Y UNIVERSITY
24 OF PIRAEUS

School of Information Technology and Communications
Department of Digital Systems

Master of Science

Digital Systems Security

Real World Malware Analysis

STARTEX Ransomware

Master Thesis in Computer Science
Author: Papadopoulos Polymenis - Fotios MTE1629

Supervisor: Professor Dr. Christoforos Ntantogian Uni.Pi.-D.S.

Piraeus, February 2019

Abstract

The goal of this paper is to analyze a real-world malware, step by step, from an academic
perspective. The steps to be followed, are predefined, from Basic Analysis to Advanced Static and
Dynamic Analysis. There will be a detailed description of the techniques, the tools and the
architecture of the lab environment. Consider that the purpose of this paper is to analyze malware
once it has been found and not to reveal the malware. The under-examination malware is a
ransomware, found on the Windows operating system, by far the most common operating system
in use today. But the techniques and the procedures that will be used to analyze it, could work on
any operating system, as long as executables would be mainly examined. Notice that, executables
are the most common and the most difficult files that an incident response team will encounter.

Keywords: ransomware, malware analysis

© University of Piraecus 2016 — 2019. All rights reserved.

i

il

Acknowledgments

It is a great pleasure to acknowledge everyone who helped me writing this thesis successfully. First
of all, I would like to thank my advisor Professor Dr. Christoforos Ntantogian. He gave me the
opportunity and the flexibility to solely focus on research topics that I was interested in, without
any pressure or dictation at all. Besides that, he offered me productive environments at the System
Security Laboratory within the Department of Digital Systems of the University of Piraeus.
During my master sessions, I enjoyed working with friendly and talented research staff and
enthusiastic graduate students, that share the same outstanding enthusiasm and expertise for
security research in Computer Science. I have been enlightened by many valuable discussions with
all my Professors; C. Xenakis, C. Lambrinoudakis, S. Katsikas, L. Mitrou and P. Rizomiliotis.

I would like to show my gratitude to colleagues in the CyberCrime Prosecution Division of
Hellenic Police, since they make my daily work fun and give me that satisfying feeling of
belonging to some great community that is pulling in the same direction.

I owe sincere and earnest appreciation to my section head Alexandros Filippidis, my division head
Vasilios Papakostas and my former division head Georgios Papaprodromou, for their trust in me
and being helpful facilitating with the attendance days of courses. This gave me the autonomy to
follow my aims without any constraints and provided me with the chance to get into touch with so
many interesting and helpful people in the academic field.

Finally, I would like to express my gratitude to mother, to my companion and especially dedicate
my work to my deceased father and my recently deceased siblings, grandmother, grandfather and
aunt. My deepest thankfulness goes to them for their love, understanding, and inspiration. Without

their blessings and encouragement, I would not have been able to either start or finish this work.

v

Contents

ADSEFACE. ...t e e e e e a e e e e i
ACKNOWICAGIMENTS ...t il
L 001) 1112 11 KOO TP PP PP PP TPPPPPPPPPRPT \%
| 13 (0T L1 [o1 e o TP PP PPPPPPPPPPPPP 1
1.1 Definition 0f MalWareuuviiiiiiiie e 1
1.2 Ransomware, the key threat............cccooviiiiiiie e 1
L2.1 TOCTA 2017 oottt et e st e et e e e s ennaeeas 1
1.2.2 TOCTA 2018 oottt s s 5

1.2.3 Previous IOCTA TEPOTLS ..vveeeeiiiiiiiiiiiieee ettt e e e e 7

1.3 Needance of Malware - Ransomware ANalysisooovvvvvviiieeeiiiiiiiiiiiiieeeennnns 7
1.3.1 Definition of Malware ANalysiS..........oooriuiriiiiiiiiiiiiiiiiiiiie i 8
1.3.2 Background of Malware Analysis..........ccccurriiiiiiiiiiiiiiiiiiiiieees e 8

1.3.3 Malware Analysis TEChNIQUEScccoriiiiiiiiiiiiiieen e 9
1.3.4 Definitions of Analysis TeChNiquUes..........c.cceeriiiiiiiiiiiiieei e 11

2. Malware Analysis ENVIFONMENTccoiiiiiiiiiiiiiiie i 13
2.1. Virtualization Technologiescceeiiiiiiiiiiiiiiie e 13
2.2. Differences between virtual and real world.............cccoeeiiiiiiiiiii 14

2.3, VME TeChNOlO@IES.ceiieiiiiiiieiiiiie et 14

vi Contents

2.4. General Local Virtual Machine Detection............cccovvveiiiiiiiiiiiiiiiciiecc s 19
2.4.1. Exploring Available VMESccccooiiiiiiiiiiiiic e 20
2.4.2. Environment Design and Architecture............ccoveviiveiiiieiiiieniec e 21
2.4.3. VMware Workstation SELUDcuveeririiiiiieriiie e 25

3. SUITACE ANALYSIS «ooiueriiieieiieiie e 32

3.1. Online Malware rePOSILOTIESuvvereirirrieeiiirrieeeesrree e e e e e 32
3,110 VITUSTO AL ..o 32
3.1.2. HybridANALYSIS.....oeeiiiiiiiioiiiiiie e 33

3.2, PE REAAETS . 33

3.3. Basic Static Analysis with Windows toolScccvvvvviiiiiiiiiiiiiiiiee i 36
33010 PEVIEW .ottt 36
3320 PEID i 41
3.3.3. Detect It EaSy covvviiiiiiiiiiiiii 44
3.3.4. POrteXANALYZETiiiiiiiiiie et 55
3.3.5. PESTUAIO c..uiiiiie it 57
33,0, BINTEXE oo iiiiiiiiiiiie e 64

4. Behavioral ANALYSISeeeeiiiiiiiiiiiiiie et 66

4.1. Basic Dynamic Analysis with free Sandboxesccccoviviiiiiiiiiiieee 66

4.1.1. Results eXplanation...........cceuiiiriieiiiiiiie et 67

4.2, Running MalWare...........cooiuiiiiiiiiiiie e 74

Contents vii

5.

6.

4.2.1. Hands on Basic Dynamic - Behavioral Analysis ToolScccccoovveninnenn 75
4.2.2. Comparing the image and memory Strings..........cccoverrvieiriieininiieniieenieeens 81
4.2.3. Examine with Process Hacker............ccccooiiviiiiiiiiiii e 82
4.2.4. Monitoring with Process MONItOTc.couveiiivieiiiiiiiiie i 86
4.2.5. REESNOL ..o 91
4.2.6. Basic Dynamic Analysis is N0t €n0UZhcooviiiviiiiiiie e 92
Static COAE ANALYSIS ..ooieeriieeiieiie e 95
5.1 IDA PTO ..ttt 97
5.1.1 Loading the executable............ccooeiiiiiiiiii e 97
5. 1.2 IDA’S FIrSt @lanCeuuviiiiiiiiiiiiiiiiiiie ettt 98
5.1.3 Custom Date Validation Check...........ccccovviiiiiiiiiiiin 100
5.1.4 TLS Callback Functionsccccocviiiiiiiiiiiiiiiiic i 101
5.1.5 DebUZEET PTESENCE .. .uvviiiiiiiiiiiiiiiiiiii et 104
5.1.6 ANtI-VMWAIEcoiiiiiiiiiiiiiic i 108
Dynamic cOde ANALYSIS.......ccuvuriiiiiiieiiiiiiiiiiieii e e e e e e neenes 114
6.1 Structured Exception Handlersooovuiiiiiiiiiiiiiiiiiiiiiice i 114
6.2 Manipulation of CPUID INStrUCtIONSuvvvviviiieiiiiiiiiiiiiiiee e sssiiiirieee e sennns 123
6.3 Interrupts 0N DebUZEING......cocvviiiiiiiiiii e 128
6.4 Thwarting Stack-Frame ANalysis..........ccoiiiiiiiiiiiiiioiiiiiece e 130

6.5 Escaping the control of debuggers by Sleeping........c..ccccvvviiiiiiiiiiiiiciiiiienns 131

viii

Contents

6.6 Anti-analysis technique terminating the Processccocevvviiiiiiieiniieciiieeneens 133
6.7 ANEIVITUS EVASION....eiiiiiiiiiiiiiiiiiie ettt ebb e e 137
6.8 Anti-Dump Trick "Header Erasecccocvviiiiieiiiie e 137

A 01167 113 (0« D USSP PP PRTRPPPPRUPTOPPPR 139
7.1 Encryption and Decryption proCedurecoocvereeriirereenniniiee e e e 139
7.2 Malware defleCtionoooouiiiiiiiiiiee e 144
7.3 The smart-dumb alternative way to deflect the Ransomwareccceeennnee 144
T4 FULUTE WOTK ..ottt e e et e e e e e e e 158
LSt 0f taDIeS..........ooeiiiiiie 159
LSt Of FIGUI@S ..ottt 160
BIDLIOGIrapRYooooeiiiiiiiiiiiieee e 168
APPEIUAICES ...ttt I
FN 0] 01S) 114) Qs TR PO TP PPPPPP TP I
A.1 Hardware specification of single PC 1abccccooiiiiiiiiiiiiiiieen I

A.2 Software specification of single PC 1abcccoiiiiiiiiiiiiiiiiiien I

A3 VM CONFIGUIATION ...ttt e e e annneeas I

A4 OS INSLAIIALION.eeiiiiiiii e II

A.5 Windows SDK and Framework ..o II

A.6 Virtual Machine Environment Installation and configurationccccocc...e. II

A.7 Flare VM Installation SCTIPEccoiviriiiiiiiiiieeiiiiiie et II

Contents X

A.8 Installed Tools With FIareVmccooiiiiiiiiiiiiii e I
AL Staying UP 10 date.......eviiiiiiiiiiiieiiii e Vv
ALTO EXtra useful t001S......uuviiiiiiiiii e VI
AL12 SNAPSNOLEING VII
APPENAIX B .o VIII
StealthyTOOIS.TEE ...vveeeiiiiie e VIII
APPENAIX € oo XI
Registry Renames on VMware PowerShell script..........cccccovviiiiiiiiiniiinee XI
APPENAIX D i XII
VirusTotal ReSults.........oooiiiiiiiiiiii X1
Hybrid Analysis T€SUILScoviiiiiiiiiiee e XVI
APPENAIX B XX
Win32 Portable Executable File Format...........cccoooiiiiiiiiicce e XX
APPENAIX F oot XX1V
LISt OF TIMPOTES 1.ttt et e et e e e e e e e anns XX1V
APPENAIX G 1ottt XXVII
PortExAnalyzer PE file 1€pOrt.........cooiiiiiiiiiiiiiiiic e XXVII
APPENAIX H oo I
BInText SrNGS LISteviiiiiiiiieiie e I

APPENAIX L I

Contents

Anti-VM instructions detection with a python Scriptccccocveiiiiiiiiiiiiiiiee I
Attached zipped files.............oooiiiiiii II
Attached zipped files Provided...........cooiiiiiiiiiiiic 11

B 20010 4 (0 1 T v

Xi

Chapter 1. Introduction

1. Introduction
1.1 Definition of Malware

Malware, a shortened form of malicious software, is defined as the software that does
something that causes harm to a user, computer, or network. Malwares play a part in most computer
intrusion and security incidents. The ultimate goal of gaining control is to disrupt the normal
operations of the target, obtain sensitive or secret information, or gain access to private computer
networks and system for other purposes. For the end user, malware is just software that is doing
nasty things to them or their computers, without them knowledge or permission. Some kind of
software that can be considered malwares, are viruses, trojan horses, worms, rootkits, scarewares,

adwares, spywares and ransomwares.

1.2 Ransomware, the key threat
1.21 T0CTA 2017’

By the end 0f 2016 we had witnessed the first massive attack originating from such devices,
as the Mirai malware? transformed around 150.000 routers and CCTV cameras into a DDoS botnet.
This botnet was responsible for a number of high-profile attacks, including one severely disrupting
internet infrastructure on the west coast of the United States).

Ransomware attacks have eclipsed most other global cybercrime threats, with the first half

of 2017 witnessing ransomware attacks on a scale previously unseen following the emergence of

! Mirai is a malware that turns networked devices running Linux into remotely controlled "bots" that can be used as
part of a botnet in large-scale network attacks. It primarily targets online consumer devices such as IP cameras and
home routers. The Mirai botnet was first found in August 2016 by MalwareMustDie, a whitehat malware research
group, and has been used in some of the largest and most disruptive distributed denial of service (DDoS) attacks.
Reference source: https://en.wikipedia.org/wiki/Mirai_(malware)

Ransomware, the key threat
2

self-propagating ‘ransomworms’, as observed in the WannaCry and Petya/NotPetya cases.
Moreover, while information-stealing malware such as banking Trojans remain a key threat, they
often have a limited target profile. Ransomware has widened the range of potential malware
victims, impacting victims indiscriminately across multiple industries in both the private and
public sectors, and highlighting how connectivity and poor digital hygiene and security practices
can allow such a threat to quickly spread and expand the attack vector.

The primary targets - key threat for the majority of cyber-dependent crimes are vulnerable
software products, insecure, internet-connected devices or networks, and the users and data behind
them. As such, the development and propagation of malware typically sits at the core of cyber-
dependent crime. Malware can be coded or repurposed to perform almost any function; however,
the two dominant malware threats encountered by EU law enforcement continue to be ransomware
and information stealers.

Comparatively, ransomware is easier to monetise. Beyond the initial infection, all the
attacker has to do is collect the ransom payment, and by using pseudonymous currencies such as
Bitcoin, the subsequent laundering and monetisation is considerably simpler. Furthermore, the
nature of the attack means that ransomware can inherently target a much more diverse range of
targets — essentially anyone with data to protect — with little requirement for adaption. Victims are
atypical from the usual financial targets, and include entities such as hospitals, law enforcement
agencies, and government departments and services. While the public also continues to be targeted,
small to medium enterprises, who often lack the resources to fully safeguard their data and
networks, are also key targets. The success and the demand for ransomware resulted in an

explosion in the number of ransomware families throughout 2016, with some reports highlighting

Chapter 1. Introduction
3

an increase of 750% from 20152, The business model for ransomware has also evolved. Developers
of early iterations of ransomware produced it for their own use, but now variants such as Satan® or
Shark” are run as affiliate programs, providing ransomware-as-a-service in exchange for a share
of the criminal proceeds. The surge in ransomware is also reflected in this year’s reporting, with
almost every Member State reporting a growing number of cases. Throughout 2016, the emerging
threats highlighted in the previous year’s report, Locky® and Cerber®, were the most prominent

ransomwares. A number of other ransomwares, including CTB-Locker’, Cryptowall®, Crysis®,

2 Trend Micro, 2017, TrendLabs 2016 Security Roundup, p4

3 The name “Satan ransomware” is aptly chosen in this regard. The platform acts as a gateway to hell where new
minions can be spawned who must contribute a bounty to the Lord of Hell. The platform is so much bigger than just
a new type of ransomware users to deal with, as it can create different types of offspring with relative ease. Anyone
making use of this service will be hunted down by law enforcement agents, though, as deliberately distributing
malware is illegal in most global jurisdictions. Reference source: https://themerkle.com/bitcoin-ransomware-
education-satan/

4 Symantec, Internet Security Threat Report, 2017, p61

5 Locky is ransomware malware released in 2016. It is delivered by email (that is allegedly an invoice requiring
payment) with an attached Microsoft Word document that contains malicious macros. Filenames are converted to a
unique 16 letter and number combination. Initially, only the .locky file extension was used for these encrypted files.
Subsequently, other file extensions have been used, including .zepto, .odin, .aesir, .thor, and .zzzzz. After encryption,
a message (displayed on the user's desktop) instructs them to download the Tor browser and visit a specific criminal -
operated Web site for further information. Since the criminals possess the private key and the remote servers are
controlled by them, the victims are motivated to pay to decrypt their files. Reference source:
https://en.wikipedia.org/wiki/Locky

& Ransom.Cerber is a ransomware application that uses a ransomware-as-a-service (RaaS) model where affiliates
purchase and then subsequently spread the malware. Commissions are paid to the developers for the use of the
malware. Ransom.Cerber uses strong encryption, and there are currently no free decryptors available. Reference
source: https://blog.malwarebytes.com/detections/ransom-cerber/

" CTB-Locker emerged in June 2014 and is one of the first ransomware variants to use Tor for its C2 infrastructure.
CTB-Locker uses Tor exclusively for its C2 servers and only connects to the C2 after encrypting victims' files.
Additionally, unlike other ransomware variants that utilize the Tor network for some communication, the Tor
components are embedded in the CTB-Locker malware, making it more efficient and harder to detect. CTB-Locker is
spread through drive-by downloads and spam emails. Reference source: http://itlaw.wikia.com/wiki/CTB-Locker

8 Ransom.Cryptowall is a Trojan horse that encrypts files on the compromised computer. It then asks the user to pay
to have the files decrypted. The threat typically arrives on the affected computer through spam emails, exploit Kits
hosted through malicious ads or compromised sites, or other malware. Reference source:
https://www.symantec.com/security-center/writeup/2014-061923-2824-99

® CrySiS is a ransomware virus that was spotted back in March 2016 and is still active today. Since its initial release,
malware had multiple updates, changing the file extension and the contact email to a different one. Reference source:
https://www.2-spyware.com/remove-crysis-ransomware-virus.html

Ransomware, the key threat
4

Teslacrypt'®, Torrentlocker!! and Zepto!? were also reported, but these appear to be localised to
specific countries. On 12 May 2017 however, all other ransomware activity was eclipsed by a
global ransomware attack of unprecedented scale. While reports vary, the WannaCry ransomware
is believed to have rapidly infected up to 300.000 victims in over 150 countries, including a number
of high-profile targets such as the UK’s National Health Service, Spanish telecommunication
company Telefonica, and logistics company Fed-Ex.

There were several key factors in the success of the WannaCry attack. Firstly, unlike most
ransomware, WannaCry used the self-propagating functionality of a worm to spread infections.
Secondly, and of greater concern, the worm made use of a Windows SMB (Server Message Block)
exploit dubbed ‘EternalBlue’ to infect machines. EternalBlue is one of the exploits allegedly leaked
by the NSA and acquired by the ShadowBrokers group. The ShadowBrokers publicly leaked the
code for the exploit in April 2017, one month after Microsoft released a patch for it. One month
later the WannaCry attack occurred. While the scope and scale of the WannaCry attack was
considerable, and the anxiety generated was socially significant, if WannaCry truly was as an
attempt at extortion, it was a negligible financial success, with less than 1 percent of the victims
paying the ransom. In the month following the WannaCry outbreak, another global ransomware

attack was launched, utilising some of the same exploits used by WannaCry. The updated version

10 TeslaCrypt was a ransomware trojan. It is now defunct, and its master key was released by the developers. In its
early forms, TeslaCrypt targeted game-play data for specific computer games. Newer variants of the malware also
affect other file types. Reference source: https://en.wikipedia.org/wiki/TeslaCrypt

11 The TorrentLocker ransomware, which has been in a lull as of late, has recently come back with new variants. These
new variants are using a delivery mechanism that uses abused Dropbox accounts. This new type of attack is in line
with our 2017 prediction that ransomware would continue to evolve beyond the usual attack vectors. Reference source:
http://blog.trendmicro.com/trendlabs-security-intelligence/torrentlocker-changes-attack-method-targets-leading-
european-countries

12 Zepto (a new variant of the Locky ransomware) is a file-encrypting ransomware, which will encrypt the personal
documents found on victim’s computer using RSA-2048 key (AES CBC 256-bit encryption algorithm), appending
the .zepto extension to encrypted files. Reference Source: https://malwaretips.com/blogs/remove-zepto-virus/

Chapter 1. Introduction
5

of the Petya'® ransomware, dubbed ExPetr or NotPetya, reportedly hit more than 20.000 victim
machines in more than 60 countries. Victims were mainly in Europe, but also in Asia, North and
South America and Australia; however, more than 70% of the total infections were in the Ukraine's.
Moreover, reports indicated that more than 50% of the businesses targeted were industrial
companies. Some opinions suggest that the attack was staged to appear as another ransomware

attack, but it appears to have been designed as a ‘wiper’, whose sole purpose is to destroy data.

1.2.2 10CTA2018"

In the year 2018, Ransomware retains its dominance, by remaining the key malware threat
in both law enforcement and industry reporting. Even though the growth of ransomware is
beginning to slow, ransomware is still overtaking banking Trojans in financially-motivated
malware attacks, a trend anticipated to continue over the following years. In addition to attacks by
financially motivated criminals, a significant volume of public reporting increasingly attributes
global cyber-attacks to the actions of nation states. Mobile malware has not been extensively
reported in 2017, but this has been identified as an anticipated future threat for private and public
entities alike.

The most commonly reported ransomware families are Cerber, Cryptolocker, Crysis,

Curve-Tor-Bitcoin Locker (CTBLocker), Dharma* and Locky. With the exception of Dharma, for

13 Petya is a family of encrypting ransomware that was first discovered in 2016[2]. The malware targets Microsoft
Windows-based systems, infecting the master boot record to execute a payload that encrypts a hard drive's file system
table and prevents Windows from booting. It subsequently demands that the user make a payment in Bitcoin in order
to regain access to the system. Reference source: https://en.wikipedia.org/wiki/Petya_(malware)

14 The Dharma Ransomware is an encryption ransomware Trojan that is being used to extort computer users. There
have been numerous computers around the world that have been infected by the Dharma Ransomware. The Dharma
Ransomware seems to target only the directories inside the Users directory on Windows, with encrypted files receiving
the suffix [bitcoin143@india.com].dharma added to the end of each file name. Variants of the Dharma Ransomware
will sometimes not have a ransom note. The Dharma Ransomware does not stop the affected computer from working

Ransomware, the key threat
6

which decryption keys are now available, all of these were reported in previous years. Member
states reported a wide range of other ransomware families, but in fewer instances and dispersed
across Europe. Overall damages arising from ransomware attacks are difficult to calculate,
although some estimates suggest a global loss in excess of USD 5 billion in 2017%°. In comparison,
other reporting suggests that over the past two years, 35 unique ransomware strains have earned
cybercriminals USD 25 million, with Locky and its many variants accounting for more than 28%?°.
This highlights the huge disparity between the losses to victims, compared to the actual criminal

revenue generated.

Ransomware attacks may move from random to targeted

In some Member States attacks appear to remain largely untargeted, affecting citizens and
businesses alike; this is perhaps the result of “scattergun” attacks by those engaging ransomware-
as-a-service, or those with affiliate programs, such as Cerber, which allegedly allows its authors to
sustain an income of USD 200.000 per month'’. Some other Member States report that campaigns
are customized or tailored to specific companies or individuals, suggesting a more organized or

professional attack.

properly, but every time a file is added to the targeted directories, it will be encrypted unless the Dharma Ransomware
infection is removed.

15 Morgan, S., Global ransomware damage costs predicted to hit $11.5 billion by 2019, Reference source:
https://cybersecurityventures.com/ransomware-damage-report-2017-part-2/, 2017.

16 Spring, T., Google study quantifies ransomware profits, Reference source: https://threatpost.com/google-study-
quantifies-ransomware-revenue/127057/, 2017.

17 Spring, T., Google study quantifies ransomware profits, Reference source:https://threatpost.com/google-study-
quantifies-ransomware-revenue/127057/, 2017.

Chapter 1. Introduction
7

As we have seen with other cyber-attacks, as criminals become more adept and the tools
more sophisticated yet easier to obtain, fewer attacks are directed towards citizens and more

towards small businesses and larger targets, where greater potential profits lie.

1.2.3 Previous IOCTA reports

In the 2014" IOCTA report, while over half of EU law enforcement had encountered
ransomware, this related on the whole to police ransomware, without encryption. Cryptoware was
only just emerging with sporadic cases of Cryptolocker. By 2015"V cryptoware had become a top
emerging threat for EU law enforcement, although non-encrypting police ransomware still
accounted for a significant proportion of ransomware cases. By 2016" police ransomware had all
but vanished, except for on mobile devices, superseded by a growing variety of cryptoware. By
2017 the number of ransomware families had exploded, their impact significantly overshadowing
other malware threats such as banking Trojans. Industry reported that ransomware damages had

increased fifteen-fold over the previous two years'®.

1.3 Needance of Malware - Ransomware Analysis

With millions of malicious programs in the wild ecosystem of Informatics, and more
encountered every day, malware analysis is critical for anyone who responds to computer security
incidents. And, with a shortage of malware analysis professionals, the skilled malware analyst is

in serious demand.

18 Morgan, S., Global ransomware damage costs predicted to exceed $5 bhillion in 2017,
https://cybersecurityventures.com/ransomware-damage-report-2017-5-billion/, 2017.

Needance of Malware - Ransomware Analysis

1.3.1 Definition of Malware Analysis

Malware analysis is the procedure of identifying the working mechanism of the malware
in order to counter it. While the various malware incarnations do all sorts of different things, there
are several techniques and tools for analyzing malware.

In order to do a Malware Analysis, several steps of dissecting the malware are being
followed. Following these steps, the analyst is able to understand the malware’s scope. Reverse-
engineering is not malware analysis, as a large audience believes, but is a part of the analysis. It
could be said that, is the last technique an analyst will use to reveal the unanswered details of the
malware.

Nevertheless, malware analysis is the critical part of incident response. Without the
knowledge of the malware’s actions, the security experts are not able to respond to an incident, as
a result any technical or organizational measures, will not be effective.

In a simple case where a network intrusion, there are several information which are
required to respond. At start, it should be revealed what exactly happened and ensure that all
infected machines and files have been located. Also, a measurement of the damage should be
calculated. Then, in order to counter the network intrusion, signatures should be generated and

entered to the intrusion detection systems.

1.3.2 Background of Malware Analysis
In the old days, analysis had to be done with shell commands, built-in system utilities, and
a text editor. Of course, back then, the attack surface was small and malwares could not hide behind

the few processes running. As malware really began to hit its stride, virtual machine technology

Chapter 1. Introduction
9

started to gain in popularity among security analysts. Researchers could make a snapshot or backup
of'a virtual machine and proceed to hack it, infect it, and trash it to their heart’s content. In addition,
the analyst could restore the good copy in just a few short minutes, with this process could be
repeated over and over and streamlined analysis in a big way. However, virtual machine detection
appears to be trivial nowadays ° 20 2!, Furthermore, some malware authors are well aware and take
advantage of 22. With the knowledge that researchers use virtual environments to analyze their
code, some malware authors now instruct their creations not to run, or to run differently within
these environments. The goal of malware authors is to make it more difficult for researchers that

employ the use of virtualized environments to analyze samples of malware.

1.3.3 Malware Analysis Techniques
Currently, there are five general techniques used in malware analysis: basic static or surface
analysis, basic dynamic or behavioral analysis, static code analysis, dynamic code analysis, and
volatile memory analysis. 23

e Surface analysis examines the structural properties and file attributes of a malware

sample > without viewing assembly or machine-level instructions (Sikorski & Honig,

19 Rutkowska, J. (2004, November). Red Pill... or how to detect VMM using (almost) one CPU instruction, source url:
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/redpill.html

2 Klein, T. (2003). Scoopy Doo - VMware Fingerprint Suite. source url:
http://www.trapkit.de/research/vmm/scoopydoo/index.html
2 Klein, T. (2003). Jerry - A(nother) Vmware Fingerprinter. source url:

http://mww.trapkit.de/research/vmm/jerry/index.html

22 Zeltser, L. (2006, November 11). Virtual Machine Detection in Malware via Commercial Tools. Retrieved January
18, 2007, from SANS Internet Storm Center. link: http://isc.sans.org/diary.html?storyid=1871&rss

23 Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis Exercise, Author: Kenneth J. Zahn,
kenneth.j.zahn@gmail.com Advisor: Rick Wanner, Accepted: August 24, 2013, from SANS

24 (e.g. true file type (useful if the file extension was changed), size, file hash values, file and section headers, strings,
contained objects, packing mechanisms)

10

Needance of Malware - Ransomware Analysis

2012). Surface analysis can provide information artifacts, such as IP addresses, Internet
domain names, and command parameters, that prove useful in subsequent analysis steps.
Behavioral analysis observes the actions taken by a malware sample while it is running.
Certain key actions taken by the malware sample, such as adding/modifying/deleting
Windows Registry keys, dropping files on the file system, and establishing
communications with a command-and-control server, may serve as indicators of
compromise (IOC) for the particular sample (Mandiant, 2011). The I0C’s observed by the
analyst during this phase may then be used to produce signatures for intrusion detection
and prevention systems. Because behavioral analysis requires executing the malware on a
live machine, it is critical to implement appropriate risk mitigations (e.g. using a stand-
alone, virtualized test environment or a sandbox) to avoid infecting production systems
(Sikorski & Honig, 2012).

Static code analysis examines the malware sample’s executable instructions and internal
data structures by loading the sample into a disassembler. Barring code that has been
packed, encrypted, or otherwise obfuscated, all instructions present in the sample can be
viewed. Although a time-consuming technique, static code analysis can give investigators
full insight into the capabilities of the sample under examination (Sikorski & Honig, 2012).
Dynamic code analysis allows the analyst to execute a malware sample instruction-by-
instruction by loading it into a debugging application. Because malware samples may have
obfuscated portions, it is sometimes necessary to execute the malware sample up to the
completion of the de-obfuscation routine. Once execution is halted at that point in time, the
sample in memory may be examined for de-obfuscated data structures or may be dumped

to disk for additional static code analysis (Sikorski & Honig, 2012). Dynamic code analysis

Chapter 1. Introduction
11

also reveals data values that are assigned at run time and not available at compile
time.

e Volatile Memory Analysis involves the examination of volatile memory at a single point
in time. Such analysis is accomplished first by dumping the volatile memory to a file and
then by inspecting the contents offline using a specialized tool such as the Volatility

Framework (Case, 2012).

1.3.4 Definitions of Analysis Techniques
Short definition of Static Analysis

Static Analysis, examines malware without running it, using a gamma of tools, like
disassemblers. More specifically, the under examination malware, is being analyzed in static state,

without loading it in RAM or analyses its behavior and without looking at CPU instructions.

Short definition of Dynamic Analysis
On the other hand, on dynamic analysis the malware is being run and monitor its effect.
More specifically, the observation take place on running processes, on Windows registry edits and

in low level RAM and CPU analysis.

Short definition of Basic Static Analysis
The Basic static analysis, that can be referred as quick and easy but fails for advanced
malware, as it can miss important effects, as the malware is being viewed without looking at

mstructions.

Needance of Malware - Ransomware Analysis
12

Short definition of Basic Dynamic Analysis
And the Basic dynamic analysis, that can be referred as easy, but requires a safe test

environment, with the risk that this method will not be effective on all malware.

Short definition of Advanced Static Analysis
The Advances Static analysis is a complex procedure that requires understanding of
assembly code. The main procedure is the Reverse-engineering with a disassembler, without the

actual execution of the binary by the CPU.

Short definition of Advanced Dynamic Analysis
The Advances Dynamic analysis examines internal state of a running malicious executable,
that also requires understanding of assembly code combined with the understanding of the running

code procedure in a debugger.

Chapter 2. Malware Analysis Environment
13

2. Malware Analysis Environment
2.1. Virtualization Technologies

Virtualization is an important tool for malware researchers and as such, is a large focus in
this paper. The fact that some samples of malware are now refusing to run in researchers’ labs is
an important issue, and one without a simple solution. The aim of this section is to dissect the
problem and clarify the solutions available.

If “The Matrix”% analogy is getting old, but it really is a perfect example, and a very
effective way to explain the relationships between hosts and guests in the world of VMEs. Most
important to VM detection is the difference between different types of VMEs, specifically between
native virtualization / paravirtualization and emulation.

It is no secret that the Information Security industry takes advantage of virtualization
software in order to research security threats. VMWare, Sandboxie, Hyper-V (Virtual PC?%),
Anubis, CWSandbox, JoeBox, VirtualBox, Parallels, QEMU are just of few of these virtual
machines. The cornucopia of virtual environments gives the security professional, the opportunity

to observe and analyze malicious software in a convenient and easily reproducible manner.

2 The Matrix is a 1999 science fiction action film. It depicts a dystopian future in which reality as perceived by most
humans is actually a simulated reality called "the Matrix". Source: en.wikipedia.org/wiki/The_Matrix

% Windows Virtual PC (successor to Microsoft Virtual PC 2007, Microsoft Virtual PC 2004, and Connectix Virtual
PC) is a virtualization program for Microsoft Windows. In July 2006 Microsoft released the Windows version as a
free product. The newest release, Windows Virtual PC, does not run on versions of Windows earlier than Windows 7,
and does not officially support MS-DOS or operating systems earlier than Windows XP Professional SP3 as guests.
The older versions, which support a wider range of host and guest operating systems, remain available. Starting with
Windows 8, Hyper-V supersedes Windows Virtual PC. On the latest Windows version Windows 10 Virtual PC has
been replaced by Hyper-V. Source url: https://en.wikipedia.org/wiki/Windows_Virtual _PC.

Differences between virtual and real world
14

2.2. Differences between virtual and real world
A malicious software has several ways to detect the system that is being executed, using
the VME Technologies Detection. It could be considered as the base operation of a VME. Malware
writers, in order to counter the virtual world, include code in their binaries to make it more difficult
for computer security professionals to analyze their executables in those virtual environments.
Therefore, the VME technologies should be explained, in order to have the clearest view for each

anti-virtualization technique.

2.3. VME Technologies

2.3.1 Native Virtualization
In Native Virtualization, the VMM executes guest code on the underlying hardware.

Because the host and guest operating systems are sharing the same hardware, certain resources
must be relocated by the VMM to prevent conflicts. One of these resources is the interrupt
descriptor table register (IDTR). When this resource is relocated by the VMM, the address of the
table changes. Using the SIDT instruction, one could write some simple code that will return the
location of this table, and thus show whether code is being executed inside the matrix (inside a
VME guest), or in “the world of the real” (within the host OS). The positive and the negative
effects of the native virtualization implementation, are being listed:

+ Fast, Easy, Flexible, Convenient

- Easy for malware to detect, VME host software is limited to running on x86 architectures.

Chapter 2. Malware Analysis Environment
15

2.3.2 Paravirtualization

Paravirtualization is similar to Native Virtualization, except that there is a unique
relationship between the host and the guest. The host presents an interface, similar to a software
API, to the guest. This interface is called an ABI (Application Binary Interface) and is used by the
guest to speak indirectly to the hardware. The positive and the negative effects of the
Paravirtualization implementation, are listed below:
+ Is claimed to be potentially even faster?’ than Native Virtualization, due to the unique “shortcut”
paravirtualization provides for the guest.
- The guest must be modified to work with the host’s specific ABI. This generally means that
paravirtualization is an approach that generally would not work with commercial operating

systems, such as Microsoft Windows.

2.3.3 Native Virtualization and Paravirtualization Detection Techniques
Tools and code demonstrating VM detection techniques are freely available. Joanna
Rutkowska’s Red Pill?® is probably the most well-known of these, though Tobias Klein’s Scoopy?®

tool is a bit more informative.

27 Barham, P., Dragovic, B., Fraser K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., & Warfield, A. (2003).
Xen and the Art of Virtualization. Source url: www.cl.cam.ac.uk/netos/papers/2003-xensosp.pdf.

28 Rutkowska, Joanna (2004, November). Red Pill... or how to detect VMM using (almost) one CPU instruction.
Source url: www.invisiblethings.org/papers/redpill.html

2% Klein, Tobias. (2003). Scooby Doo - VMware Fingerprint Suite. Source url:
www.trapkit.de/research/vmm/scoopydoo/index.html

VME Technologies
16

2.3.4 Descriptor Table Registers check

The SIDT Instruction (Store Interrupt Descriptor Table) stores the content of the IDTR
(Interrupt Descriptor Table Register) register, which in fact, is a selector that points into the
Interrupt Descriptor Table. The instruction SGDT (Store Global Descriptor Table) stores the
register value of GDTR, which is a selector that points into the global descriptor table. The SLDT
instruction (Store Local Descriptor Table) stores the register value LDTR. This register is a selector
that points into the local descriptor table (LDT).

There is only one Interrupt Descriptor Table Register (IDTR), one Global Descriptor Table
Register (GDTR) and one Local Descriptor Table Register (LDTR) per processor. Since there are
two operating systems running at the same time (the host and the guest), the virtual machine needs
to relocate the IDTR, GDTR and LDTR for the guest OS to different locations in order to avoid
conflicts. This will cause inconsistencies between the values of these registers in a virtual machine
and in the native machine. The instructions SIDT, SGDT and SLDT are assembly instructions that

can respectively be used to retrieve the values of IDTR, GDTR and LDTR.

2.3.5 The IDTR Detection Technique

When Red Pill.exe is executed within an OS running directly on hardware, Red Pill
informs us that we are “Not inside the Matrix”. When executed within an OS running in a VME
like VMWare, Red Pill informs us that we are, indeed, “Inside the Matrix”. Malware authors have
taken advantage of the fact that VM detection can be done with a line, or just a few lines of code.
It is increasingly common to find malware that will refuse to run in virtualized environments, as

their authors know that VMEs commonly used by malware researchers.

Chapter 2. Malware Analysis Environment
17

To counter this, it is possible that a VME could fake the results of a query for IDT values,
but it is unlikely that commercial vendors would take much interest in making these changes. It is
also not clear whether such changes would cause detrimental effects on operating systems running

within the modified VME.

2.3.6 Thwart virtual machine detection

Most commercial VMEs create many artifacts that allow for easy VM detection. Because
anti-VM techniques typically target VMware in this case, the focus stands on anti-VMware
techniques. One such example is Tobias Klein’s Doo VBScript, included in the Scooby Doo release.
This VBScript simply looks for VME artifacts in the Windows registry. These are extremely easy
to find if a VME toolset, such as VMWare Tools, or Parallels Tools have been installed on the
Guest OS. For example, VMware provides a set of tools called VMware Tools that enhances the
overall user experience with the guest OS. The drawback is that installing VMware Tools in a
Windows guest OS will leave many clues easily detectable by a piece malware that is running in
a virtual machine.

Even if VME toolsets have not been installed, artifacts can still be found, as Doo shows.
Doo specifically looks for the names of hardware components, which usually contain the word
“virtual” or the name of the VME vendor. It is simply a check for the presence of virtualized
hardware, but as a method is effective all the same. Specifically, Malware can check for the
presence of certain OUIs (VMware has more than one Organizationally Unique Identifier or OUI)
and choose to behave differently or not to display any malignant behavior whatsoever in a virtual

machine. In Windows these OUIs can be easily reveal themselves via Registry. Each virtual

VME Technologies
18

machine is associated with specific device drivers, registry values that give away their nature. For
instance:

e Hard drive driver (VMware):

HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Enum\IDE\DiskVMware
Virtual IDE Hard

Drive 00000001\3030303030303030303030303030303030303130\FriendlyName
VMware Virtual IDE Hard Drive

e Video driver (VMware):

HKEY LOCAL MACHINE\System\CurrentControlSet\Control\Class\{4D36E968-
E325-11CE-BFCI1-08002BE10318}\0000\DriverDesc VMware SVGA 11

e Mouse driver (VMware):

%WINDIR%\system32\drivers\vmmouse.sys

e In addition, virtual environments have virtual network interfaces. Just like any network
interface, they are assigned a unique MAC address that usually includes the manufacturer's
identification number. For example, a network interface for VMware Workstation will have

a MAC address that starts with

00:50:56

or

00:0C:29

Any of these can be used by a malware writer to detect the presence of a virtual machine.

Furthermore, there is a full list of detection techniques, which are more thoroughly explored in
paper: “On the Cutting Edge: Thwarting Virtual Machine Detection, a paper by Ed Skoudis and
Tom Liston”. This list will be used as a reference during the analysis, when specific detection

techniques are being identified.

Chapter 2. Malware Analysis Environment
19

Emulation

Emulation is a different matter altogether. Computer emulators emulate the underlying hardware
using code, rather than by sharing the actual physical hardware. As a result, SIDT/IDTR detection
techniques do not work within emulated VMEs. Another advantage of emulation is that the
emulated hardware can potentially run on top of any other hardware architecture. For example,
Bochs running on MacOS X could run x86 versions of Windows XP. The positive and the negative
effects of the Emulation implementation, are being listed:

+ x86 emulators such as QEMU and Bochs can run on any architecture where the code is ported
to, so they can evade current detection techniques

- Emulation is generally slower than native virtualization or paravirtualization.

2.4. General Local Virtual Machine Detection
There are several ways to detect a VM. Complementary to the above mentioned, the Local
Virtual Machine Detection that covers nearly all of the elements of the virtual machine, is divided
to four categories of methods for locally detecting the presence of a virtual machine:
1. Look for VME artifacts in processes, file system, and/or registry
2. Look for VME artifacts in memory
3. Look for VME-specific virtual hardware

4. Look for VME-specific processor instructions and capabilities

General Local Virtual Machine Detection

20
2.4.1. Exploring Available VMEs
The following Table describes the Notable Emulators and VMEs *
Product Type Pros Cons
VMware Server - [Native Can be remotely | Easily to detect by
Services controlled and | malware
configured. Easy
setup and free
Hyper-V (Virtual PC) | Native Fast. Easy setup Commercial, money
cost. Easily detect by
malware
Parallels Paravirtualization Easy to Setup and [Commercial, money
configure cost. Easily detect by
malware
Bochs Emulation Free and Open | Operating Systems
Source. Can not be [run much more
easily detect Dby [slowly on emulation.
malware High Specification
machine needed
QEMU Emulation Free and Open | Confusing to
Source. Can not be | configure and run
easily detect by
malware. Faster than
Bochs

Table 1: Notable Emulators and VMEs®!

30More complete list on Wikipedia source url: en.wikipedia.org/wiki/Comparison_of virtual_machines

31 Malware Analysis: Environment Design and Architecture, SANS Institute, Author: Adrian Sanabria, Adviser: Rick
Wanner, January 18th 2007. Source url: https://www.sans.org/reading-room/whitepapers/threats/malware-analysis-
environment-design-artitecture-1841

Chapter 2. Malware Analysis Environment
21

2.4.2. Environment Design and Architecture

At the software level, tools and methods for detecting and analyzing malware have been
documented above. However, the design and architecture of malware analysis environments does
not often get publicly discussed. Specifically, commercial antivirus vendors use highly customized
and specialized environments to explore the goals and inner workings of malware quickly and
efficiently. The regular analysts rarely experiment beyond the use of an isolated virtual machine to

quarantine the malicious intent of a virus or trojan.

Lab Design due to Malware Type

There are many different ways to classify malware. Antivirus vendors tend to classify by
intent (Trojan, worm, mailer, Ransomware, etc) and several aspects of severity (damage potential,
potential of outbreak, and actual outbreak reports). These metrics are usually used to create an
overall risk rating. The necessity for a method of identifying and classifying malware according to
its detection difficulty, was introduced by Joanna Rutkowska, which she calls Stealth Malware
Taxonomy3?. The following categorization is not a recommendation to replace currently used

categories, but instead, it is another set of criteria to consider when analyzing malware.

Malware Type | Stealth Characteristics Analysis Considerations

Type 0 Does not use undocumented [Most standard malware falls under this
methods to hide. category. Usage of traditional tools to analyze

Type | Modifies constant resources to hide | Compare hashes of running memory with

itself (by patching executables, | equivalent values on disk.
modifies code, inserting into BIOS, | Digitally sign code.
ect)

%2 Rutkowska, J. (2008, November), Stealth Malware Taxonomy. Source url:
blog.invisiblethings.org/papers/2006/rutkowska_malware_taxonomy.pdf

General Local Virtual Machine Detection

22
Type ll Modifies dynamic resources to hide | Unable to compare hashes of application data,
itself (for example: using sections | as it is constantly changing.
of data within memory)
Type HI Hides itself where the operating [Being nearly undetectable from within the

system cannot see it at all, like a | Operating System, detection, prevention and
hypervisor. Full control of the [analysis would have to be done at the
running system and interfere with it. [hypervisor level or outside of the OS. A way
for analysis is to compare the timing of
instructions executed before and after type 3
malware is introduced or network activity
analysis.

Table 2: Brief Overview of J. Rutkowska’s Stealth Malware Taxonomy®

The relevance to malware analysis and lab architecture exists on the opportunity to
specialize a lab or PC environment for the analysis of a specific type or class of malware. One of
the most common recent examples is malware that refuses to run in virtualized environments,
while these environments are often equated with malware analysis. On the under analysis PE file,
the class of malware must be taken into account. During the dynamic analysis, several anti-vm
methods have been detected. Furthermore, some specific network and time behavior exists, which
should be considered to make the necessary changes to their lab design. This results in several

opportunities to specialize an analysis lab.

Guidelines for Lab architecture
The basic guidelines when designing and implementing a malware analysis environment are:
e Simplicity
Each added bit of complexity can make it more difficult to maintain.

e Containment

3 Rutkowska, J. (2008, November), Stealth Malware ~ Taxonomy. Source url:
blog.invisiblethings.org/papers/2006/rutkowska_malware_taxonomy.pdf

Chapter 2. Malware Analysis Environment
23

Acts as a paramount when designing an environment that may test the digital equivalents
of plagues and super flues. Maintaining control is preferred as well, but cannot be guaranteed when
dealing with new malware specimens. Containment is the safety net when control is lost.

e Flexibility
A flexible environment is essential. One that is too fragile, or has too much downtime is of

little use to a malware researcher.

Suggested Requirements and setups
Physical and Financial Constraints:

A researcher may need to do analysis on the road, could do all of it in a fully funded data
center, or could employ a combination of both. In the current case with a non funded malware

analysis for educational purposes, there will be a restriction on a single physical machine.

Scenario single PC Lab

The single PC lab is one of the most commonly used environments and especially for
researchers. This deployment will take place in current project, because it can be easily deployed
on single workstation and also easily deployed on a laptop. The option of using emulators, such as
Bochs or QEMU rather than VMware, would be more difficult to isolate the networks and
specifically using the VLAN features of QEMU because of the requirement of host-based firewall

in order to filter and block the incoming traffic, exposing the host machine.

General Local Virtual Machine Detection
24

é,;;;lmérget

Internet connection >
is used only to Isolated Virtual
download necessary H
tools and packages — MaChlne Network
connection is
disabled when
analysis is underway

Simulated

Victim (Windows)

10.1.210.5
Services1 (Linux)
10.1.210.1
A

Isol H

.SO ated Host Runs DHCP, DNS, HTTP, FTP and
(Windows) SMTP services; also serves as the

defauit gateway for the victim, in order

to catch outgoing malware traffic

Figure 1: Single PC Lab3*

Please see the Appendix A for the full specifications of Hardware and Software on Host. In

addition, Appendix A includes the VM and VME configuration and installation using FlareVM.

Sample files for the analysis

Due to the nature of the ransomware and considering that specific files are being searched
in order to encrypt them, we have collected some sample files. The file type of sample files are
png, jpg, txt, xls, doc and pdf. They will be placed on the specific directories Desktop, Document,
Downloads and on C:/files. Each directory will have a different package of files, with all types
included. With the above actions, we are preparing our environment to be helpful and ready for
the behavioral analysis. We are expecting the ransomware to encrypt these types of files and we

would like to know if the ransomware searches exhaustive or in specific directories. In addition,

34 Based on figure 8 of Malware Analysis: Environment Design and Architecture, SANS Institute, Author: Adrian
Sanabria, Adviser: Rick Wanner, January 18" 2007. Source url: https://www.sans.org/reading-
room/whitepapers/threats/malware-analysis-environment-design-artitecture-1841

Chapter 2. Malware Analysis Environment
25

we will compare the encrypted file and the original file on hex editor, in order to try to find
vulnerability on the entropy. Please find the files on the Attached zipped files. Note that all the

files are originally publicly posted in the website of www.unipi.gr and its subdomains.

Swift Recovery

Traditionally, recovering a computer system to an earlier state would be a tedious, time
intensive operation. In the past five years, however, VMEs have become popular in malware
analysis due in part to the ease and speed of recovery possible with these environments. The system
will use VM Ware virtualization software as an VME in which to run the malicious samples.

A hardware failure is always possible, so the RAID 1 structure of the VMs storage,
decreases the probability of both HDDs failure. Keep in mind that, a frequent backup of the VM
is being taken, as the last recovery options. The disaster recovery approach is to upload these
backups of the VMs in a cloud storage service. Because the University uses the G-suite service

with unlimited storage, the disaster recovery backups will be uploaded to Google Drive.

2.4.3. VMware Workstation Setup
Virtual Network Editor

In order to setup the network securely, a custom VLAN should be created. The name of the
Network Adapter would be Malnet10, acting as custom Host-Only network, which connects the
Virtual Machines internally in private network and with no interaction with the host’s network.
The subnet IP range will be set as /0.1.210.0 and subnet mask as 255.255.255.0, without local
DHCP service activated, so the distribution of IP Addresses to Virtual Machines would be manual

settled.

General Local Virtual Machine Detection
26

@ virtual Network Editor X
Narme Type External Cornection Host Connection DHCP Subret Address
YMnetl Host-only - Connected Enabled 192.168.216.0

ViMnets MNAT MAT Connected Enabled
Custom -

192.158.222.0

10.1.210.0
Whinet1l Custom - - - 10.1.0.0

Add Network... Rermove Network Renarne Metwork. .
wiMnet Informatian

Bridged (ronnect Wis directly to the external networl)

Automatic Settings...
NAT (shared host's IP address with WMs) NAT Settings...

Host-only (connect ¥Ms internally in a private networl)

Connect a host virtual adapter o this network

Host virtual adapter name: WMware Network Adapter Vivinet1o

Use |ocal DHCP service to distribute IP address o Yis DHCP Settings...
SubnetIP: | 10 . 1 .210. O Subnet magk: | 255 .255 255 . 0

ﬁ administrator privileges are required 1o modify the network configuration. Gchamge Settings

Restore Defaults Ok Cancel Apply Help

Figure 2: Virtual Network Editor settings
Then we should attach the virtual cable to our VM, by adding or editing a Network Adapted

in Hardware/Virtual Machine Settings. Keep in mind that the host’s virtual adapter should not be

connected.

Chapter 2. Malware Analysis Environment
27

¥irtual Machine Settings >

Hardware Options

Device Surmmary Device stahis
e rnory 3IGB []cannected
[Processors 1 [l cormect at power on
L Hard Disk (SATA) 60 GB
*JCD/DVD (SATA) Using file E:O.SyWlindows 7 St. Mebwork connection

Floppy Using file autoinst. fin (Oeridged: Conmectad directly to the phrysical network
USB Cantroller Present Replicate physical network connection state
&) sound card Aut detect (ONAT: Used to share the host's IP address
=Printer Fresent
WlDispiay Auto detect (OHost-only: & private network shared with the host

(@) Custom: Specific virtual network

Malnet10 ~
(OLAN segment;
LAN Segments... Advanced...
Add. .. Remove
carcel e

Figure 3: Virtual Machine Settings on network adapter

In addition, each VM should manual adapt an IP manually from the subnet 10.1.210.0.

B | ocal Area Connectiol IEA|| 1nternet Protocol Version 4 (TGP /1Pu4) Pre 2lx|

Metworking | Sharmgl General
Connectusing: “ou can get IP settings assigned automatically if your network
supparts this capability. Otherwize, you need to ask your netwark
I E';Tr" Intel{R) PRO/1000 MT Network Connection #2 administrator for the appropriate IP settings.
Canitgic " Cbtain an IP address automatically
This cannection uses the fallowing iterms: & Use the fallowing IP addr
= "
7% Client for Microsoft Metworks 1P address: 0. 1 .210. 5

5005 Packet Scheduler
%File and Printer Sharing for Microsoft Networks Subnet mask: 255.235.255. 0
[wau Internet Protocol Wersion & (TCRAPYE)

= Internet Protacal Wersian 4 (TCR/IPv4)

wda Link-Layer Topology Discovery Mapper [/O Driver
wda Link-Layer Topology Discovery Responder

Default gateway: o .1 .10 .1

(| Chitain DNS server address automatically,

—(® Use the following DNS server addresses————————————————————

Install. Uninstall Praperties | (=i DS SE : : :
i~ Description Alternate DNS server: . . .

Transmission Control Protocol/intermet Protocol. The default wide

area network protocol that provides communication across I vl
diverse interconnected netwarks: validats satiings Lpon exit Advanced. .

|

QK | Cancel

Figure 4: Local Area Connection Properties in VM OS

The selection of the subnet IP range is not random, but it is selected for the under analysis
ransomware. More specifically the verification of date and time is being done at binary’s

location .text:004026CC and it is combined with the verification of the IP is being done by

General Local Virtual Machine Detection
28

gethostbyname API function call, at binary’s location .text:00403FE8. These techniques will be

analyzed in further analysis of the subject malware.

Stealthy Tools

Stealthy Tools, that are being included in the Appendix B, are basically a registry file that
edit some default registry values. This registry script will make our VME stealthier from VM
detection techniques. The default registry values reveal the VME, but after editing them the VME
will be spoofed and would not be differed.

Note that, in case of Windows10 VM, go to task manager, click performance tab and click
CPU on the left. There is a value 'Virtual Machine: Yes' at right bottom and L1, L2, L3 cache are
not being showed. To spoofthese finding in VM Ware, "Virtualize Intel VT-x/EPT or AMD-V/RVI"

in the settings of the VM should be activated, in order to have virtual L1, L2, L3 cache *°.

VMware Tools detection evasion
To hide the VM Ware Tools from the list of programs (or any program for that matters), you

can just go to:

‘ HKEY LOCAL MACHINE\SOFTWARE \Microsoft\Windows\CurrentVersion\Uninstall\ ‘
Find the program you want to hide in the list. Once you found it, create a DWORD named

'SystemComponent' and set it to 1. In case of non changed state, restart the VME.

35CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the
average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, closer to a
processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have
different independent caches, including instruction and data caches, where the data cache is usually organized as a
hierarchy of more cache levels (L1, L2, L3).

Chapter 2. Malware Analysis Environment
29

A helpful PowerShell script to rename same registry values to spoof the VMware Tools, having

them fully functional is included in the Appendix C.

VMware Tools uninstall

Nowadays the majority of malware authors check, with several ways, if VMware tools if
installed. In case that the above VMware tools detection evasion script is not working, the best
way to hide it from the control panel is going to the registry editor and going to they following

registry value:

‘ hkey local machine>software>microsoft>windows>currentversion>uninstall ‘
Click on every folder there until you find “VMware Tools” in the variable 'displayname' and delete

that folder. Restarting Windows after these actions required.

VMX configuration file

The next step is to edit your VMware .vimx file. When you create a new virtual image with
VMware, settings about it are stored in a configuration file with the .vmx extension. The file
contains information about networking, disk size, devices attached to the virtual machine, etc. The
config file is usually located in the directory where you created your virtual image. The

recommended VMX setup from SANS paper is the following®®:

isolation.tools.getPtrLocation.disable = "TRUE"
isolation.tools.setPtrLocation.disable = "TRUE"
isolation.tools.setVersion.disable = "TRUE"
isolation.tools.get Version.disable = "TRUE"
monitor_control.disable directexec = "TRUE"
monitor _control.disable chksimd = "TRUE"

36 More vmx file commands can be found at the url: http://sanbarrow.com/vmx/vmx-advanced.html#isolationtools

General Local Virtual Machine Detection
30

isolation.tools.getPtrLocation.disable = "TRUE"
monitor_control.disable ntreloc = "TRUE"
monitor_control.disable selfmod = "TRUE"
monitor_control.disable reloc = "TRUE"
monitor_control.disable btinout = "TRUE"
monitor_control.disable btmemspace = "TRUE"
monitor_control.disable btpriv ="TRUE"
monitor control.disable btseg = "TRUE"

Table 3: VMX configuration file recommended by SANS

It should be pointed out that:

| monitor_control.disable_directexec = "TRUE" |
will usually thwart descriptor table registers checks. This setting will make VMware interpret each

assembly instruction instead of executing them directly on the processor. Therefore, the result of
a SIDT instruction will not be an address in the OxffXXXXXX range as one would get without

this setting.

| isolation.tools.getVersion.disable = "TRUE" |
Will thwart the backdoor 1/0 check.

Furthermore, a VMWare virtual machine's SMBIOS data will show VMWare Inc, by default, as
the system manufacturer and VMWare Virtual Platform as the system model. While this
information is not directly editable in the VM settings, you can however edit the virtual machine's
configuration file to instead pass along the SMBIOS System Manufacturer and Model info from

the host computer. The config command that should be added to vmx file is:

| SMBIOS.reflecthost = "TRUE"

Chapter 2. Malware Analysis Environment
31

Please note that, the best and most popular paper for VM Anti Detection is the Thwarting Virtual
Machine Detection, that was very helpful on Static and Dynamic Code analysis is: Liston, Tom,;

Skoudis, Ed;, "On the Cutting Edge: Thwarting Virtual MachineDetection," SANS, 2006 *’.

VMX setup for system time check

The under analysis ransomware has a sophisticated check of system time. More specifically
the verification of date and time is being done at binary’s location .fext:004026CC., where the
valid range to execute the ransomware is from the epoch time 1410739200, which is being
converted as human readable date to GMT: Monday, September 15, 2014 12:00:00 AM, until the
epoch time 1416009600, which is being converted as human readable date to Saturday, November
15,2014 12:00:00 AM.

The bypass solution of the system time check, without patching the binary, is to set the
virtual BIOS real time clock of the virtual system, to the epoch time 1410739300, each time the

virtual machine is powered on:

rtc.startTime = "1437997063"

tools.syncTime = "FALSE"
time.synchronize.continue ="FALSE"
time.synchronize.restore = "FALSE"
time.synchronize.resume.disk = "FALSE"
time.synchronize.resume.memory = "FALSE"
time.synchronize.shrink = "FALSE"
time.synchronize.tools.startup = "FALSE"
Table 4: VMX configuration for the system time check

37 Source url: https://handlers.sans.org/tliston/ThwartingVVMDetection_Liston_Skoudis.pdf

Chapter 3. Surface Analysis
32

3. Surface Analysis
3.1. Online malware repositories
3.1.1. VirusTotal
The usual first movement of a malware analyst is to upload the suspicious file at an online
repository of known malwares and If it is already analyzed, there will be results. The most famous

is VirusTotal®®

. Keep in mind that this action may alert the attacker and inform him that you have
detected an intrusion. The safest way to check a suspicious file in the VirusTotal database, without
having interactions, is to hash the file and search online for its hash value.

The check on VirusTotal was done with the SHA-256 of the suspicious file, which is
“6d2ee6b36047cdaf2c20012d1{687e2abebf71d82c420d4512f12cee0635c¢f92”. The results were
confusing with the 21/67 detection ratio. There are strong suspects that the file is malicious, but
no one has done a full analysis yet. The only suspicious indicators are the high entropy .txt section

and some mutexes that are being created.

The VirusTotal results are available offline on the Appendix D and online on the url:

https://www.Virustotal.com/#/file/6d2ee6h36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

3 VirusTotal was founded in 2004 as a free online service that analyzes files and URLSs for viruses, worms, trojans
and other kinds of malicious content. VirusTotal inspects items with over 70 antivirus scanners and URL/domain
blacklisting services, in addition to a myriad of tools to extract signals from the studied content.

https://www.virustotal.com/#/file/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

Chapter 3. Surface Analysis
33

3.1.2. HybridAnalysis

A VirusTotal alternative, Hybrid Analysis has richer results and confirms the maliciousness
of the file, but it is categorized as Spyware without useful details for its behavior. The addition
indicators are the Anti-VM tricks, Anti-Debugging tricks and the TLS®® callbacks.

Hybrid Analysis is an innovative technology integrated into the flagship product VxStream
Sandbox. VxStream Sandbox is a fully automated malware analysis system, as a standalone
software package that is automatically deployed within a limited hosted solution that is operated
from Hybrid Analysis’s servers in Germany.

The feature set of VxStream Sandbox is very extensive with hundreds of generic indicators
at its core that have proven to detect unknown threats independent of Anti-Virus signatures. The
analysis does not limit only the runtime behavior of the sample, but in the entire process memory,
using multiple timed snapshots. This allows extraction of a lot more indicators (Strings/API calls)
regardless of execution.

The Hybrid Analysis results are available offline on the Appendix D and online on the url:

www. hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

3.2. PE headers
The Portable Executable (PE) format is a file format for executables, object code and DLLs.
It is used in 32-bit and 64-bit versions of Windows operating systems. The term "portable" refers
to format's versatility within numerous environments of operating system software architecture.

The PE format is a data structure that encapsulates necessary information so that Windows OS

39 TLS Callback is Address of Callbacks, functions that are stored on .tls section, that are executed when a process or
thread is started or stopped.

http://www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92

PE headers
34

loader can manage wrapped executable code. This includes dynamic library references for linking,
API export and import tables, resource management data and thread-local storage (TLS) data. On
NT operating systems, the PE format is used for EXE, DLL, SYS (device driver), and other file
types. The Extensible Firmware Interface (EFI) specification states that PE is the standard
executable format in EFI environments. PE is a modified version of the Unix COFF file format.
PE/COFF is an alternative term in Windows development. General Portable Executable (PE)

format file layout can be described with the following graphical representations.

Offsec(h) 00 01 02 03 04 05 06 07 08 05 ORA OB OC OD OE OF

00000000 4D 5A S0 00 O3 00 00 OO 04 00 OO OO0 FF FF 00 00 MZ.......... ¥
00000010 B8 00 00 00 OO0 OO0 00 OO 40 00 OO0 00 OO0 OO0 00 00 ,....... [CIPR
Q0000020 00 00 OO0 00 OO OO OO0 ©OO OO OO0 OO0 OO QOO0 €00 00 Q00 ...vveiivieinannns
Q0000030 00 00 00 00 OO OO OO0 OO OO OO0 OO OO FO OO 00 00 ...vvevennnn 8...
00000040 OE 1F BA OE 00 B4 09 CD 21 B8 01 4C CD 21 54 68 ..°.. .I:,.1irmn

Q00000050 | B8 73 20 70 T2 BF &7 T2 61 6D 20 63 61 6E BE 6F is program canno
00000060 | T4 20 62 &5 20 T2 75 BE 20 69 EE 20 44 4F 53 20 t be run in D03

00000070 6D 6F 64 &5 2E OD OD OA 24 O0 00 00 00 00 00 00 mode....5.......
00000080 84 06 16 38 CO 67 78 6B CO &7 78 6B CO &7 78 6B . ..S8hgxkhgxkhgxk
00000090 T4 FB 89 6B C9 67 78 6B 74 FB 8B 6B B8 67 78 6B tikkEgxktiick, gxk
000000RD 74 FB BA 6B DB 67 78 6B AE 3C 7B 6A D1 &7 78 6B tiSk@gxk®<{jfigxk
000000BD AE 3C 7D 6A E3 67 78 6B AE 3C 7C 6A D1 &7 78 6B ®«<}jdgxkd<|jNgxk
000000C0O T4 FB 97 6B C5 &7 78 6B CO &7 79 6B 595 &7 T8 &B tﬁ—kﬁgxkﬁgyk'gxk
000000DD 12 3C 71 6A C1 67 78 6B 12 3C 7A 6A C1 67 78 6B .<qgjhgxk.<zjhgzk
000000ED 52 69 63 68 CO 67 78 6B 00 00 00 00 00 00 D0 00 RichAgxk........

Q00000F0 50 45 00 00 4C 01 05 00 2ZE 8D 1B 58 00 00 00 00 PE..L...... X....
00000100 OO0 00 00 00 EO OO0 02 01 OB 01 OE 00 00 BA 00 00&........ T
Q0000110 00 82 00 00 OO0 OO 00 OO0 D5 15 00 00 OO0 10 00 Q0 .,...... 6.......

00000120 00 DO OO0 OO OO OO 40 OO0 OO0 10 00 OO0 00 02 00 00 .BD....B.........
Q0000130 06 00 00 00 OO0 OO0 00 ©OO0 06 OO0 OO0 00 OO0 €00 00 Q00vcieivivnannns
00000140 00 70 01 00 ©O O4 00 CO 00 OO0 OO OO0 O3 00 40 83 .Duvverivnienans [ch
Q00000150 00 00 10 00 00 10 OO0 0O OO0 00 10 00 00 10 00 00 n.onn
00000160 00 0O OO0 00 10 OO0 00 0O 00 00 OO0 OO0 00 00 00 00c.iuccnnnn
00000170 74 24 01 00 3C 00 00 00 00 OO0 00 00 00 00 00 00 tf..<.uuianrnnns
Q00000180 00 00 00 00 00 OO0 00 0O 00 00 00 00 Q0 00 00 00eiuccnnnn

00000180 00 &0 D1 00 B8 OE 00 00 CO 1A 01 00 38 00 00 OO0 . ..,...A...2...
Q00001A0 00 OO OO0 Q00 ©O OO OO0 ©OO OO0 QO 00 OO0 Q00 00 00 00 ...vvecivinnannns
Q0000180 00 OO0 OO0 00 OO OO 00 OO0 F8 1A 01 00 40 00 00 00 z...6...
Qog0o01co 00 0O OO OO0 OO0 OO OO0 OO OO0 DO OO OO0 14 01 00 OO0 B......
Q0000100 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00iuccnnnn
Q00001EQ 00 00 00 OO0 00 OO0 00 0O 2ZE 74 65 78 74 00 00 00 text...

Q000001F0 07 B9 00 00 00 10 00 00 00 BA OO0 00 00 04 00 00 .*....... T
Q00000200 00 00 00 00 Q00 OO0 00 00 00 00 00 00 20 00 00 60 e
00000210 2E 72 €4 &1 74 &1 00 00 BE 5A 00 00 00 DO 00 00 .rdata..%Z...B..
00000220 00 SC 00 00 00 BE 00 OO0 00 OO0 00 00 00 OO0 00 00 .M. ¥uu.ouw.onun.

00000230 00 0O OO0 00 40 OO 00 40 2E 64 61 74 61 00 00 00@8..@.data...
Q0000240 3C 12 00 00 00 30 01 0O OO0 ORA OO OO0 00 1A 01 00 <....0..........
Q00000250 00 00 00 00 00 OO0 00 00 OO0 00 OO0 00 40 00 00 CO @..a
00000260 2E 67 66 65 64 73 00 00 E4 00 00 00 00 50 01 00 .gfids..&....PE..
Q00000270 00 02 00 00 00 24 01 00 00 00 00 00 QO 00 0O 00 -
00000280 OO0 0O OO0 0O 40 OO 00 40 2E 72 65 6C 6F 63 00 00@..@.reloc..
00000290 BE OE 00 00 00 ©0 01 OO0 OO0 10 00 00 00 26 01 00 ,.... . u.vunn ..
000002RA0 00 00 OO 0D OO OO OD OO OO OD OO OO 40 DO 00 42:c0'0n- B..B

Figure 5: hexcode dump of a PE header

Chapter 3. Surface Analysis

64 bit
o 1 | 2 3 | a | 5 | 6 | 7
DO ADER
DO -
0x0000 o T TR SN S R e (e LGSR e
0x0008 TimeDatestamp o
| 0x0010 NumberOISymbolTable P
| 0x0018
| 0x0020
0x0028
0x0030
0x0038
0x0040
0x0048 32V
0x0050 ige sizeOfHeaders
0x0058 CheckSum SubSystem | oichoracteristcs
0x0060 SizeOfStackReserve SizeOfStackCommit
0x0068 SizeOfHeapReserve SizeOfHeapCommit
0x0070 LoaderFlags NumberofRVASizes
_—_thua alsize ~ VirtualAddress
‘sizeOfRawData PointerToRawData
PointerToRelocations PointerToLineNumbers
 Numberofreto ﬂwm[” ftine Characteristics

Figure 6: PEheader diagram sections broken up

The specific fields and the structure layout are being detailed described on Appendix E.

Directories

Basic Static Analysis with Windows tools
36

3.3. Basic Static Analysis with Windows tools
3.3.1. PEView

In order to see what is inside the file, a recommended tool will be used, the Portable

Executable viewer Peview .

