
Piraeus, February 2019

Real World Malware Analysis_

STARTEX Ransomware

Master Thesis in Computer Science

Author: Papadopoulos Polymenis - Fotios MTE1629

Supervisor: Professor Dr. Christoforos Ntantogian Uni.Pi.-D.S.

School of Information Technology and Communications

Department of Digital Systems

 Master of Science

Digital Systems Security

i

Abstract

The goal of this paper is to analyze a real-world malware, step by step, from an academic

perspective. The steps to be followed, are predefined, from Basic Analysis to Advanced Static and

Dynamic Analysis. There will be a detailed description of the techniques, the tools and the

architecture of the lab environment. Consider that the purpose of this paper is to analyze malware

once it has been found and not to reveal the malware. The under-examination malware is a

ransomware, found on the Windows operating system, by far the most common operating system

in use today. But the techniques and the procedures that will be used to analyze it, could work on

any operating system, as long as executables would be mainly examined. Notice that, executables

are the most common and the most difficult files that an incident response team will encounter.

Keywords: ransomware, malware analysis

© University of Piraeus 2016 – 2019. All rights reserved.

ii

iii

Acknowledgments

It is a great pleasure to acknowledge everyone who helped me writing this thesis successfully. First

of all, I would like to thank my advisor Professor Dr. Christoforos Ntantogian. He gave me the

opportunity and the flexibility to solely focus on research topics that I was interested in, without

any pressure or dictation at all. Besides that, he offered me productive environments at the System

Security Laboratory within the Department of Digital Systems of the University of Piraeus.

During my master sessions, I enjoyed working with friendly and talented research staff and

enthusiastic graduate students, that share the same outstanding enthusiasm and expertise for

security research in Computer Science. I have been enlightened by many valuable discussions with

all my Professors; C. Xenakis, C. Lambrinoudakis, S. Katsikas, L. Mitrou and P. Rizomiliotis.

I would like to show my gratitude to colleagues in the CyberCrime Prosecution Division of

Hellenic Police, since they make my daily work fun and give me that satisfying feeling of

belonging to some great community that is pulling in the same direction.

I owe sincere and earnest appreciation to my section head Alexandros Filippidis, my division head

Vasilios Papakostas and my former division head Georgios Papaprodromou, for their trust in me

and being helpful facilitating with the attendance days of courses. This gave me the autonomy to

follow my aims without any constraints and provided me with the chance to get into touch with so

many interesting and helpful people in the academic field.

Finally, I would like to express my gratitude to mother, to my companion and especially dedicate

my work to my deceased father and my recently deceased siblings, grandmother, grandfather and

aunt. My deepest thankfulness goes to them for their love, understanding, and inspiration. Without

their blessings and encouragement, I would not have been able to either start or finish this work.

iv

v

Contents

Abstract .. i

Acknowledgments .. iii

Contents ...v

1. Introduction ...1

1.1 Definition of Malware ..1

1.2 Ransomware, the key threat ..1

1.2.1 IOCTA 2017 ..1

1.2.2 IOCTA 2018 ..5

1.2.3 Previous IOCTA reports ...7

1.3 Needance of Malware - Ransomware Analysis ...7

1.3.1 Definition of Malware Analysis ..8

1.3.2 Background of Malware Analysis ...8

1.3.3 Malware Analysis Techniques ..9

1.3.4 Definitions of Analysis Techniques ... 11

2. Malware Analysis Environment ... 13

2.1. Virtualization Technologies .. 13

2.2. Differences between virtual and real world ... 14

2.3. VME Technologies ... 14

vi Contents

2.4. General Local Virtual Machine Detection ... 19

2.4.1. Exploring Available VMEs .. 20

2.4.2. Environment Design and Architecture.. 21

2.4.3. VMware Workstation Setup ... 25

3. Surface Analysis .. 32

3.1. Online malware repositories ... 32

3.1.1. VirusTotal .. 32

3.1.2. HybridAnalysis.. 33

3.2. PE headers ... 33

3.3. Basic Static Analysis with Windows tools .. 36

3.3.1. PEView ... 36

3.3.2. PEiD .. 41

3.3.3. Detect It Easy .. 44

3.3.4. PortexAnalyzer .. 55

3.3.5. PEstudio .. 57

3.3.6. BinText .. 64

4. Behavioral Analysis ... 66

4.1. Basic Dynamic Analysis with free Sandboxes .. 66

4.1.1. Results explanation .. 67

4.2. Running Malware ... 74

Contents vii

4.2.1. Hands on Basic Dynamic - Behavioral Analysis Tools 75

4.2.2. Comparing the image and memory Strings... 81

4.2.3. Examine with Process Hacker .. 82

4.2.4. Monitoring with Process Monitor .. 86

4.2.5. Regshot ... 91

4.2.6. Basic Dynamic Analysis is not enough .. 92

5. Static code Analysis ... 95

5.1. IDA Pro .. 97

5.1.1 Loading the executable .. 97

5.1.2 IDA’s First glance ... 98

5.1.3 Custom Date Validation Check .. 100

5.1.4 TLS Callback Functions .. 101

5.1.5 Debugger Presence .. 104

5.1.6 Anti-VMware .. 108

6. Dynamic code Analysis .. 114

6.1 Structured Exception Handlers ... 114

6.2 Manipulation of CPUID instructions .. 123

6.3 Interrupts on Debugging... 128

6.4 Thwarting Stack-Frame Analysis.. 130

6.5 Escaping the control of debuggers by Sleeping... 131

viii Contents

6.6 Anti-analysis technique terminating the process ... 133

6.7 Antivirus Evasion ... 137

6.8 Anti-Dump Trick "Header Erase" ... 137

7. Conclusion ... 139

7.1 Encryption and Decryption procedure .. 139

7.2 Malware deflection .. 144

7.3 The smart-dumb alternative way to deflect the Ransomware 144

7.4 Future work ... 158

List of tables ... 159

List of Figures .. 160

Bibliography .. 168

Appendices ... I

Appendix A ... I

A.1 Hardware specification of single PC lab .. I

A.2 Software specification of single PC lab ... I

A.3 VM Configuration ... I

A.4 OS installation .. II

A.5 Windows SDK and Framework .. II

A.6 Virtual Machine Environment Installation and configuration II

A.7 FlareVM Installation Script .. II

Contents ix

A.8 Installed Tools with FlareVm .. III

A.9 Staying up to date ... V

A.10 Extra useful tools.. VI

A.12 Snapshotting .. VII

Appendix B .. VIII

StealthyTools.reg .. VIII

Appendix C .. XI

Registry Renames on VMware PowerShell script .. XI

Appendix D ... XII

VirusTotal Results .. XII

HybridAnalysis results .. XVI

Appendix E .. XX

Win32 Portable Executable File Format ... XX

Appendix F .. XXIV

List of Imports ... XXIV

Appendix G ..XXVII

PortExAnalyzer PE file report ...XXVII

Appendix H ... I

BinText Strings list .. I

Appendix I ... I

x Contents

Anti-VM instructions detection with a python script .. I

Attached zipped files... II

Attached zipped files provided .. II

Footnotes ... IV

xi

Chapter 1. Introduction

1

1. Introduction

1.1 Definition of Malware

Malware, a shortened form of malicious software, is defined as the software that does

something that causes harm to a user, computer, or network. Malwares play a part in most computer

intrusion and security incidents. The ultimate goal of gaining control is to disrupt the normal

operations of the target, obtain sensitive or secret information, or gain access to private computer

networks and system for other purposes. For the end user, malware is just software that is doing

nasty things to them or their computers, without them knowledge or permission. Some kind of

software that can be considered malwares, are viruses, trojan horses, worms, rootkits, scarewares,

adwares, spywares and ransomwares.

1.2 Ransomware, the key threat

1.2.1 IOCTA 2017 i

By the end of 2016 we had witnessed the first massive attack originating from such devices,

as the Mirai malware1 transformed around 150.000 routers and CCTV cameras into a DDoS botnet.

This botnet was responsible for a number of high-profile attacks, including one severely disrupting

internet infrastructure on the west coast of the United States).

Ransomware attacks have eclipsed most other global cybercrime threats, with the first half

of 2017 witnessing ransomware attacks on a scale previously unseen following the emergence of

1 Mirai is a malware that turns networked devices running Linux into remotely controlled "bots" that can be used as

part of a botnet in large-scale network attacks. It primarily targets online consumer devices such as IP cameras and

home routers. The Mirai botnet was first found in August 2016 by MalwareMustDie, a whitehat malware research
group, and has been used in some of the largest and most disruptive distributed denial of service (DDoS) attacks.

Reference source: https://en.wikipedia.org/wiki/Mirai_(malware)

Ransomware, the key threat

2

self-propagating ‘ransomworms’, as observed in the WannaCry and Petya/NotPetya cases.

Moreover, while information-stealing malware such as banking Trojans remain a key threat, they

often have a limited target profile. Ransomware has widened the range of potential malware

victims, impacting victims indiscriminately across multiple industries in both the private and

public sectors, and highlighting how connectivity and poor digital hygiene and security practices

can allow such a threat to quickly spread and expand the attack vector.

The primary targets - key threat for the majority of cyber-dependent crimes are vulnerable

software products, insecure, internet-connected devices or networks, and the users and data behind

them. As such, the development and propagation of malware typically sits at the core of cyber-

dependent crime. Malware can be coded or repurposed to perform almost any function; however,

the two dominant malware threats encountered by EU law enforcement continue to be ransomware

and information stealers.

Comparatively, ransomware is easier to monetise. Beyond the initial infection, all the

attacker has to do is collect the ransom payment, and by using pseudonymous currencies such as

Bitcoin, the subsequent laundering and monetisation is considerably simpler. Furthermore, the

nature of the attack means that ransomware can inherently target a much more diverse range of

targets – essentially anyone with data to protect – with little requirement for adaption. Victims are

atypical from the usual financial targets, and include entities such as hospitals, law enforcement

agencies, and government departments and services. While the public also continues to be targeted,

small to medium enterprises, who often lack the resources to fully safeguard their data and

networks, are also key targets. The success and the demand for ransomware resulted in an

explosion in the number of ransomware families throughout 2016, with some reports highlighting

Chapter 1. Introduction

 3

an increase of 750% from 20152. The business model for ransomware has also evolved. Developers

of early iterations of ransomware produced it for their own use, but now variants such as Satan3 or

Shark4 are run as affiliate programs, providing ransomware-as-a-service in exchange for a share

of the criminal proceeds. The surge in ransomware is also reflected in this year’s reporting, with

almost every Member State reporting a growing number of cases. Throughout 2016, the emerging

threats highlighted in the previous year’s report, Locky5 and Cerber6, were the most prominent

ransomwares. A number of other ransomwares, including CTB-Locker7 , Cryptowall8 , Crysis9 ,

2 Trend Micro, 2017, TrendLabs 2016 Security Roundup, p4
3 The name “Satan ransomware” is aptly chosen in this regard. The platform acts as a gateway to hell where new

minions can be spawned who must contribute a bounty to the Lord of Hell. The platform is so much bigger than just

a new type of ransomware users to deal with, as it can create different types of offspring with relative ease. Anyone
making use of this service will be hunted down by law enforcement agents, though, as deliberately distributing

malware is illegal in most global jurisdictions. Reference source: https://themerkle.com/bitcoin-ransomware-

education-satan/
4 Symantec, Internet Security Threat Report, 2017, p61
5 Locky is ransomware malware released in 2016. It is delivered by email (that is allegedly an invoice requiring

payment) with an attached Microsoft Word document that contains malicious macros. Filenames are converted to a

unique 16 letter and number combination. Initially, only the .locky file extension was used for these encrypted files.

Subsequently, other file extensions have been used, including .zepto, .odin, .aesir, .thor, and .zzzzz. After encryption,

a message (displayed on the user's desktop) instructs them to download the Tor browser and visit a specific criminal-

operated Web site for further information. Since the criminals possess the private key and the remote servers are

controlled by them, the victims are motivated to pay to decrypt their files. Reference source:

https://en.wikipedia.org/wiki/Locky
6 Ransom.Cerber is a ransomware application that uses a ransomware-as-a-service (RaaS) model where affiliates

purchase and then subsequently spread the malware. Commissions are paid to the developers for the use of the

malware. Ransom.Cerber uses strong encryption, and there are currently no free decryptors available. Reference

source: https://blog.malwarebytes.com/detections/ransom-cerber/
7 CTB-Locker emerged in June 2014 and is one of the first ransomware variants to use Tor for its C2 infrastructure.

CTB-Locker uses Tor exclusively for its C2 servers and only connects to the C2 after encrypting victims' files.

Additionally, unlike other ransomware variants that utilize the Tor network for some communication, the Tor

components are embedded in the CTB-Locker malware, making it more efficient and harder to detect. CTB-Locker is

spread through drive-by downloads and spam emails. Reference source: http://itlaw.wikia.com/wiki/CTB-Locker
8 Ransom.Cryptowall is a Trojan horse that encrypts files on the compromised computer. It then asks the user to pay

to have the files decrypted. The threat typically arrives on the affected computer through spam emails, exploit kits
hosted through malicious ads or compromised sites, or other malware. Reference source:

https://www.symantec.com/security-center/writeup/2014-061923-2824-99
9 CrySiS is a ransomware virus that was spotted back in March 2016 and is still active today. Since its initial release,

malware had multiple updates, changing the file extension and the contact email to a different one. Reference source:

https://www.2-spyware.com/remove-crysis-ransomware-virus.html

Ransomware, the key threat

4

Teslacrypt10, Torrentlocker11 and Zepto12 were also reported, but these appear to be localised to

specific countries. On 12 May 2017 however, all other ransomware activity was eclipsed by a

global ransomware attack of unprecedented scale. While reports vary, the WannaCry ransomware

is believed to have rapidly infected up to 300.000 victims in over 150 countries, including a number

of high-profile targets such as the UK’s National Health Service, Spanish telecommunication

company Telefónica, and logistics company Fed-Ex.

There were several key factors in the success of the WannaCry attack. Firstly, unlike most

ransomware, WannaCry used the self-propagating functionality of a worm to spread infections.

Secondly, and of greater concern, the worm made use of a Windows SMB (Server Message Block)

exploit dubbed ‘EternalBlue’ to infect machines. EternalBlue is one of the exploits allegedly leaked

by the NSA and acquired by the ShadowBrokers group. The ShadowBrokers publicly leaked the

code for the exploit in April 2017, one month after Microsoft released a patch for it. One month

later the WannaCry attack occurred. While the scope and scale of the WannaCry attack was

considerable, and the anxiety generated was socially significant, if WannaCry truly was as an

attempt at extortion, it was a negligible financial success, with less than 1 percent of the victims

paying the ransom. In the month following the WannaCry outbreak, another global ransomware

attack was launched, utilising some of the same exploits used by WannaCry. The updated version

10 TeslaCrypt was a ransomware trojan. It is now defunct, and its master key was released by the developers. In its

early forms, TeslaCrypt targeted game-play data for specific computer games. Newer variants of the malware also

affect other file types. Reference source: https://en.wikipedia.org/wiki/TeslaCrypt
11 The TorrentLocker ransomware, which has been in a lull as of late, has recently come back with new variants. These

new variants are using a delivery mechanism that uses abused Dropbox accounts. This new type of attack is in line

with our 2017 prediction that ransomware would continue to evolve beyond the usual attack vectors. Reference source:

http://blog.trendmicro.com/trendlabs-security-intelligence/torrentlocker-changes-attack-method-targets-leading-

european-countries
12 Zepto (a new variant of the Locky ransomware) is a file-encrypting ransomware, which will encrypt the personal

documents found on victim’s computer using RSA-2048 key (AES CBC 256-bit encryption algorithm), appending

the .zepto extension to encrypted files. Reference Source: https://malwaretips.com/blogs/remove-zepto-virus/

Chapter 1. Introduction

 5

of the Petya13 ransomware, dubbed ExPetr or NotPetya, reportedly hit more than 20.000 victim

machines in more than 60 countries. Victims were mainly in Europe, but also in Asia, North and

South America and Australia; however, more than 70% of the total infections were in the Ukraine¹⁵.

Moreover, reports indicated that more than 50% of the businesses targeted were industrial

companies. Some opinions suggest that the attack was staged to appear as another ransomware

attack, but it appears to have been designed as a ‘wiper’, whose sole purpose is to destroy data.

1.2.2 IOCTA 2018 ii

In the year 2018, Ransomware retains its dominance, by remaining the key malware threat

in both law enforcement and industry reporting. Even though the growth of ransomware is

beginning to slow, ransomware is still overtaking banking Trojans in financially-motivated

malware attacks, a trend anticipated to continue over the following years. In addition to attacks by

financially motivated criminals, a significant volume of public reporting increasingly attributes

global cyber-attacks to the actions of nation states. Mobile malware has not been extensively

reported in 2017, but this has been identified as an anticipated future threat for private and public

entities alike.

The most commonly reported ransomware families are Cerber, Cryptolocker, Crysis,

Curve-Tor-Bitcoin Locker (CTBLocker), Dharma14 and Locky. With the exception of Dharma, for

13 Petya is a family of encrypting ransomware that was first discovered in 2016[2]. The malware targets Microsoft

Windows-based systems, infecting the master boot record to execute a payload that encrypts a hard drive's file system

table and prevents Windows from booting. It subsequently demands that the user make a payment in Bitcoin in order
to regain access to the system. Reference source: https://en.wikipedia.org/wiki/Petya_(malware)
14 The Dharma Ransomware is an encryption ransomware Trojan that is being used to extort computer users. There

have been numerous computers around the world that have been infected by the Dharma Ransomware. The Dharma

Ransomware seems to target only the directories inside the Users directory on Windows, with encrypted files receiving

the suffix [bitcoin143@india.com].dharma added to the end of each file name. Variants of the Dharma Ransomware

will sometimes not have a ransom note. The Dharma Ransomware does not stop the affected computer from working

Ransomware, the key threat

6

which decryption keys are now available, all of these were reported in previous years. Member

states reported a wide range of other ransomware families, but in fewer instances and dispersed

across Europe. Overall damages arising from ransomware attacks are difficult to calculate,

although some estimates suggest a global loss in excess of USD 5 billion in 201715. In comparison,

other reporting suggests that over the past two years, 35 unique ransomware strains have earned

cybercriminals USD 25 million, with Locky and its many variants accounting for more than 28%16.

