
Server Side Code JavaScript Injection in 
modern Node.js applications 

 

 

 
 

 

A thesis submitted for the degree of 

M.Sc. in Digital Systems Security 

 

University of Piraeus 

Athens, May 2019 

 

 

 

 

 

 

 

Conducted by Maria Parara 
 

Supervising Professor Dr. Christoforos 
Ntantogian 

 

 

 



2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

ABSTRACT 
In the grand ecosystem of modern Web Application technologies, various different 

Web Application Runtime Environments compete for a place at the core of every new 

Web Project. The truth, however, is that while the strengths and uses of each Web 

Application Framework vary and are different, with each excelling at certain use 

cases, few excel at what they do, as Node.js does. Nevertheless, not unlike other 

Web Technologies, Node.js, is not by definition free from vulnerabilities that can be 

exploited by malicious users. This thesis aims to study scenarios through which a 

Node.js application can be exposed to Server Side JavaScript Injection (SSJI) 

attacks, showcase the impact of these vulnerabilities and provide ways to counter 

them. 

Node.js is an Open Source JavaScript Runtime environment that has allowed Web 

Developers to create Server-Side logic JavaScript code for a few years now. Some of 

its greatest strengths are its versatility in handling asynchronous requests and being 

able to serve thousands times more clients than other traditional Frameworks due to 

being based on an Event-Driven Architecture. Furthermore, Node.js has excelled in 

creating applications that require vast amounts of I/O (Input/Output) requests and 

little subsequent processing for each of them. This has led to the successful 

application of Node.js to Real-Time applications, Streaming Applications, Games, 

Chat applications as well as lightweight but scalable REST APIs among other 

successful use cases. Finally, Node.js has also unified the Development Stack 

allowing Software Engineers to work both at the User Interface side of an application 

(using JavaScript) as well as at the Server-Side. 

However, Node.js, as any other Web Runtime Environment, while constructed with 

Security principles in mind is not automatically safe from the notorious combination of 

malicious user intent and insecurely written code. This notorious combination has 

given birth to a serious vulnerability that is often met in Node.js applications - the 

Server Side JavaScript Injection vulnerability. The mitigation of Server-Side 

JavaScript Injection attacks is not a simple task and cannot be achieved merely by 

blindly following certain techniques during development. The only way to prevent 

such vulnerabilities is for both application architects and developers to obtain an 

Information Security mindset when designing and building the application. 

This thesis, utilizing the aid of two specialized tools: Commix and NodeXP, aims to 

showcase and study SSJI vulnerability scenarios, showcase the degree of damage 

these two exploiting tools can perform through the vulnerability and present ways 

through which these attacks can be mitigated. 

 

 

 

 

 



5 
 

 

PREFACE 
This master’s thesis was the culmination of the studies of Maria Parara for the 
postgraduate program in «Digital Systems Security» in the University of Piraeus, 
Athens, Greece. It is expected of the reader to have a minimum background in 
information security due to its technical content. References are done by the use of 
numeric notation, e.g. [1], which refers to the first item in the reference’s appendix. 
  
I would like to thank my supervising Professor Dr. Christoforos Ntantogian who 
provided me with the opportunity to work on this Thesis’s subject and who had been 
very helpful throughout the whole process. I would also like to thank Anastasios 
Stasinopoulos, creator of the Commix tool, and Dimitris Antonaropoulos, creator of 
the NodeXP tool. Without the aid of their vulnerability detection tools this thesis would 
not have been possible. 
 
University of Piraeus, May 2019. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

Table of Contents 
 

ABSTRACT ............................................................................................................... 4 

PREFACE ................................................................................................................. 5 

Table of Figures ........................................................................................................ 9 

1. Introduction ...................................................................................................... 11 

2. Modern Web Development with Node.js .............................................................. 12 

2.1 Brief History of Node.js .................................................................................. 12 

2.2 Node.js Architectural reference ...................................................................... 12 

2.3 Express.js ...................................................................................................... 14 

2.4 Node.js’s place in modern Web Development ................................................ 14 

3. Server-Side Code Injection (SSCI) vulnerability in Web applications ................... 16 

3.1 Definition ........................................................................................................ 16 

3.2 Examples of Server-Side Code Injection Attacks ........................................... 16 

3.2.1 PHP Code Injection ................................................................................. 16 

3.2.2 SQL Injection .............................................................................................. 17 

Ramifications of Successful SQL Injection Attacks: .......................................... 18 

3.2.3 Log Injection ............................................................................................ 18 

Log Forging Example ....................................................................................... 19 

3.3 Server-Side JavaScript Injection Attack (SSJI)............................................... 20 

File System Access .......................................................................................... 21 

Remote Binary Execution and System Command Execution ............................ 21 

Reverse Terminal/Shell .................................................................................... 23 

DoS (Denial of Service) .................................................................................... 23 

4. Server Side JavaScript Injection Testbed ......................................................... 24 

4.1 Introduction .................................................................................................... 24 

4.2 Tools used ..................................................................................................... 25 

4.2.1 Commix - Automated All-in-One OS Command Injection and Exploitation .. 25 

When the Results-Based technique fails .......................................................... 27 

Customizing Commix attacks ........................................................................... 28 

4.2.2 NodeXP - A Server Side Javascript Injection tool .................................... 28 

When the Results-Based Technique fails ......................................................... 30 

Why use both Commix and NodeXP for SSJI detection ................................... 30 

4.2.3 Kali Linux and MetaSploit framework ....................................................... 31 

4.3 The Server Side JavaScript Injection Testbed................................................ 32 



7 
 

4.3.1 Introduction ............................................................................................. 32 

4.3.2 Presenting the SSJI Testbed ................................................................... 33 

4.3.3 SSJI Testbed Scenarios VS Commix & NodeXP ..................................... 37 

Regular Category Scenarios ............................................................................ 38 

User-Agent Category Scenarios ....................................................................... 52 

Cookie Category Scenarios .............................................................................. 54 

Referrer Category Scenarios ............................................................................ 57 

Regular Expression/Filters Category Scenarios ............................................... 59 

4.3.4 Results Summary .................................................................................... 66 

Assessment ..................................................................................................... 69 

5. Conclusion ....................................................................................................... 71 

References .............................................................................................................. 73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 
 

Table of Figures 
Image 1: Node.js event loop graphical representation ............................................. 13 

Image 2: Running Commix for Injecting “addr” parameter via POST request .......... 25 

Image 3: Injection was successful – Create a Pseudo-Terminal session ................. 26 

Image 4: Sending the “ls” command through the Pseudo-Terminal ......................... 26 

Image 5: Running NodeXP against a SSJI testbed scenario and injecting the “user” 

parameter ................................................................................................................ 28 

Image 6: NodeXP detected a SSJI vulnerability on its 6th attempt. .......................... 28 

Image 7: The “user” parameter was deemed injectable by NodeXP. ....................... 29 

Image 8: NodeXP cooperates with MetaSploit to generate a MeterPreter Reverse 

Terminal session. .................................................................................................... 29 

Image 9: Sending “ls” command through the Reverse Terminal session. ................ 30 

Image 10: Booting SSJI Testbed in Debug Server mode – App is ready for attacks. 33 

Image 11: Partial view of the SSJI-Testbed User Interface (Only half scenarios are 

shown in the image) ................................................................................................ 34 

Image 12: Navigating to the Classic Regular GET Scenario. ................................... 34 

Image 13: The user enters an IP address at the address field. ................................ 35 

Image 14: The webpage reloads with the results of the Ping operation. .................. 35 

Image 15: The “addr” form parameter was revealed. ............................................... 36 

Image 16: Supplying Commix with the URL of the Scenario and the name of the 

paremeter. ............................................................................................................... 36 

Image 17: Commix detects vulnerability for the “addr” parameter. ........................... 36 

Image 18: Sending the malicious Payload through the UI Form. ............................. 36 

Image 19: The application’s intended behavior is bypassed. ................................... 37 

 
 



10 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 



11 
 

1. Introduction 
In order to be able to properly define what the term Server Side JavaScript 

Injection (SSJI) refers to, a brief reference to Node.js and Server Side Code 

Injection attacks (SSCI) must be made. 

Node.js also known as NodeJS or simply Node, is an open-source, cross-platform 

JavaScript run-time environment that executes JavaScript code outside of a Web 

Browser. Node.js allows developers to use JavaScript to write and run server-side 

scripts that produce dynamic web page content before the page is sent to the user's 

web browser. Consequently, Node.js represents a "JavaScript everywhere" 

paradigm, unifying web application development around a single programming 

language, rather than different languages for server side and client side scripts. 

Node.js has an event-driven architecture capable of asynchronous I/O. These 

design choices aim to optimize throughput and scalability in web applications with 

many input/output operations, as well as for real-time Web applications. The Node.js 

distributed development project, governed by the Node.js Foundation, is facilitated by 

the Linux Foundation's Collaborative Projects program [1]. 

On the other hand, the term Server-Side Code Injection (SSCI) can be used to 

describe a very large group of attacks malicious users (hackers) can instill on Web 

Applications. Specifically, a Server Side Code Injection attack can occur when a 

malicious user takes advantage of a vulnerable input option a Web Application might 

expose to its clients. Instead of providing a valid value that the Web Application’s 

underlying functions would process as expected, the malicious user provides a value 

that once received by the underlying functions will cause an unintended behavior to 

occur such as instructing the application to expose confidential data, slowing down its 

performance or shutting it down altogether (Denial of Service – DoS) among other 

examples. 

No Server-Side Web Application technology is safe by default from Server-Side Code 

Injection attacks. Like all other Web application Technologies Node.js applications 

can be exposed to the aforementioned attack. Specifically, certain JavaScript native 

methods such as “eval()”, “exec()” and “function()” while providing great freedom in 

easily accessing system resources to developers can equally pose a risk and can be 

leveraged by hackers. Like all Server-Side Code Injection attacks SSJI usually 

occurs when developers coding the application either do not properly validate user 

input or write code without completely knowing of its security implications. As 

mentioned earlier, Server-Side Injection attacks cannot be simply prevented by 

blindly following certain techniques during code development. The true way to 

prevent such vulnerabilities is for both application architects and developers to obtain 

an Information Security mindset when designing and building the application. 

This thesis aims to study scenarios of Server Side JavaScript Injection attacks. For 

the purpose of accomplishing this task a PHP Web Application that contains a 

collection of Server Side PHP Injection attacks was converted to a Node.js 

application. Subsequently, the NodeXP (D. Antonaropoulos) and Commix (A. 

Stasinopoulos) specialized command injection tools were used to assess the 

vulnerability of the new Node.js application to code injection attacks.  

https://en.wikipedia.org/wiki/Node.js


12 
 

2. Modern Web Development with Node.js 
Node.js Web Applications are the main target of Server Side JavaScript Injection 

(SSJI) attacks since it’s the only popular Server Side JavaScript Environment in the 

modern Web Development ecosystem. While all Server-Side Code Injection attacks 

are equally fatal since they result in loss of confidential information and Denial of 

Service (DoS) among other damage, SSJI attacks are further aggravated by 

Node.js’s current popularity. In order to better understand the impact of SSJI attacks 

the following paragraphs aim to provide readers with a basic understanding of 

Node.js place among other Web Application technologies, how it differs from them, 

enterprise scale use cases of it and the reasons for its popularity. 

2.1 Brief History of Node.js 

Node.js was first conceived, developed and maintained in 2009 by Ryan Dahl and 

who then got sponsored and supported by Joyent a cloud computing and hosting 

solutions provider. Ryan Dahl was not satisfied with the way the Apache Http server 

used to handle large amounts of concurrent connections and the way code was 

being created which either blocked the entire process or required multiple execution 

stacks in the case of simultaneous connections. This lead to the creation of the 

Node.js project which he went on to demonstrate at the inaugural European JSConf 

on November 8, 2009. He used Google Google’s V8 JavaScript engine, an event 

loop, and a low-level I/O API in his project which won lot of hearts and standing 

ovation. [2] 

In June 2011, Microsoft and Joyent implemented a native Windows version of 

Node.js. The first Node.js build supporting Windows was released in July 2011.In 

January 2012, Dahl stepped aside, promoting coworker and npm creator Isaac 

Schlueter to manage the project. In December 2014, Fedor Indutny started io.js, a 

fork of Node.js. Due to the internal conflict over Joyent’s governance, in February 

2015, the intent to form a neutral Node.js Foundation was announced. By June 2015, 

the Node.js and io.js communities decided to work together under the Node.js 

Foundation. 

2.2 Node.js Architectural reference 

The Node.js run-time environment was built to enable programmers to build highly-

scalable applications and write code that handles tens of thousands of simultaneous 

connections on one, and only one, physical machine. In order to better understand 

how Node.js achieves this, a brief reference will be made to its architectural 

mechanisms as well as a comparison to how more traditional server-side languages 

like Java and PHP work. 