VA, Data Value
0400084 [IMAGE_FILE_MACHINE_I366
040006
DO4D0068
D4000BC COODDOCD able
00400050 DOOD0OD0

00400054 DOED

00400056 oa0F

WAGE_FILE_RELOCS STRIPPED
_FILE_EXECUTABLE_IMAGE
FILE_LINE_NUMS_STRIPPED
FILE_LOCAL_SYNS_STRIPPED
FILE_32BIT_MACHINE
IMAGE_FILE_DEBUG_STRIPPED

SECTION réata
SECTION eh_fram

SECTION bs3
SECTION idata
SECTION CAT
= SECTION tis
IMAGE_TLS_DIRECTORY

Figure 7: malware.exe/IMAGE_NT_HEADER/IMAGE_FILE_HEADER

The common useful PE section is the IMAGE NT HEADERS and its’ subsection
IMAGE FILE HEADERS. The "Time Date Stamp" shows when the files were compiled. This is
often used as an indication of the time zone the attackers live in. Also, if the files were both
compiled on the same date within a minute of each other, indicating that they are part of the same
package. On the current scenario, the timestamp is 14 October 2014 08:18:51 UTC, which
indicates that it is crafted. On the following section we will see that the malware has a specific
hardcoded lifetime which comes into conflict with the above timestamp. Reasonably the older the

sample, the more likely it will be detected by signature-based antivirus if it is malicious.

40 PEview, as the name suggests, is a viewer for PE (Portable Executable) files. It is a program running on Windows
OS. More specifically, shows the structure and content of 32-bit Portable Executable (PE) and Component Object File
Format (COFF) files. This PE/COFF file viewer displays header, section, directory, import table, export table, and
resource information within EXE, DLL, OBJ, LIB, DBG, and other file types.

Chapter 3. Surface Analysis
37

Figures 8, 9, 10, 11 show the sections from rnsmwr.exe (malware.exe). As you can see,
the .text, .data, .rdata and .eh frame sections, have about the same size on them values on Virtual

Size and Size of Raw Data.

- msmwr. exe Wil | Data ‘ Description |\/a\ue
MAGE_DOS_HEADER 00400178 2E 74 BS 78 Name et
MS-DOS Stub Program 0040017C 74 00 00 00
MAGE_NT_HEADERS 00400180 00070848 Virtual Size
- Sighature 00400184 00001000 RWA
- IMAGE_FILE_HEADER 00400165 00070CO0 Size of Raw Data
IMAGE _OPTIONAL HEADER 0040018C 00000400 Fointer to Raw Data
00400120 00000000 Paointer to Relocations
MAGE_SECTION_HEADER .data 00400124 00000000 Paointer to Line Mumbers
IMAGE_SECTIOM_HEADER .rdata 00400198 oooo MNumber of Relocations
- IMAGE_SECTION_HEADER .eh_fram 00400194 aono MNumber of Line Mumbers
-~ IMAGE_SECTION_HEADER bss 0040019 EQS00060 Characteristics
IMAGE_SECTION_HEADER .idata 00000020 IMAGE_SChN_CNT_CODE
- IMAGE_SECTION_HEADER .CRT 00000040 IMAGE_SCN_CNT_INITIALIZED_DATA
- IMAGE_SECTION_HEADER tls 00500000 IMAGE_SCN_ALIGN_1BBYTES
-~ SECTIOM text 20000000 IMAGE_SCH_MEM_EXECUTE
SECTION .data 40000000 IMAGE_SCHN_MEM_READ
- SECTIOM rdata 80000000 IMAGE_SCN_MEM _WRITE
CQECTIO Ak femen

Figure 8: PEview IMAGE_SECTION_HEADER .text

[IS, exe WA | Data | Description | Yalue
- IMAGE_DOS_HEADER 00400140 2E B4 B1 74 MName .data
--M3-D0S Stub Program 00400144 61 00 00 00
= IMAGE_NT_HEADERS 004001A3 00000255 Wirtual Size

: Signature 004001 AC 00072000 R

MAGE_FILE_HEADER 00400180 00000400 Size of Raw Data

- IMAGE_OPTIONAL _HEADER 00400184 00071000 Pointer to Raw Data
IMAGE_SECTION HEADER .text 00400183 00000000 Pointer to Relocations
0040018C 00000000 Painter to Line Mumbers
IMAGE_SECTION_HEADER .rdata 004001Co 0000 Mumber of Relocations
- IMAGE_SECTION_HEADER .eh_fram 0o04001C2 0000 Mumber of Line Murnbers
- IMAGE_SECTION_HEADER .bss o04001C4 C0B00040 Characteristice
IMAGE_SECTION_HEADER .idata 00000040 IMAGE_SCH_CNT_INITIALIZED_DATA
IMAGE_SECTION_HEADER .CRT 00600000 IMAGE_SCN_ALIGN_32BYTES
IMAGE_SECTION_HEADER .tls 40000000 IMAGE_SCN_MEM_READ
- BECTION text 80000000 IMAGE_SCN_MEM_WRITE

- SECTION .data
- SFCTION rdata

Figure 9: PEview IMAGE_SECTION_HEADER .data

[PRSI, BXE iy | Data \ Description | “alue
MAGE_DOS_HEADER 004001C8 2E 72 B4 61 Mame rdata
MS-DOS Stub Program 004001CC 74 61 00 00
B IMAGE_NT_HEADERS 00400100 0000BCO0 Virtual Size
- Sighature 00400104 00073000 R
IMAGE_FILE_HEADER 00400108 0000BCO0 Size of Raw Data
- IMAGE_QOPTIONAL_HEADER 004001 D¢ 00071400 Pointer to Raw Data
IMAGE_SECTION_HEADER text 004001 E0 00000000 Painter to Relocations
MAGE_SECTIOM_HEADER .data 004001 E4 00000000 Paointer to Line Murmnbers
004001 E5 nooo Mumber of Relocations
IMAGE_SECTIOM_HEADER .eh_fram 004001 EA oooo Mumber of Line Murnbers
-~ IMAGE_SECTION_HEADER .bss 004001 EC 40600040 Characteristics
- IMAGE_SECTION_HEADER .idata 00000040 IMAGE_SCN_CHT_INITIALIZED_DATA,
IMAGE_SECTION_HEADER .CRT 00600000 IMAGE_SCHN_ALIGN_32BYTES
-~ IMAGE_SECTION_HEADER tls 40000000 IMAGE_SCN_MEM_READ

~ SFCTION tavt

Figure 10: PEview IMAGE_SECTION_HEADER .rdata

38

Basic Static Analysis with Windows tools

[E1- MSMwWr. exe WA | Data \ Description | “alug
i IMAGE_DOS_HEADER 004001F0 ZE B5 68 5F Mame .eh_fram
MS-DO3S Stub Program 004001F4 B6 72 61 6D
- IMAGE_NT_HEADERS 004001F8 000014F8 “irtual Size
- Signature 004001F G 00074000 R
- IMAGE_FILE_HEADER 00400200 00001600 Size of Raw Data
- IMAGE_OPTIONAL_HEADER 00400204 00078000 Pointer to Raw Data
IMAGE_SECTION_HEADER text 00400205 00000000 Pointer to Relocations
IMAGE_SECTION_HEADER .data 0040020C 00000000 Pointer to Line Numbers
IMAGE _SECTION HEADER rdata 00400210 0000 Mumber of Relocations
00400212 00oo Murnber of Line Mumbers
IMAGE_SECTION_HEADER bss 00400214 40300040 Characteristics
IMAGE_SECTION_HEADER .idata 00000040 IMAGE_SCN_CNT_IMITIALIZED_DATA
IMAGE_SECTION_HEADER .CRT 00300000 IMAGE_SCN_ALIGN_4BYTES
- IMAGE_SECTION_HEADER tls 40000000 IMAGE_SCN_MEM_READ
- SECTION .text
Figure 11: PEview IMAGE_SECTION_HEADER .eh_frame
=l IS, exe Al | Data \ Description | “alug
MAGE_DOS_HEADER 00400218 2E B2 73 73 hame .bss
M3S-DOS Stub Program 0040021C 00 00 00 00
MAGE_MNT_HEADERS 00400220 0000GE80 Virtual Size
- Signature 00400224 0007CO00 RWA
IMAGE_FILE_HEADER 00400228 00000000 Size of Raw Data
IMAGE_OPFTIONAL_HEADER 0040022C 00079600 Pointer to Raw Data
IMAGE_SECTION_HEADER text 00400230 00000000 Pointer to Relocations
IMAGE_SECTION_HEADER .data 00400234 00000000 Pointer to Line Mumbers
IMAGE_SECTION_HEADER .rdata 00400238 ooon MNurnber of Relocations
IMAGE_SECTION_HEADER .eh_fram 00400234, ooon MNurnber of Line Numbers
0040023C COE00080 Characteristics
MAGE_SECTION_HEADER .idata 00000050 IMAGE_SCN_CNT_UNINTIALIZED_DATA
- IMAGE_SECTION_HEADER .CRT 00600000 IMAGE_SCN_ALIGN_32BYTES
- IMAGE_SECTION_HEADER .tls 40000000 IMAGE_SCN_MEM_READ
- SECTION text 50000000 IMAGE_SCN_MEM_WRITE
- SECTION .data
Figure 12: PEview IMAGE_SECTION_HEADER .bss
[Zh st exe i | Data | Description \ alue
L IMAGE_DOS_HEADER 00400240 2E 69 B4 B1 Name idata
W3-003 Stub Program 00400244 74 61 00 00
= IMAGE_NT_HEADERS 00400248 00000CDE “irtual Size
: Sighature 0040024C 00083000 RwA
- IMAGE_FILE_HEADER 00400250 O00DOEOD Size of Raw Data
- IMAGE_OPTIONAL_HEADER 00400254 00079500 Pointer to Raw Data
- IMAGE_SECTION_HEADER .text 00400258 00000000 Pointer to Relocations
- IMAGE_SECTION_HEADER .data 0040025C 00000000 Pointer to Line Mumbers
IMAGE_SECTION_HEADER .rdata 00400260 ooan MNumber of Relocations
IMAGE_SECTION_HEADER _eh_fram 00400262 ooan Number of Line Mumbers
IMAGE_SECTION HEADER .hss 00400264 C0300040 Characteristics
00000040 IMAGE_SCH_CMT_INITIALIZED_DATA
- IMAGE_SECTION_HEADER .CRT (00300000 IMAGE_SCH_ALIGN_4BYTES
- IMAGE_SECTION_HEADER .tls 40000000 IMAGE_SCN_MEM_READ
SECTION texd 50000000 IMAGE_SCN_MEM_WRITE
SECTION .data
Figure 13: PEview IMAGE_SECTION_HEADER .idata
[PRSI, BXE iy Data \ Description | “alue
- IMAGE_DOS_HEADER 00400268 2E 43 52 54 Name .CRT
MS-DOS Stub Program 0040026C: 00 0O 00D 00
MAGE_NT_HEADERS 00400270 00000018 Wirtual Size
- Signature 00400274 00084000 RWA
IMAGE_FILE_HEADER 00400275 00000200 Size of Raw Data
IMAGE_OPTIONAL_HEADER 0040027 ¢ 00072400 Pointer to Raw Data
- IMAGE_SECTION_HEADER .text 00400280 00000000 Pointer to Relocations
- IMAGE_SECTION_HEADER .data 00400284 00000000 Pointer to Line Murmbers
IMAGE_SECTIOM_HEADER .rdata 00400285 oooo MNumber of Relocations
- IMAGE_SECTION_HEADER .eh_fram 00400284 ooaa Murnber of Line Murnbers
- IMAGE_SECTION_HEADER .bss 0040028C CO300040 Characteristice
IMAGE_SECTIOMN _HEADER .idata 00000040 IMAGE_SCN_CNT_INITIALIZED DATA,
00300000 IMAGE_SCN_ALIGH_4BYTES
- IMAGE_SECTION_HEADER tls 40000000 IMAGE_SCN_MEM_READ
- SECTION .text 50000000 IMAGE_SCN_MEM WRITE
SECTION .data
Figure 14: PEview IMAGE_SECTION_HEADER .CRT

Chapter 3. Surface Analysis

39
- st exe iy | Data \ Description | Yalue
‘- IMAGE_DOS_HEADER 00400280 2E 74 BC 73 Mame Als
MS-DOS Stub Program 00400254 00 00 00 00
IMAGE_NT_HEADERS 00400258 00000020 Virtual Size
- Signature 0040023C 00035000 RvA
- IMAGE_FILE_HEADER 00400240 00000200 Size of Raw Data
- IMAGE_OPTIONAL_HEADER 00400244 0007A500 Pointer to Raw Data
- IMAGE_SECTION_HEADER text 00400243 00000000 Pointer to Relocations
- IMAGE_SECTION_HEADER .data 004002AC 00000000 Pointer to Line Mumbers
- IMAGE_SECTION_HEADER .rdata 00400280 0000 Mumber of Relocations
- IMAGE_SECTION_HEADER .eh_fram 00400282 0000 Mumber of Line Murnbers
- IMAGE_SECTION_HEADER .bss 004002684 CO300040 Characteristics
- IMAGE_SECTION_HEADER .idata 00000040 IMAGE_SCN_CNT_INITIALIZED_DATA
IMAGE SECTION HEADER .CRT 00300000 IMAGE_SCM_ALIGH_4BYTES
40000000 IMAGE_SCN_MEM_READ
SECTION .text 80000000 IMAGE_SCN_MEM_WRITE
- SECTION data
L BFCTION rdata

Figure 15: PEview IMAGE_SECTION_HEADER .tls

The .bss section may seem suspicious because it has a much larger virtual size than raw
data size, but this is normal for the .data section in Windows programs. But note that this
information alone does not tell us that the program is not malicious; it simply shows that it is likely
not packed and that the PE file header was generated by a compiler.

Another useful section is the .idata with the IMPORT Address Table, from where we can

gather information for the functions from other libraries that are used by the malware.

L Peview - al8lx
e v o e
20000 ® ==

Doscrigion. Valus -
Hirotlame R OE CryptAcaureConiesth

O CrypaGenRandorn

0078 CrypeRslsasetonant

Q0F5 Galllsartlames

190 RugOperiayEna

AP OLL

MPORT Diractory Table
MPORT Name Table
IMPORT Address Table
IMPORT HetaMamss & DLL Names

04320
Oo4aIIFa
O04a3FE

]

hovieg AT Abess Tatks

frewetn| . & 0] [T en[® 00 Gl (& s W

Figure 16: Section .idata/IMPORT Address Table

The full structured list of imports can be found at Appendix F/List of

Basic Static Analysis with Windows tools
40

Last but not least, we figure out a not usual section, the .tls section. Malware authors
employ numerous and creative techniques to protect their executables from reverse-engineering.
The arsenal includes an anti-debugging technique called 7LS callback. The approach is not new,
yet it is not widely understood by malware analysts.

TLS explanation

According to Microsoft, Thread Local Storage (TLS)*' is a mechanism that allows
Microsoft Windows to define data objects that are not automatic (stack) variables, yet are "local to
each individual thread that runs the code. Thus, each thread can maintain a different value for a
variable declared by using TLS." This information is stored in the PE header. (Windows uses the
PE header to store meta information about the executable to load and run the program.)

A programmer can define TLS callback functions, which were designed mainly to initialize
and clear TLS data objects. From the malware author's perspective, the beauty of TLS callbacks is
that Windows executes these functions before executing code at the traditional start of the program.
Since, windows loader first create a thread for the process to run, the code in TLS Callback runs

even before the program reach at entry point. Malwares use these functions/Callbacks to store their

41 All threads of a process share its virtual address space. The local variables of a function are unique to each thread
that runs the function. However, the static and global variables are shared by all threads in the process. With thread
local storage (TLS), you can provide unique data for each thread that the process can access using a global index. One
thread allocates the index, which can be used by the other threads to retrieve the unique data associated with the index.
The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes available in each process.
This minimum is guaranteed to be at least 64 for all systems. The maximum number of indexes per process is 1,088.
When the threads are created, the system allocates an array of LPVOID values for TLS, which are initialized to NULL.
Before an index can be used, it must be allocated by one of the threads. Each thread stores its data for a TLS index in
a TLS slot in the array. If the data associated with an index will fit in an LPVOID value, you can store the data directly
in the TLS slot. However, if you are using a large number of indexes in this way, it is better to allocate separate storage,
consolidate the data, and minimize the number of TLS slots in use. Source url: https://docs.microsoft.com/en-
us/windows/desktop/ProcThread/thread-local-storage

Chapter 3. Surface Analysis
41

malicious code or Anti-Debug methods. It makes malware analyst confused while they are

debugging the code since they first break at Entry Point, but the malicious code is already executed.

rrrrrr

00X
00185014 OODOOOOD

CTION 1is
BAAGE_TLS DIRECTORY

Figure 17: Section .tls/Address of Callbacks

The Memory address 00484000 is written down, and we will be very useful to start
correctly the dynamic analysis. More specifically this address will be the entry point of the
executable, during the execution and not the start of the program. This is the purpose of TLS

anyway, that in this case is being abused from a malicious software.

3.3.2. PEiD

One way to detect packed files is with the PEiD program. PEiD can detect the type of
packer or compiler employed to build an application, which makes analyzing the packed file much
easier.
Packing and Obfuscation

Malware writers often use packing or obfuscation to make their files more difficult to detect

or analyze. Obfuscated programs are ones whose execution the malware author has attempted to

Basic Static Analysis with Windows tools
42

hide. Packed programs are a subset of obfuscated programs in which the malicious program is
compressed and cannot be analyzed. Both techniques will severely limit your attempts to statically
analyze the malware. When the packed program is run, a small wrapper program also runs to
decompress the packed file and then run the unpacked file. When a packed program is analyzed
statically, only the small wrapper program can be dissected.

In mls.exe case, in order to define if a Portable Executable file is packed or not, the PEiD*2

have been used.

"% PED v0.95 _ ol x|

File: ‘ C:\Users\Administrator\Desktop\ransomware\malware. exe III

Entrypoint: |000012A0 EP Section: | .text
File Offset: [000006A0 First Bytes: [83,EC,1C,C7
Linker Info: [2.22 Subsystem: [Win32 GUT

| Mothing found *

| Multi Scan | |Iask\.’\ewer| ‘ Options | | About

|7 Stay on top

Extra Information

FileName: | C:\Users\Administrator\Desktop\ransomware\malware.exe
Detected: [Nothing found *

Scan [Mormal

Entropy: |6.04 (Mot Packed)

EP Check: [Mot Packed

Fast Check: [Mot Packed

Figure 18:PEiD results

42 PEID (PE iDentifier) detects most common packers, crypters and compilers for PE files. It can detect more than 470
different signatures in PE files. There are 3 different and unique scanning modes in PEiD. The *Normal Mode* scans
the PE files at their Entry Point for all documented signatures, the *Deep Mode* scans the PE file's Entry Point
containing section for all the documented signatures. This ensures detection of around 80% of modified and scrambled
files, and the *Hardcore Mode* does a complete scan of the entire PE file for the documented signatures. The hardcore
mode should be used as a last option as the small signatures often tend to occur a lot in many files and so erroneous
outputs may result.

Chapter 3. Surface Analysis
43

PEiD shows that the mls.exe is not packed and the programming language that the file was
written in cannot be detected. An important information for the PE is the Entropy which is
significantly high*® for an unpacked version. On the submenu of the application, we can also have

detailed information for the PE directory.

=10] %]
File: |C:\Users\hdministrator\Desktop\ransomware\malware.exe E
PE Details X
— Basic Information EP Section: |.text
EntryPoint: |000012A0 SubSystem: |0002 —
Tyl ¥ First Bytes: [83,EC,1C,C7
ImageBase: 00400000 NumberOfSections: |0008
SizeOfimage: | 00086000 TimeDateStamp: [543CDC6B Subsystem: |Win32 GUI
BaseOfCode: |00001000 SizeOfHeaders: | 00000400
BaseOfData: |00072000 Characteristics: |030F
SectionAlignment: |00001000 Checksum: |0007BAEZ iewerl | Options | | About || Exit |
FileAlignment: | 00000200 5izeOfOptionalHeader: |00ED
Magic: |0108 NumOfRvaAndSizes: |00000010

|
RVA SIZE DataBlockStartVA: ’W
BxportTable: |00000000 00000000 DataBlockEndVA: |0048501C
Impor(Table: 00083000 |ooooocos [] IndexVariableVA: ’W
Resource: |[]00[][][][][] |nmmmmg CallbackTableVA: 00484004
TLSTable: 00085000 00000018 [] SizeOfZeroFill: ’W
Debug: 00000000 00000000 Characteristics: 00000000

— Directory Information

Figure 19: PEID Details & TLS table view

43 High refers to a value that is more than 5. Entropy analysis is used for a more generalized insight into the contents
of PE files, mostly in regard to packing, compression and cryptography [5, 7] that are common with packers. When
analyzing entropy, PE structural information such as sections can be taken into account. The main challenge with this
approach is achieving sufficient expressiveness in presenting entropy information, because naive approaches can be
fooled by file manipulation such as padding.

Basic Static Analysis with Windows tools
44

Changing the parameters on PEiD and adding some plugins**, the results were the same.
Note that Virtual Address (VA) is the original address in the virtual memory, whereas RVA is the

relative address with respect to the ImageBase®.

3.3.3. Detect It Easy

Due to the results of PEiD we force to dig more on the PE file and its structure. The tool
that will give more information for the PE will be the Detect It Easy, or abbreviated "DIE"*. Other
programs of the kind (PEID, PE tools) allow to use third-party signatures. Unfortunately, those
signatures scan only bytes by the pre-set mask, and it is not possible to specify additional
parameters. As the result, false triggering often occurs. More complicated algorithms are usually
strictly set in the program itself. Hence, to add a new complex detect one needs to recompile the
entire project, by the authors themselves. On the other hand, Detect It Easy has totally open
architecture of signatures. Third-party algorithms of detects or modify those that already exist, is
possible This is achieved by using scripts. The possibilities of open architecture compensate these

limitations.

4 Note that many PEiD plugins will run the malware executable without warning, so it is crucial to use this tool under
a safe environment. In addition, alike other programs, especially those used for malware analysis, PEiD can be subject
to vulnerabilities. In particular, PEID version 0.92 contained a buffer overflow that allowed an attacker to execute
arbitrary code, which would have allowed a clever malware writer to write a program to exploit the malware analyst’s
machine.

4 In calculation, RVA = VA - ImageBase. Means for VA = 400100 and ImageBase = 400000, RVA will be 100.

46 "Detect It Easy" is a cross-platform application, apart from Windows version there are also available versions for
Linux and Mac OS. Detect It Easy, or abbreviated "DIE" is a program for determining types of files. First, DIE
determines the type of file, and then sequentially loads all the signatures, which lie in the corresponding folder.
Currently the program defines the following types: MSDOS, PE, ELF, MACH, Text files and Binary all other files.
GitHub link of the tool: https://github.com/horsicg/Detect-It-Easy

Chapter 3. Surface Analysis
45

[+ Detect It Easy 2.00 i [m] |
File name: [Ci UsersWindows 7Flare/Downloads rtms, exe]

Scan [Scripts | Flugins | Log]

E] Type: Size! 501760 [Enktropy HFLC H 5 H H]
’ Expatk ” Impart ” Resautce ” i erlany ” HET: l
EntryPoint: | oo0012a0 || 3 ImageBase: | 00400000]
MumberOFSections: oons SizeQfImage: [OO0S&E000]
compiler | Mirea -] . s 2
linker GMU linker Id (GMU Binutils)(2, 2Z)[EXESZ] b 5 7
FN
:
[Detect It Easy |V][Signakures H Info]
Scan
E:xik

Figure 20:DiE scan results

Some quick information we can get from main GUI panel is that the compiler is MinGW

and the linker is the GNU. Also, no packing was detected.

[Hmport . 2x|
| DIl Name | OriginalFirst Thunk | TimeDateStamp | ForwarderChain | Name | FirstThunk |
ADWAPLSZ.DLL 0005308 Qoooooon Qooo0oaoo 00053act 0005327c
KERMEL3Z . dll 000530a4 Qoooooon aoooooog 0003 3heac 00053294
msvecrt.dll 00053140 Qoooooon aoooooog 00083bes 00053330
msvert,dll 00033150 00000000 00000000 000&3cad 00053340
SHELL32.DLL 00053264 Qoooooon aoooooog oo033che 00053454
WSOCK 32, DLL 0008326 Qoooooon aoooooog 00053cce 0005345c
Thunk I Crdinal | Hint I Mame
Q005346c 005e CryptAcquireConkext
o00g3484 006e CryphEenRandom
Q00g3495 0078 CryptReleaseContext
000534ac 00fs GetUserMames
000334bc 019d RegOpenkeyExs

Figure 21: DiE results for imports

Basic Static Analysis with Windows tools
46

The imports of the PE are detailed presented, considering that Crypto Functions and a

Registry open, are revealed.

[13Detect It Easy 2.00 - -10] x|
File: %
c l Check packed status l (%] pead only
¥, Address | Y Size | Offset | R.5ize | Flags | Entropy | Packed | @
00001000 00070b43 00000400 0OO70cO0 e0SO00060 6,10 no
[.data 00072000 00000258 Q0071000 Q0000400 cO600040 1.10 no
£ rdata 00073000 00006cO0 QOD71400 0OO0DG6CO0 40600040 5.25 no
; .eh_fram 00073000 000014F8 00078000 00001600 40300040 4.74 no
\bss 0007c000 Q000BB&0 Q0079600 00000000 cO6000S0 0.00 no
\idata 00083000 00000cds 00079600 00000e00 300040 5.01 no
{CRT 00054000 00000018 OQO007a400 00000200 cO300040 0.1z no "
s 00085000 00000020 QO007as00 00000200 cO300040 0.23 % -
l Add mew section l l Delete |ast section l K
Detect [T Easy [=iOnatares] About
Scan
[| s | zams

Exit:

Figure 22: DiE results for several packed sections

In continuous, at the Sections option there are two extra information about possible
packaging in each section and entropy measurement for each section also. The sections are (8)
eight, as presented at PEview, with the above mentioned .tls section making the difference in this
PE file. Nevertheless, the sections CRT %" and eh_fram *® is a confirmation that the PE file is

written in C++.

47 Data added for supporting the C++ runtime (CRT). A good example is the function pointers that are used to call the
constructors and destructors of static C++ objects.

48 When using languages that support exceptions, such as C++, additional information must be provided to the runtime
environment that describes the call frames that much be unwound during the processing of an exception. This
information is contained in the special sections .eh_frame and .eh_framehdr. Note that, the format of the .eh_frame
section is similar in format and purpose to the .debug_frame section.The .eh_frame section shall contain one or more
Call Frame Information (CFI) records. The number of records present shall be determined by size of the section as
contained in the section header. Each CFI record contains a Common Information Entry (CIE) record followed by 1

Chapter 3. Surface Analysis

[V PE basic info 4)l [TimeDateStamp i |
(3] read anly (%] Read only
=
Stub NT Headers [S43edesb | [1ofi4fzoifisist am (5
Directories Sections COrerlay Cancel Apply
AddressOFERkryPoink a00012a0
Im 2]
ImageBase 00400000
SizeOFImage 00086000 [} (%] Read anly
TirmeDatestanmp 543cdoeb I 100z I [WINDOWS Gl | _]
Checksur 0007basz
Subsystem 02 Cancel Apply
oK Cancel Apply

[VAHEX,/Disasm

Type Mode

xBE-A5M s 32 |~

o Address as HEX (%] Read only

Syntax Irmage
MASH ~| e B Reload
Cursor; 401zal Selection: 401za0

47

=101 %]

EntryPoink

Size: 1

on401z2a0 | BEECLC

oo401 C7042402000000
00401Zaa | FFLE50334500
004012k0 | E24EFDFFFF
D0401ZbE | BD74ZE00
004017k% | BDECZ700000000
00401220 | AL7E334800

o04012cE5 | FFEO
004012c? | B9F6
004012cS | BDBCEZT00000000
o0401lzd0 | AleC324800
Q0401245 | FFEO
oo401zd7 | 20
oo401z2ds | 90
o0401z2dS | S0
00d01lz2da | 50
o0d0lzdbh | 20
o040lzde | 20
oo40lzdd | 20
o0d40lzde | S0

sk esp, 1Ch

wov dword ptr [espl, 00000002k
call dword ptr [00453350h]

call 00401000k

lea esi, dword ptr [esit00h]

lea edi, dword ptr [edi+00000000k]

now eax
Jup eax
mow esi, esi

lea edi, dword ptr [edi+00000000k]
wow eax, dword ptr [0048326Ch]
Jup =ax

nop

nop

nop

nop

nop

nop

nop

nop

duord ptr [00453378h]

-

[]

Figure 23:DiE PE basic info on Hex view with disasm

The DIE tool gives the ability to dig in the from a window with PE basic information. The

important information for our analysis is that the sample has a GUI, which means that the malware

want interaction with the victim or to present something.

or more Frame Description Entry (FDE) records. Both CIEs and FDEs shall be aligned to an addressing unit sized

boundary.

Source url: http://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html

Basic Static Analysis with Windows tools
48

([petect It Easy 2.00 P [=])

File name: C:Users{windows7Flare/Downioads ms. exe

Sean | Seripts | Plugins | Log |

Type 3 Size: 501760 Entropy FLE s H
[Export] Import [Resuurce][Oyerlay][HET] FE
EntryPoint; 00001230 > ImageBase: 00400000
Humber CFSections: ooos || » SizeOfimage: 00086000
compiler MinGWi-I[-] 3 2 =
lirker L linker Id (GNU Binutils)(2, 22)[EXE32] 57

2l

Offset: a Size: 64
38 Read only
&_magic Sadd
e_chlp 0090
ecp 0003 Fy
e_crlc 0000 = Options
Detect e e_cparhdr o004 ;
etect It Eas! -| | Signatures Info
v e_minalloc 0000 L < dhou
Scan
[e_maxalloc FfEf > 234 ms.
s 0000 Exit
esp aoba
[P basic 21 x| e_csum o000 T ~Ioix|
=ip 000
3] fread oy, s o000 Type Mode Syntax Image
x o — = == = Reload 5005 Header
Stub NT Headers e Ifarlc 0040 L
eovno 0000 %] Address as HEX (8] Read only Cursar 400000 Selection: 400000 Size: 40
Directories Sections Overlay e_resl3] 0000
&_oemid 0000
AddressOFEntryPeint 00001230 - CISADEET
e_geminfo 0000 OB
ImageBiase 00400000 o) 200 00400020
&_res:
SizeOfImage 00086000 - LD e
e res2f1] 0000 00400040 "6 € €€ 16T
TimeDateStamp S43edcsh e_res2[2] 0000 00400050 | €3 73 20 70 72 €F €7 72 €1 €D 20 €% €1 &E €E €F | iz.program.canne
Checksum 0007bae2 § ol 00400060 | 74 20 62 65 20 72 75 6E 20 69 6K 20 44 4F 53 20 | t.be.run 05
e_res2[3] 0000 00400070 | €D €F €4 6§ ZE OD OD OA Z4 00 0O 00 00 00 00 0O
Subsystem 0z o _res2(4] 000 00400080 | SO 45 00 00 4C 0L 02 00 6B DC 3C 54 00 DO 00 OO
- 00400090 | 00 00 00 00 E0 0D OF 03 OB 01 02 16 00 OG 07 00 | ... €. ...
& resz[s] 0000 0040000 | 00 &4 07 00 00 0D 00 00 &0 12 00 00 00 10 00 00 | €.
3 Cancel gl o res?[6] 0000 00400010 | 0D 20 07 00 DO 0D 40 00 00 10 0O 00 00 DZ 00 00 |@..
- 0040000 | 04 00 00 00 D1 0D 00 00 04 00 0O 00 00 00 00 00 |_..
e res2l7] oo 00400040 | 00 60 05 00 00 04 0D 00 2 BA 07 00 02 00 0O 00 |-
e_res2{s] 000 0040000 | 00 0 20 00 00 10 00 DO 00 00 10 00 00 10 00 06 | ...
o resela] o000 00400020 | 0D 00 00 DO 10 0D DO 00 0D 00 0O 00 00 00 0D 0O | ...
o 00400100 | 00 3 08 00 DE OC 00 00 G0 00 0O 00 00 00 00 00 | .0..§..
=_Fanew 00000080 00400110 | 0D 00 00 00 0O 0D 00 0O 00 00 00 00 00 00 0D 0O | ...
00400120 | 00 0O 00 00 00 0O 00 00 00 00 0 00 00 00 00 OO
3 tems o Cancel T 00400120 | 0D 00 00 00 0O 0D 00 00 00 00 00 00 00 00 00 00 |_... B
LN
<>

Figure 24: DiE Dos Header detailed preview in Hex disasm

The DOS Header is full of information for the PE file, but for the analysis only the
e_lfanew™ attribute is useful. The final field of Dos header, e Ifanew, is a 4-byte offset into the
file where the PE file header is located. It is necessary to use this offset to locate the PE header in
the file. Note that the e [fanew has 80 as value and the size is the Dos Header is 64.

Following the DOS Header is the MS DOS stub. The file under analysis shows the known

message, that is not compatible with DOS mode.

49 The e_Ifanew definition is separated in two parts. The fanew, which means: file address of new exe header and the
e_prefix which helps deal with old K&R compilers that did not yet keep structure members in its own symbol table.
The | after the prefix, is the system Hungarian for LONG and the "Long" stands because it's from the 16-bit era and
the variable size is 32 bits

Chapter 3. Surface Analysis

4 HEX, Disasm =]
[+ 5tub 2=l Type Mods Syntax Image
— = = - e = Reslnad M5 0085 Stub
Offset: 64 Size: 64 [
E Read only H X address as HEX @ Read only Cursor: 400040 Selection: 400040 Size: 40

[Add l [Replace] [Remave Durp (E-ITUEAD
00400050
00400060
Stub present oK 00400070
00400080 | 50 45 00 00 4C 01 08 00 €B DC 3C 54 00 00 00 OO
00400050 | 00 00 00 00 EO 0O OF 03 OB 01 02 1€ 00 0cC 07 00 | .
00400020 | 00 A4 07 00 00 00O 00 OO0 A0 1z OO0 OO0 OO0 10 00 00 | . 4. .
004000k0 | 00 Z0 07 00 00 00 40 00 00 10 00 00 00 OZ 00 00 |
004000c0 | 04 00 00 00 OL 0O 00 00 04 00 OO0 00 00 90 00 00 |
00400040 | 00 &0 02 00 00 04 OO0 OO E2 BA 07 00 0Z 00 00 00 | .
004000=0 | 00 00 20 00 00 10 00 00 00 OO0 10 00 00 10 00 00 |
004000€0 | 00 00 00 00 10 00 00 00 00 00 OO0 00 00 00 00 00 |
00400100 | 00 20 08 00 2 OC 00 00 00 OO0 OO0 00 00 00 00 00 | . 0. .4 .
00400110 | 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 |
00400120 | 00 00 00 00 0O 00 00 00 00 00 OO0 00 00 00 00 00 |
00400120 | 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 00 00 | .
00400140 | 00 50 08 00 18 00 00 00 OO0 OO0 OO OO0 OO0 OO0 00 00 | .P..
00400150 | 00 00 00 00 0O 0O 00 00 7C 32 08 00 FO 01 00 OO |

i

00400160 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [...
00400170 | 00 00 00 00 00 00 00 00 2E 74 65 78 74 00 00 00

Figure 25:DiE Stub header

The next section of headers i1s the NT headers section, which is the structure
_IMAGE FILE HEADER. In this section, the TimeDateStamp and the number of the section are
taking place, which are already captured and analyzed. The DIE tool explains in depth the
Characteristics and the type of machine the executable was built for. Specifically, the PE file under
analysis was built for ;386 machine, which means for /ntel x86 architecture. The same information
comes from Characteristics, where the 32bit machine is checked. The Characteristics field
identifies specific attributes about the file and among the others, the debug stripped have our
attention in the analysis. The debug stripped™ indicates that debugging information is removed

from the image file.

%0 1t is possible to strip debug information from a PE file and store it in a debug file (.DBG) for use by debuggers. To
do this, a debugger needs to know whether to find the debug information in a separate file or not and whether the
information has been stripped from the file or not. A debugger could find out by drilling down into the executable file
looking for debug information. To save the debugger from having to search the file, a file characteristic that indicates
that the file has been stripped (IMAGE_FILE_DEBUG_STRIPPED) was invented. Debuggers can look in the PE file
header to quickly determine whether the debug information is present in the file or not.

Basic Static Analysis with Windows tools
50

lI[77 Detect It Easy 2.00 =10l x|

File name: C:fUsers/Windows7Flare/Downloads rtms. exe

Scan | Scripts | Plugins | Log |

Type: | FE Size: | 501760 (S
Import Type Made Syntax Image —_—
= - - =N - Reload NT Headers
EntryPoint: 00001240 = .
HumberOf Sections: o008 > 3%| address as HEX (3] Read orly Cursor: 400030 Selection: 400050 Size: 78
compiler MinGWE-)[-] EOEEEED
linker U linker Id (GHU Binutils)(2 22)] 00400050
00400020
004000b0
0040000
00400040
004000e0
no4000£0
no400100
Do400110
Do4n01z0
00400130
DO400140
DO400150
00400160
= 00405170
00400180
[3€] Read anly 00400150 I
004001a0 . M.
[Ol4c NN [-] 004001b0 | 00 04 00 00 00 10 07 00 00 OO0 00 00 00 00 80 060 | . oo @
Cancel - Al =
2l NT Headers. 2] x|
[3€] read oty Offset: 128 Siza: 120 [%€] Read only:
Stub MT Headers Signatura: 00004550 [3€] Read aonly 030F
Directaries Sections Overla File Header
i | Optional Header 86 S2ETT_MACHINE
AddressOFENtyyPaint 00001230 Machine D14 [RELOCS. STRIFPED:) DEBUG_STRIFPED
ImageBase 00400000 HumberOf Sections 0008 | B EAREE TR) e A AU P, SR
SizeOfImage 00056000 TimeDateStarnp S43cdeet
[3€] LIE_UMs_STRIFFED [HET_RUN_FROM_SwWaE:
TimeDatestamp S43cdceb PointerToSymbolTable 00000000
CheckSum 0007bas2 Humber OFSymbols 00000000 | LOCAL G STHRED - stsrEn
Subsystem 0z SizeCFOptionalHeader 00s0 (] AGGRESIVE W5 TRIM [puu
Characteristics 030F [UARGE_ADDRESS AWARE [Wp_SYSTE_ oLy
o p— [BYTES_REVERSED LG [BY¥TES_REVERSED_HI
K Cancel Al
Cancel Apply

Figure 26: DIiE Characteristics on NT Header-File Headers

There are some Optional Header available on File Headers of NT Headers. The
AddressOfEntryPoint field has the value 000012a0 and is the most interesting for the PE file
format. This field indicates the location of the entry point for the application and, perhaps more

importantly to system hackers, the location of the end of the Import Address Table (IAT).

[mewees)%
U petect 1t Easy z.00 =18l x| i T Pitures
Offest: | 122 |simi| 1 b
Fle o s WideveeTFlae Dourioack e a0 -
Signatre: | ooaosso ® R
scon | sapts | Pans | Loa o yoe=— -
File Hesdsr | Cptinal Header
[T HEx /Disasm =101
Magc 53 o = 2
e thode Syntax Image [[B e ori
HEX - - - FE A Raioed Hoaders 4 MirceLinkerver sion. 16
SeCfCode 00070c00 Dos Header Stub NT Headers
® Advosz acHER) st o Cursar: | aoosmo Selectons | 400000 e w P —
m SizeOfUninkiskesdDats 00000000 L] ok, I
a0400370 >
Saanoen iekressottrtryPint o0z . PT——e—
a0san3sa Baceofcode oocmcm
Fri— 040000
0940090 Basefats 00072000
a0so03n0 Seatrimage tossonn
a0sanzen Imagebase 004000 o —
00400340 SectonAbgnment 00001000 a -
oasoee = — ooban
aianien Finslgnmere ooz o -
aosd 00 MajceOperatingiysianierscn o004
ansainin
e oerstraivzizrier o oo
9a4a19za Subssystem o002 "
00401030 " x Cancel \
a0sa1040 Dicharadristics oo
00401050 SizeCf StackReserve 00200000
a0s1060 *
I SaeofstacComme oocoicen N
a04az0sa 6. SoectmapReserve o0t0m0m0
a0401030 Py
a0401080 24704 48 et oo
Loadertlags o000
00000010 =
1
o* cancal

Figure 27: : DIiE Characteristics on NT Header-Optional Headers

Chapter 3. Surface Analysis

51

In continuous, the DIE tool presents the Data Directory®! as Directories with significant

details. The PE file format under analysis, defines 16 possible data directories, 3 of which are now

being used. On the following figure, the IMAGE DIRECTORY ENTRY IMPORT is being showed

in HEX and in an GUI array.

[betect ey 20

File name:

Scan | Scripts | Plugins | Log

C:flusers{windowsTFlarefDownloadsfrtms. exe

T

_ - . S _ R HEX /Disasm -[al x|
[Himport 2ix]
Trpe tode Syntax Image
[olivame | | ForwarderChain | Name | Fwstthunk | = = = - = Reload Import
ADVAPISZ DL no0z3nE: 00000000 00000000 000B3ac4 oo08327¢
KERNEL32.dI 00083054 0000000 Goo0o00n aooabEC cooEs294 | addressas HEx) Read ol cursor @312 Selection; 453000 Size cds
0 =
msvert,di 00053150 00000000 00000000 0008304 00083340 Soaostd
SHELL32.BLL 00053254 00000000 0000000 OD0B3ch 0008345+ 00452010
wsockazoLL i oooa0co coom0000 ooosacce ooostsc o0s53020 b
00483030
00463040
Thurk ordinal | e | Name 00433050
00033786 0017 _Fdopen Soaooen
00083730 00 _read 00452030
00033738 oed _write 00483090
00483040
004830m0
00453020
oo4a3040 |
[N 00453020
ooaszozo | 8
oo4e3100 | @ D
sossanio |
no0483120 =
(J| > | 23ems
21 il
| e ba gid o
ot | a0 e rewtont
Type Made Syrtax Image
@ ey EESS = S| ot o
| | Neme Address size ||
Dos Header stub N1 Headers
1 MPORT 00083000 0o000cds H
Drectories Sedtions Sy 2 RESOURCE 00000000 00000000 H P -
AddressOfEntryBoint 00001230 3 ENCEPTION 00000000 00000000 H 00483820
0048340
Imagessse 00400000 4 SECURITY 00000000 00000000 H ey
Sasofimags 00056000 5 BASERELOC 00000000 00000000 H aossapzo
00483200
TimeDatestamp S43cdceh % DEBUS 00000000 0000000 H oo4asen0
Checksum 007bae2 7 COPYRIGHT 00000000 0000000 H 04s3ez0
Subsystem 02 3 GLOBALPTR 00000000 0000000 H 00483230
00483240
El s 00085000 00000018 H D
10 LOAD CONFIG 00000000 00000000 H 00483c60
ok Gencel o 11 BOUND_IMPORT 00000000 00000000 H P
12 17 oonasz7c 000001 H 00483e30
15 DELAY_IMPCRT 00000000 00000000 H EE::?“:E
14 COM_DESCRIFTOR | 00000000 000000 i ot |0 7 52 4r 49 D
15 Reserved 00000000 00000000 H o0¢gacdn | B 0 00 00 00
00483ce0 |00 00 0D 00 0D 0O 0O 0O 00 0O DO DO 0O 0O 00 OO B
Zitems
~ oK Cancel Agply

Figure 28: DiE import Directory and its offset

In addition, the DIE tool presents the IMAGE DIRECTORY ENTRY TLS as TLS with

significant details. The AddressOfCallBacks value 00484004 is being noted for our dynamic

analysis.

51 DataDirectory. The data directory indicates where to find other important components of executable information in
the file. Specifically, is an array of IMAGE_DATA_DIRECTORY structures that are located at the end of the optional

header structure.

Basic Static Analysis with Windows tools
52

Scan | Scripts Plugins | Log | 1

[*AHEX/Disasm =] |
Type: PE Size:
Type Mode Synkax Image
EnkryPoint; 000012a0
®| address as HEX [3] Read only Cursor: 485000 Selection: 455000 Size: 18
MumberOfSections: 0005 =
campiler UD484lco | DO OO OO0 0O OO 0O OO 0O OO0 OO0 00 0O 0O OO OO OO]
004341d0 | 00 00 00 00 OO0 00 00 00 00 OO0 00 OO0 00 OO0 00 00
lirker GMU finker Id 004341e0 | 00 00 00 00 OO0 00 00 00 00 OO0 00 OO0 00 OO0 00 00
00484120 | 00 00 00 00 00 o 00 00 00 00 00 00 00 00
uoassooo | FEREE oo ST
[EPEEEAEEN o0 oo oo oo oo oo oo o
00485020 | 00 OO OO0 00 OO0 0O OO 0O OO OO 00 00 0O OO0 0O 00
00435030 | 00 00 00 00 OO0 00 00 00 00 OO0 00 OO0 00 OO0 00 00
00485040 | 00 00 00 00 00 00 00 00 00 OO0 00 OO0 00 OO0 00 00
00485050 | 00 00 00 00 OO0 00 00 00 00 OO 00 0D 00 00 0O 00
00485060 | D0 OO 00 0O OO 0O OO 0O OO0 OO0 00 00 0O OO0 0O 00
00485070 | 00 OO OO0 0O OO0 0O OO 0O OO0 OO0 00 00 0O OO0 0O 00
00425080 00 00 00 00 00 OO0 OO0 OO0 00 OO0 OO0 00 00 OO 00 00
00435050 | 00 00 00 00 OO0 00 00 00 00 OO0 00 00 00 OO0 00 00
00485020 | 00 00 00 00 OO0 00 00 00 00 OO0 00 OO0 00 OO0 00 00
004850L0 | 00 00 00 00 OO0 00 00 00 00 OO 00 0D 00 00 0O 00
U04850c0 | 00 OO OO0 0O OO 0O OO 0O OO OO0 00 00 0O OO0 0O 00
00485040 | D0 OO OO0 0O OO0 0O OO 0O OO0 OO0 00 00 0O OO0 0O 00
00425020 00 00 00 00 00 OO0 OO0 OO0 00 OO0 OO0 00 00 OO 00 00
Deteck It Easy 0048E50£0 | 00 00 00 00 00 00 00 00 00 00 OO0 00 OO0 OO0 00 00 TS
(

21 |
T
Offset: 248 Size: 128 36 Read only 2l
[%€] Read anly
L Name | Address | Size 1 | [3€] Read only

stub pisader 0 ERPORT 00000000 00000000 ol StartiddressOfRawData 00485019
Directorios F— P i FERT 00083000 00000CdS i EndaddressOfRanbata 0048501
¥ z RESOURCE 00000000 00000000 H addressOfindex 045205
AddressOFEntryPoint 0000120 3 EXCEPTION 00000000 00000000 Ll AddressOfCallBacks 00454004
ImageBase 00400000 + SECURITY 00000000 00000000 il SizeCF ZeroFill 00000000
SizeCfImage 00085000 5 BASERELOC 00000000 00080000 L] Characteristics 00000000

Timetestamp e, 3 DEBUG 00000000 00000000 H

Checksum 20070ac2 7 COPYRIGHT 00000000 00000000 H

Subsystem oz] GLOBALPTR nononnon nnonnnon H pm— p—

9 TS 0on&snon 00000018 H

10 LOAD_COMFIG 00000000 0000000 H

O S 11 BOUMD_IMFORT 00000000 00000000 H

1z 147 0008327¢ 000001F0 H

13 DELAY_IMPORT 0o000000 00000000 H

14 COM_DESCRIPTOR 00000000 00000000 H

15 Reserved 0ononnon 00000000 H

3 itemns
~, ox Cance

Figure 29: DiE TLS table in detail and in Hex view
At last for Directories, the ImportAddressTable (1AT) is located in the .text section

immediately before the module entry point°?

. When Windows NT executable images are loaded
into a process's address space, the IAT is fixed up with the location of each imported function's
physical address. In order to find the IAT in the .text section, the loader simply locates the module
entry point and relies on the fact that the IAT occurs immediately before the entry point. And since

each entry is the same size, it is easy to walk backward in the table to find its beginning.

2 The IAT's presence in the .text section makes sense because the table is really a series of jump instructions, for
which the specific location to jump to is the fixed-up address.

Chapter 3. Surface Analysis
53

[oetectxce ~Ioix]
File name: CefUserswindows7Flare Downloads vtms. exe
Scan | suipts | Plugins | Log
Tpe: | PE Siet | 501760 Enopy || FC |5 W
EntryPaint: 00001220 > Imagegase: 00400000
Nurberofsections ooos | [> Sizeofmage: 00085000
compiler MinGwiJ[] s 2
linker G linker Id (GNU Binutis)(2 22)[EXE32] ER H
5=
;;Ze | S| A s :Enage s it r
%] Addressas HEx B8] Read orly. Cursor; 483270 Selection: 483270 Size: 1f0

0048326c | 52 3A 0% 00 20 A 08 00 AD SA 0% 00 00 00 00 00
0048327 s
onsg3zee

Detect It Easy ~ || signatwes || 1o 004832
o04saza
o483z
[| SRR (e
0048330
o0ss33ze
[P 2lx1
2 ize: Re=donly [(H] EDTEEEE
Offsat ECRE 126 £] 7 FEp)
3] Read oy 0048335
[] vame | addess | sie | 483360
oo4sa3e
1 IMPORT oooaan0 00000cds H e
Drectories Sections Overlay > ResouRce 000000 2000000 = T
0048335
AdchessOfErtryPeink 00001230 3 EXCEPTION 00000000 00000000 b 004833
Imagease 0400000 4 sECURITY oooaoogo oooaoogo i 004833
SieetHnage oomse0n 5 BASERELOC oooaoogo oooaoogo H s
TineDatestann Saacdeth s DERLG oooanogo oooanogo H 004833
o — 7 copman aooonoon aooonoon N e
Subsystem 0 8 GLOBALPTR oooanogo oooanogo H e
s s oooasono ooonota H 0048342
0048342
10 LOAD_CONFIG oonanonn oonanonn H o iooss
oK Cancel 4ol
1L BOUND_IMPORT | c00DODD oooaoogo H 0048345
0048345= | 5B 00 43 72 75 70 74 41 63 7L 75 §9 72 65 43 SF
1z ar Obba327e £0001f0 il 0048347 | 6B 74 €5 73 74 §7 00 00 ER 0D 43 72 73 70 74 47
13 DELAY_IMPORT oooanogo oooanogo H 00483482 | 65 €E 52 61 6E 64 €F €D OO 00 78 00 43 72 75 70 | Lo
14 CoM_DESCRIPTOR [00000000 oougonno o 0048343 | 74 52 €5 6C 65 6L 73 65 43 6F X 74 65 78 74 00 | 21 D
004834ac | FS 00 47 65 74 55 73 65 72 4E 6 €D 65 41 00 00 | nk
15 Reserved 00000000 00000000 H 004834bc | 9D 01 52 65 67 4F 70 65 6E 4B 65 79 45 78 41 00 ™
Jitems
N o Cancel Aprly.

Figure 30: DiE, Directory of the ImportAddressTable (IAT)

At last the DIE tools has some graphical representation of each section, which is very useful
as a simple visualization of the PE file content. There are two types of graphs, the Curve graph,
which presents on axis X the size of the PE file (bytes), on axis Y the entropy of the hex bytes and
the Histogram graph, which presents on axis X each byte of the PE file (decimal), on axis Y the
frequency of each byte. Also, there is an array with the content of the Histogram, adding the
percentage of the frequency of each byte.

On the following Figure, the .text (section 0) is being selected as the most important section

of the PE file and the one with the largest content of bytes.

54

Basic Static Analysis with Windows tools

2% 21
ofset | 0 |5 | ofser | 0 see| smze |
Curve | Histogram | Bytes | N | Curve | Histogram | Bytes
& Byte | % L
6.3 (i) e 15,4121
Oxz4 38191 761141
6.2 8
oxf 28028 558614
il oxeh 21888 436165
xsw 19505 288732
=5 x4 16361 326072
7 11870 232581
&8 x4 %724 193738
5.7 x01 89 181107
S5 x83 2808 175542
s Oxes 804 1.75462
= - - - - Offset: 1024 0x05 108 121732
0 100,000 200,000 300,000 400,000 500,000 oot 5304 117666
size: 46182+
oxon 5683 1.13261
axed 5486 1.09335
. x40 s017 0.99985
oxes 4ga1 D.984804
Offset:
i 4442 D.885284
oot oo s ot ws o
0x47 4259 0848512
Curve | Histogram | Bytes | N oxzn 4157 0.526454
0,000 o xds 4059 0508952
x4 3999 0796995 N
R 3 Oxtt 3867 0.770687
50,000 ox0z 3812 0.759726
oxen 3728 0743184
50,000 - o0 3685 0.734415
e E 0723254
40,000 3
0x10 3538 0705118
30,000 5 x5 34 0.660475
oxen 3200 D.639543
ERYET [315 0.620815
10,000 x66 2075 0612843
x50 2523 0.50283
o 0x30 2414 0.451107
T T T T T T T T T T T T T T T T 1
0 2 a6 6 128 160 192 224 256 e 2197 0457853
ez 2077 0413943
oo 0x03 2064 0411352 z
o 054 natl
Application Size: 58.0 KB

Figure 31: DiE Visualization Entropy of .text section

Keep in mind that the General Entropy of the whole PE file is 6.12801, that differs a bit

from PEview’s entropy (6.04).

100.000 200.000 300.000

Figure 32: DiE Visualization Entropy of all sections

L e e e e e e e L B e s e p e s e |

400.000 500.000

Chapter 3. Surface Analysis
55

3.3.4. PortexAnalyzer
Another tool that is great on visualization, is the PortExAnalyzer®, which generate a graph
of colors, to visually detect a packing on a PE file. On the current PE file under analysis, a cross

check is being made that no hidden packer is being used.

Figure 33: PortexAnalyzer PE structure and Entropy visualization

%3 PortExAnalyzer is a command line tool that runs the library PortEx under the hood. PortExAnalyzed is readily
compiled command line PE scanner to analyze files with it. Note that, PortEx is a Java library for static malware
analysis of Portable Executable files. Its focus is on PE malformation robustness, and anomaly detection. PortEx is
written in Java and Scala and targeted at Java applications. GitHub link of the tool:
https://github.com/katjahahn/PortEx

Basic Static Analysis with Windows tools
56

On PortExAnalyzer graph, 3 subgraphs are being presented. Each graph present the PE file
as it stored in memory (from lower to higher address). More specifically, on the left side a Byte
plot is being presented, with a color visualization, focused on possible ASCII characters on the PE
file under analysis. On the middle side, the entropy is being colored differently for each memory
address - PE file section. And the right side, there are different colors for each PE file section and
its subsections. With this type of visualization, the analyst can match and detect visually, the
location of possible packing, where possible ASCII characters are being stored and the
comparative size of each PE file’s section.

In addition, the PortExAnalyzer generates a great summarize report of all the above-

mentioned notes, using the command on terminal:

java -jar PortexAnalyzer.jar -o report.txt -p graph.png rtms.exe

The PortExAnalyzer PE file report, is being attached at Appendix G. As a sum up from the

PortExAnalyzer report, the malformation® characteristics that the PE file are:

e At the COFF Header, the time date stamp is crafted.

e COFF line numbers have been removed, due to deprecation.

e COFF symbol table entries for local symbols have been removed, due to deprecation.

e Section .text has “write” and “execute” characteristics.

e The writeable section .text is also the entry point

e The import VirtualProtect function may set PAGE EXECUTE flag for memory region,
which will lead to typical for code injection.

e Debugging is removed from the image file.

There is a gap between the PE format that the PE/COFF specification describes and the PE
files that are allowed to run. The PE/COFF specification uses misleading field names and

descriptions, is more restrictive than the loader. Furthermore, the behavior of the loader varies in

% Definition: A PE malformation is data or layout of a PE le that violates conventions or the PE/COFF specification.
File format malformations represent special case conditions that are introduced to the file layout and specific fields in
order to achieve undesired behavior by the programs that are parsing it.

Source url: https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11 VuksanPericin_PECOFF_WP.pdf

Chapter 3. Surface Analysis
57

different Windows versions, with every new version of Windows possibly introduces formerly
unknown malformations.

3.3.5. PEstudio

At this point the Malware Initial Assessment has been done in dept, but the most famous
and recognized tool for many Computer Emergency Response Teams (CERT) worldwide in order
to perform Malware Initial Assessment is the PEstudio®. PEstudio shows Indicators as a human-
friendly result of the analyzed image. Indicators are grouped into categories according to their
severity. Indicators show the potential and the anomalies of the application being analyzed. The
classifications are based on XML files provided with PEstudio. Among the indicators, PEstudio
shows when an image is compressed using UPX or MPRESS.

On the first view option of the PEstudio, the basic information about the PE file are being
previewed. Note that again the entropy of the PE is 6.132 due to PEstudio, that differs from 6.04
of PEview and 6.12801 of DIE. This leads to the indication that, the entropy is being measured

differently by each tool, as a result be reliable.

%5 PEstudio is a utility can be used to Triage malware analysis. Runs on Windows Platform and is fully portable.
Malicious software often attempts to hide its intents in order to evade early detection and static analysis. In doing so,
it often leaves suspicious patterns, unexpected metadata, anomalies and other valuable indicators. The goal of PEstudio
is to spot these artifacts in order to ease and accelerate Malware Initial Assessment. The tool uses a powerful parser
and a flexible set of XML configuration files that are used to detect various types of indicators and classify items.
Note that, since the file being analyzed is not under execution yet, the inspection of the unknown or malicious
executable file can be done without any risk of infection.

Basic Static Analysis with Windows tools

=I8lx|

[

foes (4]14)
tal (ofine)

Figure 34: PEstudio general information

QIFDESED1SOFERSEIBIFSCTCDTCFRER
SATFASTIHAD4444] FROB0RCHR41 6901329620

SDEEEERCE DR AC2001 2D1FS8PEZBERF T IDGICAZIDSF 2F 12 CEEIRISFE

DA N0 i
ST bytes

612

DOTASCALDST IR
T

niz

G3EC 1€ 0704240200 0000 FF 1550 33 46 0B

Tue Dct 14111851 204

niz

0000000000

The indicator window explains why PEstudio show this file as suspicious, with a severity

ranking order.

sdxBE %
B] ciusersierdans e dowrloadsiytms exe. smbid | ndcaror (1) soverty |
a 1289 The flo oferonces 1) badksted rary 1
Y virustard (efine) 1223 T firet saction (name: et s wiksbbe 1
L] :mml‘x p;w-)mrmwbmmnmm--) 2218 The Fle has (1) wrkable and exec abls sectionfs) 1
o s (O 2015
;a?:m;;e. {amn 1266 Thfis meoets (17) blachisted furetion(s) z
W 22 TheHeresounce tess s
Dtk o) 130 The e references (22) lackisted strngls) s
£ mprts (1210317 1261 The momts (2) depecatd fnconts) :
o 1090 TheHe does ek contain & tighd Centcate 7
- ks (s 1260 The e references (53) mhiskststrrs s
kg 101 The e wrcees Dera Exeeion Preventon (0E9) s
45153 12/3250) 1103 The fle grores Addbess Space Layuut Randomization (ASLR) o
107 The e mrores cockies on the stach (5] s
109 The e grores cods Integrey s
o S35t Fletype: sxscukable eubeystem: G Jerkry-peint Gx00001280 scraturs: nja

o= @ ZllX[&

Figure 35: PEstudio Indicators

Chapter 3. Surface Analysis
59

It summarizes the indicators found further down in the menu tree. The new finding on the
file under analysis, is the detection of that the file contains self-modifying code®®.

In addition, the under analysis file ignores Address Space Layout Randomization (ASLR)®’.
It also ignores Data Execution Prevention (DEP) which would allow for code execution from the
Data Section in memory.

By default, PEstudio will send a MDS5 hash of the file to VirusTotal and it will retrieve the
results, but this procedure already have been done manually.

The DOS-stub is next. This window displays information about the DOS application header
which comes before the PE header information. It is very rare that an application has much in the
dos-stub. In addition, PEstudio displays in DOS-stub the MDS5 hash the size, and entropy of the

dos-stub.

o pestudio 8.81 - Malware Initial Assessment - ww.winktor.com SLEY

[

O1FD6E2D160FERGEBOF4CPCDT4CFBE2
959309B55CBI7542A5r 83061 236601 FIBANBRCC

TRGAEPIZZDCAC 1857701 FI5RCOBAFSC IFEESSAFFBASATESASEIELA1B163A5

Figure 36: PEstudio dos-stub

% Self-modifying code is a technique where the actual opcodes of the binary are changed dynamically (at run-time),
making it impossible to see what the code does without stepping through it. There are plenty of reasons this technique
is used: the function call encrypted in this section will not show up in the intermodular calls, the random data can trick
disassemblers into thinking its code, and after the opcodes get decrypted, you must tell the disassembler to re-analyze
these bytes as opcodes instead of data.

5" ASLR is a feature which simply loads an application into memory at a somewhat randomized preventing the ability
to successfully perform a buffer overflow attack.

Basic Static Analysis with Windows tools
60

File-header is interesting if simply because it contains some useful information to
accurately describe a sample. This window provides information that would be in the PE header if
you were analyzing this in another application. In fact, the signature field 0x00004550, converts
to ASCII “EP” and reading it flipped (endianness), it states “PE”. Note that the debug information

stripped, is being also confirmed by PEstudio.

[
(S4IDCER (Tue Oct 14111651 2014)
000

o

a6, BOOEERB604ICDAF ACA00 120 1FRATEABEEF T (DRACAE00HEF 2F | BLEERSBLFE o 326 [letype: esecutable Fbsystam: G ferkry-poink: G000 200 sipabre: nfs

= @ | %[& O
Figure 37: PEstudio file header

The optional header contains information that was at one time completely optional but is
not mostly required for an application to execute inside a modern Windows environment. At the
bottom of the window though we have information about ASLR, DEP (which the indicators have

already show them) and Structured Exception Handling (SEH)%,

%8 SEH is the ability of an application to handle exceptions on its own. The common applications crash is actually an
exception. The ability of the developers to define on them applications an execution of another subroutine, if an
exception were to occur during runtime, gives the ability to malware authors though SEH code, to use it as a
mechanism to obfuscate their malicious code.

Chapter 3. Surface Analysis
61

& pestundio B.81 - Malware Inilial Assesseen - wwwwinitor.com

[T
000000000
4

0
548854 bykes.
1023 bytes
0R000780E2
Gl

2715 byt

Figure 38: PEstudio optional headers

Sections is a useful piece of information when trying to determine if a file is malicious.
Note that, the top indicator was the self-modifying code section. The .text section contains the
executable code. Each of the sections has a read, write, and/or execute permission. What
permission is applied to the section is denoted by an x in the appropriate field. The normal
expectation on the .text section is to have Read and Execute permissions. The .text section should
never have written permissions, otherwise this means the application can actively modify itself.

Also, in the .text section is the entry-point, where the first line of executable code, when the

application is loaded into memory.

Tuale Lvalue Lvaboe L Lesby Leabe [abe
et ot ™ i

[I
s

e 2 D 746 CHPCATHIEBIDEAGEDS6.,. | FEBIMMAFITZCSTMAD.,. | BTILFDRGRCELIZARSTY,
2,044 0204 EEEY 2% 0.00% P 0% L%

61640 bytes bytes 276D bytes S0 bytes 27520 btes B0 byt
00001000 000072000 20073000 0078000 0070000 000830
O5ONITOC00 (461024 bytes) | 0<00000400 (1024 bytes) s
000400 0071000

24bytes B hter
00084000 00500

v 71400 70000 07960 NN ea007ado 0074600
194 bytes Az btes Obptes 264 brtes Chytes 2% bytes 488 e 480 e
6104 109 s 455 som oue nzs

Figure 39: PEstudio sections and them RWE rights

Basic Static Analysis with Windows tools
62

Imports contain the actual imported function names. PEstudio has a list of blacklisted
imports, which are all API functions in Windows which are not malicious in their own right but
can be used to perform functions which may be considered malicious.

Function imports can be referenced by ordinal number as well. Libraries which contain
exports assign a number to each export. The author of the PE can choose to use the number rather
than the name of the import, which is often a technique to obfuscate what the application is

importing. PEstudio is pretty good at finding the actual name of imports referenced by ordinal.

nams (50) | goez) [sworymoso) | npe (1) | bacamin | swdsbugio [| coprscated () [oraey i5) I
= mgict " u k2.l

 BO2EE B350 FCDAF 200 120 P8 TESABEEF T IDB2CH 2004 25 | ZCEE DRSPS o 32 fie-typs: executable [subsystem: GUT ferkry-poin: G00001240 sirature: i

Figure 40: PEstudio imports grouping and ranking

Strings actually is any string from the raw bytes which can be read as ASCII or a

UNICODE character, which is parsed and placed in PEstudio’s table. Unlike linux/unix strings

Chapter 3. Surface Analysis
63

command®®, PEstudio will mark any suspicious string, that comes with a predefined list of a
suspicious strings.

It is concerning that there are very few readable strings. Having a minimal number of
readable strings would indicate the application is being obfuscated.

Note that a serial of ASCII character-set has been detected. Such a string indicates that an
encoding schema is being used. This ASCII character-set seems to be a Base64 input, but this will

be confirmed only on dynamic analysis.

=l81x|
e s | bedmio | i 31 [vhwestiss) | gowia | wporn(n) |vue (o) |
i s 1
i s i)
ode) s o)
e s]
i 5 fin]
e s £
= s o |
: =a s |
B =t s]
. wa s s}
3 wd 5 1]
b i s 13
£ de s 5]
=1 =i 5 Feu)
&8 e H IJ
] st 5 [
oK
i oH
e oK
= ar
aa s
=t ‘ a
wa . i
wa s o
wa “ e
=i i e
5 0805
e 4 o
=i s s
e [o
= %
sl Q-
wt %
wt %
wa %
i -
i [
i o
=i s
= 1
wa
sha256: B0CEEBBI604TCDAF2CA001 20 1FESTEZABEEF T 1DB2C420045F 2F 1 2CEEDBIEFAZ o 30k fle-type: executable subsystem: GUT = e nfs
= T
= @ Sl %[& WO

Figure 41: PEstudio strings ranking and evaluation

%9 In computer software, strings is a program in Unix-like operating systems that finds and prints text strings embedded
in binary files such as executables. It can be used on object files and core dumps. Strings are recognized by looking
for sequences of at least 4 (by default) printable characters terminating in a NUL character (that is, null-terminated
strings). Some implementations provide options for determining what is recognized as a printable character, which is
useful for finding non-ASCII and wide character text. Source: https://en.wikipedia.org/wiki/Strings_(Unix)

64

3.3.6. BinText

Basic Static Analysis with Windows tools

Another tool digesting string theory of a PE file, we can use several tools. An application

for Windows OS is the BinText®°.