This highlights the huge disparity between the losses to victims, compared to the actual criminal

revenue generated.

Ransomware attacks may move from random to targeted

In some Member States attacks appear to remain largely untargeted, affecting citizens and

businesses alike; this is perhaps the result of “scattergun” attacks by those engaging ransomware-

as-a-service, or those with affiliate programs, such as Cerber, which allegedly allows its authors to

sustain an income of USD 200.000 per month17. Some other Member States report that campaigns

are customized or tailored to specific companies or individuals, suggesting a more organized or

professional attack.

properly, but every time a file is added to the targeted directories, it will be encrypted unless the Dharma Ransomware

infection is removed.
15 Morgan, S., Global ransomware damage costs predicted to hit $11.5 billion by 2019, Reference source:
https://cybersecurityventures.com/ransomware-damage-report-2017-part-2/, 2017.
16 Spring, T., Google study quantifies ransomware profits, Reference source: https://threatpost.com/google-study-

quantifies-ransomware-revenue/127057/, 2017.
17 Spring, T., Google study quantifies ransomware profits, Reference source:https://threatpost.com/google-study-

quantifies-ransomware-revenue/127057/, 2017.

Chapter 1. Introduction

 7

As we have seen with other cyber-attacks, as criminals become more adept and the tools

more sophisticated yet easier to obtain, fewer attacks are directed towards citizens and more

towards small businesses and larger targets, where greater potential profits lie.

1.2.3 Previous IOCTA reports

In the 2014 iii IOCTA report, while over half of EU law enforcement had encountered

ransomware, this related on the whole to police ransomware, without encryption. Cryptoware was

only just emerging with sporadic cases of Cryptolocker. By 2015iv cryptoware had become a top

emerging threat for EU law enforcement, although non-encrypting police ransomware still

accounted for a significant proportion of ransomware cases. By 2016v police ransomware had all

but vanished, except for on mobile devices, superseded by a growing variety of cryptoware. By

2017 the number of ransomware families had exploded, their impact significantly overshadowing

other malware threats such as banking Trojans. Industry reported that ransomware damages had

increased fifteen-fold over the previous two years18.

1.3 Needance of Malware - Ransomware Analysis

With millions of malicious programs in the wild ecosystem of Informatics, and more

encountered every day, malware analysis is critical for anyone who responds to computer security

incidents. And, with a shortage of malware analysis professionals, the skilled malware analyst is

in serious demand.

18 Morgan, S., Global ransomware damage costs predicted to exceed $5 billion in 2017,

https://cybersecurityventures.com/ransomware-damage-report-2017-5-billion/, 2017.

Needance of Malware - Ransomware Analysis

8

1.3.1 Definition of Malware Analysis

Malware analysis is the procedure of identifying the working mechanism of the malware

in order to counter it. While the various malware incarnations do all sorts of different things, there

are several techniques and tools for analyzing malware.

In order to do a Malware Analysis, several steps of dissecting the malware are being

followed. Following these steps, the analyst is able to understand the malware’s scope. Reverse-

engineering is not malware analysis, as a large audience believes, but is a part of the analysis. It

could be said that, is the last technique an analyst will use to reveal the unanswered details of the

malware.

Nevertheless, malware analysis is the critical part of incident response. Without the

knowledge of the malware’s actions, the security experts are not able to respond to an incident, as

a result any technical or organizational measures, will not be effective.

In a simple case where a network intrusion, there are several information which are

required to respond. At start, it should be revealed what exactly happened and ensure that all

infected machines and files have been located. Also, a measurement of the damage should be

calculated. Then, in order to counter the network intrusion, signatures should be generated and

entered to the intrusion detection systems.

1.3.2 Background of Malware Analysis

In the old days, analysis had to be done with shell commands, built-in system utilities, and

a text editor. Of course, back then, the attack surface was small and malwares could not hide behind

the few processes running. As malware really began to hit its stride, virtual machine technology

Chapter 1. Introduction

 9

started to gain in popularity among security analysts. Researchers could make a snapshot or backup

of a virtual machine and proceed to hack it, infect it, and trash it to their heart’s content. In addition,

the analyst could restore the good copy in just a few short minutes, with this process could be

repeated over and over and streamlined analysis in a big way. However, virtual machine detection

appears to be trivial nowadays 19 20 21. Furthermore, some malware authors are well aware and take

advantage of 22. With the knowledge that researchers use virtual environments to analyze their

code, some malware authors now instruct their creations not to run, or to run differently within

these environments. The goal of malware authors is to make it more difficult for researchers that

employ the use of virtualized environments to analyze samples of malware.

1.3.3 Malware Analysis Techniques

Currently, there are five general techniques used in malware analysis: basic static or surface

analysis, basic dynamic or behavioral analysis, static code analysis, dynamic code analysis, and

volatile memory analysis. 23

● Surface analysis examines the structural properties and file attributes of a malware

sample 24 without viewing assembly or machine-level instructions (Sikorski & Honig,

19 Rutkowska, J. (2004, November). Red Pill... or how to detect VMM using (almost) one CPU instruction, source url:

http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/redpill.html
20 Klein, T. (2003). Scoopy Doo - VMware Fingerprint Suite. source url:
http://www.trapkit.de/research/vmm/scoopydoo/index.html
21 Klein, T. (2003). Jerry – A(nother) Vmware Fingerprinter. source url:

http://www.trapkit.de/research/vmm/jerry/index.html
22 Zeltser, L. (2006, November 11). Virtual Machine Detection in Malware via Commercial Tools. Retrieved January

18, 2007, from SANS Internet Storm Center. link: http://isc.sans.org/diary.html?storyid=1871&rss
23 Case Study: 2012 DC3 Digital Forensic Challenge Basic Malware Analysis Exercise, Author: Kenneth J. Zahn,

kenneth.j.zahn@gmail.com Advisor: Rick Wanner, Accepted: August 24, 2013, from SANS
24 (e.g. true file type (useful if the file extension was changed), size, file hash values, file and section headers, strings,

contained objects, packing mechanisms)

Needance of Malware - Ransomware Analysis

10

2012). Surface analysis can provide information artifacts, such as IP addresses, Internet

domain names, and command parameters, that prove useful in subsequent analysis steps.

● Behavioral analysis observes the actions taken by a malware sample while it is running.

Certain key actions taken by the malware sample, such as adding/modifying/deleting

Windows Registry keys, dropping files on the file system, and establishing

communications with a command-and-control server, may serve as indicators of

compromise (IOC) for the particular sample (Mandiant, 2011). The IOC’s observed by the

analyst during this phase may then be used to produce signatures for intrusion detection

and prevention systems. Because behavioral analysis requires executing the malware on a

live machine, it is critical to implement appropriate risk mitigations (e.g. using a stand-

alone, virtualized test environment or a sandbox) to avoid infecting production systems

(Sikorski & Honig, 2012).

● Static code analysis examines the malware sample’s executable instructions and internal

data structures by loading the sample into a disassembler. Barring code that has been

packed, encrypted, or otherwise obfuscated, all instructions present in the sample can be

viewed. Although a time-consuming technique, static code analysis can give investigators

full insight into the capabilities of the sample under examination (Sikorski & Honig, 2012).

● Dynamic code analysis allows the analyst to execute a malware sample instruction-by-

instruction by loading it into a debugging application. Because malware samples may have

obfuscated portions, it is sometimes necessary to execute the malware sample up to the

completion of the de-obfuscation routine. Once execution is halted at that point in time, the

sample in memory may be examined for de-obfuscated data structures or may be dumped

to disk for additional static code analysis (Sikorski & Honig, 2012). Dynamic code analysis

Chapter 1. Introduction

 11

also reveals data values that are assigned at run time and not available at compile

time.

● Volatile Memory Analysis involves the examination of volatile memory at a single point

in time. Such analysis is accomplished first by dumping the volatile memory to a file and

then by inspecting the contents offline using a specialized tool such as the Volatility

Framework (Case, 2012).

1.3.4 Definitions of Analysis Techniques

Short definition of Static Analysis

Static Analysis, examines malware without running it, using a gamma of tools, like

disassemblers. More specifically, the under examination malware, is being analyzed in static state,

without loading it in RAM or analyses its behavior and without looking at CPU instructions.

Short definition of Dynamic Analysis

On the other hand, on dynamic analysis the malware is being run and monitor its effect.

More specifically, the observation take place on running processes, on Windows registry edits and

in low level RAM and CPU analysis.

Short definition of Basic Static Analysis

The Basic static analysis, that can be referred as quick and easy but fails for advanced

malware, as it can miss important effects, as the malware is being viewed without looking at

instructions.

Needance of Malware - Ransomware Analysis

12

Short definition of Basic Dynamic Analysis

And the Basic dynamic analysis, that can be referred as easy, but requires a safe test

environment, with the risk that this method will not be effective on all malware.

Short definition of Advanced Static Analysis

The Advances Static analysis is a complex procedure that requires understanding of

assembly code. The main procedure is the Reverse-engineering with a disassembler, without the

actual execution of the binary by the CPU.

Short definition of Advanced Dynamic Analysis

The Advances Dynamic analysis examines internal state of a running malicious executable,

that also requires understanding of assembly code combined with the understanding of the running

code procedure in a debugger.

Chapter 2. Malware Analysis Environment

13

2. Malware Analysis Environment

2.1. Virtualization Technologies

Virtualization is an important tool for malware researchers and as such, is a large focus in

this paper. The fact that some samples of malware are now refusing to run in researchers’ labs is

an important issue, and one without a simple solution. The aim of this section is to dissect the

problem and clarify the solutions available.

If “The Matrix”25 analogy is getting old, but it really is a perfect example, and a very

effective way to explain the relationships between hosts and guests in the world of VMEs. Most

important to VM detection is the difference between different types of VMEs, specifically between

native virtualization / paravirtualization and emulation.

It is no secret that the Information Security industry takes advantage of virtualization

software in order to research security threats. VMWare, Sandboxie, Hyper-V (Virtual PC 26),

Anubis, CWSandbox, JoeBox, VirtualBox, Parallels, QEMU are just of few of these virtual

machines. The cornucopia of virtual environments gives the security professional, the opportunity

to observe and analyze malicious software in a convenient and easily reproducible manner.

25 The Matrix is a 1999 science fiction action film. It depicts a dystopian future in which reality as perceived by most

humans is actually a simulated reality called "the Matrix". Source: en.wikipedia.org/wiki/The_Matrix
26 Windows Virtual PC (successor to Microsoft Virtual PC 2007, Microsoft Virtual PC 2004, and Connectix Virtual
PC) is a virtualization program for Microsoft Windows. In July 2006 Microsoft released the Windows version as a

free product. The newest release, Windows Virtual PC, does not run on versions of Windows earlier than Windows 7,

and does not officially support MS-DOS or operating systems earlier than Windows XP Professional SP3 as guests.

The older versions, which support a wider range of host and guest operating systems, remain available. Starting with

Windows 8, Hyper-V supersedes Windows Virtual PC. On the latest Windows version Windows 10 Virtual PC has

been replaced by Hyper-V. Source url: https://en.wikipedia.org/wiki/Windows_Virtual_PC.

Differences between virtual and real world

14

2.2. Differences between virtual and real world

A malicious software has several ways to detect the system that is being executed, using

the VME Technologies Detection. It could be considered as the base operation of a VME. Malware

writers, in order to counter the virtual world, include code in their binaries to make it more difficult

for computer security professionals to analyze their executables in those virtual environments.

Therefore, the VME technologies should be explained, in order to have the clearest view for each

anti-virtualization technique.

2.3. VME Technologies

2.3.1 Native Virtualization

In Native Virtualization, the VMM executes guest code on the underlying hardware.

Because the host and guest operating systems are sharing the same hardware, certain resources

must be relocated by the VMM to prevent conflicts. One of these resources is the interrupt

descriptor table register (IDTR). When this resource is relocated by the VMM, the address of the

table changes. Using the SIDT instruction, one could write some simple code that will return the

location of this table, and thus show whether code is being executed inside the matrix (inside a

VME guest), or in “the world of the real” (within the host OS). The positive and the negative

effects of the native virtualization implementation, are being listed:

+ Fast, Easy, Flexible, Convenient

- Easy for malware to detect, VME host software is limited to running on x86 architectures.

Chapter 2. Malware Analysis Environment

 15

2.3.2 Paravirtualization

Paravirtualization is similar to Native Virtualization, except that there is a unique

relationship between the host and the guest. The host presents an interface, similar to a software

API, to the guest. This interface is called an ABI (Application Binary Interface) and is used by the

guest to speak indirectly to the hardware. The positive and the negative effects of the

Paravirtualization implementation, are listed below:

+ Is claimed to be potentially even faster27 than Native Virtualization, due to the unique “shortcut”

paravirtualization provides for the guest.

- The guest must be modified to work with the host’s specific ABI. This generally means that

paravirtualization is an approach that generally would not work with commercial operating

systems, such as Microsoft Windows.

2.3.3 Native Virtualization and Paravirtualization Detection Techniques

Tools and code demonstrating VM detection techniques are freely available. Joanna

Rutkowska’s Red Pill28 is probably the most well-known of these, though Tobias Klein’s Scoopy29

tool is a bit more informative.

27 Barham, P., Dragovic, B., Fraser K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., & Warfield, A. (2003).

Xen and the Art of Virtualization. Source url: www.cl.cam.ac.uk/netos/papers/2003-xensosp.pdf.
28 Rutkowska, Joanna (2004, November). Red Pill... or how to detect VMM using (almost) one CPU instruction.
Source url: www.invisiblethings.org/papers/redpill.html
29 Klein, Tobias. (2003). Scooby Doo - VMware Fingerprint Suite. Source url:

www.trapkit.de/research/vmm/scoopydoo/index.html

VME Technologies

16

2.3.4 Descriptor Table Registers check

The SIDT Instruction (Store Interrupt Descriptor Table) stores the content of the IDTR

(Interrupt Descriptor Table Register) register, which in fact, is a selector that points into the

Interrupt Descriptor Table. The instruction SGDT (Store Global Descriptor Table) stores the

register value of GDTR, which is a selector that points into the global descriptor table. The SLDT

instruction (Store Local Descriptor Table) stores the register value LDTR. This register is a selector

that points into the local descriptor table (LDT).

There is only one Interrupt Descriptor Table Register (IDTR), one Global Descriptor Table

Register (GDTR) and one Local Descriptor Table Register (LDTR) per processor. Since there are

two operating systems running at the same time (the host and the guest), the virtual machine needs

to relocate the IDTR, GDTR and LDTR for the guest OS to different locations in order to avoid

conflicts. This will cause inconsistencies between the values of these registers in a virtual machine

and in the native machine. The instructions SIDT, SGDT and SLDT are assembly instructions that

can respectively be used to retrieve the values of IDTR, GDTR and LDTR.

2.3.5 The IDTR Detection Technique

When Red_Pill.exe is executed within an OS running directly on hardware, Red Pill

informs us that we are “Not inside the Matrix”. When executed within an OS running in a VME

like VMWare, Red Pill informs us that we are, indeed, “Inside the Matrix”. Malware authors have

taken advantage of the fact that VM detection can be done with a line, or just a few lines of code.

It is increasingly common to find malware that will refuse to run in virtualized environments, as

their authors know that VMEs commonly used by malware researchers.

Chapter 2. Malware Analysis Environment

 17

To counter this, it is possible that a VME could fake the results of a query for IDT values,

but it is unlikely that commercial vendors would take much interest in making these changes. It is

also not clear whether such changes would cause detrimental effects on operating systems running

within the modified VME.

2.3.6 Thwart virtual machine detection

Most commercial VMEs create many artifacts that allow for easy VM detection. Because

anti-VM techniques typically target VMware in this case, the focus stands on anti-VMware

techniques. One such example is Tobias Klein’s Doo VBScript, included in the Scooby Doo release.

This VBScript simply looks for VME artifacts in the Windows registry. These are extremely easy

to find if a VME toolset, such as VMWare Tools, or Parallels Tools have been installed on the

Guest OS. For example, VMware provides a set of tools called VMware Tools that enhances the

overall user experience with the guest OS. The drawback is that installing VMware Tools in a

Windows guest OS will leave many clues easily detectable by a piece malware that is running in

a virtual machine.

Even if VME toolsets have not been installed, artifacts can still be found, as Doo shows.

Doo specifically looks for the names of hardware components, which usually contain the word

“virtual” or the name of the VME vendor. It is simply a check for the presence of virtualized

hardware, but as a method is effective all the same. Specifically, Malware can check for the

presence of certain OUIs (VMware has more than one Organizationally Unique Identifier or OUI)

and choose to behave differently or not to display any malignant behavior whatsoever in a virtual

machine. In Windows these OUIs can be easily reveal themselves via Registry. Each virtual

VME Technologies

18

machine is associated with specific device drivers, registry values that give away their nature. For

instance:

● Hard drive driver (VMware):

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\IDE\DiskVMware_

Virtual_IDE_Hard_

Drive 00000001\3030303030303030303030303030303030303130\FriendlyName

VMware Virtual IDE Hard Drive

● Video driver (VMware):

● HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\Class\{4D36E968-

E325-11CE-BFC1-08002BE10318}\0000\DriverDesc VMware SVGA II

●

● Mouse driver (VMware):

%WINDIR%\system32\drivers\vmmouse.sys

● In addition, virtual environments have virtual network interfaces. Just like any network

interface, they are assigned a unique MAC address that usually includes the manufacturer's

identification number. For example, a network interface for VMware Workstation will have

a MAC address that starts with

 00:50:56

 or

00:0C:29

Any of these can be used by a malware writer to detect the presence of a virtual machine.