The JavaScript programming language is by definition single-threaded and since 

Node.js is a JavaScript runtime environment that executes outside of a browser, 

Node.js and by extension all applications written on it are single-threaded too. 

However, while this might seem like a limitation of Node.js, it is actually the core-

principle on which Node.js builds upon with its “Single Threaded Event Loop Model”. 

The event loop is what allows Node.js to perform non-blocking I/O operations — 

https://codeburst.io/all-about-node-js-you-wanted-to-know-25f3374e0be7


13 
 

despite the fact that JavaScript is single-threaded — by offloading operations to the 

asynchronous system kernel interfaces most modern Operating Systems provide 

today. Essentially, this translates to Node.js submitting tasks to the system kernel 

and waiting for kernel events that signify a callback is ready for execution. [3][4] 

 

 
Image 1: Node.js event loop graphical representation 

In traditional web-applications written using languages like Java™ and PHP, each 

new connection spawns a new thread that potentially has an accompanying 2 MB of 

memory with it. On a system that has 8 GB of RAM, this architecture puts the 

theoretical maximum number of concurrent connections at about 4,000 users.  

As the client-base of the application grows, the web application requires more server 

machines to support more users. Of course, this adds to a business's server costs, 

traffic costs, labor costs, and more. Adding to those costs are the potential technical 

issues — a user can be using different servers for each request, so any shared 

resources have to be shared across all the servers.  

For all these reasons, the bottleneck in the entire web application architecture 

(including traffic throughput, processor speed, and memory speed) was the 

maximum number of concurrent connections a server could handle. Node.js attempts 

to tackle this issue by changing how a connection is made to the server. Instead of 

spawning a new OS thread for each connection (and allocating the accompanying 

memory with it), each connection fires an event run within the Node.js event-loop 

engine. Node.js also cannot deadlock, since there are no locks allowed, and doesn't 

directly block for I/O calls. Using this architecture Node.js applications can support 

tens of thousands of concurrent connections. 

 
 
 
 
 
 

 

https://medium.com/the-node-js-collection/what-you-should-know-to-really-understand-the-node-js-event-loop-and-its-metrics-c4907b19da4c
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/


14 
 

2.3 Express.js 

Express.js is a minimal and flexible Node.js web application framework that 

provides a robust set of features for web and mobile applications. While Node.js is 

capable of being used to build web applications, quite often when choosing to build 

websites, Node.js developers opt to use Express.js. The Express.js framework is 

able to layer in built-in structure and functions needed to actually build a site. It’s a 

lightweight framework that provides developers with extra, built-in web application 

features and the Express API without overriding the already robust, feature-packed 

Node.js platform. Express.js allows developers to organize their web application in a 

MVC-minded architecture where the application is divided into Models, Views, 

Routers and Controllers simplifying development and making it easier to write 

secure, modular and fast web applications. Finally, Express.js is part of the popular 

MEAN Web development Stack which stands for MongoDB, Express.js, Angular.js 

and Node.js. [5] 

In this thesis, the Express.js framework was used to fully recreate a purposefully 

vulnerable to Server Side Injections classic PHP website to an Express.js/Node.js 

version of it. All experiments that were run as part of this thesis entail as their target 

the aforementioned Express.js website. 

2.4 Node.js’s place in modern Web Development 

Public opinion on Node.js claims that it has brought forth a new standard for 

enterprise applications. Some even claim that it’s so effective that it has the potential 

to replace Java for good—dethroning it as the most trusted language, a spot that 

Java has held since 1995. With the passage of time more and more enterprise-level 

companies reveal that they have been successfully using the platform in. As of today, 

the list includes giants such as PayPal, YouTube, Walmart, NASA, Intel and 

Twitter. Many others decided to rewrite their existing code to Node.js to boost their 

teams’ productivity and increase the performance of their applications. According to 

the Node.js User Survey, 43% of Node.js programmers claim to have used it for 

enterprise apps. However, like with all other web development platforms and 

technology stacks the truth seems to be somewhere in the middle, meaning that, 

Node.js excels in certain scenarios while it falls short on others. [6] 

An example of poor usage of Node.js is using the platform to process heavy CPU-

bound tasks. As explained earlier Node.js is built on top of a single-threaded 

architecture. While the event loop of Node.js will offload I/O operations to the 

asynchronous interfaces of the Operating System, the same cannot be said for 

complex JavaScript code. What this means, in plain terms, is that JavaScript code is 

always synchronously executed by the same single thread the event-loop runs on, 

meaning that a client request that takes 10 seconds of JavaScript operations to 

complete will block all other client requests for that time. Even though a recent 

update of Node.js (2018) introduced experimental multithreading to the platform, this 

new feature is not on par with traditional multithreading of other web development 

platforms since it enforces a one thread per CPU core limitation. 

https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.monterail.com/blog/nodejs-development-enterprises


15 
 

On the other hand, Node.js can excel at handling thousands of concurrent client 

requests that require intensive I/O operations or non CPU heavy computational work. 

One excellent use case of the Node.js platform are Real-Time Applications 

(RTAs).  As a rule, collaborative services, project management tools, video/audio 

conferencing solutions and other RTAs require heavy input/output operations. All 

heavy operations required by this type of applications can be offloaded to the async 

I/O interfaces of the OS kernels. Node.js provides many useful developer APIs that 

take advantage of these interfaces such as event APIs and websockets offered 

ensuring a seamless server operation (no hangup) and instant data update for client 

sessions.  

In the same vein, Node.js is very effectively used to build streaming applications. In 

this scenario, Node.js’s selling point is the ability to process data during the 

uploading time with particular parts of content are being transmitted while the 

connection remains open to download other components when necessary. 

Last but not least Node.js can be used to build very scalable REST APIs very quickly. 

Apart from the already mentioned ability to handle multiple concurrent client 

connections easily, Node.js, when combined with Express.js and MongoDB provides 

an out-of-the-box working REST API that exposes JSON objects natively without 

needed to convert them from database objects. [7] 

 

 
 

 

 

 

 

 

 

 

 

 

 

https://railsware.com/blog/what-is-node-js-used-for/


16 
 

3. Server-Side Code Injection (SSCI) 

vulnerability in Web applications 

3.1 Definition 

The term Server-Side Code Injection (SSCI) can be used to describe a very large 

group of attacks malicious users (hackers) can instill on Web Applications. 

Specifically, a Server Side Code Injection attack can occur when a malicious user 

takes advantage of a vulnerable input option a Web Application might expose to its 

clients. Instead of providing a valid value that the Web Application’s underlying 

functions would process as expected, the malicious user provides a value that once 

received by the underlying functions will cause an unintended behavior to the Web 

Application such as instructing it to expose data it should normally keep hidden, 

slowing down its performance or shutting down the application altogether. [8] 

Server-Side Code Injection attacks can be categorized as Result-Based, Blind and 

Semi-Blind. In cases where the malicious user can directly infer the results of his 

actions through the response of a Web Application then the Result is named a 

Result-Based attack. On the other hand, a Blind attack occurs when the attacker 

cannot directly see the result of his attack and must instead deduce the effect of his 

operations through other means such as how long the server takes to respond to his 

operations and if he can affect this interval. Finally, Semi-Blind attacks are in 

between Result-Based and Blind Attacks meaning that the hacker can obtain some 

limited information about the results of his operations through the Web Application’s 

responses but has to continue querying the application until he has enough 

information about how to affect it in a more effective way. 

Popular examples of Server-Side Injection attacks are the SQL Injection attack and 

the Server-Side Javascript Injection (SSJI) attack. This thesis studies the use of 

Server-Side JavaScript Injections and various scenarios through which a JavaScript 

based (Node.js) application can be affected by malicious user input. 

3.2 Examples of Server-Side Code Injection Attacks 

The following section aims to provide a short presentation on common types of 

Server-Side Code Injection Attacks barring the Server-Side JavaScript Injection 

Attack (SSJI) which will be explained in a separate section later. 

3.2.1 PHP Code Injection 

PHP can be very much vulnerable to Code Injection attacks. A very common 

scenario for this type of attack is the misuse of the include(), include_once(), 

require() and require_once() PHP functions. If untrusted input is allowed to 

determine the path parameter passed to these functions it is possible to influence 

which local file will be included. It should be noted that the included file need not be 

an actual PHP file; any included file that is capable of carrying textual data (e.g. 

almost anything) is allowed. The path parameter may also be vulnerable to a 

Directory Traversal or Remote File Inclusion. Using the ../ or ..(dot-dot-slash) string 

https://www.whitehatsec.com/glossary/content/ssi-injection


17 
 

in a path allows an attacker to navigate to almost any file accessible to the PHP 

process. The above functions will also accept a URL in PHP’s default configuration 

unless XXX is disabled. 

Moreover, PHP also offers some powerful but dangerous methods such as eval() 

and shell_exec(). The eval() function treats its String input as a PHP command that 

it will attempt to interpret and execute directly. On the other hand, the shell_exec() 

functions allows developers to interact directly with the underlying Operating System. 

The effects of exposing the shell_exec() method to hackers are only limited by the 

privileges of the Server hosting the Web Application meaning that in many cases 

serious security risks arise since the hacker can instruct the Operating System to 

shut down the application, turn off the host machine or even worse open a reverse 

terminal session back to attacker’s workstation enabling him to do as he pleases 

very easily from that point on. 

Last but not least, PHP code can be prone to Code injection through the use of the 

preg_replace() PHP function which looks for a regex in a String and replaces it. This 

function is also a typically abused function since it also allows for the use of the “e” 

(PREG_REPLACE_EVAL) parameter modifier which means the replacement string 

will be evaluated as PHP code after substitution. Untrusted input used in the 

replacement string could therefore inject PHP code to be executed uncontrollably 

imposing the same security risks the shell_exec() and eval() methods impose. [9] 

3.2.2 SQL Injection 

Structured Query Language (SQL) is used to query, operate, and administer 

database systems such as Microsoft SQL Server, Oracle, or MySQL. The general 

use of SQL is consistent across all database systems that support it; however, there 

are intricacies that are particular to each system. 

Database systems are commonly used to provide backend functionality to many 

types of web applications. In support of web applications, user-supplied data is often 

used to dynamically build SQL statements that interact directly with a database. A 

SQL injection attack is an attack that is aimed at subverting the original intent of the 

application by submitting attacker-supplied SQL statements directly to the backend 

database. Depending on the web application, and how it processes the attacker-

supplied data prior to building a SQL statement, a successful SQL injection attack 

can have far-reaching implications. The possible security ramifications range from 

authentication bypass to information disclosure to enabling the distribution of 

malicious code to application users. 

A SQL injection attack involves the alteration of SQL statements that are used within 

a web application through the use of attacker-supplied data. Insufficient input 

validation and improper construction of SQL statements in web applications can 

expose them to SQL injection attacks. SQL injection is such a prevalent and 

potentially destructive attack that the Open Web Application Security Project 

(OWASP) lists it as the number one threat to web applications. 

 

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html


18 
 

Ramifications of Successful SQL Injection Attacks: 

Although the effects of a successful SQL injection attack vary based on the targeted 

application and how that application processes user-supplied data, SQL injection can 

generally be used to perform the following types of attacks: 

 Authentication Bypass: This attack allows an attacker to log on to an 

application, potentially with administrative privileges, without supplying a valid 

username and password. 

 Information Disclosure: This attack allows an attacker to obtain, either 

directly or indirectly, sensitive information in a database. 

 Compromised Data Integrity: This attack involves the alteration of the 

contents of a database. An attacker could use this attack to deface a web 

page or more likely to insert malicious content into otherwise innocuous web 

pages. This technique has been demonstrated via the attacks that are 

described in Mass exploits with SQL Injection at the SANS Internet Storm 

Center. 

 Compromised Availability of Data: This attack allows an attacker to delete 

information with the intent to cause harm or delete log or audit information in 

a database. 

 Remote Command Execution: Performing command execution through a 

database can allow an attacker to compromise the host operating system. 

These attacks often leverage an existing, predefined stored procedure for 

host operating system command execution. The most recognized variety of 

this attack uses the xp_cmdshell stored procedure that is common to 

Microsoft SQL Server installations or leverages the ability to create an 

external procedure call on Oracle databases. [10] [11] 

3.2.3 Log Injection 

Log Injection is another kind of Server-Side attack that affects Web Applications. This 

type of attack occurs when a malicious user injects misleading data to the application 

that will cause confusion about the state of the application to administrators 

inspecting the logs or even worse be processed by automatic log processing 

components that will perform erroneous actions based on them. For the malicious 

user this type of attack can sometimes prove much easier than the previous ones. 

On the contrary, for the targeted Web Application or its administrator it can be very 

difficult to identify the scope of the attack performed and its impact. 