SEE

Search | Fier | Help |

Filatoscan [C\Users\Administrator\Deskiop\rans amware\mahwars exe

[Advenced view

Time faken | 0047 sacs Taxt sive: 12943 bytas (12 64K)

A Q0I0DAD? 2AIF
4000000072800
A4 00000007261C
A 0DI00A07 2674
A 000000072888
A QDI0DANTZEAD
A QDIODARFZECH
A 000000072078
A QDIODAOFZCHT

A 000000D?2CH1

A QDIODAD?2CI8
A4.0000000?2CIF

A 00000072551
A 00000 ZCEA
A 00I0DA072ECT
A 0DI0DOD?2CES
A QDIODA0FZCEE
A 00000072011
A QDIODADFZDIIE
A 000000072022
A 00000AD?Z02A

Reoty ||AM 116

A000000072CA7 000

00000047471C:
000000474774
000000474768
000D04T47AD
0000D04747CE
000000474878
00000474361
74301

0174807
000000474551
O00D004748BA
000000474351
000D004748E6
OD0DD04743EE
000000474311
000000474318
000000474322
000000474324

[uner? RS0 I

Filz pos [Mem poz [10 [Tea -]
A 000000072403 0000OD474003 H M

A Q0000072520 000000474120 __unexpecie_hondler_sh

A 000000072538 000000474138 —terminate_handler_sh

A 00000072550 00O0OD474150 st-bed_cast

A 000000072560 OUODADA74T6D st bed_ypeid

4000000072560 0000OD474160

A 000000072585 D0ODADATA163

A QDDOD0FZ620 D00DODA74220 LOBAL__N_122generic_anor_caiegon/E
A Q0D0007Z6E0 00000474260 12 GLOBAL_N_1213ystem_srmor_ceregonyE
A Q0DODOD7Z6AD 0000OD474240 e

A QDD000TZ6AT 000000474247 Braken promise

A Q000072686 0000OD474286 Fusure oltendy retieved

A QOD00APZECF OOODO04T42CF Promise akeady saisied

A Q0DO0OD7ZEES 0UO0AD4742ES No assoceled siole

A 00D00QOPZEFD O0ODOD4742FD) Ui ar

A 000000072760 OUODADA74360 WE =
4000000072740 00000474340

A0000O0727AC DDODADATAIAC

A Q0000072700 0DODADA74300 —am_oor e _unlock_aror

A 000000072434 DOQUAD474634 Iocale facst_S_crecte_c_locals name natvalid
A DDO0OD7ZAGC ODODADAT46EC LC_CTYPE

A QDDO0A0TZATS 00000474575 LC_NUMERIC

A 000000072A80 000DOD4748ED LC_TME

A Q00000072480 000000474588 LC_COLLATE

A 000000072493 B LC_ MONETARY

berlstABCDER

]
Find | Sowe

fst| LE @@

Figure 42: BinText string search and filtering

7 BinText 3.0.3

0 gl «03PM

The strings of the file under analysis are reasonably the same with all the above tools.

Considering that most of the strings are non-human-readable ASCII characters, we assume that an

obfuscation is taken place. On Appendix H/BinText, the results of BinText’s are being extracted.

The main advantage of BinText and the purpose of using this tool, are BinText’s filters.

More specifically, as it is being shown on the following Print screen, BinText has GUI to exclude

or include any character in the definition of a string, giving the ability to specify some unique

80 BinText is a file text scanner / extractor that helps find character strings buried in binary files. The program can
extract text from any kind of file and display plain ASCII text, Unicode (double byte ANSI) text, as well as Resource
strings. Additional useful information for each item is included in the "Advanced" mode. Uniquely, the program will
show both the file offset and the memory offset of each string found.

Chapter 3. Surface Analysis
65

strings with special characters. Unfortunately, in the PE file under analysis, the addition of more
filters, prints more non-human-readable strings and with a specific selection of filters, some strings

continue to be non-human-readable.

a9

L
C
v
o
v
=
v
[
2
r

Figure 43: BinText filtering settings and strings length

Chapter 4. Behavioral Analysis
66

4. Behavioral Analysis

This section describes the basic dynamic analysis techniques. Dynamic analysis is any
examination performed after executing malware. Dynamic analysis techniques are the second step
in the malware analysis process. Dynamic analysis is typically performed after basic static analysis
has reached a dead end, whether due to obfuscation, packing, or the analyst having exhausted the
available static analysis techniques. It can involve monitoring malware as it runs or examining the
system after the malware has executed. Unlike static analysis, dynamic analysis lets you observe
the malware’s true functionality, as the existence of an action string in a binary does not mean the
action will actually execute.

Although dynamic analysis techniques are extremely powerful, they should be performed
only after basic static analysis has been completed, because dynamic analysis can put your network
and system at risk. There are limitations in Dynamic techniques also, because not all code paths

may execute when a piece of malware is run.

4.1.Basic Dynamic Analysis with free Sandboxes

Why invent a new wheel when you can walk to the store and buy one? Why invent a wheel
when you can invent the engine?%!

Our first step on Surface Analysis, was to upload the file under analysis in an online service
and check the past work from other analysts. These online tools have been expanded, not only to

characterize a file as a malicious, via its hash value, but analyze them header and some of them,

does on step further, a Basic Dynamic Analysis report.

61 An idiom common amongst engineers and developers.

Chapter 4. Behavioral Analysis
67

The HybridAnalysis results are available offline on the Appendix D/Hybrid Analysis results

and online on the source url;

www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635¢f92/

4.1.1. Results explanation

Malicious Indicators

Environment Awareness: The input sample contains a known anti-VM trick

This indicator, anti-virtual machine (anti-VM) is a set of techniques to thwart attempts at
analysis. With these techniques, the malware attempts to detect whether it is being run inside a

virtual machine. If a virtual machine is detected, it can act differently or simply not run.

Suspicious Indicators
Environment Awareness: Contains ability to measure performance - Anti-Debugging
The most common timing check®® method uses the RDTSC instruction (opcode 0x0F31),
which returns the count of the number of ticks since the last system reboot as a 64-bit value placed
into EDX:EAX. Malware will simply execute this instruction twice and compare the difference

between the two readings. The malware checks the difference between the two calls to RDTSC.

52 Timing checks are one of the most popular ways for malware to detect debuggers because processes run more slowly
when being debugged. For example, single-stepping through a program substantially slows execution speed. There
are a couple of ways to use timing checks to detect a debugger: a) Record a timestamp, perform a couple of operations,
take another timestamp, and then compare the two timestamps. If there is a lag, you can assume the presence of a
debugger. b) Take a timestamp before and after raising an exception. If a process is not being debugged, the exception
will be handled really quickly; a debugger will handle the exception much more slowly. By default, most debuggers
require human intervention in order to handle exceptions, which causes enormous delay. While many debuggers allow
you to ignore exceptions and pass them to the program, there will still be a sizable delay in such cases.

http://www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

Basic Dynamic Analysis with free Sandboxes
68

Anti-Debugging : Contains ability to query CPU information

This indicator, CPUID, is an anti-Debugging technique. The virtual machine monitor
program monitors the virtual machine’s execution. It runs on the host operating system to present
the guest operating system with a virtual platform. It also has a couple of security weaknesses that
can allow malware to detect virtualization®?.

Some instructions access hardware-based information without generating interrupts.
Among others, these are SIDT, SGDT, SLDT and CPUID. In order to virtualize these instructions
properly, VMware would need to perform binary translation on every instruction (not just kernel-
mode instructions), resulting in a huge performance hit. To avoid huge performance hits from
doing full-instruction emulation, VMware allows certain instructions to execute without being
properly virtualized. Ultimately, this means that certain instruction sequences will return different
results when running under VMware than they will on native hardware.

Malware exploit the usage of these instructions in order to perform VMware detection.
Keep in mind, that these instructions are not useful if executed in user mode, so if you see them,
they’re likely part of anti-VMware code.

Remote Access Related

This indicator, the registry input, remote access related action, which reads terminal service

related keys. The registry key: "HKLM\SYSTEM\CONTROLSETO01\CONTROL\TERMINAL

8 In kernel mode, VMware uses binary translation for emulation. Certain privileged instructions in kernel mode are
interpreted and emulated, so they don’t run on the physical processor. Conversely, in user mode, the code runs directly
on the processor, and nearly every instruction that interacts with hardware is either privileged or generates a kernel
trap or interrupt. VMware catches all the interrupts and processes them, so that the virtual machine still thinks it is a
regular machine.

Chapter 4. Behavioral Analysis
69

SERVER" % ; Key: "TSUSERENABLED" ®°, seems that a backdoor is being established.
Backdoors are the most commonly found type of malware, and they come in all shapes and sizes
with a wide variety of capabilities. Backdoor code often implements a set of capabilities, so when

using a backdoor attack would not need to download additional malware or code.

Unusual mutants

The creation of these mutants®® have been used as al technique in the context of other
malwares. The malware under analysis seems to create the mutex to ensure that only one version
of the malware is running at a time. Mutexes can provide an excellent fingerprint for malware if

they are unique enough. The creation of mutexes are the followings:

"gcc-shmem-tdm2-use fc_key"
"gcc-shmem-tdm2-fc_key"
"gcc-shmem-tdm?2-sjlj once"

Anti-debugging TLS callbacks Related
This indicator, the TLS Callback, has been already described in detail from basic static

analysis, when the .tls section was found on the PE. More specifically from the advanced static

84 The HKLM\SYSTEM\ControlSet001HKLM\SYSTEM\ControlSet001\Control\Terminal Server hive allows you to
configure general settings, just as you can under Terminal Services configuration or Group Policies.

% The TSUserEnabled value, indicates whether users can log on to the terminal server.

% Mutants or Mutexes are global objects that coordinate multiple processes and threads. Mutexes are mainly used to
control access to shared resources and are often used by malware. For example, if two threads must access a memory
structure, but only one can safely access it at a time, a mutex can be used to control access. Only one thread can own
a mutex at a time. Mutexes are important to malware analysis because they often use hard-coded names, which make
good host-based indicators. Hard-coded names are common because a mutex’s name must be consistent if it’s used
by two processes that aren’t communicating in any other way. The thread gains access to the mutex with a call to
WaitForSingleObiject, and any subsequent threads attempting to gain access to it must wait. When a thread is finished
using a mutex, it uses the ReleaseMutex function. A mutex can be created with the CreateMutex function. One
process can get a handle to another process’s mutex by using the OpenMutex call. Malware will commonly create a
mutex and attempt to open an existing mutex with the same name to ensure that only one version of the malware is
running at a time.

Basic Dynamic Analysis with free Sandboxes
70

analysis view, a malware can use thread local storage (TLS) callbacks as a technique to interfere
with normal debugger operation, trying to disrupt the program’s execution only if it is under the
control of a debugger. Note that, Thread Local Storage (TLS) callback injection also involves
manipulating pointers inside a portable executable (PE) to redirect a process to malicious code
before reaching the code's legitimate entry point.

Although that on PEview and other basic static analysis tools the entrypoint address is
being defined as the address: 0x484000, Hybrid analysis mentions as entrypoint 1 the address:
0x41a310 and as entrypoint 2 the address: 0x41a2c0.

Imports suspicious APIs

This suspicious APIs indicator contains a set of techniques that are mainly Anti-Debugging

7

oriented. The following APIs functions ® are being characterised as suspicious from

HybridAnalysis:

GetUserNameA
RegOpenKeyExA
IsDebuggerPresent
VirtualProtect
GetProcAddress
GetComputerNameExA
GetModuleHandleA
FindFirstFileA
FindNextFileA
Sleep

WSAStartup

57 Function naming conventions

When evaluating unfamiliar Windows functions, a few naming conventions are worth noting because they come up
often and might confuse you if you don’t recognize them. For example, you will often encounter function names with
an Ex suffix. When Microsoft updates a function and the new function is incompatible with the old one, Microsoft
continues to support the old function. The new function is given the same name as the old function, with an added Ex
suffix. Functions that have been significantly updated twice have two Ex suffixes in their names. Many functions that
take strings as parameters include an A or a W at the end of their names. This letter does not appear in the
documentation for the function; it simply indicates that the function accepts a string parameter and that there are two
different versions of the function: one for ASCII strings and one for Wide character strings.

Chapter 4. Behavioral Analysis
71

More specifically for each one:
e GetUserNameA
The GetUserNameA function retrieves the name of the user associated with the current
thread. If the function succeeds, the return value is a nonzero value, and the variable pointed to by
IpnSize contains the number of TCHARS copied to the buffer specified by IpBuffer, including the
terminating null character.
e RegOpenKeyExA
Opens a handle to a registry key for querying-reading and editing. Registry keys are
sometimes written as a way for software to achieve persistence on a host. The registry also contains
a whole host of operating system and application setting information.
e [sDebuggerPresent
Determines whether the calling process is being debugged by a user-mode debugger. If the
current process is running in the context of a debugger, the return value is nonzero. The simplest
API function for detecting a debugger is IsDebuggerPresent. This function searches the Process
Environment Block (PEB) structure for the field IsDebugged, which will return zero if you are not
running in the context of a debugger or a nonzero value if a debugger is attached. We’ll discuss
the PEB structure in more detail in the next section.
e VirtualProtect
Changes the protection on a region of committed pages in the virtual address space of the
calling process. By changing the memory protection to execute, read, and write access, the
malware can modify the instructions. Then with another call to VirtualProtect at the end of the
function restores the original memory-protection settings.

o GetProcAddress

Basic Dynamic Analysis with free Sandboxes
72

Retrieves the address of a function in a DLL loaded into memory. Used to import functions
from other DLLs in addition to the functions imported in the PE file header. Note that packed and
obfuscated code will often include the function GetProcAddress, which could be used to load and
gain access to additional functions.

o GetComputerNameExA

Retrieves a NetBIOS or DNS name associated with the local computer. The names are
established at system startup, when the system reads them from the registry. If the function
succeeds, the return value is a nonzero value.

e (GetModuleHandleA

Used to obtain a handle to an already loaded module. Malware may use GetModuleHandle

to locate and modify code in a loaded module or to search for a good location to inject code.
e FindFirstFileA and FindNextFileA

These functions are being used to search through a directory and enumerate the filesystem.
Them combination also show that the program searches the filesystem for files and it can open and
modify files. At the moment it is unsure what the program is searching for.

e Sleep

The Sleep function suspends the execution of the current thread until the time-out interval
elapses and does not return a value. Sleep function takes a single parameter containing the number
of milliseconds to sleep. It pushes 0XEA60 on the stack, which corresponds to sleeping for one
minute (60,000 milliseconds).

e WSAStartup
The WS AStartup function initiates use of the Winsock DLL by a process. If successful, the

WS AStartup function returns zero, otherwise, it returns one of some listed error codes.

Chapter 4. Behavioral Analysis
73

PE file contains unusual section name

As we mentioned in Static Analysis, the unusual sections named ".eh fram" and ".CRT"
demonstrates that the PE file is written in C++.
Informative indicators

Anti-Reverse Engineering

This indicator, SetUnhandledExceptionFilter function, is often used by malwares as an
Anti-Reverse Engineering technique, that contains ability to register a top-level exception handler.

e SetUnhandledExceptionFilter@KERNEL32.DLL at address 0x401030

E401000: push ebix

E#401001: sub esp, Z28h

@401004: mow eax, dword ptr [00476Z280h]
F40100%: test eax, eax

@40100k: je O004010Z%h

F40100d: mow dword ptr [esp+08h], 00000000L
@401015: mowv dword ptr [esp+04h], 0000000Zh
@40101d: mov dword ptr [esp], 00000000h
@401024: call eax

E4010Z8: sub esp, 0OCh

@40102%: mowv dword ptr [esp], 00401110h
E401030: ecall 00424224k ; SetUnhandledExceptionFilter @KERNELZZ . DLL
E401035: sub esp, 04h

F40103%8: call 0041A3E0L

@40103d: ecall 0041245900

@401042Z: lea eax, dword ptr [esp+ZcCh]
#401046: mov dword ptr [esp+l0h], eax
E40104a: mowv eax, dword ptr [0047Z2020h]
@40104f: mowv dword ptr [esp+04h], 0047C000hk
@401057: mowv dword ptr [esp], 0047C004h
@40105e: mowv dword ptr [esp+Zch], 00000000h
@4010&66: mowv dword ptr [esp+0Ch], eax
@40106a: lea eax, dword ptr [esp+iEh]
@4010&8e: mowv dword ptr [esp+08h], eax
#401072: eall 00424040k ; getmainargs@MEVCRT.DLL
401077 : mowv eax, dword ptr [0043Z2060h]
@40107<: test eax, eax

@40107e2: je 004010CEh

F401080: mow ebx, dword ptr [0042333&4hK]

Figure 44: Assembly: SetUnhandledExceptionFilter function call

e SetUnhandledExceptionFilter@KERNEL32.DLL at address 0x4014FB

Running Malware
74

@4014ee: push ebp

#4014ef: mov ehp, esp

34014f1: sub esp, 18h

34014f4: mov dword ptr [esp], 004014AcCh

#4014 fh: call 00424224h ; SetUnhandledExceptionFilter@KERNEL3Z . DLL
3401500: sub esp, 04h

#401503: leave

#401504: ret

Figure 45: Assembly: SetUnhandledExceptionFilter function call 2

Another informative indicator for Anti-Reverse Engineering is that the PE file contains
zero-size section. Specifically, the raw size of .bss ® is zero. The section .bss is a data segment
there global and static uninitialized variables are being stored.

Network Related

The HybridAnalysis has found that a potential URL in binary exists. Specifically, using
heuristic match on the string: "tL<EtH<.tD", several known and analyzed malwares, are using this
string also. At the moment, we can not resolve this string, but it is for sure encoded.

We could analyze more the imports of the under analysis executable, but this is a static

procedure for the other section.

4.2. Running Malware
Basic dynamic analysis techniques demand to run the malware. Although it is usually

simple enough to run executable malware by double-clicking the executable or running the file

8 BSS (from Block Started by Symbol): The uninitialized data are rarely found in executables created with recent
linkers. Instead, the VirtualSize of the executable's .data section is expanded to make enough room for uninitialized
data. In C, statically-allocated objects without an explicit initializer are initialized to zero (for arithmetic types) or a
null pointer (for pointer types). Implementations of C typically represent zero values and null pointer values using a
bit pattern consisting solely of zero-valued bits (though this is not required by the C standard). Hence, the BSS segment
typically includes all uninitialized objects (both variables and constants) declared at file scope (i.e., outside any
function) source: https://en.wikipedia.org/wiki/.bss#BSS_in_C

Chapter 4. Behavioral Analysis
75

from the command line, it has been proven that is trickier to run and activate a malware. Note that
all execution of the malware will be done with administrator privileges in order to avoid any

privilege conflict.

4.2.1. Hands on Basic Dynamic - Behavioral Analysis Tools
The tools for basic dynamic analysis should be used in concert to maximize the amount of
information gleaned. The toolset includes the followings:
1. Setting up your virtual network as the VMware Setup Appendix describes.
2. Examine with Process Explorer and its open source alternative Process Hacker.
3. Running Process Monitor and setting a filter on the malware executable PID and clearing out all
events just before running.
4. Gathering a first snapshot of the registry using Regshot.
5. Setting up network traffic logging using Wireshark.
Again, it should be warned that testing malware dynamically should be done ensuring the host

computer and networks, as discussed in the previous chapter.

Process Explorer

The Process Explorer, free from Microsoft, is an extremely powerful task manager that
should be running when you are performing dynamic analysis. It can provide valuable insight into
the processes currently running on a system, to list active processes, DLLs loaded by a process,
various process properties, overall system information, to kill a process, log out users, and launch

and validate processes.

Running Malware
76

Process Explorer monitors the processes running on a system and shows them in a tree
structure that displays child and parent relationships. The user can view five columns: Process (the
process name), PID (the process identifier), CPU (CPU usage), Description, and Company Name,
with services being highlighted in pink, processes in blue, new processes in green, and terminated
processes in red. Green and red highlights are temporary, and are removed after the process has
started or terminated.

They key point with Process Explorer is when analyzing malware to look for changes or
new processes, in order to investigate them thoroughly.

On the following screenshot the malware is running, due to the continuously high CPU

g Process E: & - Sy - e “— 5 X x|
e IDERER 45 @ file Edt view v Tobs mep | Il v | & | £ = i3 | 2|5 wioeroes Triare = @ R =lelx
LL . |

CINEIIL T T =B N] |
e I BT e B nix
o T e
et an ek ek
lostodges wmer ek 16

% Eneronment | st |

:\W'*nr-\wnw ! ‘,rw"‘-]u M, 'lwi

Wirckeus NT BASE AP Clere DL Microsct Copeastion o
Language Pack Mictoech Cospsliors
MSCTF Serves DAL H

Wiredows NT CRI DLL Microseh Casaraion
Hs e DLL

« cml_| |

<7 Usoge: 100 0% Commns hovge: 2195 Frocesses: 32 Fhpacal Usage: 72075 |

o] @ [22| 21 s =

Figure 46: Process Explorer: malware’s Properties - Performance Graph - CPU usage

Chapter 4. Behavioral Analysis
77

The following screenshot shows that the malware has debugging privilege is enables, as

long as we run the malware as Administrators. SelmpersonatePrivilage is also enabled by default.®®

44 @ Ele Edt View v Tobs tep | 11 v | & | ¢ © 0 o @ |[E] 5w rare - @ = R

| 3] R o < ||]] . |

i TRERU_ o Bytes]_Warking =] _PID] Descipton Conparg s X 100X =
E DE S e

T
[l vchost e 1ML NERE 7 aler

mance | Prformante Gragh | Gk et | Thrends | TEPE Secunty | Enurorment | Stgs |

A —
= £

5152110907 255851971 356602 591 185099-1000
— ogoe Sessen: 1305

Frocess for Whaked Mo Froteted: N

Trage |
Ovnes

260K 1150 Sposie: SubSpstem App.
1240 Hast Frocess for Windows 5.

BUILTIN hekminatriots
BUILTINWeere
CONSOLE LOGON
Eves

Lo
Legon SI0 15155079521

andaioss LutstHigh Mandaoy Level
NT ALTHORIT\suhasvicated U
NT AUTHORITYUNTERAZTIVE

ol
Mictcrch Corpeestion
gioter Wit Copeesicn

1532 Spamemils Frocess Erphrer_ Srantenals - wron el

WIKUEFK1SEIHFFtone Mardsiory

e
o] _cm |

T [| e

el @ | OF| 208 E G g

Figure 47: Process Explorer: malware’s Properties - Security - Permissions

The following screenshot shows that the malware has a specific stack already built.
Specifically, on the thread were the malware is being executed, the stack of this thread contains
the malicious code which is being built during the execution. The last function that has been added

to the thread’s stack is RtlInitializeExceptionChain’® from the known ntdll.dll. This assumes that

5 When you assign the "Impersonate a client after authentication™ user right to a user, you permit programs that run
on behalf of that user to impersonate a client. This security setting helps to prevent unauthorized servers from
impersonating clients that connect to it through methods such as remote procedure calls (RPC) or named pipes. Source:
https://support.microsoft.com/en-us/help/821546/overview-of-the-impersonate-a-client-after-authentication-and-the-
crea

0 RtlInitializeExceptionChain is an internal function in the Run-Time Library, a collection of kernel-mode support
functions used by kernel-mode drivers and the OS itself. It's kind of the kernel-mode version of the C run-time library.
If your application is 32-bit and you're profiling it on a 64-bit machine, profiling it on a 32-bit machine or building a
64-bit version will probably move RtlinitializeExceptionChain out of the top 10 list since it's always used in thunking.

Running Malware
78

an Exception error is taken place and the malware does not actually executes the whole of its
execution procedure.

Moreover, the 4th place of the thread’s stack the KeUpdateSystemTime'* function exist.
This function does the time-check and we have successfully pass it as long as the procedure does

not stop there.

9 - E
MIEEERTE = @ fie Edit view W Taos tep | Il v | 2 | O O O = @ B lglx
CINEIL. i Y= DES N o | . 1L]
Process. P“MCBH \vlmk Set| PID| D L Hame C

e Ter 1560 COM Surcgls Wiseoh Ciperin
= VK AEh 28 Hon Pk WinonsS.. Wit ovmrion
[g TIE TR T ok P i Wil o
| sudiodg ue Bo2E 13744K 1458 Windows dudio Dey 1an - Microsoft Comoration

EIRT avchodtase 2EEDK TTRE zuuwh«mmws Micoaoit Camporaiion ks sxalkalipdueS ritanT e 050
TN 1300 Desos WindorManege il Covorain i 04525
aimr o ! 7
BEEAK 528 Host Frocess for Windoms: 5 Micaosolt Coporalion
072K 1020 ot Process o Wieows .. Miermof Caportin
TEEOK 1160 Spooie: SubSystem App Micsoanit Camporaiion
STK 1200 o Prcaes o Wrsons .. Mih Coparatin
SEEK 1268 o Prcess o Windowa 1., il Camarain
BAMK 2028 Micnosolt Windows Search | Microsolt Coporation
35721 1568 Hos Frocess o WirsowsS.. i Caportin
GAMK 1669 Micwosaht Sahmare Potecti . Mikresolt Comporatin
G772K 100 o Frcaes o Wi .. Miich Coperatin poesh | Comy | comval o]
ST 6t LSy P Mo G 4

=l0lx| B
o Exiors Pt | Paformnca ot | Dekims bk
1K 1582 pniemals Frocess Erphess_ Sritamsl - wewn st M | reese | sty | Eveomer | stings -
IFdh | Counts 1
TD] -] CycksDela[StaiAddess 1
e B0 SIRAT.. meem0nnd

emelisied Widan NT BASE APICion DL Mirch Coporion

o

e Langasge Pack Microsoht Coponation

et a MECTF Sove DAL Wit Copain

ot Wivws NI CRT B Vitoed Cooaion

e revmaderistace DL Merowh Covadion

e AT L Mot Copeesion —r u

pena a1 o Procadas Col Furtive. M —— e

s =

echest & Hest fo STM/SDDLA S Leckup Microsch Copardion ke Raady BaceProty, @

etz Wrcows Shol CornenDb - Mioull Copasi el e, S0

imapd " o [

ezl Context Swhches: 182,255 o

o0a

i - 1624020087075 0w s

Do a e RO Moo oyt

’ = _l_l

P iages 150000 ok Soeges 31995 Frocesis 2 Phracl g 5247
. P o dwan

e - =yl L £ [8 B e ®

Figure 48: Process Explorer: malware’s Properties - Threads - Stack - information on current stack

The following screenshot shows that the malware has 1 hour and 27 minutes runtime in
User-land. This is a lot of time using the maximum of CPU usage, as it is being previews above,
without any actual behavior from the malware or its infection. It should be assumed that the

malware does not execute its main procedure but is idling on purpose.

"1 KeUpdateSystemTime routine is executed on a single processor in the processor complex. Its function is to update
the system time and to check to determine if a timer has expired.

Chapter 4. Behavioral Analysis

PEEEIEIRR + @ pie ot veu Wt D e M1t | D0 O

Judl @m0 or e d [T JIC &I
[Pirate Bptes] [_Po] o N

629 Ht Process ot Wirdows 5. Mectasoll Corporaiion.
728 Host Pracess or Widows 5, Micsosoll Corporation

M2 TITMK 1456 Windkows Auao Devics Grep.. Mctosol Cerperation
ZEROK 772K 75 Mo Process for Wi 5. Miciosoh Corportion.
SME 330K 13 Deiig! Marsger Micioio Coperaton
Q01 1ISEE 230K 793 Hos Fiocess fo Wi S... Mcosoll Coprsion.
<o 4140k BEEAK. 329 Host Process ot Windowns S, Mictosoll Cporaton
can TIEE SO72K 1020 Host Fiocess o Wikws 5. Mosot Cerposton.
410K TEEOK 118 Spocke SubSystemdgn Micvosolt Coporation.
TEZK 20K 1260 Ho Process e Windows S Meciosoh Coporaion
ETBAE GESDF. 1264 Hos Piocess fo Windoes 1. Mrosolt
5§ BADOK. 2034 Micwsoll Windws Search | Mictosoll Crporaton
SIBE 3IETZE 1554 Host Process forWindows S Miciosoh Corporsion

12128 304K 1959 Mictosoit Sawaie Fiolectio . Mciosoh Couparation
709 Host Process ot Wrrdows 5. Mictosol Cosporation
TAME AES2E 1750 Hos Process o Windows 5. Miciosoll Coporalion

Genersl | Conpataby | Secusty| Detads | 1

Tipe ol Acphcaion ae)
Desciplior: i sue

23K TUS2E 854 Local Secuiyduborly Puc. MiosollCapoatin.
VIEE ZTERE 472 LocalSession HanagerServ Mctosoh Cerportin
IEE AESEE 39 Wi Login sppicalie, Miciosoh Coperaton
Q03 MM 122K 1360 Widows Excloe Miciorol Corpotatin
165 Z7RK 34A32K 1592 Syoevemals rocess Explrer Syselemas- e sy Thveads
[Compary Name: [Fah I
Pagen Backas
<Pagefe Backess (E
<Pageie Bached
«Pagefie Bocked
<Pagplin Bocked>
Pagelie B
<Pagefe B
sovsoazal Advarced Widows 2Bt AP Miosel Copeasion C\Windowe SyslendZhadvap 21
spisichamadl ApSel Schema DL c
32 DI Chet DL Miroioh oo, CAWrvkwtSyneniof o Locsion
vn12 31 o i i F
ez a1 Wiksus NT BASE AFI i DL Micrcech Corperdion, CA0WrekuusASysiend2\keme32 41 e
omelionadd Wrckus NI B4SE AR Cler DL
o ris e
(] Langusge Pack Mircooh Copeestion C-\Wrdows\System32ik.
mic ol MSCTF Server DAL Mirosclt Corporslion CAWindow\ Systend2mect o Cresied:
revet Widows N1 CAT DL Mool Conetion L AWrndons\System2umev "
i " c e
a1 HT Lapes DL Microsch o, Wikt Symencingh Theaad ID; Accened
(pena 31 Femeie Procedise Cal Funtine Microso Capersion C-ckusSysiend2pend dl ot T T,
[ALl Tl s e
sochost Hoet (o SCM/STOLASA Lookup Micioeoll Compenaion ek SystendQ\echod e Ry femfriatn & Allbudes:
etz a1 Wicows Shel Conmer DI Mcrcodl Copeeatin il 2 Kermel Te: Dymamic eky: &
] Uty Lty c T Wormaty. tomd
i e et c a e B
2 0 : 058 DIL 2 2a Cyces: 16657.200,207,795 halProcesse 0
sz Wi Sockes 1252 L c

Semomdisk 492KB (502608 bytes]

CLlsersWindoms TPl Davricads
AS0KE 531 750 ytes)

Tody, Septenber 15, 2014, 43 miruass ago
Tuesdap, Ociober 1. 2014, 111326 4M
Todsy, Seplenber 15, 2014, 43 miutes ago

I Readordy [Hidden Adanced

Iresiae]| | s

Lo o= o |

e | ==

Figure 49: Process Explorer: malware’s Properties - Threads - Module - General details for the malicious

file

The following screenshot shows that the malware’s executable file does not have any

metadata, which does not help analyzing it.

weasera | o |_smowd |

==

I - T |

- 0 & . lslxl
UESSEREE < @ ple Edt Wew VM Tios ke | |l @ | O =] @ | 3| winmpros | Thare b
jdl a m® 08 <@ IIC__JIC__]| 1Tk I AL ., |
Froces [ER[_FrvoeBytes] Wotkrgse] P Descrpton T Conpary ame -
E et TSR 4K G ot Precer o Windans 5. Mtorl Coperain
TANOK LSRR 728 Hot Puocess o Windows Caporaion
MK 137K 145 indoes o Do i e Conpoxsin
2EEDF TTT2K 764 Host Precess for Windows S roscit Comperation
TS FRE 1326 Daskoop Window Mansgn Microzolt Comaration
€001 TISEK 30K 780 Hot Precer o Windans .. Mcrorolt Copersien
001 AMOE GSAF 528 Moot Process o Windoms .. Wil Coperaion
«om T3MmE SO7ZK 1020 Host Frocess for ‘indows S Microsolt Comporaiion
P 7OEOK 1160 Sponies SbSystemApn Micreaoit Comperation
THRK GA0K 1240 Host Process for Windows S Microsolt Comoration
BT SEOK 1268 Hor Pocessr Wikows 1. Mool Cosrin
TE5EE . 2064 Mot Windows Seach .. Micech Capersien
SIBK 35T2K 1564 Host Frocess foWindows S Micosolt Comporaiion
182K E34K 1868 Microsoft Soltware Protectio. . Microsoft Comparation
21481 BTT2K 708 Host Process for Windows S Microsolt Comoration
VAME ABZE 1750 Hot Frecers o Windons .. Miorlt Copersion
§ TDRE 464 Local Secutp bty .. Miaceol Comeratin
ATEE 278K 472 Locs Sasmon Managm S Mioeol Comatin i |
1EEDK. AFEEK ‘Windows Logon Apphcstion Micreokt Caporation
003 7K 072K 1380 Windows Exploiet Hicessolt Coporation insge | pefomarce | Performanceraph | ik and etk
1@ DR SUEDE 152 Syt Pk Syt i ot | || s | oo | e &
[Conpry ane Trah I Gene | Conpuitity| Socry Dl | Prvius Vissions |
Pag Bk 1| =
<Pagstie Backec 7 =
<Pagebls Backed> Description
Pagesi Backas.
Pageie Bacheet [—
Pagelie ke Trpe won
<Pagetie Backerh- Pl veaian
Advanced\Wrcows 2 BaieAP1 i
scimichmadl Aot Schema DL Wil Copasin C\Windawe\S e st schema df "
odizd GDI Chert DLL. ticrowait Coponshon CAWindows\Sy 2 Panduct version
32 01 ML ot IMMIZ AP1 Ch Microso Coporstion Lo i\ SpitemI2min i 01
kemecz vk NT BUSE AP Chee DL Mrach Copoiaion o\ Spen kel Sie Obtes
emelioied \ivdows NI B4SE AP Cieme DL Miro Coparsion. C-indowst S aten 2K emefose f—
ocaaris Cindour', "
ket Langge Fack Moo Copadion . Oidows SydeniZ2h. s
st MSCTF Sarve DL Moo Capa ASyaenmsct &
mevatct Wrows NT CRT DLL Wil Copasin CAWindawe\S pencZmca
it WS\ Urerrede rinface DL Moo oo C\Windoeely
i HT Lapwe UL Microoalt Copoesivrr G Wb\t Zortc 01 Thresd I % Stack Podie
[ren i et Prcecan CalFuniie Miroio Copaaion, Uit penpend St e 0070 Sl
i o Dowrioditams v o ety 8
sechst Host o SCM/SDDLA S Lockup Mionch Copexdin — C-indnur SpdemChanchost o]
shel32 I “wirddowss Shel Common DI Microscht Coporslion it Syelem X shell32 I Kexnel Time: 0:00:00.000 Dynamic Priocty: 8
e e et USER AL Mo i 31 T e o Mo
ez T . Mo Coasin C\Windos SysemiZie
0.0 Unszcibe Uncode sopl mocesic ticiaaft Covorstion Civindows\System 32w 0 & Contemt Sdctess - 200,684 Moy Pzt 8 ‘Flemeave Proparties and Preiscnal Infoimatico.
w232 Windowss Sockel 203264 DL Miciosol Coporstion C o\ Syaten 2w d_32 a1 Crdles: 16,69%,391,501,245 Ideal Processer: 0
a e c

JoPU Usage: 100.00% omm Chorge: 31.50% Processes: 32 Phyacal Usage: 22.27% |

- AEIER=1Y

* o @) o g

Figure 50: Process Explorer: malware’s Properties - Threads - Module - no metadata for the malicious

file

80

Running Malware

The following screenshot shows that the malware has not any network activity.

- 51
s o e @ Fle Edit View VM Tobs Help | I ~ == 0O H [Ciwemeroes || ere - @ B |
|d ﬂ\grj@m‘nalr_—ﬂllgllj [[0 M |

508 o Focess m
728 Hosl Process for Windows 5.
=1 sudndg = 1455 Windoms Audo Device Guap. . Micsasoh Corpoiston
o for Windows 5 Mic
] dmene
<om
<aon
a0
lmix B
00 P
11 i &
[Deserition v
oy
Pl Sacka
ety Piota | Locsl ddebess | | State 1
Pogel Bk
Fogaie
Fagetk B,
Pt
bt 2 M Gk it
g chane L el Coadi € Widoamtan Crichana
GDA Chari DL Mitosol Comparation ©indows Eynen i gd 32
Ml Uer Wk MM22AP 1 Ml oot Gy i2rmi
s T BASE AP\ Chrd DLL Mimach Coorton € s Syt e
o NT BASE APICiriDLL Mool Coposion. € indows e 2 e o
C aindovs\Syetem 32 oc e
Language Fack. Muciosolt Coporaion W indoms S petem3upk I
MECTF Senver L Mevl Capordin © WS ptan et
o T T DLL Mol Corain € Windomopdan Zimevetdl
NSl Urmeode pisface DL Mool Copdrn & Windom et vl
NT Lag DLL Miiosoll Corparation Cindows Syaten Lol
Plsmate Proceduee Cal Pastims Mictosolt Caporaiins ©\windows S pnem ZAvperth A
ot SOUSDOU NS L. Mol o & kot
ot el Codin € Wi Znetio
SMLm—mmww Mtosolt Corporsiion Cwindows Syten I shwpt i
ot v USER AP CL. Miresl Capo e inisd
Urkerbe Uricece s vt v, G e g lac
iows S DRTADLL . Mok Copori, € oS o, 1238
ko Socke ZBDLL Moot Coporn € Sy ook
(o] o |
)
.) . , . ..
Figure 51: Process Explorer: malware’s Properties - TCP/IP - no network activity
. 51 %
LSS = @ ple Eot Vew W Tbs Hep | Il | [O 0 D (=] & B |[B][Giwres || 5imare x o8 = x|
|4 gnn:slwt\u@J:m;m:H | Il Ll |
Mame i[=] £} I
e
12TEE 1UTK 728 Host Frocess forWindoms 5., Mircsoft Corporation Smage | Perfermence | Perfomanc Groph | Gk Nebwark | Theeads | TEPHIP | Securty Enveonment | strngs |
DK 13MOK 1456 Windows o Devies Giap Miciosolt Coporalion
2EEDE TTI2E 7B r Vensble | vaue I
Eald ALK 1324 Deshion’ Mictoenit Canperation [ALLUSERSPAOFILE CAPaogramD:
vohost e <o 13E L 2328k Hest Frecess fer \Windows 5. Mieresoft Comerstion |WPPDATA AL sews \w/indowes PPlase\App0l s\ Fioaming
4nize BFEZK 528 Host Process for Windows S Microsoit Comoration d CAPsoam Filee\Common Files
g T3mk SOT2K 1020 Hos Process for Windowss . Mikigeolt Comperstin COMEUTERNAME VAUEFKTSESHEE
ERE T3 0K 1160 Sposler SubSysiem App Microsot Comparsion ?;J'ﬁg‘m - %wm:w=\MMm
TR SIBBE 1240 Host Process for Windows S Microsolt Conporation HOMEORIVE
7K SERE 1260 o PocesorWindows T.. Ml Capersien o [
15EBE K 2024 Wi {Windows Search .. Microsch Casporation LOCALAPPDATA Co\lhseesWindows Flaseppl ot ol
s AST2K 1568 Hos Process for Windowss . Mikigeolt Comparstin LDGONSERVER ORTHUEFEISEHFF
192K GIMK 1660 Mrrorh Safmee Poecin. Mioeo Coporain n e Teocessons)
218K B772K 708 Hos Process for Windows S, Micwseolt Cosporaiion 05 Windass_NT
YEBE AS7SK 1780 Hos Prcee riiows .. Wisoech Coperain Fan g
27EEK TOERE 464 Local Secuty Auhory Froc. . Microaoft Comparation PATHEXT COM_EXE . BAT_OMD; VBS : VBE IS JSE \WSF . WSH:MSL
RT3 LPEOK AT2 Local Sernon Manage Serv... Mol Comorstion PROCESSOR_ARCHITECTURE 485 -
150K 4BSEK 196 Windows Logon Apphcaiin Micrcsoft Comoration FROCESSORIDENTIFIER 495 Fandy G Model 45 Stepping 7, Geruiralnis!
003 EOE 313K 1350 Windows Esplon Mictpsc Corperaiicn PROCESSOR_LEVEL 3
143 Bk T3 T2FCK 1552 Sysinemals Frocess E Sysintmrmists - v sysivien WESBTKVSIUN ;‘;’ - -
_—
[Conpary Name TFon | FogranFie: CAProgram Fies
S Firodieh o it vt i
<Pageti Bkt PaLC e
<Pagutie Backesd SESSIONMAME G
<Pagelks Backech SystenDive. -
Pt SpuanPoe —
«Pageie Backed: TEMP C\Jsees WWINDDW TuhpplD st ocah Temp
(PMEM TMF C\llsees W INDOW TibppD it ceah Temp
B Uscroanen R
scustschemadl AciSet Schemal Microscht Comarslion :Mm;\snmm;mmu LSERNAME ‘Windaws Flare.
sz d GOI Emuu. Microech Copaorshion w5 LSERFROFILE E:U e W indoves e
me32 01 t g
kemeli2. i “Wircdows NT BASE API Cheni DLL. wrdoves_bracing_flags 3
[y Wik NT BASE AFI Ciet DL Microsch Canerslion :m;\s.mmmama ko acig_Jogie CABVTEinTests\nstalloackage’csiagfie kg
oaeris CMindomiSrdanCocserh
k. Language Pack. Micicoh Coporsion Lo 1\ Spitem e, o
mscs il MECTF Server DAL Micsoactt Copouati Ctwindows\ Syatemomsct
fi e N CRT L Mersch Coprsin CindouilSpdenZompicn
by g - C .
ric i T Laer DL Misicechl Copon o Cwimdonss! System i oI
cieat Caurime c
e ST
e oo SCMSDOLASA Lnkup . Mo Cogmashn € WndowerdemCoedot
hel32 0 “Wirndowst Shel Comamors D Micioaoh Coponstion ot s Spaten I el 32 o
i Sl grumts ik M ; i
e o indara USER APICE Mook Copasis CimonCpen s
e0d Unberbo g - C
ws2_32 oL [~ 32d
za Lo c
P Concl
= r<ri|

Figure 52: Process Explorer: malware’s Properties

Environment

Chapter 4. Behavioral Analysis
81

As aresult, information gathering from Process Explorer was successful, but they key point

to reveal a new, related to the malware, process did not happen.

4.2.2. Comparing the image and memory Strings

One way to recognize process replacement is to use the Strings tab in the Process Properties
window to compare the strings contained in the disk executable (image) against the strings in
memory for that same executable running in memory. Both options exported in text file and being

compares with the WinMerge’?> Windows Tool.

IREEIEEIETEAS [+ 4|5 -|® ale @

B Select Fil &

g
August August
September Septenber
October October
Nowember November
December December
Jan Jan
Feb Feb
Mar Mar
Apr Apr
Jun Jun
Jul Jul
Aug Aug
gep gep
oct Oct.
Now Nov
Dec Dea
£{null) £ (null)
GBG, G GBG, G
GPGDG GPGDG

L#5%&7 () %+, -. /012345676891 ; <=>? GABCDEF GHIJKLMNOPQRSTUVWXYZ [\]“_" abedefghi jklnnopgratuvwryz { | }~
. —+xx012345678%abcdef0123456789ABCDEF -+xX012345678%abcde fABCDEF
BHG BHG
FHG FHE
JHG JHG
OHG OHE
SHG SHE
WHE WHE
CHG cHG
gHE gHE
kHG kHG
oHG oHG
WHG WHG
SHG sHG
libgej-13.d11 libgej-13.d11
_Jv_RegisterClasses _Jv_RegisterClasses
yvcET yvex?
hde hde
:I:M" o :t,mv
— —— |ni129 Coli 1/6 Chi 1/6 5001 {utf-8 BOM) hifin [[Lni 1293 Col: 444 Chi 4/4

Figure 53: WinMerge Strings txt files comparison from Binary's Image and Memory's executable

2 WinMerge is a Windows tool for visual difference display and merging, for both files and directories. It is highly
useful for determining what has changed between file versions, and then merging those changes. Side-by-side line
difference and highlights differences inside lines. A file map shows the overall file differences in a location pane. The
user interface is translated into several languages.

Running Malware

CryptacouireContextiy CrypticquireContexti

Figure 54: WinMerge Strings txt files comparison from Binary's Image and Memory's executable-2

The comparison of the two string listings did not drastically different, so it is sure that
process replacement did not occurred. On the other hand, belong the highlighted strings three
Base64 alphabets are being revealed. The encoding scheme and the further analysis of Base64

alphabet will be presented on the Static code Analysis section.

4.2.3. Examine with Process Hacker
An open source alternative of Process Explorer is Process Hacker that includes detailed

network activity, but in this case, no additional information was usable.

Chapter 4. Behavioral Analysis

52518

$Bepp Y8y BEETERToatetnungnssd &

o1 1287 M Kevmch bepyooia o uenpecs..
12085 1366M8 ey beppooko i uregeck...
76618 unosumate; oupd
98608 ¥evmnh Seprocia o Lonpect:. ..
3a7me VMware Guast Authertication ...
Rl ‘VMware Took Core Service.
o0 I9EIVE WL IOREONTIYOSE Koy Beprock 0 0% ..
2110 ‘frrpecka Tl oo
AL Mcrosoft Windows Search Irdexer
165,294 Kevwh beppocks o uenpeck, .
Leme Kevmarh bepyrocka pa npeckc..
e Loca Securty Autherty Process
1,26M6 ‘Yrmpecka dagpeny; sorwiy ne..
AL EPappoyh) oivbeans T Windows.
002 3,8 WL \ErpastrioWin?Pro86 EEapeivnon mev Windows
02 11,46M8 WL, \frgestroWin ol Frocess Hadker

ER:

B
:
&

B services ece. 8 252
57 schostamn L] 07 ME
T vmacthip.cae P L
[# suchast.exe 7% 2718

ST suchast exe L3 13,3818
[x! 21 HEvE
I svchast on st EETY
[1528 127ME

[svchast.exe 5 62218
¥ svchast.exe az 12,7848
1 suchost e nss 13,8518
7 spoddev.ene 2% R
] svchost. 1324 P
&1 vasmehSendca.ame 1528 32718
[Py 1816 1508
T vasrost exe 1861 Ll
[sppsv.ene) e
= searchindexer.ene £ 16EE 31,TINE
[suchost.exe et 23,2 164,63 M6
[Cu Pe—— 2076 1e2mm
s ane sie 3308

fien

Figure 56: Process Hacker: malware.exe’s Handles on Properties.

Running Malware

Ciprogrambists
Cijers{Erg ek TProSéiAgpD staifoaming

Mon May 28 21:34:35 2016
ek

in

P
]

@ |

o= HELVE NI WOCK: SERCE Py
B 35 NTAITAORITYSYSTEM COM; EHE AT, CHDS. VS, VB 5, 13 WSF; WS MSC

0t LUBNB WL [ErgastroWin Pross. 0

o FAGME T ALL.ILOCA SERVICE ol €l £ Seppoa T, Grvncined

B 144318 NI AUTRORITASISTEN .

15 1344M8 NI .DETWORK SERWICE .

TN N AUTHORITY\SYSTEM Ciprogram Fies

EZES

h Processes (Or+1)

3B

1M
7M.
133108
11 e
EELd
11808
746V8
144608
131308

s3dzsyse

BZES

Figure 58: Process Hacker: malware.exe’s General Properties. (PEB address 0x7(fdf000)

Chapter 4. Behavioral Analysis

in

itk
2818
13,5818
wEIrE
352
11848
743
17308
13,4418

gsleligue

§
]
L

sREEERHEEES
EETriEaEEfEfifffEfgEsfgETUEgEIETUETIEE

HHP iy

ggteliaase

Figure 60: Process Hacker: malware.exe’s Modules on Properties.

Running Malware
86

SO
Wosker iew Tocks Users Hep
o Refresh . Cptiers | 48 Fnd hardes or Ds 5% System iformation. | (] "5 Fordpoeionn 2
Processes | Sarvios: | Newesk | Disk_|
Hame. [o[cul yotod... | privetsb.. [Userneme [Deserition I
1 | System Tk Frocess. o 7z 0 HT AUTHCRITY(SYSTEM
S5 System. 4 o 4BME WTAUTHCRITYISYSTEM T Kermel & System
£ 3ZIE NTAUTHCRITYISYSTER iqloem aepidss e wrcows
051 o Intersts a0 09
= 2528 NTAUTHCRITASYSTEN Siayacka pévou ocréheans o
A0 05 1ZBis 176AME NTAUTHCRITYISYSTEM Buyock spinon osnheor g,
B 7218 WL JfrgsstroNnTPrett Kevmarh oo Wedows
o STZIE NTAUTHORITASYSTEM Eapyioyh ooy Ty Windo,
= JIVE N AUTHCRITASYSTEN Epanynt Lot v gheveh
) 2H4VB NTAUTHCRITASISTEN Kormh Geproca ya urpasi.
7% 035 14218 DM NT.NETWORKSERVICE WM Provide Host
0 SLLME WTAUTHCRITYISYSTEN Whhuare Actvation Heer —
75 2BLME T \NETWORK SERVICE Kovepeh Beppacka pourmpeck, ewwormart | andes | X6 | G | Dekandneouork | commere |
o S128is 13,36ME NTAL.ALOCALSERVICE Kevimh egreooia 0 LIvpecke. . General St | Performance | Theesds | Token | Moddes | Memory |
1% I4ELME N AL, LOCAL SERVICE Anobvurn yoagepuamas o, o .
4 I5AME NTAUTHCRITYISISTEM Kevmpe lepronia o Lonpeck. = il 5
204 ABME WL Jrgestroinerett A gl v Cydes i77.008,157.881 | Readbytes o
% TATVE WTALL.ILOCA SERACE Kevoeh By i Lengerk. veraltwe DOO000OM | wms o
TN 034 7B 148ME NTAUTHCRITVISYSTEN Kevie begmueia o oo, User e 00 Wrts brtes o
s A48 13,138 NT..\METWORKSERVICE Kovmch beproct yaurmpeci. e = =
127 763ME NTAUTHCRITYISYSTEM Eipopyioh unocuassms ol Memery | |G] e x
1348 S98ME NI Al ILOCK SEICE Kevepeh bepyosia o enpese. prvate bytes Lure
116 AZIVE NTAUTHCRITVISTSTEN WWAsare Gusst AArEX SRR, . Paskprivaebytes 10905 | Other =
w0 66ME NTAUTHCRITASYSTEM Ve Took Cors Sérvce Vel s amg | Handes =2 Pt n
74 10,77HE WL e Fodhvriia QM || Pererdes = "
7 JErgactronTRoES Korme Gepraa 1 cyadcs .. S 28 | othandes a '
124 S03ME T . \NETWORK SERVICE rnpenka réampip npamod. S 22w || USER hondes 1 — 2
2148 ZE7ME WT . |METWORK SERVICE frepeci Bierncpiod keaven e T R EuuRgitration s
= LUBME NTAU.ILOCA SERACE Kevmeh Baphits i Lengerk. SRR e vt 2
108 66,2M NTAUTHORITASYSTEM Kevip oo v wonpects Shared 15108 e !
45 26,7508 NTAUTHCRITASYSTEN Merosofe widows Sesrch Irceser Pask work st 2208 . N
- 1,76ME NTAUTHCRITYISTSTEN Mcrosolt Windoms Search roto. Pagepriety Hormsl - :
2 LIZME NTAUTHCRITVISTSTEM Mcrosalt Windoms Search ke .. o
516 0 353ME NTAUTHCRITVISYSTEM Local Securty Autberty Process
24 147ME WTAUTRCRITYISYSTEN frepecksbengépen mrweio ..
w0 21308 NTAUTHCRITSYSTEN Epapyoph ciubeong v Wirdows
iz om S4HVE WL JEroatroNaTor e EEAOionan Tus Windows
[~ [W2 O LA 10,12MB WL MeroastroNinfProté SMware Took Cors Servee
™ ProcessHacker.axe #2038 13,77ME WL JErgactrioMin7Pro86 Frocess Hacker
(= o Waeshak.ece W 045 MBS ANSEME WL JErpestroNnTivols Wreshak
M S e s THEE 335ME WL JErOstrownToes DU Closn
O craich uiane 0 AZNE WL JErGastrainTross
&5 proc_metch exe 0o on 225ME WL, JergectroibinTPot
= mabvarn 530 = e 1LOTME WL JErgastrichinTerose
CPU Usage: 27.60% Physical memory: 816,74 MB (26,509%) Processes: 42
Bron| s] € [® 4] &) on[F D) wmw

Figure 61: Process Hacker: malware.exe’s Handle's Statistics on Properties.

As a result, some information was gathered from Process Hacker in compare with Process
Explorer. On the other hand, no new process appeared but they key point to reveal a new, related

to the malware, process did not happen.

4.2.4. Monitoring with Process Monitor
Process Monitor, or procmon, is an advanced monitoring tool for Windows that provides a
way to monitor certain registry, file system, network, process, and thread activity’3. It combines

and enhances the functionality of two legacy tools: FileMon and RegMon.

73 Although procmon captures a lot of data, it doesn’t capture everything. For example, it can miss the device driver
activity of a user-mode component talking to a rootkit via device 1/0 controls, as well as certain GUI calls, such as
SetWindowsHookEx. In addition, it should not be used for logging network activity, because it does not work
consistently across Microsoft Windows versions.

Chapter 4. Behavioral Analysis

87

Procmon monitors all system calls and because many system calls exist on a Windows

machine (more than 50,000 events a minute), procmon uses RAM to log events. Keep in mind that

Procmon can crash a virtual machine using all available memory.

Before using procmon for analysis, first clear all currently captured events to remove

irrelevant data by choosing Edit/Clear Display. Next, run the rtms.exe (malware) as Administrator,

with capture turned on. Then filter the results showing only the PID of rtms.exe, in screenshot’s

case the PID is 3000.

o] @ L[5 |

SAIIEGTIEREE = @ e Edit view vM Toos Hep | Il = | 2 | 0 O £ =) B | [[E] 5 mtare = @B R ~2lx
(ECHABE vAS O AN X3 LI
Tt Dyl Proce|_P10| Gpesion | Puth Reat | peti 3]
|3 53485075 3000 QFrocess Stan SUCCESS Pareri PID: 1344, Command kne: Cureni deeclony Emuonment ALLUISERSPROFILE=C \ProgramD alat PFOATA=C \Llsers\windows TFla
53485078 20 & Thead e SUCCESS Thvead 0 2004
s s S R .
5405 El suceess Iege Base O4P7A000ED, Inage Sie: 136000
s i o FOUND Do o Gormin s Dupasie Opon Do Storove I e, i, Shanbs Nern bcalire i
Copls e g hese e e R . o s
T | T =] [ircute =] SOt Deeedhcoes ot
I JI _JI _I PegalnDLLSeach NAME NOT FOUND Lengih 1,024
— Suecess
ST | SUCCESS Dasiad Accs Evscise Tusvsiss, Sirchionios, Dispastior Dpee, Opties Discio, Swhvonsous 10 Naevle, bt /e, Shasbod: Pasd. Wik, AlossionSize . DpsePissnd Dpsned
s e e e o)
ey P - GCTESE inageBave D7SaIEE, mage S D)
E ek RRAE Dot ot
[e Dt Accom hood
o—— o FUAME N FOUND g 548
Procexp exa Euchuds rabled SUCLESS Type: REG_DWORD, Lengih 4, Data- 0
ORI h Enchide SUCCESS
Sy ik REPWE Dewedfccess Qumy Voo, S Veke
oML Euches AME NOT FOUND Desad Acces Gy Voo, 5o Vot
oo
= T
s v eeers Do Ve
e e WO D g
FewisOF e sueress
‘odel derlers NAME NOT FOUND Deswod Access Guery Vala
o e gt d SUCCESS Inage Base OWFSTICEE, lsge S a0000 .
C oo & WS e oD et Ol
sl G\t i dl SUCCESS DewadAcces RaudAbutey,Ougerter: Doen. Opis:Doen Repes Porl.AlExbe. v, Shrsods. st Wi, e, Alocsiics
B Qb apcinton.Cwindows Stten I echon o) SUCCESS Comation T 7/14/2008 211 59 AM, Ll“w&dm TAAF009 217 53 AM, Lasfw'nleT e 7/14/2009 4161340, ChangsTime. ﬂ‘\‘)#?ﬂ‘élﬁ?ﬁm FMMN& A
" Envodoasimma s 8 Socoess
eantls Cuiodoaramazicton & GUCEESS e Aocess Read DorwLi i, Esseut/Trses, Sy, st Op, D Synchonoss 0 e, Hon Disci Fe, Aobots: s, Shaece: e Dol Alcosonc: s, esFes Ipe
CM:FMBDG C-\Wwindows\System 2 sachost i FILE LOCKED W1, ‘wdwe' 'ﬂYync(laquecllﬂn, PageFrotecton: PAGE_EXECUTE
Cewindews\Syshem 3\sachost A SUCCESS neType: SyneTs
Sy omo SICEESS inag on PO, g S 015000
e\ enZ success
C o e Zpatt SUCCESS e Bave OVPSAEED, sge e a1000
C o el SUCCESS Image Bave OV, Inge e ke
WAy SUCCESS InageBove OVEVSEER. Inage S 087
Tt s\ Spitemihod 12 & SUCCESS Image Base (4 FTRS0000, Image Sizw: Oeda000
epmens G eyt
Ce\windows\Spstem XUk B SUCDESS \m Baser IN7E410000, Image Size: hesD00
CUindouiSpden sl SUCEESS image e OLPGSEEE, Inge S b
s — N MDY FOLND Dot e ek bt Dt D, Ol D et o, At vl Shrlos i Dt ot
i Sy oot 3 8 SUCCESS | Doted Accass e Atbuto, Deponen:Dpor, Qpor: Den et P b v Shatlnk Fnd Vi, Dol o Oparou Dpered
Sy 2 SUCCESS Comrlom 7/R003 25501 AN LodscounT et 314/03 501 b it 74/2003 41620504, CrargaTine 315,204 544 P it A
i ptem im0 12l Suceess
oS Cmock 2 SUCTESS e ccos: Ao Dt Dbl EsccukeTravere, Smchiorice Disposis Ope, Dtk Syrchionous 0 o, N Dieclon Fl, Alvues i, ShareMode: e, Delt, Alocatonsie: s, Openfu: O
€ Windows S ek 2 PLE LIEKED . ymcType Sy sptimlneton, Poefiston FAGE EAECUTE
Sy Zrmod a2l SUCTESS " Alcbirbi 00D £l DS, FambeOl ks DolParcing Pl Diecon: Fok
o pteni e 2.4 SUECESS Qe 0 Lo 010000 e Novcachd.Fagg 0. v o Fag 1, Pty ol
[t SUCESS e OG0, L 042000 g Nervcaced Pageg D yrianas ol 0. Pty Nomsl
C ot Emioch 2 SUCCESS Smelios SmcliOhe
Lo 1\ Syt ock Il SUCCESS Image Bacer (WG PO0000, Image Size: 17000
Ciintymmitoano 2 GOCEESE b DA Longe a1 P Ncched Pagn 0. Srctoncs Pag 0. Prishy: Mot
Cibindopen oo 2 ficress
C-\Wwindows\System wesock 12 4 SUCCESS Offsst: w3400, Lengéh (w500, 10 Flags: Heon-cached, Paging 170, Syncheanaus Paging |10, Pricdy: Nowal
Cewindews\Syshem s 2_32 4 SUCCESS Image Base (kPEEAI000, Image Size: O
C:Nwimdews\Syehem3 il SUCCESS Image Base 0 PSeSO000. Image Size: (st
C o den sk 2 SUCCESS (e OGN0, L 00 V1 gt Morrach Pageg D, Syrchancus Eagig! 0, Py Nosmal
) REFASE Dewedhecacs o
HEL) SUCCESS Desied Access: Aead Jj
i .
P T p—— [T

£18 D e

Figure 62: Process Monitor: Filter apply in PID of the under analysis malware (rtms.exe)

Running Malware

) T)%
e Edit view VM Tsbs Help | Ml v | | O O 0 = B | [[E 5 mere x| = @ = £
(=@ 6 E 9aomm sIFFFFl
Time cf Dy | Proce | LY | Dietsi
Parers PID: 13484, Commard e T Cuamant descioy: O Ervannmant ALL \ProgranD aAPFOATA=C \LLsari\window TFla.
Treead . 004
AUt P Deurloadiins s e s QW00 I Sz 5000
s f |12 o 07700000 rage e 013000
HELM\S peter\CuameniCorotel Cano\ Sezson Manager Dezwed Access Read
oy Dt tcces ad
e m.m FOUND g 1524
e e
359465197 3 C.wm»\wmw»?ﬂm\nmw smss Diasind Accas: EvaculeTuavtess, Synchionas. Dispostiort Dpse, Diptioe: Discios, Symchronois 10 Naon i, Amitnses n/a, ShaieMode: Fasd. Wine. Aloraions e ria, DpiePiasul. Opened
i 2 Cilmdoury SUCOESS Inage Bse OUPGHOD,Ins S egAlD)
15248 5139 3 E\\Jnhn:\&mmmaneﬂuzﬂ SUCCESS Image Base: 47500000, Image Size: Beda00)
hsanna F LIS e CmerCerhoeh CaneehTemin Senver reriase e e e
F RS e ComenCerinf e ool el S Do ecare R
4 e HEL) WENUIFUWDLM&E
. = 0 TSt o0 A, OWORD, Lol & Data 0
F LSt CneniCorhase Carrh T Servr Suetees
F o ol Cota' oo Do v e Gy Vb, 5o Vb
F R CNC Lo B0\ AME NOT FOUND Desad Acces Gy Voo, 5o Vot
F HELM St CoameiCarnelen Coroh STV FAOLL Diand Accass Fiasd
F M Syt ComeniCermenCoome SAEPOLL KA T o s e st
F LS Pl ol S fr ol Desbed Accers Qs Vo
F FLSDFTRE e WO D g
F FLMSOFTwaR
I NAME NOT FOUND Deswod Access Guery Vala
o e gt d SUCCESS Inage Base OWFSTICEE, lsge S a0000 L
S S SRS Inebm OGDL e o 00l
Cindom SUCCESS Dewadacees Resdidutn
25346 5140 cwm;\swmma SUCCESS ConationTime 7/14/2008 211 !Qm Lastcosss T 71472009 271 534, | mwmlm 7f|lf2mﬂawm Dmrm anmuamzm Fiadraes &
2546 5140 Awindow s\ Spatam 3 sechon o1 SUCDESS
hssa CindoatptenZonshon i GUCOESS Desioddecen: Read Devadin Dbt EssekeTrarse, Spchinice, Dipasis O, Dtk Sychonout 0 el N Discio Fi, Avbuts /s, ShaehMode: e Delt, Alocsionsiz: s, Openfenk: O
35348 5149 C \\iflldm:\sﬁhemm:m!d FILE LOCKED W1 SyncType: SyneTypeCresteSection, PagsFrolection: PAGE_EXECUTE
C:Xwindows\Sy SUCCESS SyneType: SyneTypeDiher
[~ \wm.\?m&\smma SUCCESS Image Base (47710000 Image Size: 013000
a success
Clndon SydemZpath d SUCCESS Irage ase OHPSOHINND,mage Sie a1 000
CmdontS ey SUCEESS e Bave DNPSAHOO0D. image e Dts2d
CotwimdonesSyetem I chivept SUCCESS Inage Base (b PS150000, Image Size: 157000
C\wimdonss'Syem g 12 b SUCCESS Image Base (7 PESO000. Image Size: (ed0000
C S encZniee 2 SUCCESS Inage Raus OHTSSSINOD lmage e ecS000
CndantSdeniot ST Ingebe G e o 000
Cmtan a0 Image Bare O g iz 05000
Climrvion e Dinrko s WSOCKI2OLL UME O FOUNO Demed ccrs hasbattr, Snporen: Do, Ot osn i P, A i Shrels Pt o, Ol Al
[=Y ASpitamwsock 12 A1 SUCDESS Ded Accass: Aasd Ansbuter, Dispostion: Opan, Optioes: Ownepmepuu A i, Shaabode: Rm\mh_ ., AbocHinnGioe Dwﬂo t: Opened
C\indows\SpatemRwasock 12 - SUCDESS ComavionTme: 74142000 25501 &M, L Ehmleme wmmucﬁum Fieditrbutes &
oS tem oo 2 succees
C\windows\System wasock 32 SUCCESS Desitad Access: Aasd DatavList Direcioty, Executs/Traverse, Synchionize, Dispastion: Open, Dptions: Synchionous 10 Heriles, Non Direcior Fie, Altsbutes: n/és, ShaeMode: Fiead, Deleis, AlocatonSize: n/s, Openfiesul Ope
C:Xwimdews\Syeem3msock 32 i FILE LOCKED W1, inc'ws SymeTypeCiesleSection. Pagsiolecton PAGE_EXECUTE
C Nwimdaows\SystemXwsock 32 I SUCCESS AccatorSae k4000, ErcdiFie 0:3c00. NumbeOlLnks 2 DeleiePeridng False. Creciory Fakm:
R — SUCCESS e O Lengih Q1000 L0 Fge Norrcached Pagea . Srchuonos P 0. Py Noresl
[——— SUCCESS e O1aa00) Lengin OGO, /D Fags: Ner-cached,Pagng D). Synctvas g 1. ity Nomal
C o et 12 SUCEESS Smelis Smclosdhe
ot s Sptem I ock 2.0 SUCCESS e Bscer (WG PODO00. Image Size: 7
ASpatanmeock 2. SUCCESS e D0, Liengite (2000, 110 Flage chwad Paging LD, Synchioncus Paging |10, Prisety Nomal
Ciindoatptenmaocl s d Success
C-\Wwindows\System wesock 12 4 SUCCESS Dffet: 03400, Lengeh (4500, 1/0 Flags: Nen-cached, Paging |70, Spncheanous Faging |40, Pricrty Nomal
Cewindews\Syshem s 2_32 4 SUCCESS Image Base (kPEEAI000, Image Sice: x35000
i s\Syelem 3 SUCCESS Image Base (4 PSeSO000. Image Size (66000
oS Lt SUCESS Dl ORI Langi 000 1D Fiage Norsached, Faging D, Sychvancus Fagig 0. Piaty Nomal
REPARGE Dewsdhcces Rowd
- S Dewedicoen Fomd
!
 Bached by virtua

= AEN:

- SCIE)
e “hes = @ [le Edit View VM Tsbs Help | = (5] E.mx o @ =
SHIADE vAD T M KHKBA-‘HI
Tine of Dy Proce. | PID | %p-- | Detsi =
00 ERexdoeey mesy.\mﬂww:ww‘oﬂwmwmwm SUCEESS Deehon g
00 @Reghespiae HELN Sy SUCFESS 52 Lenegh 3, Doty 00050101 D0DGAT0N
300 @Regpercey R e ot e ot T s REPARSE Do et
00 fRepericey HIELMSystem\Camer oo e Corrol Teminal Server SUCEEss s et
A0 @R egusyidun NAME NOT FOUND L’\ﬂh
A0 @ Feglueyiae ‘SCEESS KE IWORD. Lergth 4. Dt 0
00 Regbeeiey LSl oot ot e e SUCEESs
000 8 SUCEES: Desied Access: Masimum e, Graned Access A Accesn
Eol o HAME NOT FOUND Deseed Access:
En C\wrco—m&mo-amiaa SUCEESS Dsved Acces: asd Amitutes, Dispostion: Dpen, Opions: Dot Fepiss Porl, ANuser v, ShareMode Fasd vt Deete Alocsionsize n/a. Dpsnfesul Dptesd
00 [SUCTESS CresionTiwe: 11721 /2010 17:25 20 M, LothceaisTime: 117217201012 220, LoatwitTime: 142172010 172220 &M, ChangiTn: 1542014 2051 M, Fodmbutes &
300 [t e v SUCTESS
00 C:NWindows\System32\imm32 &I SUCCESS Desinad Access: Aead D atavList Directory, Spneheonize, Dispastior: Open, Options: Syrehionous 10 Hertler, riutes: s, Dielete, OperFesut Dpanad
e € rcous Systom 32t o FILE LOCKED W1.. SyncType: Spne TimeCiealeSection. PageFiecton: PABE_READONLY
£ C¥Wirdows\System32\mm32 oI SLCCESS AlscatonSize: 01 d000. ErdOIFie 041 cell). NumberOflinks: 2. DelelePerdng False. Duecioy: Fake
E € WicoueSystem32tinm2 i SUCEESs SyncTipe: SpneTypedther
00 CWicoweSystem32timm2 SUCEESS
HELMSystem\CamerConiofs =i Sevsion Mansger e Desed tccess: QueyVae

ACinatoFihappig
Ko Srarcociniom
CresieFiehsporg

CloesFie

CieaiaFde

A Queryf ascintamang.
CloseFie

CiesisFe
CiesisfkMscors

000 Bnriatuoes

amni
000 8
T

HIELMA Syt CuseerConbiutsethCorkiohSes son Manags
HELM\S o\ Cunpe o e

C\WindowsSysend2timm2 i
€ \Windows!Systend2timmid di
C\Windows!Systend2timm32 di
C \wwsm.-azw.sz H
Ciwir

et Syaenc 2 H
]
C\Windows!Systen32tinm32 i
C\WirdowshSysten32imma2 i
C¥WindowshSysten32im32 &I
C\Windows!Systend2inmi2 di
C\WindowsSystend2immi2 i
CAWrdows Syl
EiVeenSyaddinniz &
C¥widoust
t\wm\swmz\mn H
CWidows!Sysiend2imect

a0
¢
o

HELM\Scltware Micsasaf W irckers HT\Cutentyerson\BRE_infisize.
HELSI

Desved cces. Ousy vl
mus uur FOUND Langh: 16

0F T J
HRRSOTWARE WimolWindons T\ G s

HELMS0F
HELMSOF TR ictoscitiindons nnnmm.;mcwum
AL St i NT Caeoteson WE Compaety

HELMLSDF " BlLs
HELMSOF TR E Wtusollindows mm....w..unw.w.s
CWincows!SystemZimavet

CoWindowSysten i vl

3 o

[
um\;m\um,mwmm\cu.uwm\nn: Intsize.

i Arcess Rissd Anstuses, Dispesticn: Dpen, Opi i, Ammuses: i, Sharehode Fead, Wiite, Dolte Aocatontize: n/a Oparad
Sirrees e Ay 3 e A M A A A HA S O N
SUCEESS
SUCCESS Dt cca: iDL il Sonen, Do Do, st Sycianout 10 ol N Dl oA s . s ea Dt M. V. Dpsfient Opsosd
PLELOBED .. e SmeTmsOmecackn, P meck PAEE_FLIOON)
SUCCESS AceaticeSise: Il 000 menn 5 Drernio i, Do P
SUCCESS SuncTipe: SyneTypelier
SUCEESS
SUCCESS D) s e s, st Dpen, Opliors: Dgen Fapurce o Aibes . Shatsiode R ik, Gt AocabonSizs nfa Dperfesul O
SUCCESS CrnatirTie: 11/21/201017.29.20 &M, Lasthconss Time: 11721201012 23 20 AM. LadtwoloTime: 11/21/2010 12752044, ChangeTine. /15/3014 20613 M. Fidiikudes: 4
SUCCESS
SUCLESS Desond A ccess: e D ataLis et Execute/Travere, ymohvaszs Dispashions Open, Dpbens Simchionous 10 o, Alibabes i, Dtz Gperf
PLE LOGKED W T ST e, PeeAickon FAGE_DRCUIE
i Sy Tps: Sy
SUCCESS e i ORI, e S 1000
SUCCESS
SUCCESS Image B OMPETOCDD, Image Sice: Decc0)
Deseed Aceess: Read
UME NOT FOUND Deed s oot
suc Deceod Access Read
ws NI FOUND et 2
sug

Desved tcoss st
mus uur FOUND Langh 172

RANE T FOLND Do e oot

300 @RegClosek ey
00 B Thead £t
E

HEnSOPTWARE et T \Cumerk/essien! GRE_|niies

3523225_}9!3522255;!35222253593%2

ameiniormalis. CAWincows'SystenZwock 22 dl

SUCEESS esied dcces: Aesd
SUCCESS Tyoe REG_DAVDRD. Lergih 4, Data 0

SUCCESS

SuCCEss M. W indnes FlreADowrloads e

SUCEESS Olfsst Lo OWEE, 11 Flag. o <ached.Pagng 10, Sy g 1, Py, Nomma -
SUCEESS Olfist OHEAGDN, OHEOD, 110 Flags. Mon-cached. Pagog 1D, Synchworkass Paging 0. Fricoy. Nosnal

SUCEESS Nt Lo PPl oo e

suoess N W indonesPFlre Dosloads g e

SUCEE! esed Access Fasd

RARE i FOLND Lengh: 20

SUCESS

SUCCESS Thaead [D: 3004, Usen Tave: 113 122363, Feurel Tine: 00000000

SUCESS Hame: L indnesPFlre Dol g e

SUCLESS Hame: Windoms\Syatem 2\wmsock12.d1.

