark.ml.classification.NaiveBayes(featuresCol='features', labelCol='label', predicti
onCol='prediction', probabilityCol='probability', rawPredictionCol='rawPrediction', smoothi
ng=1.0, modelType='multinomial', thresholds=None, weightCol=None)  
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Regression 

• Linear regression 

class pyspark.ml.regression.LinearRegression(featuresCol='features', labelCol='label', pred
ictionCol='prediction', maxIter=100, regParam=0.0, elasticNetParam=0.0, tol=1e-
06, fitIntercept=True, standardization=True, solver='auto', weightCol=None, aggregationD
epth=2, loss='squaredError', epsilon=1.35)  

 

• Generalized linear regression: The simple linear regression assumes that the output follows 

a Gaussian distribution. With the GLM, it is assumed that the output follows a specified 

distribution of the exponential family. The available families are: Gaussian, Binomial, 

Poisson, Gamma and Tweedie. 

class pyspark.ml.regression.GeneralizedLinearRegression(labelCol='label', featuresCol='fe
atures', predictionCol='prediction', family='gaussian', link=None, fitIntercept=True, maxIter
=25, tol=1e-
06, regParam=0.0, weightCol=None, solver='irls', linkPredictionCol=None, variancePower=
0.0, linkPower=None, offsetCol=None)  

 

• Decision tree regression 

class pyspark.ml.regression.DecisionTreeRegressor(featuresCol='features', labelCol='label'
, predictionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoG
ain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity='va
riance', seed=None, varianceCol=None)  

 

• Random forest regression 

class pyspark.ml.regression.RandomForestRegressor(featuresCol='features', labelCol='lab
el', predictionCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInf
oGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity=
'variance', subsamplingRate=1.0, seed=None, numTrees=20, featureSubsetStrategy='auto'
)  

 

• Gradient-boosted tree regression 

class pyspark.ml.regression.GBTRegressor(featuresCol='features', labelCol='label', predicti
onCol='prediction', maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, 
maxMemoryInMB=256, cacheNodeIds=False, subsamplingRate=1.0, checkpointInterval=1
0, lossType='squared', maxIter=20, stepSize=0.1, seed=None, impurity='variance', featureS
ubsetStrategy='all')  

 

• Survival regression: The implementation is the Accelerated failure time (AFT) model which is 

a parametric survival regression model for censored data. It is a model for the log of survival 

time. The AFT model is easier to parallelize because each instance for the objective function 

is calculated independently. 

class pyspark.ml.regression.AFTSurvivalRegression(featuresCol='features', 
labelCol='label', predictionCol='prediction', fitIntercept=True, maxIter=100, tol=1e-06, 
censorCol='censor', quantileProbabilities=[0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], 
quantilesCol=None, aggregationDepth=2)  
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• Isotonic regression: The Isotonic Regression is a problem where if y1, y2, …, yn are observed 

responses and x1, x2, …, xn are the unknown response values to be fitted, then the solution is 

finding the function that minimized the following (wi are corresponding weights): 

 

f(x) =  ∑ wi(yi-xi)
2

n

i=1

 

 

class pyspark.ml.regression.IsotonicRegression(featuresCol='features', labelCol='label', pr
edictionCol='prediction', weightCol=None, isotonic=True, featureIndex=0)  

 

Linear methods 

Linear methods include logistic regression and linear least squares, with L1 or L2 regularization. L1 and 

L2 regularization penalize complex models. L2 tries to make the weights of features have small value, 

while L1 tries to bring the weights’ values to zero. L1, in a way, is more determinant. The 

implementation of these regularization in spark is with the Elastic net which is a hybrid of both 

regularizations. Given the weights wi of the linear method, λ the learning rate and α the elastic net 

parameter, the regularization function (which is to be minimized) is the following: 

α(λ(|w1| + |w2| + ⋯ + |wn|)) + (1-α) (
λ

2
(w1

2 + w2
2 + ⋯ + wn

2)) , α ∈ [0, 1], λ ≥ 0 

In the case of the linear methods in spark, there is a parameter elasticNetParam which represents 

the elastic net parameter α. 

 

 

4.3.1.5 Clustering 

 

Clustering is an unsupervised classification method, meaning that there is no specific class to predict 

(e.g. classify an email as phishing or not). However, the algorithm attempts to group the examples 

into neighboring groups, with each group’s examples having similar features values. 

 

K-means 

This algorithm clusters the data points/examples into a defined number of groups/clusters. 

class pyspark.ml.clustering.KMeans(featuresCol='features', predictionCol='prediction', k=2, initMo
de='k-means||', initSteps=2, tol=0.0001, maxIter=20, seed=None, distanceMeasure='euclidean')  

 

Latent Dirichlet allocation (LDA) 

LDA is a type of topic modeling, which is another method of unsupervised classification. The idea is 

that each example is made up of words/terms, and there are topics which have some of the terms in 

them. The purpose is to find in which topic the example belongs to. 
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class pyspark.ml.clustering.LDA(featuresCol='features', maxIter=20, seed=None, checkpointInterva
l=10, k=10, optimizer='online', learningOffset=1024.0, learningDecay=0.51, subsamplingRate=0.05,
 optimizeDocConcentration=True, docConcentration=None, topicConcentration=None, topicDistrib
utionCol='topicDistribution', keepLastCheckpoint=True)  

 

Bisecting k-means 

This is a hierarchical clustering algorithm which uses a top-down approach. All the examples start in 

one cluster and they are split recursively while moving down in the hierarchy. 

class pyspark.ml.clustering.BisectingKMeans(featuresCol='features', predictionCol='prediction', m
axIter=20, seed=None, k=4, minDivisibleClusterSize=1.0, distanceMeasure='euclidean')  

 

Gaussian Mixture Model (GMM) 

This is a composite distribution where points are drawn from one of k Gaussian sub-distributions, 

each with its own probability. 

class pyspark.ml.clustering.GaussianMixture(featuresCol='features', predictionCol='prediction', k=
2, probabilityCol='probability', tol=0.01, maxIter=100, seed=None)  

 

 

4.3.1.6 Collaborative filtering 

 

This technique is used for recommender systems. Spark implements this with the Alternating Least 

Squares (ALS) to fill missing entries in a user-item association matrix. 

 

 

4.3.1.7 Model Selection and Tuning 

 

When building a machine learning classifier, there are several choices to be made when it comes to 

model selection and what parameters to use for the model. Spark’s MLlib has the CrossValidator and 

the TrainValidationSplit methods for this hyperparameter tuning process. To execute this process, 

inputs must be provided for an Estimator to tune, a set of parameter maps for the parameter 

combinations to test the performance with and an Evaluator algorithm which will yield a metric to 

compare and find the best performing parameter combination of the Estimator Model. 

The process is as follows: 

• The dataset is split into training and test datasets. 

• For each parameter combination from the parameter map the Estimator is fitted on the 

training dataset and then tested on the test dataset. The performance evaluation metric for 

each parameter combination is calculated and kept. 

• After every model for every parameter combination has been evaluated, the metrics are 

compared and the model with the highest metric is the chosen one. 
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For the parameter map, the spark method ParamGridBuilder is used, which takes as input vectors of 

parameter values and creates an iterator which yields every parameter combination. 

Cross-Validation works by splitting the dataset into k equal subsets. The training-testing process is 

completed k times, with the test set being one of the subsets each time and the training set being all 

the other subsets. With the cross-validation any possible bias that could have existed if there was 

just one training-test set split is minimized and the performance results are average values of each 

training-test process. 

The TrainValidationSplit method is the simple process of splitting the dataset into a training and a 

test set and completing the evaluation of each parameter combination on these fixed datasets. 

 

 

4.4 Machine Learning Classification Architecture 
 

In the case of classifying emails as legitimate or phishing, there are the following characteristics 

when it comes to the process: 

The classification is supervised, because the classification classes are predetermined: The email will 

be classified either as phishing or as not phishing (legitimate. The dataset with the emails will have a 

column with the label, the value which describes what class the email belongs to, so that the 

machine learning algorithm can adapt its weights so that it classifies these emails (and new ones) 

with the minimum errors. 