Furthermore, there is a full list of detection techniques, which are more thoroughly explored in

paper: “On the Cutting Edge: Thwarting Virtual Machine Detection, a paper by Ed Skoudis and

Tom Liston”. This list will be used as a reference during the analysis, when specific detection

techniques are being identified.

Chapter 2. Malware Analysis Environment

 19

Emulation

Emulation is a different matter altogether. Computer emulators emulate the underlying hardware

using code, rather than by sharing the actual physical hardware. As a result, SIDT/IDTR detection

techniques do not work within emulated VMEs. Another advantage of emulation is that the

emulated hardware can potentially run on top of any other hardware architecture. For example,

Bochs running on MacOS X could run x86 versions of Windows XP. The positive and the negative

effects of the Emulation implementation, are being listed:

+ x86 emulators such as QEMU and Bochs can run on any architecture where the code is ported

to, so they can evade current detection techniques

- Emulation is generally slower than native virtualization or paravirtualization.

2.4. General Local Virtual Machine Detection

 There are several ways to detect a VM. Complementary to the above mentioned, the Local

Virtual Machine Detection that covers nearly all of the elements of the virtual machine, is divided

to four categories of methods for locally detecting the presence of a virtual machine:

1. Look for VME artifacts in processes, file system, and/or registry

2. Look for VME artifacts in memory

3. Look for VME-specific virtual hardware

4. Look for VME-specific processor instructions and capabilities

General Local Virtual Machine Detection

20

2.4.1. Exploring Available VMEs

The following Table describes the Notable Emulators and VMEs 30

Product Type Pros Cons

VMware Server -

Services

Native Can be remotely

controlled and

configured. Easy

setup and free

Easily to detect by

malware

Hyper-V (Virtual PC) Native Fast. Easy setup Commercial, money

cost. Easily detect by

malware

Parallels Paravirtualization Easy to Setup and

configure

Commercial, money

cost. Easily detect by

malware

Bochs Emulation Free and Open

Source. Can not be

easily detect by

malware

Operating Systems

run much more

slowly on emulation.

High Specification

machine needed

QEMU Emulation Free and Open

Source. Can not be

easily detect by

malware. Faster than

Bochs

Confusing to

configure and run

Table 1: Notable Emulators and VMEs31

30More complete list on Wikipedia source url: en.wikipedia.org/wiki/Comparison_of_virtual_machines
31 Malware Analysis: Environment Design and Architecture, SANS Institute, Author: Adrian Sanabria, Adviser: Rick

Wanner, January 18th 2007. Source url: https://www.sans.org/reading-room/whitepapers/threats/malware-analysis-

environment-design-artitecture-1841

Chapter 2. Malware Analysis Environment

 21

2.4.2. Environment Design and Architecture

At the software level, tools and methods for detecting and analyzing malware have been

documented above. However, the design and architecture of malware analysis environments does

not often get publicly discussed. Specifically, commercial antivirus vendors use highly customized

and specialized environments to explore the goals and inner workings of malware quickly and

efficiently. The regular analysts rarely experiment beyond the use of an isolated virtual machine to

quarantine the malicious intent of a virus or trojan.

Lab Design due to Malware Type

There are many different ways to classify malware. Antivirus vendors tend to classify by

intent (Trojan, worm, mailer, Ransomware, etc) and several aspects of severity (damage potential,

potential of outbreak, and actual outbreak reports). These metrics are usually used to create an

overall risk rating. The necessity for a method of identifying and classifying malware according to

its detection difficulty, was introduced by Joanna Rutkowska, which she calls Stealth Malware

Taxonomy32 . The following categorization is not a recommendation to replace currently used

categories, but instead, it is another set of criteria to consider when analyzing malware.

Malware Type Stealth Characteristics Analysis Considerations

Type 0 Does not use undocumented
methods to hide.

Most standard malware falls under this
category. Usage of traditional tools to analyze

Type I Modifies constant resources to hide

itself (by patching executables,
modifies code, inserting into BIOS,

ect)

Compare hashes of running memory with

equivalent values on disk.
Digitally sign code.

32 Rutkowska, J. (2006, November), Stealth Malware Taxonomy. Source url:

blog.invisiblethings.org/papers/2006/rutkowska_malware_taxonomy.pdf

General Local Virtual Machine Detection

22

Type II Modifies dynamic resources to hide

itself (for example: using sections

of data within memory)

Unable to compare hashes of application data,

as it is constantly changing.

Type III Hides itself where the operating

system cannot see it at all, like a

hypervisor. Full control of the
running system and interfere with it.

Being nearly undetectable from within the

Operating System, detection, prevention and

analysis would have to be done at the
hypervisor level or outside of the OS. A way

for analysis is to compare the timing of

instructions executed before and after type 3
malware is introduced or network activity

analysis.

Table 2: Brief Overview of J. Rutkowska’s Stealth Malware Taxonomy33

The relevance to malware analysis and lab architecture exists on the opportunity to

specialize a lab or PC environment for the analysis of a specific type or class of malware. One of

the most common recent examples is malware that refuses to run in virtualized environments,

while these environments are often equated with malware analysis. On the under analysis PE file,

the class of malware must be taken into account. During the dynamic analysis, several anti-vm

methods have been detected. Furthermore, some specific network and time behavior exists, which

should be considered to make the necessary changes to their lab design. This results in several

opportunities to specialize an analysis lab.

Guidelines for Lab architecture

The basic guidelines when designing and implementing a malware analysis environment are:

● Simplicity

Each added bit of complexity can make it more difficult to maintain.

● Containment

33 Rutkowska, J. (2006, November), Stealth Malware Taxonomy. Source url:

blog.invisiblethings.org/papers/2006/rutkowska_malware_taxonomy.pdf

Chapter 2. Malware Analysis Environment

 23

Acts as a paramount when designing an environment that may test the digital equivalents

of plagues and super flues. Maintaining control is preferred as well, but cannot be guaranteed when

dealing with new malware specimens. Containment is the safety net when control is lost.

● Flexibility

A flexible environment is essential. One that is too fragile, or has too much downtime is of

little use to a malware researcher.

Suggested Requirements and setups

Physical and Financial Constraints:

A researcher may need to do analysis on the road, could do all of it in a fully funded data

center, or could employ a combination of both. In the current case with a non funded malware

analysis for educational purposes, there will be a restriction on a single physical machine.

Scenario single PC Lab

The single PC lab is one of the most commonly used environments and especially for

researchers. This deployment will take place in current project, because it can be easily deployed

on single workstation and also easily deployed on a laptop. The option of using emulators, such as

Bochs or QEMU rather than VMware, would be more difficult to isolate the networks and

specifically using the VLAN features of QEMU because of the requirement of host-based firewall

in order to filter and block the incoming traffic, exposing the host machine.

General Local Virtual Machine Detection

24

Figure 1: Single PC Lab34

Please see the Appendix A for the full specifications of Hardware and Software on Host. In

addition, Appendix A includes the VM and VME configuration and installation using FlareVM.

Sample files for the analysis

Due to the nature of the ransomware and considering that specific files are being searched

in order to encrypt them, we have collected some sample files. The file type of sample files are

png, jpg, txt, xls, doc and pdf. They will be placed on the specific directories Desktop, Document,

Downloads and on C:/files. Each directory will have a different package of files, with all types

included. With the above actions, we are preparing our environment to be helpful and ready for

the behavioral analysis. We are expecting the ransomware to encrypt these types of files and we

would like to know if the ransomware searches exhaustive or in specific directories. In addition,

34 Based on figure 8 of Malware Analysis: Environment Design and Architecture, SANS Institute, Author: Adrian

Sanabria, Adviser: Rick Wanner, January 18th 2007. Source url: https://www.sans.org/reading-
room/whitepapers/threats/malware-analysis-environment-design-artitecture-1841

Chapter 2. Malware Analysis Environment

 25

we will compare the encrypted file and the original file on hex editor, in order to try to find

vulnerability on the entropy. Please find the files on the Attached zipped files. Note that all the

files are originally publicly posted in the website of www.unipi.gr and its subdomains.

Swift Recovery

Traditionally, recovering a computer system to an earlier state would be a tedious, time

intensive operation. In the past five years, however, VMEs have become popular in malware

analysis due in part to the ease and speed of recovery possible with these environments. The system

will use VMWare virtualization software as an VME in which to run the malicious samples.

A hardware failure is always possible, so the RAID 1 structure of the VMs storage,

decreases the probability of both HDDs failure. Keep in mind that, a frequent backup of the VM

is being taken, as the last recovery options. The disaster recovery approach is to upload these

backups of the VMs in a cloud storage service. Because the University uses the G-suite service

with unlimited storage, the disaster recovery backups will be uploaded to Google Drive.

2.4.3. VMware Workstation Setup

Virtual Network Editor

In order to setup the network securely, a custom VLAN should be created. The name of the

Network Adapter would be Malnet10, acting as custom Host-Only network, which connects the

Virtual Machines internally in private network and with no interaction with the host’s network.

The subnet IP range will be set as 10.1.210.0 and subnet mask as 255.255.255.0, without local

DHCP service activated, so the distribution of IP Addresses to Virtual Machines would be manual

settled.

General Local Virtual Machine Detection

26

Figure 2: Virtual Network Editor settings

Then we should attach the virtual cable to our VM, by adding or editing a Network Adapted

in Hardware/Virtual Machine Settings. Keep in mind that the host’s virtual adapter should not be

connected.

Chapter 2. Malware Analysis Environment

 27

Figure 3: Virtual Machine Settings on network adapter

In addition, each VM should manual adapt an IP manually from the subnet 10.1.210.0.

Figure 4: Local Area Connection Properties in VM OS

The selection of the subnet IP range is not random, but it is selected for the under analysis

ransomware. More specifically the verification of date and time is being done at binary’s

location .text:004026CC and it is combined with the verification of the IP is being done by

General Local Virtual Machine Detection

28

gethostbyname API function call, at binary’s location .text:00403FE8. These techniques will be

analyzed in further analysis of the subject malware.

Stealthy Tools

Stealthy Tools, that are being included in the Appendix B, are basically a registry file that

edit some default registry values. This registry script will make our VME stealthier from VM

detection techniques. The default registry values reveal the VME, but after editing them the VME

will be spoofed and would not be differed.

Note that, in case of Windows10 VM, go to task manager, click performance tab and click

CPU on the left. There is a value 'Virtual Machine: Yes' at right bottom and L1, L2, L3 cache are

not being showed. To spoof these finding in VMWare, "Virtualize Intel VT-x/EPT or AMD-V/RVI"

in the settings of the VM should be activated, in order to have virtual L1, L2, L3 cache 35.

VMware Tools detection evasion

To hide the VMWare Tools from the list of programs (or any program for that matters), you

can just go to:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\

Find the program you want to hide in the list. Once you found it, create a DWORD named

'SystemComponent' and set it to 1. In case of non changed state, restart the VME.

35CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the

average cost (time or energy) to access data from the main memory. A cache is a smaller, faster memory, closer to a

processor core, which stores copies of the data from frequently used main memory locations. Most CPUs have

different independent caches, including instruction and data caches, where the data cache is usually organized as a

hierarchy of more cache levels (L1, L2, L3).

Chapter 2. Malware Analysis Environment

 29

A helpful PowerShell script to rename same registry values to spoof the VMware Tools, having

them fully functional is included in the Appendix C.

VMware Tools uninstall

Nowadays the majority of malware authors check, with several ways, if VMware tools if

installed. In case that the above VMware tools detection evasion script is not working, the best

way to hide it from the control panel is going to the registry editor and going to they following

registry value:

hkey_local_machine>software>microsoft>windows>currentversion>uninstall

Click on every folder there until you find “VMware Tools” in the variable 'displayname' and delete

that folder. Restarting Windows after these actions required.

VMX configuration file

The next step is to edit your VMware .vmx file. When you create a new virtual image with

VMware, settings about it are stored in a configuration file with the .vmx extension. The file

contains information about networking, disk size, devices attached to the virtual machine, etc. The

config file is usually located in the directory where you created your virtual image. The

recommended VMX setup from SANS paper is the following36:

isolation.tools.getPtrLocation.disable = "TRUE"

isolation.tools.setPtrLocation.disable = "TRUE"

isolation.tools.setVersion.disable = "TRUE"

isolation.tools.getVersion.disable = "TRUE"

monitor_control.disable_directexec = "TRUE"

monitor_control.disable_chksimd = "TRUE"

36 More vmx file commands can be found at the url: http://sanbarrow.com/vmx/vmx-advanced.html#isolationtools

General Local Virtual Machine Detection

30

isolation.tools.getPtrLocation.disable = "TRUE"

monitor_control.disable_ntreloc = "TRUE"

monitor_control.disable_selfmod = "TRUE"

monitor_control.disable_reloc = "TRUE"

monitor_control.disable_btinout = "TRUE"

monitor_control.disable_btmemspace = "TRUE"

monitor_control.disable_btpriv = "TRUE"

monitor_control.disable_btseg = "TRUE"
Table 3: VMX configuration file recommended by SANS

It should be pointed out that:

monitor_control.disable_directexec = "TRUE"

will usually thwart descriptor table registers checks. This setting will make VMware interpret each

assembly instruction instead of executing them directly on the processor. Therefore, the result of

a SIDT instruction will not be an address in the 0xffXXXXXX range as one would get without

this setting.

isolation.tools.getVersion.disable = "TRUE"

Will thwart the backdoor I/O check.

Furthermore, a VMWare virtual machine's SMBIOS data will show VMWare Inc, by default, as

the system manufacturer and VMWare Virtual Platform as the system model. While this

information is not directly editable in the VM settings, you can however edit the virtual machine's

configuration file to instead pass along the SMBIOS System Manufacturer and Model info from

the host computer. The config command that should be added to vmx file is:

SMBIOS.reflecthost = "TRUE"

Chapter 2. Malware Analysis Environment

 31

Please note that, the best and most popular paper for VM Anti Detection is the Thwarting Virtual

Machine Detection, that was very helpful on Static and Dynamic Code analysis is: Liston, Tom;

Skoudis, Ed;, "On the Cutting Edge:Thwarting Virtual MachineDetection," SANS, 2006 37.

VMX setup for system time check

The under analysis ransomware has a sophisticated check of system time. More specifically

the verification of date and time is being done at binary’s location .text:004026CC., where the

valid range to execute the ransomware is from the epoch time 1410739200, which is being

converted as human readable date to GMT: Monday, September 15, 2014 12:00:00 AM, until the

epoch time 1416009600, which is being converted as human readable date to Saturday, November

15, 2014 12:00:00 AM.

The bypass solution of the system time check, without patching the binary, is to set the

virtual BIOS real time clock of the virtual system, to the epoch time 1410739300, each time the

virtual machine is powered on:

rtc.startTime = "1437997063"

tools.syncTime = "FALSE"

time.synchronize.continue ="FALSE"

time.synchronize.restore = "FALSE"

time.synchronize.resume.disk = "FALSE"

time.synchronize.resume.memory = "FALSE"

time.synchronize.shrink = "FALSE"

time.synchronize.tools.startup = "FALSE"
Table 4: VMX configuration for the system time check

37 Source url: https://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf

Chapter 3. Surface Analysis

32

3. Surface Analysis

3.1. Online malware repositories

3.1.1. VirusTotal

The usual first movement of a malware analyst is to upload the suspicious file at an online

repository of known malwares and If it is already analyzed, there will be results. The most famous

is VirusTotal38. Keep in mind that this action may alert the attacker and inform him that you have

detected an intrusion. The safest way to check a suspicious file in the VirusTotal database, without

having interactions, is to hash the file and search online for its hash value.

The check on VirusTotal was done with the SHA-256 of the suspicious file, which is

“6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92”. The results were

confusing with the 21/67 detection ratio. There are strong suspects that the file is malicious, but

no one has done a full analysis yet. The only suspicious indicators are the high entropy .txt section

and some mutexes that are being created.

The VirusTotal results are available offline on the Appendix D and online on the url:

https://www.virustotal.com/#/file/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

38 VirusTotal was founded in 2004 as a free online service that analyzes files and URLs for viruses, worms, trojans
and other kinds of malicious content. VirusTotal inspects items with over 70 antivirus scanners and URL/domain

blacklisting services, in addition to a myriad of tools to extract signals from the studied content.

https://www.virustotal.com/#/file/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

Chapter 3. Surface Analysis

 33

3.1.2. HybridAnalysis

A VirusTotal alternative, HybridAnalysis has richer results and confirms the maliciousness

of the file, but it is categorized as Spyware without useful details for its behavior. The addition

indicators are the Anti-VM tricks, Anti-Debugging tricks and the TLS39 callbacks.

Hybrid Analysis is an innovative technology integrated into the flagship product VxStream

Sandbox. VxStream Sandbox is a fully automated malware analysis system, as a standalone

software package that is automatically deployed within a limited hosted solution that is operated

from Hybrid Analysis’s servers in Germany.

The feature set of VxStream Sandbox is very extensive with hundreds of generic indicators

at its core that have proven to detect unknown threats independent of Anti-Virus signatures. The

analysis does not limit only the runtime behavior of the sample, but in the entire process memory,

using multiple timed snapshots. This allows extraction of a lot more indicators (Strings/API calls)

regardless of execution.

The HybridAnalysis results are available offline on the Appendix D and online on the url:

www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

3.2. PE headers

The Portable Executable (PE) format is a file format for executables, object code and DLLs.

It is used in 32-bit and 64-bit versions of Windows operating systems. The term "portable" refers

to format's versatility within numerous environments of operating system software architecture.

The PE format is a data structure that encapsulates necessary information so that Windows OS

39 TLS Callback is Address of Callbacks, functions that are stored on .tls section, that are executed when a process or

thread is started or stopped.

http://www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92

PE headers

34

loader can manage wrapped executable code. This includes dynamic library references for linking,

API export and import tables, resource management data and thread-local storage (TLS) data. On

NT operating systems, the PE format is used for EXE, DLL, SYS (device driver), and other file

types. The Extensible Firmware Interface (EFI) specification states that PE is the standard

executable format in EFI environments. PE is a modified version of the Unix COFF file format.