‘Showng 143 o 407,728 everks (0,005%

Bached by vl

- A= EN

Figure 64: Process Monitor: List2 of all events

Chapter 4. Behavioral Analysis

ke

HELMSOF TWAREYMictoscltiaindaws HT\Cumer

HELMUScllvereMicssob ko NT\Cumwaam\li(l:no-My
o s

HELMSOF DlLs SU
HELM\SDFTWERE M ctosclWindons NT\Curer e sl SUCEESS
c o SUCEESS
€ Widow Systenmven SUCCESS
CirdowsSyeniZainct SUCCESS
o SUCTESS
SUCEESS
HKLI\Sdead\MmsmWrmNY\Eul!nNu:m\EHE_HuI:! SUCEESS
Hisoe NAHE NOT FOUND
i e SUCCESS
SUCCESS
c o SUCEESS
A QuesgHlaneirlomls € \WrekwSysten32wsock 2 o SUCCESS
SUCCESS
A QuergHameiriomal.. C\Wrckus S alen32ieei SUCCESS
@ SUCCESS
AQuersameiriormsi,. W \Sydend2imeval. SUCEESS
A Questlneirioma € \WrdowsSysten3umnd UCLESS
K anirdomats | C\Wikus 6 sten 320k, SUCCESS
K Cueraneiniomais, | CAWirkusSysten32\keme32 41 UCCESS
Qe Hlamelriomli, . CWrcusSysten3un 2l SUCEESS
A Gy Hmel il € Wrekusyten 32, advas32 41 SUCEESS
Gy Hameirlomali € SurcousSystonS2mect SUCEESS
A QumyHlaneirlomali € WrcousSystan3duzer32 dl SUCCESS
A QuergHameirfomal. C Wk S alen32usgt 0.1 SUCCESS
A QuergHameiriomat,. WS yrlem32perd Al SUCEESS
s A Quessameiriomal,. C\Wrdow\Syslen3ditetiz & LCEESS
sz K Qusstlsmirioma. . C Wi\ Sytenc2otdl SUCCESS
sz el | CAWas Sy ten A 00 SUCLESS
Jeireim A Cuerpaneiniomais | CAWirckus\Sysien32teschort & UCCESS
vz in. . SUCEESS
ierens EFoces E SUCEESS
ooz CoseFile s\ rows TPl Drrioads SUCCESS
Lovszen HEL

Edit ¥iew VM Tsbs Help - | & iC = B | B G mare = - B = =lelxl
(FEADE A4S o/ AN X3 LT
| pan | Remt Do 3
C\WirdowssSystem32uimm 2 81 SUCCESS
et Syen 2 Dk Access esd Doin i, s cosor Open, Dptans:Sychcrc 1 il Hor ik P s, Shaelnd: e, Dk, Al S i, it Opened
W oS 2irTo FLE LGEKED W1 SeType. STpetimseicton PcePosecirt PGE READONCY
bl Sires Shoesyien ST Ed e T Nt 2 Debebendi e, Dbty oo
C ¥windows\System32\mm32 &I SUCCESS SyreType: SymeT liher
C¥Windows\System32\mm32 &I SUCCES!
C WS pienti GUCTESS Desredoces ReadAliudes,Degeshion O P, bt v Shachloce: s il Dekie Mccaonsie /s Operfiea Opsoed
C Wy & GUDEES Commnton VVEVEIS 122010 s 1/ 120 A, Lo e e T 10 000 Chargeoe. 1S4 TR TS ot ot
C Wik dend2md2 & Suctess
CAWauSysndRimai o SUCCESS Dostcoss: DA oo, Evca v, iz Dshon Open, Dok S 0 o . o Dby i, At St e Do, Ak . Dssens
My mens iz & e o S et ot BEITE
et Syten 22 Eess e EyTeatihn
W e SUCIESS image e OVESINNT g S 1D
€Mkt oS e s
C ¥wirndows Sy stem32\mect ol SUCCESS Image Base OxTETHO00D. Image See ChocD
vl e REPRSE Dmiedbecen Fead
i e eats R 1 O
e e s Shcess e o o
N NAME NOT FWNDWh
ukmsofwmgwaww-\ow MYW‘J”U\\GNJHﬁm SUCCESS
i 7 e —
HKLH\SC‘ NAME NOT FOUND Langth: 172

ved ooess Rnd
wed Ao
o REG. oD, Lo 4 D0
Hame: WosrWidowsTFla D -
Ot 000, Lol DAO0 10l Horrcachc.Pocea 10 Ssrchcoous Panal0, P Howd
st D400, Loviih (o0, /0 Flagi: Noescaches, Pagrg 10, Syrchionaus Pagag 0, Py, Mol

(-

api

Figure 65: Process Monitor: List3 of all events

tREG e

9{15(2014 353, 48.5075402 M.
109

(CHTECTIREmsE6.
FROCESS0R_IDENTIFIER axB6 Famby & Model 15 Stepping 7, Geruineiiel
FROCESS0R LEVEL=

FROCESSCR_AEVISICH=2017

ProganData= iPogarbata

PSIRGUPat—C Wou RGeSkl T b
FLELIC=C UsersiFubb.

Systenlrice—c:

SystemBonk=CWindaws

TEMPac: serstW MO gpDatsitocal

nmmwm-—:wmmmm
UISERDOMAIN= WIN-UEFEISEYFF
USERNAME=irekowsTFle.
USERPROH

e\ Windows.
vindows tracin Flgs=
vandows _tracng_koofbe=C (VTR Testslinstalpackagelcsdogfie log

Hare.

o e et pum 1+ D Ele Edit Vew Wi Iobs ke | I -) = = = - @ = =8l
ErFEY- enolmlu H\FFFFI
D
B ™ SUREESS PaetPID 1L Command e ¢ ot i = ==
3000 Y Thead Craste. SUCCESS Theead ID: 3004

Optiors: Symchiancus 10 NonAlet, Alsbules: 1/, ShareMode: None, AlocaiorSoe: néa

Dispesifon: Open, Dptons: Discioy, Syrchionous 10 Nondlet, Alibutes: /s, ShaseMode: Fleod,\ste, Alocatorsize: n/a, Openfiesul Opered

w Open Rloparse P, Ambutes: n/a, Shwshods: Fead, wite, Deles, AlocatonSiay n/a. Dperissul Operad
[11415505 2115 01, Lo T 7145005 4151340, CrarceTine: 31872014 39 Pt Fiimngen &

e Travesse, Synchiceizs, Dspesiion. Dpen, Dpsons: Symctvoreus 10 Neryien, Nor-Dieciou s, Albudes: nia, Sharebode: Read, Delels, AlocatonSize: /s, Openfiesd: Ope
PAGE_EVECUTE

e utons: Ooun oot Pt : /s, Shiarshlode Fiead. vste, Deele, Aloc shunsize
oaes o MM . S ot it ot Aocoanin 7. Coariok Ored
e mumzmm»a LastwiieTine: 7/14/2009 4:16:20 4M, ChargeTime: 3/15/2014 205 44 P, Flsdminser &

e Travesss, Surchiceise, Dapashon. Dpen, Opsons. Syectvancus 10 Morvsn, Woo-Diecton i, Allbades: /s, ShassMods: Flesd, Dkl Alocatonsize. s, Opsfissd: Ops
PUGE EXECUTE

amad
fachest. Pagig 110, Syrchvonous Pagng 0, Pkty: Noimsl

fsched. Pagina 40, Syrchronous Paging 10, Fisy: Norml

E|
54 i, Pacig 10, Syechvorous Paging 0. Py Noiml
ey
hsase o 4 oyt [O]
e RIS S I — ——
54850 FOp s T o
5385429, Frima. 000 ERReglpenkey HILM\SyemCoen CoriotSeN\Corhoh Wi ScringVersans success Desied ccoss Roac

+r]

| Backed by virtual memory

o] @ S| i[5 g

Figure 66: Process Monitor: Process start even

3i864m

PG o

t - Event Properties - General

Running Malware

Ousonr: Ooe Fommse P, Anbues: 1/, Shaeode Read e, Dac, Alcutorsx w, Openfenk Qotoed
{Tin: /1412000 2153 AW, LoatweTrme: 7/14/2008 & 15:13 M, ChangeTime: S/15/2014 2053 Pas

avesse. Syechvorios. Dispositon Dipan. Ophos: Synchrerons] NervAkil. Hor-Dieclony Fle Alibudes: /s, Shirshlod: Riead, Delele, AllcstonSize: na. Operifesul: Dpe
PAGE_EFECUTE
HADICarlIrioadion + G113

TeDisssaocisel sk + D258

hemelZdl BaseThvesdedThurk » D12 [T ——

UZE ndd Rl + Ot OT7aET7 Cueekuus\Syaten2iricl A1
AllrfsiceE eptceChan + D2

A 172, isis, O
Ovsonr: Ooen Fopmse P Awbues: 1/, Shaode Read e, Daec, Alcors i /, Opemf ek Qotoed
Tin: /1412000 25500 AM, LoatwieTrme: 7/14/200 4:15:20 AM, ChangeTime: S/15/2014 205 44 Pas

avesse. Syrchvcrios, Diepositon Dipsn. Ophors: Synchrcrns 0] NersAkil. Hor-Dieclony Fle Alibudss: s, Shirshlod: Fiead, Delele, AllcstonSize: na. Operifesul: Dpe
3

P S . v e

Paging 10, Synchicrous Paging /0, Prcity: Nemsl
. Paging 10, Synchionous Paging /0. Ficty: Nomal

ed. Fegng 0. Syrchucrous Pagng 0, Fiasty: Houmsl

L I
BESA0SITS B mne,. 300 BTProces: B K Ericramect ALLUSERSPROFILE-CAProggamDarssPPOATonC AW TP
AB57E w00 Fesscene Thaeod 03004

Ogkors Open Flepasce P, Allsbules:. el sl v, Opeciiecdl Opened
e AR ST e Lt mmmm:m oumlm e S8 . bt A

Amges nla Dielete,

Qokoes Oipen Flspassn Pk Allibulss. /s, Shiarsblode Flead, Wik, Dabte, MbucalkeSas /s
Optioes: Oipen Flapavsn k. Abulss: /s Shiweblode: Flnad. wiks. Deeta. MocalkrSas: /a. Opseflessit Opened
fixTime: 71442009 25501 4M, LastwiseTime: 7/14/2008 416:20 AM, ChangeTme: S/15/20114 20544 PH, Fltmiutes &

Ao Delete,

Figure 68: Process Monitor: Create File event - Event Properties

Chapter 4. Behavioral Analysis

RS & @ fie i view VM Dsbs Help =
FH ADE A4S D AN AL 0E

Time D o o
BT o Lvent Propertics

Event | process | stack |
Dane:
0. Thead:
AT
Cperation

S1SIZ14 4:01:57 6131069 A4
3004

precess.

Process Ext

suzEss 2=, Dispasticr: Open, Optisre: Syrchino:

00000000

'
119.122363 saconds
00000000 secorc
1,003,520

1,028,096

221380
22138

ad
econds, Kemel Time: 010000000 secorvs, Private Bytes: 1003520,

10 Mol Mo Dtectory Fiks, Atsbutes: /s, ShireMods R Delets, Alocaiorize s, OperRiasit Dpensd

0 Morilest, Mo Divectoy Pl Assbutes: /s, Sherehode: s, Delete, AlocaionSioe: s, Dperfiesy

1,840, Peak Wosin

Figure 69: Process Monitor: Process Exit

e S
B E D s

. Registry: By examining registry operations, it is unsure how malware installs itself in the
system.

. File system: Exploring file system interaction shows all files that the malware creates or
configuration files it uses. There are files created that were not useful at this point of analysis.

. Process activity: Investigating process activity, the malware did not spawn any additional
processes.

o

Network: Identifying network connection, which is in an isolated subnet, did not show any

communication in ports on which malwares usually listening.

4.2.5. Regshot

Regshot is an open source registry comparison tool that allows you to take and compare

two registry snapshots. To use Regshot for malware analysis, simply take the first shot by clicking

Running Malware
92

the 1st Shot button, and then run the malware and wait for it to finish making any system changes.
Next, take the second shot by clicking the 2nd Shot button. Then, click the Compare button to

compare the two snapshots displays a subset of the results generated by Regshot during malware

analysis.

Registry snapshots were taken before and after running the malware rtms.exe. As you can

see 1875 changes occurred in registry. The amount of noise is huge in these results.

- B B =l81

ICIFC =)

5 @ File Edit View VM Tabs Hep | Il * | B

sartingsasottmarwicroory iows\Ehel1\BaGe AT 1Fa]dér §\3he] 1\WinPas1020.4 090x06(1

Sett crosof
seltiuqs\suflware\u crosoft
setringshs
seu\ngs\snf:‘nare\n crosoft
Setti

52((1nqs\suftware\n crosofty

ighe: orocaoorss
bottom: OxB0000307

ndows \shal1\Bage\A] IEa]der s\shelT\wineos1 32011 080361,
P
borton: 330000032F

+
R L T L T PN o A e 02 02 02 02 02 0z 07 02 02 02 0Z 02 02 02 02 02 02 07 02 0z 02 02 0z 0F 0z 02 02 02 UF 62 02 02 02 0Z 0.a)
211080728 71558602 5011850801000\ 50T tware\Classes\oca] Settings\Software\Microsartywindows\she 52 52 02 02 03 02 62 92 92 03 93 02 62 02 02 03 03 02 42 02 03 03 02 62 92 02 03 02 02 62 02 02 0 02 O
(sﬁBE— 71358802 - 50118508 rlnno\su ‘tware\classes\Local setringsisoftware\wmicrosoft'windows'\ she 0 00 00 OO nu 00 G0 D? Dﬂ 00 0)0 00 OO 05 00 00 00 03 0O 00 00 FF FF FF FF
-21-10%0728885-16713 58602 501185089 -1000\Sof tware\Classes\Loca] Settings‘\Software’\Microsoftiwindows)\She] 06 00 00 00 03 I)D C (AQ 00 QD 00 00 00 01 00 00 00 02 00 00 I)D (lﬁ 00 00 00 FF FF FF FF
7286851971 358602 -501185083-1000)Sof tware\Classes\Loca]l Sertings)Sof twar!\ﬂ! crosof tywindows\ She: 02 00 00 00 O 00 00 00 03 00 00 00 EF FF
L0v0728883-1671310600- 5311830891000 soTrwarencTassas\kona] sevtings\sofwaraicrossteiwindowsishe 05 99 09 uo ao uo ou oo uz A ao Du 93,09 00 00 04 0 2508 55 65 60 60 rr er e e
-21-10907 28585 -1971 358602 UG SaFhAr S\C] 43 55 \LOE] STEINGS \SOFTuAr S\M cro2BET iGN e 0 e e
~2171080778583 1871 35505\00Ca] SETLINGs\Softwar e\ icros o t\windowe) s 23 53 80 0 03 60 60 60 63 09 96 96 ba 0 5o o
211090725683 1971 G\S0TEware\Classes\(oca] Settings\Software\Microsoftwindaws \She 3353 £5 35 1 58 53 0 6a 50 50 58 03 b 35 50 0% 0b ob Bb 04 00 00 00 G2 00 00 0O FE FE FF FF
71358602-50118508%-1000 sof tware\Classes'Local setringsi\software\wicrosoft'windows\she’ 01 00 00 00 00 OO 00 00 06 00 00 00 03 00 00 00 05 00 00 00 04 Dﬂ OD na DI o0 00 00 FF FF FF FF
11090723555 -19713 8602~ 391 1550891000\ SOFTware\C1as323\L0cs] SeTTiNgs\SOFTWar &\dcrosofthwindons \she 92999070004 09 9 9003 0000 00'91 9000 50 00 90 99 00
1-10807 286831871 238602 -5 01185 089- 1000\ 0T Twar &\ C1 SETTINGS\ZOFTwar &\ Crosoft\winatws \She 03 00 03 90 0z 00 00 00 04 06 53 0 0 09 02 08 08 00 B0 Go bo b FF FF FF FF
71-1050728587 1571318602 5011850831006\ S0 tware\Classes\Loca] Settings\Software\Wicrosaft windows\she o7t Br1ins: saa1sbosty
28685 71358A02-531185085-1000 Sof tware\Classes\Loca] settings\software\w!crosoftwindows\she 6 2307 P\FFlags: 0x01200001
713 58602-501185 0861000\ 50T tware\Clas3as iocs] SaTEings\softwara i crosotiwindows\she 5helT\winPos1920x1030x96(1). 1ete: Ox0000!
71558502~ 5911550891 000N S0 Tware\C135525 L0Ca] SETTINGS\SOFTWar &\ crosar T nadws ane i NPOS182071 08086 (1. Gx0000293
71358602-501185089-1000 \Saf tware\Classes\Loca] Settings\Software‘Microsoftwindows'She WinPos1620:01080x 96 (1). oy OXDDGGOD
71358502-591185089-1000)Sof tware\Classes\toca]l Sertings\Software\w (\w‘!nﬂws\she \w\nP(Sl‘!Z 1080x06(1, tDuA OO
71358603 101153085 L00chsoftuare\cTassesoca] setr Ings 1o e DB008(1). F 1Bt O00000811
71558602~ 591 1550891000\ S0TTware\Classes ioca] SeTringshso 1 T\Wineesles0a 0a0xantd) g : oxocon07as
72380053 451 e3005- 000 Sar LA 6\C1 432 Setrings\zo \ineostazoau0eely: botts: 0x00000107
713 58602-501185089-1000\Sof tware\Classes\Loca] Settings\Soft 11\ WwWinPos1920x1080x96 (1) . om: OxQ000032F
71358802 -50] 1000 software\Classes\Loca] settings\sof ‘\wicrosoft.windows.Controlpane] 1),1zf
715 58602-501185086-1000 NS0T tware\Classesiocs] setrings\so el 1% crosoft . windows . Comtrolpane] i nPos1520x1080+98¢1). 0000178
-1000\EofTware\Classes\Locs] setrings)so L Crazar WAnGoes Comtr o1 Pane 1 \IAPos030rd a0neatt. tom: 0Vp00taD0”
00O asses\Loca] Settings\sof o Pane] \winPos1620x1080x%6(1 tnn OxQ000115
asszst;nta Settingsso Pane! 0BO0X96{1I.right : 0x00000320
330N 0ca] SetEings\sof i
assesiloca] Setringsiso Panel \rr\Pos]Blur]uBu:?ﬁﬂ .bottom: Qx0UO00Z2C
isses\Loci] Zetrings\zo runal\wieroslaoogorn(i) bovton: 000000341
asses\Loca] Settings\Sof Pane]’
s\Local serrings\sof pane\\wm;s- Or00000090
ses\ioca] setrings\softw T\Showdmd
e St ST war s aso T\Shoecnd: 0x0000000L
Sett \ e 2 02 02 ©2 02 02 02 02 D2 02 02 02 02 02 ©2 02 02 02 02 02 ©2 02 02 €2 €2 C.
52((1nqs\suftware\m1krﬂsuft Jorl s\ She 2 02 02 02 02 02 02 02 02 G2 02 02 02 02 02 02 02 02 02 02 G2 02 02 02 02 O
00 00 00 05 00 0D 03 03 00 00 00 FE FF FF FE
R s e e 099,08 00 01 00 00 00 02 00 00 0005 00 0 09 FF £¥ FF FF
SETTiNE NS0T Twar e i cros oft 0400 00 00 U3 00 00 00 ¥ERE
SerTingshSotrware\wicrosoftiwindows she G139 05 90 54 00 50 0 6% 60 oo 00 FF FF EF EF
SerTings\sattwara\wicrosof i ndows \she T
Settingsy; are\Micr ndows ' She 1 1\ BagMALY, @3 00 00 00 07 B0 00 00 01 00 00 G0 00 00 0D 00 FF FF FF EF
Sextingeiortmare o of\windows \EheT N0 sguaun 0 00 00 00 GL OO 00 0O 08 00 0O G 03 00 00 DO 03 00 DO 0D 04 00 0O 00 02 0D 00 OO FE FF EF FE
settings a "5he]TNBagRL: 106,90 90 00 90 90 00 08 00 00 60 03 00 00 00 G5 00,00 00 G4 00 00,00 02 96 00 00 FF FF FF FF
setﬂngs\snft‘nare\n CrosofTiwindows Shel 1 NERgHRL. 52 99 99700 05 00 00 00 03 %0 0 00 oL 00 20 03 02 90 09 00 7E E
ST T IMAS\SarEwar BOM1cr o3 F T ows v she | 1\B LN V1ML |STEx B3 56 0 46 62 63 9 & 9490 66 50 93 90 00 65 01 90 90 00 00 09 B Go Fr Fr P FF
E1asceshioca SE(t\nqs\Suftware\m crosoftyad ndows \She- { & Fths‘ [k
ClassasiLoca Bags 2 3vshal 1\ DE4F 0660-F: B85 —Ad 54— aéEa?aBZﬂ(?)\:rh =} Droiso006t
BT RGN Eor A e o 21 D ndows ZRa1 1 \edswA] 120 dr1 Lohe] WinbosT oot S00rsacLy. obs 51
"
i
i
ool

I
n shall\Bagshal1eoldersishe] u1nFaslewuuaux?a lg‘rigm‘ uxwwuou

=he: <58
e She] 1\ g AT |Fal dor S\ e T\ ipoct oo 6o tmboa {1

satt shall\Bags 1150l der 55k ~windows 0319201 080x 96 1§Jeh :00000000
21-) - BT RGN Eor A e o 01 D ndows \2he] 1\es Al IE01der j\Ihe] 1\ cros0rs. w1r|c:ms cnmr’o'\Par’e“ﬂ npaswzuuuauws 1
HKUNE-1-3- 2110807 78683 - 1671 238602 -5 01153089-100_C1a220500cA] SaTT inge)Zaf Lwara \Micr oot \Bage Al IFalders \she] 0519201 080x 561
HKUAS 1321 -1080723583 1971358602 5011850831000 Classes\iocal Settings)Software\Microsoft iwindows\shel 1\ Bagsyal 1zalder s\ he T\ cr o Com 1 PAne W InFa<1 33071 SR3108 (1
e 1671358 3sseshiocal sertingshsoftware\wicrosoft sags a1 ralders vahe | microsst windows | comtralnane o 520208004 1
25683 - SetTingshSotrware\wicrosoftiwindows\shall\Bags a1 1e0]der s sha] T cr incaws ControlPane] i nPos1920x1080x96(10. rghT: Gx000
583 - EertingehEarrmardricraf ot windowt \Ehel1\Bage &) 1Falder s ine T cresoft wincov-s generaleineTivineasSud ana e hafron: graaguzac
685 Settings: “Ehel1%Bags AT 1FaTder s \She X aneTWinPas 152011080186 (1) mttom: $x00300341
28555 Sertingsysu T e\ Cr SOEL\MIndous \ohe] 1\Bageud 1 £ o] dor S \Ehe 11 Wi cr s bE+ ol hiows - Contro banc e lage e
665 - settingshsoftwa i ndows \shal1\Bags] Teo]der shshe] ~windaws anelvetags: o0 e
o3 sen1ngs\snftmre\u1:rasuft JrindowsShelTamags] Teol der shshe T crosofs vl ndows. comtroleanel\shontag: xpondonos
=1 1F01dér s\ 300 “wrindams .
1C\ProGramData i crosr T dows \WER \Aopor tueucibnCr T Cal_7. 3. TeUT. 17514_7ae Cad2c02c7ohabl 2 Fhsodansrassass_tencedsa
Ut R e R S

1050
3 T3 aot ar ST crs L o mows £ 0 AP - A DpUE I Or o a1 ¢
e Softwar eI cros of t\Windows \Windows EFror Reporting\DebuB\SToreLocation: "C:\PFOJraMDAT AW ICras o LW ndows \WER \REROr TQUELENORCF 1T §

5

f[B MG e ™

Figure 70:Regshot: comparison results of registry snapshots before and after rtms.exe run

4.2.6. Basic Dynamic Analysis is not enough

As a conclusion in basic dynamic analysis, it should be noticed that many tries and steps
back had been done. The malware was renamed to random names in case there was a naming
detection technique. In addition, many changes had been done on the VMware’s configuration file

- VMX and inside VME OS settings, in order to deflect any tools detection.

Chapter 4. Behavioral Analysis
93

As a last try, the ransomware was installed in a Windows 7 SP1 x86 in bare metal machine
without Virtualization Technologies and Debuggers - Disassemblers installed, in order to prevent
any detection and even then, the malware did not execute all its procedures. After a long research
on the faulty side of the malware, the problem was detected in the IDT instruction behavior of Intel
i3 processor.

A spoil from the advanced malware analysis is being done at this point, but it should be
clarified why basic analysis did not and would not work in this case.

Joanna Rutkowska came across this strange behavior of SIDT instruction a few years ago
on her RedPill paper, when Joanna Rutkowska was testing “Suckit” rootkit on VMWare. Joanna
Rutkowska noticed that it failed to load on VM Ware whereas it seemed to work fine on the same
distribution ran outside VM. After spending many hours Joanna Rutkowska figured out that the
problematic instruction was actually SIDT, which was used by “Suckit” to get the address of the
IDT table, and to hook its 0x80 entry through /dev/kmem device.

However, Joanna Rutkowska was not the first one who discovered this trick. Shortly after
her adventure with “Suckit” Joanna Rutkowska found a very good USENIX paper about problems
when implementing Virtual Machines on Intel processors, discussing of course SIDT problem, as
well as many others.

So now, here is the simple code, written in C, which should compile on any all Intel based
OS. Just in case you don't have the C compiler for Windows, there is also a binary version

attached.’

74 Paragraph’s source URL: https://securiteam.com/securityreviews/6Z00H20BQS/

Running Malware
94

On the other hand, Oliver Schneider’s paper conclusion (for the conclusions drawn from
observation of RedPill results being wrong)’®, says that among the others, RedPill Technique does
not take into account multiprocessor machines. As a result, the under analysis malware detects all

the multiprocessor machines, the bare metal ones, as Virtual Environments!

s RedPill getting colorless?, Oliver Schneider, published 01/04/2007, source url: https://blog.assarbad.net/wp-
content/uploads/2007/04/redpill_getting_colorless.pdf

Chapter 5. Static code Analysis
95

5. Static code Analysis

As discussed in introduction chapter, basic static and dynamic malware analysis methods are good
for initial triage, but they do not provide enough information to analyze malware completely and
there is where disassembly comes in. Assembly is the highest-level language that can be reliably

and consistently recovered from machine code when high-level language source code is not

available.

Malware Author Malware Analyst
High-Level Language Low-level Language
int c; push ebp
printf("Hello.\n"); move ebp, esp
exit(0); sub esp, 0x40

CPU
Compiler Machine Code Disassembler
55
8B EC
8B EC 40

Figure 71: Three coding levels example’®

The above Figure shows the three coding levels involved in reverse-engineering on malware
analysis. Malware authors create programs at the high-level language level and use a compiler to
generate machine code to be run by the CPU. Conversely, malware analysts and reverse engineers
operate at the low-level language level. Using disassembler, assembly code is being generated in
order to figure out how a program operates.

In under analysis case, the malware targets Windows platforms and interacts closely with the OS.

The understanding of basic Windows coding concepts is principal to allow the identification host-

76 Sikorski, Michael; Honig, Andrew; Lawler, Stephen, Practical Malware Analysis, San Francisco, CA: No Starch
Press, 2012, pp. 66.

Running Malware
96

based indicators of malware, follow malware as it uses the OS to execute code without a jump or
call instruction, and determine the malware’s purpose. Windows uses two processor privilege
levels: kernel mode and user mode. Nearly all code runs in user mode, except OS and hardware
drivers, which run in kernel mode. In user mode, each process has its own memory, security
permissions, and resources. If a user-mode program executes an invalid instruction and crashes,
Windows can reclaim all the resources and terminate the program. Normally, user mode cannot
access hardware directly, and it is restricted to only a subset of all the registers and instructions
available on the CPU. In order to manipulate hardware or change the state in the kernel while in
user mode, you must rely on the Windows API. When you call a Windows API function that
manipulates kernel structures, it will make a call into the kernel. Kernel code is very important to
malware writers because more can be done from kernel mode than from user mode.

The following figure illustrates a schematic overview of the involved parts.

/,4 AP Call ‘
/,-
APPLICATION | 95—
| —
/—__—-—/ SERVICE
-—
OS LIBRARIES ____,_,-/4 System Call ‘
4’__’____,__..,-—-—"%‘51;:7
0S kernel -
—_—
7‘ Memory Management ‘
driver driver driver driver L —
driver driver
driver Kernelland
MMU H | device | |
CPU — 1 i | Processor
T A Hardware
g g
& =
S g
(. 4 >
‘ VMM ‘ ! Hypervisor ‘
‘ Hypervisor

Figure 72: Schematic overview of Userland, Kernelland and Hardware, under a VM Hypervisor

Chapter 5. Static code Analysis

5.1. IDA Pro

97

The Interactive Disassembler Professional (IDA Pro) is an extremely powerful

disassembler distributed by Hex-Rays. Although IDA Pro is not the only disassembler, it is the

disassembler of choice for many malware analysts, reverse engineers, and vulnerability analysts.

5.1.1 Loading the executable

When loading a PE file into IDA Pro, the program maps the file into memory as if it had

been loaded by the operating system loader. The following figures presents our loading procedure

and the relevant options of kernel and processor.

4 Load anew file

Load fils C:\Users\Win7Pros4\Downloadsinsme© - Copy.exs as

il '{ Kernel analysis options 1

Portable executable for 80385 (PE) [pe.ldw]
MS-DOS executable (EXE) [dos ldw]
Binary fle

Processor type

¥ Create offsets and segments using fiaup info
[wark typical code sequences as cods
[Delete instructions with no xrefs

[Trace execution flow

[MetaPC (disassemble all opcodes) [metapc]

Loading segment | 0x00000000

| Set ¥ Create functions if call is present
Analysis [&nalyse and create all xrefs

¥ Use flirt sigriatures

¥ Enabled

Loading offset [ox00000000

~Options

[create function if data wref data->code32 exists

" Indicator enabled

¥ Rename jump functions as j_...

[*" Rename empty functions as nullsub_..

7 create segrments

Kernel options 1 I [Create stack variables

[Load resources
¥ Rename DLL entries

¥ Manual load

[Trace stack pointer

[Create ascii string if data xref exists
Kernel options 2 |

I | Fill segment gaps
¥ create imparts segment

¥ canvert 32hit instruction operand to offset
[Create offset if data wef to seg32 exists

Processor options | ¥ Make final analysis pass

[~ create FLAT group

Cancel Help

o |

DLL directary [C:\Windows

Ok | Cancel

=

l Kernel analysis options 2

x|

¥ Locate and create jump tables

[~ Coagulate data ssgments in the final pass
" autnmatically hide library functions

[Propagate stack argument infor mation
[Propagate register argument infor mation
[check for unicode strings

[cComment anonymaus library functions
[Multiple copy library fumction recognition
¥ create function tails

I Automatically corvert data 1o offsets

[Perform 'no-return’ analysis

¥ Perfarm full stack pointer analysis

¥ Coagulate code segments in the final pass
¥ Trumcate functions upon code deletion

[~ control flow to data segment is ignored

" Try to guess marmber function types

oK | Cancel | Help

x 1BM PC specific analyzer options

¥ Convert immediiate operand of "push” to offeet

[~ Convert do 90k after “jmp" to "nop”

" convert immediate operand of "mav reg,.." 1o offset
" convert immediate operand of "mov memary, .." o offsst
[Disassemble zero opcode instructions

¥ advanced analysis of Borland's RTTI

¥ check 'unknown_libname' for Borlanc's RTTI

[advanced analysis of catch/finally block after function
" allow references with differant. segment bases

[~ Don't display redundant instruction prefixes

[Interpret int 20 as \WOcall

¥ Enable FPU emulation instructions

™ Explicit RIP-addressing

[~ Disable SEH/EH analysis

I Analyze 'int 3' Instructions

o]

Cancel Help

Figure 73: IDA Pro: Load PE file with analysis options

IDA Pro
98

By default, IDA Pro does not include the PE header or the resource sections in its
disassembly. Because malware often hides malicious code in such places, the manual load option,
will load each section, one by one, including the PE file header, so that these sections would not
escape IDA’s analysis.

5.1.2 IDA’s First glance

At first glance, the executable’s entry point is at 401000 address. There are different views

of IDA Pro that can be used to analyze the PE, the schematic view with diagrams and the text view

where the analyzed, by IDA Pro, assembly is being previewed.

A, IDA - Ci\Users\WIn7Pro6a\Downioads s - Copy.exe M|
Fée Edt Jump Search Vew Debugger Opficrs ‘Windows Heb
[l o[t %4 =+ X[|@ [&[T O

. | @ e o @] ®)] &) e
[l &~ o ok XU~ Fa~ %% P 8 0 1 1] @ 0 5 R L £ @ Joll

FlaT | oSS 888 E

| B 1D D)o deuger %3 2 0ot|E 3])& ok
I-ul 1l I o HeE; |
Ubrary forction Data [l Requiar foncton |1 unapbred Ml iramucten Extenal syméol
Tlrectorswrcew 0 @ X | | & Hes Viswen |5 Imparts | & Egorn |
Funciin rame = =
P — SR R e |
eveEsoapiiniler
7] start
7] u_d012c0

7 suty_401463
[sb_a03430
7] sb_a0344C

=1l x|

Fle Edt Jump Seach View Debugger Cplins Windows Heb
R e~=-[[afs8 3 w-+X[Te|BEEE
Ik ¥~ & o X[~ 0~ B "0 it S M B O
EEIERLY: 1k

Tk OEhGdE|FRECE)AE
I f @62 & e [& el @ G te & o [T G 2
sl ST
[T
A bt functon Dats [l Requbr frctice [Uik [sruction Extienal syrrbol
[Furcrove wreow oex 5w

JUC 0O TN A0 0 D 1 N 0 -

Cimavews @ | Glosvews | Svexvewa 1 | Ssofprotlems 0 | Sliesvews 0 | Sireos 0 | Fewe 4[»

Vit Exgcute
16 GODE" usadd

L de: data. Feinathi

= duord ptr —30H

Ira}
@
Ira}
< e
@ < o e ot bl Subrast don
z BeLihindeBrceplon S 55 Cu =h Jical Conpars
] s 3 i 5 TR A
@ A
7 L
‘ L] T
Lre 1651235 [B84108D BIC C7 44 24 BB B9 8O
EH
dh Graph overvew aoe x [@84818iD @1C C7 B4 24 @A B O
EiRin: B F B
‘ |Be4a1 A2+
(B15i05¢ o0 a9 o ec
e iginze
100,004 (278, 102) [{409, 473} [00000400 [CO%01000+ sub_201000

Figure 75: IDA View - graph mode, PE entrance

Chapter 5. Static code Analysis
99

Please note that, because of the manual load of the PE file, the PE header is also loaded. The

assembly code of PE Header is places before the entrance point from 400000 address until 401000.

- G \Users \Win7Pro6- '\ Dowmloads \msmw - Copy.exe = x|

Fle Edt Jump Search View Debugger Cphiors Windows Help
I‘Fi\|<-'=-||'mﬂrg%nla ¥sall= X IJO\I FEEAEERIEELYEE I TEEEsEELRE ERE EEE]

k|t o+~ # i X[| B~ 120 JJ&
1'% @ O cebugzer

TIDFES | ARN8 L

Lirary function Data [l Regular function | Unesplored [l emucton Extemal symbol
|7 Functions window o8 x T

4 (x] | ig) DA View-8] Hex Visw-h | & Iparts | @ Exports |
T T

o,
fEant duard 1RGN header

E
stb 4015.!7

Bod"stuh Crde

F BA BE 80 B4+
BH B 4G+

g
Fih, 72h. 6Fh
pCOERS, 6FR

n|:>- Weanona B9 b 31 ¢
= Ba0an4H CD 21 54 68 69 73+ - 72h, 61h .
v I:Tounuonu 00400000 HEADER: _Imagesase hd
Lal »

Function name 3 f’
@m_‘;aim = §lowut DS : GLIDGRIDIGORERGELNRRACICVACEIG
7] Topl.eveE xceptioni

start : IMAGE_DOS_WERDER

7] sub_401260 include uni.ine ; see unicode subdir of ida for info on unicode
7] sub_401250 -686p

7] sub_40132C Imodel Flat

7 sub_401382

(7] sub_401350 o R

7] sub_4013E [17: Bublic ‘DATA* use3z
Flsub_d01430 a ADER

7] sub_401451 __lnageBase

7] sub_401463

7] sub_401430 v g0

F)sb 40144 wa

7] sub_4014EE e

Z sub_401505 o

7 sub_s018ER e

7] sub_40194D FE]

(7] sub_d0198F o

7] sub_40196C dw @

 a>_s0187% a0 ba ve By By on 1 dunco>

7 sbsaseac 54 o on an o 8 iy aupcn>

Eihe

7

“

;‘5

g
2

Figure 76: IDA View - PE headers on assembly

Double checking the results of Surface analysis, is helpful to focus on specific points on this stage.
The size of the PE file and the number of its function is extremely high. The 1551 functions, that
the IDA Pro reveal with its analysis stage, show that the malware author spent a lot of time writing
the under analysis executable and from the malware analyst perspective a lot of work should be
done.

Although the entrance point is on 401000 address, from the PE exports it is known that there are

two TLS Call back functions that will be executed before that.

=15l x|
Debugaer
IR == ®%% 5 4 -+ XIDe|EXI=A "-&-umdﬁﬂjﬁ]uj FEIEOIEFIEEE
kol o o o X[B B M Pl P M M D B R F @ | B i it i] o i 88 (3| 48 7| L0 2 | e RN
|| » @ Ofiocal vz ceousger EEENEELY 15 ',‘m'u'lmoy Qa-ﬂq
A T LT T TR TR0 O OO =
Lbrary function Data [l Reguler function | Unesplored Bl Irstructon External symbol
7] Functiors window O & X akporws [0 | W Occurrences of: GelProcaddress [| |3 Program Segmentaton 1 | [Cimavew-a] | [Cimaviews = | THecview2 [| (@ Letofprodlems 1 | [T Hexview-s (1 | imports [Bexpers O m_ij
Function name ﬂ HNarne Address Ordinal
7 sub_401000
7] TopLeveExceptionfiter [TsCalpack_1 Q0414200
7] start # start 00401240
7] custom_atexit

Figure 77: IDA View - list of Exports

Using IDA Pro, a crosscheck should be done on the suspicious functions. The full structured list

of'the 118 imports can be found at Appendix F/List of .

100

4 IDA - Cr\Users \Win7Pro64'\Downloads rrismw idb (rmsmwr.exe)

Fie Edt Jump Search View DebLgoer Cphiors Windows Help

IDA Pro

==

I E[le~ = -[l%m I=+X[IZoImE & YT I % 8]

T EEAT 3 EL o Nl Eadlr @ el 87

| b 0 O fcocal wresz e AEELY IETTRIEEEI-IELAT

AURCRIER F TRMMAIN YT 0 LU OO OO VIO OO ORS00 RN RATNY O AT 1 | |

Lbrary function Data [l Regular function | Unesplored [l rstructon Extemal symbol

7 Functions windaw O 8 X aipors | M Ocrumences of: Getprocaddress (| | (5] Program Segmentaton 1 | (F10a view-a 14
Function name =
3 sub_401000

7] TopLeveEsceptiorFiter KERNEL32

7] start KERNEL3Z

z custom _atesdt IsDebuggerPrasent KERNEL3Z

7] sub_d012E0 LeaveCritcalSecton KERNEL32

7] sub_40132C MutByteTowideChar KERNEL32

7] sub_401362 Relessemtex KERNEL3Z

7] sub_4013%0 ReleaseSemaphore KERNEL32

7] sub_4013E Sef astErTor KERNEL3Z

7] sub_s01430 SatirhandedExceptorFiter KERREL3Z

7] sub_d01451 Skep KERNEL32

7 101463 Thioc KERNEL3Z

7 ThFres KERNEL3Z

Fil TisGetvale KERNEL32

Eil TiSetvaue KERNEL32

vl wrtuaProtect KERNEL32

7 VrtsQuery KERNEL3Z

vl WaltForsnglecbject KERNEL3Z

7) sub_4019F WideCharToMUinByte KERNEL32

7] sub_d019EC _fdopen msvert

7] sub_401676 read msvert

7] sub_40185C mavert

7] sub_4018A7 msvert

7] sub_d018CC msvert

4 3 msvert =l
Lne 10f 51235 Line 25 of 118

Figure 78: IDA Pro - imports

5.1.3 Custom Date Validation Check

The subject malware has an advanced anti-analysis feature. The malware author seems to
have specific intentions, because the malware was programmed to be executed only in specific
time range. As it is already mentioned in section 2.4.3. VMware Workstation Setup, the under
analysis ransomware has a sophisticated check of system time. More specifically the verification
of date and time is being done at binary’s location .text:004026CC, where the valid range to
execute the ransomware is from the epoch time 1410739200, which is being converted as human
readable date to GMT: Monday, September 15, 2014 12:00:00 AM, until the epoch time
1416009600, which is being converted as human readable date to Saturday, November 15, 2014
12:00:00 AM. The bypass solution of the system time check, without patching the binary, is already

provision from the BIOS clock. Otherwise the binary should be patched with different time ranges.

Chapter 5. Static code Analysis

101

SEIE]

g DGDHGQ“ opt Windows Help
|'HH--¢-uﬁﬁ5m dul=eX|DaD@ 0@ 03&@@2M3@3;JU@3U@? E)
|t * ¥~ X[|R-t- et B O3 X F & o[l SI=EF Y ETY
> EDWM CAEREL Y- e § 4 a1]
* NN 1 OMREN T R LT TN (R e} =l

Lbrary finctin Duata [l Requtar function | Unesplored [l frstructon Extarmal symbol

7 Functors window o ax 3 | 5 Frogram 1 | Doavews 0 | W ocarrences of; see Toaviews B | (v vewz 0 | i ustofproblams (1 | (0] b views 0 4]
E e 3 T MetrThutes: by-bazed Frame
[sub_a01000

7] TopLeveExceptionFiter

(7] start

(7] custom _atesit

7] sub_401260

7] sub_an132C

7] sub_d01362

7] sub_401390

7 sub_a01%EE

7] sub_401430

(7] sub_401451

7] sub_d01463 BRAICCH gic <7 @4 24 00 90 BOenoy [oupel@heTinel.
] b s1450 e B W 2R UL O

7) sub_do14AC MBAZECE GIC 3D BB 2C 16 54 enp eax, 54162000
7] custom_calSetUnhandledException T dle vhore e dmatE ¢
7] sub_401505
7] sub_4018ER T

ok o1 ,'J oaae: BIC C7 B4 24 @0 08 @8enow TeapelBheTinel, @ ; Tine
@94926DA DIC ER 17 18 @2 9B call time ¥

Custam_DateUslidation proc near

Time = duord per 180
4= duard e
aoe £ push
GRF

ger Subtractian

3 EC 18 = esp.
B4 BIC C7 B4 24 58 2 Bienoy Tenpei8hel ime 1.
] TR HE -} R PR

heck iF the date is greater than @xS4162008, which is Septenber 15, 201d.
Jump if Lass o Equal <ZF-1 | SFt-0F>

Lie 10f 51235 BB4ZEDF BiC 3D 7F 97 66 54 emp eaw. SAGEIVTFR G date s greater than BxS466977F. uhich i Nowember 1d. 2604,
= gasnzoks eiC TF 84 dg short loc 4026ER or <zh-B8 SP-oF>

. Gragh orerview: os

L] (K]
] [Ema J[@=o]

anzere o1c Ba o1 oy al, 1 wmazo 0 |
106008 11-11,46) | (546,340} [00001ADT 10402601+ Custom tac=Validationt2]

Figure 79: IDA - graph mode, Custom Date Validation Function

5.1.4 TLS Callback Functions

Malware authors employ numerous and creative techniques to protect their executables
from reverse-engineering. The anti-debugging technique called 7LS callback and has been
explained on section 3.3.1./TLS explanation. TLS callback functions are actually executed before

executing code at the traditional Original Entry Point (OEP). To find the TLS callback in IDA Pro

and press Ctrl+E.

anwr il (rrsmwr. _|=] x|

Fle Edt view + Oplions Windoms Hep

I ‘ﬁ'ﬂ~‘1|“| 4 el @ G[] & ol of F - 2 ek X[0 O fiocsi vina2 osbugger = % e [D B
{8 N N 0 OO 1 T T IO N T) | 1 L___f I~ |
Lrary furcbon Dats B Regub fusction | Uneupioradt B nsuction Externial syl
TlRnctorewn. 0 8 %[[F mavews 0 | @ Gevews [|) Nameswidow) |] Segment Registers) | 7] Lisk o appied lorary mockies (| (] Beatponts 0 | 82 imports T al
=
i TLSCALLBACK_® ENTRANCE
blic TlsCallback @
Y otAT 1Lk BReE ear
yar-igs duord pre -1ch
VarTigs guord b -l
var. d flr‘ =14h
arg. dword 9 E
2r3-ds dverd Bin Bon
Pus x
sub esp. B lnlegel Subtraction
78 20 48 0@+cmp ds:dlﬂ P 4 4] Compare Twe Operands
S H=I & 3&' e
%
@5 70 20 48 GOwmov
&8 o o
0O41A2C0
e
Tz 00401280
ml&azc
ﬁh carcel sexch | wep |
1A
'
= 415331 91C 83 7§ 01 = . T T T T [T T e S
= %ﬂ:gé GlE 5358 = Shert loc_a1a378’:
|—| offset dwor
> gFFsst dISrdEBBIT L 1necper subiraction
Lre 1538 of 1538 Shift Ar Alhm! ic Right
'g 1 EBsical tompars .
|Baognoeves D 6 x || 306 "13c_a1a336’ ;"3005"1¢ “Pere S Equal (ZF=1 | SF1=0F)
H o 3
B e e e IS o641 xar ebx, ebx T Logical Exclus
Loc_414378: =
88 44 24 28 mov 3k, [espsiChiaco 8)
2ps 1CRTvar 1815
T e =) T T T ettt v

Figure 80: IDA Pro - Entry point choice

IDA Pro
102

We can clearly see the structure of the execution. This program will execute three functions in a
specific order, first the TlsCallback 0, then the TlsCallback 1 and at last the start — main program.
Despite it is the first and only complete program called after the entry point, the start with will be
executed last. The explanation of'this chain of prosecution sourcing from the ‘AddressOfCallBacks’
value 00484004. The address is on .crt section and points to the TlsCallback 0. By default, most
debuggers break at the entry point and consequently the TLS callbacks function are executed, but
this will be discussed on the next section. On this case, the TLS Callbacks are not only executed
before the main - start function, but they are dynamically called, via call eax command. The

indirect call procedure, is and would be a frequent technique, from the malware author.

4 1DA - Ci\Users\WinZPro64 ' Dowmloads \msmiwT - C == x|
mm:mmmmwmmwm%

|‘H“b'=' BH% S) =+ XD |EEEITMS chOdd | EEG0
| ol ot ¥ ¥~ o o X | R~ B~ R P ".?Z\E-_-.J_'leﬁﬁ Sl ¥l e Ea

AS|IFAE|(IDE|IEHA@REE
IPEE ARAIBR A

|| » @ 0o ebugzer RS D o | (S 6] I | 63 o o]
S O N 11 N T T TTT IO 11 Il 11 1 [ports |
Lbrary function Data [l Regular function | Unesplored [l Fstruction Extemal symbsol
Frncrswidow 0 8 x| T D8 View-4 CHEE] Jrgarts | @ [|
- G40 0 Gar 38 =
Function name ﬂ it varz :ll
] sub_401000 Eub-: varie
7] TopLeveEsceptonfiter vl -
7] start +1 HH4 83
7 sub_401200 -1 o Al na i a7 00
7] sub_401250 ul ’ggg' 856 %4 i
T SRS mogummm
A f 01362 upipiang D 83 €7 04 24 00 53 Ber
L] sub_4013%0 pub_ -+
7] sub_40136E u :iEE:‘ 5 #3083 EC 0C
£ b -
f_ b_401430 b 401 000 +29
b s e manugae e s
7] sub_401463 UL ORI @G b GF 12 02 ca ’
FETR: e SN i
A b ca
_— 4W1 488 +38
7 sub_dn14eE ub asiaTID Wi BB 4E 94 61 b ca
7] sub 401505 updiaeess @ 8D 44 24 2 1ea
7 s cuen e Bganly £
D i s EELELED B
7 b ¥ oy
(7] aub_40196F ubTA01000-5E 63C 7 44 24 2 ay
T st e SEmY RRaln &
7] sub_401876 b MI@RRGGE @IC 89 44 24 88 v
7 sb_daieac up STl GG ES 20 33 62 pe il
7 sb_4018A7 077 mc w6 39 43 00 o
= A ARTC AiC 85 G Tort :
7] sub_4018CC - hoabiomeoTE 3C 74 0% ke o 2 'Sy if Zore (ZE=t
P b3
“« v 1D0000424 00401024+ . text:00401024 -
Line 1 of 1551 4] »

Figure 81: IDA Pro - TLScallback dynamic call

Nevertheless, the attacker had inserted anti-debugging routines inside the TLS callback functions

to mislead the malware analyst.

Chapter 5. Static code Analysis

5 \WIN7Pro64'\Downloads \ rmsmwr db. [rerlwr ane) ;Iglil
Ut S @~ = || & % &% lls_l /@ Jlém‘l_tr F o X | b 0 O flocal vinzz debuge ol Jml’?‘
- I N O A 1 A A A N OO T LI MMRIIALT Il @} |

Livary function Data [l Regular function Unasplored [l Tetruction External syrrbol

Slencdoswn., B 8 x5 pavers @ | @ beviews 0 | § Nemwswidaw (| & Segment fegsters [|
Function name = a

7] sub_401000

7 TeplLeveEresptiortit

Lstofapplied bbrary moduies [| @) eedpors 0 | B mmpws 0 | @ mpos 0|

7 sab_a0132C
(7 sub_a01362
7 sb_ 401390
7 ab_d013EE

1o stazzc: Canpare Tn
S i e 41848 s 1f Zero (ZFe1)

sub_40138F
sub_a013EC

b _401BA7
stb_401BCC
sb_4016F1
stb_401C16
sub_an1c48

7
b
7
[Fl
z
7 wb_40166C
[El
Iral
@
7
@
o

o1 90 10 50 48,587 R0, i cword 4080 dLebuta)
RN Rwe o T -
s i 14360

ab_a01C72

I]h Aanpai? L’d

Line 1 of 1538

B Gghowerview D 8 X

C=———T - [s1:204|{-351,136 | {1108, 1567 [0001672¢ [0041A32¢+ TISCALIBack GHE

Figure 82: IDA Pro - TLScallback 0

f 5\Wir7Pro64 \Downloads \rnsmur idb (rrsmwr exe) _1= %]
Fie Edt Jump Search ¥iew Debugger Options Windows Hep

Uz R[] = o | B [B[8 o | @[b o i oF ~ o i X || > @ O [iocolwriszemouger =] | % b ||| (@ #F §°
J‘Il__ll Il o__________________________________J |

Lirary furction Data [l Regular function | Uhexplored Il Fstruction Esternal symbol

Flencorswn. 8 & x| E maviews O | @ bovews 0| G Memeswidow 0 | 7 Seqmentenistas) | (Zlstofappied loray modiies) |) geapars 0 | @ e 0 | @ ewes 0|
Function narfe il
(£ sab_s01000

[TepLeveExcepnonFin

7 ab_4012C0
sb_4012E0
Sb_do135C 7 TLSCALLBACK_1 ENTRANCE
blic TiaCallback_L
sLb_4013%62 {aalibackol procnear
401380 var_1ce duord ptr -1ch
_4015EE o g{? e
401420 %
g £ i
401463 e o
401430 83314254 BlE 5 8 T LT euwero »
_40140C (6041425

4014EE

401505

AOLEEA BN T I oo aamo s Son 1 Terd (BT

EEERERFFEEEEERER

_AC13EF o FEF]

ioriec T E Y el Su— v

e A EEEE | B e frem Procere i ——

. 1 S s S lBEEE

)_401B8C BIC 89 54 24 28 Ix

o i R &
I e pmes o o

i Eat BEET = @b e e feom Procetre
se_eoicre i ecetionct erdo
sub_d01CaB e X
sub_401C72

=] 5 0l (5 ol B ol B B S S B o B B ol B B B S S S

3
> 1
"

4008 (41, -112) (318, 240) (00015603 004 1A253+ Tlscallsask 13

Figure 83: IDA Pro - TLScallback 1

Both of the TLS callback functions are leading to 0041AA10 function call that is related to
EnterCriticalSection, LeaveCriticalSection, InitializeCriticalSection or DeleteCriticalSection.
Note that for the calling the thread EnterCriticalSection twice, will lead to stuck an eternity loop.

Specifically, with the thread call EnterCriticalSection getting stuck forever at the call. In addition ,a

IDA Pro
104

critical section object cannot be moved or copied. The process must also not modify the object,
but must treat it as logically opaque. The usage of critical section functions is to manage critical

section objects.

5.1.5 Debugger Presence
IsDebuggerPresent API
The most distinct point in the list of import functions is the IsDebufferPresent function. The
explanation of IsDebuggerPresent function can be found in 4.1.1. section. Searching for all the

occurrences for the IsDebuggerPresent function, the function is being called in at 00402736

address.

4 IDA - C:\Users\Win7Pro64, Downloads \msmwr.idb (rsmvir.exe) =1=| x|
Fle Edt Jump Search View Debugger Cplions Windows Heb

B P I B A N EEE TR
b o o~ o 0 X[UTR P NPl P11 i P >

ETCNEEEREEET)
AL EE ST Y LY

1105 P21 i B[B 3 Y G|) F @) | (5 G [t (&
| > @ O fiocal winaz detugoer][4 3 0 Ben| T 0] MR RIS &5 |0 &
A 1 T ONRAT A0 00 00 0 O T OO OO T OO 1 OO 0 | =
| Lbraryfuncton Dsta [l Regular function | Unesplored [l Instruction External symbol
7 Functions window 08 X [Farsspors 0 | W | EProg . | Tiow view-a O Cecurrences of: koctuggerpresent 1 | (GI0AViwB [| (Db view2 1 | [l Lstafprobiems (1 | [5rm 4[>
Functon name | e [Functen [mstructon |
7 ub_d01048 custom_AntiDebug_ Debugg. 03C E5 4 16.02 00 cd IsDebuggerPresent | DebUgoerP:
7] sub_a01C72 1o reser ooperPresen)
; C ;BOOL _s
erel32: 76520094 042B6CT6 76520094 o offset kermebase_EDebuggerPre..
kermel32: 76524450 kermel32_lsDebuggerPresent kermel32_JsDebuggerPresent proc ear ; CODE YREF: I
ermel32: 76524464 kermel32_l:DebuggerPresent oc_76524A54 CODE YREF: kernel32 L.
kermel32: 7650638 4573446562 75+ alscebuggerpresent db TsDebuggerPresent 0
(7] sub_d05174
7] sub_405251 -
“ v
Line 37 0f 51235 Line 20f 7

Figure 84: IDA View, IsDebuggerPresent all occurrences

Chapter 5. Static code Analysis

105

4 IDA - C:\Users\Win7Pro64\Downloads \rsmwr idb (rsmwr.exe) 15 x|
Fle Edt ump Search View Debugger Cptiors Windows Help
sE|levs-|NH%8 3 all=*
dR - Fu X[BNl
» @ 0 Local Win32 detuy *
I 100 T

Lbrary functon Data [l Regular function ' Unexplored [l nstucton External symbol
08 x | o Zlma view- £ | Cimavews O | Slrecview2 [0 | Eistofprovems 1 | Ssexvews 0 | Simports 0 | e «|»
p-based
L’_'
Lne 37 of 51235 | =X
Al [omazzas a3c wp 45 o8 Tea pax Tebpusar 28
|BB4u2747 u3C now ebpevar Cl, sax
ah Graph ovarview, el (00482740 63C EB @B Gnp short loc_4d2757
[l (8362730
4 aa
—_— i Lagisal Conpar
S ER T Sapare
i 100,00 ({2174, ~25} | (866, 260] (00001835 004027361 custom Antibebug DebuggerPresento

Figure 85: IDA View - graph mode, IsDebuggerPresent at 00402730

The figure 84 depicts a custom process that determines whether the calling process is being
debugged (by a user-mode debugger). If the current process is running in the context of a debugger,
the return value is nonzero. The simplest API function for detecting a debugger is
IsDebuggerPresent. This function searches the Process Environment Block (PEB) structure for the
field IsDebugged, which will return zero if you are not running in the context of a debugger or a
nonzero value if a debugger is attached.

The Process Environment Block (PEB) is a user-mode data structure that can be used by
applications (and by extend by malware) to get information such as the list of loaded modules,
process startup arguments, heap address, check whether program is being debugged or even find

image base address of imported DLLs.

IsDebugged PEB Flag
If we examine the API in a debugger we can see that it uses FS[30] segment register which

is the linear address of Process Environment Block (PEB) and then reach the offset 0x002 which

IDA Pro
106

is the BeingDebugged. So instead of calling IsDebuggerPresent(), the malware manually check
the PEB (Process Environment Block) for the BeingDebugged flag.

In the under analysis case, the malware author created a custom procedure of checking the
existence of a Debugger. The check does not stop on the Windows API return value, but continues
with custom checks of PEB. The Process Environment Block (PEB) structure for the field
IsDebugged, which will return zero if you are not running in the context of a debugger or a nonzero

value if a debugger is attached.

4 IDA - Ci\Users\WIn7Pro64' Dowimloads \rmsmvr jdb (msmwr.exe) =15l x|
Fle Edt Lmp Search View Debugger Optiors Windows Hep

SEller-| [N 8 4 vl=-+XD0| B IFTEE ujhdd’i & | IEE) =A@ E S

ddFS-fuX||R-A-MetEEEE 0 O3 X|] fEH)|E FE Bl Y LT

» O Ofocawrazosgger =% |3 OB Pl ol "na"ﬂ'

VNI 15 RMURIRR DT TR ll.llll.l LRIy ey e J |

Lieary function Oata [l Regular function | Uneipiored [l nstructon Extemal symbol

B 2 x| [Feceabports (| | (5] Program Segmentston [E)0A view-4]] R Cccurrences of: lsdebuggerfrasent | | (ClAViews () | DHesviewz () | &istofproblems | (Thecview-a | Simpors 0 | [Fleg 4[>
0 BoETTIE WC 65 CB ot oax TogT
8Ba48271D BIC BF 95 C8 sot
Ba482748 BIC 84 CB ton
BE482742 BIC 74 26 i=

ad82742

loc_48276A:

. a1
are loc_4B276

Fl
4
8|

BRI SRR
s

[ssssial

loc_482705:

et J:|
T | ’

Line 52042 of 52042

ah, Graph ovarview o0& x ¥

lea TICT Lead Fifective ndarcs| Bedaaze
" nou l hp e et
e loc_483703 ; Junp Ba16203 0 8 42
— 42 795
—_—
100. 008 {1690, 273 [(350, 34) [000D1836 [00402736: custom_ Antibebug bebugger

Figure 86: IDA View - graph mode, custom PEB check IsDebugged

More specifically, at address 0040276A the large fs:30 segment register leads to the address of

PEB and then the offset 0x02 is added and checked, which is the BeingDebugged flag.

NtGlobalFlag Flag

Moreover, at the address 004027A5, large FS[30] segment register leads also to the address
of PEB and then the offset 0x68 is added and checked, which is the NtGlobalFlag flag. This is
another simple anti-reversing trick used to detect a debugger. At the TEB structure and the PEB

structure, NtGlobalFlag is located in the PEB Structure at offset PEB+104.

Chapter 5. Static code Analysis
107

So this flag can also challenge identification of whether the process is being debugged.
Normally, when a process is not being debugged, the NtGlobalFlag field contains the value 0xO.
When the process is being debugged, the field will usually contain the value 0x70. The 0x70 value
is a total of checks, which indicates that the following flags are set:

e FLG HEAP ENABLE TAIL CHECK 0x10

e FLG HEAP ENABLE FREE CHECK 0x20

o FLG HEAP VALIDATE PARAMETERS 0x40

o Total 0x70
That is the reason the malware author makes a comparison at 004027B9 address. If we examine
the API in a debugger we can see that it uses FS[30] segment register which is the linear address
of Process Environment Block (PEB) and then reach the offset 0x68 which is the NtGlobalFlag.

Nevertheless, searching for all the occurrences for large FS[30], it can be figured that the

malware author has implemented the anti-debugging PEB checks in several places, with several

ways.

4 IDA - Cr\Users\Win7Pro64\Downloads \rmsmwr idb (rmsmwr.exe) =|= x|

Ele Edt Jmp Search Yew Debygoer Opbore Wndows Hel

EEIEEE N CEDEE
AT 2 PR

=+ X||ZT Q| RE &= A% hodd @REAFIZE IDOIEAIEEE

ErESHEESER|]F @6 oy 8F|I|VOESS|| 4888

b O Ofoaiwmzomge =% @ |2 D@ E A= s A]

A TR AT SO O OO O O OO O =
-l Lbraryfuncbon Data Ml Regular function | Unesplored [l Instructon Extemal symbol

|7 Functions window

| @ | Tipavewa D Qcourrences of: large f:30 £ | ¥ Occurrences of: lsbebuggerPresant () | EIDA views (1 | [@Hexview2 1 | [@Lstofproblems (1 | GlHexvie [»
[Foretion [iretruzscn

CLEDM_ArtDebug_Debugg... 03C 64 A1 3000 00 00 mov eax, large fs:th

custom_AntDebug_Debugs 3000 00 00 mov_eax, large fs:3Ch

[sub_401000

7 TopLeveE xceptionFiter
start

custom _atesit

7 £4A130000000 mov eax, brge fs:30h
sub_401260 teRtO0402923 sub_4027F% OCC 64 AL 0000000 mov &3¢, large f5: 300
sub_40132C Rext: 0040296 sub_4027F9 OEC 64 41300000 00 mov eax, large f:3Ch
7] sub_d01362 EXC00402A22 sub_a027F% OECE4 A1 30000000 mov eax, large f5:30h
sub_4013%0 et 004050E2 by_40505E 20C 64 A1 3000 00 00 Moy eax, large fs:3ch
sub_4013E teRtO04244EM sub_424410 064 AL 30000000 Moy eax, large 130h
sub_401430 Intcll: 77120000 64E80D 300000+ mov ecx,large f:30h
7] sub_d01451 il 77120108 itk serCalbeckCispatrhier 08 64 A1 30 00 00 00 mow eax, large 5130
sub_401463 Intcll: 77142664 sub_77142658 01064 A1 20 000000 Moy eax, large f5:30h
7] sub_d01450

Sub_4014AC
custom_catseturhandedExcepton
sub_401505
maybe_IPaddresschecking
sub_4019AD

sub_40196F

sub_40196C

7] sub_401676

sub_401B8C

sub_d401B47
sub_401BCC
7l sub_4016F1
sub_401C16
7l sub_401C35

sub_401048 -
T | >

Line 10f 52042 Line 30f 12

Figure 87: IDA View, large fs:30 - all occurrences

IDA Pro
108

Specifically, at the addresses 0040287A, 00402923, 0040298F and 004050E2 the
BeingDebugged flag is being checked. Also, at the addresses 004028BE, 00402A22 and
004244BA the NtGlobalFlag flag is being checked. Special attention is needed to the technique
the malware author is using, the eax register is not doing the comparison immediately, but each

check preceded with a no operation trick, by using the EBP plus to a non-stable variable.

5.1.6 Anti-VMware

The most popular anti-VMware techniques are being used, in order to slow down analysis,
so it was important to recognize them at early points, as it has been done in basic surface and
behavioral analysis.

As it 1s already mentioned, when performing basic dynamic analysis, a virtual machine
should be used. However, if your subject malware does not seem to run, a different virtual
environment (like VirtualBox or Parallels) or even a physical machine, should be tried. As with
anti-debugging techniques, anti-VM techniques can be spotted using common sense while slowly
debugging a process. For example, code terminating prematurely at a conditional jump, it may be
doing so as a result of an anti-VM technique. As always, be aware of these types of issues and look
ahead in the code to determine what action to take.