An email is practically a text file. As mentioned before there may be multiple parts in an email, which 

can all be represented as text. However, the only text that the receiver reads is the text body of the 

email. In total, there are two basic characteristics in an email: 

• The email text body 

• Other properties of the email (number of URLs, whether it uses HTML/JavaScript, number of 

attachments, other header field values etc.) 

These two categories will be two different sources of features for the machine learning classifiers. As 

it will be shown in the implementation chapter, they will be used either separately or in different 

combinations. The retrieved features from the two sources will be named: 

• Text-based features: For these features Spark’s MLlib module already provides well 

designed methods, including the TF-IDF algorithm and the Word Embedding. 

• Properties-based features: For these features there are no already-built methods and tools 

for their retrieval, because they are too specific in each classification process and in the case 

of emails, too. For this purpose, simple methods are built to retrieve each useful feature, 

which will be presented in the implementation chapter. 

The data sets from which the emails are retrieved in a previous chapter. They include just emails in 

one continuous text document. They will be processed one at a time and a Spark DataFrame will be 

created which will be used by the machine learning algorithms. The steps required to build and train 

a machine learning model are the following. 
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Figure 57 Machine Learning Training and Evaluation Process 

 

The raw data which are labeled (the emails are already classified as phishing or legitimate) are used 

as input for the Feature Retriever. The Feature Retriever is a function which takes specified inputs 

(emails in our case) and outputs the corresponding features. The result is a DataFrame with its 

columns being the retrieved features and one column being the label (the class – zero if the email of 

legitimate and one if the email is phishing) and the rows are different examples – different emails 

from the data set. The DataFrame is then split into two subsets: a training set and a test set. The 

training set is used as input for the Machine Learning Model Trainer. The trainer takes as input a 

DataFrame which has features and a label column and uses it to train a specified machine learning 

classifier with specified hyperparameters. The output is a trained Model/Classifier. The Trained 

Model is then used with the test set as input, predictions for the test set are made and the 

performance of the classifier is calculated by comparing the predictions with the actual label values 

of the examples. The last output is the model’s performance evaluation metrics, such as accuracy, 

precision, recall etc. 

In the next chapter there will be a thorough presentation of the implementation of the proposed 

architecture, with flow charts for every step and explanation of every function that was created for 

that purpose. 
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5 Implementation 
 

In this chapter the implementation of the proposed architecture will be presented. The analysis of 

the implementation will be based on the flow chart shown below. The relevant code for every part 

will be presented and explained. More specifically, there will be a description of the implemented 

code’s parts, including functions, classes and the way it operates. Any information about included 

libraries and modules will be provided at the parts of code in which they were used. 

The code of the implementation as well as the data sets used to train the classifiers can be found 

here [78]. 

 

 

5.1 Tools used for the implementation 
 

Before going into the details of the implementation, the tools used for it will be presented. 

First and foremost, the programming language that was used for the implementation is the Python 

programming language. More specifically the version of Python that was used is the 3.7.3 version, 

which is not the most recent version (3.8.1 version, released on 18 December 2019). This version 

was used at the start of the development of the program and was kept for consistency reasons. 

There were some concerns about version 2, with the most recent version being 2.7.17, but it has 

been announced that Python version 2 will become discontinued on January 1, 2020. This means 

that there will be no more improvements after that day, even if there are important security 

problems that might appear. That is the reason that Python 2 was not used and should no longer be 

used in any development. 

For the development of the program, the Anaconda Python Distribution was used [79]. It is an open-

source distribution of Python and the R programming languages for data science, machine learning, 

large-scale data processing, predictive analytics and other relevant purposes. It provides with more 

than 1,500 packages for these purposes already installed and simplifies the package management 

with the package management system called conda. It can be used on Windows, Linux and MacOS. 

Conda helps as a package manager because when it installs a package, instead of just installing any 

dependent Python package that is required without checking the already installed packages’ 

dependencies, it checks every currently installed package and their version dependencies and then it 

works out how to install a compatible set of dependencies. 

Anaconda provides the Anaconda Navigator, a desktop graphical user interface that allows the 

launch of applications and management of packages etc. without using a command line interface. 

The following applications are available in the Anaconda Navigator: 

• JupyterLab 

• Jupyter Notebook 

• QtConsole 

• Spyder 

• Glueviz 

• Orange 
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• RStudio 

• Visual Studio Code 

For the development of the thesis implementation, at first the Jupyter Notebook was used. That is 

because there are extensions using the Jupyter Notebook, Hadoop and the ELK stack that might have 

helped with the handling of emails, like in the following figure. 

 

Figure 58 Jupyter Notebooks with Spark and ELK 

 

The process shown in the figure is the following: 

1. Emails are inputted into Logstash using the Logstash’s functionality of reading emails using 

the IMAP protocol. 

2. Logstash is a data collection engine with real-time pipelining capabilities. It is a data parser, 

where an input, a filter and an output parameter are set. The input parameter determines 

where the data is taken from, in our case from an IMAP email server. The filter parameter is 

practically a function with several methods on how the data is parsed. The output states 

where the data is sent, in this case to the Elasticsearch application. 

3. Elasticsearch is a scalable full-text search and analytics engine. With it one can store, search 

and analyze large volumes of data in near real time. It is used as the underlying engine that 

another application uses to execute complex searches. It provides an API which is used by 

the next application, Kibana. 

4. Kibana is an analytics and visualization graphical user interface designed to work with 

Elasticsearch. It provides with advanced data analysis capabilities and visualizations of the 

data in charts, tables and maps. 

5. Hadoop is used as the communication means between Elasticsearch and Apache Spark. 

6. Spark is used through Jupyter Notebooks, which is an application running on browsers and 

allows the creation and sharing of documents that contain live code, equations, visualization 

and narrative next. In our case, Jupyter Notebooks would be used to write the code of the 

python programming which uses Spark to build a machine learning classifier for phishing 

emails. 

However, as mentioned, Jupyter is used for creating a sort of interactive with the user text which 

also includes pieces of code. While it is possible to be used as a code development application, it is 

not as effective as a dedicated text editor. That is the reason that Jupyter Notebooks was not used 

and Spyder was used instead. 
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Spyder [80] is included in the Anaconda distribution by default. It is an open source integrated 

development environment for scientific programing in Python. Spyder on its own includes a variety 

of relevant packages such as NumPy, Matplotlib, Pandas and others. It provides a plethora of 

features useful for science programming, including: 

• An editor with the usual features (syntax highlighting, code completion, type introspection) 

• Multiple IPython Consoles: IPython or Interactive Python is a command shell for interactive 

computing. It is an interactive shell with support for interactive data visualization and use of 

GUI toolkits, flexible and embeddable interpreters to load into other projects and tools for 

parallel computing. 

• Edit variables in the GUI 

• A debugger that allows for step-by-step execution and complete control of the running of 

the program. 

• Static code analysis. 

Spyder seemed to be a much more matching to the needs of the project application, and since it was 

already installed withing Anaconda, it is the application that is used for the implementation of this 

project. For the Spark tool, its Python API called PySpark. 

 

 

5.2 Processes of the proposed architectures 
 

The following chapters include the explanation of the different process which were developed for 

the implementation of the proposed architectures. These are presented at the last sub-chapters of 

the implementation chapter. 

 

5.2.1 Total DataFrame creation 

 

The following figure is a flowchart of the total DataFrame creation, which includes both legitimate 

and phishing emails. The data sets found were separate, one with phishing emails and one with 

legitimate emails, so the process of creating a DataFrame had to be executed twice. 

 

 

Figure 59 Total DataFrame Creation Process 
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The “Create DataFrame” takes as input an mbox file and whether it consists of phishing or legitimate 

emails. It retrieves the properties-based features from every email and its text and creates a 

DataFrame with columns the properties-based features, the email text words as a vector and a 

column called “label” which has a value of 0 of the email is legitimate and 1 if the email is phishing. 