PE/COFF is an alternative term in Windows development. General Portable Executable (PE)

format file layout can be described with the following graphical representations.

Figure 5: hexcode dump of a PE header

Chapter 3. Surface Analysis

 35

Figure 6: PEheader diagram sections broken up

The specific fields and the structure layout are being detailed described on Appendix E.

Basic Static Analysis with Windows tools

36

3.3. Basic Static Analysis with Windows tools

3.3.1. PEView

In order to see what is inside the file, a recommended tool will be used, the Portable

Executable viewer Peview 40.

Figure 7: malware.exe/IMAGE_NT_HEADER/IMAGE_FILE_HEADER

The common useful PE section is the IMAGE_NT_HEADERS and its’ subsection

IMAGE_FILE_HEADERS. The "Time Date Stamp" shows when the files were compiled. This is

often used as an indication of the time zone the attackers live in. Also, if the files were both

compiled on the same date within a minute of each other, indicating that they are part of the same

package. On the current scenario, the timestamp is 14 October 2014 08:18:51 UTC, which

indicates that it is crafted. On the following section we will see that the malware has a specific

hardcoded lifetime which comes into conflict with the above timestamp. Reasonably the older the

sample, the more likely it will be detected by signature-based antivirus if it is malicious.

40 PEview, as the name suggests, is a viewer for PE (Portable Executable) files. It is a program running on Windows

OS. More specifically, shows the structure and content of 32-bit Portable Executable (PE) and Component Object File
Format (COFF) files. This PE/COFF file viewer displays header, section, directory, import table, export table, and

resource information within EXE, DLL, OBJ, LIB, DBG, and other file types.

Chapter 3. Surface Analysis

 37

Figures 8, 9, 10, 11 show the sections from rnsmwr.exe (malware.exe). As you can see,

the .text, .data, .rdata and .eh_frame sections, have about the same size on them values on Virtual

Size and Size of Raw Data.

Figure 8: PEview IMAGE_SECTION_HEADER .text

Figure 9: PEview IMAGE_SECTION_HEADER .data

Figure 10: PEview IMAGE_SECTION_HEADER .rdata

Basic Static Analysis with Windows tools

38

Figure 11: PEview IMAGE_SECTION_HEADER .eh_frame

Figure 12: PEview IMAGE_SECTION_HEADER .bss

Figure 13: PEview IMAGE_SECTION_HEADER .idata

Figure 14: PEview IMAGE_SECTION_HEADER .CRT

Chapter 3. Surface Analysis

 39

Figure 15: PEview IMAGE_SECTION_HEADER .tls

The .bss section may seem suspicious because it has a much larger virtual size than raw

data size, but this is normal for the .data section in Windows programs. But note that this

information alone does not tell us that the program is not malicious; it simply shows that it is likely

not packed and that the PE file header was generated by a compiler.

Another useful section is the .idata with the IMPORT Address Table, from where we can

gather information for the functions from other libraries that are used by the malware.

Figure 16: Section .idata/IMPORT Address Table

The full structured list of imports can be found at Appendix F/List of

Basic Static Analysis with Windows tools

40

Last but not least, we figure out a not usual section, the .tls section. Malware authors

employ numerous and creative techniques to protect their executables from reverse-engineering.

The arsenal includes an anti-debugging technique called TLS callback. The approach is not new,

yet it is not widely understood by malware analysts.

TLS explanation

According to Microsoft, Thread Local Storage (TLS) 41 is a mechanism that allows

Microsoft Windows to define data objects that are not automatic (stack) variables, yet are "local to

each individual thread that runs the code. Thus, each thread can maintain a different value for a

variable declared by using TLS." This information is stored in the PE header. (Windows uses the

PE header to store meta information about the executable to load and run the program.)

A programmer can define TLS callback functions, which were designed mainly to initialize

and clear TLS data objects. From the malware author's perspective, the beauty of TLS callbacks is

that Windows executes these functions before executing code at the traditional start of the program.

Since, windows loader first create a thread for the process to run, the code in TLS Callback runs

even before the program reach at entry point. Malwares use these functions/Callbacks to store their

41 All threads of a process share its virtual address space. The local variables of a function are unique to each thread

that runs the function. However, the static and global variables are shared by all threads in the process. With thread

local storage (TLS), you can provide unique data for each thread that the process can access using a global index. One
thread allocates the index, which can be used by the other threads to retrieve the unique data associated with the index.

The constant TLS_MINIMUM_AVAILABLE defines the minimum number of TLS indexes available in each process.

This minimum is guaranteed to be at least 64 for all systems. The maximum number of indexes per process is 1,088.

When the threads are created, the system allocates an array of LPVOID values for TLS, which are initialized to NULL.

Before an index can be used, it must be allocated by one of the threads. Each thread stores its data for a TLS index in

a TLS slot in the array. If the data associated with an index will fit in an LPVOID value, you can store the data directly

in the TLS slot. However, if you are using a large number of indexes in this way, it is better to allocate separate storage,

consolidate the data, and minimize the number of TLS slots in use. Source url: https://docs.microsoft.com/en-

us/windows/desktop/ProcThread/thread-local-storage

Chapter 3. Surface Analysis

 41

malicious code or Anti-Debug methods. It makes malware analyst confused while they are

debugging the code since they first break at Entry Point, but the malicious code is already executed.

Figure 17: Section .tls/Address of Callbacks

The Memory address 00484000 is written down, and we will be very useful to start

correctly the dynamic analysis. More specifically this address will be the entry point of the

executable, during the execution and not the start of the program. This is the purpose of TLS

anyway, that in this case is being abused from a malicious software.

3.3.2. PEiD

One way to detect packed files is with the PEiD program. PEiD can detect the type of

packer or compiler employed to build an application, which makes analyzing the packed file much

easier.

Packing and Obfuscation

Malware writers often use packing or obfuscation to make their files more difficult to detect

or analyze. Obfuscated programs are ones whose execution the malware author has attempted to

Basic Static Analysis with Windows tools

42

hide. Packed programs are a subset of obfuscated programs in which the malicious program is

compressed and cannot be analyzed. Both techniques will severely limit your attempts to statically

analyze the malware. When the packed program is run, a small wrapper program also runs to

decompress the packed file and then run the unpacked file. When a packed program is analyzed

statically, only the small wrapper program can be dissected.

In mls.exe case, in order to define if a Portable Executable file is packed or not, the PEiD42

have been used.

Figure 18:PEiD results

42 PEiD (PE iDentifier) detects most common packers, crypters and compilers for PE files. It can detect more than 470

different signatures in PE files. There are 3 different and unique scanning modes in PEiD. The *Normal Mode* scans
the PE files at their Entry Point for all documented signatures, the *Deep Mode* scans the PE file's Entry Point

containing section for all the documented signatures. This ensures detection of around 80% of modified and scrambled

files, and the *Hardcore Mode* does a complete scan of the entire PE file for the documented signatures. The hardcore

mode should be used as a last option as the small signatures often tend to occur a lot in many files and so erroneous

outputs may result.

Chapter 3. Surface Analysis

 43

PEiD shows that the mls.exe is not packed and the programming language that the file was

written in cannot be detected. An important information for the PE is the Entropy which is

significantly high43 for an unpacked version. On the submenu of the application, we can also have

detailed information for the PE directory.

Figure 19: PEiD Details & TLS table view

43 High refers to a value that is more than 5. Entropy analysis is used for a more generalized insight into the contents

of PE files, mostly in regard to packing, compression and cryptography [5, 7] that are common with packers. When

analyzing entropy, PE structural information such as sections can be taken into account. The main challenge with this

approach is achieving sufficient expressiveness in presenting entropy information, because naive approaches can be

fooled by file manipulation such as padding.

Basic Static Analysis with Windows tools

44

Changing the parameters on PEiD and adding some plugins44, the results were the same.

Note that Virtual Address (VA) is the original address in the virtual memory, whereas RVA is the

relative address with respect to the ImageBase45.

3.3.3. Detect It Easy

Due to the results of PEiD we force to dig more on the PE file and its structure. The tool

that will give more information for the PE will be the Detect It Easy, or abbreviated "DIE"46. Other

programs of the kind (PEID, PE tools) allow to use third-party signatures. Unfortunately, those

signatures scan only bytes by the pre-set mask, and it is not possible to specify additional

parameters. As the result, false triggering often occurs. More complicated algorithms are usually

strictly set in the program itself. Hence, to add a new complex detect one needs to recompile the

entire project, by the authors themselves. On the other hand, Detect It Easy has totally open

architecture of signatures. Third-party algorithms of detects or modify those that already exist, is

possible This is achieved by using scripts. The possibilities of open architecture compensate these

limitations.

44 Note that many PEiD plugins will run the malware executable without warning, so it is crucial to use this tool under

a safe environment. In addition, alike other programs, especially those used for malware analysis, PEiD can be subject

to vulnerabilities. In particular, PEiD version 0.92 contained a buffer overflow that allowed an attacker to execute
arbitrary code, which would have allowed a clever malware writer to write a program to exploit the malware analyst’s

machine.
45 In calculation, RVA = VA - ImageBase. Means for VA = 400100 and ImageBase = 400000, RVA will be 100.
46 "Detect It Easy" is a cross-platform application, apart from Windows version there are also available versions for

Linux and Mac OS. Detect It Easy, or abbreviated "DIE" is a program for determining types of files. First, DIE

determines the type of file, and then sequentially loads all the signatures, which lie in the corresponding folder.

Currently the program defines the following types: MSDOS, PE, ELF, MACH, Text files and Binary all other files.

GitHub link of the tool: https://github.com/horsicq/Detect-It-Easy

Chapter 3. Surface Analysis

 45

Figure 20:DiE scan results

Some quick information we can get from main GUI panel is that the compiler is MinGW

and the linker is the GNU. Also, no packing was detected.

Figure 21: DiE results for imports

Basic Static Analysis with Windows tools

46

The imports of the PE are detailed presented, considering that Crypto Functions and a

Registry open, are revealed.

Figure 22: DiE results for several packed sections

In continuous, at the Sections option there are two extra information about possible

packaging in each section and entropy measurement for each section also. The sections are (8)

eight, as presented at PEview, with the above mentioned .tls section making the difference in this

PE file. Nevertheless, the sections CRT 47 and eh_fram 48 is a confirmation that the PE file is

written in C++.

47 Data added for supporting the C++ runtime (CRT). A good example is the function pointers that are used to call the

constructors and destructors of static C++ objects.
48 When using languages that support exceptions, such as C++, additional information must be provided to the runtime
environment that describes the call frames that much be unwound during the processing of an exception. This

information is contained in the special sections .eh_frame and .eh_framehdr. Note that, the format of the .eh_frame

section is similar in format and purpose to the .debug_frame section.The .eh_frame section shall contain one or more

Call Frame Information (CFI) records. The number of records present shall be determined by size of the section as

contained in the section header. Each CFI record contains a Common Information Entry (CIE) record followed by 1

Chapter 3. Surface Analysis

 47

Figure 23:DiE PE basic info on Hex view with disasm

The DIE tool gives the ability to dig in the from a window with PE basic information. The

important information for our analysis is that the sample has a GUI, which means that the malware

want interaction with the victim or to present something.

or more Frame Description Entry (FDE) records. Both CIEs and FDEs shall be aligned to an addressing unit sized

boundary.

Source url: http://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html

Basic Static Analysis with Windows tools

48

Figure 24: DiE Dos Header detailed preview in Hex disasm

The DOS Header is full of information for the PE file, but for the analysis only the

e_lfanew49 attribute is useful. The final field of Dos header, e_lfanew, is a 4-byte offset into the

file where the PE file header is located. It is necessary to use this offset to locate the PE header in

the file. Note that the e_lfanew has 80 as value and the size is the Dos Header is 64.

Following the DOS Header is the MS DOS stub. The file under analysis shows the known

message, that is not compatible with DOS mode.

49 The e_lfanew definition is separated in two parts. The fanew, which means: file address of new exe header and the

e_prefix which helps deal with old K&R compilers that did not yet keep structure members in its own symbol table.

The l after the prefix, is the system Hungarian for LONG and the "Long" stands because it's from the 16-bit era and

the variable size is 32 bits

Chapter 3. Surface Analysis

 49

Figure 25:DiE Stub header

The next section of headers is the NT headers section, which is the structure

_IMAGE_FILE_HEADER. In this section, the TimeDateStamp and the number of the section are

taking place, which are already captured and analyzed. The DIE tool explains in depth the

Characteristics and the type of machine the executable was built for. Specifically, the PE file under

analysis was built for i386 machine, which means for Intel x86 architecture. The same information

comes from Characteristics, where the 32bit_machine is checked. The Characteristics field

identifies specific attributes about the file and among the others, the debug_stripped have our

attention in the analysis. The debug_stripped50 indicates that debugging information is removed

from the image file.

50 It is possible to strip debug information from a PE file and store it in a debug file (.DBG) for use by debuggers. To

do this, a debugger needs to know whether to find the debug information in a separate file or not and whether the

information has been stripped from the file or not. A debugger could find out by drilling down into the executable file

looking for debug information. To save the debugger from having to search the file, a file characteristic that indicates
that the file has been stripped (IMAGE_FILE_DEBUG_STRIPPED) was invented. Debuggers can look in the PE file

header to quickly determine whether the debug information is present in the file or not.

Basic Static Analysis with Windows tools

50

Figure 26: DiE Characteristics on NT Header-File Headers

There are some Optional Header available on File Headers of NT Headers. The

AddressOfEntryPoint field has the value 000012a0 and is the most interesting for the PE file

format. This field indicates the location of the entry point for the application and, perhaps more

importantly to system hackers, the location of the end of the Import Address Table (IAT).

Figure 27: : DiE Characteristics on NT Header-Optional Headers

Chapter 3. Surface Analysis

 51

In continuous, the DIE tool presents the Data Directory51 as Directories with significant

details. The PE file format under analysis, defines 16 possible data directories, 3 of which are now

being used. On the following figure, the IMAGE_DIRECTORY_ENTRY_IMPORT is being showed

in HEX and in an GUI array.

Figure 28: DiE import Directory and its offset

 In addition, the DIE tool presents the IMAGE_DIRECTORY_ENTRY_TLS as TLS with

significant details. The AddressOfCallBacks value 00484004 is being noted for our dynamic

analysis.

51 DataDirectory. The data directory indicates where to find other important components of executable information in

the file. Specifically, is an array of IMAGE_DATA_DIRECTORY structures that are located at the end of the optional

header structure.

Basic Static Analysis with Windows tools

52

Figure 29: DiE TLS table in detail and in Hex view

At last for Directories, the ImportAddressTable (IAT) is located in the .text section

immediately before the module entry point52. When Windows NT executable images are loaded

into a process's address space, the IAT is fixed up with the location of each imported function's

physical address. In order to find the IAT in the .text section, the loader simply locates the module

entry point and relies on the fact that the IAT occurs immediately before the entry point. And since

each entry is the same size, it is easy to walk backward in the table to find its beginning.

52 The IAT's presence in the .text section makes sense because the table is really a series of jump instructions, for

which the specific location to jump to is the fixed-up address.

Chapter 3. Surface Analysis

 53

Figure 30: DiE, Directory of the ImportAddressTable (IAT)

At last the DIE tools has some graphical representation of each section, which is very useful

as a simple visualization of the PE file content. There are two types of graphs, the Curve graph,

which presents on axis X the size of the PE file (bytes), on axis Y the entropy of the hex bytes and

the Histogram graph, which presents on axis X each byte of the PE file (decimal), on axis Y the

frequency of each byte. Also, there is an array with the content of the Histogram, adding the

percentage of the frequency of each byte.

On the following Figure, the .text (section 0) is being selected as the most important section

of the PE file and the one with the largest content of bytes.

Basic Static Analysis with Windows tools

54

Figure 31: DiE Visualization Entropy of .text section

Keep in mind that the General Entropy of the whole PE file is 6.12801, that differs a bit

from PEview’s entropy (6.04).

Figure 32: DiE Visualization Entropy of all sections

Chapter 3. Surface Analysis

 55

3.3.4. PortexAnalyzer

Another tool that is great on visualization, is the PortExAnalyzer53, which generate a graph

of colors, to visually detect a packing on a PE file. On the current PE file under analysis, a cross

check is being made that no hidden packer is being used.

Figure 33: PortexAnalyzer PE structure and Entropy visualization

53 PortExAnalyzer is a command line tool that runs the library PortEx under the hood. PortExAnalyzed is readily

compiled command line PE scanner to analyze files with it. Note that, PortEx is a Java library for static malware

analysis of Portable Executable files. Its focus is on PE malformation robustness, and anomaly detection. PortEx is

written in Java and Scala and targeted at Java applications. GitHub link of the tool:

https://github.com/katjahahn/PortEx

Basic Static Analysis with Windows tools

56

On PortExAnalyzer graph, 3 subgraphs are being presented. Each graph present the PE file

as it stored in memory (from lower to higher address). More specifically, on the left side a Byte

plot is being presented, with a color visualization, focused on possible ASCII characters on the PE

file under analysis. On the middle side, the entropy is being colored differently for each memory

address - PE file section. And the right side, there are different colors for each PE file section and

its subsections. With this type of visualization, the analyst can match and detect visually, the

location of possible packing, where possible ASCII characters are being stored and the

comparative size of each PE file’s section.

In addition, the PortExAnalyzer generates a great summarize report of all the above-

mentioned notes, using the command on terminal:

java -jar PortexAnalyzer.jar -o report.txt -p graph.png rtms.exe

The PortExAnalyzer PE file report, is being attached at Appendix G. As a sum up from the

PortExAnalyzer report, the malformation54 characteristics that the PE file are:

• At the COFF Header, the time date stamp is crafted.

• COFF line numbers have been removed, due to deprecation.

• COFF symbol table entries for local symbols have been removed, due to deprecation.

• Section .text has “write” and “execute” characteristics.

• The writeable section .text is also the entry point

• The import VirtualProtect function may set PAGE_EXECUTE flag for memory region,

which will lead to typical for code injection.