The Red Pill Anti-VM Technique

Red Pill is an anti-VM technique that executes the SIDT instruction to grab the value of
the IDTR register. The virtual machine monitor must relocate the guest’s IDTR to avoid conflict
with the host’s IDTR. Since the virtual machine monitor is not notified when the virtual machine

runs the SIDT instruction, the IDTR for the virtual machine is returned. For more detailed

Chapter 5. Static code Analysis
109

explanation of the Descriptor Table Registers and them detection technique, please check at the
section 2.3. VME Technologies.

The Red Pill tests for this discrepancy to detect the usage of VMware. The malware issues
the SIDT instruction at, which stores the contents of IDTR into the memory location pointed to by
EAX. The IDTR is 6 bytes, and the fifth byte offset contains the start of the base memory address.
That fifth byte is compared to OxFF, the VMware signature.

The attached short exploit code can be used to detect whether the code is executed under a

VME or under a real environment. '’

int swallow_redpill ()

{
unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";
*((unsigned®)&rpill[3]) = (unsigned)m,;
((void(*)())&rpill)();
return (m[5]>0xd0) ? 1 : 0;
;

Table 5: “Swallowing ” the Red Pill has been published as this four line code, generating almost a single
CPU instruction and that returns nonzero when in “Matrix ”.

The heart of this code is actually the SIDT instruction (encoded as 0FO10D[addr]), which
stores the contents of the interrupt descriptor table register (IDTR) in the destination operand,
which is actually a memory location. What is special and interesting about SIDT instruction is that,
it can be executed in non-privileged mode (ring3) but it returns the contents of the sensitive register,
used internally by operating system.

Because there is only one IDTR register, but there are at least two OS running concurrently

(i.e. the host and the guest OS), VME needs to relocate the guest's IDTR in a safe place, so that it

" Red Pill... or how to detect VMM using (almost) one CPU instruction, Joanna Rutkowska, originally published at
URL: http://invisiblethings.org/, on November 2004, current access URL:
http://web.archive.org/web/20110726182809/http://invisiblethings.org/pa

IDA Pro
110

will not conflict with a host's one. Unfortunately, VME cannot know if (and when) the process
running in guest OS executes SIDT instruction, since it is not privileged (and it doesn't generate
exception). Thus, the process gets the relocated address of IDT table. It was observed that on
VMWare, the relocated address of IDT is at address OxffXXXXXX, whereas on Hyper-V (Virtual
PC) it is 0xe8XXXXXX.

Joanna Rutkowska came across this strange behavior of SIDT instruction a few years ago,
when Joanna Rutkowska was testing Suckit rootkit on VMWare. Joanna Rutkowska noticed that
it failed to load on VM Ware whereas it seemed to work fine on the same distribution ran outside
VM. After spending many hours Joanna Rutkowska figured out that the problematic instruction
was actually SIDT, which was used by Socket to get the address of the IDT table, and to hook its
0x80 entry through /dev/kmem device.

Please note that Red Pill succeeds only on a single-processor machine, because it would
not work consistently against multicore processors, as long as each processor (guest or host) has
an IDT assigned to it. Therefore, the result of the SIDT instruction can vary, and the signature used
by Red Pill can be unreliable. To thwart this technique, run on a multicore processor machine or

simply NOP-out the SIDT instruction.

The No Pill Technique

The SGDT and SLDT instruction technique for VMware detection is commonly known as
No Pill. Unlike Red Pill, No Pill relies on the fact that the LDT structure is assigned to a processor,
not an operating system. And because Windows does not normally use the LDT structure, but

VMware provides virtual support for it, the table will differ predictably.

Chapter 5. Static code Analysis
111

Specifically, the LDT location on the host machine will be zero, and on the virtual machine,
it will be nonzero. A simple check for zero against the result of the SLDT instruction does the trick.
The SLDT method can be subverted in VMware by disabling acceleration. To do this, select
VMware Settings > Settings, on the Analysis VM > at Processors option tab and check the Disable
Acceleration box. No Pill solves this acceleration issue by using the SMSW instruction ifthe SLDT
method fails. This method involves inspecting the undocumented high-order bits returned by the

SMSW instruction.

The I/0 Communication Port

The most common anti-VMware technique currently in use is that of querying the I/O
communication port. This technique was discovered by Ken Kato’®. VMware uses virtual I/O ports
for communication between the virtual machine and the host operating system to support
functionality like copy and paste between the two systems. The port can be queried and compared
with a magic number to identify the use of VMware. The success of this technique depends on the
x86 in instruction, which copies data from the I/O port specified by the source operand to a memory
location specified by the destination operand.

VMware monitors the use of the in instruction and captures the I/O destined for the
communication channel port 0x5658 (VX). Therefore, the second operand needs to be loaded with
VX in order to check for VMware, which happens only when the EAX register is loaded with the

magic number 0x564D5868 (VMXh)”®. ECX must be loaded with a value corresponding to the

8 Ken Kato, VMware Backdoor 1/0 Port, source URL.: chitchat.at.infoseek.co.jp/vmware/backdoor.html
9 Methods for Virtual Machine Detection, Alfredo Andr’es Omella, Grupo S21sec Gesti‘on S.A., 20th June 2006

IDA Pro
112

action you wish to perform on the port. The value 0xA means “get VMware version type,” and

0x14 means “get the memory size.” Both can be used to detect VMware, but 0xA is more popular

because it may determine the VMware version.

=8l %]

& 10A - C:\Users\ WinZPro64'Downloads \rnsmwr.idb (rnsmvr.exe)
Fie Edt Jimp Search View Debugosr Opbons Windows Hep
s |V Rl Rl R B TN Y
EL- s 4 P RdORd]) GAR fJ.ia I # & 181 |
| @ Ofocal wrszcetngoer =] |4) B e |1l G0 & B[&5 o o5 5‘.#

AR TRRNERIN Y 1 -I-I\I-IIIII- 0K R OSTR S AT SO0 AR O 11 |

18T S @"htﬁdfﬁ

Lbrary function Dsta [l Regular function | Uresplored [l nstruction Extarnal symbal
7 Functions window 0 8 X [Farsaipors [| ¥ ocourences of Gevvocaddress || | [f] Program Segmentation [| (Eioaviewa [| ¥ ocourences of: skeep (Cmaviews B | M occumences of: 1 3 1| M ocurences of: contarer 11| <[
=] [o T e

Functon name

custom _atesit
3.1 _4012E0
sub_40132C
3.1 401362
401390
A01EE
401430

L —
[GADSEGER " UMXh’
} o SPEELT G FRBANETER

§ BACKDOURCOMANDRLIY

iR

401430

40
custom_catSetUrhandedException
sub_401505
fmaybe_TPaddresschecking
sub_401940 ¥
sub_40198F
sub_40156C
sub_401B76
sub_401B8C
sub_401BAT

7] sub_4018CC &=
‘,- Pl ﬂ_l
Lie 10f 51235

i Graph overview o8 x @ '

oF>

ted.
owing. Check uhers the EBP address i3 leading for the jusp and nop the rest.

.
T = io0.00%/ (2067, 173 |1 1085, 2657 G005 1o [S0U0E31n: sumrom_ZovicEualomehisachask

Figure 88: Red Pill VMware detection with Backdoor Command Number - patched

On the above Figure, at the address 00405509 the command MOV EAX, 564D5868h has
been detected, which is the famous VMware Magic Number (VMXh). The malware first loads the
magic number Ox564D5868 (VMXh) into the EAX. Next, it loads the value / into EBX, a memory
address that will return any reply from VMware. ECX is loaded with the value 0x10 to get the
VMware version type. Next, the 0x5658 (VX)) is loaded into EDX, to be used in the following in
instruction to specify the VMware I/O communication port. Upon execution, the in instruction is
trapped by the virtual machine and emulated to execute it. The in instruction uses parameters of
EAX (magic value), ECX (operation), and EBX (return information). If the magic value matches
VMXh and the code is running in a virtual machine, the virtual machine monitor will echo that
back in the memory location specified by the EBX register. The next immediate check determines

whether the code is being run in a virtual machine. Since the get version type option is selected,

Chapter 5. Static code Analysis
113

the ECX register will contain the type of VMware (1=Express, 2=ESX, 3=GSX, and
4=Workstation).

The easiest way to overcome this technique is to NOP-out the in instruction IN EAX, DX
or to patch the conditional jump to allow it regardless of the outcome of the comparison. At the

figure 89, the NOP-out technique has been chosen.

Chapter 6. Dynamic code Analysis
114

6. Dynamic code Analysis

The dynamic code analysis is the hard part of debugging a software. The tool to make a
dynamic analysis is the debugger. A debugger is a piece of software, in this case, used to test or
examine the execution of the subject malware. Debuggers help in the process of developing
software, since programs usually have errors in them when they are first written. Debuggers gives
the insight into what a program is doing while it is executing. Specifically, debuggers are designed
to allow developers to measure and control the internal state and execution of a program. Because
theory of debuggers and instructions using them are not part of this thesis and the document is
already long enough, in continuous only the vital parts of code are being presented during the

debugging.

6.1 Structured Exception Handlers

Generally, the exceptions allow a program to handle events outside the flow of normal
execution. The Structured Exception Handling (SEH) mechanism provides a method of flow
control that is unable to be followed by disassemblers and will fool debuggers. SEH is a feature of
the x86 architecture and is intended to provide a way for the program to handle error conditions
intelligently.

The common exceptions are caused by errors and when an exception occurs, execution
transfers to a special routine that resolves the exception. Some exceptions, such as division by zero,
are raised by hardware. Some others, such as an invalid memory access, are raised by the OS.
Specifically, the Structured Exception Handling (SEH) is the Windows mechanism for handling

exceptions, where SEH information are stored on the stack.

Chapter 6. Dynamic code Analysis
115

At the beginning of each function, an exception-handling frame is put onto the stack, with
the special location f5:0 points to an address on the stack, that stores the exception information.
When an exception occurs, Windows looks in fs:0 for the stack location that stores the exception
information, and then the exception handler is called. After the exception is handled, execution
returns to the main thread. So exception handlers are nested, and not all handlers respond to all
exceptions. The SEH chain is a list of functions designed to handle exceptions within the thread.
If the exception handler for the current frame does not handle an exception, it will be passed to the
exception handler for the caller’s frame. Eventually, if none of the exception handlers responds to
an exception, the top-level exception handler crashes the application.

__» OxFFFFFFFF (End of list)

_EXCEPTION REGISTRATION

—» ptrto prev struct
ptrto handler ——— —S*cept handlex(...)

_EXCEPTION REGISTRATION

—» Pptrto prev struct
ptl‘ to handlel‘ » _ except_handler(...)

Thread Information Block (FS:[0]) _EXCEPTION_REGISTRATION

EXCEPTION_REGISTRATION ptr to prev struct

ptr to handler » __except_handler(...)

Stack
Figure 89: SEH Chain &
To find the SEH chain, the OS examines the FS segment register. This register contains a
segment selector that is used to gain access to the Thread Environment Block (TEB). The first

structure within the TEB is the Thread Information Block (TIB). The first element of the TIB (and

8 The source URL of the image: www.aldeid.com/wiki/Category: Architecture/Windows/SEH-Structured-Exception-
Handling

6.1 Structured Exception Handlers
116

consequently the first bytes of the TEB) is a pointer to the SEH chain. The SEH chain is a simple
linked list of 8-byte data structures called EXCEPTION REGISTRATION records.

The first element in the EXCEPTION REGISTRATION record points to the previous
record. The second field is a pointer to the handler function. This linked list operates conceptually
as a stack. The first record to be called is the last record to be added to the list. The SEH chain
grows and shrinks as layers of exception handlers in a program change due to subroutine calls and
nested exception handler blocks. For this reason, SEH records are always built on the stack.
Misusing Structured Exception Handlers

In the subject malware, the exception handlers are being used in exploit code to gain
execution. A pointer to exception-handling information is stored on the stack, and during a stack

overflow, an attacker can overwrite the pointer. By specifying a new exception handler, the attacker

gains execution when an exception occurs.

4. IDA - C:\Users\Win7Pro64\Downloads\rnsmwr.idb (rsmwr.exe) =Isx]|
Ele Edt Jmp Search View Debugoer Qpbors Windows Heb
sE|lev+-|NHa 8 3 =
- At 1 R UL DACTRG I Pei]
» @ 0 frocal wia2 devugger]| %
LR

Lirary function Data [l Regular function 1 Unexplored [l Instructon External symbol

OO OO OO0 0O T O OO O |

7 Functione window o8 x
Functon name

] sub_401000

7) TopLeveExceptonFilter
7 start

| occurrences of: tsDebuggerpresent [| TwAviews 1 | ClHexvew2 0 | <[>
4]

loc_485226: ; CODE XREF: sub_485174+8A1j
nov _c1
r 141

26
83C 80 45 P4
@3C 3B 45 EC

@3C @F 9C B

#3C 84 CB
#3C OF 85 66 FF FF FF
31 3¢

3C ¢
38 038 C3
238

5230 55 obp
BA405238 B9 ES ebp. esp

BB46523D A1 1C CB 47 00 vax, ds:dword_47CH1C
89495242 5D

aub_405251

¥ Ctext c9 eave gh Procedure Exit
« » 00004644 [00405244: . bext:00405244 ~|

Line 10f 52041 « o

Figure 90: IDA Pro, text view, sp-analysis failed

In this figure, IDA Pro has not only missed the fact that the subroutine at location 405239
was not called, but it also failed to even disassemble this function (sp-analysis failed). Stack-frame

anti-analysis techniques depend heavily on the compiler used. Of course, if the malware is entirely

Chapter 6. Dynamic code Analysis
117

written in assembly, then the author is free to use more unorthodox techniques. However, if the
malware is crafted with a higher-level language such as C or C++, special care must be taken to
output code that can be manipulated.

Anti-disassembly is not confined to the studied techniques. It is a class of techniques that
takes advantage of the inherent difficulties in analysis. Anti-disassembly is more difficult with a
flow-oriented disassembler but still quite possible, once you understand that the disassembler is
making certain assumptions about where the code will execute. Obscuring flow control is a way
that malware can cause the malware analyst to overlook portions of code or hide a function’s
purpose by obscuring its relation to other functions and system calls.

Please keep in mind that in Behavioral Analysis section, 4.1.1. at Informative Indicators
the anti-reverse engineering technique of SetUnhandledExceptionFilter has been already detected
from an online automotive analysis tool. Specifically, at the addresses 00401030 and 004014FB
the call of function SetUnhandledExceptionFilter has been done and at address 004242 A4, another
indirect near jump is taken place. Furthermore, the call of function l¢tTopLevelExceptionFilter at
the addresses 00401026 and 004014F1, in addition with the indirect near jump at address
004242A4.

Function IpTopLevelExceptionFilter is a pointer to top-level exception filter function that
will be called whenever the UnhandledExceptionFilter function gets control, and the process is not
being debugged. A value of null for this parameter specifies default handling within
UnhandledExceptionFilter. Usually, in absence of an UnhandledExceptionFilter the topmost
handler called when an unhandled exception occurs, is the default one provided by Windows Itself,

the classical MessageBox that advices the user that an Unhandled Exception has occurred.

6.1 Structured Exception Handlers
118

Debugging detection using Unhandled Exceptions

On the other hand, Windows allow programmers to use custom Handlers for
UnhandledException. The core of the trick is here, if the application is not debugged, the
application is able to call the Custom Handler, but if the application is debugged the Custom
Handler will be never called.

Please note that inside UnhandledExceptionFilter function, the function
NtQuerylnformationProcess is called that has as first parameter the subject process and next
DebugPort, this is done to know if the process is debugged.

This anti-debugging and also anti-reversing technique was caught being called in several
parts of assembly code, in the subject malware. As long as these are custom handlers, the counter
technique should be manual.

e At First a search for "All intermodular calls" should be done and due to the results
breakpoints at the call of GetProcAddress function should be added and then
resolve the imports of the pack file.

e The next move is to run the binary of the subject malware and when it breaks, the
stack should be checked for the function SetUnhandledExceptionFilter that is being
loaded. The SetUnhandledExceptionFilter handles the exceptions that are not being
hardcoded with some exception function. At this point the function
IpTopLevelExceptionFilter will be executed only if the binary is not being
debugged.

e Because the subject malware is obviously running under a debugger, the return
value of GetCurrentProcess function should be search. Firstly,

"UnhandledExceptionFilter" should be searched (CTRL+G) as an expression.

Chapter 6. Dynamic code Analysis
119

e Then breakpoint at the call of “kernel32.GetCurrentProcess” function should be
added.
e By executing the binary, the return value at EAX register should manually changed
from-1to 0
Keep in mind that there are some dynamic calls of GetCurrentProcess functions, via other

functions as a parameter. These functions are “RtlEncodePointer” and “En/DecodePointer”.

GetProcAddress(LoadLibraryA(kernel32.dll), EncodePointer);
GetProcAddress(LoadLibraryA(kernel32.dll), DecodePointer);

e The next function call will be the “ZwQuerylnformationProcess,”, that will check
the value of EAX register. Keep in mind that the new version of
ZwQuerylnformationProcess is NtQuerylnformationProcess, both mentioned in
ntdll. In case that the value will be -1, this will lead to a stop function, because the
debugged process is revealed.

It should be noted that, a generic measurement to counter this technique, is by editing the
return value of GetCurrentProcess function from OXFFFFFFFF to 0x00000000. In other words, an
apparently undebugged process should be obtained in order to modify the first parameter (last

pushed at debugging time).

Timing Checks

Single-stepping through a program substantially slows execution speed. There are a couple
of ways to use timing checks to detect a debugger, record a timestamp, perform a couple of
operations, take another timestamp, and then compare the two timestamps. If there is a lag, you

can assume the presence of a debugger. Also, take a timestamp before and after raising an exception.

6.1 Structured Exception Handlers
120

If a process is not being debugged, the exception will be handled quickly; a debugger will handle
the exception much more slowly. By default, most debuggers require human intervention in order
to handle exceptions, which causes enormous delay. While many debuggers allow you to ignore
exceptions and pass them to the program, there will still be a sizable delay in such cases.
Nevertheless, on the subject malware, another anti-debugging SEH technique due to the
dynamic code analysis revealed. The anti-debugging timing checks are successful because the
malware causes and catches an exception that it handles by manipulating the Structured Exception
Handling (SEH) mechanism to include its own exception handler in between two calls to the timing
checking functions. Exceptions are handled much more slowly in a debugger than outside a

debugger. On the following screenshot a Custom top level exception handler is installed, at the

address .text:004014FB.

. 10A - C1\Users\WInZPro64\ Dovmiloads \rmsmwr - Copy.kib (rrsmw - Copy.exe) -|=| =]
Fle Edt Jump Search View Debugger Opbiors windows Hel

L AL « X
I A 4~ P AL RSoRdloRaille bl

DR Al 1 &) () (71 63 | 2) [
G SRR E Rl il

i Gl 5 B 1
» [0 O o debugger |l %r |3 00m I £ k. S ¥ &
I I T N 11 N T UM 1 Il @ =

Library function Data [l Regular function | Unesplored [l struction Extemal symbol

FRnctcrswindw 0 8 x T 1DA View-A %] ‘ e DA Viewe | & [re— | & Trrports | @ Expors |
Function name Al
T

sat sub 4614AC ; IpTopleve lExcaptionFilter
n handler installed |.text:BB4E14FB

en
Sub_ABIAEE endp

i o i |

Figure 91: IDA Pro, graph view, Top level Exception Custom Handler

This exception will lead to about 10 minute sleep at the beginning and somewhere else
dynamically called. On the following figure, at the address .text:00405174, some implemented
with time function calls are being presented, combined with the above mentioned techniques, are

adding some additional protections against fast forwarding time.

Chapter 6. Dynamic code Analysis

121

-|= %]
Fle Edt Jump Seach View Debugger Cptiors Windows Hebp
2E=v [N % % ¥ ell=-+X T B3 & G o W | F 7 &) || %) EAlEBHB
i Fr X [BtratlEma N BEOS X F @S Gdzde i dHEE | ARERA
> [0 0o sebugzer EEEERLY: Edd) DY |5
Lbcary function Data [l Regular function | Unesplored [l frstucton Extermal symbol
ffunciorswindw 0 & x T D Vw4 B | DA viewd = Hex Visw-A & Inpors | & Expors |
B [aBs
(@401 ub 485174 proc near
(aB4ne 1
|a40< 1 a8
(a840<1 Bee prr 2dh
405 Z0= hyte pew —20h
(w05 Uar1Gs dward pte 1Ch
(w405 - 1in
(an4us Var 13- dward pte 14k
(a84as1 ward pte 10k
(a84qe1 fuord phe -Ch
(a94qe1 - duerd per
|HB4AS 1
340 174 pun 55 obp
8405175 64 83 b obp, vep
(@B40S 7 B4 53 EC b ubtract
|@8405170 B3C C7 B4 24 B0 BB BAmoy
l@B4nsial a3c E8 72] e fur
|aB4nS 186 B3C 8B 5
(@84S 189 83C B1 BA aa
(@B40S188 830 89 45 FC fou
[B40S1HE 630 C7 94 24 60 68 BAwmoy
(8405195 63C E8 SE EF 01 v call tine .
0405174 6ic 53 35 Fa Lehyroar C1. eax
¥
Loc_185190:
24 B0 BO BAvmoy LespeIBhaTine
EF @1 Bd eall eime
Fi s edx. Cebprar_C1
The edx
oAb eax. edx
] Setnle al " ® & SF-OF
st Al
Shart loc_apsic
L] L
E=a
lea eax, Cebpruar 241 : Toe Al saansioc
Ba4us1D9 BIC 89 45 T now Tebpevas 181, eax aansinc loc_s@s1ne: 5 Tine
) sub_a7024 = @a4BsiBe oIc ED 0B mp___share lo_ 485189 : Junp BRARSINC GIC C7 B4 24 OB AR BAemow leaped@heTinel. @
o BHABSIES (IC ES 10 EF a1 08 call time Call Procodurs
“ ’ BHASIER EIC §9 45 P4
8 "
Lne 1551 of 1551 Bty mic 8 5 14 0 " ol
BBAWEIFA EIC B 45 E4 nou
ACaphoenes O 8 X BB4BEIFS BIC BI CB B2 adi ade
BBBEiTA BIC BA B8 0w
BR4BEITC BIC B CB fese a1l al agica
BR4BSITE Bic 74 26 i Share loc_4B5226 : dimp i

Figure 92: IDA Pro, graph view, time function calls

As a result, a nonstop loop is being detected. The cause was from the REPNE SCASB
instruction. The usage of REPNE SCASB is to scan bytes of a string until the trailing null character
is found. A common use of the REPNE SCASB instruction, in the subject malware, is to determine
the length of a string. Below is a code that checks whether the string passed to the function is 4

characters long.

Window Help
2 =3 R e | B R 8 EIE R

AS DWORD PTR ES:[EDI]
ntdll
3 EDI,4
EDI,

FFFFFFFF
00000000

Figure 93:0llyDbg REPE SCAS instruction

6.1 Structured Exception Handlers

S:\Users WinZPro6- \Downloads \rmsmw.e1e =& =]

Efe Edt Jump Sesch Yew Deudger Cphors windows Heb
I L NIEE iy P T s e
[T T T ST

Lbrary functin Data [l Requtar functicn | Unesplorad [l fretructon Extarmal symbol

Dfuncto.. B & % | [Emavews 0 | @erespoints | % ocrurrences of: Sieep B Ccrurrences of value 0xFFF ¥ Ceourrences of: [ear+2] | & hex view-s | [l Marmes wirdow | & sruchres | imperts | @ emers |

0 =]
11| L3
Line 10.0f 1538
AaGrapho.. D 8 x

[dword_4768(
Caching 'Fur

Caching 'Fur

Figure 94: IDA View, REPNE SCASB instruction all occurrences

On the previous screenshot, there are tons of these instruction been detected. So, all
occurrences search will not help. In continuous, the endless loop is being detected on the
subfunction text.405208. During execution debugging, the stack was filled endlessly with ASCII

characters, without finding on a fly solution by patching the binary.

=8zl
€] Pk Wew Debug Pl Cptions Window =181

)
36 o] | L e[l x|wiE] cls|k|B|R]. 8| iElE 7]
ADD AL .CH

ADC EBP EBP

NOP

HoP

SBB DWORD PTR DS:[EBX] ESI

JNO SHORT ms1.004027F9

Sl4x] »lu|

RETH
PUSH EBP
HOV EBP ESP
PUSH EDI
PUSH EST
PUSH EBX
NOOB0n SUB ESP. BBC
FFFFFF MOV DHORD PTR SS:[ERP=
JOFFFEEF MOV DWORD PTR SS: [EBP
GFFFEFT|LEA AR, DHORD PTR SS:[EBPZEC]
LER EDX DHORD PTR SS: [EBP-181
HOV DHORD PTR DS: [EAX] EDX B LastErr ERROR_NO_UNICODE_TRANSLA
MOV EDH ws].004028AB "
OV DHORD PTR DS: [EAH+41,EDX 0 «A. NS, PO.GE.6
HOV DHORD PTR DS:
LER EAX DHORDTPTR
DHORD PTR S

3204001

HOY

CALL ms] . B041REG8
0Y DWORD PTR $:
MOV DHORD P

TR S
CALL msl.00401505
CALL ms1.0040509E
Ny NUARN_BTR_G&

Address | Value
0 7716

Figure 95: OllyDbg series of ASCII characters loaded in memory endlessly

Chapter 6. Dynamic code Analysis

So, the current solution is not to take the specific jump.

123

CHITE virioWin TProg\ Dovloids =
R re
LN VEF BT
NS
R /56| DU22FECS| L5 tack [BOODDSEC] -uar 2801 i
|B[=F &) £ 77T 3006 7FFDIADH P o
2] DaViewh | 5] 1A Viewesr (2] 1DAVSEIP | (5] Heuiew | BE Modes | 4 Generalregtees | [5] Tiace | £ CaSiack | ECX| |aF |9

T I EC) var_ghet =0

b 405178 s s o

wb_802f EDI TF e

wb_80267C £8P saved_fp iF 1

o g o A P
{77078 ndd EF 90405210 o
EFL 90068702
_=ioj =]

“NZZFEZC a0
* BO2ZFERD dd
* BO22ZFERN dd
* BO22FERE dd
* BO22FERE dd
* B022FE90 dd
* B022FE9H dd
* BO22FE98 dd
* BA22FEIC dd
* B022FERD dd
* Ba22FERN dd
* Baz2FERS dd
* Baz2FERC dd

_ RO22FERD ;

* BAZZFERY dd
* BO22ZFERE dd
* BO22FERE dd

* BO22FEED dd

ZFTETDIEN ; |}~
#3828188N ;
BTSORSBA ;
BESABOBEN ;
BFSEBDBCh ; HZ
939291980
9796959uN
98949998
IFIEIDITH
BA3A2A1A B
BATAGASARN
ORBARAYABN
ORFAEADRCN

%0
. [BEGIN OF STACK FRAME sub_h0517%. PRESS |
" pozzreRn var_38 a0 08382E1EEN

DRTBGHSENN ; ¢

GBRBARYBSN : ||~

DBFBEBDBCH ;

* BO22FECO dd OCSCZEACBR ; LeT+
" BOZ2FECH var_2h dd 22FECSCHR
* Baz2ECH var_20 gg

OCECACY0mN

i sub_41A610:1oc

WIAZFO

o ————————————————————
R e Pos [isnad (e mooowi0 fieseit kI r

Figure 96: IDA graph view, nonstop loop subfunction text.405208

6.2 Manipulation of CPUID instructions

CPUID is an instruction-level detection method and these kinds of methods are really hard
to detect, as long as in order to trap on every execution of CPUID, instructions should be executed
step by step (which is really slow and almost impossible) or instrument the target program. Using
instrumentation, then anti-instrument techniques might also defeat.

On the subject malware, searching for CPUID occurrences reveals that they are being
called four times in the .text section. Exploring them, reveals that the malware author is using
difference appliances and techniques with them and reuse them by calling the mother functions

several times on his checks.

6.2 Manipulation of CPUID instructions

124

\ idb (msmwr.exe) == %
Fle Edt Jimp m;rch Wiew DebLgoer Cphors Windows Help
I“E‘IG- - II"’l"‘Iﬁl v_‘vXIJOHJLﬁ MR £ f!md‘ﬁHjB‘J}l!J (U] e e | == e
Itk - i X[B~ %~ %ifel*li % |J_]"'€]|f ik +:J o e i< | & 77 .w;',_ﬁ%.;ﬁ.“é:’\-ﬁz
| B @ Ouocal w32 sotugoer \"u* %Jﬂull Sk T i‘ll-ﬂsi
 NNUR s TRIATN T T LN T O OO0 VOO OO ORS00 RN T 0 T | |
Lbrary function Data [l Regular function | Unesplored [l Fstruction Extemal symbsol
(7] Functins window a8 x @ | M ocaurences of: | @ | Cimavews 5 | T ocorences of siesn) | To)ima views D acaurences of: cpud 0 | Mocamencesofimrs 1 | 2 <[v
Function name =
7] sub_401000 225,004 143C 004 OF A2
7] TopLeveExceptonFiter || text:oo41830E sub_414380 004 OF A2 cpuid Bt PUID
L start 1ext:004 14440 sub_41A380 004 0F A2 cpud GetPU D
7] custom_atestt || tr:004 1nasa sub_41A380 0040F A2 cpud JGELCPUD
7] sub_d01260 [| mevert: 76152602 sib_76 152648 0240F A2 cpuid ; GetCPU D
(] sub_d0132C [| mevert: 76152685 stb_76152648 024 0F A2 cpuid 1Bt PUD
Z sub_401362 [[riech: 77178038 Fibl_A_SHALpdate 0530F AZ cpud ;GetcPU D
sub_401330 [77178089 rincl_a_sHaLpdate 0SAOF AZ cpud JEEtCFUD

Figure 97: IDA View, CPUID instructions all occurrences

When CPUID instruction is executed with EAX=0 as input, xor eax, eax brings the same
result, the return value will increase EAX by 1. On the figure 102 the first check CPUID check is
doing this check.

In addition, when CPUID instruction is executed with EAX=1 as input, the return value
describes the processors features. The 31st bit of ECX or EDX on a physical machine will be equal

to 0, but on a guest VM it will equal to 1. On the figure 102 the second check CPUID check is

doing this check.

Users \Win7Pro64'\Downloads \rnsmwr.idb (msmwr.exe) = =]
Fle Edt Jump Search View Debugger Cpbors Windows Heb
IB Al [[%%% (8 s sl=+XID[IB &/ &@)fkﬁfj’illﬂﬁﬂﬂlfj FE|ImEAERAEEE
Ut o ia¥ * ~ ol X || R~ P~ Wi P P P 2] B O "‘llf@ja : | aT |DES| | AR NE A
| B @ Ouocal w32 sotugoer EILSIcAIERLY- (lsiiiil- 6 o 5 IEH"— L2l
 NNUR i TRIARR T T L] l-ll-l AV OO ORS00 R0 RO RATNE O AT 1 0| |
Lbrary function Data [l Regular function | Unesplored [l Fstruction Extemal symbsol
[7] Funcrians window 048 x | O ocoumences of: | [Eimaview-a 51 | W occurences of. siesn TJ10a View-B £ | W occurences of: cpud 1) | ocouvencescimra 0 | @ 4| »
Function name i‘
mm 401000
L] TopLeveRxceptionfiter alineCheckCRUd proc near
7] start pushi H
7] custom_stesit Tl sax
@ an_so120 Ror awx. Zobeuen
(7] sub_40132C push eax
7] sub_401362 L8
(7] sub_401350 (TN
7] sub_401%E xor dx
7t _rorem B Bl
7] sub_401451
Fe i]
e]
va sub_4014AC e inact waa 53 push ehx
7] custom_catsetiirhandedExcepbon SS4lnic Ba: sl co ﬂ
7] sub_401505 aIATDL B BT g ST S e
7] maybe_IPaddresscheckng oA1aIn3 hit B loc-A1470
7l sub_40194D0
(7] sub_d0158F
7] sub_40196C
(7] sub_401B75
7] sub_401B8C I3 E R
7 sub_d01847 _
7] sub_401BCC = L
= e ¥
bl v [E== |
gasianm o4 53 0 o4 20 48 B0 dstdword 482064, 1 ; Logical Inclusive OF
Line 10f 51235 EasiadEs 04 E]
4 Graph orerview s x T
¥V
@
[AB41AIEC
4183 loe A103EG: Lo
[AB41RIEC A4 FE C6 8R dn
[AB41RIEF Bi4 24 67 et oc 41388 § dump it 1)
84143
T
[100.00% [(-348,2) ({115, 323) (00019760 [0041A380: aTimecheckeruid

Figure 98: IDA View, CPUID instructions, using eax = 0 and eax = 1 as parameter

Furthermore, more methods are being used with CPUID instruction. When CPUID

executes with EAX set to 80000000, the processor returns the highest value the processor

Chapter 6. Dynamic code Analysis
125

recognizes for returning extended processor information. The value is returned in the EAX register
and is processor specific.

When CPUID instruction with EAX=0x80000001 as input, requests to Extended Processor
Info and Feature Bits. This returns extended feature flags in EDX and ECX. The EDX’s Bit 4 is a

timestamp counter and Bit 2 is debugging extensions. In the subject malware case, the counter will

be measuring the time in case of breakpoint of debugging is active.

4 10A - C1\Users\WinZPro64\ Dovmloads \rmsmwr kb (msmwr.exe) -|=| =]
Fle Edt Jump Search View Debugger Cplions Windows Help
It e[%% % sl=-+X]D0 GEIZE% O j.hd-d!i__:i L FIAEBDIEAIESE
At X R 'U'i la ;_E.‘J'f fEJ& + Flaad BT |NDES | ARNBL
| & @ O uocal wis2 dtnagger 800 m e o =) S‘\:
AT T ARTANTA NV A ll.llll.l VT I00 O ORO RO 0 I OO AOE RRED EE 0 |
Library function Data [l Regular function | Unesplored [l rstructon Extemal symbol
(] Funcions window 08 x | 9 ocourences o | @ | Flmaviewa £ | ¥ ocourences of: seen Tima vews 0| M ocourences of: coud (| Mocarencescfimta 0 | @ <[»
Funcion neme f‘ E=s v
] sub 401000 BusiaeT
7] TopLeveExceptonFiter susiaer loc_atna7a:
7 start Basinsrd os UL 8D 64 20 49 Gava d dvord_482064.
custom_atexit Baainazn pod o ozal Tine
34 401760 basinazy .
sub_40132C
51 401362

sub_401350
401%EE
401430
401451
401453
401450
_4014AC
custem catSetlrnancledEception (60410453 094 B3 01 58 BA 81 nou cax. GReaaanih

S NEEEEEEER

Line 10f 51235

i Graph overview o4& x —
asatE
loc_41R4SE: Logical AKD
DadindE 94 §1 E2 6A 4R @0 49 5 and odx. 1BABERAR

@841ndc4 Ba4 74 80 3 short loc 41478 § Jump iF Zers <ZF-1

¥
| [@ e b
|100.008 [(-442, 1077 [(1079, 162) (00019945 [0041445: aTimeCheckeFUidi Local TimeCheckeRUid

Figure 99: IDA View, CPUID instructions, using eax = 0x80000000 and eax = 0x80000001 as parameter

NOP-ing the CPUID instructions is the again the answer for most of the cases. Defeating
results that come from asm instruction level, seems to be impossible but there is always a solution.
To change the CPUID results of the target virtual machine from host perspective, is possible via
the VMware’s configuration file .vmx, that gives the host machine the opportunity to modify
CPUID and CPU features. This is because every time your virtual machine fetches a CPUID
instruction and wants to execute it, a VM-Exit happens and now hypervisor passes the execution

to VMM.

6.2 Manipulation of CPUID instructions
126

At the .vmx configuration file, the following line should be added, to counter the figure’s

106 technique. Keep in mind to put the line at the end of the file when the VM is not running.

cpuid. l.eax="0---i=---1====immmmlmmmmmmmlamm o
Table 6: VMX configuration file line addition CPUID and EAX manipulation

Also at the .vmx configuration file, the following line should be added, to counter the
figure’s 107 technique. Keep in mind to put the line at the end of the file when the VM is not

running.

cpuid.80000001.edx="0000:0000:0000:0000:0000:0000:0000:0000"
Table 7: VMX configuration file line addition CPUID and EDX manipulation

Anti-VM detection with python in IDA Pro

The python script that it is attached on Appendix I will scan the assembly code in IDA-
Pro and highlight with green color the instructions corresponding to Anti-VM techniques. All the
techniques have been already mentioned in the previous section of Static code Analysis/Anti-
VMware. By using the script, there are several instructions that are being searched in the binary,
such as SGDT, SLDT, SMSW, STR, IN and CPUID.

On the following two figures, the CPUID instruction that we have already analyzed, it is

highlighted with green color.

Chapter 6. Dynamic code Analysis

127

\ &) x|
Fie Edt mch View DebLGoer Cpbors Windows
e H\u-w-\u-m 08 [3 ul=* x\m [Tk Y @:m@ai\uma aralEpinol=EzleEE
Ilddf EAT 2 B R0 mﬁ*sm:aﬁ/lﬂm@ﬂ\uf bl e thtasBRDDSS | ARNE L
1| @ Ouocal wis2 detugger %l 8 2D er|E i H:Il"i’HE '“\DIL'{IE
R L TR I 00 0 T RUAE R TN A RO 1 W (O 0
Lbrary function Data [l Regular function | Unesplored [l Fstruction Extemal symbsol
(7] Functons window 94 x ERED ERIE]) | Cioaviews) | Wocourencesof sieep [TmAvews B | Mocaurences of: e () | T ocumencas ofs scasn [| B <0
@ sb 4?12:0 il Log_a1naan: i Logical AKD
7 TopLevekxceptorFiter it MERT o R Moe 418978 ¢ Junp i Mot Zern czrow
7] start.
7] custom_stesdr —
7] sub_401250
7] sub_40132C
7 sub_401362 73 604 81 8D 64 20 48 B8 loe uwdra dord 422064, " |W.‘ al Inclusive O
%sm 401330 B4 EB 08 e thort Tozal TinChackCRUid : Junp
sub_401EE
(7] sub_401430
7] sub_401451
7] sub_401463 R
7] sub_d01450 (AB41A445 i i o
7) sub 401440 (BB410443 001 15 00 00 b0 80 meu sas. BoGAIN
7] custom_calSettrhandedExcepton UB41A44C A04 3D B BO U8 BB cnp wax, SBUGUBOUR ; Compare Tve Operands
7] sub_401505 m:::?} 884 76 1D e short loo_41A478 ; Jump if Below or Equal (CF=1 1 ZF=1>
7 maybe_lPadcresscheckng
7] sub_40194D
7] sub_d0158F
7] sub_4019€C eax, RBABBAB h
7 sub_d01B76 BA41A450 A1 B5 i Loy ,uﬂ Conpare
‘. lMlMEC 61 78 22 ds 1Mm loc_ﬁqlsa an (SP=1)|
Lne 10f 51235 L
A Graph overview o8 x i]
A8 ons a1 a0 64 20 40 0rgs " R iauora_swancs. 15l
(Batindan ot e e er Nt |
%}aigﬁ alineCheckCPUid endp
200.00% |(-379, 1766) | (1147,310) [0001994k 0041A44A: aTimeCheckCPULd+OA
Figure 100: IDA Pro, graph view, CPUID highlighted green
\ &) x|
Fle Edt ump mch View DebLGoer Cpbors Windows
I Gl e~ ([(& ¥ ul=* x\m [Tk Y aza@ai\umﬁ iITJIJEi!IIJIBDIJEﬁ L]
Ilddf EAT 2 B R0 mﬁ'!la.:ﬂﬁflﬂml,.jmllf BAlde X te|dht s sT|I0SS | ARNDL
1| @ Ouocal wis2 detugger %l 8 2D er|E i H:Il"i’HE S0y 8
R LT 00 0 T RUAEE R TN AR RN 1 W (N 0

Lbrary function Data [l Regular function | Unesplored [l Fstruction Extemal symbsol

[71 Functions window 0ax g o 0 | Eoavewso | wummmﬂ TJmaviews O | M occurences of: rac (1 | Mocumencesofiscash [0 | M 4[»
= 5 BEG 5T =l * Fush Flags Feglstor onto the Stack
Function name :I B4 5C uzhi i Push Flags Regiater anto the Stack
@ sub_401000 h1 89 c2 o0 odx, sax
7 evel: il 04 35 BB @B 20 88 xor wax. 2BABBAN i Logical Exclusiue OR
2] TopLevelxceptoniter A and 56 push ax
7] start. A3BB pouf 3 ae Register
(7] custom_stexit ggsiadic ana 3C pushf F onto the Stack
1 pop eax
04 30 opr Flags Register
7] ab_s0i220 ALk ond 11 oo [S
(7] sub_40132C BHR A9 BR OR 28 @@ test
0 B ocret.
) ab_01%632 B@41A3CH ARG BF 84 5 08 68 @A it 1047
(7] sub_401350 T
7] sub_401EE
(7] sub_401430
7] sub_401451 35. wax
7] sub_d01463 o
7] sub_401430 Toc_ainize
7] sub_d0144C
7] custom_calsetinhandledExxcepbon
7] sub_401505
7 maybe_lPadcresscheckng
7] sub_40194D |@B41RIER @1 Fo Co 81 dh. 1 Logical Conpare
7 sub_40198F (BouindEy o01 74 07 K Shart loc_A1A3EC 5 Jiny Yo (ZP=1>
7] sub_4019€C T
(7] sub_401876 %
‘ v amo)
[BB41RIES BE4 83 BD 64 20 48 BB+ dsidword 482864, 1 ; Logical Inclusive ON|
Lne 1051235 BB41AIEE Bed 61 or s tduord.. el I
| s Graph overvisw o8 x J .
AIEC loe_41A3EC i Logical Compare
BadinaEC pad £ o 60 tent |k, Beh
Ba4iNIET Ba4 7 b Share loc 41378 ; Junp if Zere CZF-13
Ba41AIER

O041A3CF: aTimecheckCEULd+1E

|100.008 | {-346,72) |(1011,252] |000197CF
7] utput window D# x
CamieY e reanced ors 1 3's ok -
R [

Caching *Occurrences of : I
Hunbor of potontial Anti-un inatRictions: 6

Figure 101: IDA Pro, graph view, CPUID highlighted green2

Except the four CPUID instructions, two more IN instruction have been characterized as
potentially Anti-VM technique and been highlighted as red. On the following two figures, the
command IN EAX is the suspicious one but unfortunately there are a lot of bad disassembly code

as prefix. As a result, the functionality of the showed assembly cannot be clarified.

6.3 Interrupts on Debugging

128

Fle Edt Jump Search View Debugosr Cphors Wndows Help
u«uU--»-uﬁmmm 3 ull=+ XD IEEE]IE®E
Ukt ot o i X P % P % P e [B 8 R S EET AT

i\muﬁlﬂﬂﬂﬂuj\]mﬂ]ﬂ’] =Rl
BTy T

U @ O fuocal wisz degger EEEEELY- EEE T S = =T -fua
A 5 OO AT SO O OO O O OO O =
.—| Library function Data [l Regular function | Unesplored [l Instructon Extemal symbol
7 Functions window o = = || 0w (1| % Program Segmentaton 1 | Tmaviews © | M Ocurrences of: skep (1 (Tmaviews £ | M Ocurrences of rotc (| 9% Ocourrencas of:scash | 0 <[b
Tne esd ; =
Functin neme I Feord per Tebp-aSh)'5 Tndirect Far Jump Al
A sub_401000 B
7] TopLeveEscaptionFilte ﬂa‘n
(7] start or bh. 3
7] custom _atexdt dnp dword pte Lebx]
7] sub_4012E0 €
7 sub_40132C pusha
(] sub_01362 bope
7] sub_401390 am a6h
7] sub_4013EE
7] sub_401430 loc_481598:
7 sub_d01451 dnp dword ptr [ebxl ©
7] sub_401463 H
T 28 " . EEEERESEN
] sub_d01450 ot SEn 3 Borland languages - Flaating Point snulation “shortcut™ call
7) sb_4014AC dne odx Incre: t by 1
7] austom_calSetUnhandedException a0 38 mou ecx, JERNENNDN e
7 1401505 [S Tering
7] maybe_IPadcresscheckng am 74k st AR after Muleiply
- 48 1B mou cax, BDB4BZGAAR
7] sub_40194D cax
7] sub_40198F
7] sub_d019€C ;
v short loc_ 481589 ; ZPe1>
7) sub_d0188C nal Adjust AL after Addition
7] sub_d01847
- loc_4B1589: § GOUE KEEF: .toxt:BO4GI1SHG]
7) sub_4018CC inad I Topue Bytacs> from Port to String
] sub_q016F1 log_4B15B: i CODE X +boxt i BR4E1SCCL)
7] sub_d01C16 % A4 FF ta PP v edx, BFFAAFFA4h .
7 sub_d01C35 o JI° Shiet near per loc 4B1598%L ¢ dunp If Less CSFT-0FY
) sb_d01c8 ont laodu1sc 23 44 5n 0 and sax, lehxsecxwd-37hl ; Logical AND
4 0O000CE2 D0401582: . text 00401582 _’_|
Line 10651235 H “
Figure 102: IDA Pro, text view, IN highlighted red
=] x|

Fie Edt Jump Search View DebLgoer Cphiors Windows Help

u«H\J-w-ummm 2= eX[IDO[IEE & deIUJQEUJ\Jm CIMekalN=RAo]

|t ol ¥ o o XX PR~ P NP P B P P 2 [B 5 X A e el G ACAG r“mU‘I“ IEEEEIEY LYY
||DWDLmﬁa\wmznatu;qg CIEECAEELY: Tl
TR T T 1 __- [RINRTRw e} |
Library function Data [l Regular function | Unesplored [l rstructon Extemal symbol
7 Functons window o8 x| |) Frogram segmentton 1 | (Fma views 0 | T occurrences of: sieep Timavews 0| M occurrences of: retc (1| M ocrurances of: scasb 1 | e <[»
- W Eh &7 now hp. BCISTIIRIR
Functon name :‘ Soeh String
7 sub_401000 retn ro Mear From Procedure =
7] TopLeveEscaptiorFilter '
28 she word pre fesdle ol ; Shif Logical Rigne
7] start] ar oy E’Emsrcwn *Lagical Inclasive
gﬂfwmt Ty Chart mear per loc ARG ; dunp iF Hot Sign (ST
sub_40120
7] sub_40132C
7 sub_401362 yith Reaister
7 sub_d01330 te esil, 1
F b sorer o1 68 4z AD chy b, Ledx-5ZBDFFFEN pith Register
7] sub_401430 —
7 sub_401451 . Shook i < Rgainst Rounds
7] sub_401453 o o Y ¥ ko rands
7wt R
7] sub_4014A A
7] custom _catsetUrhandedException
(7] sub_401505
7] maybe_IPaddresschecking i
65 Fidivr dpord pr Lecxvoh] o Diside Tntoaer T
7] sub_101340 ki ot hear pir loc 4UZBHYL ¢ Juen if F1-0F)
7] sub_40198F
7] sub_d013EC loc_4BZH99: JE XREF: .text:BR4AZRYT1S
- 38 25 86 65 v ss. duard ptr Lebpeiic:
Esmﬂam?s H ki Share e b Ton ARZBAL] | Junp IF Less (SF1-OF)
sub_401B8C
7] sub_401BA7 18 25 g6 g5, loo-102BALE " . - CODE KREE. .Coxt :BO42BF1§
7] sub_d01BCC 1 R+ T R .
Esiﬂmm R T PP i s et
sub_401C16
- s
7 sub_401C35 . i “l" . Sajust AL after Addition
i) noy al. dz:3IRSD79D8H
)5 401048 x e 5b4 29 86 a2 B3 an Sk SRR Lgica oo
‘ v ' O0M02E74: . Gext: 00402574 -
Lre 10f51235 »

Figure 103: IDA Pro, text view, IN highlighted red2

6.3 Interrupts on Debugging

During the dynamic analysis of the code, some interrupts have been revealed, that were not
added breakpoints. So, an INT 3 technique was detected. INT 3 is the software interrupt used by
debuggers to temporarily replace an instruction in a running program and to call the debug

exception handler. On other words it is a basic mechanism to set a breakpoint. The opcode for INT

Chapter 6. Dynamic code Analysis
129

3 is 0xCC. Whenever you use a debugger to set a breakpoint, it modifies the code by inserting a
0xCC. In addition to the specific INT 3 instruction, an INT immediate can set any interrupt,
including 3 (immediate can be a register, such as EAX). The INT immediate instruction uses two
opcodes: 0xCD value.

On the subject malware, four occurrences were found with the 0xCC opcode. On the

following figure the traps of the debugger are being presented.

4 10A - C1\Users\WinZPro64\ Dovmloads \rmsmwr b (rmsmwr.exe) == x|
Fle Edt Jump Search View Debugoer Cpbors Windows Help

It El=~ -*'ll"’u"‘l&v_‘?XJJO\JJEﬁ_": : x‘umdﬁﬂﬂﬂmuj ZEIDOIEF @B

EGEAE 3" P LGRS el =N e Sl R A N E A =AG: I_“ JO = LY & F:

JDWDW\’::’ :lj“ﬂil 7|1l @ #* 8| & oh e .'J!-HQ

A 5 T [T T TR TN O R O OO O =

Lbrary function Data [l Regular function | Unewplorsd [l Instructon Extermal symbol

(7 Functions windaw o8 x g | ccrurences of: Gatprocadrecs () | 5] Frogram Segmentaton 1 | (oA vew-s 0 | P octurmences of: siep (1 | TEiDa views T occurences of. T3 0 | 9 Ocrurreces of: contaner |Jﬂ
Function name 7

[swb_401000 4 aybe_C 02C 50

£ TopLeveEsceplionfiter text004 1BIEA maybe_GlobaketAtombames 02C 30 nep + Thap ko Debugger - Int 3

] start || .text:004188C custom_MutexaHandks 03 %0 nop 173 to debugger - Int 3

Z“":mf,'\‘j"f;f"t text:004 1BAF7 custom_MutexBHandies 03C 30 nep + trap to debugger - int 3

Figure 104: IDA Pro view, INT 3 occurrences

If a 0xCC byte is found, it knows that a debugger is present. This technique can be
overcome by using hardware breakpoints instead of software breakpoints or manually by
modifying the execution path with the debugger at runtime. On the following screenshot, we

manually NOP-ed out the INT 3 fake instruction.

4 IDA - C:'\Users\Win7Pro64\Downloads rnsmwridb (msmwr.exe)

=le) x|

Fie Edt Jump Search View DebLgoer Cphiors Windows Help

I Bler=-|®%h% 5 s ul=-+XID0 BT hﬁﬂhﬁdﬁ\\jﬂ 7] 63 | %)| (0 57 = 0 i R
| kol it o~ o i X[B~ B~ W P P S 2 B 2 08 'fllf@ja +E CUTINOES | &880 584
| » O Ofiocarwrszoongge (%@ |3 D Be| 550 | @R e Sk £

Library function Data [l Regular function | Unesplored [l rstructon Extemal symbol

AV T0 N O S0 R0 RN 11 T |

|7 Functions window o8 x) | corurences o GetProcadiress

3

Tl view-8 £1 ‘ M ccurrsnces of: contaner M Cccursnces of: BBACABEF M

[Ewa
simEn

lBosimEd vzc 4y ac 24 e
PBATRIER b2C 49 7C 24 B4
jpodiies vic ap i Co
PALRIFS 02C 49

sub_014AC BaALHIES GAC Eb WE 89 o o

7
¥al
e
7
¥al
|
7] custom_catSetUnhandledException oo
7
7
|
7]
e
7
vl

sb_d01505 lBB41BABL BZC B CB
raybe_IPaddresschecking BB410AB3

sub_4019AD T
sub_40198F L [}

B841BAGG 62G 11 DI wor ek, ehx 0 Ba418A3C .
B841BABE 62C 8D 14 37 lea cde. Ledisesdl | L 83318430 loc_41BA3C i Logieal Exe
@641 B85 wor ebx, ehx

4 lea edivesi)
B841BA43 02C EB C6 dmp shoit loc_41BABE
B041 B4
8041 BA43 naybe_GlobalGettonManed endp

Line 10f 51235

Figure 105: IDA Pro graph view, INT 3 trap to debugger NOP-ed

6.4 Thwarting Stack-Frame Analysis
130

6.4 Thwarting Stack-Frame Analysis

Advanced disassemblers can analyze the instructions in a function to deduce the
construction of its stack frame, which allows them to display the local variables and parameters
relevant to the function. This information is extremely valuable to a malware analyst, as it allows
for the analysis of a single function at one time, and enables the analyst to better understand its
inputs, outputs, and construction.

However, analyzing a function to determine the construction of its stack frame is not an
exact science. As with many other facets of disassembly, the algorithms used to determine the
construction of the stack frame must make certain assumptions and guesses that are reasonable but
can usually be exploited by a knowledgeable malware author.

The call and jmp instructions are not the only instructions to transfer control within a
program. The counterpart to the call instruction is retn. The call instruction acts just like the jmp
instruction, except it pushes a return pointer on the stack. The return point will be the memory
address immediately following the end of the call instruction itself.

As call is a combination of jmp and push, retn is a combination of pop and jmp. The retn
instruction pops the value from the top of the stack and jumps to it. It is typically used to return
from a function call, but there is no architectural reason that it can’t be used for general flow
control.

When the retn instruction is used in ways other than to return from a function call, the most
disassemblers are left in the dark. The most obvious result of this technique is that the disassembler
does not show any code cross-reference to the target being jumped to. Another key benefit of this

technique is that the disassembler will prematurely terminate the function.

Chapter 6. Dynamic code Analysis
131

On the following figure a short jump is taken place, with the return pointer being abusive.

Specifically, there is a hidden code following if we switch to text mode in IDA.

4, IDA - Cr\Users \Win7Pro6 ' Downloads rrismwr idb

e =1=]x|
wmmmpmnmwmmmp)

7% Gl v o [8 % [8| 3 | salll = + X[& @@ & %] = 3 SNCELEY] el sl =R]

|k ok F o X PR J-n\. IQ"JF-.-A ECERf @b Al Sl =S A Y E T

|| & @ O fLocal winaz detugger 8O TE|)| @ E|Hcke
NN 5 OMREAEN T A T II-IIIII- VA0 N OO OO M OO M 0 O 0 0 =
Library function Data [l Regular function | Unesplored [l Irstruction Extarnal symbol
(7] Funcions windaw 08 x [Foreapors 1 | W | & erogam | | @ cccurrences of: sken Cimaviews O | M occumences of: 7 3 1 | W occurrerces of: conearer 0 | 4] ¢
Functon rame E| TR o in3d"
7] sub_d01000 [Ba2ge522
7] Top eveExceplionFiter

-0 B SF-0F)

1‘1‘] | ‘\ NNNNENSREEEE

- as
= : g
it 28 4 2 R e e I
;‘u 401505 38 B3 18 i M
e L P T et s
i |

Figure 106: IDA Pro, graph view, sp-analysis fail return pointer abuse

—|=| x|
EE IR L Y ES INEEEE Y= 1 | L‘E!..A—I_‘Iﬂilll =il
1| ot o i ¥ ~ o i 3| PR ~ 70 ~ 3l * B8 G [F @]l S R ||) e T I IEY ET°r
| B @ B [iocsl wina2 detugger =1|*) @ ew | 5] 67| | G0+ B 6 o e | | 0
* N MR T _-II-IIIII- VIO O OO N OO M 0 Y 0 0 |

Lirary furction Data [Requisr function || Urespiorect [Instructin Extarnal symbal

(7] Functions wirdaw 08 x (Flareaporss 0 | W | (& eragram | e view-a (0 | O ocourerces of: sken (Tima views 0 | M oceurrences of T3 | T Cecurrerces of: contarer (1 | 4| *
Function name B

7] si_d01326

ted.
- Check whare the EBP address is lsading for the jump and nop the west.

tom_calSetUnhancedException
.1; 505]
maybe_IPadaresscheckng aadamses 02C ©1
.m 401940
af -ﬂ:

1 I‘l ‘I“\"i‘l‘l“ﬁ\“\ e | | ‘l“\

i Inerement by i
b mnua

Figure 107: IDA Pro, graph view, sp-analysis fail return pointer abuse2

In order to resolve this sp-analysis fail error and disassemble the assembly correctly the

EBP address should be followed from the jump and then the rest of the code should be NOP-ed.

6.5 Escaping the control of debuggers by Sleeping

One of the simplest ways to escape from the control of a debugger is for a process to
execute another copy of itself. Typically, the process will use a synchronization object, such as a
mutex, to prevent being repeated infinitely. The first process will create the mutex, and then

execute the copy of the process. The second process will not be under the debugger's control, even

6.5 Escaping the control of debuggers by Sleeping
132

if the first process was. The second process will also know that it is the copy since the mutex will
exist.

On the following figure, there are several occurrences where the sleep function is messing,

but actually the call of the function is being made at the addresses 0042222E, 0041ADOB and

0041B6A7.

& 10A - C:\Users\WinZPro64\ Downloads rmsmwr.idb (msmwr.exe) = x|
Fle Edt Jump Seach View Debugger Cpliors Windows Heb
J‘Fi\J“'"‘II""-"I'&&»‘,—-PXJJQ\J sjob- i ol by inr—:d’ﬁlljﬁﬂu_‘i ARERBIEAIREE
oo ¥ oF - # ud X[~ P~ Bofa Pl] M= j*llf'b .“-' > 16| T JTEeZ|| AR NS A
Il ' @ B fuocal win3z cetugger \%c.' 3 LY - dieafeniilc o w LB
* NN 5 VAN T 1 LU -IIII V0TI OO OO AR OO 1 OO |
Lbrary function Data [l Regular function | Unesplored [l instructon Extemal symbol
(7] Functions window 0 8 % [Wareakports] | Wocmencssar: & | [Elmavewa D occurrences of seep)| [10a viewrd £ | [DMexvew2 [| & Lstofprobiems 1 | (0lHexviewa 00 ¢[#]
Functon name E| -
[sub_401000 t D1C EB 34 96 00 00 s
7] TopLeveExceptionFiter text004 1B6AT E Procedre
£ start. |ext00422210 custom_Skep_and_InteriockedExchange custom_Sleep_and_InteriockedEx wangeprpc nea
Fl text00422227 custom_Skep_and_InterkockedErchiange lec_422227: : CODE XREF: custom _Skeep_and_interlockedExchange+ 2F
ext00422236 custom_Skeep_and_InterockedExchiange + CODE XREF: custom_Sleep_and_InterlockedExchange+ 471
text 00422230 custom_Skeep_and_InterockedExchange . CODE XREF: custom_Skeep_and_InterockedExchange+ 131)
00422248 cLstom_Skesp_and_InterockedExchange ; CODE XREF: custom_Skeep_and_interdockedExchange+ 151)
text 00422298 custom_Skep_and_InterockedExrchangs * ; CODE XREF: custom _Slesp_and_interlockedExchange+F1j
text00422284 custom_Skeep_and_InterlockedExxchange loc_422284: + CODE XREF: custom_Sleep_and_InterlockedExchange+ 541
text 00422207 custom_Skep_and_InterockedExchange custom_Slesp_and_nteriockedExchange endp
ext:00422300 maybe_nterdockedExchangeacqure ; DATA YREF: custom _Skep_snd_InterbckedExchange+ 7470
teRbi004Z2365 sub_422350 O1C EB A6 FE FF FF cal custom_Skesp_and_nterlockedExchangs ; Cal Frocedrs
text00422424 sub_422410 0OC EBE7FD FFFF cal custom_Siesp_and_InteriockecExchange ; Cal Procedure
texti00422765 sub_4z26F0 02T E8 A FAFE FF cal custom_Siesp_and_nterinckecExchange ; Cal Procedure
custofn_catSetUnhandedException 1000422702 sib_4226F0 D2C EB 33 FA FF FF cal custom _Sieep_and_InteriockedExchange ; Cal Procedure
sub_401505 1EREI00424 344 Slesp ;v _stdcal SkepDWORD dwillseconds)
sub 401884 brss 00482400 0000 0000 Target a0 : DATA ¥REF: custom_Skeep_and_InterlockedExchange+61r
sub_40194D bss:00482420 00 00 00 00 09 00+ + DATA XREF: custom_Sleep_and_IinterlockedExchange+ 5610
sub_40198F s 00482838 00 00 00 00 00 00+ - DATA XREF: cListom_Skeép_and_interdocksdExchange+£510
sub_d0196C Hata:004833068 s vk _stdcal SkeepWCRD dwiillsecons)
sub_401B876 mevert: 7614 11CC 11356C 76 off_7614110C dd offset kernabase_Shep
sub_401B5C msvert 76 147FAL F 7IGCESES T0+ a_skeep b _skep'0
7] sub_4018A7 svert: 76.19299F mevert_skep
7] sub_d01BCC = | |lkemei3z: 76520218 8018 77 off 76520218 dd offeet ndl_RiSlespCondiionyanablesr v
b LH kemel32:7652021C BIFIETI ot H5W2IC dd offset ridl_RitSleepConditicnvariableCs =
Lie 1of 51235 Une Lof 74

Figure 108: IDA View, sleep function all occurrences

It is quite common to see the use of the kernel32.Sleep() function, instead of the
kernel32. WaitForSingleObject() function, but this introduces a race condition. The problem occurs
when there is CPU-intensive activity at the time of execution. This could be because of intentional

delays in the second process.

Chapter 6. Dynamic code Analysis
133

& 1DA - C:\Users\Win7Prob'\Downloads \rnsmuwr idb (rmsmwr.exe) _|=] %]

Fle Edt Lmp Search View Debugger Opfions Windaows Hep

=Rl als wi-+ XD T |EReooAcHE | FENZEA0|FE|EEE

1t ot 2 o > ol XU B P~ ol P Bl P B AU B DS X £ Bk [© | g i (4 T U 0 2 i W

| P @ 0 tocel winsz debugger EETRIERE AN T 2 i EEE LA

J R 5 TR O W 4R 00 0 000 T 00 0Ot - |

Lbrary furcion Date [l Regular function | Unexplored Il Instruction Exterral symbol

7] Functiors whdow 08 x| Fuekporsll | Mo el L DpaveraB | Mowwrmnmsotisemp [| Soavews | Sleevews o | @ustorprobems | Slovess O b
Function rame il

T T T W T

S ol o (o B B S S A
BEEEZEER

sb_du1aAC
7 custom_calSetinhandedException
7 s.b_401505
7 sb_d015EA
‘T 5.b 40190,

Line 1 of 51235
£ Graph orenvew

4.00% (-2, 5327 (1383, 308) 0001113 [004 L4513+ maybe_ Tnbarlockeds

Figure 109: IDA View, sleep function in Interlockedincrement thread mutex

On the following figure, the parameter of the function is a double word integer that gives the input

of time sleep in milliseconds.

4 1DA - Ci\Users\Win7Pro64\Dowmio mwr idb (rmsmwr exe) =15 x|
Fie Edt Jmp Search View Debugger Wndows Hep
[Saler=-[%%8(83 | ul-+X @000 I0Es PEAGEFREDNEZE DD =R leDE

T

[k ok o~ & b X[| B~ P21~ % 21 P 2 0 | B 03 R F @ Bt i TINOES AR S

| > @ Ofcaiwrazoonge S]|f0e | 2 D Boi|[35
: [' :
Leeary functon Data Il Reguiar function 1 Unexplored [l Instructon Exteral symbol

7] Functions window 08 x g 0| % of: 0|2 (Tmavews 0 | Woctursnces ofi seep (1 | Tiioavews 1 | [Obexvew2 [| & Lstofprobsms 1 | THexview 1 4|
Function rame g =
3 sub_401000

7 TopLeveExceptionFiter

7] sub_d01450
7] sub_4014AC
7] custom_calsetix
7] sub_401505
(7] sub_d018EA
‘7 sub 4019AD

Line 10f 51235

nds>

4 Graph overview] T CODE XREP: maybe__Interlockedincronant +531p|
i Sub 41B6SCraBly -

Jap ds:_inp Sleep : Indirece Near Jusp

[51.20% [(52,219] [{1058, 344) '0001AAAF [004186A7: sub_41B65¢+53

Figure 110: IDA View, sleep function millisecond parameter

6.6 Anti-analysis technique terminating the process
exit Function

In result of the above mentioned techniques, the malware author terminates the process of
the malware, in case of detection of VME, debugging presence, execution manipulation, any false

validation of the time and the IP address of a specific subnet.

6.6 Anti-analysis technique terminating the process
134

On the following figure, the list of exit function occurrences is being presented.

— =l]
v i [1 TP e TR
s 1l e =
A=A]
[T] 1 f =
ERN o ~ e o T Timnvews T ccirrerces o st B3| % ocrmene o e |0 4] %]
|

Figure 111: IDA View, exit function all occurrences

In addition, a custom function seems to be written by the malware author, that also
terminated the execution of the binary. In the following figure, the address .text:0042454D 1is
completely unlinked and without references. It is assumed that this function is also dynamically

being called during the execution of the malware, so it should be an exit after a sophisticated check.

R 1DA - C:\Users \Win7Prob4\ Downloads \rsmwridb (msmwr.exe) == x|
Fle Edt Jump Search View Debugger Cpliors Windows Heb i i i i

IRl e~=*-[%%% 8 3 w/l=-+XTOIFEE[ITETR ODASAE 1w mE|l =& @S E

ot ol i o* o X[P S PR P B Y| B S R B el e e # LP2s | ARREA

| » @ Ofoiwrozdtugeer =]|% 2| 8 O Boem | G160 3§ <[62 08 &

* NVRHRER 1 URMAREAA YT AR ST O O 1 AU OO RO 0 R O AT R 0 T |
| Lbraryfuncton Data [l Regular function | Unesplored [l Instructon Extermal symbol

7] Functions window O & X flareskports [0 | T Ocrumences of | 2 Frogram | Eimaview-a 51| W ocourences of; siee T views B | Wocaurences of cpued 1 | Momurencesorinrs 01 | @ ¢[v]
Function name E

7] sub_401000

7 TopLeveExceptionFiter

@88 55

aBd 89 5
4543 684 83 EC 18
1546 A1C C7 B4 24

custom_cabetrhandedexcaption
7] sub_401505

INNHMENEHENSNEEE

- i @42 454D

7] sub_40194D agiisay custonexied Codei_Failuro om dp
7] subs_40198F 9942 454D

7] sub_40196C

7] sub_40 187!

Figure 112: IDA graph mode, custom exit function

abort Function

Nevertheless, except the common exit function, the malware author is using abort function
in order to crash the execution flow. More specifically, the abort does not return control to the
calling process. By default, it checks for an abort signal handler and raises SIGABRT if one is set.

Then abort terminates the current process and return an exit code to the parent process.

Chapter 6. Dynamic code Analysis
135

On the following figures, the abort function is being presented, after conditional jumps,

custom switch cases and indirect call procedures.