Once the “Create DataFrame” process is completed for both the data sets, the two resulting 

DataFrames include only legitimate and only phishing emails respectively. They are appended 

together into one total DataFrame which includes both kinds of emails. 

 

 

5.2.2 Creating a consistence file format of the email data sets 

 

As mentioned before, the email data sets that were found being used in the literature were stored in 

different file formats. More specifically, the phishing emails were stored using the mbox file format 

and the legitimate emails were stored with the maildir file format. In order to use the same 

algorithms for DataFrame creation for both data sets, an algorithm is built to convert the maildir 

format to mbox. The maildir file format stores emails in the following structure. 

 

Figure 60 Maildir file format 

 

The algorithm of the maildir to mbox file format conversion is shown below. 
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Figure 61 Maildir to Mbox file format conversion 

 

The first step is to put all the directories into a list, from which the program can iterate directories to 

write to the mbox file. Because the directories are stored in alphabetical order, a random one is 

chosen to minimize the chances of any sort of bias. The program checks if the directory has any 

emails, and if yes then it checks if 5,000 emails have already been written to the mbox file. This 

limitation is put there in order to handle the size of the mbox file. Note here that this process was 

repeated ten times in order to create ten mbox files with each one having 5,000 emails, in order to 

have more than enough emails to train the machine learning classifier. The reason that not every 

email of the maildir file was not used is because the file had more than 500,000 emails which is too 

many emails, would not provide any additional useful information for the classifier and would 

require a long processing time. Back to the process itself, if the mbox file does not have 5,000 emails 

written in it, then an email from the chosen directory is written to the mbox file. This process of 

choosing random directories from the maildir file and writing emails from them to the mbox file is 

repeated until there are 5,000 emails written to the mbox file. 

After completing that process, the result is that now there are mbox files for both legitimate and 

phishing emails, so the handling of them can be done using the same algorithm, which is described 

below. 

 

 

5.2.3 “Create DataFrame” process explained 
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Now that there are only mbox files for the legitimate and phishing data sets, the next step is to use 

their contents to create a useable DataFrame for training a machine learning classifier with Spark. 

Note here that the data sets that are used as input are multiple mbox files, both in the case of 

legitimate emails and phishing emails. The previously shown Total DataFrame creation process was a 

higher-level presentation for better understand, and the actual process is slightly different. The 

process to create the Total DataFrame is the following. 

 

 

Figure 62 Total DataFrame Creation Process Detailed 

 

There are multiple mbox files in different folders: one folder for phishing emails and one for 

legitimate emails. In the flowchart they are presented as one because it is the same process for both 

with the only difference being during the creation of the DataFrames, where the label is equal to one 

and zero respectively. The process is like follows: 

1. Select an mbox file from folder. 

2. Select an email from the mbox file 
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3. Get the Clean text from the email. The clean text is the text that is meant to be read by the 

receiver of the email. The process of getting the clean text will be presented in a different 

flowchart. 

4. Get the properties-based features from the email. 

5. Append the information retrieved from the email to a list which includes this information for 

all the emails of the currently selected mbox file. 

6. If there are emails left in the mbox file, then go to step 2 

7. Create a DataFrame using the list which has features and clean text from every email of the 

mbox file. 

8. Use Spark’s functionality to process the email text of the emails and produce stemmed 

words arrays. 

9. Append the DataFrame to a list which includes DataFrames of all the mbox files of the 

folders which include phishing and legitimate emails. 

10. If there are mbox files left in the folder, then go to step 1. 

11. Union the DataFrames from the list with all the DataFrames and produce one DataFrame 

with every email. 

The properties-based features initially retrieved are the following: 

1. Number of URLs: This is the number of URLs in the email, both included in any HTML part 

that might be in the email and in plaint text parts. 

2. Email encoding: This is the encoding of the email itself. There is information about email 

encoding in a previous chapter. 

3. Number of email parts: This is a number that counts the total number of the email. It 

accesses the email as a tree (in case there are more multipart parts) and reaches the leaves 

of the tree and counts them. 

4. Has HTML: This is a boolean feature which is true if there is at least one part of the email 

which is text/html. HTML type emails means there are more capabilities for the writer and 

can include more malicious parts. 

5. Attachments: This feature is the number of attachments in the email, which could 

potentially be malicious. It does not count the inlines, which are images etc. shown directly 

in the email. 

6. Bad Words: This feature counts from the clean text of the email the number of words 

occurrences. Bad words are words which were considered to appear more frequently in 

phishing emails, thus contributing as a feature towards classification. Bad Words are the 

following: 'link', 'click', 'confirm', 'user', 'customer', 'client', 'suspend', 'restrict', 'verify' and 

'protect'. 

7. IP URLs: This is a counter of the URLs in the email which have direct IPs instead of domain 

names. This is because not having a domain name for the web server means that there is not 

enough effort put into the website and probably it is a temporary phishing website. 

8. Diffhref: This feature refers to the emails’ parts which are html type. It compares the URLs 

with the hyperlink text which is displayed to the reader and if it is not the same then it 

increases the counter by one. The purpose of this feature is that phishing emails usually 

include hyperlink texts which are of legitimate websites but actually direct to a different, 

phishing website. 

9. Forms: This feature counts the number of HTML-based forms in the email. This feature is 

because there are attempts to retrieve sensitive information through html forms in the 

emails by phishing attacks. 
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10. Scripts: This feature counts the occurrences of the ‘<script>’ substring in the email, which 

represents the presence of JavaScript code. JavaScript, much more than HTML, enhances the 

capabilities of the email writer and provides with more ways of including malicious parts in 

the email. 

11. Size: This feature was not used because it was found that it did not have any correlation with 

the type of email (phishing or legitimate). It counts the total number of characters that the 

email has, when the email is written as a text file. This includes the attachments as binary 

files etc. 

The “Stemmed” column has the processed clean text of the email, which has been tokenized, had its 

stop words removed and the rest of the words stemmed. The result is a vector of informative words 

which have had their influxes removed. The last step is to have consistency of words between their 

occurrences in the case of word-frequency-based algorithms. For example, if there was not the 

stemming step, the words “run” and “running” would be considered as different words, but with 

stemming they are now both “run” and they will be counted as the same word. 

The DataFrames created looks like the following table. Note that the table is symmetric here. 

Normally the columns would represent features and the rows would represent examples/emails, but 

the table is symmetric here for presentation clarity, because otherwise it would be hard to read the 

12 columns of features. This example DataFrame table has two examples (emails): 

 

Table 8 DataFrame Format (two examples) 

Label 1 0 

Number of URLs 2 0 

Email encoding 7bit 7bit 

Number of emails parts 1 0 

hasHTML 1 0 

Attachments 0 0 

Bad words 6 0 

IP URLs 0 0 

Diffhref 1 0 

Forms 0 0 

Scripts 0 0 

Stemmed [dear, valu, custom, record, 
indic, haven, submit, correct, 
inform, updat, account, pleas, 
updat, account, fill, tab, form, 
respond, email, repli, receiv, 
like, updat, ebay, account, 
pleas, use, link, url, thank, 
patienc, matter, regard, 
custom, support, trust, safeti, 
depart, ebay, inc

[pay, well, pay, perform, 
bonus, base, merit, entitl, 
soundbit, prc, email, get, 
worri, mike, open, discuss, 
phillip] 

 

 

5.2.4 Get Clean Text Process 
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The sub-process for getting the clean text from an email is shown in the figure below. By clean text it 

is meant that with emails usually the text that is to be shown to the receiver is written in different 

encodings or formats. For example, the text could be written within HTML parts, which would make 

the text-based machine learning classifiers take into account the HTML elements as words, which 

would make the classification less effective. This is because the elements as words would not 

provide any relevant information towards whether the email is phishing or legitimate. 