Web applications or any applications for the case, quite often store huge amount of 

logs in the backend. These might be: 

 Crash logs - Information about when the application got crashed, reason 

behind the crash, affected users etc., 

 Error/Exception logs - Details like exception thrown from code, Stacktrace 

of the thrown exception. 

 Access logs - Access logs that hold information about different end points 

accessed by a user in the system with time details. 

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html
https://www.cisco.com/c/en/us/about/security-center/sql-injection.html


19 
 

 Garbage Collection/Memory Cleanup logs. 

 Monitoring logs - Logs that help locate when a user tries to do a suspicious 

activity on your site and are often accompanied by some alert system that 

notifies administrators to inspect these logs. 

Apart from the above, there are other categories of application logs. However, as it 

can be inferred these logs are very useful and an absolute necessity for solving 

application issues, audit and control, application performance monitoring, 

troubleshooting and more. 

In the most benign case, an attacker may be able to insert false entries into the log 

file by providing the application with input that includes appropriate characters. If the 

log file is processed automatically, the attacker can render the file unusable by 

corrupting the format of the file or injecting unexpected characters. A more subtle 

attack might involve skewing the log file statistics. Forged or otherwise, corrupted log 

files can be used to cover an attacker's tracks or even to implicate another party in 

the commission of a malicious act. In order to showcase the severity of Log Injection 

attacks an appropriate example will be presented. [12] 

Log Forging Example 

The following web application code attempts to read an integer value from a request 

object. If the value fails to parse as an integer, then the input is logged with an error 

message indicating what happened. 

 
 

 If a user submits the string "twenty-one" for val, the following entry is logged:  

 
 
However, if an attacker submits the string "twenty-

one%0a%0aINFO:+User+logged+out%3dbadguy", the following entry is logged:  

 

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html


20 
 

Clearly, attackers can use this same mechanism to insert arbitrary log entries. [13] 

3.3 Server-Side JavaScript Injection Attack (SSJI) 

As presented earlier, the Node.js ecosystem has led to the creation of many modern 

applications, such as server-side web applications. Unlike client-side JavaScript 

code, Node.js applications can interact freely with the Operating System without the 

benefits of a security sandbox (Web Browser). Client-side JavaScript vulnerabilities 

have been extensively studied for years, but are still one of the most common 

classes of vulnerabilities in applications. For example, Cross-Site scripting (XSS) has 

been on the OWASP Top 10 vulnerability list since its inception in 2003. While client-

side XSS is certainly a problem, Server-Side JavaScript Injection (SSJI) can be much 

more dangerous in an application. In fact, one could argue that SSJI is one of the 

most crippling web application vulnerabilities on the web today. [14] 

A Server Side Code Injection attack commences when a hacker submits a string of 

malicious JavaScript code to an input field of Node.js Web Application. Not unlike 

PHP code injection attacks mentioned earlier, one typical way through which such 

the malicious user’s input can affect a Node.js application is through the use of built-

in eval() function JavaScript provides. The functionality of eval() entails that it will 

attempt to execute any string input provided to it as JavaScript code. As it can be 

inferred this critically exposes the Web Application since the malicious user can 

change the application’s behavior as he pleases. Another way Node.js Injection 

attacks occur is through the abuse of the exec() API Node.js provides. The exec() 

API allows a Node.js application to directly interact with the Operating System and 

send commands to it, meaning that non-sanitized input once again, can lead to 

serious trouble since hackers interact with the Operating System and are only limited 

by the privileges the Node.js application itself has on the Operating System.  

Apart from eval() and exec() that directly influence code execution for the Web 

Application when provided with malicious user input, there are more JavaScript built-

in functions that have other kinds of functionality but are equally dangerous when 

exploited. To begin with, using the match() Regular Expression matching method 

inefficiently can block the single-threaded event loop of a Node.js application. If a 

malicious user is allowed to input an arbitrary long string input, the JavaScript 

match() method can take quite some time to complete slowing down the whole 

Node.js application and causing a Denial of Service (DoS) attack essentially. Last 

but not least, another way a malicious user can achieve cause a SSJI attack to 

succeed is through the exploitation of the function() built-in method. The functionality 

of this method is analogous to the use of eval(), meaning that, they it execute an 

input String they have been provided with as JavaScript code. 

 

 

 

 

https://www.owasp.org/index.php/Log_Injection
https://www.owasp.org/index.php/Top_10-2017_Top_10


21 
 

Some of the most devastating attacks malicious users can carry out once a SSJI 

vulnerability has been detected are the following: 

File System Access 

A potential goal of a malicious user might be to read file contents from the target 

server, like username and passwords, or other confidential information. Even if the 

vulnerable Node.js application did not originally use the “fs” (file-system) module of 

Node.js for its operations, a hacker can still inject the suitable commands that invoke 

this library and provide him file-system manipulation. 

The command to gain access to the File-System library in Node.js is: 

 

If a SSJI exploit that allows for arbitrary code execution (eval()) has been located by 

the malicious user then in order to list the actual contents of a file, all the attacker 

would have to do is issue the following command: 

 

Moreover, since the attacker is only limited by the privileges the Node.js application 

itself has on its interaction with the File-System, write operations could also possibly 

be carried out. By injecting the code shown below, the attacker prepends the String 

“hacked” to the start of the currently executing file (currentFile): 

Finally, the creation of arbitrary files on the target server is also possible, including 

binary executable files. For example, the malicious user could create an .exe file 

(maliciousfile.exe) with some contents (data) that will be Base64 encoded and 

written into the the .exe file, through this command: 

 

Once this succeeds, the attack could follow up by looking for ways to execute this 

program on the server and leveraging his attack even more by performing a remote 

binary execution attack as describe in the following paragraph. 

Remote Binary Execution and System Command Execution 

Once the attacker has successfully uploaded their binary on the target server they 

could attempt to execute it. By invoking the spawn(filename) function a Node.js 

application is able to create a “child” process that runs the program indicated by the 



22 
 

“filename” value. Consequently, the malicious user could attempt to inject the 

following payload: 

 

Thus, leading to the execution of the “filename” executable binary he or she 

uploaded in the previous example. 

Nonetheless, even without necessarily uploading an executable file the malicious 

user can still execute system commands the Hosting OS of the Node.js application 

supports by using the exec() function that was mentioned previously. For example is 

the attacker wished to list all files and folders of the current working directory of the 

Node.js application they could inject the following payload: 

 

This payload first imports the exec() function of the “child_process” library, then 

executes the “ls” Unix command and finally sets a callback that will result in the 

malicious user obtaining the standard-Output (stdout) of the command. 

The attacker can take the exploit many levels further by injecting a payload that will 

spawn a separate Node.js server application that will listen to a specific port for 

incoming commands and use the exec() to execute any command send by the 

attacker, effectively, undoing the need for further injections for any other command 

the malicious user wants to execute. 

This attack is not as far-fetched as it may sound, the attacker could inject the 

following code to achieve it: 

 

This payload instructs the vulnerable application to execute a custom anonymous 

function that uses the powerful “http” module of Node.js. The “http” module allows for 

the creation of a simple Node.js application using a build-in Node.js server. This is 

achieved through the createServer() command. The “createServer()” command is 

then equipped with a basic function that receives any Client request at port 8002 and 

which uses the exec() method to execute the command contained in the Client 

request and respond back with the Output of the command. 

 



23 
 

Reverse Terminal/Shell 

Another common objective hackers strive to achieve through an exploit is the 

establishment of a Reverse Terminal. The term, Reverse Terminal or Reverse Shell, 

is used to reference the injection of the Server-Side Web Application with a payload 

that instructs it to open a Remote Connection from the Host Machine to the malicious 

user’s machine and then forward an interactive terminal/shell to it. This effectively 

grants the malicious user’s machine a Remote Terminal towards the Node.js hosting 

machine. 

Once a SSJI vulnerability that allows arbitrary command execution on the Node.js 

application has been found, the Reverse Terminal Exploit can be performed quite 

easily: 

 

The above payload essentially injects an anonymous function that combines the use 

of the “net” (Networking) and “child_process” libraries of Node.js to open a new 

Socket towards the malicious user’s IP address and then bind the Standard Input and 

Standard Output of a Bash Terminal Session to the Remote connection enabling the 

malicious user to send commands and receive their output. [15] 

DoS (Denial of Service) 

Obtaining sensitive data is not always the direct goal of a malicious user. In many 

cases, hackers simply wish to disable the availability of an Online Service by bringing 

it down and causing a Denial of Service for other users. 

As mentioned before, once a SSJI arbitrary code execution exploit has been located 

by the malicious user, the easiest way they can shut off the Web Application is by 

providing it with a payload that will contain the process.exit() command, instructing it 

to shut-down. Another common way of causing Denial of Service is by overloading 

the processing actions the application has to take. Specifically by injecting the 

“while(1);” command in a payload the Server will use all of its processing power into 

executing this command and the Service will undoubtedly crash. 

 

https://github.com/appsecco/vulnerable-apps/tree/master/node-reverse-shell


24 
 

4. Server Side JavaScript Injection Testbed 

4.1 Introduction 

In order to be able to study the effects of the Server Side JavaScript Injection 

attack and how commonly it could occur in Node.js Web applications, a purposefully 

vulnerable Node.js Web Application was written which acts as Testbed for SSJI 

attacks allowing us to showcase different scenarios through which SSJI attacks 

occur. The template that aided in developing the SSJI Testbed was 

A.Stasinopoulos’ Commix-Testbed which is a PHP Web Application that contains 

43 PHP Code Injection scenarios. A careful study of these PHP Code Injection 

Scenarios led to the creation of the SSJI TestBed which recreates 41 of the 43 

original Injection scenarios now using the analogous Node.js mechanisms.  

The original PHP Commix-Testbed website was created by Anastasios 

Stasinopoulos in order to be able to showcase the abilities of his Server Side Code 

Injection Penetration Testing tool named Commix. Commix is an Open-Source 

Penetration Testing tool written in Python that enables Security Engineers to test 

their Web Application against Server Side Code Injection attacks by employing 

various different payload construction techniques and attempting to bypass the 

application’s validation defenses. A brief reference to its capabilities and the ways it 

was used as part of this Thesis will be explained in a following chapter. 

Another tool that was extensively used as part of this thesis is the NodeXP 

Penetration Testing tool. NodeXP is a Python tool that was created by Dimitrios 

Antonaropoulos and specializes in detecting Server Side JavaScript vulnerability in 

a Web Application. NodeXP works directly with MetaSploit framework and once a 

SSJI exploit is deemed possible by the tool, a Reverse Shell is provided to the user 

giving him access to the Server hosting the Node.js application. NodeXP will be 

further explained in a later section. 

The final technical component that aided in this thesis was the use of the MetaSploit 

framework. MetaSploit is an open source penetration testing framework that enables 

Security Engineers to easily generate payloads for use with an Injection Attack. Both 

Commix and NodeXP after locating a SSJI vulnerability allow users to invoke 

MetaSploit in order to generate a payload for a follow-up attack such as the 

MeterPreter Reverse Terminal attack which provided the attacker with a fully 

interactive terminal to the Operating System of the Node.js application. 

The Commix and NodeXP tools were used to test all the SSJI scenarios supported 

by SSJI TestBed. They provided valuable feedback that led to a greater 

understanding both on how SSJI attacks can occur and to the underlying differences 

and similarities between two different Web Application technologies: PHP and 

Node.js. They proved that even a modern Web Application framework is not 

automatically safe to such attacks and also proved that while many architectural 

differences exist between PHP and Node.js applications, many exploitable 

similarities also exist that can prove equally deadly for both. 

 



25 
 

4.2 Tools used 

The following paragraphs will provide readers a greater understanding of the 

NodeXP, Commix, Kali Linux and MetaSploit penetration testing assets that are 

essential to showcasing the results of this Thesis. 

4.2.1 Commix - Automated All-in-One OS Command Injection and Exploitation 

Commix is a penetration testing software tool written by Anastasios Stasinopoulos 

aiming to facilitate Web Developers, Penetration Testers and Security Researches in 

testing Web Applications for bugs that expose them to errors or vulnerabilities related 

to command injection attacks.  

The tool is written in Python (version 2.6. or 2.7) and runs in both Unix-based (i.e., 

Linux, Mac OS X) and Windows OS. Commix is free to download through GitHub. 

It is worth mentioning that Commix comes preinstalled in many security-oriented 

Operating Systems including the well-known Kali Linux distribution, while its 

capabilities has been presented with a real demo in the BlackHat Europe 2015 

security event. 

Provided a certain valid URL for the target Web Application Commix supports a 

myriad of operations on it. For starters, Commix supports attacking the Web 

Application either through POST or GET requests as far HTTP requests are 

concerned. The input parameters of a Web Application are injectable via Commix 

allowing users to specify which POST or GET parameter they wish to test for 

exploitation. 