• Debugging is removed from the image file.

There is a gap between the PE format that the PE/COFF specification describes and the PE

files that are allowed to run. The PE/COFF specification uses misleading field names and

descriptions, is more restrictive than the loader. Furthermore, the behavior of the loader varies in

54 Definition: A PE malformation is data or layout of a PE le that violates conventions or the PE/COFF specification.

File format malformations represent special case conditions that are introduced to the file layout and specific fields in

order to achieve undesired behavior by the programs that are parsing it.

Source url: https://media.blackhat.com/bh-us-11/Vuksan/BH_US_11_VuksanPericin_PECOFF_WP.pdf

Chapter 3. Surface Analysis

 57

different Windows versions, with every new version of Windows possibly introduces formerly

unknown malformations.

3.3.5. PEstudio

At this point the Malware Initial Assessment has been done in dept, but the most famous

and recognized tool for many Computer Emergency Response Teams (CERT) worldwide in order

to perform Malware Initial Assessment is the PEstudio55. PEstudio shows Indicators as a human-

friendly result of the analyzed image. Indicators are grouped into categories according to their

severity. Indicators show the potential and the anomalies of the application being analyzed. The

classifications are based on XML files provided with PEstudio. Among the indicators, PEstudio

shows when an image is compressed using UPX or MPRESS.

On the first view option of the PEstudio, the basic information about the PE file are being

previewed. Note that again the entropy of the PE is 6.132 due to PEstudio, that differs from 6.04

of PEview and 6.12801 of DIE. This leads to the indication that, the entropy is being measured

differently by each tool, as a result be reliable.

55 PEstudio is a utility can be used to Triage malware analysis. Runs on Windows Platform and is fully portable.

Malicious software often attempts to hide its intents in order to evade early detection and static analysis. In doing so,

it often leaves suspicious patterns, unexpected metadata, anomalies and other valuable indicators. The goal of PEstudio
is to spot these artifacts in order to ease and accelerate Malware Initial Assessment. The tool uses a powerful parser

and a flexible set of XML configuration files that are used to detect various types of indicators and classify items.

Note that, since the file being analyzed is not under execution yet, the inspection of the unknown or malicious

executable file can be done without any risk of infection.

Basic Static Analysis with Windows tools

58

Figure 34: PEstudio general information

The indicator window explains why PEstudio show this file as suspicious, with a severity

ranking order.

Figure 35: PEstudio Indicators

Chapter 3. Surface Analysis

 59

It summarizes the indicators found further down in the menu tree. The new finding on the

file under analysis, is the detection of that the file contains self-modifying code56.

In addition, the under analysis file ignores Address Space Layout Randomization (ASLR)57.

It also ignores Data Execution Prevention (DEP) which would allow for code execution from the

Data Section in memory.

By default, PEstudio will send a MD5 hash of the file to VirusTotal and it will retrieve the

results, but this procedure already have been done manually.

The DOS-stub is next. This window displays information about the DOS application header

which comes before the PE header information. It is very rare that an application has much in the

dos-stub. In addition, PEstudio displays in DOS-stub the MD5 hash the size, and entropy of the

dos-stub.

Figure 36: PEstudio dos-stub

56 Self-modifying code is a technique where the actual opcodes of the binary are changed dynamically (at run-time),

making it impossible to see what the code does without stepping through it. There are plenty of reasons this technique

is used: the function call encrypted in this section will not show up in the intermodular calls, the random data can trick

disassemblers into thinking its code, and after the opcodes get decrypted, you must tell the disassembler to re-analyze

these bytes as opcodes instead of data.
57 ASLR is a feature which simply loads an application into memory at a somewhat randomized preventing the ability

to successfully perform a buffer overflow attack.

Basic Static Analysis with Windows tools

60

File-header is interesting if simply because it contains some useful information to

accurately describe a sample. This window provides information that would be in the PE header if

you were analyzing this in another application. In fact, the signature field 0x00004550, converts

to ASCII “EP” and reading it flipped (endianness), it states “PE”. Note that the debug information

stripped, is being also confirmed by PEstudio.

Figure 37: PEstudio file header

The optional header contains information that was at one time completely optional but is

not mostly required for an application to execute inside a modern Windows environment. At the

bottom of the window though we have information about ASLR, DEP (which the indicators have

already show them) and Structured Exception Handling (SEH)58.

58 SEH is the ability of an application to handle exceptions on its own. The common applications crash is actually an

exception. The ability of the developers to define on them applications an execution of another subroutine, if an

exception were to occur during runtime, gives the ability to malware authors though SEH code, to use it as a

mechanism to obfuscate their malicious code.

Chapter 3. Surface Analysis

 61

Figure 38: PEstudio optional headers

Sections is a useful piece of information when trying to determine if a file is malicious.

Note that, the top indicator was the self-modifying code section. The .text section contains the

executable code. Each of the sections has a read, write, and/or execute permission. What

permission is applied to the section is denoted by an x in the appropriate field. The normal

expectation on the .text section is to have Read and Execute permissions. The .text section should

never have written permissions, otherwise this means the application can actively modify itself.

Also, in the .text section is the entry-point, where the first line of executable code, when the

application is loaded into memory.

Figure 39: PEstudio sections and them RWE rights

Basic Static Analysis with Windows tools

62

Imports contain the actual imported function names. PEstudio has a list of blacklisted

imports, which are all API functions in Windows which are not malicious in their own right but

can be used to perform functions which may be considered malicious.

Function imports can be referenced by ordinal number as well. Libraries which contain

exports assign a number to each export. The author of the PE can choose to use the number rather

than the name of the import, which is often a technique to obfuscate what the application is

importing. PEstudio is pretty good at finding the actual name of imports referenced by ordinal.

Figure 40: PEstudio imports grouping and ranking

Strings actually is any string from the raw bytes which can be read as ASCII or a

UNICODE character, which is parsed and placed in PEstudio’s table. Unlike linux/unix strings

Chapter 3. Surface Analysis

 63

command59 , PEstudio will mark any suspicious string, that comes with a predefined list of a

suspicious strings.

It is concerning that there are very few readable strings. Having a minimal number of

readable strings would indicate the application is being obfuscated.

Note that a serial of ASCII character-set has been detected. Such a string indicates that an

encoding schema is being used. This ASCII character-set seems to be a Base64 input, but this will

be confirmed only on dynamic analysis.

Figure 41: PEstudio strings ranking and evaluation

59 In computer software, strings is a program in Unix-like operating systems that finds and prints text strings embedded

in binary files such as executables. It can be used on object files and core dumps. Strings are recognized by looking

for sequences of at least 4 (by default) printable characters terminating in a NUL character (that is, null-terminated

strings). Some implementations provide options for determining what is recognized as a printable character, which is

useful for finding non-ASCII and wide character text. Source: https://en.wikipedia.org/wiki/Strings_(Unix)

Basic Static Analysis with Windows tools

64

3.3.6. BinText

Another tool digesting string theory of a PE file, we can use several tools. An application

for Windows OS is the BinText60.

Figure 42: BinText string search and filtering

The strings of the file under analysis are reasonably the same with all the above tools.

Considering that most of the strings are non-human-readable ASCII characters, we assume that an

obfuscation is taken place. On Appendix H/BinText, the results of BinText’s are being extracted.

The main advantage of BinText and the purpose of using this tool, are BinText’s filters.

More specifically, as it is being shown on the following Print screen, BinText has GUI to exclude

or include any character in the definition of a string, giving the ability to specify some unique

60 BinText is a file text scanner / extractor that helps find character strings buried in binary files. The program can

extract text from any kind of file and display plain ASCII text, Unicode (double byte ANSI) text, as well as Resource

strings. Additional useful information for each item is included in the "Advanced" mode. Uniquely, the program will

show both the file offset and the memory offset of each string found.

Chapter 3. Surface Analysis

 65

strings with special characters. Unfortunately, in the PE file under analysis, the addition of more

filters, prints more non-human-readable strings and with a specific selection of filters, some strings

continue to be non-human-readable.

Figure 43: BinText filtering settings and strings length

Chapter 4. Behavioral Analysis

66

4. Behavioral Analysis

This section describes the basic dynamic analysis techniques. Dynamic analysis is any

examination performed after executing malware. Dynamic analysis techniques are the second step

in the malware analysis process. Dynamic analysis is typically performed after basic static analysis

has reached a dead end, whether due to obfuscation, packing, or the analyst having exhausted the

available static analysis techniques. It can involve monitoring malware as it runs or examining the

system after the malware has executed. Unlike static analysis, dynamic analysis lets you observe

the malware’s true functionality, as the existence of an action string in a binary does not mean the

action will actually execute.

Although dynamic analysis techniques are extremely powerful, they should be performed

only after basic static analysis has been completed, because dynamic analysis can put your network

and system at risk. There are limitations in Dynamic techniques also, because not all code paths

may execute when a piece of malware is run.

4.1.Basic Dynamic Analysis with free Sandboxes

Why invent a new wheel when you can walk to the store and buy one? Why invent a wheel

when you can invent the engine?61

Our first step on Surface Analysis, was to upload the file under analysis in an online service

and check the past work from other analysts. These online tools have been expanded, not only to

characterize a file as a malicious, via its hash value, but analyze them header and some of them,

does on step further, a Basic Dynamic Analysis report.

61 An idiom common amongst engineers and developers.

Chapter 4. Behavioral Analysis

 67

The HybridAnalysis results are available offline on the Appendix D/HybridAnalysis results

and online on the source url:

www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

4.1.1. Results explanation

Malicious Indicators

Environment Awareness: The input sample contains a known anti-VM trick

This indicator, anti-virtual machine (anti-VM) is a set of techniques to thwart attempts at

analysis. With these techniques, the malware attempts to detect whether it is being run inside a

virtual machine. If a virtual machine is detected, it can act differently or simply not run.

Suspicious Indicators

Environment Awareness: Contains ability to measure performance - Anti-Debugging

The most common timing check62 method uses the RDTSC instruction (opcode 0x0F31),

which returns the count of the number of ticks since the last system reboot as a 64-bit value placed

into EDX:EAX. Malware will simply execute this instruction twice and compare the difference

between the two readings. The malware checks the difference between the two calls to RDTSC.

62 Timing checks are one of the most popular ways for malware to detect debuggers because processes run more slowly
when being debugged. For example, single-stepping through a program substantially slows execution speed. There

are a couple of ways to use timing checks to detect a debugger: a) Record a timestamp, perform a couple of operations,

take another timestamp, and then compare the two timestamps. If there is a lag, you can assume the presence of a

debugger. b) Take a timestamp before and after raising an exception. If a process is not being debugged, the exception

will be handled really quickly; a debugger will handle the exception much more slowly. By default, most debuggers

require human intervention in order to handle exceptions, which causes enormous delay. While many debuggers allow

you to ignore exceptions and pass them to the program, there will still be a sizable delay in such cases.

http://www.hybrid-analysis.com/sample/6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92/

Basic Dynamic Analysis with free Sandboxes

68

Anti-Debugging : Contains ability to query CPU information

This indicator, CPUID, is an anti-Debugging technique. The virtual machine monitor

program monitors the virtual machine’s execution. It runs on the host operating system to present

the guest operating system with a virtual platform. It also has a couple of security weaknesses that

can allow malware to detect virtualization63.

Some instructions access hardware-based information without generating interrupts.

Among others, these are SIDT, SGDT, SLDT and CPUID. In order to virtualize these instructions

properly, VMware would need to perform binary translation on every instruction (not just kernel-

mode instructions), resulting in a huge performance hit. To avoid huge performance hits from

doing full-instruction emulation, VMware allows certain instructions to execute without being

properly virtualized. Ultimately, this means that certain instruction sequences will return different

results when running under VMware than they will on native hardware.

Malware exploit the usage of these instructions in order to perform VMware detection.

Keep in mind, that these instructions are not useful if executed in user mode, so if you see them,

they’re likely part of anti-VMware code.

Remote Access Related

This indicator, the registry input, remote access related action, which reads terminal service

related keys. The registry key: "HKLM\SYSTEM\CONTROLSET001\CONTROL\TERMINAL

63 In kernel mode, VMware uses binary translation for emulation. Certain privileged instructions in kernel mode are

interpreted and emulated, so they don’t run on the physical processor. Conversely, in user mode, the code runs directly

on the processor, and nearly every instruction that interacts with hardware is either privileged or generates a kernel
trap or interrupt. VMware catches all the interrupts and processes them, so that the virtual machine still thinks it is a

regular machine.

Chapter 4. Behavioral Analysis

 69

SERVER" 64 ; Key: "TSUSERENABLED" 65 , seems that a backdoor is being established.

Backdoors are the most commonly found type of malware, and they come in all shapes and sizes

with a wide variety of capabilities. Backdoor code often implements a set of capabilities, so when

using a backdoor attack would not need to download additional malware or code.

Unusual mutants

The creation of these mutants66 have been used as al technique in the context of other

malwares. The malware under analysis seems to create the mutex to ensure that only one version

of the malware is running at a time. Mutexes can provide an excellent fingerprint for malware if

they are unique enough. The creation of mutexes are the followings:

"gcc-shmem-tdm2-use_fc_key"

"gcc-shmem-tdm2-fc_key"

"gcc-shmem-tdm2-sjlj_once"

Anti-debugging TLS callbacks Related

This indicator, the TLS Callback, has been already described in detail from basic static

analysis, when the .tls section was found on the PE. More specifically from the advanced static

64 The HKLM\SYSTEM\ControlSet001HKLM\SYSTEM\ControlSet001\Control\Terminal Server hive allows you to

configure general settings, just as you can under Terminal Services configuration or Group Policies.
65 The TSUserEnabled value, indicates whether users can log on to the terminal server.
66 Mutants or Mutexes are global objects that coordinate multiple processes and threads. Mutexes are mainly used to

control access to shared resources and are often used by malware. For example, if two threads must access a memory

structure, but only one can safely access it at a time, a mutex can be used to control access. Only one thread can own

a mutex at a time. Mutexes are important to malware analysis because they often use hard-coded names, which make

good host-based indicators. Hard-coded names are common because a mutex’s name must be consistent if it’s used

by two processes that aren’t communicating in any other way. The thread gains access to the mutex with a call to

WaitForSingleObject, and any subsequent threads attempting to gain access to it must wait. When a thread is finished
using a mutex, it uses the ReleaseMutex function. A mutex can be created with the CreateMutex function. One

process can get a handle to another process’s mutex by using the OpenMutex call. Malware will commonly create a

mutex and attempt to open an existing mutex with the same name to ensure that only one version of the malware is

running at a time.

Basic Dynamic Analysis with free Sandboxes

70

analysis view, a malware can use thread local storage (TLS) callbacks as a technique to interfere

with normal debugger operation, trying to disrupt the program’s execution only if it is under the

control of a debugger. Note that, Thread Local Storage (TLS) callback injection also involves

manipulating pointers inside a portable executable (PE) to redirect a process to malicious code

before reaching the code's legitimate entry point.

Although that on PEview and other basic static analysis tools the entrypoint address is

being defined as the address: 0x484000, Hybrid analysis mentions as entrypoint 1 the address:

0x41a310 and as entrypoint 2 the address: 0x41a2c0.

Imports suspicious APIs

This suspicious APIs indicator contains a set of techniques that are mainly Anti-Debugging

oriented. The following APIs functions 67 are being characterised as suspicious from

HybridAnalysis:

GetUserNameA

RegOpenKeyExA

IsDebuggerPresent

VirtualProtect

GetProcAddress

GetComputerNameExA

GetModuleHandleA

FindFirstFileA

FindNextFileA

Sleep

WSAStartup

67 Function naming conventions
When evaluating unfamiliar Windows functions, a few naming conventions are worth noting because they come up

often and might confuse you if you don’t recognize them. For example, you will often encounter function names with

an Ex suffix. When Microsoft updates a function and the new function is incompatible with the old one, Microsoft

continues to support the old function. The new function is given the same name as the old function, with an added Ex

suffix. Functions that have been significantly updated twice have two Ex suffixes in their names. Many functions that

take strings as parameters include an A or a W at the end of their names. This letter does not appear in the

documentation for the function; it simply indicates that the function accepts a string parameter and that there are two

different versions of the function: one for ASCII strings and one for Wide character strings.

Chapter 4. Behavioral Analysis

 71

More specifically for each one:

• GetUserNameA

The GetUserNameA function retrieves the name of the user associated with the current

thread. If the function succeeds, the return value is a nonzero value, and the variable pointed to by

lpnSize contains the number of TCHARs copied to the buffer specified by lpBuffer, including the

terminating null character.

● RegOpenKeyExA

Opens a handle to a registry key for querying-reading and editing. Registry keys are

sometimes written as a way for software to achieve persistence on a host. The registry also contains

a whole host of operating system and application setting information.

● IsDebuggerPresent

Determines whether the calling process is being debugged by a user-mode debugger. If the

current process is running in the context of a debugger, the return value is nonzero. The simplest

API function for detecting a debugger is IsDebuggerPresent. This function searches the Process

Environment Block (PEB) structure for the field IsDebugged, which will return zero if you are not

running in the context of a debugger or a nonzero value if a debugger is attached. We’ll discuss

the PEB structure in more detail in the next section.

● VirtualProtect

Changes the protection on a region of committed pages in the virtual address space of the

calling process. By changing the memory protection to execute, read, and write access, the

malware can modify the instructions. Then with another call to VirtualProtect at the end of the

function restores the original memory-protection settings.

● GetProcAddress

Basic Dynamic Analysis with free Sandboxes

72

Retrieves the address of a function in a DLL loaded into memory. Used to import functions

from other DLLs in addition to the functions imported in the PE file header. Note that packed and

obfuscated code will often include the function GetProcAddress, which could be used to load and

gain access to additional functions.

● GetComputerNameExA

Retrieves a NetBIOS or DNS name associated with the local computer. The names are

established at system startup, when the system reads them from the registry. If the function

succeeds, the return value is a nonzero value.

● GetModuleHandleA

Used to obtain a handle to an already loaded module. Malware may use GetModuleHandle

to locate and modify code in a loaded module or to search for a good location to inject code.