 

Figure 63 Get Clean Text from email Process 

 

The steps of the process with more details are the following: 

1. Convert email to a list with its parts: As mentioned in the chapter of the structure of emails, 

the email has a tree-like structure. It can be a multipart type email and will have more sub-

parts with content, like the figure below. This sub-process will take all the leaf nodes from 

the email part tree and make a list with them. 
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Figure 64 Mulitpart email structure 

2. Get the next part from the list of the email parts. 

3. If the part is not of type text/plain or text/html and there are more parts left in the list, go to 

step 2. 

4. Get text from HTML (un-HTML-ify): Here a created function called “unhtmlify” is used. What 

it practically does is retrieve every textual information from an HTML file. This includes every 

part of text that was meant to be read by the receiver of the email. The reason that not only 

the text/html parts are getting “unhtmlified” but the text/plain are, too, is because it has 

been seen that there were parts that were “text/plain” but also included HTML code in 

them. 

This function uses the Beautiful Soup Python library [81] (version 4.4.0). This is a library for 

pulling data out of HTML and XML files. 

5. Append to “Email Text” string. This string includes any text part that was meant to be read 

by the receiver. Note here that this text is not yet cleaned for a program to read from, 

because it has a few unusual symbols which can be interpreted by an email reader 

application but not as plain text. 

6. If there are more parts left in the list, go to step 2. 

7. At this step we now have all the textual information from the email that was meant to be 

read by the receiver, but some cleaning is required. 

8. It has been noticed that a few emails had the character phrase “=\n” (equal sign and new 

line) after every certain number of characters. The character phrase would go in-between 

words and separate them, making the words unreadable by a computer program. This has 

been noticed to be happening when emails are sent with the PHPMailer, a code library to 

send emails via PHP code from a web server. PHPMailer is usually used on websites built 
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with WordPress, but it can be used on its own. The first step to clean up the email text is to 

remove every occurrence of the character phrase “=\n”. 

9. Replace URLs with the word “url” in the text: Any URL that was in the text of the email does 

not provide any relevant information when it comes to what the sender wanted to say to 

the reader. Thus, every URL from the text is replaced with the word ‘url’. The reason that the 

URLs are not just removed but replaced with the “url” word is: 

a. To indirectly be a properties-based features, because text-based algorithms will use 

the word “url” and if it occurs frequently on phishing emails it will be used as a word 

with higher weight. 

b. To help the more sophisticated algorithms (word embedding, Recurrent Neural 

Networks), which take into account phrases of words, make more sense of what was 

meant to be said with the text. 

10. The result is a clean text, ready to be further processed and used by text-based algorithms 

and classification. 

 

 

5.2.5 Retrieve properties-based features Process 

 

The sub-process that retrieves the properties-based features is presented at this point. The 

properties-based features functions are implemented as classes, which have the following structure. 

class feature: 
    def get_feat(self, msg): 
        ##get feature 
    def get_name(self): 
        return 'feature name' 

 

Every properties-based feature class has the same structure. For example, the “encoding” feature 

which returns the content transfer encoding that was used to send the email is the following class: 

  

class encoding: 

    def get_feat(self, msg): 

        enc = msg["Content-Transfer-Encoding"] 

        if(not enc): 

            enc = 'none' 

        return enc 

    def get_name(self): 

        return 'encoding' 

 

 The reasoning for building the functions like this is to simplify the process of getting the feature and 

the corresponding feature name. This is useful when retrieving the features from every email, 

writing them in a list and building a DataFrame using the list and the feature names as column 

names. The process for retrieving the properties-based features is the following: 

 



101 
 

 

Figure 65 Properties-Based Features Retrieval Process 

 

The steps with more details are the following: 

1. Build the Properties-based feature class list: This list includes the classes of all the 

properties-based features. The classes have the structure shown before. 

2.  Get the next class from the list. 

3. Call the function of the feature retrieval of the class, with input the email which is to have its 

features retrieved. 

4. Append the output to the Properties-based features values list. This list includes the outputs 

of the features’ functions. Going back to the “Create DataFrame” process, this list will be 

appended to the output of the clean text and the label value and the DataFrame will be 

created. 

5. If there are elements in the feature class list (not the value list) then go to step 2. 

6. After being done, there will be an output list which includes the values of all the properties-

based features for the inputted email. 

At this point every part of the process of creating the total DataFrame has been explained. After 

having a DataFrame with all the properties-based features, the stemmed words of the clean email 

text and the label value (zero if the email is legitimate and one if the email is phishing), the next step 

is to use that DataFrame to train and test different classifiers. 

 

 

5.2.6 Proposed hybrid “assembled” architecture 

 

Now that there is an available DataFrame which include both legitimate and phishing emails, the 

process of training and testing different classifiers will be presented. The process of finding the best 

combination of features, classifier and their hyperparameters combination is shown in the following 

figure. The proposed “assembled” architecture is tested here, where the properties-based features 
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are combined with the text-based features into one consistent feature vector which is used as the 

input for the training process of the machine learning classifiers. 

 

Figure 66 Process to find the best features/classifier/hyperparameters combination 

 

 

The steps of the process, in more detail, as the following: 

1. First of all, there is the Total DataFrame, which was created from a previous process. It 

includes emails transformed into properties-based features, the stemmed words of the 

email text (the text which is to be read by the receiver of the email) and the label value (zero 

if the email is legitimate and one if the email is phishing). 

2. There are lists which are to be used to find the best performing combination. These lists are 

the following: 

a. A Features List: This list includes what features the classifier will use to train itself 

and later make classifications with. Note here that although the properties-based 

features are already retrieved from each email and placed at the Total DataFrame, 

the text-based features are not retrieved yet. There are two reasons for that. The 

first one is that there are two major methods for retrieving text-based features 

(Term Frequency – Inverse Document Frequency or TF-IDF and Word Embedding 

with its implementation function called Word2Vec) which yield different features, so 
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at each test the method needs to be determined first. The second reason for not 

retrieving the text-based features beforehand is that Spark offers Pipeline-based 

methods for their retrieval. Because the training and testing phases in Spark are 

completed using Pipeline-based methods, too, it is more efficient to have one long 

Pipeline than two shorter ones. The Pipeline stages will be presented in a later 

figure. 

b. A Classifiers List: This list includes the classifiers which are provided by the Spark’s 

MLlib library.  

c. A list with the hyperparameter combinations of the classifiers: This list is used 

together with the classifiers list. It includes sets of values for the hyperparameters of 

every classifier. When training a classifier in this process, the training actually 

happens for every hyperparameter value combination. In the end, the 

hyperparameter value combination with the best performance is chosen. 

3. Now that the data used for the process is ready, the process can start. The first step is to get 

the next list element from the Features list. 

4. Get the next list element from the Classifiers list. 

5. Get the hyperparameter values combinations for the just chosen classifier from the list. 

6. Train the classifier using: 

a. The created Total DataFrame 

b. The chosen feature list element which represents the features that are to be used as 

input for the classifier. 

c. The chosen classifier 

d. The classifier’s corresponding hyperparameter value combinations 

7. After the training is done, print the performance results: 

a. Different performance metrics (accuracy, precision, f1measure etc.) 

b. The time taken for the training to complete and for the performance metrics to be 

calculated. Note here that the performance metrics calculations took a time 

comparable to the training time. 

c. The hyperparameter value combination with the best performance. 

8. If there is any element left in the Classifiers List, then go to Step 4. 

9. Plot together the ROC curves of the trained classifiers for the features which are currently 

chosen as input for the training and classification. This is one figure for each feature input 

type and includes the ROC curves of every classifier for that input type. It is useful to get a 

more graphical representation of the performance of every classifier and a different 

comparison means. 

10. If there is any element left in the Features List, then go to Step 3. 

After the process is done, the final results are the following: 

• Performance metrics for every features/classifier/hyperparameter combination. This 

includes: 

o Area under the ROC curve 

o The confusion matrix of the predictions 

o Accuracy 

o Precision 

o Recall 

o F1Measure 

o False Positive Rate 

o False Negative Rate 



104 
 

• ROC Curves for every classifier plotted together for each feature type input. 