 

Image 2: Running Commix for Injecting “addr” parameter via POST request 

In the above example, the Commix tool has been invoked against the SSJI Testbed 

application which is also hosted on the same machine (localhost). By using the “—

data” parameter we inform Commix that we wish to perform a POST request towards 

this URL and inject a parameter named “addr” which the Web Application would 

normally have users fill through an online form in its Web Interface. 

Sending the above command will result in Commix attempting a Results-Based 

Server Side Code Injection attack. Essentially, Commix will try injecting the “addr” 



26 
 

parameter with payloads that contain specific OS commands that when processed by 

functions such as the exec() function of Node.js will cause them to be executed by 

the application. If the output the application returns in response to the request is 

directly affected by the injected commands then Commix will be able to deduce that a 

Results Based (Classic) command injection attack has occurred. 

 

Image 3: Injection was successful – Create a Pseudo-Terminal session 

If the selected parameter (“addr”) is deemed injectable by Commix then a prompt will 

appear for the user to create a Pseudo-Terminal. 

Essentially, a Commix Pseudo-Terminal is user interface Commix provides where it 

accepts any system command typed by its user and then injects it through the 

payload that was used to locate the vulnerability in the previous step. This will result 

in the system command to be executed by the Node.js application. If the system 

command has any observable output then Commix will collect these results and bring 

them back to the Pseudo-Terminal session for the user to see. For example once the 

SSJI attack has been detected, sending the “ls” command will have the Node.js 

application performing the command on the hacker’s behalf and then sending back 

its output through the Pseudo-Terminal: 

 

Image 4: Sending the “ls” command through the Pseudo-Terminal 

When a SSJI attack succeeds users are not limited to using the Pseudo Terminal. 

Instead a suitable MetaSploit payload could be generated and send through Commix 

in order to create a true Terminal Session. While the use of MetaSploit will be 

explored in conjuction with NodeXP, with which it is tightly coupled, it was not 

deemed necessary to showcase for Commix, as part of this Thesis, since Commix 

already provides its own “Pseudo-Terminal” allowing the exploitation of the SSJI 

Testbed application through it and our main focus is the exploit-scenarios 

themselves. 

 

 



27 
 

When the Results-Based technique fails 

Commix is not limited to using Results-Based command injection techniques. In case 

all available payload combinations for Results-Based attack fail Commix will attempt 

Dynamic Evaluation Results Based Attacks, File-Based Blind Attacks and Time-

based Blind Attacks.  

In Dynamic Evaluation Results Based Attacks, Commix will test to see if the eval() 

method is used by the targeted application and if it can affect it. However, here 

Commix assumes that the eval() function belongs to a PHP application meaning that 

the SSJI TestBed will be unaffected by this kind of attack since it uses the JavaScript 

eval() method. However, this is still a technique worth mentioning. 

On the other hand, the File-based Blind Attack and the Time-based Blind Attack 

belong to the Blind Family of Techniques Commix will employ when it cannot discern 

through Application Output of the Web Application is exploitable or not for the 

targeted parameters. In both Blind techniques Commix will attempt to discern 

injection by sending payloads which introduce system delays to the system via the 

use of the “sleep” system command. If Commix deems that it can successfully affect 

the application’s performance through then it will offer a Pseudo-Terminal to the user 

that will allow him to send system commands over the chosen Blind SSJI exploit. 

If the user has opened a “Pseudo-Terminal” session through the Blind Time-Based 

Injection attack then Commix will attempt to discern the output of the command by 

having the targeted system brute-force compare every later of the actual output of 

the command with payloads of ASCII characters Commix will send. For every 

matching letter, the payload Commix sends to the targeted application, instructs it to 

introduce a delay through the “sleep” command. Through this method Commix is 

able to discern every letter of the output of the command the user sent. Since this 

technique can take quite some time it can act as a secondary means of attacking the 

Web Application, serving only as an endpoint for leveraging a Reverse Terminal 

session towards the user that grants him easier access to the Targeted Machine. 

Moving on with the Blind Attacks, the File-Based Blind Attack involves instructing the 

targeted Node.js application to create execute the injected System command and 

then save its output to a File. If the command succeeded and the Web application 

has not taken any measures to protect users from accessing unintended files in its 

directory then the attacker can access the file simply by typing the URL of the 

application and appending the name of the file he created. 

In this Thesis, Commix will be shown successfully exploiting the SSJI Testbed 

application both through Results-based and Blind-based techniques. 

 

 

 

 



28 
 

Customizing Commix attacks 

Commix is not limited to simply sending a GET or POST request and then attempting 

one of the aforementioned techniques. The HTTP requests of Commix can be 

customized to include Cookies, JSON or SOAP XML payloads and even custom 

Headers that allow Commix to set important information such as Authentication 

Details, User-Agent details (e.g. the details that show the browser of the user) or 

even Referrer Details (e.g. the information that shows the webpage that linked the 

user to current one.). Through such extra injectable options Commix opens far more 

use cases for penetration testing of Web Application. Taking advantage of these 

capabilities the SSJI Testbed that was developed as part of this Thesis contains 

scenarios that showcase vulnerability to Cookie-based, Referrer-based and User-

Agent based attacks among others. 

4.2.2 NodeXP - A Server Side Javascript Injection tool 

NodeXP is an open source penetration testing tool written by Dimitrios 

Antonaropoulos that specializes in detecting Server Side JavaScript Injection 

Attacks. The tool is written in Python 2.7 and is freely distributed through GitHub. 

NodeXP is tightly coupled with the MetaSploit framework and once a SSJI 

vulnerability is located in the targeted Web Application a MetaSploit meterpreter 

session will be offered by NodeXP to the user. 

Similarly to Commix, NodeXP’s basic parameter is the URL of the targeted Web 

Application. NodeXP supports sending both GET and POST and injecting the HTTP 

request parameters. An example of checking a scenario of the SSJI Testbed and 

injecting its “user” parameter is shown below: 

 

Image 5: Running NodeXP against a SSJI testbed scenario and injecting the “user” parameter 

The default exploitation technique NodeXP supports is the Results-Based SSJI 

detection technique. In this technique NodeXP will inject JavaScript code in payloads 

and attempt to affect the targeted Web Application through them expecting to directly 

interfere in the response output of the Web Application to its requests. 

 

Image 6: NodeXP detected a SSJI vulnerability on its 6th attempt. 



29 
 

Once NodeXP has deemed that an application is vulnerable to SSJI attack given a 

specific payload then it proceeds to the exploitation phase. Similarly to the Pseudo 

Terminal session offered by Commix, that allows users to interact with the Host 

Machine of the application, NodeXP attempts to offer the same service to its user but 

through more powerful means: MetaSploit. NodeXP, works tightly together with 

MetaSploit to create a MeterPreter session through the SSJI injection. 

 

Image 7: The “user” parameter was deemed injectable by NodeXP. 

A MeterPreter session is a very powerful fully interactive Reverse Terminal that 

MetaSploit can provide to users. Once MeterPreter has been established, it allows 

for the attacker to interact with the Host Machine of the Web application 

independently of the SSJI attack. In order to establish the MeterPreter session, 

NodeXP prompts its user to provide their IP address as well as a Port through which 

the Reverse Terminal session of MeterPreter will be established. Once these details 

have been provided, NodeXP will invoke the MetaSploit framework and pass to it the 

aforementioned details. Using the IP address and the Attacker’s port MetaSploit will 

automatically generate a String payload that contains all the necessary commands 

for the affected Node.js application to establish a Reverse Terminal from the Host 

Machine to the Attacker’s machine. The MetaSploit payload is passed back to 

NodeXP which then enriches the payload through which it detected the SSJI 

vulnerability with the MetaSploit generated payload. The resulting payload is then 

send to the Node.js application and a Reverse Terminal is successfully established. 

 

Image 8: NodeXP cooperates with MetaSploit to generate a MeterPreter Reverse Terminal session. 

 

 



30 
 

In the following image an example of sending the “ls” command through the 

MeterPreter Reverse Terminal Session is shown. Once more, note that this 

terminal session once established is not dependent on the SSJI exploit as in 

Commix’s Pseudo-Terminal session and NodeXP does not participate in gathering 

the results of the “ls” command that was sent, unlike Commix where, once a 

command has been issued the tool has to gather the output of the command either 

through the Result-Based or Blind techniques.  

 

Image 9: Sending “ls” command through the Reverse Terminal session. 

When the Results-Based Technique fails 

In case the Results based Technique fails NodeXP, similarly to Commix, will attempt 

to attack the targeted Web Application using Blind-based Techniques. NodeXP will 

attempt to introduce delays in order to deem the targeted URL vulnerable to SSJI 

attack. Once the application is deemed vulnerable, NodeXP will attempt to establish 

the MeterPreter session and if successful will provide access to the Web Application 

independently of the SSJI attack. 

NodeXP also supports encoding in Base64 the payloads through which it attempts to 

detect SSJI vulnerabilities. Furthermore, in case an application requires 

authentication, NodeXP offers users the ability to send Authentication Tokens as 

Cookies and can use them to send subsequent requests to the application. However, 

unlike Commix, NodeXP does not offer users the ability to inject payloads into 

Cookies and thus exploit a Node.js application through the Cookie mechanism. 

Why use both Commix and NodeXP for SSJI detection 

The SSJI scenarios supported by the SSJI Testbed that was developed as part of 

this Thesis were created to be used by both Commix and NodeXP penetration testing 

tools. The reason this choice was made was to showcase more Server Side 

JavaScript Injection scenarios than either of the tools were capable of exploiting on 

their own. In NodeXP’s case, the tool attempts to exploit the eval(), and function() 

JavaScript methods. Essentially, what this means is that, NodeXP detect SSJI 

vulnerabilities using JavaScript code in its payloads. In accordance to this, the SSJI 

testbed contains scenarios that make use of these functions and are compatible to 

exploit through NodeXP. 

On the other hand, Commix attempts to detect Command Injection in the targeted 

Web Application by attempting to inject System OS commands to it through its 



31 
 

payloads. SSJI provides a variety of scenarios that are compatible with Commix 

through the use of the exec() function which executes System OS commands. 

Commix is also used to test SSJI scenarios that NodeXP cannot cover with its 

current capabilities such as injecting malicious payloads through Cookies, the User-

Agent HTTP Header or the Referrer HTTP Header. 

Consequently, NodeXP and Commix are not overlapping penetration testing tools 

since each is compatible with different SSJI scenarios and are both extremely useful 

in showcasing SSJI scenarios which is the main objective of this Thesis. 

4.2.3 Kali Linux and MetaSploit framework 

For the purpose of developing and running the SSJI test runs against the SSJI 

testbed the Kali Linux distribution which natively includes the MetaSploit Framework 

in it was used. A brief reference will be made to both of these, integral to this Thesis, 

components. 

Kali Linux is an open source Debian-derived Linux distribution designed for digital 

forensics and penetration testing. It is maintained and funded by Offensive Security, 

a provider of world-class information security training and penetration testing services 

and its core developers are Mati Aharoni, Devon Kearns and Raphaël Hertzog.  

The Kali Linux project began in 2012, when Offensive Security decided that they 

wanted to replace their venerable BackTrack Linux project, with something that could 

become a genuine Debian derivative, complete with all of the required infrastructure 

and improved packaging techniques. The decision was made to build Kali on top of 

the Debian distribution because it is well known for its quality, stability, and wide 

selection of available software. The first release (version 1.0) happened one year 

later, in March 2013 and in that first year of development, they packaged hundreds of 

pen-testing-related applications and built the infrastructure. Even though the number 

of applications is significant, the application list has been meticulously curated, 

dropping applications that no longer worked or that duplicated features already 

available in better programs. Kali Linux released many incremental updates, 

expanding the range of available applications and improving hardware support, 

thanks to newer kernel releases. With some investment in continuous integration, 

they ensured that all important packages were kept in an installable state and that 

customized live images (a hallmark of the distribution) could always be created  

Kali Linux has over 600 preinstalled penetration-testing programs including Python & 

Metasploit Framework. It is developed using a secure environment with only a small 

number of trusted people that are allowed to commit packages, with each package 

being digitally signed by the developer. Kali also has a custom-built kernel that is 

patched for 802.11 wireless injection. This was primarily added because the 

development team found they needed to do a lot of wireless assessments. 

On the other hand, the MetaSploit Framework, is an open source penetration testing 

and development platform that provides you with access to the latest exploit code for 

various applications, operating systems, and platforms. It has the infrastructure, 

content, and tools to perform penetration testing, as well as extensive security 



32 
 

auditing. One of its most useful features is its ability to generate MeterPreter/Reverse 

Terminal Payloads for use with a Web Application exploit. Specifically, MetaSploit is 

capable of generating payloads that are compatible with most many well-known Web 

Application Technologies such as PHP, Python (Django) and Node.js. As mentioned 

in earlier paragraph NodeXP closely cooperates with MetaSploit and uses this exact 

feature to generate a Node.js MeterPreter payload. This payload is then sent through 

NodeXP’s SSJI attacks to establish a Reverse Terminal session. 