-5 x|
mmmmmmwmmm
NI R N R EL EE T I EE R EE NERENEEE]

|ttt - 2 X[|B~ta~Nfe al&j‘_‘l*/H{EI Jn!\llf Aol F e ldhnd TS | ARNRL

I» @O m‘w'ﬁmh&w’ o] |[%ic|l 3 O DT | @E* K| | DY E
NN 1 ORI LT OO OO AV N O SO0 R0 RN T 0 T | |
Library function Da\a.Rnglzﬁlm unesplored [l structon Extemal symbol
7 Functons window o8 x » ol@ 1 | Cimaviews 0 | W ocorencesoftsieep () oA vews £ | M Ocrurences of sxt)| Ocaurrences of: coud (| Sec <[»
Function name fl ST s mms [empeiChiues GG offuse lao 4195
_— 64 24 44 mou [espebChruar 281, &
7] sub_401000 d444c Tea sax, 5;;,;5::;'\,,.- i Load Effective Address
7] TopLevexceptonfiter AC70 60 0 call mashe Tlaferbalue 5 Coll Procedure
2 start D 4C 20 48 @hecnp dsthyce 48204,
(7] custom _stesit #5 FL 68 88 89 joz loc_ 41335
(7] sub_4012E0 :
7 sub_40132C ¥
(7] sub_d01362 G
Zaeo G L ot o T ‘ 3
e v : asiea Somrr o . e i
) sub_401430 3330 § Junp 3f Zewn (ZF-1> B@aTII5F BeC B1 cO 48 .m Sax SN 5 ad i
7 s soren e T R Ry]
omou capshCheCount 1, 1Dh : Count H
7] sub_401463 [oapeiChusizel. i !
7] sub_401430
7] sub_d0144C
7] custorn _catseturhandedExcepbon ault, ¢ checks for an abore signal handler
%smg}ﬂzg‘t o a2 § ThonShon: Teiminaees fe clrrent
m s § Drocess and recurns an exit
Z!sn.?amean " it f €0 Ehe pArent process.
7] sub_40198F
(7] sub_d01%€C ¥ L]
2 ab_s0i87s . h_AB6T70 T ol
(7] sub_401B8C e i Ca
31 loc_a1330: LespstChavar 401, OFFF
3 a comar (00413300 06c A1 64 33 4B 00 may o eax. dst o it
7 sub_s016cC - Sbai3n soc 03 Ca 3 s
= . len4133C2 BoC 87 44 24 BC = :“.,mm.m ilel, eax ; File
) Ll_l [AR4133C6 B6C C7 44 24 B8 2D PAsmou sptachicount 1. T0n m....r
[AP4133CE B6C G7 44 34 04 i p8emou 5
Line 10f 51235
i!:l 1 urite
dh Graph overview =)) 2 B6C EB D dnp short loe_ 413385 ; Jump
8413362
|100.00% 11294, 350} | (809, 397) 00012762 00413382 sub_&13228+15A
=1=lx|

Fle Edt Lmp Search ¥iew Debugger Options Windows Hep
IR T IR =1k
Uuﬂﬂm';"tdxljﬂvm %3 %l P11 ok P 2 A B C
|| » @ O [tocal Winz debugger eSS
J-_ ma

Lerary frcoon Dzt [l Reguiar function | uneiplored Il nstruction Extermal symbol

EEL LT EREEREECEE EREEE
RUFBote BRI ==Y LYY

7] Fanctions wredow D 8 % | Fuowports | | Wocomences of oefrovseiress | | (5 Program Ssmentaen | | Cimavews | | owurences ofislep | Smaviewe 0| 0 et | | ey
Furction nams = TT 3 5
(£ sb_401000 uow
7 TeplevesceptionFiter guau HEd iR T Loc_swia7c: -
7 start ik nexw S D oo cmmses
4
L] ¥
Eu wEE e g T A T
.
(X3 (E
1o saiass: abart doss oot retura control to the calling process.
caxr’ " ab S A | 10171 (11 11 G
e Tt T a3 w1 83 & 1c
7] custom_calSetnharcedException R A R R e
7 wb_d01505 . £ LT Sanent procons.
[maybe_JParesscracking we 368
F ab_401940
(7] sb_40156F

Figure 114: IDA graph mode, conditional jump abort function

6.6 Anti-analysis technique terminating the process
136

Fle Edt Jump Search view

Opl
Ut R[] e~ [f B[b] =+ X[|Dal

Uﬁnnr.r..vvfnsxljnvmvmu.ammmm1m—n33ﬂf\au. =
I - | e — =R |Ht1l’#‘uﬂn3:€‘_ﬂ5
H:-_ me (W

rary furcton Data [l Regular function || Unesplored [Tetruction External syrmbol

e} =

7] Functions wradow D 8 x| Fosspans | ® olw | Timaviews 0 | ocurenesorisieen (1 iaviers £ | M ocarercesaron | | O ocasrencesatcoud | e 4|6]
Furction rame - [FRIAETHEE B3C BF &1 av on 0a e I To<_w0e

i i 53¢
& s.b_401000 .
2 et evebsespnonpiter

E

}

cuskom_atests
k_a012E0
ab_A01326
b 401362
b 401390

EFEFETE

EEE] “I\I\IHMF«

i naTaises siGAGNI 1f ome ia Serr
i aiens Limimiar i anra

| reradt®ing Falarns an xit ceds

= O

_AC1EA7

aniBCe

Fle Edt Jump Search View Debugger Oplions Windows Hep

IEhle~-s-[amtas -+ Xz EesEEk oAz w R =wlrl=EE]EDE

1t it & o = ekl X[PR~ Pl = 8 Pl Pl Pl Pl P A [B S £ (B L A et o 1l o o | 2 U100 2 S0 2 B

I B 0 63 fuocal winsz debugger EEEIEEL Y- AT & G =l A

BT 111111110 1Ty | N 1110 L0 T LT
Lrary furcticn Data Ml Regular function | Lhesplored B Tnetruction External symbel

7] Functions widow D & | [Feewpors | | M ocarences on cevrocdiass (| [rogamssqmenmanen | Soavews | | omumencsscfisemy | imavewe | Qomumercesctime | Qocarrecssorcps | % 4[]

aub_an13ac
sb_401362
2401390
sLb_a01FE
b 401430
aub_401451
b 401463 £

EEEERETTEE

4
:
H

.

[|
e 1,50 the colling process
T
Lie Lof 51238 £ 3
| g v o8 x CET
R, IR 2z 0 3 00 o0 o s TS oty | 0 T s
— e 26 3 05 o 1 Tim‘s Complemens Meputisn
e

Users \Win s
Fle Edt Jump Search View Debugoer Opbors Windows Help

I2tR[[e~=-[amaa 3 w-+X[@e|ZoE|ZEx 6 hodd| @ axm'mﬂmmm][l
|t ot ¥ F > ok X B~ P~ B P P % P 2 AU B B Mufm.s\ + 2 i 1 i 4 28

|l » @ B Local wrz2 L Sic AR Jieviedile O o ol LIEER AR
: I L (111110 A T

Ubrary functon Data Bl Reguiar function | Unexpiored Bl instnucton Extemal symbol
|7 Functions window o8 x @ o|l® ola& 5 | Dimavews o | Mocamencesofiseep 0 Dioavews & | R el | M o 0 | e >

=

[sub_401000
(7] TopLeveExcepticnFiter
(7] start
7] custom_atexit
7] sub_d01280
(7] sub_d0132C
7 sub_d01362
sub_401390
7 sub_401%EE
7] sub_d01430
(7] sub_d01451
7] sub_401463

BNNE

1F8 608
ana
asc

wse

asc

(3

as¢

05C
a5 48] ; Load Effective Address
85C 89 ax i LPUOID

Ba40821F 6sC b0 TlafatUalus °© Call Procedure

feapeSChevar 3C)

3:3535}3:#

loc 48236 ; abort does not return control to the calling pro
eall ube

i Thon abort termin
Process and return:
to the parent proce:

on
= the cur
an exit co

Lne 10f51235
| s Graph overview o8 x|

0

sub_48B1P8 ondp

Figure 117: IDA graph mode, TLS check abort function

Chapter 6. Dynamic code Analysis
137

6.7 Antivirus Evasion
In order to achieve evasion from some antivirus software using this methodology, the
following steps need to be implemented:
1. Allocate a location to place the TLS Directory structure defined as
_IMAGE TLS DIRECTORY32.
2. Fill in the addresses for callback functions (our supposed constructors).
3. Allocate a location to place the code for the TLS callback functions.
4. Write code that uninstalls the initial hooks from the EP or ZwTestAlert.

5. Modify the PE Header’s DataDirectory to use the newly created TLS Directory.

ZwTestAlert

The above ZwTestAlert function tests whether the current thread has been alerted (and
clears the alerted flag). It also enables the delivery of queued wuser APCs.
NextDisableThreadLibraryCalls disables the DLL THREAD ATTACH and
DLL THREAD DETACH notifications for the DLL. By disabling the notifications, the DLL
initialization code is not paged in because a thread is created or deleted, thus reducing the size of
the application’s working code set. This use of DisableThreadLibraryCalls increases invisibility

for the injected DLL.

6.8 Anti-Dump Trick "Header Erase"
The Anti-Dump trick is erasing the header of the process running, so the dumping

techniques will fail, as long as, no header to identify exists, used as anti-reversing trick.

6.8 Anti-Dump Trick "Header Erase"
138

More specifically, we start calling the function "GetModuleHandleA", using the parameter
0, in order to handle the same process. After that, using the function "VirtualProtect" we can make
the header of a file writable. Keep in mind that headers of files are usually read-only, because the
header exists on the memory region. In continuous, with XORing the registers, the memory is
being filled with zero bytes.

7

Chapter 7. Conclusion
139

7. Conclusion
In conclusion the procedure of the code decryption during runtime will be presented, with

some specific binary’s addresses, where these actions are taken place. From Surface Analysis and
the examination of the binary’s strings, they are for sure encrypted and obfuscated. During the
runtime, the used ones are dynamically being decrypted.
7.1 Encryption and Decryption procedure

Large parts of the subject malware binary’s code are encrypted. It is already presented that
the disassembler either fails to disassembly due to anti-disassembly techniques but also due to
encrypted parts of code inside the binary. Some of them, they are dynamically being loaded,
because as if figured out on the surface analysis, the .text section is writable — not read only. The
first part of binary that is being detected as encrypted is on the .text:402B25 address, where it starts
with the value Ox1111111111111111.

At start the infected machine should meet some circumstances. Except the specific time
range of execution, a normal machine must be assigned in a specific subnet with a specific IP
address. On the following screen at the binary’s address .text:00405011, the call of API function

gethostbyname is detected.

7.1 Encryption and Decryption procedure

140

4 1DA - C:\Users\Win7Pro64\Downloads\rismwr idb (rrsmwr.exe) —1=lx|
mmtmmmmwopmwmﬂb
[ZEle-o-[[%%8a 3 ul=+XT0[IBS
| ok o ¥ o~ 2 5a X[n'n-mm,mut 18=3
| » @ 0 iocal w2 detugger AwEl3 28| @50
N s U :

0 0 OO RSO | NN 1 O O 00 -

‘ Lkeary function Da'a.weg:larfumm Unesplored [l Fstructon Extemal symbol
(7] Functicrs window 08 x| WK | @ | Eimavewa | W ocosrences of: seep Tos views 0| W occurences of: saacsacr | O oceumences of: pasroen | <[
FUNcton name 3
7] sub_401000

7] TopLeveExceptonfiter

tart

austom_catsetUrhandedExcepton
sub_401505

(7] maybe_IPaddresscheckng

;f sib 40194D, . ’—"

Lne 10f51235
& Graph overview o8& x

Figure 118: IDA graph view, gethostbyname function API call

In continuous, on the following figure the part of the code that gets the IP address of the
current machine is being detected and hashing it. The function starts at binary’s

address .text:004018EA.

5\Win7Pro6' Downloads \rmsmwr.idb (msmwr.exe) mER

ﬁ: Edt Jump Search View Debugoer Cphiors Windows

It Bl e[a8 3 sall =+ X] JO\IIQ\.Q ol O_EA\QCI'EM 33‘:]:
0

[l i o~ o X B o~ N P P B A | DB A £ @ e

SN ER L
MR EFEIY LT

I'» @ O fuocal winaz detuger B | 30C AU Y - feafemiille f
N 5 VNAINAI T T O 0 OO V0TI OO OO AR OO 1 OO |
Lieary function Data [l Requlsr function | Unespiorsd [l instucton Extemal symbal
(7 Funchans window 5 8 X Hlarcokports || | W ooomences of Goterocdatiees || | 6] roggam Segmentaton | | [S/DA Viw-h] |98 Decusronces of: seep Timavews O mmmm weacsecr | | T8 Ocmumerceo of: ssseomen | 4| F
= why, TehpeI8RT
Functon reme E Spt | cdecl e I Paddresschockingcunia . siee_t. ine>| [SHBLET o 88 8% 1€ 7 e R o et LhLie
7 sub_401000 nayhe_TFaddvesschecking pro nea mou tespell,
L 52 Bba C7 8% 18 FT E FRones m.p-m;n aFFFTRrTRL,
7] TopLeveExcaptiorFiter var_iBii= duord ptr -188h @B FA AR 99 @1 @8 call sub 41K all Proc
faoios varZimi: duord ber 1640
7 aston,ses S
- Var EB= duord W —HES)
7 sub_4012E0 var Ed= duord ptr —DESh
7] sub_d0132¢ var DO~ fword per —BDON
7 01362 VAR H- Gueed"pie 6B
7] sub_401390 8~ byte ptr -18k
- per
7) sub_4013EE A dword ptr BCH
7] sub_401430 eu’u 8= dunrd per 18h
uBB 55 sh
gfﬁ ot 85 e I
sub_ 5 s
7] sub_d014AC 10 81 FC i
- o0 =
7] custor_calsetUrhandedExcepbon 160 €7 82 38 IF b Promes
iBC 8D 85 34 FE FF FF laa x, Lobpeuar oad nddress
(7] sub_401505 16c 80 55 o Brvar o fddress
7] rtybe JPadchesscheckng iBC B0 79 19 48 BB now
7] sub_401940 iBC 89 €A B4 no
7 ab s EREY . 9
4 180 nou
%:ﬁ}zi:: Ml eaw Sho ShTENAL
> 18C 8D 85 5@ FF FF FF lea eax, Leb owu B8] ; Load Effective Address
vt ERGH, g Ll
sub_401BA7 +nay
- 160 ER 202 B0 a0 TUIh AERNSIRidnaenor it e tialues Call Procedurs
(7] sub_401BCC
= h = 1BC 8B 45 0C nou a1
el » 18 89 44 24 o8 now PA1. oax i size_t
now
Line 10f51235 iBC 89 44 24 B4 naw oL hruar 1041, sax ;
iBC 8D B5 58 FF FF FF lea eax, Lebpruar 581 | Load: m.u.w fddress
A Gragh overvew o8 MU e mh SR s o8
[— 180 4D 65 5@ I7 FF PP lea [sbpruar D81 ; Toad Fffective Address
8 1BC 99 44 24 B4 now Toap108 o T184]. eax ; vedd
i My Tl e
oy ocitheuar 1881, eax :
72 1BC EB 9D 33 B8 88 call ” 48401 all r’munluw
e 1BC EB 1B dmp short loc_ 481994 ; Junp
[100.008 [(-212, 601 | (061, 269 1 1915: maybe_IPaddresschecking?Zi
00.008 [{~21Z, 60) | (861, 369) (00000015 00401915 . Tpaddr 2

Figure 119: IDA graph view, custom function for hashing the IP address

Parts of this result is used to verify the IP. More specifically, it is compared in two pieces. On
the following figure we detect at binary’s address .text:0040297E a comparison with the value

0xB94F0850 and at binary’s address .text:00402988 a comparison with the value 0OXBBACAB2F.

Chapter 7. Conclusion

141
A - G \Users\Win7Pro64\ Downioads \rrsmwridb (msmwr.exe) TS|
F&Eﬂtmmpge«chw-wopmwmmb
It El e =*-[[Sman| s el=-+XIDo|E@EED }.azhmdiw—.m o] A0 MRl =R L)
| ot ot ¥ oF v ol X[PR~ P~ B P P B P P [B O BRI DAL E LB AT DS |ARNE A
| » @ Ofocawrszomme =@ 3 2B] o x| 0] £ ¥
AN T5/AMAUAE AT O -_IIIIIIIII LRI R e | |

Library function Data [l Regular function | Unesplored [l rstructon Extemal symbol
7 Functons window o8 x| @ | 9 ocourences of. cetprocasiress () |] Frogram Segmentaton 1 | [Flmaviewa [| ¥ ocourences of. sieen T views £ | T Ocrurences of: Baacagar [| ¥ ocrumences of: beseoeso [4]

custom, c.nseu. rihancledException
sub_401505
fnaybe_IPaddresschecking
sub_40194D

sub_40198F ¥
sub_40196C
sub_401B76

1 Gic F 35 b

Line 10f51235
A Graph overvew o0& x

gﬁ 166604 (15118, 16347 (644, 4¢1 /00001072 [004D2678: s AGETrE1168

Figure 120: IDA graph view, custom function for IP validation in two pieces

Keep in mind that in section 2.4.3 VMware Workstation Setup/Virtual Network editor, a
provision is being made, so the IP is correctly configured in the right subnet. It would be hard to
patch the return bytes of this function during execution each time, so we bypass this check by
configuring correctly the virtual network.

The malware author used a custom sophisticated technique, where some part of the result is
used to decrypt part of the next code. The IP Address that gives resulting hash is 10.1.210.%*. The
star symbol stands for all possible values, because only the first 3 bytes are being used. The result
of the IP address hashing is the hex value 49C60C2B94F0850BBACAB2F2538A286. This value
must be delaminated in four parts of 4 bytes, like the following structure: 49C60C2 B94F0850
BBACAB2F 2538A286.The first part, last 4 bytes in endian, the 0x2538 A286 hex value is used
to decrypt the first part of the encrypted code in the binary.

The encryption and decryption have been done with the XOR procedure using a 4 byte key.
As it mentioned before, at binary’s address .text:402B25 where the hex value Ox1111111111111111

exists, the XOR is done using the key 0x2538 A286.

7.1 Encryption and Decryption procedure

=18l]

Mo Search View DebLgoer Cpbors Windows
uﬂﬂ\u----\ummm Hu_--ﬂ-XHIEIOHILDLﬁL“E}. [
Dot ol oF ~ o i X[~ P NP Pl i P S A | B 3 (R F @]t

T EEREENE ek =R]
SEE A Sl oY T

1> @ Ofuocal wrsz coteager AL T S = AT

J NN W0 cowowone - MMORYRON W WY OO N0 OO O —— 0 -

Library function Data [l Regular function | Unesplored [l rstructon Extemal symbol

) |) Program 01 | Cimavews | Mocurences of seep) EJma views B } X Occurrences of. Baachacrs [| ¥ ocourences of: aosrogmo [| b
L mou Tedxl. eax =]
B 87 39 40 68 nou max. bffset loc_4BI987
B9 42 4 nou ledxed). eax =
B9 62 o now [edxeB)l esp
BD B5 74 FD FF FF Tea pax. ebyZloh) ; Load Effective Addrecs
B9 B4 now e
ES IS 82 @1 @8 N5 anheaiervatue 5 calt Procedure
EB P8 e short lec 4BRE2D : Junp
IRt : ad L1t + Encryptfng and duervpting of the cads i dona by 0K with 4 bute koye
11 41 11 14 dd 11111111k N ou de
loc_snzB2D: smapzEza
52D E2 81 loap near ptr Loc_ABZERFSS i Loty Dhil CH T
loc_4B2B2F: i CODE XREF: .text:loe 182]EDIJ
B8 25 86 A2 B1 A8 or ds:BABELAZBEN, ah : Lugual Ine lus ive
RE cash 7 Compare String
5D pop by
3 P
7] eustom_calSetUrhandledException ©? db AC7h
(7] sub_401505 ! Fimul dword per de:79DA1827h ¢ Multiply Integes
7 e i eschecion R
7] sub_401940 Sub bh. Ceax] : Integer Subtraction
ﬂM-QGlﬁF loc_ 482846 i F: .text:2848286)
sub_4019EC bound edi. Lebm-7DBEIIINT ChLh AFLs dek R Bounds
- ush sex
7] sub_401B76 Em,
i & AL after Subtrac
) sub_s0188C Wow eby, GC7SD7YALH
7] sub_401B47 Todsh i Load Seeing N .
ot aoinec retn ! Heturn Moar from Procedure
(@ sub_s016F1 0 28 ! ahe - eail £+ Lagical Tighe
7 sub_401C16 ol ar wg ”cnrpcm T A b
now
7 sub_401C35 E? dnz Short mear pre loc_4B2B46+d 5 Junp if Not Sign COF-D)
7 sub_d0ican cld i Clear Direction Flag
7] sub_d01C72] bt 2k L e Taninter ith Regist
7] sub_doz412 7 Fidlur duord e l-(x-i‘il\] 1 n?..'m [‘";f': Teveracd "
%:ﬁ:‘“?"?‘ W2 Bl 6B 42 D :thgb ah. (gaﬂznnqun H f&:ln:;:‘;#q;zrrzﬂrmsyﬁl_'l:h Register
402633 rous) s Buce w0
e T L3 n wax, 2 i b c. or. 23705
10402074 P hannel 1 currine addr
Lne 10751235 [DO001#25 [00402525: . text 00402525 Bl

Figure 121: IDA graph view, custom en/decryption XOR function with 4 byte key (1)

Although on the following encrypted parts of the code, another key is being used.
Specifically, at binary’s address .text:403Al1where the hex value 0x2222222222222222 exists,

the XOR is done using the key 0x2387645A.

|[F] Functions window O & X (flarcaponts 1 | W ocourencesof: o | @ vews | | M orumerces of: skep | [Cmaviews O | ¥ ocumences of: seacaszr [| M ocoumences of: sosrosen | [»
y— =] Totn T Teturn Fear Fron Frocefurs - |
[sub_401000 ||
) push »
7] TopLeveE xcaptionFiter oy sbp. esp
7 start ﬂ:: ::s
(7] custom_atesit B Bi 8B aB b :.;, i er Subtraction
7] sub_401280 8C FE FF PP+ nou ~hahi- amu suh_48663¢
T s o132 28 FE TP I w ivend B (cbf 17811 of e m"ﬁmn
- a e i foe Rddre
(7] sub_d013%62 s - b
o o dx
7] sub_401380 3K 40 @0 =] .a.(. mm loc_483E89
7 sub_a01%E o noy dg
7 sub_401430 74 76 P FE i TeipiBon ; Load Effective nddress
7 sub_a01451 73 61 a6 call a1l Procedure
7] sub_401463 dmp short loc_483A19 5 Junp
7] sub_401430 .
7 sub_d0144C 22 22 dd 22222222h i Encrypting and deceunting af the cods is done by XOR with 4 hyte keys
- i Bx224822232222223% hey 1s Bx2I87645R
7] austom _caseturhandedExcepton 22 22 aa 222222220 Y 1
(7] sub_d01505 :
(7] maybe_IPaddresschecking b loc_483A19: i CODE XREF: .cext:@B4030AF1}
Lat i Table Lookup Translation
7 sub_d0194D 1 f.‘..i‘I Lobeich), ehe § Logicel ARG :
5::';-“0195*‘ e’ e i Increnent by 1
_401%6C .
7] sub_401878 :
(7] sub_dn1eac 6 " Borrou
7] sub_401BA7 Menory with Register
(7] sub_d01BCC nent by 1
7] sub_01EF1 # woha it egioien Menory with Register
(7] sub_401C16 4 € by 1
7 sub_401C35 rotk o Par Trom Procedure
7 sub_401048. .
T 401072 61480620, e OB 4 AAIDIZN, PRINEAGK. WAISNDCN CHISDII. TOTMIDL
(7] sub_402412 45 GF 3D 83+ 34 B3830R30R, BCaRgCoRon. BIFEINDITh, §83DRSDDN, mvﬁam
7] sub_doz621 08 D6 5B AR+ 4 SFIAIZEZh, GREASDCH, AB2iD72Fh, STARIFEAh, A7645A02h
7 ass0ss gpians & punia DA Baee i
e 97 SE 79 87 23 Sa+ dd 47195207 ok REASEIERTH
Cace0BANIR1A A3 B3 B7 62 56 Cae 4 SRR SRR, SRR WEEih: GiEAobon
Lne 10751235 30002215 06403A1S: . text:00403A15 |

Figure 122: IDA graph view, custom en/decryption XOR function with 4 byte key (2)

Chapter 7. Conclusion
143

Also, at binary’s address .text:401721 where the hex value 0x3333333333333333 exists, the

XOR is done using the key 0xA345FFEOQ.

=15lx]
Fle Edt Jump Search View Debugoer Options Windows Hep

|2 Ele»-[[nan a3 vi=-eX[@Da *h»diuammL
It F~ #ca X[B~ Pttt it A8 OSR]I L @b/ 22 =
u»unﬁﬁE;E?____mm@uaawnu mmrrjﬁwnumuvm

uuzmmgmng Al@ma
MBOFSIEY E 17

o8 x @ 0| @ * skep 11 o|® emacancr (1 | ¥ occumerces of: pesroesn - 4| b
Ao, - b33 wov — Tespl. eax
RS 6 ca. mayhe T1sSetValue ; Call Procedure
9 o1 00 11 Be. |
E’&:*m e e gep short loc 481729 : Junp =
ira] xcept
Sl SRR ' @ R Encrypting and decrypeing of the code iz dono by XOR with 4 hyte ke
7 333333 ncrypting and decrypting of the code is done wit .
%ﬁmz—‘;‘?‘ $x3339333333355983 Koy 1s Bxn34SFRED g e hoe
_401.
() sub_d0132C ki 2, loc_401729: B 3 CODE XREF: .text:0040171F1j
] a0 i Decimal Adjust AL after Addition
L:ﬁ—“mg . B8 99 03 B0 PP MU edx. OFERDION !
7] sub_d01 nc ehp norenent
as GUord pr ess(edil, duord prr Faifesi] : Move ByteCs) Fron String to Strin
(7] sub_401E %‘ daa sl Bt cimal 21' bl S R S i -
Ira) ronant by 1
7] sub_d01430 A3 EB FF 82 EV
(7] sub_401451
(7] sub_d01463
7] sub_401450 H
7] sub_d014AC & dd n
(7] custom_callsetiurhandedException c8 dd BCEFFEWIDR. B57MECAFH. . a
7) sub_401505 27 dd 1417E8A3h, uocprunn, 141)c1nn. o SEFE2dRR, 458
e = dd coidtenah. ueins EULOh npsrusanh, 451%:?).
7] maybe. 3
ﬂ"‘ Pakvendiein 7l 34 GhLBNLPNGh, 4A1B3D20H. ncnwmch eanzvsm., 2478021
sub_40194D 6B dd 61BR277Bh. ASFFEBA7h. 61FB69A3 Ah. SADFFERAZH
7] sub_40156F ¢ dd derEopLan. GCEEIACIAR, 1872 EREhh. 730A6DSh, ALDBRIZAN
Z c4 dd GADDBPAZAT, 4SFEDDUSh: WCEFPOCIAR, us:cacm.. o2 BAEIACH
7] sub_40196C & dd unf:;zw., SSEFER2IN. $ADC31EAN, 2470h,
i 9% i syt ‘é,’i’izﬂ"’;‘ g on
() sub_d0188C 45 ad 9 CaanE1anh 3 5E887h
7] sub_d01B47 >3 dd A15ukanm. Aserisy 88035, BRIZCERALH, IIANGEAFH
B S i i dd %gnszsn S3BRGITIN: FeCCERABN, S3395590h, 458BI3Sn
E:z-xg; - gmn short loc_4818D3 ; Junp
1] sub_¢
7 sub_401C35 !
7 loc_4818BE: i DATA XREF: . toxt:@RAA1709 1o
L_}_x-ﬁig‘;‘; Joa ehp. fobpurghl i load Eifective fddress
] nov eax.
i wov lesp),
7 sub_d02412 PP PE PFe oy duord pe in- hb-ﬁnh] \orErFERET
7) sub_do2621 A @1 o8 call sub_4183 Procedure
Db 0z g :
= - text :A@4818D3 loc_4018D3: i CODE XREF: .text:0@AB18BC1J
e 10751235 . 00000B1E (00401717 . exe: 00401718

Figure 123: IDA graph view, custom en/decryption XOR function with 4 byte key (3)
At last, at binary’s address .text:401550 where the hex value 0x4444444444444444 exists,

the XOR is done using the key 0xFF44FFAA.

Fle Edt Jump Seach View Debugoer Options Windows Heb

= Qle~=-%%% &+ wl=+XZ@|Da|TT%0 hudijlﬁﬂhﬁ.ﬂﬂﬂz@ﬂﬂtﬂﬂﬁ 4|l @ 53
Ittt - # X[A-- St ed 08 R f 36+ e EF =Y 1Y

IIDHIDm\wnaa A% 3O Bm|EE H.ilJi"i“Jﬁn&h’fllﬂ\lJ‘!\E
(L] (NVRROTTRNT TUNONN (0 i 00

Lbrary function Data [l Regular function | Unesplored [l neruction Extamal symbal

[Functions wirdow S = 0| ® 0 | Timavews () | M ocurences of sken 1 [Claviews © | M occuences of: seazaszr [| O ocrences of: Basrossn [<[»
A = T o oy Toax+31, vsp |
H ;: lea :au ll-hydéuhl i Load Effective Rddress
%ﬂ.ﬂ_«]m 98 Bi 8 eall Iny:!_Il sSetValue ; Call Procedure =
7] TopL evek xceptiorFiter
7 st jep ahert loc_4A1559 5 Junp
%:imzi::[44 44 : i i Encrypting and decrypting of the code is done by XOR with 4 byte keys
) b 401920 a1 - P Bx4444494444444490 Koy iz BxFFA4FFAR
[l su:iamasz i
7 sub_a01330 Toc_4R1559 GODE HREP: _text:@B4Ri54P1
- dan Tecimal Adjuse Al after Addition
7] sub_4013EE 38 EE DB nae edx. BDBEEIGI8H .
Cy 82 Decransnt
) sub 401430 90 B 44 74 71 fie S pee cocolufiih S 10 s o
7] sub_401451 RE BE FB CD test .np_ CDFUSEADH ; Logical C
7 b sorsen i ot Intormupt Flag
g me
o Store Strin
7] custom_calSetirhandedExcepton FF a2 in™ duard per Cedived i 201 5 Therenens ny 1
@ sub_s01505 Sohy eax, ehx terHonary vith fegister
2] maybe_lpaddtesscheckng Ztosh Stare Eining
7) sub_40194D I e (wa. al Campars rwn"n,.un:a R
. i 3 1aned Huleip
7] sub_40198F frra Deivenent by 1 ,,
7 sub_4019€C gov, 3 et Procetune ©
(7] sub_401B76 b h Leval Procedure Exit
ine | Toarenant
%::‘01‘3&: m FE S v T
401847
(7] sub_d018CC pusha all @
(2 sub_s018¢1 vl H Logical Tnclusive OR
7] sub_401C16 S Boed per tewer | rndiveee HEAETRS,
(7 sub_401C35 :
get_Interrupt Pla
7] sub_401C48 . Push a1l Goneral Beaister
7 sub_d01€72 bone Y Pop Stack into FL
7] sub_402412 aan 46h HE T M R ol 4
7] sub_402621
AB41598 loe_401598: CODE REF: et :GB4RISEC
7 0_a0z633 Lo issinan con s it g
& #* ['coxc 100481598 FF 23 dmp duerd per Cobx1 § Qndivect Near
Lne 10751235 | |0000095S [00401555: . rext: 00401555

Figure 124: IDA graph view, custom en/decryption XOR function with 4 byte key (4)

7.2 Malware deflection
144

Using OllyDbg, the CryptGenRandom API call has been detected and analyzed. This
function leads to the above mention results. Note that, CryptGenRandom is a cryptographically

secure pseudorandom number generator function that is included in Microsoft CryptoAPI.

F687 CAOFOOOO 4(TEST BYTE PTR DS:[EDI+FCA], 40
.19 JHZ SHORT ntdll.77A3362C
F646 B3 B4 TEST BYTE PIR DS:[ESI+3] &
v JNZ SHORT ntdll.77A33624
8030 @8DARAT? @(CMP BYTE PTR DS:[77AADAGBT,H
~OF85 27090100 | JNZ ntdll.77ASOF4B

5 08 PUSH DHORD PTR SS:[EBP+81
E8 EBOBOARD CALL ntdll.7/A33717
E8 FI32FEFF |CALL ntd1l.ZwlestAlert
8B75 E4 MOV ESI, DHORD PTR §S:[EBP-1C]
85F6 TEST EST.FST

Figure 125: OllyDbg Breakpoints on CryptGenRandom API call

7.2 Malware deflection
Malware authors and specially ransomware authors, are creating mutexes® in order to
check if a machine is already infected. If the analyst locates the hard-coded mutex name, can

emulate it and fool the ransomware that the machine is already infected.

7.3 The smart-dumb alternative way to deflect the Ransomware
Base64 encoding code and strings

Base64 is an encoding scheme originally designed to allow binary data to be represented
as ASCII text. Widespread in its use, Base64 seems to provide a level of security by making

sensitive information difficult to decipher. In reality, the use of Base64 provides a significant

81 Mutexes are global objects that coordinate multiple processes and threads. In the kernel they are called mutants.
Keep in mind that mutexes are usually hard-coded names.

Chapter 7. Conclusion
145

advantage to attackers while providing minimal benefit to defenders. The use of Base64 can result
in the disclosure of passwords, bypass of data leakage protection systems and can even be used to
create a one click, obfuscated and self-contained cross site scripting attacks. 8

In malware analysis, is another well-known encoding technique utilized by malware
authors. Keep in mind that Base64 is from the MIME standard, which recognized the need for
converting binary to text for email attachments. Base64 has a set of only 64 characters (as the name
describes), and a standard for translating data within this limited set.

The MIME Base64 “alphabet” looks like this:

| ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijklmnopgrstuvwxyz0123456789+/= |

Note that due to Base64 being a smaller set of characters, encoded data is often “longer”
than encoded data. Typically, we should expect an increase of about 33% (or 4 Base64 encoded
characters for every three decoded characters), give or take. Furthermore, attackers can also define

their own Base64 alphabets, which make standard conversion techniques useless.®

Identification and Decoding Base64

The characteristics that make up a Base64 encoded string are fairly simple; it will typically
contain letters (A-Z and a-z), numbers (0-9) and the characters “/”, “+” and “=" where the equal
sign, if found, will always be found at the end of the string. Base64 strings usually contain a

multiple of 4 characters (e.g. 4, 8, 12, 16, etc.). In such cases, the minimum size for a Base64-

82 Fiscus Kevin, SANS Institute (2011, April), Base64 Can Get You Pwned. Source url: https://www.sans.org/reading-
room/whitepapers/auditing/base64-pwned-33759. [Accessed 24 02 2019].

8 M. B, "Malware Monday: Obfuscation,” 19 12 2016. Source url: https://medium.com/@bromiley/malware-
monday-obfuscation-f65239146db0. [Accessed 24 02 2019].

7.3 The smart-dumb alternative way to deflect the Ransomware
146

encoded string is 4 characters. If the source string is not long enough to generate an output of 4
characters, one or two equal signs will be added for padding. This padding is found in most Base64
encoded strings where the encoding does not generate a number of characters that is divisible by
4, thus you often see either one or two equal signs at the end of Base64 encoded data. Based on
this definition however, the words “data”, “Data” and “Database” are all potentially valid Base64
(although they decode to random binary data) making positive validation of Base64 data difficult.
Making things worse, Base64 does not always use the special characters / and +. In some
implementations of Base64 a number of other special characters are used including the dash (-),
the underscore (), the period (.), the colon (:), and the exclamation point (!). In addition, some
implementations of Base64 don’t use padding. As a result, Base64 can contain any combination
of letters (upper and lower case), numbers and various special characters (/+- :!) that may or may
not have one or two equal signs at the end.

With byte-stats.py®, statistics are being generated for the different byte values found in the
under analysis PE. When we use this to analyze our Base64 encoded executable, we the following

output:

8 D. Stevens, "Decoding malware via simple statistical analysis," Didier Stevens Labs, 30 08 2017. Source url:
https://blog.nviso.be/2017/08/30/decoding-malware-via-simple-statistical-analysis/. [Accessed 24 02 2019].

Chapter 7. Conclusion

File

Edit

View Search Terminal
:~/Desktop#

Byte ASCII Count

Bxa7
Bxab
ox9f
Dx6a
0xag

0x89
0x8b
axff

0x24 %

Entropy:

j

501760

115
=
144
145
150

19505
21885
28029
38191
YNEEY:

Unique bytes:
NULL bytes:
Control byte
Whitespace byt
Printable byte
High bytes:

BASE64 bytes:

Figure 126: Base64 bytes check with byte-stats.py

Bucket

size:

File(s)
6.128007
Position:

2560 100.€

77332
59701
10295
159564
194868
44919
94458

[

(22}

oo =

[ax]

Help

le24e

Bucket count:

Minimum bucket

4.784276

0x00075800

188
820
210

53

1970
873
440

1179

root@ka

Maximum buckets

6.452751
o qdelalelefolala]e]

256 100.€

3954
2256

375
5108
5173
1996
4574

147

In the screenshot above see that we have 256 different byte values, and that 19% of the

byte values are Base64 characters. This is not a strong indication that the data in the under analysis

PE are Base64 encoded.

Using the option -r of byte-stats.py, an overview of the ranges of byte values is being

presented:

7.3 The smart-dumb alternative way to deflect the Ransomware
148

:~/Desktop# python byte-stats.py -r malware.exe
Byte ASCII Count
115
133
144
145
150

19505

: 501760 Bucket : 18248 Bucket count: 49

Maximum buckets

opy: 6. 4 2751
ion: X 000000
256 1

3954

2256

=B

51608

5173

1996

4574

>7@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]" "abcdefghijklmnopgrs

Figure 127: Base64 bytes check with specific range

Usually the range check of byte-stats.py would reveal the pattern of Base64 alphabet, but with the

256 length we assume that these characters constitute an alphabet of another encoding scheme.

XORSearch

Having no clue of the encoding scheme on our PE file, XOR operation could reveal
additional information. It is perspective of reverse engineering the static information that a PE file
offers. As an alternative of brute forcing any known encoding scheme on the under analysis PE
file, XORing definitely would be time effective. A tool is needed to try all possible combinations,

for every total of bytes that compose a string.

Chapter 7. Conclusion
149

XORSearch® is a program to search for a given string in an XOR, ROL, ROT or SHIFT encoded
binary file ®. XORSearch will try all XOR keys (0 to 255), ROL keys (1 to 7), ROT keys (1 to
25) and SHIFT keys (1 to 7) when searching. XORSearch also includes key 0, because this allows
to search in an unencoded binary file (X XOR 0 equals X). XORSearch does a bruteforce attack
with 8-bit keys and smaller .

At this point of our analysis we need given strings that are certainly contained as strings in the PE
file. On the sections 2.3. «VME Technologies» and 2.4. «General Local Virtual Machine
Detection», anti-virtualization techniques have been detected, so is a good start to search for them
as strings in the PE file:

e VBOX

e VMware

C:sUserssWindows?Flare~Dounloads *s0R5earch.exe —n 1?7 malware.exe UBOX

Found A0R 4C position 716F4<-19>: HARDUARE~ACPI-~DESDT~VBOR_ . Lf..L...L=..L...

Figure 128: XORSearch: VBOX string found XORing with 4C

On the figure 73, the results of XORSearch is being presented, for the string “VBOX”, which is
found on the position 716F4 in the PE file. Furthermore, with parameter “-n 19”, 19 neighbor

characters are being also printed. The registry path “HARDWARE\ACPI\DSDT\VBOX ” is

8 D. Stevens, "XORSearch & XORStrings,” Didier Stevens Labs, 30 01 2007. Source url:
https://blog.didierstevens.com/programs/xorsearch/. [Accessed 24 02 2019].

8 An XOR encoded binary file is a file where some (or all) bytes have been XORed with a constant value (the key).
A ROL (or ROR) encoded file has its bytes rotated by a certain number of bits (the key). A ROT encoded file has its
alphabetic characters (A-Z and a-z) rotated by a certain number of positions. A SHIFT encoded file has its bytes
shifted left by a certain number of bits (the key): all bits of the first byte shift left, the MSB of the second byte becomes
the LSB of the first byte, all bits of the second byte shift left, ... XOR and ROL/ROR encoding is used by malware
programmers to obfuscate strings like URLS.

87 If the search string is found, XORSearch will print it until the O (byte zero) is encountered or until 50 characters
have been printed, whichever comes first. Unprintable characters are replaced by a dot.

7.3 The smart-dumb alternative way to deflect the Ransomware
150

revealed. The malware searched on registry for this specific value, so it can detect the Virtual Box
existence.

The 1dea of searching for known strings in the PE file that might be encoded, XORed in our case,
was accurate. On the next steps a list has been created with all the strings that could be contained
in the PE file.

Some functions that are already been detected as anti-debugging techniques would also help to

reveal the XOR pattern.
e debug
e time
e sleep

C=~UserssWindowsYFlaresDownloads *{0RSearch.exe —1i —n 19 malware.exe debug

Found HOR B8 position 79C6EC{—-1%?)>: BCSLeadByteEx....IsDebuggerPresent...LeaveC
Found RAOR 28 position ??C6E<—12?>: hcslEADbYTEex ."iSdEBUGGERpRESENT .H#1EAUEC

Figure 129: XORSearch: Debug string found XORing

€ 39

The “debug” string was searched without case sensitivity, using the “-i” parameter and found as a
string in position 79C6E XORing with 00. This means that the actual input string was found
without XORing. The second result, XORing with 20, is being printed because of the case sensitive
parameter, which converts the capital to lower case and the opposite. As a result, no hidden “debug”
string was found in the PE file.

(3

G

folafafafalalalalalalalalalafafa]ai
fofofofofofalalalalalalalafafafafa]al

T 100 120 b bl o GO G0 G0 o
]
B

Figure 130: XORSearch: time string found XORing

Chapter 7. Conclusion
151

The “time” string was found as a string in various positions, XORing with 00. This means
that the actual input string was found without XORing. As a result, no hidden “time” string was

found in the PE file.

é:\ﬁéérékwindﬁwé?FIaré\ﬁﬁwnlﬁadé}HOREearch.exe -n 19 malware.exe sleep

C:sUzerssWlindows?Flares~Downloads *80RSearch.exe —1i —n 19 malware.exe sleep
Found HOR 88 position 79DBB(-1%)>: dExceptionFilter...5leep...TlsAlloc....T1sF
Found ®XOR 28 position 79DAAC—19)>: DeXCEPTIONFILTER .5=sLEEP .$tLSaLLOC _5$tLSf

Figure 131: XORSearch: sleep string found XORing

46 ”

The “sleep” string was searched without case sensitivity, using the “-1”” parameter and found
as a string in position 79D00 XORing with 00. This means that the actual input string was found
without XORing. The second result, XORing with 20, is being printed because of the case sensitive
parameter, which converts the capital to lower case and the opposite. As a result, no hidden “sleep”
string was found in the PE file.

As long as a ransomware is being analyzed, some certain type of files is interested in the attackers.

Searching on a huge list of file types extensions, the following file type extensions has been

detected:

| txt | doc | docx | xls | xIsx

Table 8: selected file extentions for XORsearch

ssWindows?Flare~Downloads *30RSearch.exe —n 9 malware.exe doc
C pogition V14E3<{-9>: _BA. ., T.doc..JAMU._L
position V14ESC-7): NENGLEE TS S TR
position 1287EC{-%9>:
position GF784(-9)>:
position 6F7E4<{-%9>:
position GAC1IBC-—9)>:

uhugufueuducuhu..nluu
chogofoeodocohoao ‘0.0
gqdocf . 1..[...

position
position
position
position
position
position
position
position
position
position
position

1079490
746BB(-?
73189 (- 9

YALTI(-T
7A7EB(-?
1F4?26(-92

3
3
3
3
3
6FCAF{- 9;
3
3
73182¢-92

ceC....tdoccu.ace. ..
pyh *¥n lidoc kd knnho
RQB_.<gdedoceki dgcui
wggzy rdocjpo vi ux
e mea_adoc.+..8...~7
kecce.d> .docxge0.
cC...chc.docfdhecfcgf
ccccoche idocddeef Fdgf
cC...chc.docfdhecfcgf

87BU. .WMedoceki.dWc[i

Figure 132: XORSearch: doc and docx string found XORing

7.3 The smart-dumb alternative way to deflect the Ransomware
152

On the figure 77, the results for the string “doc”, was found on the position 714E3 XORing with
0C, in the PE file. The string “docx” was also found on the same position (714ES is next to 714E3),
but it is XORed with 22.

The malware author seems to have a sophisticated pattern using XOR with different keys for each
malware’s operation. Further analysis is needed so on the Figure 78, the string “xls” was searched,

which also contains the “xlsx” like the doc one.

C:sUsersslindows YFlaresDownloads *f0RSearch.exe —n 9 malware.exe xls

position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position

PIFFAC-9):
YABGAC-T Dz

Eeea-mjlfxls. . Jjusi..
p--..ixmfxls. .t HUY{jHM
W48~ uyh. 8x1s.8. ... uvE8
--IM. . _uMxlzx NHNHM_u.

muxyep gixlsh geppih.
muxyep gixlsh geppih.
geppih amxlsyx er egx
uyt. .2 kixlsuxfcreqi.
regi.*. kixlsuxregi...
muxyepbgixlshégeppih.
mvxyepsgixlshSgeppih.
geppih${mxlsyxberiegx
Wyt . .- kixlsuxfireqi.
reqi... - kixlsuxregi...
xpUTTT . ox1sTTT. CxhUT
xpUTTT. . x1sTTT. .xh™T
xpUTTT . ox1sTTT . o xhUT
xpUTTT. . x1sTTIT. .xh™T

C:sUserssWindowsYFlaresDownloads *{0RSearch.exe —n 9 malware.exe xlsx

Found HOR 4E position 714F3<—9>: LT Rat3e (el TN |

Figure 133: XORSearch: xls and xlIsx string found XORing

On the figure 77, the results for the string “doc”, was found on the position 714E3 XORing with
0C, in the PE file. The string “docx” was also found on the same position (714E8 is next to 714E3),
but it is XORed with 22. On the figure 78, the results of “xIs”, was found on the positing 714EE
XORing with 38 and the result of “xIsx” was found on 714F3 XORing with 4E.

All these strings indicate that the attacker is searching for the extensions of certain type of files.

This is a strong clue that his malware is a ransomware.

Chapter 7. Conclusion
153

But we have not searched for “txt” yet. On the following figure, the txt with case sensitivity, returns
a lot of junk results and them position is not near the above-mentioned type of files extensions.
The interesting results here are on the position 7167F, where the string is being XORed with 5D
and on the position 71651 where is being XORed with 4F. A file “readme.txt” appeared.

G:xUsers~Windows?Flare~Downloads >510RSearch_.exe —n ? maluware.exe txt
A0R 1B position 746FAC—2>: ortuskitotxtwim™ihrtu
“OR position F1798{—2>: tX_YBEL..txtHYMNJ_M+I1IJ
HOR position t¥_YBEL. . txtHDEX_Y"H_
HOR position +GDHJGN . . t xt EDY FJGBQN
HOR position ?1EBB(tH_YBEL. . txtHYNJ_H+IJ
HOR pozition 71F3E<— tH_YBEL..txtHDEX_Y"“H_
a0R position - -MJHH_. .t xtHYHJ_HNtHt
a0R position ..readme.txt 02._..0.
A0R position Agpevz]l Htxt KA PTH. .
Aa0R position P167F(— --readme .txt 18=Ltgdg
A0R position GFBLH (- stitFt™ . txtyt . _urttu
A 0OR pozition stitXt™t . txtyt=t{tdte
a0R position ttuttt . H3txttt . HIL 1L
a0R position Jtettt+/Ftxttt .ttt . 73
A0R position 7412B(-— It2ttt+ -3ttt _tEtt o3
Aa0R position P413%7(— tt.ttt . 3txttt_ - 3tEtt
A0R position tt.tttx{Itxttth{ItEtt
A 0OR pozition ttsttt™tttxttt=tttett
a0R position ttttttttttxtttttttd. 3
a0R position ttttttttttxttttttt. .3
A0R position ttttttttttxtttttttT . 3
A0R position ttttttttttxttttttt . .3
A0R position Pttt eptxt{t=zttuum.u
a0R position LIt t™tytxt{tettun.u
a0R position FEit . t™bytxt{tettun.u
a0R position LIt t™tytxt{tzttun.u
A0R position
ADD ozition thtx_zsv_ztxt_.xu_=5_u

Figure 134: XORSearch: txt string found XORing

Searching for this specific “readme.txt” string and its neighbors, a filename that reveals a malicous
action is being returned. Specificallyy, on the figure 80, the path
“C:\DESTROYED_ FILES REAME.TXT” is being revealed. Another strong clue of

ransomware which destroys the files after encryption.

C:sUserssWindows?Flare\Downloads >i0RSearch.exe —i —n ? malware.exe readme.txt
Found XOR 6F position 7164A¢-9>: D_FILES_ README.THT .o.%/:/"
Found ¥OR 7D position 71678¢-9>: D_FILEE_ README.THT.=. lTQDQ

C:sUserssWindows7Flare~Downloads >{0RSearch.exe -1 —n 17 malware.exe readme.txt
Found X0R 6F position 7164A¢-19>: o“DESTROYED_FILES_README.THT.o.=/:/',’ HNooooQ¢MN

Found XOR 7D position 71678¢(-19>: :“DESTROYED_FILES_ README.TRT.»s.1TQDQ.RY“8X.>..

C:sUserssWindows7Flare~Downloads >{0RSearch.exe —1 —n 29 malware.exe readme.txt
Found XO0R 6F position 7164A¢-29>: _563y@"_5WoDESTROYED_FILES_ README.THT.o.*/:-'.’ NooooQ(HNUWAFEIKWUM
Found XO0R 7D position 71678¢(-29>: r>5253>33C:~\DESTROYED_FILES_ README.THT.»s.1TQDQ.RY" 8> .3 ..3>>.C=}.C=

Figure 135: XORSearch: readme.txt string found XORing

7.3 The smart-dumb alternative way to deflect the Ransomware
154

The final position, that will be written down, in this case is 71678, where the string is being XORed
with 7D.
The digging starts, searching for known strings in the PE file that might be XORed, but this time

on targeted names of strings, related to ransomware. At first, the strings “NATO”, “container”,

29 ¢ bR AN 1Y

“training”, “delivery”, “location”, “status” and “deploy” searched:

C:xUsersslindows?Flare~Downloads >d0RSearch.exe —n 9 malware.exe MHATO
Found ®O0R 37 position Y1424¢-9>: 7. . .uw?m.w?HATO.7_SRHIUR

C:xUserssWindows?Flare~Downloads >H{0RSearch.exe —n 9 malware.exe container
Found ®0R BB position 714?AC-9>: C(K.r¥hs<.container..tsyt™ii

C:xUserssWindows?Flare~Downloads >H{0RSearch.exe —n 9 malware.exe indicator
Found X0R 16 position ?14A5¢-9»: ziltsxo..indicator..CEU"Y"Y

C:xUsersslindows?Flare~Downloads >d0RSearch.exe —n 9 malware.exe training
Found X0R 21 position 714BB¢-92>: S*TUCKE?*training.tihad{h.

C:xUsersslindows?Flare~Downloads >d0RSearch.exe —n 9 malware.exe delivery
Found #0R 2C position 714BA<-9>: .ldcdcj..delivery..wtxzort

C:xUzersWindows?Flare~Downloads >0RSearch.exe —n ? malware.exe location
Found ®0R B8 position Y1A62¢-9>: _words allocation failed..

Found X0R B8 position Y46E3(-9>: pseudo relocation protocol

Found XOR BB position 74717(-9>: pseudo relocation bhit szize

Found ®OR 37 position P14C4C(-93: “werm™ibh.?location.?

C:sUserssWindows?FlaresDownloads *30RSearch.exe —n 7 malware.exe
Found XOR 42 position F14CEC(-9>: uBstatus.Bkj.c wv.

CzsUserssWindows?FlaresDownloads *30RSearch.exe —n 7 malware.exe
Found XOR 4D position 714D6C—93: Miin{zi_.Mdeploy.Hama_HM:x.

Figure 136: XORSearch: targeted string names found XORing

On the figure 81, the results for the string “NATO” was found on the position 71494
XORing with 37, the results for the string “container” was found on the position 7149A XORing
with 0B, the results for the string “indicator” was found on the position 714A5 XORing with 16,
the results for the string “training” was found on the position 714B0 XORing with 21, the results
for the string “delivery” was found on the position 714BA XORing with 2C, the results for the
string “location” was found on the position 714C4 XORing with 37, the results for the string
“status” was found on the position 714CE XORing with 42 and the results for the string “deploy”

was found on the position 714D6 XORing with 4D.

Chapter 7. Conclusion
155

As long as the string search is focused on ransomware, encryption will take place and then the
unknown perpetrators will ask for ransom.

So, searching for string “crypt” and its neighbors, a whole paragraph is revealed from the ransom
message. More Specifically, on the figure 82 the phrase “We have encrypted lot of your files. If you
want to get their real content back, then send us 1000 euros and the data.bin file from this directory.
We then send you program that decrypts the encrypted files. Our email is aBit@bad.guys” is
revealed.

C:slUserssiindows 7Flares\Downloads >HORSearch.exe —n 85 malware.exe crypt
Found XOR 38 position 71556(-85): _xBx.xBg.BF.xB..0B..xB..xB. xBY x8. xBo.xBN..B..xB".»8B..xB. .xBZ.xBh.x8. x8le have enc
pypted lot of your files. If you want to get their real content hack, then send us 1068 e

Found ROR 38 position 716BA(-85): BAA euros and the data.bin file from this directory. We then send you program that dec
rypts the encrypted files. Our email is aBitBhad.guys.B..............c...o..... y. . WBE}xm
Found XOR 38 position 716@8D(-85): the data.hin file from tory. We then send you program that decrypts the enc
rypted files. Qur email is aBitChad.guys.B.......ccvvviiinnnnnnnns y. . MW8E amxM{pu.8888. ..

Figure 137: XORSearch: crypt string found XORing

At this point, a lot of information should be analyzed. The ransom cost is 1000 euros. The unknown
perpetrators request the ransom and the data.bin file in order to sent back an applocation that
decrypts the file. So the data.bin file should contain information for the encryption, its procedure
or even the key itself! At last, the email of unknown perpetrators is “aBit@bad.guys”.

The digging continues, searching for more strings in the PE, related to ransomware.
Considering that the data.bin file could give feedback to the unknown perpetrators for the victim’s
PC, the strings “username”, “computer”, “domain” and “money” are searched. The searched
results are being screenshotted on the figure 83 as follows:

e the string “username” was found on the position 79AB1 XORing with 00. This result is the
function GetUserNameA, that has been already found and analyzed on the 4.1.1. section.
e the string “computer” was found on the position 79B97 XORing with 00. This result is the

function GetComputernameExA, that has been already found and analyzed on the 4.1.1. section.

7.3 The smart-dumb alternative way to deflect the Ransomware
156

the string “domain” was found on the position 7SDA0O XORing with 20. This result is XORed
with 20 because the words are stored in capital (DOMAIN ERROR) and it is a system error.

the string “money” was found in several positions 75DA0 XORing with 20. This result is
XORed with 20 because the words are stored in capital (DOMAIN ERROR) and it is a system

€Irofr.

C:xUszsers Windows?Flare~Downloads *{0RSearch.-.exe —i —n 18 malware.exe usernams
Found X0R B0 position PTAB1{(—18>: text...GetUszserMameA. ... HeglOp
Found X0R 20 position Y9AB1{(—18>: TEXT . gETuSERnAMEa .*r»EGoP

C:xUsers s Windows7?Flare~Downloads *¥0RSearch.exe —1 —n 18 malware.exe computer
Found X0R 80 position 79B?7(—18>: meA....GetComputerMameExA. ..
Found XO0R 20 position 79B?7(—1@>: MEa .Y*gETcOMPUTERnAMEexa .

C:xUzers Windows?Flare~Downloads *{0RSearch.exe —i —n 18 malware.exe domain
Found X0R B0 position 7P5DABC—18>: melwE.St12do in_error....

Found XO0R 20 position 7YS5DABC—1@>: MEille =T ..DOMA
Found ADD E? position YS5DA@C—1@>: MEXWx_3T. N?ERROR. _ . .

Figure 138: XORSearch: username, computer, domain found

=

]
il afafiafualy!
=

=

il

il fa fafafulnlnfololalolafofufo

fafafalafulalalulufolafolalololololololalalolololofolofofofofofoo

k[iv

afunfunf i

ffnfafnlofololululululuolululofololnfalalofulolololololofolololelololofololafofolofofololofo]ofofofo

Figure 139: XORSearch: username, computer, domain, money strings found

Chapter 7. Conclusion
157

All the strings that contains the keywork “money” are already revealed in .rdata on Appendix H.
In addition to the focused string search and having the knowledge that the malware checks

the IP Address of the infected machine, the string “10.1.210” was found in positions 7048C and

707D0, not XORing but ADDing with 35. Keep in mind that the given information that the

machine should be a subnet with range on IP Addresses 10.1.0.0-255 (/24) was incorrect.

CisllzerssWindows?Flares~Downloads *H¥0RSearch.exe -1 —n 18 malware.exe 18.1.8.

C:sUserssMindows?FlaresDownloads *H{0RSearch.exe —i —n 18 malware.exe 1@8.1.

Figure 140: XORSearch: specific IP Address found

On the following figure 85, some last targeted searched had been done, that reveals that the hash
“49C60C2B94F0850BBACAB2F2538A286” (hashed result of IP Address 10.1.0.*%) is not

contained in the PE file. So it is assumed that another incorrect information was provided.

slUserssWindows?FlaresDown loads >H0ORSearch. maluware.exe copyright
sUzerssMWindows ?Flare~Downloads >KORSearch. i maluare.exe —f testXor_txt
UzerssMindows?Flare~Jownloads *¥ORSearch. i maluvare.exe —f testXor.txt

sUzerssMWindows ?Flare~Downloads >KORSearch. i maluvare.exe 47C6ACZET74FBESHEBACAB2F2538AZ86

UzerssMindows?Flare~Jownloads *¥ORSearch. i maluvare.exe Beliewve

Figure 141: XORSearch: fail to find some clues that was provided from external information

Several more searches could be done with XORSearch, using as input the strings that was
found in basic static analysis. But the on malware analysis the analyst should focus on keypoints
and that is the reason that these searhes are enough, with a lot of information being revealed.

The most useful on the subject malware is the generated key that is encrypted and written
to the data.bin file. By brute forcing the data.bin file the key can by revealed, which is the string
“Believe you can and you're halfway there”. The bruteforce is applicable as long as only letters
and symbols are being contained. All files that are found, are encrypted with XOR operation, using

the generated key. At the end of the procedure the old version of the files is deleted.

7.4 Future work
158

7.4 Future work

Shellcode authors must employ techniques to work around inherent limitations of the odd
runtime environment in which shellcode executes. This includes identifying where in memory the
shellcode is executing and manually resolving all of the shellcode’s external dependencies so that
it can interact with the system. To save on space, these dependencies are usually obfuscated by
using hash values instead of ASCII function names. It is not so common for nearly the entire
shellcode to be encoded so that it bypasses any data filtering by the targeted process. All of these
techniques can easily frustrate beginning analysts, but the provided material should help the reader
to recognize these activities, so you can instead focus on understanding the main functionality of

the shellcode.

List of tables

159
List of tables
Table 1: Notable Emulators and VIMES.........coocuiiiiiiiiiiiicceiee e 20
Table 2: Brief Overview of J. Rutkowska’s Stealth Malware Taxonomyccceevvvvverieeennnnn. 22
Table 3: VMX configuration file recommended by SANS ... 30
Table 4: VMX configuration for the system time Checkc.cooveviiiiiiiiiiiiicec, 31

Table 5: “Swallowing” the Red Pill has been published as this four line code, generating almost a

single CPU instruction and that returns nonzero when in “MatrixX”.ccccceeeeiiiiiiiiiiinieeeennns 109
Table 6: VMX configuration file line addition CPUID and EAX manipulation........................ 126
Table 7: VMX configuration file line addition CPUID and EDX manipulation........................ 126
Table 8: selected file extentions for XORSEAIChcooviiiiiiiiiiiiiiiiiie e 151
Table 9: StealthyTools.reg on Attached zipped files............ccovviiiiiiiiii e X
Table 10: registry Renames on VMware PowerShell script.ps1, Attached in zipped files XI

Table 11: Highlighting potential Anti-VM instructions with a python script in IDA Pro............... I

List of Figures

160
List of Figures
Figure 1: Single PC Laboiiiiiiii e 24
Figure 2: Virtual Network Editor SEttNESoeiivviiiiiiiiiiiieeiiic e 26
Figure 3: Virtual Machine Settings on network adaptercccocvveiiiiiiiiie e 27
Figure 4: Local Area Connection Properties in VM OSccooiiiiiiiiiiin e 27
Figure 5: hexcode dump of a PE header ... 34
Figure 6: PEheader diagram sections broKen Upccceeiriiiiiiiiiiiiiieieeee e 35
Figure 7: malware.exe/IMAGE _NT HEADER/IMAGE FILE HEADER...........cccccoovviiniinnenne. 36
Figure 8: PEview IMAGE _SECTION HEADER t€Xt.......cciiiiiiiiieiiiieiiiie e 37
Figure 9: PEview IMAGE _SECTION HEADER .data.........cccccooiiiiiiiiiiiie e 37
Figure 10: PEview IMAGE _SECTION HEADER .rdata..........cccocoiiiiiiiiiiiiiciceec e 37
Figure 11: PEview IMAGE SECTION HEADER .eh framecccccccoiiiiiiiniiiiiiiiiiiicnn, 38
Figure 12: PEview IMAGE SECTION HEADER .DSS......cccoiiiiiiiiiiiiiieiieec e 38
Figure 13: PEview IMAGE SECTION HEADER .idata.........cccccooiiiiiiniiiiiiiiicicecseenn 38
Figure 14: PEview IMAGE SECTION HEADER .CRTcccccoiiiiiiiiiieiiic e 38
Figure 15: PEview IMAGE SECTION HEADER tIS......cccooiiiiiiiiiiiiiiecceeeeee e 39
Figure 16: Section .idata/IMPORT Address Table...........ccoooiiiiiiiiiiiiiiiiiiiiiiiicee i 39
Figure 17: Section .tls/Address of Callbacks...........ccoiiiiiiiiiiiiiiciic e 41
Figure 18:PEID TESULILSccoiiiiiiiiiiiii e 42
Figure 19: PEID Details & TLS table VIEWccccuviiiiiiiiiiiiiiie e 43
Figure 20:DiE SCAN TESUILS.uiiiiiiiiiiie ettt 45
Figure 21: DIE results fOr IMPOTTSceeeiiiiiiiiiiiiie ettt 45

Figure 22: DiE results for several packed SECtIONSccoviiiiiiiiiiiiiiee e 46

List of Figures

161
Figure 23:DiE PE basic info on Hex view with diSasm...........ccccocviiiiiiiii e 47
Figure 24: DiE Dos Header detailed preview in HexX diSasm............cccccveviiiiiiiiiiiiiiiiiiicniee, 48
Figure 25:DiE Stub headerc..oiiiiiiiiiiiii e 49
Figure 26: DIiE Characteristics on NT Header-File Headersccooveviiiiiii i, 50
Figure 27: : DIiE Characteristics on NT Header-Optional Headersccccoovveiiiieiiiiicninneenn, 50
Figure 28: DiE import Directory and its offSet............cccooviiiiiiii e 51
Figure 29: DiE TLS table in detail and in HEX VIEW...........coooiiiiiii e 52
Figure 30: DiE, Directory of the ImportAddressTable (IAT)ccccooveiiiiiiiii e 53
Figure 31: DiE Visualization Entropy of .teXt SECtIONcoccvvviiiiiiiiieiiiic e 54
Figure 32: DiE Visualization Entropy of all SECtIONS..........cooiviiiiiiiiiiiiiee e 54
Figure 33: PortexAnalyzer PE structure and Entropy visualizationccccccoocvveiiiinnicnnnnnn. 55
Figure 34: PEstudio general InfOrmationcocuviiiiiiiiiiiiiiiiiiiiiece e 58
Figure 35: PEStUdIO INAICATOTScoeiiiiiiiiiiiiie ettt 58
Figure 36: PEStUAIO dOS-STUD.......cciiiiiiiiiiiiiic e 59
Figure 37: PEstudio file headerc.uvviiiiiiiiiiiii e 60
Figure 38: PEstudio optional headerscooiiiiiiiiiiiiiiiiiiiiiiiiiiieice e 61
Figure 39: PEstudio sections and them RWE rightsccccooiiiiiiiiiiiiiiiieen 61
Figure 40: PEstudio imports grouping and rankingccccveeiiiiiiieniiinine e 62
Figure 41: PEstudio strings ranking and evaluationccceeeiiiiiiieiiiiiiiee e 63
Figure 42: BinText string search and filteringocooveeiiiiiiiiiiiiie e 64
Figure 43: BinText filtering settings and strings length.............cccoooiiiii e, 65
Figure 44: Assembly: SetUnhandledExceptionFilter function callccccoviiiiiiiiiiiicninnn. 73
Figure 45: Assembly: SetUnhandledExceptionFilter function call 2cccooiiiiiiiiiiiiniinnn. 74

162

Figure 46: Process Explorer: malware’s Properties - Performance Graph - CPU usage.............. 76

Figure 47: Process Explorer: malware’s Properties - Security - Permissions............cc.ccveervneenne. 77

Figure 48: Process Explorer: malware’s Properties - Threads - Stack - information on current

Figure 49: Process Explorer: malware’s Properties - Threads - Module - General details for the

MALICIOUS FI1E ...t e e e e s et e e e e e e s et reeeeeas 79
Figure 50: Process Explorer: malware’s Properties - Threads - Module - no metadata for the

MALICIOUS FI1E ...t e e e e s et e e e e e e s et reeeeeas 79
Figure 51: Process Explorer: malware’s Properties - TCP/IP - no network activity 80
Figure 52: Process Explorer: malware’s Properties - Environment.............ccccooocvveiiiiinicninnnnn. 80

Figure 53: WinMerge Strings txt files comparison from Binary's Image and Memory's executable

... 81
Figure 54: WinMerge Strings txt files comparison from Binary's Image and Memory's
EXECULADIE-2 ...ttt 82
Figure 55: Process Hacker: malware.exe’s Statistics on Propertiesocccvvvvviieeniiiiiiivnnennnnn. 83
Figure 56: Process Hacker: malware.exe’s Handles on Properties............oocvvvvvvviiiiiiiiiiiiinennnnn. 83
Figure 57: Process Hacker: malware.exe’s Environment on Properties.cccccvveeeviiiiiiiinnnnnnn. 84
Figure 58: Process Hacker: malware.exe’s General Properties. (PEB address 0x7ffdf000)......... 84
Figure 59: Process Hacker: malware.exe’s Memory on Properties.ccoceeviieveeiiiieneennnnnne. 85
Figure 60: Process Hacker: malware.exe’s Modules on Properties.cccceeviivvveeiiiiinieninnnnn. 85
Figure 61: Process Hacker: malware.exe’s Handle’s Statistics on Properties.ccccveerinnee. 86
Figure 62: Process Monitor: Filter apply in PID of the under analysis malware (rtms.exe)......... 87
Figure 63: Process Monitor: List] of all @Vents............cccceiiiiiiiiiiiiiiiicce e 88

List of Figures

163
Figure 64: Process Monitor: List2 of all @VeNtS.........cccveviiiiiiiiiiiiiiciiic e 88
Figure 65: Process Monitor: List3 of all @Vents.........cccveiiiiiiiiiiiiiiiciiic e 89
Figure 66: Process Monitor: Process start event - Event Properties - General..............cccccocveeene. 89
Figure 67: Process Monitor: Process start event - Event Properties - Stackccccocviiiinnenne 90
Figure 68: Process Monitor: Create File event - Event Propertiesccocovvvveiiiieiniiicniieenn, 90
Figure 69: Process Monitor: Process EXItocccuviiiiiiiiiiiii e 91
Figure 70:Regshot: comparison results of registry snapshots before and after rtms.exe run........ 92
Figure 71: Three coding levels eXxample ... 95

Figure 72: Schematic overview of Userland, Kernelland and Hardware, under a VM Hypervisor

... 96
Figure 73: IDA Pro: Load PE file with analysis OptionScc.evevriiiieiiiiiiiiieeee e 97
Figure 74: IDA View - text mode, PE entranceccccccoeiiiiiiiiiiiiii i 98
Figure 75: IDA View - graph mode, PE entranceccccccooviiiiiiiiiiiiiiiie e 98
Figure 76: IDA View - PE headers on assemblyccccoiiiiiiiiiiiiiiiiiiiiccee e 99
Figure 77: IDA View - list Of EXPOTtSuuuiiiiiiiiiiiiiiiiiiiiiie ettt 99
Figure 78: IDA PO = IMPOTES...cciiiiiiiiiiiiiiiiiieee sttt e e e e e e e e e e e s s bbb eeea s 100
Figure 79: IDA - graph mode, Custom Date Validation Functionccccvvvviieiiiiiiiiiiininnnenn. 101
Figure 80: IDA Pro - Entry point ChOICEccoiuiiiiiiiiiiic e 101
Figure 81: IDA Pro - TLScallback dynamic callcoooiiiiiiiiiiiiicccc e 102
Figure 82: IDA Pro - TLScallback 0ccveiiiiiiiiiieee e 103
Figure 83: IDA Pro - TLScallback 1cocuveiiiiiiiiie e 103
Figure 84: IDA View, IsDebuggerPresent all 0CCUITENCESccovviviieiiiiiiieiiiiiice e 104

Figure 85: IDA View - graph mode, IsDebuggerPresent at 00402730coccvvveeiiiiiieeniiinnnn. 105

164

Figure 86: IDA View - graph mode, custom PEB check IsDebuggedcoccoviviiiiiiininnnn 106
Figure 87: IDA View, large 5:30 - all 0CCUITENCES........ceeiiiiiiiiiiiiiiic 107
Figure 88: Red Pill VMware detection with Backdoor Command Number - patched................ 112
Figure 89: SEH CRAINccoiviiiiiiiiiiiii ettt 115
Figure 90: IDA Pro, text view, sp-analysis failedccccoiiiiiiiiiiiii 116
Figure 91: IDA Pro, graph view, Top level Exception Custom Handler................ccoooovvennnnnnn. 120
Figure 92: IDA Pro, graph view, time function callscccccoiniiiiiiii e 121
Figure 93:0llyDbg REPE SCAS INStrUCHIONcvviiiiiiiiceiiiiic e 121
Figure 94: IDA View, REPNE SCASB instruction all 0cCurrencescccoccvvveeinivnneesnnnnnnn. 122
Figure 95: OllyDbg series of ASCII characters loaded in memory endlessly............cccccccoveeee. 122
Figure 96: IDA graph view, nonstop loop subfunction text.405208............cccoevveiiiiinieniinnn. 123
Figure 97: IDA View, CPUID instructions all OCCUITENCESuevviiiiiiiiiiiiiiiiiiiieee i 124
Figure 98: IDA View, CPUID instructions, using eax = 0 and eax = 1 as parameter 124

Figure 99: IDA View, CPUID instructions, using eax = 0x80000000 and eax = 0x80000001 as

0T 1 10 (c 1< PP P PP PPPPPPPPPPPPPPPPPN 125
Figure 100: IDA Pro, graph view, CPUID highlighted greencccoooviiiiiiiiiiiiiiiienn. 127
Figure 101: IDA Pro, graph view, CPUID highlighted green2ccoooiiiviiiiniiiiiiiinnnnn. 127
Figure 102: IDA Pro, text view, IN highlighted red...........cocoiviiii, 128
Figure 103: IDA Pro, text view, IN highlighted red2............ccccoiiiiii, 128
Figure 104: IDA Pro view, INT 3 OCCUITENCESceeeiiiiiieeiiiiieeiiiiiee et e st 129
Figure 105: IDA Pro graph view, INT 3 trap to debugger NOP-ed..........ccccevviiiiiiiiiiinicniinnnn. 129
Figure 106: IDA Pro, graph view, sp-analysis fail return pointer abuseccccceevvvvreeriinnnn. 131

Figure 107: IDA Pro, graph view, sp-analysis fail return pointer abuse2cccoocvvveerinnnne. 131

List of Figures

Figure 108:
Figure 109:
Figure 110:
Figure 111:
Figure 112:
Figure 113:
Figure 114:
Figure 115:
Figure 116:
Figure 117:
Figure 118:
Figure 119:
Figure 120:
Figure 121:
Figure 122:
Figure 123:
Figure 124:
Figure 125:
Figure 126:
Figure 127:
Figure 128:
Figure 129:

Figure 130:

165
IDA View, sleep function all OCCUITENCES.vvviiiiiiiiiiiiiiie e 132
IDA View, sleep function in InterlockedIncrement thread mutex.............cc.ccveenee. 133
IDA View, sleep function millisecond parameter.............ccovevvvveiiiieiiineeniieeninens 133
IDA View, exit function all OCCUITENCESuvvvvvrrrriiirriiiiiriiiirieieeieiaareeeeanrae———. 134
IDA graph mode, custom eXit fUNCtiONccccovvviiiiiiieniiie e 134
IDA graph mode, custom abort fUnCtionccccevriiiiiiiniiiec e 135
IDA graph mode, conditional jump abort functionc.cccoeveeviiiiveenniie e, 135
IDA graph mode, switch case abort function.............ccccovciiiiiiiiiis 136
IDA graph mode, logical comparison abort functioncccccovviviiiiiiinicniinnn. 136
IDA graph mode, TLS check abort function............c.occovviiiiiiiiii e, 136
IDA graph view, gethostbyname function API call..............cocooiiiiiiiinn 140
IDA graph view, custom function for hashing the IP address..............cccoovvvvinnnnnn. 140
IDA graph view, custom function for IP validation in two piecesceevruvnuee. 141
IDA graph view, custom en/decryption XOR function with 4 byte key (1) 142
IDA graph view, custom en/decryption XOR function with 4 byte key (2)............ 142
IDA graph view, custom en/decryption XOR function with 4 byte key (3)............ 143
IDA graph view, custom en/decryption XOR function with 4 byte key (4)............ 143
OllyDbg Breakpoints on CryptGenRandom APl callcccoeeiiiiiiiiee, 144
Base64 bytes check with byte-stats.pyccoocviiiiiiiiiiiii e 147
Base64 bytes check with specific rangeccceeviiiiiiiiiiic e 148
XORSearch: VBOX string found XORing with 4Ccocoooiiiiiiiiieiiiieee, 149
XORSearch: Debug string found XORINGc.covveiiiiiiiiiiiiiiieeiicee e 150
XORSearch: time string found XORING.........cccouviiiiiiiiiieiiiiiee e 150

166

Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144:
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:

Figure 150:

XORSearch: sleep string found XORINGccccvvviiiiiiiiiiiiiiiec e 151
XORSearch: doc and docx string found XORINGcccoveriiiiiiiiiiiiiieiiieenieee 151
XORSearch: xIs and xIsx string found XORINGcccovvviiiiiiiiiiiiiiiieiiiee e 152
XORSearch: txt string found XORINGccveeiiiiiiiiieiiiie e 153
XORSearch: readme.txt string found XORINGccccviviiiiiiiiiiiiiiicce e 153
XORSearch: targeted string names found XORINGcccvvvvviiiiiiiiiiiiiiiiiiieeens 154
XORSearch: crypt string found XORINGccccvviiiiiiiiiiiiiieceee e 155
XORSearch: username, computer, domain found..............ccccceviieeiiiiiiiiiies 156
XORSearch: username, computer, domain, money strings found................cccco..... 156
XORSearch: specific IP Address found...........ccccoviiiiiiiiiie 157
XORSearch: fail to find some clues that was provided from external information.157
VirusTotal Results - 1coooiiiiiiiiiiii X1
VirusTotal ReSults - 2 ... XTI
VirusTotal Results - 3 ... XIV
VirusTotal RESUILS — 4.....coooiiiii e XV
Hybrid Analysis ReSUlts — 1ccuuiiiiiiiiiiiiiiiii e XVI
Hybrid Analysis RESUILS — 2uviiiiiiiiiiiiiiiiiiiccee e XVII
HybridAnalysis ReSults — 3cuuiiiiiii e XVIII
Hybrid Analysis ReSUIS — 4ocuiiiiiiii e XIX
Section Names & IMAGE EXPORT DIRECTORY Structure Members XX

Figure 151: Kernel32 Exports, IMAGE IMPORT DESCRIPTOR Structure, ImgDelayDescr

Structure, Resources from ADVAPI32.DLL

List of Figures
167

Figure 152: Fields of IMAGE DEBUG DIRECTORY, IMAGE COR20 HEADER Structure

Conclusion
168

Bibliography

[1] F. M. Last Name, "Article Title," Journal Title, pp. Pages From - To, Year.