 

 

5.2.6.1 Pipeline Stages for the training of the classifiers 

 

As mentioned previously, the training process of the classifiers involves the Pipeline functionality of 

Spark to streamline the process and make it more efficient. The stages of the Pipeline were different 

for each case of feature inputs and classifier. The stages for each case are presented in the following. 

Note here that detailed descriptions of the functionality of every stage used and other useful stages 

which are provided by Spark are presented in the Approach chapter. 

 

Properties-Based Features Stages: 

1. String Indexer: This takes the categorical (string) type features and encodes them to label 

indices. Each different string of the categorical feature takes a different numerical value in 

the range [0, number of different labels). 

2. One Hot Encoder Estimator: This transformer takes as input categorical feature, represented 

as a label index to a binary vector which has a value of zero at every index except a value of 

one at the index which represents the specific categorical feature value of every case. 

3. Vector Assembler: This transformer takes as input all the selected feature columns and 

combines them into a single vector column. The output column from this transformer is 

called “features” and will be used as input for the different classifiers. 

4. Classifier: This is any classifier from the aforementioned Classifiers List. 

The output is a DataFrame which includes the input Total DataFrame and additional columns of raw 

prediction, probability, and prediction. 

 

TF-IDF Stages: 

1. HashingTF: This is a Transformer which takes sets of terms and converts them to fixed-length 

feature vectors. 

2. IDF: This is an Estimator which fits on a dataset and produces an IDFModel, which takes 

feature vectors from the HashingTF output and scaled each feature with higher weights to 

the features which appear more rarely in the data set. The output of this model is a column 

of features which are to be used as input by the classifiers. 

3. Classifier 

 

Word Embedding Stages: 

1. Word2Vec: This is an Estimator which takes sequences of words and trains a 

Word2VecModel. This model maps each word to a unique fixed-size vector. It transforms 

each document into a vector using the average of all words in the document. The vector is 

used as the features column for the classification process. 

2. Classifier 



105 
 

 

Hybrid – Properties + TF-IDF Stages: 

This includes the stages of the properties-based stages and the TF-IDF stages. Their outputs are 

assembled together into a hybrid feature set. 

1. String Indexer 

2. One Hot Encoder Estimator 

3. Vector Assembler 

4. HashingTF 

5. IDF 

6. Total Vector Assembler: This assembler takes the outputs of the Steps 3 and 5 and 

assembles them together into one consistent hybrid feature set, so that the classifier can 

then take into account both the properties of the email as well as its text for the 

classification process. The output is one feature column which combines both properties-

based and text-based features. 

7. Classifier 

 

Hybrid – Properties + Word Embedding Stages: 

1. String Indexer 

2. One Hot Encoder Estimator 

3. Vector Assembler 

4. Word2Vec 

5. Total Vector Assembler: Same as the previous method, but now the text-based features are 

provided by the word embedding algorithm which produces a more sophisticated feature 

set of the text. 

6. Classifier 

 

The results of the proposed training process should give a better perspective as to which 

combination is performing better and if implementing a hybrid-based model, which involves using 

both properties-based and text-based features, improves the performance. In the next chapter 

(Numerical Results) there are the numerical results of the experiment. 

 

 

5.2.7 Proposed hybrid “stacked” architecture. 

 

Another implementation model which was tested was one of the stacked architecture. As 

mentioned in a previous chapter, a stacked model is a type of ensemble classifier, which combines 

multiple simple classifiers, takes their prediction outputs and uses them as inputs/features for a total 

classifier which will make the final classification. The proposed model is slightly different, where 

there is a classifier at first using text-based features and is trained. A new “total” classifier will then 

use the first classifier’s output as a feature in addition to having the default properties-based 

features. The architecture is shown in the following figure. 
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Figure 67 Hybrid Stacked Model 

 

Having thoroughly described the proposed architecture, the next step is to test them and compare 

their performance in order to determine whether the proposed architectures improve the 

performance when compared to simpler classifiers and which combination of 

features/classifier/hyperparameters produces the best results. The performance results of the 

implementation are presented in the next chapter. 
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6 Results 
 

In this chapter the results of the implementation described before will be presented. More 

specifically there are execution times of each different algorithm executed, performance results for 

different features-classifier combination as well as performance results with different 

hyperparameters set for every feature retriever and classifier. The structure of the results is as 

follows. Because there are too many combinations, they could not be presented in one table, so 

there are multiple tables, one for each different used feature type. 

The performance metrics are the following (they are calculated in percentages %): 

• Area under the ROC Curve 

• Accuracy 

• Precision 

• Recall 

• F1Measure 

• False Positive Rate (FPR) 

• False Negative Rate (FNR) 

• Confusion Matrix (this is not in percentages but rather the actual number of correct and 

wrong predictions). 

• Time required to train the classifier and calculate the performance metrics. 

 

 

6.1 Properties-Based Features 
 

The performance results of every classifier and their best performing hyperparameter combination 

using the properties-based features is presented here. In the end there are the ROC curves of every 

classifier. 
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Table 9 Properties-Based Features Performance (values are in % except confusion matrix) 

Algorithm AUC Confusion 
Matrix 

Accuracy Precision Recall F1 
Measure 

FPR FNR Time 
(m) 

Logistic 
Regression 

95.4 40 148 
35 371 

90.3 91.4 88.5 90.0 8.0 11.5 3.0 

Decision 
Trees 

97.2 444 12 
13 412 

97.2 96.9 97.2 97.1 2.8 2.8 3.91 

Random 
Forest 

99.5 458 10 
6 451 

98.3 98.7 97.8 98.3 1.3 2.2 3.59 

Gradient 
Boosted 

Trees 

99.6 452 9 
6 417 

98.3 98.6 97.9 98.2 1.3 2.1 3.26 

Linear 
Support 
Vector 

Machine 

96.0 381 40 
28 408 

92.1 93.6 91.1 92.3 6.8 8.9 13.89 

Naïve 
Bayes 

5.0 398 168 
22 164 

77.7 92.3 61.1 73.5 5.2 38.9 2.61 

 

 

The parameter grid for each algorithm and the best performing hyperparameter combination are 

presented below. 

 

Table 10 Properties + Logistic Regression best parameters 

Parameter Explanation Values Tested Best Performing 

regParam regularization 
parameter (>= 0) 

0.1, 0.01 0.01 

elasticNetParam the ElasticNet 
mixing parameter, 
in range [0, 1]. For 

alpha = 0, the 
penalty is an L2 

penalty. For alpha = 
1, it is an L1 penalty 

0.0, 0.5, 1.0 0.0 
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Table 11 Properties + Decision Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 
depth 0 means 1 leaf 
node; depth 1 means 
1 internal node + 2 

leaf nodes. 

2, 5, 10 2 

minInfoGain Minimum information 
gain for a split to be 
considered at a tree 

node. 

0.0, 0.1 0.1 

maxBins Max number of bins 
for discretizing 

continuous 
features.  Must be 

>=2 and >= number 
of categories for any 
categorical feature. 

6, 32 6 

 

Table 12 Properties + Random Forest best parameters 

Parameter Explanation Values Tested Best Performing 

numTrees Number of trees to 
train (>= 1) 

5, 20 20 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

 

Table 13 Properties + Gradient Boosted Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

maxIter maximum number of 
iterations (>= 0) 

5, 20 20 

stepSize Step size (a.k.a. 
learning rate) in 
interval (0, 1] for 

shrinking the 
contribution of each 

estimator. 

0.01, 0.1 0.1 
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Table 14 Properties + Linear Support Vector Machines best parameters 

Parameter Explanation Values Tested Best Performing 

threshold threshold in binary 
classification 

prediction applied to 
rawPrediction 

0.0, 0.05 0.0 

 

Table 15 Properties + Naive Bayes best parameters 

Parameter Explanation Values Tested Best Performing 

smoothing The smoothing 
parameter 

0.2, 0.5, 1.0 0.2 

 

The following figure includes the ROC Curves of every classifier for the classification using properties-

based only features. 