● FindFirstFileA and FindNextFileA

These functions are being used to search through a directory and enumerate the filesystem.

Them combination also show that the program searches the filesystem for files and it can open and

modify files. At the moment it is unsure what the program is searching for.

● Sleep

The Sleep function suspends the execution of the current thread until the time-out interval

elapses and does not return a value. Sleep function takes a single parameter containing the number

of milliseconds to sleep. It pushes 0xEA60 on the stack, which corresponds to sleeping for one

minute (60,000 milliseconds).

● WSAStartup

The WSAStartup function initiates use of the Winsock DLL by a process. If successful, the

WSAStartup function returns zero, otherwise, it returns one of some listed error codes.

Chapter 4. Behavioral Analysis

 73

PE file contains unusual section name

As we mentioned in Static Analysis, the unusual sections named ".eh_fram" and ".CRT"

demonstrates that the PE file is written in C++.

Informative indicators

Anti-Reverse Engineering

This indicator, SetUnhandledExceptionFilter function, is often used by malwares as an

Anti-Reverse Engineering technique, that contains ability to register a top-level exception handler.

● SetUnhandledExceptionFilter@KERNEL32.DLL at address 0x401030

Figure 44: Assembly: SetUnhandledExceptionFilter function call

● SetUnhandledExceptionFilter@KERNEL32.DLL at address 0x4014FB

Running Malware

74

Figure 45: Assembly: SetUnhandledExceptionFilter function call 2

Another informative indicator for Anti-Reverse Engineering is that the PE file contains

zero-size section. Specifically, the raw size of .bss 68 is zero. The section .bss is a data segment

there global and static uninitialized variables are being stored.

Network Related

The HybridAnalysis has found that a potential URL in binary exists. Specifically, using

heuristic match on the string: "tL<EtH<.tD", several known and analyzed malwares, are using this

string also. At the moment, we can not resolve this string, but it is for sure encoded.

We could analyze more the imports of the under analysis executable, but this is a static

procedure for the other section.

4.2. Running Malware

Basic dynamic analysis techniques demand to run the malware. Although it is usually

simple enough to run executable malware by double-clicking the executable or running the file

68 BSS (from Block Started by Symbol): The uninitialized data are rarely found in executables created with recent

linkers. Instead, the VirtualSize of the executable's .data section is expanded to make enough room for uninitialized

data. In C, statically-allocated objects without an explicit initializer are initialized to zero (for arithmetic types) or a

null pointer (for pointer types). Implementations of C typically represent zero values and null pointer values using a

bit pattern consisting solely of zero-valued bits (though this is not required by the C standard). Hence, the BSS segment

typically includes all uninitialized objects (both variables and constants) declared at file scope (i.e., outside any

function) source: https://en.wikipedia.org/wiki/.bss#BSS_in_C

Chapter 4. Behavioral Analysis

 75

from the command line, it has been proven that is trickier to run and activate a malware. Note that

all execution of the malware will be done with administrator privileges in order to avoid any

privilege conflict.

4.2.1. Hands on Basic Dynamic - Behavioral Analysis Tools

The tools for basic dynamic analysis should be used in concert to maximize the amount of

information gleaned. The toolset includes the followings:

1. Setting up your virtual network as the VMware Setup Appendix describes.

2. Examine with Process Explorer and its open source alternative Process Hacker.

3. Running Process Monitor and setting a filter on the malware executable PID and clearing out all

events just before running.

4. Gathering a first snapshot of the registry using Regshot.

5. Setting up network traffic logging using Wireshark.

Again, it should be warned that testing malware dynamically should be done ensuring the host

computer and networks, as discussed in the previous chapter.

Process Explorer

The Process Explorer, free from Microsoft, is an extremely powerful task manager that

should be running when you are performing dynamic analysis. It can provide valuable insight into

the processes currently running on a system, to list active processes, DLLs loaded by a process,

various process properties, overall system information, to kill a process, log out users, and launch

and validate processes.

Running Malware

76

Process Explorer monitors the processes running on a system and shows them in a tree

structure that displays child and parent relationships. The user can view five columns: Process (the

process name), PID (the process identifier), CPU (CPU usage), Description, and Company Name,

with services being highlighted in pink, processes in blue, new processes in green, and terminated

processes in red. Green and red highlights are temporary, and are removed after the process has

started or terminated.

They key point with Process Explorer is when analyzing malware to look for changes or

new processes, in order to investigate them thoroughly.

On the following screenshot the malware is running, due to the continuously high CPU

usage.

Figure 46: Process Explorer: malware’s Properties - Performance Graph - CPU usage

Chapter 4. Behavioral Analysis

 77

The following screenshot shows that the malware has debugging privilege is enables, as

long as we run the malware as Administrators. SeImpersonatePrivilage is also enabled by default.69

Figure 47: Process Explorer: malware’s Properties - Security - Permissions

The following screenshot shows that the malware has a specific stack already built.

Specifically, on the thread were the malware is being executed, the stack of this thread contains

the malicious code which is being built during the execution. The last function that has been added

to the thread’s stack is RtlInitializeExceptionChain70 from the known ntdll.dll. This assumes that

69 When you assign the "Impersonate a client after authentication" user right to a user, you permit programs that run

on behalf of that user to impersonate a client. This security setting helps to prevent unauthorized servers from

impersonating clients that connect to it through methods such as remote procedure calls (RPC) or named pipes. Source:

https://support.microsoft.com/en-us/help/821546/overview-of-the-impersonate-a-client-after-authentication-and-the-
crea
70 RtlInitializeExceptionChain is an internal function in the Run-Time Library, a collection of kernel-mode support

functions used by kernel-mode drivers and the OS itself. It's kind of the kernel-mode version of the C run-time library.

If your application is 32-bit and you're profiling it on a 64-bit machine, profiling it on a 32-bit machine or building a

64-bit version will probably move RtlInitializeExceptionChain out of the top 10 list since it's always used in thunking.

Running Malware

78

an Exception error is taken place and the malware does not actually executes the whole of its

execution procedure.

Moreover, the 4th place of the thread’s stack the KeUpdateSystemTime71 function exist.

This function does the time-check and we have successfully pass it as long as the procedure does

not stop there.

Figure 48: Process Explorer: malware’s Properties - Threads - Stack - information on current stack

The following screenshot shows that the malware has 1 hour and 27 minutes runtime in

User-land. This is a lot of time using the maximum of CPU usage, as it is being previews above,

without any actual behavior from the malware or its infection. It should be assumed that the

malware does not execute its main procedure but is idling on purpose.

71 KeUpdateSystemTime routine is executed on a single processor in the processor complex. Its function is to update

the system time and to check to determine if a timer has expired.

Chapter 4. Behavioral Analysis

 79

Figure 49: Process Explorer: malware’s Properties - Threads - Module - General details for the malicious

file

The following screenshot shows that the malware’s executable file does not have any

metadata, which does not help analyzing it.

Figure 50: Process Explorer: malware’s Properties - Threads - Module - no metadata for the malicious

file

Running Malware

80

The following screenshot shows that the malware has not any network activity.

Figure 51: Process Explorer: malware’s Properties - TCP/IP - no network activity

The following screenshot shows the environment where the malware is being executed.

Figure 52: Process Explorer: malware’s Properties - Environment

Chapter 4. Behavioral Analysis

 81

As a result, information gathering from Process Explorer was successful, but they key point

to reveal a new, related to the malware, process did not happen.

4.2.2. Comparing the image and memory Strings

One way to recognize process replacement is to use the Strings tab in the Process Properties

window to compare the strings contained in the disk executable (image) against the strings in

memory for that same executable running in memory. Both options exported in text file and being

compares with the WinMerge72 Windows Tool.

Figure 53: WinMerge Strings txt files comparison from Binary's Image and Memory's executable

72 WinMerge is a Windows tool for visual difference display and merging, for both files and directories. It is highly

useful for determining what has changed between file versions, and then merging those changes. Side-by-side line

difference and highlights differences inside lines. A file map shows the overall file differences in a location pane. The

user interface is translated into several languages.

Running Malware

82

Figure 54: WinMerge Strings txt files comparison from Binary's Image and Memory's executable-2

The comparison of the two string listings did not drastically different, so it is sure that

process replacement did not occurred. On the other hand, belong the highlighted strings three

Base64 alphabets are being revealed. The encoding scheme and the further analysis of Base64

alphabet will be presented on the Static code Analysis section.

4.2.3. Examine with Process Hacker

An open source alternative of Process Explorer is Process Hacker that includes detailed

network activity, but in this case, no additional information was usable.

Chapter 4. Behavioral Analysis

 83

Figure 55: Process Hacker: malware.exe’s Statistics on Properties

.

Figure 56: Process Hacker: malware.exe’s Handles on Properties.

Running Malware

84

Figure 57: Process Hacker: malware.exe’s Environment on Properties.

Figure 58: Process Hacker: malware.exe’s General Properties. (PEB address 0x7ffdf000)

Chapter 4. Behavioral Analysis

 85

Figure 59: Process Hacker: malware.exe’s Memory on Properties.

Figure 60: Process Hacker: malware.exe’s Modules on Properties.

Running Malware

86

Figure 61: Process Hacker: malware.exe’s Handle’s Statistics on Properties.

As a result, some information was gathered from Process Hacker in compare with Process

Explorer. On the other hand, no new process appeared but they key point to reveal a new, related

to the malware, process did not happen.

4.2.4. Monitoring with Process Monitor

Process Monitor, or procmon, is an advanced monitoring tool for Windows that provides a

way to monitor certain registry, file system, network, process, and thread activity73. It combines

and enhances the functionality of two legacy tools: FileMon and RegMon.

73 Although procmon captures a lot of data, it doesn’t capture everything. For example, it can miss the device driver

activity of a user-mode component talking to a rootkit via device I/O controls, as well as certain GUI calls, such as

SetWindowsHookEx. In addition, it should not be used for logging network activity, because it does not work

consistently across Microsoft Windows versions.

Chapter 4. Behavioral Analysis

 87

Procmon monitors all system calls and because many system calls exist on a Windows

machine (more than 50,000 events a minute), procmon uses RAM to log events. Keep in mind that

Procmon can crash a virtual machine using all available memory.

Before using procmon for analysis, first clear all currently captured events to remove

irrelevant data by choosing Edit/Clear Display. Next, run the rtms.exe (malware) as Administrator,

with capture turned on. Then filter the results showing only the PID of rtms.exe, in screenshot’s

case the PID is 3000.

Figure 62: Process Monitor: Filter apply in PID of the under analysis malware (rtms.exe)

Running Malware

88

Figure 63: Process Monitor: List1 of all events

Figure 64: Process Monitor: List2 of all events

Chapter 4. Behavioral Analysis

 89

Figure 65: Process Monitor: List3 of all events

Figure 66: Process Monitor: Process start event - Event Properties - General

Running Malware

90

Figure 67: Process Monitor: Process start event - Event Properties - Stack

Figure 68: Process Monitor: Create File event - Event Properties

Chapter 4. Behavioral Analysis

 91

Figure 69: Process Monitor: Process Exit

• Registry: By examining registry operations, it is unsure how malware installs itself in the

system.

• File system: Exploring file system interaction shows all files that the malware creates or

configuration files it uses. There are files created that were not useful at this point of analysis.

• Process activity: Investigating process activity, the malware did not spawn any additional

processes.

• Network: Identifying network connection, which is in an isolated subnet, did not show any

communication in ports on which malwares usually listening.

4.2.5. Regshot

Regshot is an open source registry comparison tool that allows you to take and compare

two registry snapshots. To use Regshot for malware analysis, simply take the first shot by clicking

Running Malware

92

the 1st Shot button, and then run the malware and wait for it to finish making any system changes.

Next, take the second shot by clicking the 2nd Shot button. Then, click the Compare button to

compare the two snapshots displays a subset of the results generated by Regshot during malware

analysis.

Registry snapshots were taken before and after running the malware rtms.exe. As you can

see 1875 changes occurred in registry. The amount of noise is huge in these results.

Figure 70:Regshot: comparison results of registry snapshots before and after rtms.exe run

4.2.6. Basic Dynamic Analysis is not enough

As a conclusion in basic dynamic analysis, it should be noticed that many tries and steps

back had been done. The malware was renamed to random names in case there was a naming

detection technique. In addition, many changes had been done on the VMware’s configuration file

- VMX and inside VME OS settings, in order to deflect any tools detection.

Chapter 4. Behavioral Analysis

 93

As a last try, the ransomware was installed in a Windows 7 SP1 x86 in bare metal machine

without Virtualization Technologies and Debuggers - Disassemblers installed, in order to prevent

any detection and even then, the malware did not execute all its procedures. After a long research

on the faulty side of the malware, the problem was detected in the IDT instruction behavior of Intel

i3 processor.

A spoil from the advanced malware analysis is being done at this point, but it should be

clarified why basic analysis did not and would not work in this case.

Joanna Rutkowska came across this strange behavior of SIDT instruction a few years ago

on her RedPill paper, when Joanna Rutkowska was testing “Suckit” rootkit on VMWare. Joanna

Rutkowska noticed that it failed to load on VMWare whereas it seemed to work fine on the same

distribution ran outside VM. After spending many hours Joanna Rutkowska figured out that the

problematic instruction was actually SIDT, which was used by “Suckit” to get the address of the

IDT table, and to hook its 0x80 entry through /dev/kmem device.

However, Joanna Rutkowska was not the first one who discovered this trick. Shortly after

her adventure with “Suckit” Joanna Rutkowska found a very good USENIX paper about problems

when implementing Virtual Machines on Intel processors, discussing of course SIDT problem, as

well as many others.

So now, here is the simple code, written in C, which should compile on any all Intel based

OS. Just in case you don't have the C compiler for Windows, there is also a binary version

attached.74

74 Paragraph’s source URL: https://securiteam.com/securityreviews/6Z00H20BQS/

Running Malware

94

On the other hand, Oliver Schneider’s paper conclusion (for the conclusions drawn from

observation of RedPill results being wrong)75, says that among the others, RedPill Technique does

not take into account multiprocessor machines. As a result, the under analysis malware detects all

the multiprocessor machines, the bare metal ones, as Virtual Environments!

75 RedPill getting colorless?, Oliver Schneider, published 01/04/2007, source url: https://blog.assarbad.net/wp-

content/uploads/2007/04/redpill_getting_colorless.pdf

Chapter 5. Static code Analysis

95

5. Static code Analysis

As discussed in introduction chapter, basic static and dynamic malware analysis methods are good

for initial triage, but they do not provide enough information to analyze malware completely and

there is where disassembly comes in. Assembly is the highest-level language that can be reliably

and consistently recovered from machine code when high-level language source code is not

available.

Figure 71: Three coding levels example76

The above Figure shows the three coding levels involved in reverse-engineering on malware

analysis. Malware authors create programs at the high-level language level and use a compiler to

generate machine code to be run by the CPU. Conversely, malware analysts and reverse engineers

operate at the low-level language level. Using disassembler, assembly code is being generated in

order to figure out how a program operates.

In under analysis case, the malware targets Windows platforms and interacts closely with the OS.

The understanding of basic Windows coding concepts is principal to allow the identification host-

76 Sikorski, Michael; Honig, Andrew; Lawler, Stephen, Practical Malware Analysis, San Francisco, CA: No Starch

Press, 2012, pp. 66.

Running Malware

96

based indicators of malware, follow malware as it uses the OS to execute code without a jump or

call instruction, and determine the malware’s purpose. Windows uses two processor privilege

levels: kernel mode and user mode. Nearly all code runs in user mode, except OS and hardware

drivers, which run in kernel mode. In user mode, each process has its own memory, security

permissions, and resources. If a user-mode program executes an invalid instruction and crashes,

Windows can reclaim all the resources and terminate the program. Normally, user mode cannot

access hardware directly, and it is restricted to only a subset of all the registers and instructions

available on the CPU. In order to manipulate hardware or change the state in the kernel while in

user mode, you must rely on the Windows API. When you call a Windows API function that

manipulates kernel structures, it will make a call into the kernel. Kernel code is very important to

malware writers because more can be done from kernel mode than from user mode.

The following figure illustrates a schematic overview of the involved parts.

Figure 72: Schematic overview of Userland, Kernelland and Hardware, under a VM Hypervisor

Chapter 5. Static code Analysis

 97

5.1. IDA Pro

The Interactive Disassembler Professional (IDA Pro) is an extremely powerful

disassembler distributed by Hex-Rays. Although IDA Pro is not the only disassembler, it is the

disassembler of choice for many malware analysts, reverse engineers, and vulnerability analysts.

5.1.1 Loading the executable

When loading a PE file into IDA Pro, the program maps the file into memory as if it had

been loaded by the operating system loader. The following figures presents our loading procedure

and the relevant options of kernel and processor.

Figure 73: IDA Pro: Load PE file with analysis options

IDA Pro

98

By default, IDA Pro does not include the PE header or the resource sections in its

disassembly. Because malware often hides malicious code in such places, the manual load option,

will load each section, one by one, including the PE file header, so that these sections would not

escape IDA’s analysis.

5.1.2 IDA’s First glance

At first glance, the executable’s entry point is at 401000 address. There are different views

of IDA Pro that can be used to analyze the PE, the schematic view with diagrams and the text view

where the analyzed, by IDA Pro, assembly is being previewed.

Figure 74: IDA View - text mode, PE entrance

Figure 75: IDA View - graph mode, PE entrance

Chapter 5. Static code Analysis

 99

Please note that, because of the manual load of the PE file, the PE header is also loaded. The

assembly code of PE Header is places before the entrance point from 400000 address until 401000.

Figure 76: IDA View - PE headers on assembly

Double checking the results of Surface analysis, is helpful to focus on specific points on this stage.

The size of the PE file and the number of its function is extremely high. The 1551 functions, that

the IDA Pro reveal with its analysis stage, show that the malware author spent a lot of time writing

the under analysis executable and from the malware analyst perspective a lot of work should be

done.