4.3 The Server Side JavaScript Injection Testbed 

4.3.1 Introduction 

The Server Side JavaScript Injection Testbed (SSJI testbed) is the main focus of 

this Thesis. As explained in previous chapters, this testbed is a Node.js Web 

application that was developed to be purposefully vulnerable to SSJI attacks and is 

compatible with both Commix and NodeXP. Along with these two tools the testbed 

provides an extensive presentation of the most common SSJI vulnerabilities that 

exist in Node.js applications nowadays. 

In order to be even closer to modern Web application usages of Node.js, the 

Express.js framework was built on top of Node.js. Without taking away anything 

from Node.js, Express.js provides a way for Web Application developers to easily 

build web apps using Node. As explained in an earlier chapter, Express.js structures 

the application using a MVC pattern separating the application in Models 

(Representing Database Entities), Views (Representing the UI pages users see), 

Controllers (The components of the application that apply logic to data and return 

results through Views). 

Development of the SSJI Testbed was done by carefully studying the Commix-

Testbed that was written in PHP by A. Stasinopoulos. The original Commix-Testbed 

supported 43 Command Injection Scenarios. The Command Injection Scenarios of 

the original testbed were divided in 5 categories: Regular, RegEx, User-Agent, 

Cookie and Referrer. The Regular category refers to Command Injection scenarios 

that are mainly reproducible by injecting a GET or POST parameter send through a 

Form Input attribute of the Web Application. The Cookie category refers to command 

injection scenarios that can be replicated by injecting malicious payloads in a Cookie 

value on requests, the User-Agent and Referrer categories refer to injecting the 

HTTP headers of the GET or POST requests with malicious payloads in the 

respective User-Agent or Referrer header fields. Finally, the RegEx category exists to 

showcase how Command Injection can be mitigated or made much harder to occur 

by applying RegEx filters to incoming user input. 

Extra care was taken to carefully translate the PHP algorithmic logic A. 

Stasinopoulos applied to the scenarios to Node.js. While the two platforms thankfully 

had similarities that allowed the task to be completed successfully it should be noted 

that in many cases Node.js as a more modern Web platform does not match with the 

way PHP serves clients. 

 



33 
 

4.3.2 Presenting the SSJI Testbed 

The sole prerequisites to running the SSJI Testbed is installing the latest Node.js 

distribution and the latest npm packaging system distribution. Npm is the official 

package manager of Node.js and allows Node.js developers to download 3rd party or 

official modules that are not contained in Node.js platform by default. It also allows 

developers to create “package.json” files that contain pointers to all the 3rd party 

packages their Node.js application requires to run. Thus, when a Node.js application 

is packaged for distribution it usually contains a “package.json” file to fetch all needed 

external libraries. Following this notion, the SSJI Testbed application is hosted on 

GitHub.com and comes with its own “packages.json” which allows anyone to setup it 

very easily. 

Node.js comes packaged with its own build-in Server allowing developers to test their 

application right away: 

 

Image 10: Booting SSJI Testbed in Debug Server mode – App is ready for attacks. 

Now, the application can be navigated via a Web Browser such as Mozilla Firefox. 

Note that for the sake of convenience in the examples shown a localhost Mozilla 

Firefox will be used to connect to the application. Commix and NodeXP are also 

locally installed and will attack the application from the same host machine. 

 

 

 

 

 

 

 

 



34 
 

Users connecting to the SSJI Testbed URL address for the first time are greeted with 

the following Index page: 

 

Image 11: Partial view of the SSJI-Testbed User Interface (Only half scenarios are shown in the image) 

While the purpose of the Testbed is for Commix and NodeXP to attack it with SSJI 

attacks, this basic User Interface can still be navigated by Users and allows in most 

cases actual human interaction. This gives users a chance to attempt to inject by 

hand the various vulnerable pages of the application and also provides a greater 

understanding of the functionality that the Commix and NodeXP tools will exploit. 

As an example, visiting the simplest scenario – Classic Regular GET – is showcased 

below: 

 The user clicks on the Regular Category – Classic Regular Example GET. 

 The user is then transferred to the following page: 

 

 

Image 12: Navigating to the Classic Regular GET Scenario. 



35 
 

In this page Users are prompted to enter an IP address through a Simple HTML 

Form that contains only one input field. The IP address will be used to trigger an 

ICMP PING mechanism from the Node.js application to the IP address given. The 

Ping operation will occur using the vulnerable exec() JavaScript command inside the 

SSJI Testbed application. Of course, the IP address field will not pass through any 

sanitization checks, allowing malicious users to attempt SSJI attacks through this 

field. 

Before showcasing a SSJI attack with this scenario, however, a normal use case of 

this form will be shown since it will be useful for understanding how Commix and 

NodeXP will exploit this and all other SSJI scenarios. 

Let us assume, that user browsing through the Web Interface enters a normal IP 

address i.e. 127.0.0.1 in the address field and clicks “Submit". 

 

Image 13: The user enters an IP address at the address field. 

Clicking “Submit” with this IP address will case the Web Page to reload with the 

Results of the “Ping” Operation. 

 

Image 14: The webpage reloads with the results of the Ping operation. 

At this point, something quite interesting can be pinpointed by the user about the 

behavior of the Web Application. Apart from inspecting the HTML code through the 

Inspection tools of the Browser itself, since this is a GET Form submission, at the top 

of the User’s Web Browser URL bar the Form parameters will have now appeared: 

 

 



36 
 

 

Image 15: The “addr” form parameter was revealed. 

While the appearance of Form parameters in the URL while sending a GET request 

is common knowledge, in our case, it is far more useful. Specifically, now the user 

can invoke Commix or NodeXP and supply to it the name of the paremeter which is 

“addr”. Commix will now look for Command Injection vulnerabilities based on the 

name of this parameter: 

 

Image 16: Supplying Commix with the URL of the Scenario and the name of the paremeter. 

After some time, Commix manages to find an SSJI vulnerability for the “addr” 

parameter using the Result-Based Technique: 

 

Image 17: Commix detects vulnerability for the “addr” parameter. 

Specifically Commix shows to the attacker that the Payload: “;echo 

YMHWJC$((60+8))$(echo YMHWJC)YMHWJC” is able to successfully cause SSJI 

exploits. 

If the user normally entered any non-valid IP address as value to the Address 

parameter, this would normally cause a Page reload and not bring back any results 

since “Ping” failed. Let us see what happens when the above Payload that was 

discovered by Commix, however, is sent through the Form: 

 

Image 18: Sending the malicious Payload through the UI Form. 



37 
 

The results are quite interesting and certainly are not part of the intended behavior of 

the application: 

 

Image 19: The application’s intended behavior is bypassed. 

The surprising result is enough for Commix to deduce that SSJI exploits are possible 

through this payload. What Commix essentially did was attempt to “escape” any 

parsing mechanisms the Node.js application had for the “addr” parameter and 

attempted to cause the Node.js application to use the “echo” command. As can be 

seen, the attack was successful. The SSJI testbed utilizes the exec() command in 

this case which receives an OS command (such as echo), executes it and returns the 

result. The malicious payload managed to bypass the “ping” command that the 

underlying exec() method was going to normally use and instead used the “echo” 

command. Moreover, the “echo” command is very useful in this case since it caused 

a certain string of characters that Commix sent through the parameter to be printed 

on the User Interface screen, allowing the malicious User, and obviously Commix 

too, to deduce that the “addr” parameter is indeed exploitable. 

4.3.3 SSJI Testbed Scenarios VS Commix & NodeXP 

The original Commix-Testbed PHP application supported 43 Command Injection 

scenarios for use with Commix. The new Node.js SSJI Testbed that was based on it 

supports 41 of the original 43 scenarios recreated in Node.js/Express.js. The 2 

scenarios that were not carried over to Node.js from PHP had a larger degree of 

technical difficulty in bridging the gap on how PHP and Node.js handle certain 

mechanisms such as Digest Authentication and SOAP XML handling and since their 

behavior could be replicated essentially by other scenarios, were left out. 

The original Commix Testbed contained the injectable Regular, Cookie, Referrer and 

User-Agent categories. On the other hand, it also contained the non-injectable 

RegEx category of Scenarios that are meant to showcase how a Web Application 

could be protected from Command Injection PHP attacks. Keeping up with its 

template’s logic the SSJI Testbed contains the exact same categories – the only 

difference being, that, not all injectable scenarios are vulnerable to Commix attacks 

like before. 

In the Node.js version of the scenarios that will be presented below, certain scenarios 

are injectable through Commix while others require the use of NodeXP. The following 

paragraphs are dedicated to exploring each Scenario, explaining whether it can be 



38 
 

exploited through Commix or NodeXP and showcasing how the tool that succeeded 

managed to do so. 

For the sake of convenience, the first scenario, Classic Regular of the Regular 

category will not be presented here since it was explained as an example in a 

previous section. 

Regular Category Scenarios 

This category contains exploiting scenarios that are based on SSJI vulnerabilities in a 

GET or POST parameter. Since this is the classic injection scenario that is 

showcased as an example in bibliography this category is named the Regular 

Category. In most Scenarios throughout the Regular Category both GET and POST 

versions of the same Scenarios are presented in order to showcase that the same 

exploit is possible through both means. 

Scenario 2 - Classic (Base64) regular example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: This Scenario is very similar to the Classic Scenario presented in the 

example of the previous section. The Web Application expects an IP address but this 

time in Base64 format. The name of the Form parameter is once again “addr”. When 

a value is submitted through the form for this parameter, the Node.js application will 

assume that the provided value is in Base64 encoding and attempt to decode it in 

order to get a valid IP address and then proceed to attempt to use the OS command 

“/bin/ping -c 4 + decodedBase64Address”. If the Base64 decoding operation fails or 

the IP address is not valid the intended behavior is for the Webpage to simply reload 

- indicating invalid input. In case the “ping” succeeds, then the results of the 

operation are returned through the Webpage. 

In order to execute the ping command the exec() function is used by the Node.js 

application. Specifically the vulnerable code can be seen below: 

 



39 
 

In this scenario Commix will be instructed to attack the “addr” parameter with a 

Base64 encoding in order to inject other OS commands through the exec() method 

and discover how to create a SSJI exploit. 

Running Commix: 

Commix manages to discover a SSJI vulnerability through the following payload: 

Payload: O2VjaG8gT05LVEdRJCgoMys0NikpJChlY2hvIE9OS1RHUSlPTktUR1E= 

When decoded using a simple online Base64 decoder the following String comes up:  

Decoded payload: ;echo ONKTGQ$((3+46))$(echo ONKTGQ)ONKTGQ 

Exploit explanation: Similar to the example shown in the previous paragraph 

Commix managed to exploit the SSJI vulnerability of the application by confirming 

that the exec() method used in this scenario can execute the “echo” command it 

injected which was simply encoded in Based64 this time. 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

Scenario 3 – Classic (Hex) regular example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: Same as Base64 scenario but for Hex encoding. 

Running Commix: 

 

Payload: 

3b6563686f20484f544c444a24282834392b3837292924286563686f20484f544c444a

29484f544c444a 

Decoded Payload: ;echo HOTLDJ$((49+87))$(echo HOTLDJ)HOTLDJ 

Exploit explanation: Same as Base64 scenario but for Hex encoding. 



40 
 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

Scenario 4 – Classic Single-Quote example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: Similarly to the previous examples the Node.js application expects a 

valid IP address as input in order to perform a “ping” operation through the exec() 

method. This type a small sanitization attempt is made from the application’s part 

with the input address being placed inside single quotes in order to attempt to escape 

injections. However this attempt is not enough and Commix will once again manage 

to hack the application. The vulnerable code snippet of the Node.js application is the 

following: 

 

Running Commix: 

 

Payload: ;echo AICDUT$((69+89))$(echo AICDUT)AICDUT 

Exploit explanation: While this scenario will take more time for Commix to exploit, 

the powerful tool will still find a payload that successfully injects into the ping 

command even with the use of single quotes around the “addr” parameter. This 

scenario showcases that developers cannot blindly trust that blindly wrapping a 

System OS parameters in single quotes makes it safe to injections. 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

 



41 
 

Scenario 4 – Classic Double-Quote example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: No. 

Description: The Scenario attempts a very simple form of sanitization by enclosing 

the “addr” parameter it will receive from users in double quotes. However, this is not 

enough to stop Commix from successfully exploiting the application. The Code 

snippet in this case was: 

 

Payload: ";echo IODYHY$((78+30))$(echo IODYHY)IODYHY" 

Scenario 5 – Classic Non-Space example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: No. 