 

 

Figure 68 ROC Curves using Properties-based features 

 

From the ROC curves it can be seen that the Naïve Bayes classifier has the worst performance, which 

can be confirmed by the performance metrics, which are significantly worse than all the other 

classifiers. Note here that the Support Vector Machines classifier was not included in the ROC curves 

because the ROC curves require a probability value to be produced by the classifier which shows the 

probability that an example will be in a certain class. However, the Support Vector machines do not 

predict like that, as it is shown in the theoretical background chapter. 

The best performing classifiers are the Gradient Boosted Trees and the Random Forest classifier. 
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As it is shown, the performance metrics are already significantly high, meaning that the classifiers 

are already performing exceptionally well. This is a sign of probable overfitting, which is to be 

blamed on the datasets found in the literature. No other data sets have been found in the literature 

that are more “difficult” to classify, in order to build classifiers with better generalization. However, 

even if there is a case of overfitting, there can be a comparison among every classifier combination 

in order to find the best performing combination and whether creating a hybrid model where there 

are both properties-based and text-based features would increase the performance. 

 

 

6.2 TF-IDF (Text-Based) Features 
 

The performance results of every classifier/hyperparameter combination for the features retrieved 

using the Term Frequency – Inverse Document Frequency algorithm is shown in the following table. 

Table 16 TF-IDF Features Performance (values are in % except confusion matrix) 

Algorithm AUC Confusion 
Matrix 

Accuracy Precision Recall F1 
Measure 

FPR FNR Time 
(m) 

Logistic 
Regression 

99.1 405 23 
20 400 

94.9 95.2 94.6 94.9 4.7 5.4 2.79 

Decision 
Trees 

94.0 388 23 
63 403 

90.2 86.5 94.6 90.4 14.0 5.4 3.84 

Random 
Forest 

98.1 413 47 
32 394 

91.1 92.5 89.3 90.9 7.2 10.7 3.84 

Gradient 
Boosted 

Trees 

99.1 459 54 
11 438 

93.2 97.6 89.0 93.1 2.3 11.0 3.92 

Linear 
Support 
Vector 

Machine 

99.5 436 36 
11 399 

94.7 97.3 91.7 94.4 2.5 8.3 12.16 

Naïve 
Bayes 

62.1 390 83 
41 372 

86.0 90.0 81.8 85.7 9.5 18.2 2.84 

 

 

The parameter grid for each algorithm and the best performing hyperparameter combination are 

presented below. 
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Table 17 TF-IDF + Logistic Regression best parameters 

Parameter Explanation Values Tested Best Performing 

regParam regularization 
parameter (>= 0) 

0.1, 0.01 0.01 

elasticNetParam the ElasticNet 
mixing parameter, 
in range [0, 1]. For 

alpha = 0, the 
penalty is an L2 

penalty. For alpha = 
1, it is an L1 penalty 

0.0, 0.5, 1.0 0.0 

 

Table 18 TF-IDF + Decision Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 
depth 0 means 1 leaf 
node; depth 1 means 
1 internal node + 2 

leaf nodes. 

2, 5, 10 10 

minInfoGain Minimum information 
gain for a split to be 
considered at a tree 

node. 

0.0, 0.1 0.0 

maxBins Max number of bins 
for discretizing 

continuous 
features.  Must be 

>=2 and >= number 
of categories for any 
categorical feature. 

6, 32 6 

 

Table 19 TF-IDF + Random Forest best parameters 

Parameter Explanation Values Tested Best Performing 

numTrees Number of trees to 
train (>= 1) 

5, 20 20 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 
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Table 20 TF-IDF + Gradient Boosted Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

maxIter maximum number of 
iterations (>= 0) 

5, 20 20 

stepSize Step size (a.k.a. 
learning rate) in 
interval (0, 1] for 

shrinking the 
contribution of each 

estimator. 

0.01, 0.1 0.1 

 

Table 21 TF-IDF + Linear Support Vector Machines best parameters 

Parameter Explanation Values Tested Best Performing 

threshold threshold in binary 
classification 

prediction applied to 
rawPrediction 

0.0, 0.05 0.05 

 

Table 22 TF-IDF + Naive Bayes best parameters 

Parameter Explanation Values Tested Best Performing 

smoothing The smoothing 
parameter 

0.2, 0.5, 1.0 0.2 

 

The following figure includes the ROC Curves of every classifier for the classification using properties-

based only features. 
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Figure 69 ROC Curves using TF-IDF Features 

 

From the ROC curves figure it can be seen that the worst performing classifier is the Naïve Bayes 

one. The best performing classifiers are three: Gradient Boosted Trees, Logistic Regression and 

Linear Support Vectors, all with similar performance. Note here again that Support Vector Machines 

do not produce probabilities when classifying examples, and thus cannot have a ROC curve unless 

artificially creating one. 

 

 

6.3 Word Embedding (Text-Based) Features 
 

 

The performance results of every classifier/hyperparameter combination for the features retrieved 

using the Word Embedding (Word2Vec) algorithm are shown in the following table. 
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Table 23 Word2Vec Features Performance (values are in % except confusion matrix) 

Algorithm AUC Confusion 
Matrix 

Accuracy Precision Recall F1 
Measure 

FPR FNR Time 
(m) 

Logistic 
Regression 

99.3 449 9 
7 459 

98.3 98.5 98.1 98.2 1.5 1.9 3.66 

Decision 
Trees 

98.2 402 13 
15 397 

96.6 96.4 96.8 96.9 3.6 3.2 4.81 

Random 
Forest 

99.7 405 10 
10 410 

97.6 97.6 97.6 97.6 2.4 2.4 4.33 

Gradient 
Boosted 

Trees 

99.4 448 15 
16 441 

96.6 96.5 96.7 96.6 3.4 3.3 4.62 

Linear 
Support 
Vector 

Machine 

99.7 442 5 
9 408 

98.4 97.8 98.8 98.3 2.0 1.2 12.64 

Naïve 
Bayes 

66.9 322 38 
126 387 

81.2 75.4 91.1 82.5 28.1 8.9 3.64 

 

 

The parameter grid for each algorithm and the best performing hyperparameter combination are 

presented below. 

 

Table 24 Word2Vec + Logistic Regression best parameters 

Parameter Explanation Values Tested Best Performing 

regParam regularization 
parameter (>= 0) 

0.1, 0.01 0.01 

elasticNetParam the ElasticNet 
mixing parameter, 
in range [0, 1]. For 

alpha = 0, the 
penalty is an L2 

penalty. For alpha = 
1, it is an L1 penalty 

0.0, 0.5, 1.0 0.0 
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Table 25 Word2Vec + Decision Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 
depth 0 means 1 leaf 
node; depth 1 means 
1 internal node + 2 

leaf nodes. 

2, 5, 10 10 

minInfoGain Minimum information 
gain for a split to be 
considered at a tree 

node. 

0.0, 0.1 0.0 

maxBins Max number of bins 
for discretizing 

continuous 
features.  Must be 

>=2 and >= number 
of categories for any 
categorical feature. 

6, 32 6 

 

Table 26 Word2Vec + Random Forest best parameters 

Parameter Explanation Values Tested Best Performing 

numTrees Number of trees to 
train (>= 1) 

5, 20 20 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

 

Table 27 Word2Vec + Gradient Boosted Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

maxIter maximum number of 
iterations (>= 0) 

5, 20 20 

stepSize Step size (a.k.a. 
learning rate) in 
interval (0, 1] for 

shrinking the 
contribution of each 

estimator. 