Although the entrance point is on 401000 address, from the PE exports it is known that there are

two TLS Call back functions that will be executed before that.

Figure 77: IDA View - list of Exports

Using IDA Pro, a crosscheck should be done on the suspicious functions. The full structured list

of the 118 imports can be found at Appendix F/List of .

IDA Pro

100

Figure 78: IDA Pro - imports

5.1.3 Custom Date Validation Check

The subject malware has an advanced anti-analysis feature. The malware author seems to

have specific intentions, because the malware was programmed to be executed only in specific

time range. As it is already mentioned in section 2.4.3. VMware Workstation Setup, the under

analysis ransomware has a sophisticated check of system time. More specifically the verification

of date and time is being done at binary’s location .text:004026CC, where the valid range to

execute the ransomware is from the epoch time 1410739200, which is being converted as human

readable date to GMT: Monday, September 15, 2014 12:00:00 AM, until the epoch time

1416009600, which is being converted as human readable date to Saturday, November 15, 2014

12:00:00 AM. The bypass solution of the system time check, without patching the binary, is already

provision from the BIOS clock. Otherwise the binary should be patched with different time ranges.

Chapter 5. Static code Analysis

 101

Figure 79: IDA - graph mode, Custom Date Validation Function

5.1.4 TLS Callback Functions

Malware authors employ numerous and creative techniques to protect their executables

from reverse-engineering. The anti-debugging technique called TLS callback and has been

explained on section 3.3.1./TLS explanation. TLS callback functions are actually executed before

executing code at the traditional Original Entry Point (OEP). To find the TLS callback in IDA Pro

and press Ctrl+E.

Figure 80: IDA Pro - Entry point choice

IDA Pro

102

We can clearly see the structure of the execution. This program will execute three functions in a

specific order, first the TlsCallback_0, then the TlsCallback_1 and at last the start – main program.

Despite it is the first and only complete program called after the entry point, the start with will be

executed last. The explanation of this chain of prosecution sourcing from the ‘AddressOfCallBacks’

value 00484004. The address is on .crt section and points to the TlsCallback_0. By default, most

debuggers break at the entry point and consequently the TLS callbacks function are executed, but

this will be discussed on the next section. On this case, the TLS_Callbacks are not only executed

before the main - start function, but they are dynamically called, via call eax command. The

indirect call procedure, is and would be a frequent technique, from the malware author.

Figure 81: IDA Pro - TLScallback dynamic call

Nevertheless, the attacker had inserted anti-debugging routines inside the TLS callback functions

to mislead the malware analyst.

Chapter 5. Static code Analysis

 103

Figure 82: IDA Pro - TLScallback_0

Figure 83: IDA Pro - TLScallback_1

Both of the TLS callback functions are leading to 0041AA10 function call that is related to

EnterCriticalSection, LeaveCriticalSection, InitializeCriticalSection or DeleteCriticalSection.

Note that for the calling the thread EnterCriticalSection twice, will lead to stuck an eternity loop.

Specifically, with the thread call EnterCriticalSection getting stuck forever at the call. In addition ,a

IDA Pro

104

critical section object cannot be moved or copied. The process must also not modify the object,

but must treat it as logically opaque. The usage of critical section functions is to manage critical

section objects.

5.1.5 Debugger Presence

IsDebuggerPresent API

The most distinct point in the list of import functions is the IsDebufferPresent function. The

explanation of IsDebuggerPresent function can be found in 4.1.1. section. Searching for all the

occurrences for the IsDebuggerPresent function, the function is being called in at 00402736

address.

Figure 84: IDA View, IsDebuggerPresent all occurrences

Chapter 5. Static code Analysis

 105

Figure 85: IDA View - graph mode, IsDebuggerPresent at 00402730

The figure 84 depicts a custom process that determines whether the calling process is being

debugged (by a user-mode debugger). If the current process is running in the context of a debugger,

the return value is nonzero. The simplest API function for detecting a debugger is

IsDebuggerPresent. This function searches the Process Environment Block (PEB) structure for the

field IsDebugged, which will return zero if you are not running in the context of a debugger or a

nonzero value if a debugger is attached.

The Process Environment Block (PEB) is a user-mode data structure that can be used by

applications (and by extend by malware) to get information such as the list of loaded modules,

process startup arguments, heap address, check whether program is being debugged or even find

image base address of imported DLLs.

IsDebugged PEB Flag

If we examine the API in a debugger we can see that it uses FS[30] segment register which

is the linear address of Process Environment Block (PEB) and then reach the offset 0x002 which

IDA Pro

106

is the BeingDebugged. So instead of calling IsDebuggerPresent(), the malware manually check

the PEB (Process Environment Block) for the BeingDebugged flag.

In the under analysis case, the malware author created a custom procedure of checking the

existence of a Debugger. The check does not stop on the Windows API return value, but continues

with custom checks of PEB. The Process Environment Block (PEB) structure for the field

IsDebugged, which will return zero if you are not running in the context of a debugger or a nonzero

value if a debugger is attached.

Figure 86: IDA View - graph mode, custom PEB check IsDebugged

More specifically, at address 0040276A the large fs:30 segment register leads to the address of

PEB and then the offset 0x02 is added and checked, which is the BeingDebugged flag.

NtGlobalFlag Flag

Moreover, at the address 004027A5, large FS[30] segment register leads also to the address

of PEB and then the offset 0x68 is added and checked, which is the NtGlobalFlag flag. This is

another simple anti-reversing trick used to detect a debugger. At the TEB structure and the PEB

structure, NtGlobalFlag is located in the PEB Structure at offset PEB+104.

Chapter 5. Static code Analysis

 107

So this flag can also challenge identification of whether the process is being debugged.

Normally, when a process is not being debugged, the NtGlobalFlag field contains the value 0x0.

When the process is being debugged, the field will usually contain the value 0x70. The 0x70 value

is a total of checks, which indicates that the following flags are set:

• FLG_HEAP_ENABLE_TAIL_CHECK 0x10

• FLG_HEAP_ENABLE_FREE_CHECK 0x20

• FLG_HEAP_VALIDATE_PARAMETERS 0x40

• Total 0x70

That is the reason the malware author makes a comparison at 004027B9 address. If we examine

the API in a debugger we can see that it uses FS[30] segment register which is the linear address

of Process Environment Block (PEB) and then reach the offset 0x68 which is the NtGlobalFlag.

Nevertheless, searching for all the occurrences for large FS[30], it can be figured that the

malware author has implemented the anti-debugging PEB checks in several places, with several

ways.

Figure 87: IDA View, large fs:30 - all occurrences

IDA Pro

108

Specifically, at the addresses 0040287A, 00402923, 0040298F and 004050E2 the

BeingDebugged flag is being checked. Also, at the addresses 004028BE, 00402A22 and

004244BA the NtGlobalFlag flag is being checked. Special attention is needed to the technique

the malware author is using, the eax register is not doing the comparison immediately, but each

check preceded with a no operation trick, by using the EBP plus to a non-stable variable.

5.1.6 Anti-VMware

The most popular anti-VMware techniques are being used, in order to slow down analysis,

so it was important to recognize them at early points, as it has been done in basic surface and

behavioral analysis.

As it is already mentioned, when performing basic dynamic analysis, a virtual machine

should be used. However, if your subject malware does not seem to run, a different virtual

environment (like VirtualBox or Parallels) or even a physical machine, should be tried. As with

anti-debugging techniques, anti-VM techniques can be spotted using common sense while slowly

debugging a process. For example, code terminating prematurely at a conditional jump, it may be

doing so as a result of an anti-VM technique. As always, be aware of these types of issues and look

ahead in the code to determine what action to take.

The Red Pill Anti-VM Technique

Red Pill is an anti-VM technique that executes the SIDT instruction to grab the value of

the IDTR register. The virtual machine monitor must relocate the guest’s IDTR to avoid conflict

with the host’s IDTR. Since the virtual machine monitor is not notified when the virtual machine

runs the SIDT instruction, the IDTR for the virtual machine is returned. For more detailed

Chapter 5. Static code Analysis

 109

explanation of the Descriptor Table Registers and them detection technique, please check at the

section 2.3. VME Technologies.

The Red Pill tests for this discrepancy to detect the usage of VMware. The malware issues

the SIDT instruction at, which stores the contents of IDTR into the memory location pointed to by

EAX. The IDTR is 6 bytes, and the fifth byte offset contains the start of the base memory address.

That fifth byte is compared to 0xFF, the VMware signature.

The attached short exploit code can be used to detect whether the code is executed under a

VME or under a real environment. 77

 int swallow_redpill ()

{

 unsigned char m[2+4], rpill[] = "\x0f\x01\x0d\x00\x00\x00\x00\xc3";

 ((unsigned)&rpill[3]) = (unsigned)m;

 ((void(*)())&rpill)();

 return (m[5]>0xd0) ? 1 : 0;

 }

Table 5: “Swallowing” the Red Pill has been published as this four line code, generating almost a single

CPU instruction and that returns nonzero when in “Matrix”.

The heart of this code is actually the SIDT instruction (encoded as 0F010D[addr]), which

stores the contents of the interrupt descriptor table register (IDTR) in the destination operand,

which is actually a memory location. What is special and interesting about SIDT instruction is that,

it can be executed in non-privileged mode (ring3) but it returns the contents of the sensitive register,

used internally by operating system.

Because there is only one IDTR register, but there are at least two OS running concurrently

(i.e. the host and the guest OS), VME needs to relocate the guest's IDTR in a safe place, so that it

77 Red Pill... or how to detect VMM using (almost) one CPU instruction, Joanna Rutkowska, originally published at

URL: http://invisiblethings.org/, on November 2004, current access URL:

http://web.archive.org/web/20110726182809/http://invisiblethings.org/pa

IDA Pro

110

will not conflict with a host's one. Unfortunately, VME cannot know if (and when) the process

running in guest OS executes SIDT instruction, since it is not privileged (and it doesn't generate

exception). Thus, the process gets the relocated address of IDT table. It was observed that on

VMWare, the relocated address of IDT is at address 0xffXXXXXX, whereas on Hyper-V (Virtual

PC) it is 0xe8XXXXXX.

Joanna Rutkowska came across this strange behavior of SIDT instruction a few years ago,

when Joanna Rutkowska was testing Suckit rootkit on VMWare. Joanna Rutkowska noticed that

it failed to load on VMWare whereas it seemed to work fine on the same distribution ran outside

VM. After spending many hours Joanna Rutkowska figured out that the problematic instruction

was actually SIDT, which was used by Socket to get the address of the IDT table, and to hook its

0x80 entry through /dev/kmem device.

Please note that Red Pill succeeds only on a single-processor machine, because it would

not work consistently against multicore processors, as long as each processor (guest or host) has

an IDT assigned to it. Therefore, the result of the SIDT instruction can vary, and the signature used

by Red Pill can be unreliable. To thwart this technique, run on a multicore processor machine or

simply NOP-out the SIDT instruction.

The No Pill Technique

The SGDT and SLDT instruction technique for VMware detection is commonly known as

No Pill. Unlike Red Pill, No Pill relies on the fact that the LDT structure is assigned to a processor,

not an operating system. And because Windows does not normally use the LDT structure, but

VMware provides virtual support for it, the table will differ predictably.

Chapter 5. Static code Analysis

 111

Specifically, the LDT location on the host machine will be zero, and on the virtual machine,

it will be nonzero. A simple check for zero against the result of the SLDT instruction does the trick.

The SLDT method can be subverted in VMware by disabling acceleration. To do this, select

VMware Settings > Settings, on the Analysis VM > at Processors option tab and check the Disable

Acceleration box. No Pill solves this acceleration issue by using the SMSW instruction if the SLDT

method fails. This method involves inspecting the undocumented high-order bits returned by the

SMSW instruction.

The I/O Communication Port

The most common anti-VMware technique currently in use is that of querying the I/O

communication port. This technique was discovered by Ken Kato78. VMware uses virtual I/O ports

for communication between the virtual machine and the host operating system to support

functionality like copy and paste between the two systems. The port can be queried and compared

with a magic number to identify the use of VMware. The success of this technique depends on the

x86 in instruction, which copies data from the I/O port specified by the source operand to a memory

location specified by the destination operand.

VMware monitors the use of the in instruction and captures the I/O destined for the

communication channel port 0x5658 (VX). Therefore, the second operand needs to be loaded with

VX in order to check for VMware, which happens only when the EAX register is loaded with the

magic number 0x564D5868 (VMXh)79. ECX must be loaded with a value corresponding to the

78 Ken Kato, VMware Backdoor I/O Port, source URL: chitchat.at.infoseek.co.jp/vmware/backdoor.html
79 Methods for Virtual Machine Detection, Alfredo Andr´es Omella, Grupo S21sec Gesti´on S.A., 20th June 2006

IDA Pro

112

action you wish to perform on the port. The value 0xA means “get VMware version type,” and

0x14 means “get the memory size.” Both can be used to detect VMware, but 0xA is more popular

because it may determine the VMware version.

Figure 88: Red Pill VMware detection with Backdoor Command Number - patched

On the above Figure, at the address 00405509 the command MOV EAX, 564D5868h has

been detected, which is the famous VMware Magic Number (VMXh). The malware first loads the

magic number 0x564D5868 (VMXh) into the EAX. Next, it loads the value 1 into EBX, a memory

address that will return any reply from VMware. ECX is loaded with the value 0x10 to get the

VMware version type. Next, the 0x5658 (VX) is loaded into EDX, to be used in the following in

instruction to specify the VMware I/O communication port. Upon execution, the in instruction is

trapped by the virtual machine and emulated to execute it. The in instruction uses parameters of

EAX (magic value), ECX (operation), and EBX (return information). If the magic value matches

VMXh and the code is running in a virtual machine, the virtual machine monitor will echo that

back in the memory location specified by the EBX register. The next immediate check determines

whether the code is being run in a virtual machine. Since the get version type option is selected,

Chapter 5. Static code Analysis

 113

the ECX register will contain the type of VMware (1=Express, 2=ESX, 3=GSX, and

4=Workstation).

The easiest way to overcome this technique is to NOP-out the in instruction IN EAX, DX

or to patch the conditional jump to allow it regardless of the outcome of the comparison. At the

figure 89, the NOP-out technique has been chosen.

Chapter 6. Dynamic code Analysis

114

6. Dynamic code Analysis

The dynamic code analysis is the hard part of debugging a software. The tool to make a

dynamic analysis is the debugger. A debugger is a piece of software, in this case, used to test or

examine the execution of the subject malware. Debuggers help in the process of developing

software, since programs usually have errors in them when they are first written. Debuggers gives

the insight into what a program is doing while it is executing. Specifically, debuggers are designed

to allow developers to measure and control the internal state and execution of a program. Because

theory of debuggers and instructions using them are not part of this thesis and the document is

already long enough, in continuous only the vital parts of code are being presented during the

debugging.

6.1 Structured Exception Handlers

Generally, the exceptions allow a program to handle events outside the flow of normal

execution. The Structured Exception Handling (SEH) mechanism provides a method of flow

control that is unable to be followed by disassemblers and will fool debuggers. SEH is a feature of

the x86 architecture and is intended to provide a way for the program to handle error conditions

intelligently.

The common exceptions are caused by errors and when an exception occurs, execution

transfers to a special routine that resolves the exception. Some exceptions, such as division by zero,

are raised by hardware. Some others, such as an invalid memory access, are raised by the OS.

Specifically, the Structured Exception Handling (SEH) is the Windows mechanism for handling

exceptions, where SEH information are stored on the stack.

Chapter 6. Dynamic code Analysis

 115

At the beginning of each function, an exception-handling frame is put onto the stack, with

the special location fs:0 points to an address on the stack, that stores the exception information.

When an exception occurs, Windows looks in fs:0 for the stack location that stores the exception

information, and then the exception handler is called. After the exception is handled, execution

returns to the main thread. So exception handlers are nested, and not all handlers respond to all

exceptions. The SEH chain is a list of functions designed to handle exceptions within the thread.

If the exception handler for the current frame does not handle an exception, it will be passed to the

exception handler for the caller’s frame. Eventually, if none of the exception handlers responds to

an exception, the top-level exception handler crashes the application.

Figure 89: SEH Chain 80

To find the SEH chain, the OS examines the FS segment register. This register contains a

segment selector that is used to gain access to the Thread Environment Block (TEB). The first

structure within the TEB is the Thread Information Block (TIB). The first element of the TIB (and

80 The source URL of the image: www.aldeid.com/wiki/Category:Architecture/Windows/SEH-Structured-Exception-

Handling

6.1 Structured Exception Handlers

116

consequently the first bytes of the TEB) is a pointer to the SEH chain. The SEH chain is a simple

linked list of 8-byte data structures called EXCEPTION_REGISTRATION records.

The first element in the EXCEPTION_REGISTRATION record points to the previous

record. The second field is a pointer to the handler function. This linked list operates conceptually

as a stack. The first record to be called is the last record to be added to the list. The SEH chain

grows and shrinks as layers of exception handlers in a program change due to subroutine calls and

nested exception handler blocks. For this reason, SEH records are always built on the stack.

Misusing Structured Exception Handlers

In the subject malware, the exception handlers are being used in exploit code to gain

execution. A pointer to exception-handling information is stored on the stack, and during a stack

overflow, an attacker can overwrite the pointer. By specifying a new exception handler, the attacker

gains execution when an exception occurs.

Figure 90: IDA Pro, text view, sp-analysis failed

In this figure, IDA Pro has not only missed the fact that the subroutine at location 405239

was not called, but it also failed to even disassemble this function (sp-analysis failed). Stack-frame

anti-analysis techniques depend heavily on the compiler used. Of course, if the malware is entirely

Chapter 6. Dynamic code Analysis

 117

written in assembly, then the author is free to use more unorthodox techniques. However, if the

malware is crafted with a higher-level language such as C or C++, special care must be taken to

output code that can be manipulated.

Anti-disassembly is not confined to the studied techniques. It is a class of techniques that

takes advantage of the inherent difficulties in analysis. Anti-disassembly is more difficult with a

flow-oriented disassembler but still quite possible, once you understand that the disassembler is

making certain assumptions about where the code will execute. Obscuring flow control is a way

that malware can cause the malware analyst to overlook portions of code or hide a function’s

purpose by obscuring its relation to other functions and system calls.