[2] F. M. Last Name, Book Title, City Name: Publisher Name, Year.

[3] O..Martinu and G. . McEwen, "Crime in the age of technology," , 2018. [Online]. Available:
https://bulletin.cepol.europa.eu/index.php/bulletin/article/download/337/286.

[Accessed 26 3 2019].

[4] J. Rutkowska, "Red Pill... or how to detect VMM using (almost) one CPU instruction,"
Invisible Things Lab, 01 November 2004. [Online]. Available:
http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/redpill

.html. [Accessed 01 02 2019].

[5] T. Klein, "Scooby Doo - VMware Fingerprint Suite," 2003. [Online]. Available:
http://web.archive.org/web/20061215022409/http://www.trapkit.de/research/vmm/sc

oopydoo/index.html. [Accessed 01 02 2019].

[6] T. Klein, "jerry - A(nother) VMware Fingerprinter,” 2003. [Online]. Available:
http://web.archive.org/web/20061215022453/http://www.trapkit.de/research/vmm/je

rry/index.html. [Accessed 01 02 2019].

Conclusion
169

[7] T. Klein, "VMware fingerprint codes," 2003. [Online]. Available:
http://web.archive.org/web/20061215022430/http://www.trapkit.de/research/vmm/in

dex.html. [Accessed 01 02 2019].

[8] Quist, Danny; Smith, Val;, "Detecting the Presence of Virtual Machines Using the Local Data
Table,” Offensive = Computing, 25 04 2006. [Online]. Available:
http://web.archive.org/web/20060425123645/http://www.offensivecomputing.net/fil

es/active/0/vm.pdf. [Accessed 01 02 2019].

[9] T. Raftetsede, C. Kruege and E. Kirda, "Detecting System Emulators," Secure Systems Lab,

Technical University of Vienna, Austria, Vienna, Austria.

[10 Liston, Tom; Skoudis, Ed;, "On the Cutting Edge:Thwarting Virtual MachineDetection,"

SANS, 2006.

[11 L. Zeltser, "Virtual Machine Detection in Malware via Commercial Tools," 18 01 2007.
[Online]. Available: http://isc.sans.org/diary.html?storyid=1871&rss. [Accessed 01

02 2019].

[12 K. Zahn, "Case Study: 2012 DC3 DigitalForensic Challenge BasicMalware Analysis
Exercise," 24 08 2013. [Online]. Available: https://www.sans.org/reading-
room/whitepapers/malicious/case-study-2012-dc3-digital-forensic-challenge-basic-

malware-analysis-exercise-34330. [Accessed 01 02 2019].

170

[13 Sikorski, Michael; Honig, Andrew; Lawler, Stephen;, Practical Malware Analysis, San

Francisco, CA: No Starch Press, 2012, pp. 1 - 802.

[14 Barham, P., Dragovic, B., Fraser K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., &

Warfield, A., "Xen and the Art of Virtualization," 2003.

[15]). Rutkowska, "Stealth Malware Taxonomy," 11 2006. [Online]. Available:

blog.invisiblethings.org/papers/2006/rutkowska malware taxonomy.pdf. [Accessed

01 02 2019].

[16 A. Sanabria, "Malware Analysis: Environment Design and Artitecture," 18 01 2007. [Online].
Available: https://www.sans.org/reading-room/whitepapers/threats/malware-

analysis-environment-design-artitecture-1841. [Accessed 01 02 2019].

[17 K. Fiscus, "Base64 Can Get You Pwned," SANS Institute, 2011.

[18 M. B, "Malware Monday: Obfuscation," 19 12 2016. [Online]. Available:
https://medium.com/@bromiley/malware-monday-obfuscation-f65239146db0.

[Accessed 24 02 2019].

[19 D. Stevens, "Decoding malware via simple statistical analysis," Didier Stevens Labs, 30 08
2017. [Online]. Available: https://blog.nviso.be/2017/08/30/decoding-malware-via-

simple-statistical-analysis/. [Accessed 24 02 2019].

Conclusion
171

[20 D. Stevens, "XORSearch & XORStrings," Didier Stevens Labs, 01 2007. [Online]. Available:

https://blog.didierstevens.com/programs/xorsearch/. [Accessed 24 02 2019].

[21 Dilshan Keragala, "Detecting Malware and SandboxEvasion Techniques," SANS Institute,

January 16, 2016.

[22 Ferrie, Peter, "The “Ultimate” Anti-Debugging Reference," 5 4 2011. [Online]. Available:
https://anti-reversing.com/Downloads/Anti-Reversing/The Ultimate Anti-

Reversing Reference.pdf. [Accessed 1 12 2018].

Appendix A

Appendices
Appendix A
Specifications of Host’s Hardware and Software, VM and VME installation and
configuration
A.1 Hardware specification of single PC lab

Processor:

Intel Core i7-3930K CPU 3.20GHz, 3200 Mhz, 6 Cores, 12 Logical Processors

Supporting:

Intel 64 architecture

Intel HT Technology

Intel VI-d

Intel VI-x

Intel VI-x with EPT

Doe not support:

Intel vPro Technology®

Physical Memory (RAM):

32.0 GB

Hard Disk Drive for Host:
120 GB SSD

Hard Disk Drive for Virtual Machines Storage
2 x 3TB on software RAID 1.

A.2 Software specification of single PC lab

Host’s OS:Windows 10 Pro x64
VME software: VMware Workstation 14 Pro

A.3 VM Configuration

Note that, all software and configurations written in this section are my personal additions
based on Flare VM®°.

8 It is preferred to have this feature, but on the current case was not available. Luckily the malware does not exploit
Intel’s Virtualization.

8 FLARE VM - a fully customizable, Windows-based security distribution for malware analysis and incident response.
A downloadable configuration script is provided to assist cyber security analysts in creating handy and versatile
toolboxes for malware analysis environments. It provides a convenient interface for them to obtain a useful set of
analysis tools directly from their original sources.

II

A.4 OS installation

For malware analysis, OS may vary, some malwares may only work on certain OS, so it
would be better to have several of them. In the case under analysis, Windows 7 Pro x64 have been
chosen. Any customized Virtual Machine in a Windows installation requires numerous tweaks and
tools to aid analysis. Unfortunately trying to maintain a custom VM like this is very laborious:
tools frequently get out of date and it is hard to change or add new things. There is also a constant
fear that if the VM gets corrupted it would be super tedious to replicate all of the settings and tools
that are being built up. To address this and many related challenges, a standardized (but easily
customizable) Windows-based security distribution called FLARE VM will be used.

A.5 Windows SDK and Framework

Install windows SDK and .Net Framework 4, which also installs WinDBG. (source url:
https://www.microsoft.com/en-us/download/details.aspx?1d=8279).

A.6 Virtual Machine Environment Installation and configuration

Install VMware in your main operating system.

Install a new fresh Windows 7 Pro x64 version of your choice and update it.

Install VMware Tools addition.

Download, install and configure required software, via url. More specifically, the
deployment ofthe FLARE VM environment can be done by visiting the following URL
in Internet Explorer: https://github.com/fireeye/flare-vim/

el N

A.7 FlareVM Installation Script

=

Decompress the FLARE VM repository to a directory of your choosing.

2. Start a new session of PowerShell with escalated privileges. FLARE VM attempts to
install additional software and modify system settings; therefore, escalated privileges
are required for installation.

3. Within PowerShell, change directory to the location where you have decompressed the
FLARE VM repository.

4. Enable unrestricted execution policy for PowerShell by executing the following

command and answering “Y” when prompted by PowerShell: Set-ExecutionPolicy

unrestricted

Execute the install.ps1 installation script: . \install.psi.

6. You will be prompted to enter the current user’s password. FLARE VM needs the

current user’s password to automatically login after a reboot when installing.

Optionally, you can specify the current user’s password bypassing the “-password

<current_user password>"" at the command line. The rest of the installation process is

fully automated. Depending upon your internet speed the entire installation may take
up to one hour to finish. The VM also reboots multiple times due to the numerous
software installations’ requirements. Once the installation completes, the PowerShell
prompt remains open waiting for you to hit any key before exiting. After completing

o

Appendices

III

the installation, you will be presented with the following desktop environment:

(SCREENSHOT FROM FLARE VM HOME SCREEN)

7. At this point power off the VM, switch the VM networking mode to Host-Only, and

then take a snapshot to save a clean state of your analysis VM.

A.8 Installed Tools with FlareVm %

Android

dex2jar
apktool

Debuggers

flare-qdb

scdbg

OllyDbg + OllyDump + OllyDumpEx
OllyDbg2 + OllyDumpEx

x64dbg

WinDbg + OllyDumpex + pykd
Decompilers

RetDec

Delphi

Interactive Delphi Reconstructor (IDR)

Disassemblers

.Net

Flash

IDA Free (5.0 & 7.0)
Binary Ninja Demo
radare2

Cutter

de4dot

Dot Net String Decoder (DNSD)
dnSpy

DotPeek

ILSpy

RunDotNetDIl

FFDec

Forensic

Volatility

Hex Editors

Filelnsight
HxD
010 Editor

v

Java
JD-GUI
Bytecode-Viewer
Networking
FakeNet-NG
ncat
nmap
Wireshark
Office
Oftvis
OfficeMalScanner
PDF
PDFiD
PDFParser
PDFStreamDumper
PE
PEiD
ExplorerSuite (CFF Explorer)
PEview
DIE
PeStudio
PEBear
ResourceHacker
LordPE
Pentest
MetaSploit
Windows binaries from Kali Linux
Text Editors
SublimeText3
Notepad++
Vim
Visual Basic
VBDecompiler
Web
BurpSuite Free Edition
Utilities
FLOSS
HashCalc
HashMyFiles
Checksum
Tzip
Far Manager
Putty
Wget
RawCap
UPX

Appendices

91

For

RegShot

Process Hacker
Sysinternals Suite
API Monitor
SpyStudio
Shellcode Launcher
Cygwin

Unxutils

Malcode Analyst Pack (MAP)
XORSearch
XORStrings

Yara

CyberChef

KernelModeDriverLoader
Python, Modules, Tools

Py2ExeDecompiler
Python 2.7
hexdump

pefile

winappdbg
pycryptodome
vivisect
capstone-windows
unicorn

oletools

unpy2exe
uncompyle6
Python 3
unpy2exe
uncompyle6

Other®?
VC Redistributable Modules (2005, 2008, 2010, 2012, 2013, 2015, 2017)

Net versions 4.6.2 and 4.7.1

Practical Malware Analysis Labs

Google Chrome
Cmder Mini

A.9 Staying up to date

Type the following command to update all of the packages to the most recent version:

cup all

the

live

updated list of features please check

the online

https://www.fireeye.com/blog/threat-research/2018/11/flare-vm-update.html

blog on

the

source

url:

VI

A.10 Extra useful tools

In addition to Flare VM toolset, some useful tools have been installed manually, to have a
complete gamma tool.

A.11 RDG packer detector

Download and extract RDG packer detector to C:\Tools\RDG (Source url:
http://www.rdgsoft.net/). When you run it for first time, it tries to setup context menu which I
choose yes. If you do so, you'll be able to right-click on binaries and let RDG scan it easily.

CFF Explorer
Download and install CFF Explorer. Run CFF Explorer, go to Settings and click Enable
shell extensions.

Ollydbg plugins

Download and extract Ollydbg to C:\Tools\Olly (source url:
http://www.ollydbg.de/odbg110.zip). Use this as Ollydbg.ini which will have nice theme (provided
by jacob@reddit.com) and then install the following Ollydbg plugins:

e Olly advanced (source url:
https://tutsdyou.com/e107_ plugins/download/download.php?view.75)

e Olly breakpoint manager (source url:
https://tutsdyou.com/e107 plugins/download/download.php?view.76)

e OllyBonE (source url:
https://tutsdyou.com/e107_ plugins/download/download.php?view.85)

e OllyDumpEx (source url:
https://tutsdyou.com/e107 plugins/download/download.php?view.3451)

e (OdbgScript (source url:
https://sourceforge.net/projects/odbgscript/files/English%20Version/)

e StrongOD (source url:
https://tutsdyou.com/e107 plugins/download/download.php?view.2028)

e Ultra String Reference (source url:
https://tutsdyou.com/e107 plugins/download/download.php?view.107)

e CopyHexCode (source url:
https://tutsdyou.com/e107 plugins/download/download.php?view.3581)

e Multiline Ultimate Assemble (source url:
https://tutsdyou.com/e107 plugins/download/download.php?view.2805)

e ImportStudio (source url:

https://tutsdyou.com/e107 plugins/download/download.php?view.3438)
At last goto Options -> Just in time debugging and make Ollydbg just-in-time debugger.

Handle

Download and install Handle (source url:
https://download.sysinternals.com/files/Handle.zip). Handle is a utility that displays information
about open handles for any process in the system. You can use it to see the programs that have a

Appendices
VII

file open, or to see the object types and names of all the handles of a program. Runs only via
terminal.

DebugView

Download and install DebugView (source url:
https://download.sysinternals.com/files/DebugView.zip). DebugView is an application that lets
you monitor debug output on your local system, or any computer on the network that you can reach
via TCP/IP. 1t is capable of displaying both kernel-mode and Win32 debug output, so you don't
need a debugger to catch the debug output your applications or device drivers generate, nor do you
need to modify your applications or drivers to use non-standard debug output APIs.

Autoruns for Windows

Download and install Autoruns for Windows (source url:
https://download.sysinternals.com/files/Autoruns.zip). This utility, which has the most
comprehensive knowledge of auto-starting locations of any startup monitor, shows you what
programs are configured to run during system bootup or login, and when you start various built-in
Windows applications like Internet Explorer, Explorer and media players. These programs and
drivers include ones in your startup folder, Run, RunOnce, and other Registry keys. Autoruns
reports Explorer shell extensions, toolbars, browser helper objects, Winlogon notifications, auto-
start services, and much more. Autoruns goes way beyond other autostart utilities.

Dependency Walker

Download and install Dependency Walker (source url:
http://www.dependencywalker.com/). Dependency Walker is a free utility that scans any 32-bit or
64-bit Windows module (exe, dll, ocx, sys, etc.) and builds a hierarchical tree diagram of all
dependent modules. For each module found, it lists all the functions that are exported by that
module, and which of those functions are actually being called by other modules. Another view
displays the minimum set of required files, along with detailed information about each file
including a full path to the file, base address, version numbers, machine type, debug information,
and more.

A.12 Snapshotting

At this point power off the VM, switch the VM networking mode to Host-Only, and then take a
second snapshot to save a clean state of your analysis VM.

Appendix B
VIII

Appendix B
StealthyTools.reg

Windows Registry Editor Version 5.00

[HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\Current Version\Installer\Use
rData\S-1-5-18\Products\43F974CODOE8C1C4D9CA1C70A1C60570\InstallProperties]
"LocalPackage"="C:\\Windows\\Installer\\124ec.msi"

"Authorized CDFPrefix"=""
"Comments"="Build "

V!Contact":""
"DisplayVersion"="8.1.30629.3138"
V!HelpLinkH:HH

"HelpTelephone"=""

"InstallDate"="20170205"

"InstallLocation"="C:\\Program Files\\VMware\\VMware Tools\\"

"InstallSource"="C:\\Users\\Admin\\AppData\\Local\\Temp\\{0C479F34-8E0D-4C1C-9DAC-

C1071A6C5007} ~setup\\"

"ModifyPath"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2¢,00,65,00,78,\
00,65,00,20,00,21,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,00,\
34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,39,\
00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,00,\
35,00,30,00,30,00,37,00,7d,00,00,00

"Publisher"="Microsoft Corporation"

"Readme"=""

"Size"=""

"EstimatedSize"=dword:0001685f

"UninstallString"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2¢,00,65,00,\
78,00,65,00,20,00,2£,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,\
00,34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,\
39,00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,\
00,35,00,30,00,30,00,37,00,7d,00,00,00

"URLInfoAbout"=""

"URLUpdatelnfo"=""

"VersionMajor"=dword:0000000a

"VersionMinor"=dword:00000000

"Windowslnstaller"=dword:00000001

"Version"=dword:0a00000a

"Language"=dword:00000409

"DisplayName"="Microsoft Visual C++ 2005 Redistributable - x86 8.1.30629.3138"

[HKEY LOCAL MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{0

C479F34-8E0D-4C1C-9DAC-C1071A6C5007}]

"AuthorizedCDFPrefix"=""
"Comments"="Build "
"Contact"=""

"DisplayVersion"="8.1.30629.3138"

Appendices
IX

Windows Registry Editor Version 5.00

"HelpLink"=""

"HelpTelephone

"InstallDate"="20170205"

"InstallLocation"="C:\\Program Files\\VMware\\VMware Tools\\"

"InstallSource"="C:\\Users\\Admin\\AppData\\Local\\Temp\\{0C479F34-8EO0D-4C1C-9DAC-

C1071A6C5007} ~setup\\"

"ModifyPath"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2¢,00,65,00,78,\
00,65,00,20,00,2£,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,00,\
34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,39,\
00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,00,\
35,00,30,00,30,00,37,00,7d,00,00,00

"Publisher"="Microsoft Corporation"

"ReadmeH:HH

"SiZe":""

"EstimatedSize"=dword:0001685f

"UninstallString"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2¢,00,65,00,\
78,00,65,00,20,00,21,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,\
00,34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,\
39,00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,\
00,35,00,30,00,30,00,37,00,7d,00,00,00

"URLInfoAbout"=""

"URLUpdatelnfo"=""

"VersionMajor"=dword:0000000a

"VersionMinor"=dword:00000000

"WindowslInstaller"=dword:00000001

"Version"=dword:0a00000a

"Language"=dword:00000409

"DisplayName"="Microsoft Visual C++ 2005 Redistributable - x86 8.1.30629.3138"

n_nn

[HKEY LOCAL MACHINE\SOFTWARE\Classes\Installer\Products\43F974CODOESC1C4
DI9CA1C70A1C60570]

"ProductName"="Microsoft Visual C++ 2005 Redistributable - x86 8.1.30629.3138"
"PackageCode"="769916177BF4A6642B24C24DE19F5D48"
"Language"=dword:00000409

"Version"=dword:0a00000a

"Assignment"=dword:00000001

"AdvertiseFlags"=dword:00000184
"ProductIcon"="C:\\Windows\\Installer\\{0C479F34-8E0D-4C1C-9DAC-C1071A6C5007}"
"InstanceType"=dword:00000000

"Authorized LUA App"=dword:00000000

"DeploymentFlags"=dword:00000003

"Clients"=hex(7):3a,00,00,00,00,00

[HKEY LOCAL MACHINE\SOFTWARE\Classes\Installer\Products\43F974CODOESC1C4
DI9CAIC70A1C60570\SourceList]

X

Windows Registry Editor Version 5.00

"PackageName"="VMware Tools64.msi"

"LastUsedSource"=hex(2):6¢,00,3b,00,31,00,3b,00,43,00,3a,00,5¢,00,55,00,73,00,\
65,00,72,00,73,00,5¢,00,41,00,64,00,6d,00,69,00,6¢,00,5¢,00,41,00,70,00,70,\
00,44,00,61,00,74,00,61,00,5¢,00,4¢,00,6£,00,63,00,61,00,6¢,00,5¢,00,54,00,\
65,00,6d,00,70,00,5¢,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,00,34,\
00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,39,00,\
44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,00,35,\
00,30,00,30,00,37,00,7d,00,7¢,00,73,00,65,00,74,00,75,00,70,00,5¢,00,00,00

[HKEY LOCAL MACHINE\SOFTWARE\Classes\Installer\Products\43F974CODOE8C1C4
DI9CA1C70A1C60570\SourceList\Media]

n 1 n_n.n
2

"2":";H
"3":";H
U4U:U;H
USV!:U;H
U6U:U;H
U7U:U;H
U8U:U;H
U9U:U;H
n 1 OV!:H ;H
n 1 1 H:H;H
n 12":H ;H
n 1 3":H ;H
n 14":H ;H
n 1 5":U ;H
n 1 7":H ;H
n 1 8":U ;H
n 1 9":H ;H
H20H:U;H
H2 1 n_—_n ;H
H22H:U;H

[HKEY LOCAL MACHINE\SOFTWARE\Classes\Installer\Products\43F974CODOESC1C4

DI9CA1C70A1C60570\SourceList\Net]

"1"=hex(2):43,00,3a,00,5¢,00,55,00,73,00,65,00,72,00,73,00,5¢,00,41,00,64,00,\
6d,00,69,00,6¢,00,5¢,00,41,00,70,00,70,00,44,00,61,00,74,00,61,00,5¢,00,4c,\
00,61,00,63,00,61,00,6¢,00,5¢,00,54,00,65,00,6d,00,70,00,5¢,00,7b,00,30,00,\
43,00,34,00,37,00,39,00,46,00,33,00,34,00,2d,00,38,00,45,00,30,00,44,00,2d,\

Table 9: StealthyTools.reg on Attached zipped files

Appendix C
XI

Appendix C
Registry Renames on VMware PowerShell script

$path = Get-Childltem HKLM:\Software\Microsoft\Windows\Current Version\Uninstall\
$results = $path | foreach-object {get-ItemProperty $.pspath} | where {$.DisplayName -
match "VMware"} | where {$_.Publisher -match "VMware,"}

foreach ($result in $results){

$line = $result.pspath

set-ItemProperty -path $line DisplayName -value "MyWare"

set-ItemProperty -path $line Publisher -value "MyWare, Inc"

}

Table 10: registry Renames on VMware PowerShell script.ps1, Attached in zipped files

XII

Appendix D
VirusTotal Results

@
EXE

(21/67)

21 engines detected this file

Appendix D

SHA-256 6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f1 2cee0635cf92
File name malware.exe
File size 490 KB

Last analysis 2018-07-27 12:24:38 UTC

Detection Details Behavior

Basic Properties ©

MD5

SHA-1
Authentihash
Imphash

File Type
Magic
S5Deep

TRIiD

File Size

Tags ©

History ©

Creation Time
First Submission
Last Submission

Last Analysis

File Names ©

malware.exe
file-7706740_exe

Community o

01fde82d16edfe26e180fac7cd74cfbe2

597fa0573848d4444120b09c8b41169c132942d
2030c161cd04707bb49cb44e115793b674f7a79746226a3739f25f75be72f16a

56c77f3392fa475e9972c5e94099a10cC

Win32 EXE

PE32 executable for MS Windows (GUI) Intel 80386 32-bit
6144i0+9eAJFquiHpGji+3WH7bhcKRhRGgghcaCCytMujx3aST6/AKePRz6sBdwdhg02:P+Qullei+EhcKRIR3aSXjPGPBmn

Win32 Dynamic Link Library (generic) (38.3%)

Win32 Executable (generic) (26.2%)
05/2 Executable (generic) (11.8%)
Generic Win/DOS Executable (11.6%)
DOS Executable Generic (11.6%)

490 KB

2014-10-14 08:18:51
2014-11-18 08:30:31
2018-07-27 12:24:38
2018-07-27 12:24:38

6d2eebb36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92

Portable Executable Info ©

Header

Target Machine

Compilation Timestamp

Intel 386 or later processors and compatible processors
2014-10-14 08:18:51

Entry Point 4768
Contained Sections 8
Sections

MName Virtual Address

Jtext 4096

.data 466944

.rdata 471040

Figure 142: VirusTotal Results - 1

Virtual Size

461640

600

27648

Raw Size

461824

1024

27648

Entropy

6.1

5.25

MD5

0b8ccede10f7599a080799dc88261b21

fa3a6789ad95497d492e3f04ef4c542c

2c75a15b7835393fcdB6e041e7419263

Appendices

.bss 507504 27520]

.idata 536576 3288 3584

.CRT 540672 24 512

s 544768 32 512
Imports

B ADVAPI32DLL

CryptAcquireContextW
GetUserNameA
CryptReleaseContext
CryptGenRandom
RepOpenKeyExA

B KERNEL32.dIl

GetLastError
EnterCriticalSection
ReleaseMutex
WaitForSingleObject
I1sDebuggerPresent
ExitProcess

TisAlloc

VirtualProtect
DeleteCriticalSection
GetAtomNameA
AddAtomA
FindAtoma
TlsGetValue
MultiByteToWideChar
GetProcAddress
GetComputerNameExA
CreateMutexA
1sDBCSLeadByteEx
CreateSemaphoreA
WideCharToMultiByte
TlsFree
GetModuleHandleA
FindFirstFileA
InterlockedExchange
SetUnhandledExceptionFilter
CloseHandle
FindNextFileA
ReleaseSemaphore
InitializeCriticalSection
VirtualQuery
FindClose
InterlockedDecrement
Slesp

TlsSetvalue
GetCurrentThreadid
LeaveCriticalSection
SetlastError
Interlockedincrement

B SHELL32DLL

SHGetSpecialFolderPathA

B Ws0CK32.0LL

WSAStartup
gethosthyname
gethostname

B msvertdil

p fmode
malloc
getc
srand
o environ

Figure 143: VirusTotal Results - 2

5.01

012

0.22

XIII

d41d8cd98f00b204e5800998ecf8427e
cbgcasb2eb102a48e266d1a379482165
f26044af392c5594ad34576acal15d1db

b7edfdf69cb172a8497793b5d97c5214

X1V

__p__environ
fgetc
realloc
fread
fclose
wesftime
ungetwe
wesxfrm
atexit
abaort
_setmode
getwe
fflush
fopen
strlen
towupper
_cexit
fpute
iswctype
_efrrno
strtod
fwrite
fgetpos
strtime
_onexit
weslen
fputs

exit
sprintf
putc
memcmp
strxfrm
rand
fsetpos
towlower
strchr
memset
_fdapen
wescoll
time

free
geteny
setlocale
signal

atoi
_fstaticd
__getmainargs
calloc
_wirite
strcoll
memcpy
_lseekiss
memmave
_read
strerror
rermaove
stremp
_filelengthic4
setvbuf
__mb_cur_max
ungetc
putwc
_set app type
vfprintf
localeconv
memchr
_iob

Figure 144: VirusTotal Results - 3

Appendices

memmaove
_read
strerror
remaove
stremp

_filelengthisd

setvbuf

__mb_cur_max

ungetc
putwe

__set app_type

viprintf
localeconv
memchr
_iob

Exif Tool File Metadata ©

CodeSize
EntryPoint
FileType
FileTypeExtension
ImageVersion
InitializedDataSize
LinkerVersion
MIMEType
MachineType
OSVersion

PEType
Subsystem
SubsystemVersion

TimeStamp

UninitializedDataSize

461824

0x12a0

Win32 EXE

exe

1.0

500736

222
application/octet-stream
Intel 386 or later, and compatibles
4.0

PE32

Windows GUI

4.0

2014:10:14 09:18:51+01:00
o

Figure 145: VirusTotal Results — 4

XV

XVI

HybridAnalysis results

ANALYSIS

QH I AHome S Submissions ~ MMResources ~ X Contact

msl.exe %

This report ic generated from a file cr URL submiitted to this webservice on September 12th 2018 01:56:00 (CEST) and action script Heavy Anti-Evasion
Guest Syszem: Windows 7 32 bit, Hore Premium 6.1 (build 7607), Service Pack 1
Report generates by Falcon Sendbax vE 20 @ Hybrid Analyss - (leam mare

% Oveniew | & Logi t Download Sample (73K81 @ Cowrlcads = | W External Reperts = | (G Re-acalyze | D Hash Mot Seen Before [T Mz similarsamples | Ak Report Abuse
Incident Response

@ Risk Assessment

Remote Access Reads terminal service related keys (often RDP relatzc]

BB MITRE ATT&CK™ Techniques Detection

This report has 3 indicaters that were mapped to 4 attack technigues and 4 tactics.

Indicators

@ notall malicious and suspicious indicators are displayed. Gz your own cloud service or the full version to view all details.

Malicious Indicators

Environment Awareness

The input sample conitains a known anti-VM trick

details Found WM cetection artifact "ViMurare trick” in "gdZee6b36 047cdaf2c20012d174 8721 abebfT1d8 2c 4202 451112¢ee D6 35197 exe bir” (Offset: 13698
source Extracted File

relevance 510

External Systems

Sample was idenvified as malicious by a large number cf Antivirus engines

details 2167 Antivirus vendors marked sample as melicious (31% dztection rate)
source Externa. System

relevance 10/10

Sample vras identifed as malicious by at least cne Antivirus engine

details 2167 Antiviras vendors marked sample 2s malicious (313 detection rate)
212 Arfivirus verdors marked sarmnle as malicious [15% detection rate]
source External System

relevance /10

Figure 146: HybridAnalysis Results — 1

Q IP, Domarn, Hash._..

Trrezt Scor=: 100/100
AV Detectior: 51%
Labeled as Soywa2.298.5dl42

Appendices

Suspicious Indicators

Environment Awareness

Contains ability to measure performance
details rdsc from 6d2ee6236047cdafic20012dIF6E Te2abebr MdB 2c420d4512F12 022063 592 eve MD- 3755) [Show Stieam)
source Hybrid Anzlysis Technology

televance 10/10

Contains ability to query CPU information
details cpud from fdizefb36047odaf 26200 12d17487=2abebfT1d8 2c42 00 45211 2eee D6 35492 ewe (PID: 37551 (Show Stream)
source Hybrid Anzlysis Technology
relevance 10/10
ATTACKID T10E2 (Show tecrinigue in the MITRE ATT&CK™ matrx)

Remote Access Related

Reads termina| service related keys (cften RDPrelated)

details "<Ingut Sample>" (Fath: "HKLMISYSTEM\CONTRCLSETOCTCONTRCLTERMIMAL SERVER”; Key: "TSUSZRENABLED')
source Registry Access
televance 10/10
ATTACKID T1076 (Show techniqus i the MITRZ ATTECK™ matrix]

Unusual Characteristics

Creates a mutant that has been seen in the context of malware

details "zec-shmem-tdm3-use_fr_key”
"zcc-shmem-tdm32-“c_key"
"zec-shmem-tdmI-sjl_once”
source Crzatad Mutant

relevance 610

Found TLS callbacks

details "8d2eebo36047cda2c2C 01 2d1F6E Te2aben TIdA 2e420d4 52112026063 5cf92 eve bin” hes a TLS callback with entrypaint at 0x412310
“fd2eebo36047cda2c2C 01 216 & Teabenr TIdA 2e420d4 52112020063 5cf92 eve bin” hes a TLS callback with entrypaint at 0xdla2e0
source Satic Parser
relevance 10/10
ATT&CKID T1055 [Show technigue in the MITRE ATT&CK™ mat-ix)

Imports suspicious APls

defails GetlsetNamezA
PegOpenkizy=xA
IsDebuggerFresent
VrtualProtect
GetProchdcress
GetComouterNamezExf
GetModulzHardleA
FindFirstFileA
FindNexzFileA
Seep
W5AStartup

source Satic Parser

relevance 1710

Figure 147: HybridAnalysis Results — 2

XVII

XVII

PE file contains unusual section name

defails "hd2eebo36047cda’2c2C 01 2d1F6E Te2aben TIdA 2c420d4 5212020063 5cf92 eve bin” hes a s=ction named ".eh_fram”

“6d2ee6036047cda‘2c20012d1f65 Te2ebet T1d5 2c420d4 52122063 5¢f92 exe.bin” hzs asction named "CRT
source Suatic Parser

relevance 10/10

Infermative
Anti-Reverse Engineering

Contains ability to register a rop-level exception harcler (often used as anti-debugging trick]

-

Telabebf71032:4200 4581 2cee0£ 35092 exe (PID: 37561 Show Stream)

defails SetUnhandledExceationFiliergk ZRNEL32.DLL from dZ2eesb3604Todzf2e 20012468
SetlnhandledExceationFilter@ ZRNEL32.DLL from 6d2eetb36047cdzf 2200124687 e2abebf71082:420045F31 2ceeD 835492 exe (PID: 3756} (Show Stream)

source Hybrid Anzlysis Technology
relevance 110

PE file contains zerc-size secticns
details Raw size of "bss” i zemn
source Siatic Parser

relevanze 10/10

General

Creates mutants
defails "\Sessions\l\BaseNzmedChojects\gcc-shmem-tdm2-use_fc_key”
"\Sessions\l\BaseNzmedOgjects\goc-shmem-tem-gj_oncs”
“iSessionsil\BaseNzmedOojects\goc-shmem-toma-fe_key”
“zec-shmem-tdm3-use_fr_key”
"zcc-shmem-tdm32-fc_key"
“zec-shmem-tdm3-5l_once”
source Crzatzd Mutant
relevance 3110

Network Related

Found petential URL in oinary/memory

defails Heunistic match: "tL<EtH< D"
source Sring

relevance 10/10

Figure 148: HybridAnalysis Results — 3

Appendices

File Details

Al Details:

[mslexe
Filename mslexe
Size 49CKiB (501760 bytes)
e (0EED
Desaription PE32 executable (GUI) Intel 80386 (stripped to extemal PDB), for MS Windows
Architecture WINDOWS
SHA256 6d2ec6b36047:daf2c20012d1f687e 2abebi71c8 2c420d45f212cee0635c192 B
Resources Visualization
lcon Iﬂ Input File (PortEx)
Classification (TriD)
*+ 434% (DLL) Win32 Dynamic Link Library (gereric)
* 76.8% (EXE] Win32 Executable (generic)
 132% (EXE) Generic Win/DOS Executable
» 13.2% (.EXE) DOS Executzble Generic
 0.2% [VXD) VXD Driver
File Sections
Mzme Entropy Virtual Address Virtual Size Raw Size MD5
text 410372954224 X000 0x70b48 DR0C00 ObBcctdelf75292060799dcBE 25121
dats 109623992353 372000 01258 Dr4CO 1238672930954970492e 300 4ef 4c5 43¢
waza 524667103496 373000 01600 DiEe00 0751567335393 26204 €T419263
eh_fem 474043853252 0372000 01473 01500 1834e06124729599174 3824 3ab3 4ed
bss 0 7000 016k80 0x0 d41d8cdIBT0b204e9800938=clB42Te
idata 50H26353708 383000 Oxcds 01200 chBcach2ebl 02348 5601375462155
[on 0118350531259 334000 0118 0200 12604437302c5394ed34576ace 521db
s 072462003431 385000 0120 0200 bTSdfde9chi7228497793b3d 375214
File Imports
ADVAPI32DLL KERMEL324 Tsveridl SHEL32.DLL WSCCK32DLL
CryptAcquireContextV
CryptGenRancom
(ryptRelezseCortent
Getlsertlzmel
RegOperKeyExA

Figure 149: HybridAnalysis Results — 4

XIX

Cff

Appendix E

Appendix E
Win32 Portable Executable File Format

Copyright © Microsoft Corporation. This document is an archived reproduction of a version originally published by Microsoft. It may have slight formatting modifications for
consistency and to improve readability.

Section Names
Name [Description
text The default code section.

.data The default read/write data section. Global variables typically go here.

rdata |The default read-only data section. String literals and C++/COM vtables are examples of items put into .rdata.

.idata The imports table. It has become common practice (either explicitly, or via linker default behavior) to merge the .idata section into
another section, typically .rdata. By default, the linker only merges the .idata section into another section when creating a release
mode executable.

.edata |The exports table. When creating an executable that exports APIs or data, the linker creates an .EXP file. The .EXP file contains an
.edata section that's added into the final executable. Like the .idata section, the .edata section is often found merged into the .text or
.rdata sections.

.ISIc The resources. This section is read-only. However, it should not be named anything other than .rsrc, and should not be merged into
other sections.

.bss Uninitialized data. Rarely found in executables created with recent linkers. Instead, the VirtualSize of the executable's .data section is
expanded to make enough room for uninitialized data.

.crt Data added for supporting the C++ runtime (CRT). A good example is the function pointers that are used to call the constructors and
destructors of static C++ objects. See the January 2001 Under The Hood column for details on this.

Als Data for supporting thread local storage variables declared with __declspec(thread). This includes the initial value of the data, as well
as additional variables needed by the runtime.

.reloc The base relocations in an executable. Base relocations are generally only needed for DLLs and not EXEs. In release mode, the linker
doesn't emit base relocations for EXE files. Relocations can be removed when linking with the /FIXED switch.

.sdata ["Short" read/write data that can be addressed relative to the global pointer. Used for the TA-64 and other architectures that use a global
pointer register. Regular-sized global variables on the IA-64 will go in this section.

.srdata |"Short" read-only data that can be addressed relative to the global pointer. Used on the IA-64 and other architectures that use a global
pointer register.

.pdata [The exception table. Contains an array of IMAGE_RUNTIME_FUNCTION_ENTRY structures, which are CPU-specific. Pointed to
by the IMAGE_DIRECTORY_ENTRY_EXCEPTION slot in the DataDirectory. Used for architectures with table-based exception
handling, such as the IA-64. The only architecture that doesn't use table-based exception handling is the x86.

.debugS$S|Codeview format symbols in the OBJ file. This is a stream of variable-length CodeView format symbol records.
.debugST|Codeview format type records in the OBJ file. This is a stream of variable-length CodeView format type records.
.debugSP|Found in the OBJ file when using precompiled headers.

.drectve |Contains linker directives and is only found in OBJs. Directives are ASCII strings that could be passed on the linker command line. For]
instance:

-defaultlib:LIBC

Directives are separated by a space character.

.didat |Delayload import data. Found in executables built in nonrelease mode. In release mode, the delayload data is merged into another
section.

IMAGE_EXPORT _DIRECTORY Structure Members

Size Member |Description

DWORD|Characteristics Flags for the exports. Currently, none are defined.

DWORD|TimeDateStamp The time/date that the exports were created. This field has the same definition as the
IMAGE_NT_HEADERS.FileHeader. TimeDateStamp (number of seconds since 1/1/1970 GMT).

WORD [MajorVersion The major version number of the exports. Not used, and set to 0.

WORD |MinorVersion The minor version number of the exports. Not used, and set to 0.

DWORD|Name A relative virtual address (RVA) to an ASCII string with the DLL name associated with these exports (for
example, KERNEL32.DLL).

DWORD|Base This field contains the starting ordinal value to be used for this executable's exports. Normally, this value is
1, but it's not required to be so. When looking up an export by ordinal, the value of this field is subtracted
from the ordinal, with the result used as a zero-based index into the Export Address Table (EAT).

DWORD|NumberOfFunctions The number of entries in the EAT. Note that some entries may be 0, indicating that no code/data is exported
with that ordinal value.

Figure 150: Section Names & IMAGE_EXPORT_DIRECTORY Structure Members

Appendices

DWORD

NumberOfNames The number of entries in the Export Names Table (ENT). This value will always be less than or equal to the

NumberOf-Functions field. It will be less when there are symbols exported by ordinal only. It can also be
less if there are numeric gaps in the assigned ordinals. This field is also the size of the export ordinal table
(below).

DWORD

AddressOfFunctions The RVA of the EAT. The EAT is an array of RVAs. Each nonzero RVA in the array corresponds to an

exported symbol.

DWORD

AddressOfNames The RVA of the ENT. The ENT is an array of RVAs to ASCII strings. Each ASCII string corresponds to a

symbol exported by name. This table is sorted so that the ASCII strings are in order. This allows the loader to
do a binary search when looking for an exported symbol. The sorting of the names is binary (like the C++
RTL stremp function provides), rather than a locale-specific alphabetic ordering.

DWORD

AddressOfNameOrdinals|The RVA of the export ordinal table. This table is an array of WORDs. This table maps an array index from

the ENT into the corresponding export address table entry.

KERNEL32 Exports

exports table:

Name : KERNEL32.d1l1

Characteristics: 00000000

TimeDateStamp: 3B7DDFD8 -> Fri Aug 17 23:24:08 2001
Version: 0.00

Ordinal base: 00000001

of functions: 000003A0

of Names: 000003A0

Entry Pt Ordn Name

00012ADA 1 ActivateActCtx

000082C2 2 AddAtomA

eseremainder of exports omitted

IMAGE_IMPORT_DESCRIPTOR Structure

Size Member Description

DWORD|OriginalFirstThunk|This field is badly named. It contains the RVA of the Import Name Table (INT). This is an array of
IMAGE_THUNK_DATA structures. This field is set to 0 to indicate the end of the array of
IMAGE_IMPORT_DESCRIPTORs.

DWORD|TimeDateStamp |This is 0 if this executable is not bound against the imported DLL. When binding in the old style (see the section
on Binding), this field contains the time/date stamp (number of seconds since 1/1/1970 GMT) when the binding
occurred. When binding in the new style, this field is set to -1.

DWORD|ForwarderChain |This is the Index of the first forwarded API. Set to -1 if no forwarders. Only used for old-style binding, which

could not handle forwarded APIs efficiently.

DWORD|Name The RVA of the ASCII string with the name of the imported DLL.

DWORD|FirstThunk Contains the RVA of the Import Address Table (IAT). This is array of IMAGE_THUNK_DATA structures.

ImgDelayDescr Structure

Size |Member Description

DWORDIgrAttrs The attributes for this structure. Currently, the only flag defined is dlattrRva (1), indicating that the address fields in the
structure should be treated as RVAs, rather than virtual addresses.

RVA rvaDLLName |An RVA to a string with the name of the imported DLL. This string is passed to LoadLibrary.

RVA rvaHmod An RVA to an HMODULE-sized memory location. When the Delayloaded DLL is brought into memory, its
HMODULE is stored at this location.

RVA rval AT An RVA to the Import Address Table for this DLL. This is the same format as a regular IAT.

RVA rvaINT An RVA to the Import Name Table for this DLL. This is the same format as a regular INT.

RVA rvaBoundIAT |An RVA of the optional bound TAT. An RVA to a bound copy of an Import Address Table for this DLL. This is the same
format as a regular IAT. Currently, this copy of the IAT is not actually bound, but this feature may be added in future
versions of the BIND program.

RVA rvaUnloadIAT|An RVA of the optional copy of the original IAT. An RVA to an unbound copy of an Import Address Table for this DLL.
This is the same format as a regular IAT. Currently always set to 0.

DWORD|dwTimeStamp|The date/time stamp of the delayload imported DLL. Normally set to 0.

Resources from ADVAPI32.DLL
Resources (RVA: 6B000)

ResDir (0) Entries:03 (Named:01, ID:02) TimeDate:00000000

ResDir (MOFDATA) Entries:01 (Named:01, ID:00) TimeDate:00000000

XXI

Figure 151: Kernel32 Exports, IMAGE_IMPORT_DESCRIPTOR Structure, ImgDelayDescr Structure,
Resources from ADVAPI32.DLL

XXII

ResDir (MOFRESOURCENAME) Entries:01 (Named:00, ID:01) TimeDate:00000000

ID:

00000409
DataRVA: 6B6F0

DataEntryOffs:
DataSize: 190F5

00000128
CodePage: 0

ResDir (STRING) Entries:01 (Named:00, ID:01) TimeDate:00000000
ResDir (C36) Entries:01 (Named:00, ID:01) TimeDate:00000000

TD3;
DataRVA: 6Bl

00000409

DataEntryOffs:

B0 DataSize: 0053C

00000138
CodePage: 0

ResDir (RCDATA) Entries:01 (Named:00, ID:01) TimeDate:00000000
ResDir (66) Entries:01 (Named:00, ID:01) TimeDate:00000000

ID:
DataRVA:

00000409
85908

DataEntryOffs:
DataSize: 0005C

Fields of IMAGE_DEBUG_DIRECTORY

00000148
CodePage: 0

Size Member scription

DWORD|Characteristics Unused and set to 0.

DWORD|TimeDateStamp The time/date stamp of this debug information (number of seconds since 1/1/1970, GMT).

WORD |MajorVersion The major version of this debug information. Unused.

WORD |MinorVersion The minor version of this debug information. Unused.

DWORD|Type The type of the debug information. The following types are the most commonly encountered:

IMAGE_DEBUG_TYPE_COFF

IMAGE_DEBUG_TYPE CODEVIEW // Including PDB files
IMAGE_DEBUG_TYPE_ FPO // Frame pointer omission
IMAGE_DEBUG_TYPE MISC // IMAGE_DEBUG_MISC
IMAGE_DEBUG_TYPE_OMAP_TO_SRC
IMAGE_DEBUG_TYPE_OMAP_FROM_SRC

IMAGE DEBUG_TYPE BORLAND // Borland format

DWORD|SizeOfData The size of the debug data in this file. Doesn't count the size of external debug files such as .PDBs.

DWORD]|AddressOfRawData|The RVA of the debug data, when mapped into memory. Set to 0 if the debug data isn't mapped in.

DWORD|PointerToRawData |The file offset of the debug data (not an RVA).

IMAGE_COR20_HEADER Structure

Type ember scription

DWORD cb Size of the header in bytes.

WORD MajorRuntime Version The minimum version of the runtime required to run this program. For the first
release of .NET, this value is 2.

WORD MinorRuntime Version The minor portion of the version. Currently 0.

IMAGE_DATA_DIRECTORY [MetaData The RVA to the metadata tables.

DWORD Flags Flag values containing attributes for this image. These values are currently defined as:

COMIMAGE FLAGS_ILONLY // Image contains only IL code that
// is not required to run on a specific CPU.

COMIMAGE_FLAGS_32BITREQUIRED // Only runs in 32-bit processes.
COMIMAGE_FLAGS_IL_LIBRARY
STRONGNAMESIGNED // Image is signed with hash data
COMIMAGE FLAGS_TRACKDEBUGDATA // Causes the JIT/runtime to

// keep debug information

// around for methods.

DWORD EntryPointToken Token for the MethodDef of the entry point for the image. The .NET runtime calls
this method to begin managed execution in the file.

IMAGE_DATA_DIRECTORY [Resources The RVA and size of the .NET resources.

IMAGE_DATA_DIRECTORY |StrongNameSignature The RVA of the strong name hash data.

IMAGE_DATA_DIRECTORY |CodeManagerTable The RVA of the code manager table. A code manager contains the code required to
obtain the state of a running program (such as tracing the stack and track GC
references).

IMAGE_DATA_DIRECTORY |VTableFixups The RVA of an array of function pointers that need fixups. This is for support of
unmanaged C++ vtables.

IMAGE_DATA_DIRECTORY |ExportAddressTableJumps|The RVA to an array of RVAs where export JMP thunks are written. These thunks
allow managed methods to be exported so that unmanaged code can call them.

IMAGE_DATA_ DIRECTORY |[ManagedNativeHeader |For internal use of the .NET runtime in memory. Set to 0 in the executable.

Figure 152: Fields of IMAGE_DEBUG_DIRECTORY, IMAGE_COR20_HEADER Structure

Appendices
XXIII

IMAGE_TLS_DIRECTORY Structure
Size Member escription

DWORD|StartAddressOfRawData|The beginning address of a range of memory used to initialize a new thread's TLS data in memory.

DWORD|EndAddressOfRawData |The ending address of the range of memory used to initialize a new thread's TLS data in memory.
DWORDJAddressOfIndex When the executable is brought into memory and a .tls section is present, the loader allocates a TLS handle
via TlsAlloc. It stores the handle at the address given by this field. The runtime library uses this index to
locate the thread local data.

DWORD|AddressOfCallBacks ~ |Address of an array of PIMAGE_TLS CALLBACK function pointers. When a thread is created or
destroyed, each function in the list is called. The end of the list is indicated by a pointer-sized variable set to
0. In normal Visual C++ executables, this list is empty.

DWORD|SizeOfZeroFill The size in bytes of the initialization data, beyond the initialized data delimited by the
StartAddressOfRawData and EndAddressOfRawData fields. All per-thread data after this range is initialized
to 0.

DWORD|Characteristics Reserved. Currently set to 0.

Figure 153: IMAGE_TLS_DIRECTORY Structure

Appendix F

XXIV
Appendix F
List of Imports
0048327C CryptAcquireContextW
00483280 CryptGenRandom
00483284 CryptReleaseContext
00483288 GetUserNameA
0048328C RegOpenKeyExA
00483294 AddAtomA
00483298 CloseHandle
0048329C CreateMutexA
004832A0 CreateSemaphoreA
004832A4 DeleteCriticalSection
004832A8 EnterCriticalSection
004832AC ExitProcess
004832B0 FindAtomA
004832B4 FindClose
004832B8 FindFirstFileA
004832BC FindNextFileA
004832C0 GetAtomNameA
004832C4 GetComputerNameExA
004832C8 GetCurrentThreadId
004832CC GetLastError
004832D0 GetModuleHandleA
004832D4 GetProcAddress
004832D8 InitializeCriticalSection
004832DC InterlockedDecrement
004832E0 1InterlockedExchange
004832E4 1InterlockedIncrement
004832E8 IsDBCSLeadByteEx
004832EC IsDebuggerPresent
004832F0 LeaveCriticalSection
004832F4 MultiByteToWideChar
004832F8 ReleaseMutex
004832FC ReleaseSemaphore
00483300 SetLastError
00483304 SetUnhandledExceptionFilter
00483308 Sleep
0048330C TlsAlloc
00483310 TlsFree
00483314 TlsGetValue
00483318 TlsSetValue
0048331C VirtualProtect
00483320 VirtualQuery
00483324 WaitForSingleObject
00483328 WideCharToMultiByte
00483330 fdopen
00483334 read
00483338 write
00483340 getmainargs
00483344 mb cur max
00483348 p environ
0048334C p fmode

ADVAPI32
ADVAPI32
ADVAPI32
ADVAPI32
ADVAPI32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
KERNEL32
msvcrt

msvcrt

msvcrt

msvcrt

msvcrt

msvcrt

msvcrt

Appendices

XXV

0048327C
00483350
00483354
00483358
0048335C
00483360
00483364
00483368
0048336C
00483370
00483374
00483378
0048337C
00483380
00483384
00483388
0048338C
00483390
00483394
00483398
0048339C
004833A0
00483324
004833A8
004833AC
004833B0
004833B4
004833B8
004833BC
004833C0
004833C4
004833C8
004833CC
004833D0
004833D4
004833D8
004833DC
004833E0
004833E4
004833E8
004833EC
004833F0
004833F4
004833F8
004833FC
00483400
00483404
00483408
0048340C
00483410
00483414
00483418
0048341C

CryptAcquireContextW
__set app type

_cexit
_errno

_filelengthi64

_fstatio4
_iob
_1lseeki64
_onexit
__setmode
abort
atexit
atoi
calloc
exit
fclose
fflush
fgetc
fgetpos
fopen
fputc
fputs
fread
free
fsetpos
fwrite
getc
getenv
getwc
iswctype

localeconv

malloc
memchr
memcmp
memcpy
memmove
memset
putc
putwc
rand
realloc
remove
setlocale
setvbuf
signal
sprintf
srand
strchr
strcmp
strcoll
strerror
strftime
strlen

ADVAPI32
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt

XXVI

0048327C
00483420
00483424
00483428
0048342C
00483430
00483434
00483438
0048343C
00483440
00483444
00483448
0048344cC
00483454
0048345C
00483460
00483464

CryptAcquireContextW
strtod

strxfrm

time

towlower

towupper

ungetc

ungetwc

viprintf

wcscoll

wcsftime

wcslen

wcsxfrm
SHGetSpecialFolderPathA
WSAStartup
gethostbyname
gethostname

ADVAPI32
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
msvcrt
SHELL32
WSOCK32
WSOCK32
WSOCK32

Appendix G
XXVII

Appendix G
PortExAnalyzer PE file report

Report For rtms.exe
KAKKKKXKAKAKAKAKA KKK KKK KK
file size 0x7a800
full path C:\Users\Windows7Flare\Downloads\rtms.exe
Section Table
KAKKKKK KKK KKK

1 text 2 data 3. .rdata 4 eh fram
Entropy 6.10 1.10 5.25 4.74
Pointer To Raw Data 0x400 0x71000 0x71400 0x78000
Size Of Raw Data 0x70c00 0x400 0x6c00 0x1600
Physical End 0x71000 0x71400 0x78000 0x79600
Virtual Address 0x1000 0x72000 0x73000 0x7a000
Virtual Size 0x70b48 0x258 0x6c00 0x14f£8
-> actual virtual size 0x71000 0x1000 0x7000 0x2000
Pointer To Relocations 0x0 0x0 0x0 0x0
Number Of Relocations 0x0 0x0 0x0 0x0
Pointer To Line Numbers 0x0 0x0 0x0 0x0
Number Of Line Numbers 0x0 0x0 0x0 0x0
Code X
Initialized Data X X X X
Align 1 Byte X X
Align 2 Bytes X X X
Align 4 Bytes X X X X
Align 8 Bytes X X X
Align 16 Bytes X X X X
Align 32 Bytes X X X X
Align 64 Bytes X X X X
Align 256 Bytes X X
Align 512 Bytes X X X
Align 1024 Bytes X X X X
Align 2048 Bytes X X X
Align 4096 Bytes X X X X
Align 8192 Bytes X X X X
Execute X
Read b4 X X b4
Write b4 X

5 bss 6 idata 7 CRT 8 tls
Entropy 0.00 5.01 0.12 0.22
Pointer To Raw Data 0x79600 0x79600 0x7a400 0x7a600
Size Of Raw Data 0x0 0xe00 0x200 0x200
Physical End 0x79600 0x7a400 0x7a600 0x7a800
Virtual Address 0x7c000 0x83000 0x84000 0x85000
Virtual Size 0x6b80 0xcd8 0x18 0x20
-> actual virtual size 0x7000 0x1000 0x1000 0x1000
Pointer To Relocations 0x0 0x0 0x0 0x0
Number Of Relocations 0x0 0x0 0x0 0x0
Pointer To Line Numbers 0x0 0x0 0x0 0x0
Number Of Line Numbers 0x0 0x0 0x0 0x0
Initialized Data b4 b4 b4
Uninitialized Data b4
Align 1 Byte b4 b4 b4
Align 2 Bytes b4 b4 b4 b4
Align 4 Bytes b4 b4 X X
Align 8 Bytes b4
Align 16 Bytes b4 b4 b4 b4
Align 32 Bytes b4 b4 b4 b4
Align 64 Bytes b4 b4 b4 b4
Align 256 Bytes b4 b4 b4
Align 512 Bytes b4 b4 b4 b4
Align 1024 Bytes b4 b4 b4 X
Align 2048 Bytes b4

XXVIII

Report For rtms.exe

Align 4096 Bytes b4 X b4 b4
Align 8192 Bytes X X x x
Read X X b4 b4
Write X X X b4
MSDOS Header

KKK KKKKK KK KK

description value file offset
signature word 0x5a4d 0x0

last page size 0x90 0x2

file pages 0x3 0x4

relocation items 0x0 0x6

header paragraphs 0x4 0x8

minimum number of paragraphs allocated 0x0 Oxa

maximum number of paragraphs allocated Oxffff Oxc

initial SS value 0x0 Oxe

initial SP value 0xb8 0x10

complemented checksum 0x0 0x12

initial IP value 0x0 Ox14

pre-relocated initial CS value 0x0 0x16

relocation table offset 0x40 0x18

overlay number 0x0 Oxla

Reserved word Oxlc 0x0 Oxlc

Reserved word Oxle 0x0 Oxle

Reserved word 0x20 0x0 0x20

Reserved word 0x22 0x0 0x22

OEM identifier 0x0 0x24

OEM information 0x0 0x26

Reserved word 0x28 0x0 0x28

Reserved word 0x2a 0x0 Ox2a

Reserved word 0x2c 0x0 0x2c

Reserved word 0x2f 0x0 0x2e

Reserved word 0x30 0x0 0x30

Reserved word 0x32 0x0 0x32

Reserved word 0x34 0x0 0x34

Reserved word 0x36 0x0 0x36

Reserved word 0x38 0x0 0x38

Reserved word 0x3a 0x0 0x3a

PE signature offset 0x80 0x3c

COFF File Header

Khkkkhkkhkkhkkkkkkk

time date stamp Oct 14, 2014 11:18:51 AM
machine type Intel 386 or later processors and compatible processors
characteristics * Image only, Windows CE, and Windows NT and later.

* Image only.
* COFF line numbers have been removed. DEPRECATED
* COFF symbol table entries for local symbols have been removed. DEPRECATED
* Machine is based on a 32-bit-word architecture.
* Debugging is removed from the image file.
description value file offset
machine type 0x1l4c 0x84
number of sections 0x8 0x86
time date stamp 0x543cdc6b 0x88
pointer to symbol table (deprecated) 0x0 0x8c
number of symbols (deprecated) 0x0 0x90
size of optional header 0xel 0x94
characteristics 0x30f 0x96

Optional Header

KKk KKK KKK KKK KKK

Magic Number: PE32, normal executable file

Entry Point is in section 1 with name .text

Appendices
XXIX

Report For rtms.exe

No DLL Characteristics

Subsystem: The Windows graphical user interface (GUI) subsystem

standard field value file offset

magic number 0x10b 0x98

major linker version 0x2 0x9a

minor linker version 0x16 0x9b

size of code 0x70c00 0x9c

size of initialized data 0x7a400 0xa0

size of unitialized data 0x0 Oxa4

address of entry point 0x12a0 0xa8

address of base of code 0x1000 Oxac

address of base of data 0x72000 0xb0

windows field value file offset

image base 0x400000 0xb4

section alignment in bytes 0x1000 0xb8

file alignment in bytes 0x200 Oxbc

major operating system version 0x4 0xcO

minor operating system version 0x0 Oxc2

major image version 0x1 Oxc4

minor image version 0x0 0xc6

major subsystem version 0x4 0xc8

minor subsystem version 0x0 Oxca

win32 version value (reserved) 0x0 Oxcc

size of image in bytes 0x86000 0xd0

size of headers 0x400 0xd4

checksum 0x7bae2 0xd8

subsystem 0x2 Oxdc

dll characteristics 0x0 Oxde

size of stack reserve 0x200000 0xe0

size of stack commit 0x1000 Oxed

size of heap reserve 0x100000 Oxe8

size of heap commit 0x1000 Oxec

loader flags (reserved) 0x0 0xf0

number of rva and sizes 0x10 0xf4

data directory rva -> offset size in section file
offset

import table 0x83000 0x79600 Oxcd8 6 .idata 0x100
TLS table 0x85000 0x7a600 0x18 8 .tls 0x140
IAT 0x8327c 0x7987¢c 0x1f0 6 .idata 0x158
Imports

* Kk ok ok ok ok ok

ADVAPI32.DLL

[Registry]

rva: 0x8309c, va: 0x48308c, hint: 413, name: RegOpenKeyExA -> Opens the specified registry key.
[System Information]

rva: 0x83098, wva: 0x48308c, hint: 245, name: GetUserNameA -> Retrieves the user name of the
current thread.

[Cryptography Functions] <Key Generation/Exchange>

rva: 0x83090, va: 0x48308c, hint: 110, name: CryptGenRandom -> Generates random data.
[Cryptography Functions] <Service Provider>

rva: 0x8308c, va: 0x48308c, hint: 94, name: CryptAcquireContextW -> Acquires a handle to the
current user's key container within a particular CSP.

rva: 0x83094, va: 0x48308c, hint: 120, name: CryptReleaseContext -> Releases the handle acquired
by the CryptAcquireContext function.

XXX

Report For rtms.exe

KERNEL32.d11

[Error Handling]

rva: 0x830dc, va: 0x4830a4, hint: 510, name: GetLastError -> Retrieves the calling thread's last-
error code value.

rva: 0x83110, va: 0x4830ad4, hint: 1091, name: SetlastError -> Sets the last-error code for the
calling thread.

[Memory Management] <Virtual Memory>

rva: 0x8312c, va: 0x4830a4, hint: 1213, name: VirtualProtect -> Changes the access protection on
a region of committed pages in the virtual address space of the calling process.

rva: 0x83130, va: 0x4830a4, hint: 1215, name: VirtualQuery -> Provides information about a range
of pages in the virtual address space of the calling process.

[Dynamic-Link Library]

rva: 0x830e0, va: 0x4830a4, hint: 529, name: GetModuleHandleA -> Retrieves a module handle for
the specified module.

rva: 0x830e4, wva: 0x4830ad4, hint: 577, name: GetProcAddress -> Retrieves the address of an
exported function or variable from the specified DLL.

[Synchronization] <Interlocked>

rva: 0x830ec, va: 0x4830a4, hint: 743, name: InterlockedDecrement -> Decrements (decreases by
one) the value of the specified 32-bit variable as an atomic operation.

rva: 0x830f0, wva: 0x4830a4, hint: 744, name: InterlockedExchange -> Sets a 32-bit variable to
the specified value as an atomic operation.

rva: 0x830f4, wva: 0x4830a4, hint: 747, name: InterlockedIncrement -> Increments (increases by
one) the value of the specified 32-bit variable as an atomic operation.