0.01, 0.1 0.1 

 



117 
 

Table 28 Word2Vec + Linear Support Vector Machines best parameters 

Parameter Explanation Values Tested Best Performing 

threshold threshold in binary 
classification 

prediction applied to 
rawPrediction 

0.0, 0.05 0.0 

 

Table 29 Word2Vec + Naive Bayes best parameters 

Parameter Explanation Values Tested Best Performing 

smoothing The smoothing 
parameter 

0.2, 0.5, 1.0 0.2 

 

The following figure includes the ROC Curves of every classifier for the classification using properties-

based only features. 

 

 

Figure 70 ROC Curves using Word Embedding features 

 

It becomes apparent in this case that word embedding provides with more information when it 

comes to text classification, as it has already been mentioned in its theoretical description. Word 

Embedding is a more sophisticated version than TF-IDF, because, in addition to term frequency 

information, it also provides information of the words’ meanings. And it can be seen from the 

results, where almost every classifier performed equally well. Naïve Bayes is the worst performing 

one due to its simplistic classification process. 
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6.4 Proposed Hybrid “assembled” Architecture: Properties-based and TF-IDF (Text-

based) hybrid features 
 

The performance results for every classifier/hyperparameter combination for the hybrid features 

retrieved from the properties of the email and the Term Frequency – Inverse Document Frequency 

algorithm are shown in the following table. 

Table 30 Properties-based + TF-IDF  Features Performance (values are in % except confusion matrix) 

Algorithm AUC Confusion 
Matrix 

Accuracy Precision Recall F1 
Measure 

FPR FNR Time 
(m) 

Logistic 
Regression 

99.9 455 7 
2 414 

99.0 99.5 98.3 98.9 0.4 1.7 3.2 

Decision 
Trees 

94.0 460 7 
1 435 

99.1 99.7 98.4 99.1 0.2 1.6 4.24 

Random 
Forest 

99.9 391 4 
2 474 

99.3 99.6 99.2 99.4 0.5 0.8 4.27 

Gradient 
Boosted 

Trees 

99.7 471 14 
1 428 

98.3 99.8 96.8 98.3 0.2 3.2 4.1 

Linear 
Support 
Vector 

Machine 

99.9 437 5 
2 422 

99.2 99.5 98.8 99.2 0.2 1.2 12.32 

Naïve 
Bayes 

62.7 431 52 
12 404 

92.9 97.1 88.6 92.7 2.7 11.4 3.18 

 

 

The parameter grid for each algorithm and the best performing hyperparameter combination are 

presented below. 

 

Table 31 Properties-based + TF-IDF + Logistic Regression best parameters 

Parameter Explanation Values Tested Best Performing 

regParam regularization 
parameter (>= 0) 

0.1, 0.01 0.01 

elasticNetParam the ElasticNet 
mixing parameter, 
in range [0, 1]. For 

alpha = 0, the 
penalty is an L2 

penalty. For alpha = 
1, it is an L1 penalty 

0.0, 0.5, 1.0 0.5 
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Table 32 Properties-based + TF-IDF + Decision Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 
depth 0 means 1 leaf 
node; depth 1 means 
1 internal node + 2 

leaf nodes. 

2, 5, 10 10 

minInfoGain Minimum information 
gain for a split to be 
considered at a tree 

node. 

0.0, 0.1 0.0 

maxBins Max number of bins 
for discretizing 

continuous 
features.  Must be 

>=2 and >= number 
of categories for any 
categorical feature. 

6, 32 6 

 

Table 33 Properties-based + TF-IDF + Random Forest best parameters 

Parameter Explanation Values Tested Best Performing 

numTrees Number of trees to 
train (>= 1) 

5, 20 20 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

 

Table 34 Properties-based + TF-IDF + Gradient Boosted Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 2 

maxIter maximum number of 
iterations (>= 0) 

5, 20 20 

stepSize Step size (a.k.a. 
learning rate) in 
interval (0, 1] for 

shrinking the 
contribution of each 

estimator. 

0.01, 0.1 0.1 
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Table 35 Properties-based + TF-IDF + Linear Support Vector Machines best parameters 

Parameter Explanation Values Tested Best Performing 

threshold threshold in binary 
classification 

prediction applied to 
rawPrediction 

0.0, 0.05 0.05 

 

Table 36 Properties-based + TF-IDF + Naive Bayes best parameters 

Parameter Explanation Values Tested Best Performing 

smoothing The smoothing 
parameter 

0.2, 0.5, 1.0 0.2 

 

The following figure includes the ROC Curves of every classifier for the classification using properties-

based only features. 

 

 

Figure 71 ROC Curves using Properties-based and TF-IDF features 

 

It is shown here that building classifiers which use both properties-based features and TF-IDF (text-

based) features produce better performing classifiers than the properties-based only and the TF-IDF 

only classifiers. The Naïve Bayes classifier has the worst performance, but the other classifiers, 

except Decision Trees, have equally good performance. 

 

 



121 
 

6.5 Proposed Hybrid “assembled” Architecture: Properties-Based and Word 

Embedding (Text-Based) Features 
 

The performance metrics of every classifier/hyperparameter combination using the features 

retrieved from the properties of the email and from the Word Embedding algorithm are shown in 

the following table. 

 

Table 37 Properties-based + Word2Vec  Features Performance (values are in % except confusion matrix) 

Algorithm AUC Confusion 
Matrix 

Accuracy Precision Recall F1 
Measure 

FPR FNR Time 
(m) 

Logistic 
Regression 

99.9 477 2 
2 445 

99.6 99.6 99.6 99.6 0.4 0.4 3.96 

Decision 
Trees 

97.2 425 5 
7 424 

98.6 98.4 98.8 98.6 1.6 1.2 5.15 

Random 
Forest 

99.9 433 3 
2 456 

99.4 99.6 99.3 99.5 0.4 0.6 4.95 

Gradient 
Boosted 

Trees 

99.8 434 6 
2 457 

99.1 99.6 98.7 99.1 0.4 1.3 5.2 

Linear 
Support 
Vector 

Machine 

99.9 439 3 
1 400 

99.5 99.8 99.3 99.5 0.2 0.7 13.08 

Naïve 
Bayes 

30.9 413 13 
13 452 

97.1 97.2 97.2 97.2 3.1 2.7 3.96 

 

 

The parameter grid for each algorithm and the best performing hyperparameter combination are 

presented below. 

 

Table 38 Properties-based + Word2Vec + Logistic Regression best parameters 

Parameter Explanation Values Tested Best Performing 

regParam regularization 
parameter (>= 0) 

0.1, 0.01 0.01 

elasticNetParam the ElasticNet 
mixing parameter, 
in range [0, 1]. For 

alpha = 0, the 
penalty is an L2 

penalty. For alpha = 
1, it is an L1 penalty 

0.0, 0.5, 1.0 0.0 
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Table 39 Properties-based + Word2Vec + Decision Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 
depth 0 means 1 leaf 
node; depth 1 means 
1 internal node + 2 

leaf nodes. 

2, 5, 10 10 

minInfoGain Minimum information 
gain for a split to be 
considered at a tree 

node. 

0.0, 0.1 0.0 

maxBins Max number of bins 
for discretizing 

continuous 
features.  Must be 

>=2 and >= number 
of categories for any 
categorical feature. 

6, 32 32 

 

Table 40 Properties-based + Word2Vec + Random Forest best parameters 

Parameter Explanation Values Tested Best Performing 

numTrees Number of trees to 
train (>= 1) 

5, 20 20 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 5 

 

Table 41 Properties-based + Word2Vec + Gradient Boosted Trees best parameters 

Parameter Explanation Values Tested Best Performing 

maxDepth Maximum depth of 
the tree. (>= 0) E.g., 

depth 0 means 1 
leaf node 

2, 5 2 

maxIter maximum number of 
iterations (>= 0) 

5, 20 20 

stepSize Step size (a.k.a. 
learning rate) in 
interval (0, 1] for 

shrinking the 
contribution of each 

estimator. 