Description: In this scenario the Node.js application attempts to defend against 

malicious input by checking for any whitespace command such as (Space, Tab, 

Carriage Return and Newline feed). If any of these characters is located then the 

Scenario aborts the user request. This actually helps the Node.js application 

successfully protect from the SSJI exploiting of the exec() method since Commix will 

attempt to send payloads containing the “echo” command to determine the injection 

and this means that it has to use at least one whitespace character in the payload. 

The Code snippet that protected the application in this case was: 

 

 



42 
 

Scenario 6 – Classic blacklisting example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the Node.js application attempts to defend itself from 

malicious input by “blacklisting” certain characters that it might find in the “addr” 

parameter. Specifically the application logic looks for the “;”, “&&”, “|”, “`” which if 

allowed to be inserted can cause injections due to being command shell operators. 

Instead of aborting the user request right away, the SSJI Testbed silently erases 

these characters from the string if the exist and attempts to make it safe. However, 

this basic blacklisting operation is not enough to protect the scenario from Commix 

and an exploit is made. 

The Code snippet through which the application attempted to defend itself was the 

following: 

 

Payload: %26echo NHHLKV$((63+79))$(echo NHHLKV)NHHLKV 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

 

 



43 
 

Scenario 7 – Classic hashing example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the SSJI Testbed imitates a simple MD5 Hashing utility. 

It expects a string input from the user and then produces its MD5 Hash and returns it 

to the user through the Web page. Commix is able to exploit this scenario because 

the Node.js application produces the MD5 Hash through the use of the echo 

command in the exec() exploitable function. However, it should be noted that in this 

Scenario the Commix tool failed to exploit the webpage using the Results-Based 

technique. 

On the other hand, using the Time-based Blind technique the application was 

successfully exploited by Commix which was able to deduce how to affect it using the 

sleep() command.  

The vulnerable Code snippet is shown below: 

 

Payload: ;str=$(echo DMVRFE);str1=$(expr length "$str");if [ 6 != $str1 ];then sleep 

0;else sleep 1;fi 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

Scenario 8 - Classic example & Basic HTTP Authentication 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 



44 
 

Description: This scenario is of the same functionality as Scenario 1 with Basic 

Authentication mechanism added on top of it. Users connecting the URL of this 

Scenario are prompted to authenticate using a username and a password. This 

scenario exists to showcase that a malicious user can be a true registered member 

of website that supplies their own valid credential to a hacking tool before enacting 

an attack. For this scenario, Commix was supplied with a pair of valid credentials and 

then successfully exploited the exec() method as in the first scenario of the category. 

Running Commix: 

 

Payload: ;echo FTDMNQ$((12+75))$(echo FTDMNQ)FTDMNQ 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

Scenario 9 - Blind regular example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: This is the first scenario where the user of Commix will have to attempt 

a SSJI attack using the Time-based Blind Technique right off the bat. The reason for 

this is that while the application uses the exec() method once again to execute the 

“ping” command as in the first scenario, it now does not return any output through 

which Commix can deduce if the Injection was successful. Specifically, if the “ping” 

operation was successful the returned output is a generic approval message while in 

case of failure the output is simply a generic error message. Therefore, attempting to 

use the Results-Based technique will do no good. Furthermore, at this point it should 

be mentioned that the File-based Blind Injection Technique will do no good either 

because the structure of the Express.js application and its routing techniques 

protects it from malicious users accessing arbitrary created files through the User 

Interface by exposing URLs to the outer world that are actually virtual and are 

translated to other paths inside the application. This causes confusion to tools like 

Commix and makes the File-based attack in this case unusable. 

The only option through which the application can be exploited in this case is the 

Time-based Blind Technique. Through this technique the application was deemed 

vulnerable once more by Commix and a Pseudo Terminal was established. 

 



45 
 

Running Commix with Blind Time-Based Technique: 

 

Payload: ;str=$(echo BVWRUH);str1=$(expr length "$str");if [ 6 != $str1 ];then sleep 

0;else sleep 1;fi 

This time the Node.js application attempted to defend using the Code Snippet shown 

in the following page: 

 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

Scenario 10 – Double Blind regular example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: exec(). 

Description: This scenario takes the principles of the Blind regular example one step 

further. Instead of simply hiding whether the “ping” operation failed or not it also 

redirect the result of the “ping” command to “dev/null” attempting through this 

measure to hide any output that could be excavated through malicious attempts. 



46 
 

However, this does not make the application immune to Time-based Blind SSJI 

Injection attacks since the sleep() command that Commix uses in order to deduce if a 

scenario is vulnerable or not does not have any output either way. Thus, Commix is 

still able to exploit the application and establish a Pseudo-Terminal.  

The Code snippet through which the application attempted to defend itself: 

 

Payload: ;str=$(echo STEGDY);str1=$(expr length "$str");if [ 6 != $str1 ];then sleep 

0;else sleep 1;fi 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

Scenario 10 – Eval Regular Example 

Injectable through Commix: No. 

Injectable through NodeXP: Yes. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: eval(). 

Description: This is the first scenario that is showcased as vulnerable to NodeXP 

usage. The Commix tool would not be helpful to an attacker in this case since this 

scenario makes uses of the JavaScript eval() method. This type of SSJI vulnerability 

cannot be exploited through Commix since as explained in earlier chapters Commix 

attempts SSJI by injecting and sending System Commands hoping for the targeted 



47 
 

website to be using a System Command execution method such as the vulnerable 

exec(). It should be noted here that Commix can also exploit the PHP eval() variant 

by sending payloads with PHP code in them but in its current version cannot exploit 

the JavaScript eval() method which is used here. 

The Node.js application uses the following Code Snippet in this scenario: 

 

In this case the application waits for “user” String parameter through its User 

Interface and once it receives it uses the eval() method to concatenate it with the 

“Hello” phrase and send back greetings to the user. 

Running NodeXP: 

 

Payload: eval(gmzFStHOliQadcnO) 

Exploit Explanation: The vulnerable eval() method used by the SSJI Testbed was 

injected with another eval() containing an arbitrary String. This caused for the eval() 

chain to result in the nested String as it output and this was the result that was 

returned through the Web application. Thus, NodeXP was able to deduce that 

Result-based SSJI exploiting is possible. 

Severity of Exploit: Very High – Right off the bat, if an SSJI vulnerability is located, 

NodeXP exploits it and creates a MetaSploit MeterPreter Reverse Terminal. This 

exploit is even more potent than the Pseudo Terminal established by Commix since it 

establishes a Terminal Session that is independent from the SSJI vulnerability. 

Meaning that, consequent attacks do not need to be injected as payloads and pass 

through the SSJI vulnerability. It should be noted however, that the MeterPreter 

session can sometimes hit against Firewall and other Network rules that a production 

application follows that prohibit the establishment of Remote Terminal Sessions to 

unknown IP addresses. 

Scenario 11 – Eval Base64 Example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Injection is possible through both GET and POST: No. 

Description: While this scenario does not differ greatly from the previous one, it 

introduces a Base64 decoding/encoding step for the “user” parameter value. While 

NodeXP seems to support a Base64 encoding option for its payloads similar to 

Commix, the encoding seems not to be working correctly leaving this case 

unexploited through Commix and NodeXP. 

 



48 
 

Scenario 12 - Classic (JSON) regular example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: This scenario simulates a POST endpoint of a REST API. It is different 

from the scenarios before it because it does not provide users with a form to send 

data to. Instead it expects users to send a JSON payload to it that contains two 

attributes: “addr” and “name”. However, only the “addr” payload is of actual use to 

malicious users since similar to scenario 1 it is used through the exec() method to 

execute the “ping” command. By instructing Commix to create a JSON payload and 

attempt to inject the Node.js application through it, Commix was able to find a Result-

Based SSJI vulnerability. 

Running Commix: 

 

Payload: ;echo LXEPJZ$((60+31))$(echo LXEPJZ)LXEPJZ 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

Scenario 13 - Blind (JSON) regular example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: This scenario is identical to the previous ones but hides the output of 

the exec() command forcing the Commix user to use the Time-based Blind SSJI 

attack in order to exploit the application. 

Running Commix: 

 

Payload: ;str=$(echo WSBSYL);str1=$(expr length "$str");if [ 6 != $str1 ];then sleep 

0;else sleep 1;fi 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 



49 
 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

Scenario 14 - Eval (JSON) regular example 

Injectable through Commix: No. 

Injectable through NodeXP: Yes. 

Vulnerable Node.js method: eval(). 

Description: In this scenario the Node.js application expects a POST request that 

contains a JSON with the “name” attribute in it. After receiving the input it uses the 

vulnerable “eval()” method to create a greeting phrase and send it through a 

Response object, thus, opening the Scenario to NodeXP SSJI exploiting. 

Running NodeXP: 

 

Payload: eval(WsrxySEOgXWeFcUR) 

Exploit Explanation: See Scenario 10. 

Severity of Exploit: Very High – Right off the bat, if an SSJI vulnerability is located, 

NodeXP exploits it and creates a MetaSploit MeterPreter Reverse Terminal. This 

exploit is even more potent than the Pseudo Terminal established by Commix since it 

establishes a Terminal Session that is independent from the SSJI vulnerability. 

Meaning that, consequent attacks do not need to be injected as payloads and pass 

through the SSJI vulnerability. It should be noted however, that the MeterPreter 

session can sometimes hit against Firewall and other Network rules that a production 

application follows that prohibit the establishment of Remote Terminal Sessions to 

unknown IP addresses. 

Scenario 15 - Preg_match() regular example & Scenario 16 – Preg_match() 

blind example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: Neither Commix nor NodeXP are able to perform SSJI exploiting on the 

application in these scenarios. The application has sufficiently defended itself by 

enforcing a strict format on the type of input it expects. Specifically, the application 

once more expects users to send it a valid IP address for “ping”. This time however, it 

ensures that the input string given is in exact IP address format and only then 

proceeds. In the “Blind” variant of the scenario the application does not even inform 

users with the Ping results and only returns a generic confirmation or error depending 



50 
 

on the situation, thus, aptly protecting itself from SSJI attacks. The Code Snippet that 

protected the application successfully in this case is worth taking a look: 

 

Scenario 17 - Str_Replace() regular example 

Injectable through Commix: No. 

Injectable through NodeXP: Yes. 

Vulnerable Node.js method: eval(). 

Description: In this scenario the Node.js application expects a user to send his 

name and then performs certain blacklisting operations on it making certain special 

characters to disappear in an attempt to sanitize the input. However right after these 

operations it performs eval() on the resulting input and NodeXP still manages to 

exploit the application. 

Specifically the Node.js application runs the following code in this scenario: 

 

Payload: eval(MxpCxIDTezaokglm) 

Severity of Exploit: Very High – Right off the bat, if an SSJI vulnerability is located, 

NodeXP exploits it and creates a MetaSploit MeterPreter Reverse Terminal. This 

exploit is even more potent than the Pseudo Terminal established by Commix since it 

establishes a Terminal Session that is independent from the SSJI vulnerability. 

Meaning that, consequent attacks do not need to be injected as payloads and pass 

through the SSJI vulnerability. It should be noted however, that the MeterPreter 

session can sometimes hit against Firewall and other Network rules that a production 

application follows that prohibit the establishment of Remote Terminal Sessions to 

unknown IP addresses. 

 

 



51 
 

Scenario 18 - Create_Function() regular example 

Injectable through Commix: No. 

Injectable through NodeXP: Yes. 

Injection is possible through both GET and POST: Yes. 

Vulnerable Node.js method: function(). 

Description: The function() Node.js method is a powerful JavaScript method that 

allows developers to create anonymous functions that contain JavaScript code as 

String (similar to eval) on the fly. In this scenario, the SSJI Testbed application 

expects a user to send his name. It receives the value of the name and passes it into 

the a function() method invocation opening up a SSJI vulnerability which NodeXP 

can detect. 

Specifically, the vulnerable Node.js Code snippet is the following: 

 

Payload: eval(vJLKDQbUzpdiNFAy) 

Severity of Exploit: Very High – Right off the bat, if an SSJI vulnerability is located, 

NodeXP exploits it and creates a MetaSploit MeterPreter Reverse Terminal. This 

exploit is even more potent than the Pseudo Terminal established by Commix since it 

establishes a Terminal Session that is independent from the SSJI vulnerability. 

Meaning that, consequent attacks do not need to be injected as payloads and pass 

through the SSJI vulnerability. It should be noted however, that the MeterPreter 

session can sometimes hit against Firewall and other Network rules that a production 

application follows that prohibit the establishment of Remote Terminal Sessions to 

unknown IP addresses. 