[Structured Exception Handling]
rva: 0x83114, wva: 0x4830a4, hint: 1140, name: SetUnhandledExceptionFilter -> Enables an
application to supersede the top-level exception handler of each thread and process.

[Synchronization] <Mutex>

rva: 0x830ac, va: 0x4830a4, hint: 154, name: CreateMutexA -> Creates or opens a named or unnamed
mutex object.

rva: 0x83108, va: 0x4830a4, hint: 974, name: ReleaseMutex -> Releases ownership of the specified
mutex object.

[Debugging]
rva: 0x830fc, va: 0x4830a4, hint: 764, name: IsDebuggerPresent -> Determines whether the calling
process 1is being debugged by a user-mode debugger.

[Synchronization] <Wait>
rva: 0x83134, va: 0x4830a4, hint: 1223, name: WaitForSingleObject -> Waits until the specified
object is in the signaled state or the time-out interval elapses.

[Process and Thread] <Process>
rva: 0x830bc, va: 0x4830a4, hint: 279, name: ExitProcess -> Ends the calling process and all its
threads.

[Process and Thread] <Thread>

rva: 0x830d8, va: 0x4830a4, hint: 451, name: GetCurrentThreadId -> Retrieves the thread identifier
of the calling thread.

rva: 0x83118, wva: 0x4830a4, hint: 1152, name: Sleep -> Suspends the execution of the current
thread for a specified interval.

rva: 0x831lc, va: 0x4830a4, hint: 1171, name: TlsAlloc -> Allocates a thread local storage (TLS)
index.

rva: 0x83120, va: 0x4830a4, hint: 1172, name: TlsFree -> Releases a TLS index.

rva: 0x83124, va: 0x4830a4, hint: 1173, name: TlsGetValue -> Retrieves the value in the calling
thread's TLS slot for a specified TLS index.

rva: 0x83128, wva: 0x4830a4, hint: 1174, name: TlsSetValue -> Stores a value in the calling
thread's TLS slot for a specified TLS index.

[File Management]

rva: 0x830c4, va: 0x4830a4, hint: 300, name: FindClose -> Closes a file search handle opened by
the FindFirstFile, FindFirstFileEx, FindFirstFileNameW, FindFirstFileNameTransactedW,
FindFirstFileTransacted, FindFirstStreamTransactedW, or FindFirstStreamW functions.

rva: 0x830c8, va: 0x4830a4, hint: 304, name: FindFirstFileA -> Searches a directory for a file
or subdirectory with a name that matches a specific name (or partial name if wildcards are used).

Appendices

XXXI

Report For rtms.exe
rva: 0x830cc, va:

[Atom]

rva: 0x830a4, va: O
rva: 0x830c0, va: O
rva: 0x830d0, va: O

rva: 0x830d4, wva: O

rva: 0x830b4, va:

used by an unowned
rva: 0x830b8, va: 0
specified critical

section object.

specified critical

rva: 0x830f8, wva:

rva: 0x83138, wva:

[Handle and Object]
rva: 0x830a8, va: 0

rva: 0x830b0, va:

rva: 0x8310c, va:
specified semaphore

msvcrt.dll

[Other]

rva: 0x83140, va: O
rva: 0x83144, va: O
rva: 0x83148, va: 0

msvcrt.dll

[Other]

rva: 0x83150, va: O
rva: 0x83154, va: 0
rva: 0x83158, va: 0
rva: 0x8315c, va: 0
rva: 0x83160, va: 0
rva: 0x83164, va: 0
rva: 0x83168, va: 0
rva: 0x831l6c, va: 0
rva: 0x83170, va: O
rva: 0x83174, wva: O
rva: 0x83178, wva: O
rva: 0x8317c, va: O
rva: 0x83180, wva: O
rva: 0x83184, wva: O
rva: 0x83188, wva: O
rva: 0x8318c, wva: O
rva: 0x83190, va: O
rva: 0x83194, va: O

previous call to the FindFirstFile, FindFirstFileEx, or FindFirstFileTransacted functions.

[System Information]
name of the local computer.

[Synchronization] <Critical section>

rva: 0x830e8, va: 0x4830a4d4, hint: 734, name: InitializeCriticalSection -> Initializes a critical

rva: 0x83100, va: 0x4830a4, hint: 814, name: LeaveCriticalSection -> Releases ownership of the

[Unicode and Character Set]
character is potentially a lead byte.
rva: 0x83104, va: 0x4830a4, hint: 860, name: MultiByteToWideChar -> Maps a character string to

a UTF-16 (wide character) string.

character) string to a new character string.

[Synchronization] <Semaphore>

unnamed semaphore object.

0x4830a4, hint: 321, name: FindNextFileA -> Continues a file search from a

x4830a4, hint: 3, name: AddAtomA -> no description
x4830a4, hint: 298, name: FindAtomA -> no description
x4830a4, hint: 363, name: GetAtomNameA -> no description

x4830a4, hint: 395, name: GetComputerNameExA -> Retrieves the NetBIOS or DNS

0x4830a4, hint: 207, name: DeleteCriticalSection -> Releases all resources
critical section object.

x4830a4, hint: 236, name: EnterCriticalSection -> Waits for ownership of the
section object.

section object.

0x4830a4, hint: 763, name: IsDBCSLeadByteEx -> Determines if a specified

0x4830a4, hint: 1247, name: WideCharToMultiByte -> Maps a UTF-16 (wide

x4830a4, hint: 82, name: CloseHandle -> Closes an open object handle.

0x4830a4, hint: 169, name: CreateSemaphoreA -> Creates or opens a named oOr

0x4830a4, hint: 978, name: ReleaseSemaphore -> Increases the count of the
object by a specified amount.

x483140, hint: 23, name: _fdopen
x483140, hint: 64, name: _read
x483140, hint: 109, name: _write

x483150, hint: 55, name: _ getmainargs
x483150, hint: 65, name: _ mb_cur max
x483150, hint: 77, name: _ p environ
x483150, hint: 79, name: _ p fmode
x483150, hint: 99, name: _ set app type

x483150, hint: 147, name: _cexit
x483150, hint: 182, name: _errno
x483150, hint: 203, name: filelengthi64
x483150, hint: 224, name: fstati64
x483150, hint: 266, name: _iob
x483150, hint: 317, name: lseeki64
x483150, hint: 383, name: _onexit
x483150, hint: 426, name: _setmode
x483150, hint: 583, name: abort
x483150, hint: 590, name: atexit
x483150, hint: 592, name: atoi
x483150, hint: 595, name: calloc
x483150, hint: 604, name: exit

XXXII

Report For rtms.exe

rva: 0x83198, va: 0x483150, hint: 607, name: fclose
rva: 0x8319c, va: 0x483150, hint: 610, name: fflush
rva: 0x831la0, va: 0x483150, hint: 611, name: fgetc
rva: 0x83lad4, va: 0x483150, hint: 612, name: fgetpos
rva: 0x831la8, va: 0x483150, hint: 618, name: fopen
rva: 0x83lac, va: 0x483150, hint: 620, name: fputc
rva: 0x831b0, va: 0x483150, hint: 621, name: fputs
rva: 0x831b4, wva: 0x483150, hint: 624, name: fread
rva: 0x831b8, wva: 0x483150, hint: 625, name: free
rva: 0x831lbc, va: 0x483150, hint: 630, name: fsetpos
rva: 0x831c0, va: 0x483150, hint: 633, name: fwrite
rva: 0x831c4, va: 0x483150, hint: 635, name: getc
rva: 0x831c8, va: 0x483150, hint: 637, name: getenv
rva: 0x83lcc, va: 0x483150, hint: 639, name: getwc
rva: 0x831d0, va: 0x483150, hint: 658, name: iswctype
rva: 0x831d4, wva: 0x483150, hint: 671, name: localeconv
rva: 0x831d8, wva: 0x483150, hint: 676, name: malloc
rva: 0x831dc, va: 0x483150, hint: 680, name: memchr
rva: 0x831le0, va: 0x483150, hint: 681, name: memcmp
rva: 0x83led4, va: 0x483150, hint: 682, name: memcpy
rva: 0x831e8, wva: 0x483150, hint: 683, name: memmove
rva: 0x83lec, va: 0x483150, hint: 684, name: memset
rva: 0x831f0, va: 0x483150, hint: 690, name: putc
rva: 0x831f4, va: 0x483150, hint: 693, name: putwc
rva: 0x831f8, va: 0x483150, hint: 697, name: rand
rva: 0x831fc, va: 0x483150, hint: 698, name: realloc
rva: 0x83200, va: 0x483150, hint: 699, name: remove
rva: 0x83204, va: 0x483150, hint: 704, name: setlocale
rva: 0x83208, wva: 0x483150, hint: 705, name: setvbuf
rva: 0x8320c, va: 0x483150, hint: 706, name: signal
rva: 0x83210, va: 0x483150, hint: 709, name: sprintf
rva: 0x83214, wva: 0x483150, hint: 711, name: srand
rva: 0x83218, va: 0x483150, hint: 714, name: strchr
rva: 0x8321lc, va: 0x483150, hint: 715, name: strcmp
rva: 0x83220, va: 0x483150, hint: 716, name: strcoll
rva: 0x83224, va: 0x483150, hint: 719, name: strerror
rva: 0x83228, va: 0x483150, hint: 720, name: strftime
rva: 0x8322c, va: 0x483150, hint: 721, name: strlen
rva: 0x83230, va: 0x483150, hint: 729, name: strtod
rva: 0x83234, va: 0x483150, hint: 733, name: strxfrm
rva: 0x83238, va: 0x483150, hint: 739, name: time
rva: 0x8323c, va: 0x483150, hint: 744, name: towlower
rva: 0x83240, va: 0x483150, hint: 745, name: towupper
rva: 0x83244, va: 0x483150, hint: 746, name: ungetc
rva: 0x83248, va: 0x483150, hint: 747, name: ungetwc
rva: 0x8324c, va: 0x483150, hint: 748, name: vfprintf
rva: 0x83250, va: 0x483150, hint: 757, name: wcscoll
rva: 0x83254, va: 0x483150, hint: 760, name: wcsftime
rva: 0x83258, va: 0x483150, hint: 761, name: wcslen
rva: 0x8325c, va: 0x483150, hint: 774, name: wcsxfrm

SHELL32.DLL

[Deprecated Shell APIs]

rva: 0x83264, va: 0x483264, hint: 106, name: SHGetSpecialFolderPathA -> SHGetSpecialFolderPath
is not supported. Instead, use ShGetFolderPath.

WSOCK32.DLL

[Winsock]

rva: 0x8326c, va: 0x48326c, hint: 31, name: WSAStartup -> Initiates use of WS2 32.DLL by a
process.

rva: 0x83270, wva: 0x48326c, hint: 41, name: gethostbyname -> Retrieves host information
corresponding to a host name from a host database. Deprecated: use getaddrinfo instead.

rva: 0x83274, va: 0x48326c, hint: 42, name: gethostname -> Retrieves the standard host name for
the local computer.

Appendices
XXXIII

Report For rtms.exe

Anomalies
* Kk ok Kk k ok ok ok ok

Deprecated Characteristic in COFF File Header: IMAGE_FILE_LINE NUMS_STRIPPED

Deprecated Characteristic in COFF File Header: IMAGE FILE LOCAL_SYMS STRIPPED

COFF Header: Time date stamp is in the future

Section Header 1 with name .text: IMAGE_SCN_ALIGN_ 1BYTES characteristic 1is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN_ALIGN_ 4BYTES characteristic is only wvalid for
object files

* Section Header 1 with name .text: IMAGE SCN ALIGN 8BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN ALIGN 16BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN ALIGN 32BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN ALIGN 64BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN ALIGN 256BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN ALIGN 1024BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN_ALIGN_ 2048BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE SCN_ALIGN_4096BYTES characteristic is only valid for
object files

* Section Header 1 with name .text: IMAGE_SCN ALIGN 8192BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE SCN_ALIGN 2BYTES characteristic is only wvalid for
object files

* Section Header 2 with name .data: IMAGE SCN_ALIGN 4BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_ 8BYTES characteristic is only wvalid for
object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_ 32BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_ 64BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN 512BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE_ SCN_ALIGN_1024BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE SCN_ALIGN_2048BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_ 4096BYTES characteristic is only valid for
object files

* Section Header 2 with name .data: IMAGE SCN_ALIGN_8192BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE_SCN ALIGN 2BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE_SCN ALIGN 4BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN_ALIGN 8BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN ALIGN_ 16BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN_ALIGN 32BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN ALIGN_ 64BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN ALIGN 512BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN_ALIGN_ 1024BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN_ALIGN 2048BYTES characteristic is only valid for
object files

*
*
*
*

XXXIV

Report For rtms.exe

* Section Header 3 with name .rdata: IMAGE SCN_ ALIGN 4096BYTES characteristic is only valid for
object files

* Section Header 3 with name .rdata: IMAGE SCN_ ALIGN 8192BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN ALIGN 1BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN ALIGN 2BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN ALIGN 4BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE_ SCN_ALIGN_16BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE_ SCN_ALIGN_32BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN_ALIGN_64BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN_ALIGN_ 256BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN_ALIGN 512BYTES characteristic is only valid for
object files

* Section Header 4 with name .eh fram: IMAGE SCN ALIGN 1024BYTES characteristic is only valid
for object files

* Section Header 4 with name .eh fram: IMAGE SCN_ALIGN_4096BYTES characteristic is only valid
for object files

* Section Header 4 with name .eh fram: IMAGE SCN_ALIGN 8192BYTES characteristic is only valid
for object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_ 2BYTES characteristic is only valid for object
files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_ 4BYTES characteristic is only valid for object
files

* Section Header 5 with name .bss: IMAGE_ SCN_ALIGN_ 8BYTES characteristic is only valid for object
files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_16BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_32BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_64BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_512BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN 2048BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN 4096BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: IMAGE SCN_ALIGN_ 8192BYTES characteristic is only valid for
object files

* Section Header 5 with name .bss: POINTER TO RAW DATA must be 0 for sections with only
uninitialized data, but is: 497152

* Section Header 5 with name .bss: SIZE OF RAW DATA is 0

* Section Header 6 with name .idata: IMAGE_SCN ALIGN_ 1BYTES characteristic is only valid for
object files

* Section Header 6 with name .idata: IMAGE_SCN ALIGN 2BYTES characteristic is only valid for
object files

* Section Header 6 with name .idata: IMAGE SCN_ALIGN_ 4BYTES characteristic is only valid for
object files

* Section Header
object files

* Section Header
object files

* Section Header
object files

* Section Header 6 with name .idata: IMAGE SCN ALIGN 256BYTES characteristic is only valid for
object files

* Section Header 6 with name .idata: IMAGE SCN_ALIGN_ 512BYTES characteristic is only valid for
object files

* Section Header 6 with name .idata: IMAGE SCN_ALIGN 1024BYTES characteristic is only valid for
object files

[}

with name .idata: IMAGE_SCN_ALIGN 16BYTES characteristic is only valid for

[}

with name .idata: IMAGE_ SCN_ALIGN 32BYTES characteristic is only valid for

[}

with name .idata: IMAGE_ SCN_ALIGN 64BYTES characteristic is only valid for

Appendices
XXXV

Report For rtms.exe

* Section Header 6 with name .idata: IMAGE SCN ALIGN 4096BYTES characteristic is only valid for
object files

* Section Header 6 with name .idata: IMAGE SCN_ALIGN 8192BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE SCN ALIGN 1BYTES characteristic is only valid for object
files

* Section Header 7 with name .CRT: IMAGE SCN ALIGN 2BYTES characteristic is only valid for object
files

* Section Header 7 with name .CRT: IMAGE SCN ALIGN 4BYTES characteristic is only valid for object
files

* Section Header 7 with name .CRT: IMAGE SCN_ALIGN_16BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE SCN_ALIGN_ 32BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE SCN_ALIGN_ 64BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE SCN ALIGN 256BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN 512BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_ 1024BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE SCN_ALIGN 4096BYTES characteristic is only valid for
object files

* Section Header 7 with name .CRT: IMAGE SCN_ALIGN 8192BYTES characteristic is only valid for
object files

* Section Header 8 with name .tls: IMAGE_ SCN_ALIGN_ 1BYTES characteristic is only valid for object
files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN 2BYTES characteristic is only valid for object
files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN_ 4BYTES characteristic is only valid for object
files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN_16BYTES characteristic is only wvalid for
object files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN_32BYTES characteristic is only valid for
object files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN_64BYTES characteristic is only wvalid for
object files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN_256BYTES characteristic is only valid for
object files

* Section Header 8 with name .tls: IMAGE_ SCN_ALIGN_512BYTES characteristic is only valid for
object files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN 1024BYTES characteristic is only valid for
object files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN 4096BYTES characteristic is only valid for
object files

* Section Header 8 with name .tls: IMAGE SCN_ALIGN_ 8192BYTES characteristic is only valid for
object files

* Section name is unusual: .eh fram

* Section name is unusual: .CRT

* Section 5 with name .bss (range: 497152--497152) physically overlaps with section .idata with
number 6 (range: 497152--500736)

* Section 1 with name .text has write and execute characteristics.

* Entry point is in writeable section 1 with name .text

* Section Header 1 with name .text has unusual characteristics, that shouldn't be there:
Initialized Data, Align 1 Byte, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes,
Align 64 Bytes, Align 256 Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align
8192 Bytes, Write

* Section Header 2 with name .data has unusual characteristics, that shouldn't be there: Align
2 Bytes, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 512
Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Section Header 3 with name .rdata has unusual characteristics, that shouldn't be there: Align
2 Bytes, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 512
Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Section Header 5 with name .bss has unusual characteristics, that shouldn't be there: Align 2
Bytes, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 512
Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align 8192 Bytes

XXXVI

Report For rtms.exe

* Section Header 6 with name .idata has unusual characteristics, that shouldn't be there: Align
1 Byte, Align 2 Bytes, Align 4 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 256
Bytes, Align 512 Bytes, Align 1024 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Section Header 8 with name .tls has unusual characteristics, that shouldn't be there: Align 1
Byte, Align 2 Bytes, Align 4 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 256
Bytes, Align 512 Bytes, Align 1024 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Import function typical for code injection: VirtualProtect may set PAGE EXECUTE flag for memory
region

Hashes
* Kk kK ok Kk

MD5: 01fd682d16dfe26e180f4c7cd74ctb62
SHA256: 6d2ee6b36047cdaf2c20012d1£f687e2abebf71d82c420d45£2f12cee0635¢cf92

Section Type Hash Value
1. .text MD5 0b8cc6del0£7599a080799dc88261b21

SHA256 79e1284fa66133c50da8d4fdb7fe21d274b32c910eccaace?9803654739dd91a4
2. .data MD5 fa3a6789ad95497d492e3f04ef4c542c

SHA256 32ab69ef87d8f1ee2100380c3a5b3728de65£892a5b3cc6flc7£d1£888cfd35a
3. .rdata MD5 2c75a15b7835393fcdB86e041e7419e63

SHA256 50d2b44107b1c53d832dbb3£7de656cc1£d871084£80c00c81d3d9ea6cl113819
4. .eh fram MD5 £834ed6184729a99174882df3a2b34ed

SHA256 p872e0625e488pb5fc46397502a401dda3733aa6941d91b54b908c8a11d6d03a9
5. .bss MD5

SHA256
6. .idata MD5 cb9cabb2eb102a48e266d1a379482165

SHA256 58904b76a7c£526ed9762b7f5cda81le5£736bca6237dbdd703fa92d526b766b4
7. .CRT MD5 £26044a£392c5594ad34576acal5dldb

SHA256 c2d9414clbllbfddf9b8eccbladS5eacddf86a503cb520ce210a77£fb51797d5a3
8. .tls MD5 b79dfdf69cb172a8497793b5d97¢c5214

SHA256 763567f0cbcb1844c227829%aad3d41e9cb39442093acdc8218354b0ea20a828a

--- end of report ---

Appendix H
BinText Strings list

Appendix H

File: malware.exe

MD5: 01fd682dl6dfe26e180f4c7cd74ctb62
Size: 501760

Ascii Strings:

0000004D !This program cannot be run in DOS mode.

000001C8 .rdata
000001EE "@.eh fram
00000216 O0@.bss
00000240 .idata

.text:401551 DDDDDDDD'
.text:401624 2.7?1L)
.text:401671 DDDDDDD
.text:401721 33333333"
.text:402C37 8%nS$y%
.text:403A11 mrrrmmmnn
.text:403B25 ~d@g~h
.text:403B2C #Zdeg~1
.text:403C1D Xd@g~"
.text:403C60 w~l@g~"
.text:403CD4 'XdoGRf
.text:4055ED D$4<f@
.text:405605 Ds@IV@
.text:405685 D$4<f@
.text:405F04 D$4<f@
.text:405FFD D$4<f@
.text:406355 p< tov
.text:40635C <@t$<Pt
.text:40665D DS$T<f@
.text:406BB4 DSD<f@
.text:406BCF D$SP@R1Q
.text:406D51 9t$Owa
.text:406DCY9 Ds$4<f@
.text:406DE1 DS$@zn@
.text:407245 D$4<f@
.text:407331 D$4<fa@
.text:40741D Ds$4<fa@
.text:407509 Ds$4<fa@
.text:4075F5 D$4<f@
.text:4076E1 Ds$4<fQ@
.text:4077CD D$4<fa@
.text:4077E5 DS$Qux@
.text:4078B9 D$4<f@
.text:4078D1 DS$Ray@
.text:4079A5 Ds$4<f@
.text:4079BD D$S@Mz@
.text:407A91 D$4<fa@
.text:407AA9 DSQ1{@
.text:407B61 D$4<fQ@
.text:407B79 DS$@m|@
.text:407CB1 D$4<fa@
.text:407E39 D$4<fa@
.text:408194 \$,;\$4t3
.text:408343 D$D<fQ@
.text:4085BC D$4<fa@
.text:408781 D$4<fa@
.text:409949 DS$4<fa@
.text:409AA5 D$4<fa@
.text:40A129 DS$D<fQ@
.text:40A434 DS$SD<fQ@
.text:40A764 DS$SD<fQ@
.text:40AAl5 D$4<fa@
.text:40AC8C DS$ST<f@
.text:40B1F5 D$4<fQ@

II

File: malware.exe
.text:40B249 DS4<fa
.text:40B2F5 D$4<fQ@
.text:40B391 D$4<fQ@
.text:40B519 D$4<f@
.text:40B605 D$4<fa@
.text:40B782 D$4<fa@
.text:40B905 D$4<fa@
.text:40BA4A DS4<fQ@
.text:40BBA9 DS$4<fa@
.text:40BD5E 1SL91S$D
.text:40C6FC S40Q0f@u
.text:40C735 D$4<fa@
.text:40C80D D$4<fa@
.text:40CA15 D$4<fa@
.text:40CBOF D$4<fa@
.text:40CC2B D$D<f@
.text:40CFE7 D$T<f@
.text:40D215 D$ 9DS,
.text:40D410 D$D<f@
.text:40D57E \$$+\$
.text:40D7E4 D$D<f@
.text:40DC6B D$D<f@
.text:40DE4E t\;D$$
.text:40E0BC D$D<f@
.text:40E4A4 D$D<f@
.text:40E67A f9DS$"t
.text:40E89C D$D<f@
.text:40F45C D$4<fa@
.text:40F509 D$4<fa@
.text:40F905 D$4<f@
.text:40FA19 D$4<fa@
.text:40FB91 D$4<f@
.text:40FC5D DS$4<f@
.text:40FE99 DS$4<f@
.text:40FF65 D$4<f@
.text:410031 Ds$4<f@
.text:41010D DS$4<f@
.text:410219 Ds$4<fa@
.text:4103B5 D$4<f@
.text:41044D DS$4<f@
.text:4107AD DS$4<f@
.text:410959 Ds$4<fa@
.text:410C41 Ds$4<fa@
.text:410D01 Ds$4<f@
.text:410FE9 D$4<f@
.text:4110A9 Ds$4<fa@
.text:411167 D$4<fa@
.text:411216 DS$\;DSpt
.text:4112FB D$4<fQ@
.text:4113AA D$\;DSpt
.text:4114A7 Ds$4<f@
.text:411558 DS$\;DSpt
.text:411727 D$4<fa@
.text:411A88 t$@;t$DsL
.text:411C35 uU;D$Ds?
.text:411D74 D$D<fQ@
.text:412080 D$D<fQ@
.text:412557 DS$D<fQ@
.text:41256F DS$Pb&A
.text:4129CB D$D<fQ@
.text:413020 ;\$dsf
.text:413117 sU;t$Tr
.text:41322D D$4<f@
.text:41354F 8<VtL<Kuh
.text:413D16 <EtN<I|
.text:413D1E <J~.<Lt6<Xu
.text:41412F <rt!<vt
.text:41417D C ;CS$}L
.text:414205 S ;S$}
.text:4149BE tL<EtH<.tD

Appendices

III

File: malware.

exe

.text:4153DE
.text:415873
.text:41C58E
.text:41FA97
.text:421136
.text:4213D5
.text:4220C3
.text:422109
.text:4221C7
.text:422E6C
.text:42321F
.text:423E1D
.text:42455D
.text:424759
.text:424771
.text:424875
.text:42488D
.text:4249A9
.text:424AC5
.text:424C11
.text:424CE1
.text:424CF9
.text:424DC1
.text:424EDD
.text:425011
.text:42512D
.text:425279
.text:425349
.text:425EAE
.text:4263AE
.text:426566
.text:4265DC
.text:426641
.text:4266CB
.text:4269B2
.text:427021
.text:427098
.text:4270FD
.text:427187
.text:427C9D
.text:427E39
.text:427FDD
.text:42819D
.text:42835D
.text:428521
.text:4289E7
.text:428B82
.text:428CCD
.text:428E99
.text:428FBE
.text:429059
.text:4291A5
.text:429368
.text:429520
.text:4297FA
.text:4298ED
.text:429F24
.text:42AAF4
.text:42ACAC
.text:42AF86
.text:42B079
.text:42B6B1
.text:42B868
.text:42BB4A
.text:42BC46
.text:42C27F
.text:42C44cC
.text:42CA45
.text:42CA7D

t<<Et8
< tl<s
91S$Xv.
9DS$tu’
)DST)DSP)DSL
LS)LST
[$4+t$ (
9DSDs%
9DS$SDs'
TS$8+TS<
ts +\s,
D$ 9DSX
DS4<fR
DS4<fR
D$S@>HB
DS4<fR
D$SQZIB
DS4<fR
DS4<fR
DS4<fR
DS4<fR
D$@bMB
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
DS ;D$Sr
i\$4w,
; \$DwD
F\S$Sw2
F\$Sw9
;t$4wK
DS ;D$Sr
i \$SwE1
F\$Sw2
F\$Sw9
;t$4wK
D$D<f@
D$D<f@
D$D<f@
D$D<f@
D$D<f@
D$D<f@
D$D<f@
D$D<f@
9DS SwW@
D$D<f@
TS (9TS
DSD<f@
9DS$ wU@
DST<fQ@
TS 9TS4
TS 9TS4
TS 9TS4
DST<fQ@
DST<fQ@
TS 9TS4
TS 9TS4
TS 9TS4
DST<fQ@
TS £9TS8
TS £9TS8
TS £9TS8
DSdA<f@
DS (8HS
\$(8CJT
D$ (8H%

v

File: malware.exe
.text:42CA8E DS (8PS
.text:42CAB3 D$ (8PLt
.text:42CBE1 T$(8ZS
.text:42CFF3 DS$d<fQ@
.text:42D1A4 DSO8HS
.text:42D1E2 \S9\se@
.text:42D1F2 DS 9DS$D
.text:42D55A \S$$9\Se@
.text:42D56A DS 9DS$SD
.text:42D6B0 \S9\s@
.text:42D779 \S$08CJ
.text:42D7B1 DSO08HS
.text:42D7C2 DS$S08PS
.text:42D7E7 DSO08PLt
.text:42D915 T$087Z$
.text:42DD06 DSD<f@
.text:42F401 D$D<f@
.text:42F5AD D$D<f@
.text:42F759 DS$SD<fQ
.text:42FAB4 DST<fQ@
.text:42FC78 T$ 9TS4
.text:42FFB4 L$, f9L$
.text:42FFCB T$ 9TS4
.text:430108 T$ 9Ts4
.text:430720 DS$T<f@
.text:4313A0 DS$T<f@
.text:431564 T$ 9TS4
.text:4318A0 LS, f9L$S
.text:4318B7 T$ 9TS$4
.text:4319F4 T$ 9TS$4
.text:43200D DS$T<f@
.text:432028 DS$°;,C
.text:4321D0 T$ f9TS8
.text:432510 L$Of9oL$S
.text:432527 TS £f9TS8
.text:43266C T$ f9TS8
.text:432C87 DSd<f@
.text:432CA2 DS$p :C
.text:432E59 DS (£9P$
.text:43356A \$(f9Cp
.text:4335A5 D$(f9P&
.text:4335B7 DS (£9P$
.text:4335DE DS$(f9Ptt
.text:43371E \$(£9S$
.text:433AAB DS$d<fQ@
.text:433C65 DS$SO0f9PS
.text:433CA4 DSSSIDSER
.text:433CB4 T$ 9TSD
.text:434080 L$8f9LS
.text:434097 \$$9\s5@
.text:4340A7 D$ 9DS$SD
.text:434230 \$$9\s5@
.text:43433A \$0f9Cp
.text:434375 D$S0f9Ps
.text:434387 DS$SO0f9P$
.text:4343AE DS$SO0f9Ptt
.text:4344EE \$0£f9S$
.text:434861 DS$T<f@
.text:43497B D$ (f9Ps&
.text:43498D D$(f9P$
.text:434AF2 D$(f9P&
.text:434E5D D$(f9P$
.text:434FA7 D$(f9Pr
.text:4350BB L$ (f9Ar
.text:4352B6 \$ (£9K$
.text:4353F2 \$ (f9Ar
.text:435425 D$(f9P&
.text:435433 DS (f9P$
.text:43552E \$ (£9K$
.text:4360A0 DSL<f@

Appendices

File: malware.exe

.text:4360BB DSX2bC
.text:436264 DSL<fQ@
.text:436428 DSL<fQ@
.text:4398C5 D$S19D$
.text:439919 LS19LS t
.text:439D4A CG;} u
.text:43A17C t6;|S$Ds0
.text:43B447 DS$S19DS
.text:43B4A9 LS19LS
.text:43BCFA t<;\$4s6
.text:43FDOB DST<fQ@
.text:43FEEC DS$D<fQ@
.text:442398 DST<fQ
.text:4425FC D$D<f@
.text:442617 D$Pr'D
.text:442AD6 D$t<fa@
.text:442B98 \S$ (9\$(
.text:442E04 L$,+LS4
.text:442E65 9D$,vG
.text:443202 Ds$t<fa@
.text:4432C4 \S$S(9\$(
.text:443530 L$,+LS4
.text:443591 9D$,vG
.text:443C2A D$t<fa@
.text:443F7F L$O0+LS4
.text:444006 9DS0VG
.text:444356 D$t<fa@
.text:4446C5 D$0+DsS4
.text:44474n 9DS$SOVG
.text:444E6C D$4<f@
.text:44506C D$4<f@
.text:445311 D$4<fa@
.text:445399 D$4<f@
.text:4453E5 DS$4<f@
.text:4455EC 9TS$0ss&
.text:44561A BI9DSOw
.text:4456F0 ;\$8wb
.text:445D65 D$S4<f@
.text:4460DE DS$D<f@
.text:4465CB \$X+\ST
.text:446651 DSXIDSTt
.text:4467AD D$4<f@
.text:446B09 D$4<f@
.text:44707D D$4<f@
.text:4471DD D$4<f@
.text:44733E D$4<f@
.text:44744E D$4<f@
.text:4475F4 DS$D<f@
.text:4477E8 DS$D<f@
.text:4479DC DS$D<fQ@
.text:447BD0 DS$D<f@
.text:447DC4 DS$SD<f@
.text:447FB8 DS$D<f@
.text:4481AC DS$D<f@
.text:4483A0 DS$D<f@
.text:448594 DS$SD<f@
.text:448788 DS$SD<f@
.text:44897C DS$D<f@
.text:448BE3 DS$D<f@
.text:448EC7 DS$SD<f@
.text:449198 DS$4<f@
.text:449384 DS$4<f@
.text:449568 DS$4<f@
.text:44972C D$4<f@
.text:4498F8 DS$4<f@
.text:449AD3 DS$D<f@
.text:449CF5 DS$ST<f@
.text:449EF7 D$SD<f@
.text:44A0E0 D$4<f@

VI

File: malware.exe
.text:44A2BC DS4<fd
.text:44A727 DS4<fQ@
.text:44A908 DS4<fQ
.text:44AB25 D$S4A<fQ
.text:44AC19 DS$4<fa@
.text:44AE24 DS$4<fQ@
.text:44B034 DSD<fQ@
.text:44B24C DSD<fQ@
.text:44B4C3 DSD<fQ@
.text:44B6D8 D$S4<fQ@
.text:44B863 DSD<fQ
.text:44B90E DSp#DS$St@u
.text:44BA39 DST<fQ
.text:44BAEO DSp#DS$t@u
.text:44BBF4 DS$D<fQ@
.text:44BDAC D$4<fQ@
.text:44C15B DST<fQ@
.text:44C452 DST<fQ@
.text:44C746 DST<fQ@
.text:44CA2B DST<fQ@
.text:44CD13 DST<fQ@
.text:44CFFF DST<fQ@
.text:44D301 DST<fQ@
.text:44D601 DS$T<f@
.text:44D8E5 D$4<f@
.text:44D9CD D$4<f@
.text:44DBAC D$4<f@
.text:44E168 D$4<f@
.text:44E350 D$4<fa@
.text:44E5DD D$4<f@
.text:44E665 D$4<f@
.text:44E6B1 D$4<f@
.text:44E8A0 9LS@s*
.text:44E994 91$Dw|
.text:44E99C +1$D;1SHWZ
.text:44EF95 DS$4<f@
.text:44F2A3 DSD<f@
.text:44F2FC 9LS$Sw~
.text:44F75F \SX+\ST
.text:44F768 +TSP+TST
.text:44F7F9 LSXOLSTt
.text:44F92D D$4<fa@
.text:44FC8D DS$4<f@
.text:45048D D$4<fa@
.text:450545 Ds$4<fa@
.text:4505FD D$4<fa@
.text:4506B5 D$4<f@
.text:45076D D$4<fa@
.text:450825 D$4<f@
.text:4508DD D$4<f@
.text:450995 Ds$4<f@
.text:450A4D D$4<fa@
.text:450B05 D$4<fa@
.text:450BBD D$4<fQ@
.text:450C75 D$4<fa@
.text:450D2D D$4<fa@
.text:450DE5 D$4<fa@
.text:450E9D D$4<fa@
.text:450F55 D$4<fa@
.text:45100D D$4<fa@
.text:4510C5 D$4<f@
.text:45117D D$4<f@
.text:451235 D$4<f@
.text:4512ED D$4<f@
.text:4513A5 D$4<f@
.text:45145D D$4<f@
.text:451515 D$4<f@
.text:4515D5 D$4<f@
.text:451693 DS$SD<f@
.text:451825 D$4<f@

Appendices

VII

File: malware.

exe

.text:4518E1
.text:45199F
.text:451B31
.text:451C05
.text:451CED
.text:451DD5
.text:451E93
.text:452025
.text:4520E1
.text:4520F9
.text:45219F
.text:452331
.text:452405
.text:4524ED
.text:452AE8
.text:452B4C
.text:452B64
.text:452DD5
.text:4537C9
.text:453922
.text:453984
.text:453BES8
.text:453D9D
.text:453E66
.text:453E85
.text:454019
.text:454031
.text:4541AD
.text:4541C5
.text:454289
.text:454359
.text:454900
.text:454968
.text:454980
.text:454BF1
.text:45553B
.text:455682
.text:455704
.text:4558D6
.text:455964
.text:455B2D
.text:455BF6
.text:455C15
.text:455C2D
.text:455DAD
.text:455F45
.text:456021
.text:4560F1
.text:456109
.text:4562B9
.text:4562D1
.text:4564D9
.text:4564F1
.text:4566FD
.text:456715
.text:4568C6
.text:4568DE
.text:456ABA
.text:456CAE
.text:456E4D
.text:456E65
.text:456F9D
.text:456FB5
.text:4570E1
.text:45733D
.text:457561
.text:457785
.text:457952
.text:457B46

DS4<f(@
DSD<fQ
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DSD<fQ
DS4<fR
DS4<fR
DS@e!E
DSD<fQ
DS4<fR
DS4<fR
DS4<fR
D$ #DSSQu
DSD<fR
DSP>, E
D$ #D$s@
DS0#DS4@
P4R@tx
D$SO#DS4RQt
LS (GK°
TS (;S°
LS (;K®
D$4<f@
D$4<f@
DS@mAE
D$4<f@
D$S@:BE
D$4<f@
D$4<f@
DS #D$SQu
D$D<f@
DSPZJE
D$ #D$s@
D$SE#DSD@
P4QfRu
DSO#D$4@Q
P4UfQRt
L$8;Kd
T$8;5d
L$8;Kd
D$4<f@
DS@m]E
D$4<f@
D$4<f@
D$4<f@
D$4<f@
DS@rak
D$D<f@
DSPGAE
DSD<f@
DSPKEE
DSD<f@
DSP6hE
DS4<fQ
DS@'JE
DS4<fQ
DS4<fQ
DS4<fQ@
DS@ (oE
DS4<fQ@
D$Q1pE
DS4<fQ@
DSD<fQ
DSD<fQ
DSD<fQ
DS4<fQ@
DS4<fQ

VIII

File: malware.exe
.text:457D3A DS4<fd
.text:457D52 DS$SQRJI~E
.text:457ED9 DS$4<fQ@
.text:458029 DS$4<f@
.text:45816D DS$4<fQ@
.text:4582D4 DSD<fQ@
.text:4584C8 D$D<f@
.text:4586BC DSD<fQ
.text:4588B0 DSD<fQ@
.text:458AA4 DSD<fQ@
.text:458C98 D$D<f@
.text:458E8C DS$D<f@
.text:459080 D$D<f@
.text:459274 DSD<fQ@
.text:459468 D$SD<f@
.text:45965C D$D<f@
.text:4598A8 DSD<f@
.text:4599B8 tbfIoDS$*t
.text:459B7C D$D<f@
.text:459C4E tyfIDS&t
.text:459C62 DS$$EfIDSs
.text:459E34 D$4<fa
.text:45A030 DS$4<f@
.text:45A224 D$4<fa@
.text:45A3EC D$4<f@
.text:45A5B8 D$4<f@
.text:45A793 D$D<f@
.text:45A9B5 DS$T<f@
.text:45ABB7 D$D<f@
.text:45ADA0 D$4<f@
.text:45AF80 D$4<f@
.text:45B408 D$4<f@
.text:45B5F8 D$4<f@
.text:45B819 D$4<f@
.text:45B90D D$4<f@
.text:45BB1C D$4<f@
.text:45BD2C D$D<f@
.text:45BF44 D$SD<f@
.text:45C1BC D$D<f@
.text:45C3E0 D$4<f@
.text:45C56B D$SD<f@
.text:45C616 DS$p#DS$StQu
.text:45C741 DS$ST<f@
.text:45C7E8 D$p#D$tQu
.text:45C8FC DS$D<f@
.text:45CAB4 DS$4<f@
.text:45CE63 DST<f@
.text:45D136 DS$ST<f@
.text:45D406 DS$ST<f@
.text:45D6C7 DST<f@
.text:45D98B DST<f@
.text:45DC53 DS$ST<f@
.text:45DF31 DS$T<f@
.text:45E20D DS$T<f@
.text:45E4CD D$4<f@
.text:45E5B9 D$4<f@
.text:45E798 D$4<f@
.text:45EBB9 DS$D<f@
.text:45ED8D DS$D<f@
.text:45EF65 DS$D<f@
.text:45F0E2 D$4<f@
.text:45F25A D$4<f@
.text:45F3D6 D$4<f@
.text:45F4F9 DS$4<f@
.text:45F641 D$4<f@
.text:45F77D DS$4<f@
.text:45F9AD DS$SD<f@
.text:45FB85 DS$D<f@
.text:45FD5D DS$D<f@
.text:45FEDA D$4<f@

Appendices

IX
File: malware.exe
.text:460052 DS$S4<fd
.text:4601CE D$4<fQ@
.text:4602F1 D$4<fQ@
.text:460439 D$4<f@
.text:460575 DS$4<fa@
.text:4606A9 DS4<fQ
.text:46080D D$4<fa@
.text:46096E D$4<fa@
.text:460A7E DS$4<fQ@
.text:460D1D DS$D<fQ@
.text:460EE5 DS$SD<fQ@
.text:4610AD DS$D<fQ@
.text:461219 DS$4<fa@
.text:461389 D$4<f@
.text:4614FD D$4<f@
.text:46161D D$4<fa@
.text:461755 DS$4<f@
.text:461881 D$4<fa@
.text:461AA1 D$D<f@
.text:461C69 DSD<f@
.text:461E35 DS$SD<f@
.text:461FA5 D$4<fa@
.text:462115 D$4<fa@
.text:46212D DS$Q+"F
.text:462289 D$4<fa@
.text:4622A1 DS$SQH#F
.text:4623A9 D$4<fa@
.text:4623C1 D$QoSF
.text:4624E1 D$4<f@
.text:46260D D$4<f@
.text:462733 D$4<fa@
.text:462833 D$4<fa
.text:46296B D$S4<f@
.text:462983 DSQL*F
.text:462A6B D$S4<f@
.text:462A83 DSQ1+F
.text:462BA3 DS$4<f@
.text:462BBB DS$Qy,F
.text:462CE3 DS$4<f@
.text:462E5B D$4<f@
.text:462E73 DS@L/F
.text:462F9B DS$4<f@
.text:462FB3 D$SQQOF
.text:463329 E91S$4~)
.text:46339F P4W@t/EF91$4~"'
.text:463485 DS4<f@
.text:4638E7 E9154~8
.text:46396B P4RfQtRE
.text:463976 91$4~6
.text:463A69 DS4<f@
.text:463CAF DS$4<f@
.text:463CC7 DS$Qu=F
.text:463DAF DS$4<f@
.text:463DC7 DS$SQU>F
.text:463EE7 DS$4<f@
.text:463FE7 DS$4<f@
.text:46411F DS$S4<f@
.text:464227 DS$S4<f@
.text:464367 DS4<f@
.text:46437F DS$QSDF
.text:4644BF D$4<f@
.text:4659DB D$4<f@
.text:465AEF D$4<f@
.text:465C3B D$4<f@
.text:465D4F D$4<f@
.text:465D67 DS$S@)"F
.text:465E9B D$4<f@
.text:465EB3 DS$@u F
.text:465FAF D$4<f@

X

File:

malware.

exe

.text:4660FB
.text:46620F
.text:468D4B
.text:468FB7
.text:469079
.text:46914D
.text:469209
.text:4692AD
.text:469381
.text:469455
.text:469511
.text:4695B5
.text:4697F9
.text:46989D
.text:469941
.text:4699E5
.text:469AA1
.text:469B45
.text:469BE9
.text:469C8D
.text:469D31
.text:469DD5
.text:469E91
.text:469F35
.text:469FD9
.text:46A089
.text:46A139
.text:46A1E9
.text:46A299
.text:46A349
.text:46A3F9
.text:46A4A9
.text:46A559
.text:46A609
.text:46A6B9
.text:46A769
.text:46AB61
.text:46AEF9
.text:46B019
.text:46B2FD
.text:46B661
.text:46B785
.text:46BDDC
.text:46C18C
.text:46C750
.text:46CD19
.text:46CE6D
.text:46E6E8
.text:46EDE1
.text:46EECS
.text:46EFBD
.text:46F066
.text:46F170
.text:46F43C
.text:46F5C4
.text:46F7EQ
.text:46FAOF
.rdata:473000
.rdata:47300E
.rdata:4730B0
.rdata:4730BA
.rdata:4730C4
.rdata:4730CE
.rdata:4730D6
.rdata:473154
.rdata:47318F
.rdata:4731D5
.rdata:4731F1
.rdata:4731FE
.rdata:47320B

DS4<f(@
DS4<fQ@
LSD) Ls@
P(Qf9G
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
DS4<fR
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
D$4<f@
\$4t!
D$SD<f@
D$D<f@
D$4<f@
D$4<f@
D$SD<f@
D$4<f@
D$4<f@
D$4<f@
D$S4<f@
D$S4<f@
DSD<f@
DS 9D$
D$S4<f@
DSD<f@
libgcj-13.d11
_Jv_RegisterClasses
USQ@HOHOF'!
HIQREZI"U,
[XTVCHXY7
16#671B
) (=!"4M
JV[JAHL]\
[WVL]VL
\QJ] [LWJIA
HJW_JYU
\] [JAHLK
JV[JAHL]\

Appendices

XI

File: malware.exe

.rdata:473229 YzQLXZY

.rdata:473238 3+*<;= 6%+0)&#*<00=*.+"*A;7;0

.rdata:473264 >G!98.)/2$89";418.""/8<9085S) %) }

.rdata:473287),9,c/$#M

.rdata:4732B8 1list:: M check equal allocators

.rdata:473350 basic string::at

.rdata:473361 basic string::copy

.rdata:473374 basic string::compare

.rdata:47338A basic string:: S create

.rdata:4733A2 basic string::assign

.rdata:4733B7 basic string:: M replace aux

.rdata:4733D4 basic string::replace

.rdata:4733EA basic string::insert

.rdata:4733FF basic string::erase

.rdata:473413 basic_string::append

.rdata:473428 basic string::resize

.rdata:473440 basic string:: S construct null not valid
.rdata:47346A basic string::basic string

.rdata:473485 basic string::substr

.rdata:4734B4 basic filebuf::xsgetn error reading the file
.rdata:4734E4 Dbasic_filebuf::underflow codecvt::max_length() is not valid
.rdata:473520 basic filebuf::underflow incomplete character in file
.rdata:473558 basic_filebuf::underflow invalid byte sequence in file
.rdata:473590 basic_filebuf::underflow error reading the file
.rdata:4735C0 basic_filebuf:: M convert to external conversion error

.rdata:4735F8 basic_ios::clear

.rdata:47360C std::future error

.rdata:473620 ios_base:: M grow words is not valid
.rdata:473648 1ios _base:: M grow words allocation failed

.rdata:473720 _ gnu_cxx::_ _concurrence_lock error
.rdata:473744 _ gnu_cxx::_ _concurrence_unlock error
.rdata:473840 _ gnu_cxx::_ _concurrence_lock error
.rdata:473864 _ gnu_cxx::_ _concurrence_unlock error

.rdata:47388C locale:: S normalize category category not found
.rdata:4738F0 locale:: Impl:: M replace facet
.rdata:473934 std::exception

.rdata:473943 std::bad_exception

.rdata:473958 eh globals

.rdata:473968 _ gnu_cxx:: concurrence_lock error
.rdata:47398C _ gnu_cxx::_ _concurrence_unlock error
.rdata:4739B8 std::bad alloc

.rdata:473A40 Dbasic_string::at

.rdata:473A51 Dbasic_string::copy

.rdata:473A64 Dbasic_string::compare

.rdata:473A7A Dbasic_string:: S create

.rdata:473A92 Dbasic_string::assign

.rdata:473AA7 Dbasic_string:: M replace_ aux
.rdata:473AC4 Dbasic_string::replace

.rdata:473ADA Dbasic_string::insert

.rdata:473AEF basic_string::erase

.rdata:473B03 basic_string::append

.rdata:473B18 basic_string::resize

.rdata:473B30 basic_string:: S construct null not valid
.rdata:473B5A Dbasic_string::basic_string

.rdata:473B75 basic_string::substr

.rdata:473C80 %m/%d/%y

.rdata:473C8F %H:%M:%S

.rdata:473FF4 %m/%d/%y

.rdata:474003 %H:%M:%S

.rdata:474120 _ unexpected handler_sh

.rdata:474138 _ terminate handler sh

.rdata:474150 std::bad cast

.rdata:474160 std::bad typeid

.rdata:474180 generic

.rdata:474188 system

.rdata:474220 *N12_ GLOBAL N 122generic_error categoryE
.rdata:474260 *N12 GLOBAL_ N 12lsystem error categoryE
.rdata:4742A0 future

.rdata:4742A7 Broken promise

XII

File: malware.exe

.rdata:4742B6 Future already retrieved

.rdata:4742CF Promise already satisfied

.rdata:4742E9 No associated state

.rdata:4742FD Unknown error

.rdata:474360 *N12 GLOBAL N 12l1future error categoryE
.rdata:4743A0 regex_error

.rdata:4743AC _ gnu cxx:: concurrence lock error
.rdata:4743D0 gnu cxx:: concurrence unlock error
.rdata:474634 locale::facet:: S create c locale name not valid

.rdata:47466C LC_CTYPE

.rdata:474675 LC_NUMERIC

.rdata:474680 LC_TIME

.rdata:474688 LC_COLLATE

.rdata:474693 LC_MONETARY

.rdata:47469F LC_MESSAGES

.rdata:474700 pure virtual method called
.rdata:47471C deleted virtual method called
.rdata:474774 xdigit

.rdata:474788 -+xX0123456789%9abcdef0123456789ABCDEF
.rdata:4747AD -+xX012345678%abcdefABCDEF
.rdata:4747C8 -0123456789

.rdata:474878 S%m/%d/%y

.rdata:474881 S$H:3M:%S

.rdata:474891 Sunday

.rdata:474898 Monday

.rdata:47489F Tuesday

.rdata:4748A7 Wednesday

.rdata:4748B1 Thursday

.rdata:4748BA Friday

.rdata:4748Cl1 Saturday

.rdata:4748E6 January

.rdata:4748EE February

.rdata:474911 August

.rdata:474918 September

.rdata:474922 October

.rdata:47492A November

.rdata:474933 December

.rdata:474B48 terminate called recursively
.rdata:474B68 terminate called after throwing an instance of '
.rdata:474B9C terminate called without an active exception
.rdata:474BCA what () :

.rdata:474CFC _GLOBAL

.rdata:474D05 (anonymous namespace)
.rdata:474E34 string literal
.rdata:4752EB JArray

.rdata:4752F5 vtable for

.rdata:475301 VTT for

.rdata:47530A construction vtable for
.rdata:475328 typeinfo for

.rdata:475336 typeinfo name for
.rdata:475349 typeinfo fn for
.rdata:47535A non-virtual thunk to
.rdata:475370 virtual thunk to
.rdata:475382 covariant return thunk to
.rdata:47539D java Class for
.rdata:4753AD guard variable for
.rdata:4753C1 reference temporary #
.rdata:4753DD hidden alias for
.rdata:4753EF transaction clone for
.rdata:475406 non-transaction clone for
.rdata:475427 Accum

.rdata:47542E Fract

.rdata:475438 operator

.rdata:475441 operator

.rdata:475476 Jjava resource

.rdata:475485 decltype (

.rdata:475499 {parm#

.rdata:4754A0 global constructors keyed to
.rdata:4754BE global destructors keyed to
.rdata:4754DB {lambda (

Appendices

XIII

File: malware

.exe

.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:

4754E7
4754F6
475630
47563A
475644
47564E
475657
475666
475710
47576C
47577D
47578F
475796
4757A8
4757B3
4757C5
4757D2
4757E0
4757EE
4757F7
47580F
475823
47582B
475835
475848
475852
47585C
47586C
475875
47587E
475B34
475B43
475B4D
475B5F
475B6C
475B78
475BBF
475BCC
475BFE
475C0C
475C1C
475C4E
475C5C
475C6C
475CoF
475D9A
475DBC
475DCE
475E0C
475EA4
475EBB
476284
47629C
4762D0
476304
476330
47633A
476341
47634C

1476358

4763DC
476476
47647D
476760
476920
476927
47692E
477560
477580

{unnamed type#
[clone

restrict
volatile

const
complex
imaginary
~_vector(
{default arg#
signed char
boolean
double
long double
~ floatl2s
unsigned char
unsigned int
unsigned
unsigned long
__int128
unsigned _ int128
unsigned short
wchar t
long long
unsigned long long
decimal32
decimalé64
decimall28
charl6_t
char32_ t
decltype (nullptr)
std::allocator
allocator
std::basic_string
basic_string
std::string

std::basic_string<char, std::char traits<char>, std::allocator<char> >

std::istream

std::basic_istream<char, std::char_ traits<char> >

basic_istream

std::ostream

std::basic_ostream<char, std::char_ traits<char> >

basic_ostream

std::iostream

std::basic_iostream<char, std::char_ traits<char> >

basic_iostream

alignof

delete[]

delete

operator""

sizeof

throw

Mingw runtime failure:
VirtualQuery failed for %d bytes at address %p
Unknown pseudo relocation protocol version %d.
Unknown pseudo relocation bit size %

fc_static

fc_key

use_fc_key

sjlj_once

gcc-shmem-tdm2

xdigit

(null)

PRINTF EXPONENT DIGITS

Infinity

ABCDEF

abcdef

0123456789

N10_ cxxabivll5 forced unwindE

N10 cxxabivll7 class type infoE

X1V

File:

malware.exe

.rdata:4775C0
.rdata:477600
.rdata:477640
.rdata:477680
.rdata:4776C0
.rdata:477700
.rdata:477740
.rdata:477780
.rdata:4777C0
.rdata:477800
.rdata:477840
.rdata:477854
.rdata:477878
.rdata:477888
.rdata:477898
.rdata:4778A8
.rdata:4778C0
.rdata:4778D8
.rdata:4778F0
.rdata:477908
.rdata:47791C
.rdata:477930
.rdata:477940
.rdata:477950
.rdata:477960
.rdata:477974
.rdata:477988
.rdata:47799C
.rdata:4779B0
.rdata:4779C4
.rdata:4779D8
.rdata:4779EC
.rdata:477A00
.rdata:477A20
.rdata:477A60
.rdata:477AA0
.rdata:477AEO
.rdata:477B20
.rdata:477B60
.rdata:477BA0
.rdata:477BB4
.rdata:477BEO
.rdata:477C20
.rdata:477C60
.rdata:477CA0
.rdata:477CEQO
.rdata:477D20
.rdata:477D38
.rdata:477D50
.rdata:477D68
.rdata:477D80
.rdata:477D9%4
.rdata:477DCO
.rdata:477E00
.rdata:477E40
.rdata:477E58
.rdata:477E70
.rdata:477E88
.rdata:477EAQ
.rdata:477F00
.rdata:477F60
.rdata:477FCO
.rdata:478020
.rdata:478034
.rdata:47804C
.rdata:478064
.rdata:47807C
.rdata:478098
.rdata:4780B4
.rdata:4780CC

N1O cxxabivll9 foreign exceptionE

N10 cxxabivl120 si class type infoE

N10 cxxabivl2l wvmi class type infoE

N9 gnu cxxl13stdio filebufIcStllchar traitsIcEEE
N9 gnu cxxl3stdio filebufIwStllchar traitsIwEEE
N9 gnu cxxl8stdio sync filebufIcStllchar traitsIcEEE
N9 gnu cxxl8stdio sync filebufIwStllchar traitsIwEEE
N9 gnu cxx20recursive init errorE

N9 gnu cxx24 concurrence lock errorE

N9 gnu cxx26 concurrence unlock errorE
NStéelocale5facetE

NSt8ios base7failureE

Stl0bad typeid

Stl0ctype base

Stl0money base

Stl0moneypunctIcLbOEE

Stl0moneypunctIcLblEE

Stl0moneypunctIwLbOEE

StlO0moneypunctIwLblEE

Stll timepunctIcE

Stll timepunctIwE

Stlllogic error

Stllrange error

Stllregex_error

Stl2codecvt_base

Stl2ctype bynameIcE

Stl2ctype bynameIwE

Stl2domain_error

Stl2future_error

Stl2length _error

Stl2out_of range

Stl2system error

Stl3bad_exception

Stl3basic_filebufIcStllchar traitsIcEE
Stl3basic_filebufIwStllchar traitsIwEE
Stl3basic_fstreamIcStllchar traitsIcEE
Stl3basic_fstreamIwStllchar traitsIwEE
Stl3basic_istreamIwStllchar traitsIwEE
Stl3basic_ostreamIwStllchar traitsIwEE
St1l3messages_base

Stl3runtime error

Stldbasic_ifstreamIcStllchar traitsIcEE
Stl4basic_ifstreamIwStllchar traitsIwEE
Stl4basic_iostreamIwStllchar traitsIwEE
Stl4basic_ofstreamIcStllchar traitsIcEE
Stldbasic_ofstreamIwStllchar traitsIwEE
Stl4codecvt bynameIcciE

Stl4codecvt bynamelIwciE

Stl4collate bynamelcE

Stl4collate bynamelIwE

Stlderror_ category

Stl4overflow error
Stl5basic_streambufIcStllchar traitsIcEE
Stl5basic_streambufIwStllchar traitsIwEE
Stl5messages bynameIcE

Stl5messages bynameIwE

Stl5numpunct bynameIcE

Stl5numpunct bynameIwE

Stl5time get bynameIcStlO9istreambuf iteratorIcStllchar traitsIcEEE
Stl5time get bynameIwStlOistreambuf iteratorIwStllchar traitsIwEEE
Stl5time put bynameIcStlOostreambuf iteratorIcStllchar traitsIcEEE
Stl5time put bynameIwStlOostreambuf iteratorIwStllchar traitsIwEEE
Stl5underflow error

St16_ numpunct cacheIcE

St16__ numpunct cacheIwE

Stléinvalid argument

St1l7_ timepunct cachelcE

Stl1l7__timepunct cachelwE

Stl7bad function call

Stl7moneypunct bynameIcLbOEE

Appendices

XV

File: malware.exe

.rdata:4780EC
.rdata:47810C
.rdata:47812C
.rdata:47814cC
.rdata:47816C
.rdata:47818C
.rdata:4781AC
.rdata:4781CC
.rdata:4781EC
.rdata:478220
.rdata:478260
.rdata:4782A0
.rdata:4782AC
.rdata:4782B8
.rdata:4782C8
.rdata:4782D8
.rdata:4782E8
.rdata:478300
.rdata:478340
.rdata:478380
.rdata:4783C0
.rdata:478400
.rdata:47840C
.rdata:478418
.rdata:478428
.rdata:478438
.rdata:478448
.rdata:478460
.rdata:4784A0
.rdata:4784E0
.rdata:478520
.rdata:478560
.rdata:478580
.rdata:4785C0
.rdata:478600
.rdata:478620
.rdata:478660
.rdata:4786A0
.rdata:4786A6
.rdata:4786E0
.rdata:478720
.rdata:478730
.1data:48346E
.1data:483486
.1data:483498
.1data:4834AE
.1data:4834BE
.1data:4834CE
.1data:4834DA
.1data:4834E8
.1data:4834F8
.1data:48350C
.1data:483524
.1data:48353C
.1data:48354A
.1data:483556
.1data:483562
.1data:483574
.1data:483584
.idata:483594
.idata:4835AA
.idata:4835C0
.idata:4835D0
.idata:4835E4
.idata:4835F6
.idata:483612
.idata:48362A
.idata:483640
.idata:483658

Stl/moneypunct bynameIcLblEE

Stl7moneypunct bynameIwLbOEE

Stl7moneypunct bynameIwLblEE

St18 moneypunct cacheIcLbOEE

St18 moneypunct cacheIcLblEE

St18 moneypunct cacheIwLbOEE

St18 moneypunct cacheIwLblEE

St2l ctype abstract baselcE

St2l ctype abstract baselwE

St23 codecvt abstract baselccikE

St23 codecvt abstract baselIwcikE

St5ctypelcE

StSctypeIwE

St7codecvtIcciE

St7codecvtIwciE

St7collatelIcE

St7collateIwE

St7num getIcStl9istreambuf iteratorIcStllchar traitsIcEEE
St7num getIwStl9istreambuf iteratorIwStllchar traitsIwEEE
St7num putIcStl9ostreambuf iteratorIcStllchar traitsIcEEE
St7num putIwStl9ostreambuf iteratorIwStllchar traitsIwEEE
St8bad cast

St8ios_base

St8messagesIcE

St8messagesIwE

St8numpunctIcE

St8numpunctIwE

St8time getIcStl9istreambuf iteratorIcStllchar traitsIcEEE
St8time getIwStl9istreambuf iteratorIwStllchar traitsIwEEE
St8time putIcStl9ostreambuf iteratorIcStllchar traitsIcEEE
St8time putIwStl9ostreambuf iteratorIwStllchar traitsIwEEE
St9bad_alloc

St9basic_iosIcStllchar_ traitsIcEE

St9basic_iosIwStllchar traitsIwEE

St9exception

St9money getIcStl9istreambuf iteratorIcStllchar traitsIcEEE
St9money getIwStl9istreambuf iteratorIwStllchar traitsIwEEE
St9mon

ey putIcStl9ostreambuf iteratorIcStllchar traitsIcEEE
St9money putIwStl9ostreambuf iteratorIwStllchar traitsIwEEE
St9time base

St9type info

CryptAcquireContextW

CryptGenRandom

CryptReleaseContext

GetUserNameA

RegOpenKeyExA

AddAtomA

CloseHandle

CreateMutexA

CreateSemaphoreA

DeleteCriticalSection

EnterCriticalSection

ExitProcess

FindAtomA

FindClose

FindFirstFileA

FindNextFileA

GetAtomNameA

GetComputerNameExA

GetCurrentThreadId

GetLastError

GetModuleHandleA

GetProcAddress

InitializeCriticalSection

InterlockedDecrement

InterlockedExchange

InterlockedIncrement

IsDBCSLeadByteEx

XVI

File: malware.exe

.idata:48366C IsDebuggerPresent
.idata:483680 LeaveCriticalSection
.idata:483698 MultiByteToWideChar
.idata:4836AE ReleaseMutex
.idata:4836BE ReleaseSemaphore
.idata:4836D2 SetLastError
.idata:4836E2 SetUnhandledExceptionFilter
.idata:483708 TlsAlloc
.idata:483714 TlsFree
.idata:48371E TlsGetValue
.idata:48372C TlsSetValue
.idata:48373A VirtualProtect
.idata:48374C VirtualQuery
.idata:48375C WaitForSingleObject
.idata:483772 WideCharToMultiByte
.idata:483788 fdopen
.idata:48379A write

.idata:4837A4 getmainargs
.idata:4837B4 _ mb_cur max
.idata:4837C4 _ p_ environ
.idata:4837D4 p fmode
.idata:4837E2 _ set app type

.idata:4837F4 cexit
.idata:4837FE _errno
.idata:483808 filelengthi64
.idata:48381A fstati64
.idata:48382E lseeki64
.idata:48383A onexit
.idata:483844 setmode
.idata:483858 atexit
.idata:48386A calloc
.idata:48387C fclose
.idata:483886 fflush
.1idata:483898 fgetpos
.idata:4838CA fsetpos
.1data:4838D4 fwrite
.1data:4838E6 getenv
.1data:4838F8 iswctype
.idata:483904 localeconv
.idata:483912 malloc
.idata:48391C memchr
.1data:483926 memcmp
.1data:483930 memcpy
.idata:48393A memmove
.idata:483944 memset
.1idata:483966 realloc
.1data:483970 remove
.idata:48397A setlocale
.1data:483986 setvbuf
.1data:483990 signal
.idata:48399A sprintf
.idata:4839AC strchr
.idata:4839B6 strcmp
.idata:4839C0 strcoll
.idata:4839CA strerror
.idata:4839D6 strftime
.idata:4839E2 strlen
.idata:4839EC strtod
.idata:4839F6 strxfrm
.idata:483A08 towlower
.idata:483A14 towupper
.idata:483A20 ungetc
.idata:483A2A ungetwc
.idata:483A34 vfprintf
.idata:483A40 wcscoll
.idata:483A4A wcsftime
.idata:483A56 wcslen
.idata:483A60 wcsxfrm
.idata:483A6A SHGetSpecialFolderPathA
.idata:483A84 WSAStartup

Appendices

.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:
.rdata:

474460
474482
4744C2
474966
47497A
47499A
4749A8
4749B6
4749C6
4749DA
4749EC
4749FA
474044
474A54
474A9A
474AA8
474ABC
474ACC
474ADE
476466

Unicode Strings:

KAXKXKXKXKXXXXX
UUUUUUEEEEEEEEEEEEEEEEEEEE

VVVVVVFFFFFFFFFFFFFFFFFFFE
csm/%d/%y
FH:3M: %S
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
January
February
August
September
October
November
December
f(null)

XVII
File: malware.exe
.idata:483A92 gethostbyname
.idata:483AA2 gethostname
.idata:483AC4 ADVAPI32.DLL
.idata:483B6C KERNEL32.dll
.idata:483B88 msvcrt.dll
.idata:483CA4 msvcrt.dll
.idata:483CB4 SHELL32.DLL
.idata:483CCC WSOCK32.DLL

Appendix I
I

Appendix I
Anti-VM instructions detection with a python script

from idautils import *
from idc import *

heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))
antiVM =[]
for 1 in heads:
if (GetMnem(i) == "sidt" \
or GetMnem(i) == "sgdt" \
or GetMnem(i) == "sldt" \
or GetMnem(i) == "smsw" \
or GetMnem(1) == "str" \
or GetMnem(1) == "in" \
or GetMnem(i) == "cpuid"):
antiVM.append(i)
print "Number of potential Anti-VM instructions: %d" % (len(antiVM))
for 1 in antiVM:
SetColor(i, CIC_ITEM, 0x00001f)
Message(" Anti-VM: %08x\n" % 1)
Table 11: Highlighting potential Anti-VM instructions with a python script in IDA Pro

II

Attached zipped files

Attached zipped files provided

=

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

hybrid-Analysis results.pdf

report-0fb3e4c1b9fdbb05b7¢c429ddc854b204.pdf

Attached zipped files provided

6d2ee6b36047cdaf2c20012d11687e2abebf71d82c420d4512f12cec0635¢f92 ANY.RUN

- Automated Malware Analysis Service.pdf

VirusTotal.pdf
VirusTotal-behaviour.pdf

VirusTotal-details.pdf

STARTEX RANSOMWARE FINAL DOCUMENTATION.pdf

Windows Functions for Malware Analysis.txt

VirusTotal mlr.txt

RTSC SCRIPT.py

surface analysis report.txt
strings mlr.txt

find anti-VM instructions.py
imports.txt

exports.txt

breakpoints.txt
install.ps1.txt
debugging gdb linux vmware.pdf
sample files for rnsm.rar

inputlist_XorSearch.txt

Appendices

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

VM config files.zip

Installed Tools Flare vm.txt

Boxstarter. WebLaunch.application

registry Renames on Vmware powershell script.psl
base64dump.py

ProcessExporerStrings Image.txt
ProcessExporerStrings Memory.txt
COMPARISON OF 2 SHOTS.txt

proc mon Logfile. XML

PortExAnalyzer Results report.txt

III

v

Footnotes

' European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET
ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2017,” Executive Director of Europol, ISBN
978-92-95200-80-7, pages 18-32, 2017, Source URL: https://www.europol.europa.eu/activities-
services/main-reports/internet-organised-crime-threat-assessment-iocta-2017.

" European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET
ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2018,” Executive Director of Europol, ISBN
978-92-95200-94-4, pages 16-29, 2017, Source URL: https://www.europol.europa.eu/activities-
services/main-reports/internet-organised-crime-threat-assessment-iocta-2018

" European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET
ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2014,” Executive Director of Europol, ISBN:
978-92-95078-96-3, pages 23-27, 2014, Source URL: https://www.europol.europa.eu/activities-
services/main-reports/internet-organised-crime-threat-assessment-iocta-2014

v European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET
ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2015,” Executive Director of Europol, ISBN
978-92-95200-65-4, pages 18-27, 2015, Source URL: https://www.europol.europa.eu/activities-
services/main-reports/internet-organised-crime-threat-assessment-iocta-2015

Y European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET
ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2016,” Executive Director of Europol, ISBN
978-92-95200-75-3, pages 17-23, 2016, Source URL: https://www.europol.europa.eu/activities-
services/main-reports/internet-organised-crime-threat-assessment-iocta-2016