0.01, 0.1 0.1 
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Table 42 Properties-based + Word2Vec + Linear Support Vector Machines best parameters 

Parameter Explanation Values Tested Best Performing 

threshold threshold in binary 
classification 

prediction applied to 
rawPrediction 

0.0, 0.05 0.0 

 

Table 43 Properties-based + Word2Vec + Naive Bayes best parameters 

Parameter Explanation Values Tested Best Performing 

smoothing The smoothing 
parameter 

0.2, 0.5, 1.0 0.2 

 

The following figure includes the ROC Curves of every classifier for the classification using properties-

based only features. 

 

 

Figure 72 ROC Curves using Properties-based and Word2Vec features 

 

From this figure it is clear that this Hybrid assembled architecture (Word Embedding features plus 

Properties-based features) produces the best performing classifiers and should be used as the best 

solution of the proposed architecture. Even the Naïve Bayes classifier, which did not perform well in 

the previous cases, performs well enough. The other classifiers perform equally well. Note here that 

when considering the Linear Support Vector Machines, the double processing time which was 

required should be taken into account, too. Taking the accuracy for every classifier from each 

feature input case, the resulting chart is the following. 
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Figure 73 Chart: Accuracy of every Classifier 

It can be seen from the chart that the best performing feature input is the hybrid Properties with 

Word Embedding features. 

 

 

6.6 Hybrid Stacked Model 
 

Here the performance results of the aforementioned hybrid stacked model are presented. It is 

tested whether there is a performance improvement, so the classifiers which were tested are: 

A. Logistic Regression using word embedding features 

B. Logistic Regression using properties-based features 

C. Logistic Regression using hybrid stacked features: default properties-based features and the 

predictions of an already trained logistic regression classifier using word embedding 

features. 

D. Logistic Regression using hybrid stacked features: default properties-based features and the 

predictions of an already train logistic regression classifier using again the default 

properties-based features. 

Note here that, although the model A and B have already been tested, they are retested here for 

consistency reason and because Spark operates differently depending on specific processes. For 

example, because the created DataFrame in these tests is larger (about 10,000 examples in contrast 

to the previous tests where the size were about 4,500 examples), because it will be split in two 

halves, the splitting is done randomly so that process alone requires additional execution time which 

will change the time of the algorithms. 
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Table 44 Performance metrics of hybrid stacked models 

Model AUC Confusion 
Matrix 

Accuracy Precision Recall F1 
Measure 

FPR FNR Time 
(m) 

A 99.7 502 22 
14 495 

96.5 97.2 95.7 96.5 2.7 4.3 7.96 

B 95.3 471 83 
36 431 

88.3 92.3 83.9 87.9 7.1 16.1 6.17 

C 99.4 468 28 
20 509 

95.3 96.2 94.8 95.5 4.1 5.2 15.29 

D 94.8 433 87 
37 432 

87.5 92.1 83.2 87.4 7.9 16.8 14.44 

 

Table 45 Best performing hyperparameters for hybrid stacked model 

Model regParam values Best regParam elasticNetParam 
values 

Best 
elasticNetParam 

A 0.1, 0.01 0.01 0.0, 0.5, 1.0 0.0 

B 0.1, 0.01 0.01 0.0, 0.5, 1.0 0.0 

C 0.1, 0.01 0.01 0.0, 0.5, 1.0 0.0 

D 0.1, 0.01 0.01 0.0, 0.5, 1.0 0.0 

 

The following figures include the ROC Curves of models B, D and A, C correspondingly. 

 

 

Figure 74 ROC Curves of models B and D 
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Figure 75 ROC Curves of models A and C 

 

In both cases, (hybrid model of properties-based plus word embedding-based prediction used as 

feature and a hybrid model of properties-based plus another properties-based prediction used as 

feature), the performance actually decreases slightly. This can be seen when comparing the cases A -

> C and B -> D and the ROC curves figures, where the blue line is the base classifier and the yellow 

line is the hybrid stacked classifier. 

In conclusion, the proposed hybrid assembled architecture does increase the performance when 

compared to the simple classifiers which use only the text or only the properties of the email as 

features. As mentioned before, this architecture combines the properties-based and the text-based 

features into one consistent feature vector and uses that to train the classifiers. The proposed hybrid 

stacked model does not provide a significant performance increase, but rather has a reduced 

performance when compared to a simple classifier which uses only one type of features. 
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7 Future Work 
 

In this chapter a few ideas for future work are presented, which should provide improvements to the 

detection of phishing emails. 

 

 

7.1 Data Sets 
 

First and foremost, as it became apparent in the chapter with the numerical results, there was some 

overfitting happening. That was because of the data sets, which were “easy” for the created 

machine learning models to classify. That was mostly the case for the legitimate emails. 

Therefore, it would be optimal to build more data sets which include more legitimate and phishing 

emails, and as many different cases as possible in order to make the data sets more “difficult” for a 

classifier to predict and, as a natural result, make the classifiers more generalized and able to 

actually learn the pattern that is to be detected. This will result in slightly worse performance 

metrics, but the trained classifier will be able to perform in new emails and data sets with similar 

performance, while the previously created classifiers will most likely see a slight drop in performance 

when classifying new emails. 

 

 

7.2 Online Training Classifier 
 

There was a proposed architecture of an online training classifier in [82]. A similar model 

architecture is proposed as a future work idea. The architecture is the following figure. 
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Figure 76 Online Training Classifier 

 

The process is the following: 

1. The offline trainer process is already explained: 

a. The properties-based and the text-based features are retrieved from the emails. 

b. The important features are selected, and a DataFrame is created. 

c. A classifier is trained using the important features 

2. If there is a Trained Model already, then choose the model with the best performance 

(highest performance metrics). If not, use the just trained classifier. 

3. The additional online process is the following: Online emails are coming from a source. 

4. Their important features (which were determined by the offline training process) are 

retrieved. 

5. Each online email is classified and stored in a temporary file. 

6. If the temporary file has reached a certain size, for example 10% of the original data set, 

then update the original data set by appending the temporary file to it. 

7. Repeat the training process by going to step 1. 
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8 Conclusion 
 

In this work there was an attempt to use machine learning techniques with the purpose of classifying 

emails as phishing or legitimate with a low error rate.  

In order to properly develop the machine learning classifier, firstly a theoretical background was 

provided, including theoretical information and relevant work about machine learning classification 

techniques. Afterwards the approach of tackling the problem was provided, with machine learning 

tools and the components of the email as a file being explored. Lastly, the implementation algorithm 

and the numerical results of the performance metrics were presented. 

Even though, as mentioned in the chapter of relevant work, there have already been research works 

for detecting phishing emails using machine learning methodologies, in this work it was attempted 

to build a hybrid machine learning model. 

With the hybrid machine learning model, it was attempted to use two sources of inputs as features. 

These two are: 

• The properties of the email, which include characteristics of the email, such as the content 

transfer encoding of the email, the number of URLs or the number of attachments in the 

email. 

• The text of the email: This includes the text of the email that is to be read by the receiver of 

the email. In order to transform the text into features or, in other words, retrieve features 

from the email text, established algorithms were used: TF-IDF and Word Embedding. 

Two different architectures were proposed and tested whether they improve the performance of 

phishing email classification. These architectures are: 

• The hybrid assembled classifier: In this case the features which were retrieved from the 

properties and the text were assembled into one consistent feature vector and used as input 

to train classifiers. After testing it was proved that this classifier does improve the 

performance of classification when compared to the simpler classifiers which use only one 

type of feature as input for training. 

• The hybrid stacked classifier: This case includes two classifiers. The first one is trained using 

text-based features only as inputs. The second one uses as inputs to train properties-based 

features plus an additional feature which is the prediction of the already trained text-based 

classifier for the to-be-classified email. This hybrid classifier was proved to not improved the 

performance but actually slightly reduce the classification performance. 

In conclusion, this work includes the information needed for building machine learning models, 

relevant work about machine learning classification of phishing emails and a proposed architecture 

for machine learning classification of phishing emails which was proved to improve the performance 

of classification. 
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