 

 

 

 

 

 

 

 



52 
 

User-Agent Category Scenarios 

This category contains exploiting scenarios that are based on modifying and 

exploiting the “User-Agent” HTTP Header of an HTTP request. Only Commix is able 

to take advantage of these vulnerabilities since NodeXP does not offer such an 

option. 

Scenario 1 – Classic User-Agent-based example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the Node.js application first looks for the user-agent 

HTTP header in the HTTP request. If the header is found then this scenario proceeds 

to create an “echo” System Command using the “user-agent” HTTP header in order 

to greet the user. In order to run the “echo” command and get its output it uses the 

exec() vulnerable method, allowing for exploiting through Commix. 

The Node.js application receiving the HTTP “User-Agent” header: 

 

Running Commix: 

 

Payload: echo GGZQZN$((22+34))$(echo GGZQZN)GGZQZN 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

 

 



53 
 

Scenario 2 – Blind User-Agent-based example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the Node.js application first looks for the user-agent 

HTTP header in the HTTP request. If the header is found then the SSJI Testbed 

intends to use “echo” on the user-agent header value and then “| grep Firefox”. 

Essentially, this set of commands is meant to slightly sanitize the User-Agent input by 

comparing it to the “Firefox” literal and also by placing the “user-agent” value inside 

quotes. Finally, the application takes one last protection measure by hiding the output 

of the echo command and instead returning a funny message on Success or Failure.  

However, even with these 3 measures mentioned, the application is not safe from a 

Blind Time-based attack from Commix.  

The Node.js application receiving the HTTP “User-Agent” header: 

 

Running Commix: 

 

Payload: &sleep 0 &&str=$(echo NSGTPF)&&str1=$(expr length "$str")&&[ 6 -eq 

$str1 ]&&sleep 1 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 



54 
 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

Scenario 3 - Eval user-agent-based example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: This Scenario utilizes the vulnerable eval() method to process the User-

Agent HTTP Header. However this Scenario is not exploitable neither using Commix 

nor using NodeXP. Commix cannot exploit the JavaScript eval() method while 

NodeXP cannot inject payloads into the User-Agent HTTP Header. 

Cookie Category Scenarios 

This category contains exploiting scenarios that are based on modifying and 

exploiting the Cookie an HTTP request might contain. Only Commix is able to take 

advantage of these vulnerabilities since NodeXP does not offer Cookie payload 

injection. 

Scenario 1 – Classic Cookie-based Example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the SSJI Testbed simulates a conventional Web 

Application by looking to see if the HTTP request of the user contains a specific 

Cookie named “addr”. If the Cookie exists the application will pass it to the exec() 

command in order to run the “ping” System command, and in doing so, opens the 

application to SSJI exploiting by Commix. 

The Node.js application looks for the Cookie and passes for “ping” parameter if it 

exists: 

 



55 
 

Running Commix: 

 

Payload: &echo HXMEGQ$((8+65))$(echo HXMEGQ)HXMEGQ 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

Scenario 2 – Classic Cookie-based (Base64) Example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the SSJI testbed looks for a Base64 encoded “user” 

parameter in the Cookies of the incoming HTTP requests. If such a Cookie is found 

then it constructs a greeting message using “echo” and sends it to exec() for 

execution. Although the application attempts to do some basic escaping in order to 

protect itself from potentially malicious decoded payloads injected into the “user” 

parameter using single quotes, the injection is still possible using Commix. 

The vulnerable Code Snippet: 

 

Running Commix: 

 

Payload: 

J2VjaG8gSExSUUJLJCgoODkrMTkpKSQoZWNobyBITFJRQkspSExSUUJLJw== 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 



56 
 

Scenario 3 – Blind Cookie-based Example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: This scenario is identical to Scenario 1 of the Cookie category but is not 

vulnerable to SSJI Results-Based attack due to returning a simple Generic 

Success/Failure message depending on whether “ping” through exec() failed or not. 

This scenario can be exploited using Time-based Blind Command Injection attack 

from Commix. 

Running Commix: 

 

Payload: &sleep 0 &&str=$(echo XFSWXM)&&str1=$(expr length "$str")&&[ 6 -eq 

$str1 ]&&sleep 1 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

Scenario 3 - Eval Cookie-based example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: This Scenario utilizes the vulnerable eval() method with the “user” 

Cookie that is contained in HTTP request and creates a Greeting string that will be 

returned to users. However, since Commix cannot exploit the eval() JavaScript 

method and NodeXP cannot inject payloads into Cookies, this scenario is not 

exploitable using any of the two tools. 

 

 

 

 

 



57 
 

Referrer Category Scenarios 

This category contains exploiting scenarios that are based on modifying and 

exploiting the “Referrer” HTTP Header of an HTTP request. This HTTP header when 

set reveals information about the website that the user previously visited and linked 

him to the current one. Only Commix is compatible with these scenarios. 

Scenario 1 – Classic Referrer based example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: In this scenario the SSJI Testbed attempts create a Greeting message 

based on the Referrer HTTP Header and using the OS command “echo” through the 

exec() method. In an attempt to sanitize malicious user input in the Referrer HTTP 

Header it encloses it in double quotes but the defense method is not sufficient and 

Commix is able to achieve SSJI by being instructed to inject the Referrer HTTP 

Headers. 

The Node.js application using the Referrer Header to construct an “echo” statement: 

 

Running Commix: 

 

Payload: echo YYRNBB$((97+75))$(echo YYRNBB)YYRNBB 

Severity of Exploit: High – Pseudo Terminal of Commix can be established over 

Results-Based SSJI vulnerability. This means that Commix can send commands like 

“ls” for the attacker and easily retrieve the output of the command. The arsenal of 

commands available to the attacker is only limited by the privileges the Node.js 

application itself has on what commands he can execute. 

 

 

 

 

 



58 
 

Scenario 2 – Blind Referrer-based example 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: While similar to the previous scenario, in this one, the SSJI Testbed 

makes a greater attempt at protecting the application. Specifically, apart from 

enclosing the Referrer value in single quotes it also uses “grep” to further sanitize the 

input and allow only HTTP Requests that have been Referred from the server hosting 

the SSJI Testbed itself. Finally, in case of Success or Failure the output of the “echo” 

command is not returned and instead a Generic message is. 

However, even with these 3 measures mentioned, the application is not safe from a 

Blind Time-based attack from Commix.  

The Node.js Code snippet: 

 

Running Commix: 

 

Payload: &sleep 0 &&str=$(echo XLWQVS)&&str1=$(expr length "$str")&&[ 6 -eq 

$str1 ]&&sleep 1 

Severity of Exploit: High but with Limited options – Pseudo Terminal of Commix 

can be established over the SSJI vulnerability but due to the exploit being Blind-

based results which require output to be sent back to the attacker might take a long 

time to actually finish as explained in earlier paragraphs. This occurs because 

Commix would have to brute force its way through the output of a command to 

deduce what it was. A preferred follow up attack if an attacker wished to create a 

terminal would be to produce a MetaSploit payload and have it being executed in 

order to create a MeterPreter session. 

 



59 
 

Scenario 3 - Eval Referrer-based example 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: This Scenario utilizes the vulnerable eval() method to process the 

Referrer HTTP Header and create a Greeting message. However this Scenario is not 

exploitable neither using Commix nor using NodeXP. Commix cannot exploit the 

JavaScript eval() method while NodeXP cannot inject payloads into the User-Agent 

HTTP Header. 

Regular Expression/Filters Category Scenarios 

Unlike the previous categories this category is not meant to showcase different ways 

through which SSJI can occur. Instead, it mostly focuses on showing some simple 

precautions Programming teams can take when building their Node.js application. 

Specifically, each scenario attempts to make it difficult for malicious users to exploit 

the application by sanitizing the input against Regular Expression (RegEx) patterns. 

However, it should be made clear, that these scenarios are simple proof of concept 

and are not meant to be used as production case examples since exploiting 

techniques may exist that still find them vulnerable. 

All of the following Scenarios make use of the exec() method. As explained in earlier 

Chapters NodeXP cannot exploit this method so it cannot be used at all. Commix 

was run against all of the scenarios but managed to exploit only 1 of these scenarios, 

showcasing how useful simple Regular Expression sanitization can be in many 

cases. 

In this chapter, the code that helped defend the application in each case will be the 

main focus. 

Scenario 1 - Regex for domain name validation 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: The Scenario in this case expects a valid IP address in order to 

execute the “ping” command through exec(). However, it limits the values the “addr” 

parameter can actually contain by sanitizing user input against a Regular Expression 

(RegEx) that enforces a strict format rule. In order to check if a String fits a RegEx 

pattern in JavaScript, the match() method is used. 

The Sanitization Code can be seen on the following page: 



60 
 

 

Scenario 2 – Nested Quotes 

Injectable through Commix: Yes. 

Injectable through NodeXP: No. 

Vulnerable Node.js method: exec(). 

Description: The Scenario attempts a very simple form of sanitization by enclosing 

the “addr” parameter it will receive from users in double quotes. However, as seen in 

previous scenarios this is not enough to stop Commix from successfully exploiting 

the application. 

The Sanitization attempt: 

 

Running Commix: 

 

Payload: ;echo NULMIE$(expr 18 + 25)$(echo NULMIE)NULMIE 

 

 



61 
 

Scenario 3 - Regex filter for colon/pipe/ampersand/dollar 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: As implied by the name of the Scenario the input “addr” parameter will 

be sanitized against certain special characters: (‘;’, ‘|’, ‘$’, ‘&’). If even one of them is 

located the request is aborted. The difference from scenarios in other categories that 

attempted a similar sanitization is that, these other scenarios, located these 

characters and simply removed them from the input string. In doing so, these 

scenarios made the “mistake” of trusting that injection cannot take place. Instead, this 

scenario aborts the request right away once it locates these characters, thus, 

Commix is not able to exploit the application with any of its techniques. 

The Sanitization code: 

 

Scenario 4 - Regex filter for spaces 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: As implied by the name of the Scenario the input “addr” parameter will 

be checked for “space” characters. If any is located the scenario is aborted. This is 

enough to block Commix command injection attempts. Even attempting to change 

the payload format in Base64 or Hex to bypass the checks of the application will do 

no good since the encoded format cannot be combined with the non encoded “ping” 

command of the application. 

The Sanitization code can be seen on the following page: 



62 
 

 

Scenario 5 - Regex filter for space/colon/pipe/ampersand 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: Combines the previous 2 Scenarios with great success, leaving 

Commix no chance for exploiting. 

The Sanitization code: 

 

Scenario 6 - Regex filter for space/colon/pipe/ampersand/dollar 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: Combines the last 3 Scenarios with great success, leaving Commix no 

chance for exploiting. 

 



63 
 

The Sanitization code: 

 

Scenario 7 - Regex filter for white chars 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: Looks for any kind of whitespace character in the request and 

automatically aborts it. Scenario 4 already showcased how simply filtering for 

“Space” characters was enough to stop Commix – meaning that this Scenario is even 

more effective against Command Injection attacks that target the exec() method. 

The Sanitization code: 

 

 

 

 

 

 



64 
 

Scenario 8 - Alphanum for input end 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: The Regular Expression used in this scenario will ensure that the input 

string given as value for the “addr” parameter will always start with an 

alphanumerical character. Therefore if any special character exists at the start of the 

string such as “;”, which is often used to close any previous valid command and 

begin new malicious ones, the request will be aborted. Commix is not able to exploit 

this scenario.  

The Sanitization Code: 

 

Scenario 9 - Alphanum for input end (filter for white chars) 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: Combines the non-whitespace scenario’s with the alphanum-end 

scenario’s checks to sanitize malicious user input even more effectively. Commix 

cannot exploit this scenario. 

 



65 
 

Scenario 10 – Alphanum for input start 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: The Regular Expression used in this scenario will ensure that the input 

string given as value for the “addr” parameter will always end in an alphanumerical 

character. Therefore if any special character is located at the end of the string the 

request is aborted. Commix cannot exploit this scenario. 

The Sanitization code: 

 

Scenario 11 - Alphanum for input start (filter for white chars) 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: Combines the non-whitespace scenario’s checks with the alphanum-

start scenario’s checks to sanitize malicious user input even more effectively. 

Commix cannot exploit this scenario. 

Scenario 12 – Regex filter for OS commands (Windows & Unix) 

Injectable through Commix: No. 

Injectable through NodeXP: No. 

Description: This scenario strikes at the heart of the Commix and other System 

Command Injection tools by blacklisting common System commands malicious tools 

use to detect vulnerabilities such as “echo”, “whoami”, “wget”, “cat” and more. The 

Regular Expression will search for occurrences of these worlds inside the “addr” 

payload and will outright abort the malicious requests. Note that in cases where the 

input parameter is not an IP Address and needs to actually be text this Scenario is 

not effective as it might ban valid requests. 

The Sanitization code is shown on the next page: 



66 
 

 

4.3.4 Results Summary 

In the following tables, the Yellow color indicates SSJI Scenarios which the 
respective tool cannot exploit because it was never designed to exploit. While the 
Red color indicates Scenarios that the tool could potentially exploit but fails to do so 
because it lacks the appropriate techniques to complement its attacks. 

Regular Scenarios 

Scenario Classic Classic 
Base64 

Classic 
Hex 

Single 
Quote 

Double 
Quote 

Non-
space 

Vulnerable 
method 

Exec() Exec() Exec() Exec() Exec() Exec() 

Commix Yes. Yes. Yes. Yes. Yes. No. 

NodeXP No. No. No. No. No. No. 

 

Scenario Blacklisting Hashing Basic 
Auth 

Blind 
Regular 

Double 
Blind 
Regular 

Eval 
Regular 

Vulnerable 
method 

Exec() Exec() Exec() Exec() Exec() Eval() 

Commix Yes. Yes. Yes. No. No. No. 

NodeXP No. No. No. No. No. Yes. 

 

 



67 
 

Scenario Eval 
Base64 

Classic 
JSON 

Blind 
JSON 

Eval 
JSON 

Preg_Match() Preg_Match() 
Blind 

Vulnerable 
method 

Eval() Exec() Exec() Eval() Exec() Exec() 

Commix No. Yes. Yes. No. No. No. 

NodeXP No. No. No. Yes. No. No. 

 

Scenario Str_Replace Create_Function     

Vulnerable 
Method 

Eval() Eval()     

Commix No. No.     

NodeXP Yes. Yes.     

 

Exploited by Commix: 10 out of 20. 

Exploited by NodeXP: 4 out of 20. 

Exec-based Scenarios: 14. 

Eval-based Scenarios: 5. 

Create_Function-based Scenarios: 1.  

Cookie Scenarios 

Scenario Classic Base64 Blind Eval 

Vulnerable 
method 

Exec() Exec() Exec() Eval() 

Commix Yes. Yes. Yes. No. 

NodeXP No. No. No. No. 

 

Exploited by Commix: 3 out of 4. 

Exploited by NodeXP: 1 out of 4. 

Exec-based Scenarios: 3. 

Eval-based Scenarios: 1. 

Create_Function-based Scenarios: 0.  

User-Agent Scenarios 

Scenario Classic Blind Eval 

Vulnerable 
method 

Exec() Exec() Eval() 

Commix Yes. Yes. No. 

NodeXP No. No. No. 

 

 



68 
 

Exploited by Commix: 2 out of 3. 

Exploited by NodeXP: 0 out of 3. 

Exec-based Scenarios: 2. 

Eval-based Scenarios: 1. 

Create_Function-based Scenarios: 0.  

Referrer Scenarios 

Scenario Classic Blind Eval 

Vulnerable 
method 

Exec() Exec() Eval() 

Commix Yes. Yes. No. 

NodeXP No. No. No. 

 

Exploited by Commix: 2 out of 3. 

Exploited by NodeXP: 0 out of 3. 

Exec-based Scenarios: 2. 

Eval-based Scenarios: 1. 

Create_Function-based Scenarios: 0.  

RegEx Filters Scenarios 

Scenario Domain 
Name 

Nested 
quotes 

CPAD Spaces SCPA SCPAD 

Vulnerable 
method 

Exec() Exec() Exec() Exec() Exec() Exec() 

Commix Yes. Yes. Yes. Yes. Yes. No. 

NodeXP No. No. No. No. No. No. 

 

Scenario White 
Chars 

Alphanum 
Input End 

Alphanum 
Input End 
& White 
Chars 

Alphanum 
Input 
Start 

Alphanum 
Input 
Start & 
White 
Chars 

Vulnerable 
method 

Exec() Exec() Exec() Exec() Exec() 

Commix Yes. Yes. Yes. No. No. 

NodeXP No. No. No. No. No. 

 

 

 

 



69 
 

Scenario OS 
commands 
filters 

     

Vulnerable 
method 

Eval()      

Commix No.      

NodeXP No.      

 

Exploited by Commix: 1 out of 12. 

Exploited by NodeXP: 0 out of 12. 

Exec-based Scenarios: 12. 

Eval-based Scenarios: 0. 

Create_Function-based Scenarios: 0.  

 

Total Summary 

Exploited by Commix: 18 out of 42. 

Exploited by NodeXP: 4 out of 42. 

 

Assessment 

Both Commix and NodeXP are powerful tools that are able to exploit SSJI 

vulnerabilities. Running both tools against the recreated in Node.js SSJI Testbed 

Commix scored 18 out of 42, while NodeXP scored 4 out of 42. However, the 

numbers shown in the summary results are not indicative of the capabilities of each 

tool by themselves. 

The minor score of NodeXP is by no means an indication that the tool is not capable 

of detecting SSJI vulnerabilities. To better understand what caused this score when 

compared to Commix, we have to take into account, that NodeXP is still a proof of 

concept tool that cannot inject SSJI payloads into Cookies, Referrer Headers or 

User-Agent Headers like Commix does. Furthermore, in its current version, NodeXP, 

is meant to exploit eval() and function() calls. Consequently, since the majority of 

the recreated Commix Testbed that SSJI Testbed is based on uses exec(), NodeXP 

is not able to exploit these scenarios as Commix does. Therefore, some possible 

improvements for this tool would be each ability to send malicious payloads through 

alternative means (i.e. Cookies or HTTP Headers) and also be updated to exploit the 

very crucial exec() method which is often vulnerable to SSJI attacks. 

On the other hand, Commix, in its current release version is a more mature 

Command Injection tool. While not specialized in SSJI injections, Commix’s main 

objective is to initialize an exploit based on OS command injection. Since OS 



70 
 

commands directly exploit the Host Machine of the application, this kind of exploit is 

not limited by the kind of Web Technology an application is built with. In other words, 

since both PHP and Node.js support an exec() method that executes OS commands 

directly they are both vulnerable to the same kind of exploits through that method. 

However, while providing a variety of methods to perform attacks, Commix could be 

improved by obtaining eval() and function() JavaScript injection capabilities since 

right now it supports only the PHP variants of these methods. 

As far as security implications are concerned, all exploitable scenarios by either tool 

showcased that all 3 SSJI exploitable methods (eval(), function and exec()) are 

equally dangerous. All 3 of them provide ways for a malicious user to completely 

override the normal behavior of a Node.js application and cause serious damage 

such as Denial of Service, Deletion of important files, Theft of important files or 

establishing of separate Reverse Terminal sessions that allow hackers to act with 

even more ease. While preparing against SSJI attacks and other security threats is 

more than taking specific measures during code development, the Scenarios of SSJI 

Testbed highlighted some good coding practices for security. Specifically, a very 

careful assessment of the values a parameter should be able to have should always 

be made. Furthermore, the exact format of the values should be verified and 

enforced using strict Regular Expressions. Moreover, an application should not 

willingly expose the results of its operations to clients unless necessary in order to 

minimize Result-based attack. Continuing on, specialized external libraries can be 

used by developer teams that are able to sanitize input values per case. Specifically, 

for Input fields that expect IP addresses apart from using their own sanitization 

checks, developers can use an IP address loader library that will throw Exceptions 

when not supplied with a valid IP address. In the same vein, specialized processing 

APIs can be used to protect against low level command injection vulnerabilities. 

Since eval(), function() and exec() are all powerful methods that directly interface with 

the Operating System, if needed to be used, they can be used through specialized 

libraries that already perform sanitization checks on them or safely interact with 

Operating System APIs to achieve the same behavior without enabling the API 

consumers to directly use OS commands.  

Last but not least, thinking out of the context, Programming teams should always 

think of the architecture of a Node.js application, what Networks and ports it is 

accessible to and to what kind of traffic its Host Machine is accessible to. Finally, the 

privileges given to the server hosting the Node.js application should also be specific 

in order to prohibit the overtaken application from causing too much harm. 

 

 

 

 

 



71 
 

5. Conclusion 
 

Node.js is one of the most popular Web Frameworks that exist nowadays. Apart from 

unifying the Development Stack by bringing JavaScript to the server side, it is also a 

very robust and powerful environment that is excellent for certain use cases. Its 

Event-Driven architecture enables the asynchronous serving of thousands of times 

more client requests than traditional web frameworks like PHP. In particular, in 

applications that need to support vast amounts of input/output requests such as real-

time applications, games and chatting apps among others, Node.js, seems to be the 

“goto” choice for Enterprise-level Development teams. 

On the other hand, like most other web applications frameworks, Node.js is not 

automatically safe from the notorious combination of malicious non-sanitized user 

input and naively written application code. One of the most common Node.js exploits 

is the Server Side Javascript Injection (SSJI) which is caused when malicious user 

input reaches the eval(), exec() and function() Javascript methods. As shown in this 

Thesis, these powerful methods can be the source of all sorts of problems when 

exploited by non-sanitized user input.  

The Commix and NodeXP tools allowed us to perform SSJI attacks on a purposefully 

vulnerable Node.js application – the SSJI TestBed. Throughout these tests, the 

exploitation tools helped us showcase that even a modern Node.js application can be 

exploited in many different ways if left unprotected. Therefore, the culmination of this 

thesis is to underline the importance of developing an Information Security Mindset in 

all team members of a project. User input sanitization should never been taken for 

granted, while, careful study of the valid ranges of values for a parameter should 

always be done. Moreover, the choice of specific powerful methods that have 

security implications, such as those mentioned earlier, should also not be taken 

lightly even avoided unless needed. Specialized APIs should be selected to securely 

parse user input (i.e. JSON loading APIs) and others to perform powerful operations 

such as interacting with the OS in order to introduce more security layers. Finally, 

restrictive measures should be taken to limit the privileges a Node.js application has, 

so that if exploited the harm will be minimized. 

 

 

 

 

 

 

 

 



72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

 

References 
[1] Node.js – Wikipedia - https://en.wikipedia.org/wiki/Node.js 

[2] All about Node.js – CodeBurst.io - https://codeburst.io/all-about-node-js-you-

wanted-to-know-25f3374e0be7 

[3] What you should really know to understand the Node.js Event Loop – Medium - 

https://medium.com/the-node-js-collection/what-you-should-know-to-really-

understand-the-node-js-event-loop-and-its-metrics-c4907b19da4c 

[4] The Node.js Event Loop – nodejs.org - https://nodejs.org/en/docs/guides/event-

loop-timers-and-nexttick/ 

[5] Express.js: A Server-Side JavaScript Framework – Upwork - 

https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-

framework/ 

[6] 6 Main Reasons Why Node.js has become a Standard for Enterprise-level 

Organizations - https://www.monterail.com/blog/nodejs-development-enterprises 

[7] What is Node.js best used for? – Railsware - https://railsware.com/blog/what-is-

node-js-used-for/ 

[8] Server Side Injection (SSI) – WhiteHatSec - 

https://www.whitehatsec.com/glossary/content/ssi-injection 

[9] PHP vulnerabilities – PHPSecurity.io -

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html 

[10] SQL Injection – PHPSecurity.io - 

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html  

[11] Understanding SQL Injection – Cisco - 

https://www.cisco.com/c/en/us/about/security-center/sql-injection.html  

[12] Log Injection – PHPSecurity.io - 

https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html  

[13] Log Injection – OWASP –  

https://www.owasp.org/index.php/Log_Injection 

[14] OWASP Top 10 – OWASP – 

https://www.owasp.org/index.php/Top_10-2017_Top_10 

[15] Reverse Shell exploit in Node.js apps through JavaScript Injection Example - 

https://github.com/appsecco/vulnerable-apps/tree/master/node-reverse-shell 

https://en.wikipedia.org/wiki/Node.js
https://codeburst.io/all-about-node-js-you-wanted-to-know-25f3374e0be7
https://codeburst.io/all-about-node-js-you-wanted-to-know-25f3374e0be7
https://medium.com/the-node-js-collection/what-you-should-know-to-really-understand-the-node-js-event-loop-and-its-metrics-c4907b19da4c
https://medium.com/the-node-js-collection/what-you-should-know-to-really-understand-the-node-js-event-loop-and-its-metrics-c4907b19da4c
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.upwork.com/hiring/development/express-js-a-server-side-javascript-framework/
https://www.monterail.com/blog/nodejs-development-enterprises
https://railsware.com/blog/what-is-node-js-used-for/
https://railsware.com/blog/what-is-node-js-used-for/
https://www.whitehatsec.com/glossary/content/ssi-injection
https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html
https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html
https://www.cisco.com/c/en/us/about/security-center/sql-injection.html
https://phpsecurity.readthedocs.io/en/latest/Injection-Attacks.html
https://www.owasp.org/index.php/Log_Injection
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://github.com/appsecco/vulnerable-apps/tree/master/node-reverse-shell