Please keep in mind that in Behavioral Analysis section, 4.1.1. at Informative Indicators

the anti-reverse engineering technique of SetUnhandledExceptionFilter has been already detected

from an online automotive analysis tool. Specifically, at the addresses 00401030 and 004014FB

the call of function SetUnhandledExceptionFilter has been done and at address 004242A4, another

indirect near jump is taken place. Furthermore, the call of function ltTopLevelExceptionFilter at

the addresses 00401026 and 004014F1, in addition with the indirect near jump at address

004242A4.

Function lpTopLevelExceptionFilter is a pointer to top-level exception filter function that

will be called whenever the UnhandledExceptionFilter function gets control, and the process is not

being debugged. A value of null for this parameter specifies default handling within

UnhandledExceptionFilter. Usually, in absence of an UnhandledExceptionFilter the topmost

handler called when an unhandled exception occurs, is the default one provided by Windows Itself,

the classical MessageBox that advices the user that an Unhandled Exception has occurred.

6.1 Structured Exception Handlers

118

Debugging detection using Unhandled Exceptions

On the other hand, Windows allow programmers to use custom Handlers for

UnhandledException. The core of the trick is here, if the application is not debugged, the

application is able to call the Custom Handler, but if the application is debugged the Custom

Handler will be never called.

Please note that inside UnhandledExceptionFilter function, the function

NtQueryInformationProcess is called that has as first parameter the subject process and next

DebugPort, this is done to know if the process is debugged.

This anti-debugging and also anti-reversing technique was caught being called in several

parts of assembly code, in the subject malware. As long as these are custom handlers, the counter

technique should be manual.

• At First a search for "All intermodular calls" should be done and due to the results

breakpoints at the call of GetProcAddress function should be added and then

resolve the imports of the pack file.

• The next move is to run the binary of the subject malware and when it breaks, the

stack should be checked for the function SetUnhandledExceptionFilter that is being

loaded. The SetUnhandledExceptionFilter handles the exceptions that are not being

hardcoded with some exception function. At this point the function

lpTopLevelExceptionFilter will be executed only if the binary is not being

debugged.

• Because the subject malware is obviously running under a debugger, the return

value of GetCurrentProcess function should be search. Firstly,

"UnhandledExceptionFilter" should be searched (CTRL+G) as an expression.

Chapter 6. Dynamic code Analysis

 119

• Then breakpoint at the call of “kernel32.GetCurrentProcess” function should be

added.

• By executing the binary, the return value at EAX register should manually changed

from -1 to 0

Keep in mind that there are some dynamic calls of GetCurrentProcess functions, via other

functions as a parameter. These functions are “RtlEncodePointer” and “En/DecodePointer”.

GetProcAddress(LoadLibraryA(kernel32.dll), EncodePointer);

GetProcAddress(LoadLibraryA(kernel32.dll), DecodePointer);

• The next function call will be the “ZwQueryInformationProcess,”, that will check

the value of EAX register. Keep in mind that the new version of

ZwQueryInformationProcess is NtQueryInformationProcess, both mentioned in

ntdll. In case that the value will be -1, this will lead to a stop function, because the

debugged process is revealed.

It should be noted that, a generic measurement to counter this technique, is by editing the

return value of GetCurrentProcess function from 0xFFFFFFFF to 0x00000000. In other words, an

apparently undebugged process should be obtained in order to modify the first parameter (last

pushed at debugging time).

Timing Checks

Single-stepping through a program substantially slows execution speed. There are a couple

of ways to use timing checks to detect a debugger, record a timestamp, perform a couple of

operations, take another timestamp, and then compare the two timestamps. If there is a lag, you

can assume the presence of a debugger. Also, take a timestamp before and after raising an exception.

6.1 Structured Exception Handlers

120

If a process is not being debugged, the exception will be handled quickly; a debugger will handle

the exception much more slowly. By default, most debuggers require human intervention in order

to handle exceptions, which causes enormous delay. While many debuggers allow you to ignore

exceptions and pass them to the program, there will still be a sizable delay in such cases.

Nevertheless, on the subject malware, another anti-debugging SEH technique due to the

dynamic code analysis revealed. The anti-debugging timing checks are successful because the

malware causes and catches an exception that it handles by manipulating the Structured Exception

Handling (SEH) mechanism to include its own exception handler in between two calls to the timing

checking functions. Exceptions are handled much more slowly in a debugger than outside a

debugger. On the following screenshot a Custom top level exception handler is installed, at the

address .text:004014FB.

Figure 91: IDA Pro, graph view, Top level Exception Custom Handler

This exception will lead to about 10 minute sleep at the beginning and somewhere else

dynamically called. On the following figure, at the address .text:00405174, some implemented

with time function calls are being presented, combined with the above mentioned techniques, are

adding some additional protections against fast forwarding time.

Chapter 6. Dynamic code Analysis

 121

Figure 92: IDA Pro, graph view, time function calls

As a result, a nonstop loop is being detected. The cause was from the REPNE SCASB

instruction. The usage of REPNE SCASB is to scan bytes of a string until the trailing null character

is found. A common use of the REPNE SCASB instruction, in the subject malware, is to determine

the length of a string. Below is a code that checks whether the string passed to the function is 4

characters long.

Figure 93:OllyDbg REPE SCAS instruction

6.1 Structured Exception Handlers

122

Figure 94: IDA View, REPNE SCASB instruction all occurrences

On the previous screenshot, there are tons of these instruction been detected. So, all

occurrences search will not help. In continuous, the endless loop is being detected on the

subfunction text.405208. During execution debugging, the stack was filled endlessly with ASCII

characters, without finding on a fly solution by patching the binary.

Figure 95: OllyDbg series of ASCII characters loaded in memory endlessly

Chapter 6. Dynamic code Analysis

 123

So, the current solution is not to take the specific jump.

Figure 96: IDA graph view, nonstop loop subfunction text.405208

6.2 Manipulation of CPUID instructions

CPUID is an instruction-level detection method and these kinds of methods are really hard

to detect, as long as in order to trap on every execution of CPUID, instructions should be executed

step by step (which is really slow and almost impossible) or instrument the target program. Using

instrumentation, then anti-instrument techniques might also defeat.

On the subject malware, searching for CPUID occurrences reveals that they are being

called four times in the .text section. Exploring them, reveals that the malware author is using

difference appliances and techniques with them and reuse them by calling the mother functions

several times on his checks.

6.2 Manipulation of CPUID instructions

124

Figure 97: IDA View, CPUID instructions all occurrences

When CPUID instruction is executed with EAX=0 as input, xor eax, eax brings the same

result, the return value will increase EAX by 1. On the figure 102 the first check CPUID check is

doing this check.

In addition, when CPUID instruction is executed with EAX=1 as input, the return value

describes the processors features. The 31st bit of ECX or EDX on a physical machine will be equal

to 0, but on a guest VM it will equal to 1. On the figure 102 the second check CPUID check is

doing this check.

Figure 98: IDA View, CPUID instructions, using eax = 0 and eax = 1 as parameter

Furthermore, more methods are being used with CPUID instruction. When CPUID

executes with EAX set to 80000000, the processor returns the highest value the processor

Chapter 6. Dynamic code Analysis

 125

recognizes for returning extended processor information. The value is returned in the EAX register

and is processor specific.

When CPUID instruction with EAX=0x80000001 as input, requests to Extended Processor

Info and Feature Bits. This returns extended feature flags in EDX and ECX. The EDX’s Bit 4 is a

timestamp counter and Bit 2 is debugging extensions. In the subject malware case, the counter will

be measuring the time in case of breakpoint of debugging is active.

Figure 99: IDA View, CPUID instructions, using eax = 0x80000000 and eax = 0x80000001 as parameter

NOP-ing the CPUID instructions is the again the answer for most of the cases. Defeating

results that come from asm instruction level, seems to be impossible but there is always a solution.

To change the CPUID results of the target virtual machine from host perspective, is possible via

the VMware’s configuration file .vmx, that gives the host machine the opportunity to modify

CPUID and CPU features. This is because every time your virtual machine fetches a CPUID

instruction and wants to execute it, a VM-Exit happens and now hypervisor passes the execution

to VMM.

6.2 Manipulation of CPUID instructions

126

At the .vmx configuration file, the following line should be added, to counter the figure’s

106 technique. Keep in mind to put the line at the end of the file when the VM is not running.

cpuid.1.eax="0---:----:----:----:----:----:----:----"

Table 6: VMX configuration file line addition CPUID and EAX manipulation

Also at the .vmx configuration file, the following line should be added, to counter the

figure’s 107 technique. Keep in mind to put the line at the end of the file when the VM is not

running.

cpuid.80000001.edx="0000:0000:0000:0000:0000:0000:0000:0000"

Table 7: VMX configuration file line addition CPUID and EDX manipulation

Anti-VM detection with python in IDA Pro

The python script that it is attached on Appendix I will scan the assembly code in IDA-

Pro and highlight with green color the instructions corresponding to Anti-VM techniques. All the

techniques have been already mentioned in the previous section of Static code Analysis/Anti-

VMware. By using the script, there are several instructions that are being searched in the binary,

such as SGDT, SLDT, SMSW, STR, IN and CPUID.

On the following two figures, the CPUID instruction that we have already analyzed, it is

highlighted with green color.

Chapter 6. Dynamic code Analysis

 127

Figure 100: IDA Pro, graph view, CPUID highlighted green

Figure 101: IDA Pro, graph view, CPUID highlighted green2

Except the four CPUID instructions, two more IN instruction have been characterized as

potentially Anti-VM technique and been highlighted as red. On the following two figures, the

command IN EAX is the suspicious one but unfortunately there are a lot of bad disassembly code

as prefix. As a result, the functionality of the showed assembly cannot be clarified.

6.3 Interrupts on Debugging

128

Figure 102: IDA Pro, text view, IN highlighted red

Figure 103: IDA Pro, text view, IN highlighted red2

6.3 Interrupts on Debugging

During the dynamic analysis of the code, some interrupts have been revealed, that were not

added breakpoints. So, an INT 3 technique was detected. INT 3 is the software interrupt used by

debuggers to temporarily replace an instruction in a running program and to call the debug

exception handler. On other words it is a basic mechanism to set a breakpoint. The opcode for INT

Chapter 6. Dynamic code Analysis

 129

3 is 0xCC. Whenever you use a debugger to set a breakpoint, it modifies the code by inserting a

0xCC. In addition to the specific INT 3 instruction, an INT immediate can set any interrupt,

including 3 (immediate can be a register, such as EAX). The INT immediate instruction uses two

opcodes: 0xCD value.

On the subject malware, four occurrences were found with the 0xCC opcode. On the

following figure the traps of the debugger are being presented.

Figure 104: IDA Pro view, INT 3 occurrences

If a 0xCC byte is found, it knows that a debugger is present. This technique can be

overcome by using hardware breakpoints instead of software breakpoints or manually by

modifying the execution path with the debugger at runtime. On the following screenshot, we

manually NOP-ed out the INT 3 fake instruction.

Figure 105: IDA Pro graph view, INT 3 trap to debugger NOP-ed

6.4 Thwarting Stack-Frame Analysis

130

6.4 Thwarting Stack-Frame Analysis

Advanced disassemblers can analyze the instructions in a function to deduce the

construction of its stack frame, which allows them to display the local variables and parameters

relevant to the function. This information is extremely valuable to a malware analyst, as it allows

for the analysis of a single function at one time, and enables the analyst to better understand its

inputs, outputs, and construction.

However, analyzing a function to determine the construction of its stack frame is not an

exact science. As with many other facets of disassembly, the algorithms used to determine the

construction of the stack frame must make certain assumptions and guesses that are reasonable but

can usually be exploited by a knowledgeable malware author.

The call and jmp instructions are not the only instructions to transfer control within a

program. The counterpart to the call instruction is retn. The call instruction acts just like the jmp

instruction, except it pushes a return pointer on the stack. The return point will be the memory

address immediately following the end of the call instruction itself.

As call is a combination of jmp and push, retn is a combination of pop and jmp. The retn

instruction pops the value from the top of the stack and jumps to it. It is typically used to return

from a function call, but there is no architectural reason that it can’t be used for general flow

control.

When the retn instruction is used in ways other than to return from a function call, the most

disassemblers are left in the dark. The most obvious result of this technique is that the disassembler

does not show any code cross-reference to the target being jumped to. Another key benefit of this

technique is that the disassembler will prematurely terminate the function.

Chapter 6. Dynamic code Analysis

 131

On the following figure a short jump is taken place, with the return pointer being abusive.

Specifically, there is a hidden code following if we switch to text mode in IDA.

Figure 106: IDA Pro, graph view, sp-analysis fail return pointer abuse

Figure 107: IDA Pro, graph view, sp-analysis fail return pointer abuse2

In order to resolve this sp-analysis fail error and disassemble the assembly correctly the

EBP address should be followed from the jump and then the rest of the code should be NOP-ed.

6.5 Escaping the control of debuggers by Sleeping

One of the simplest ways to escape from the control of a debugger is for a process to

execute another copy of itself. Typically, the process will use a synchronization object, such as a

mutex, to prevent being repeated infinitely. The first process will create the mutex, and then

execute the copy of the process. The second process will not be under the debugger's control, even

6.5 Escaping the control of debuggers by Sleeping

132

if the first process was. The second process will also know that it is the copy since the mutex will

exist.

On the following figure, there are several occurrences where the sleep function is messing,

but actually the call of the function is being made at the addresses 0042222E, 0041AD0B and

0041B6A7.

Figure 108: IDA View, sleep function all occurrences

It is quite common to see the use of the kernel32.Sleep() function, instead of the

kernel32.WaitForSingleObject() function, but this introduces a race condition. The problem occurs

when there is CPU-intensive activity at the time of execution. This could be because of intentional

delays in the second process.

Chapter 6. Dynamic code Analysis

 133

Figure 109: IDA View, sleep function in InterlockedIncrement thread mutex

On the following figure, the parameter of the function is a double word integer that gives the input

of time sleep in milliseconds.

Figure 110: IDA View, sleep function millisecond parameter

6.6 Anti-analysis technique terminating the process

exit Function

In result of the above mentioned techniques, the malware author terminates the process of

the malware, in case of detection of VME, debugging presence, execution manipulation, any false

validation of the time and the IP address of a specific subnet.

6.6 Anti-analysis technique terminating the process

134

On the following figure, the list of exit function occurrences is being presented.

Figure 111: IDA View, exit function all occurrences

In addition, a custom function seems to be written by the malware author, that also

terminated the execution of the binary. In the following figure, the address .text:0042454D is

completely unlinked and without references. It is assumed that this function is also dynamically

being called during the execution of the malware, so it should be an exit after a sophisticated check.

Figure 112: IDA graph mode, custom exit function

abort Function

Nevertheless, except the common exit function, the malware author is using abort function

in order to crash the execution flow. More specifically, the abort does not return control to the

calling process. By default, it checks for an abort signal handler and raises SIGABRT if one is set.

Then abort terminates the current process and return an exit code to the parent process.

Chapter 6. Dynamic code Analysis

 135

 On the following figures, the abort function is being presented, after conditional jumps,

custom switch cases and indirect call procedures.

Figure 113: IDA graph mode, custom abort function

Figure 114: IDA graph mode, conditional jump abort function

6.6 Anti-analysis technique terminating the process

136

Figure 115: IDA graph mode, switch case abort function

Figure 116: IDA graph mode, logical comparison abort function

Figure 117: IDA graph mode, TLS check abort function

Chapter 6. Dynamic code Analysis

 137

6.7 Antivirus Evasion

In order to achieve evasion from some antivirus software using this methodology, the

following steps need to be implemented:

1. Allocate a location to place the TLS Directory structure defined as

_IMAGE_TLS_DIRECTORY32.

2. Fill in the addresses for callback functions (our supposed constructors).

3. Allocate a location to place the code for the TLS callback functions.

4. Write code that uninstalls the initial hooks from the EP or ZwTestAlert.

5. Modify the PE Header’s DataDirectory to use the newly created TLS Directory.

ZwTestAlert

The above ZwTestAlert function tests whether the current thread has been alerted (and

clears the alerted flag). It also enables the delivery of queued user APCs.

NextDisableThreadLibraryCalls disables the DLL_THREAD_ATTACH and

DLL_THREAD_DETACH notifications for the DLL. By disabling the notifications, the DLL

initialization code is not paged in because a thread is created or deleted, thus reducing the size of

the application’s working code set. This use of DisableThreadLibraryCalls increases invisibility

for the injected DLL.

6.8 Anti-Dump Trick "Header Erase"

The Anti-Dump trick is erasing the header of the process running, so the dumping

techniques will fail, as long as, no header to identify exists, used as anti-reversing trick.

6.8 Anti-Dump Trick "Header Erase"

138

More specifically, we start calling the function "GetModuleHandleA", using the parameter

0, in order to handle the same process. After that, using the function "VirtualProtect" we can make

the header of a file writable. Keep in mind that headers of files are usually read-only, because the

header exists on the memory region. In continuous, with XORing the registers, the memory is

being filled with zero bytes.

7

Chapter 7. Conclusion

139

7. Conclusion

In conclusion the procedure of the code decryption during runtime will be presented, with

some specific binary’s addresses, where these actions are taken place. From Surface Analysis and

the examination of the binary’s strings, they are for sure encrypted and obfuscated. During the

runtime, the used ones are dynamically being decrypted.

7.1 Encryption and Decryption procedure

Large parts of the subject malware binary’s code are encrypted. It is already presented that

the disassembler either fails to disassembly due to anti-disassembly techniques but also due to

encrypted parts of code inside the binary. Some of them, they are dynamically being loaded,

because as if figured out on the surface analysis, the .text section is writable – not read only. The

first part of binary that is being detected as encrypted is on the .text:402B25 address, where it starts

with the value 0x1111111111111111.

At start the infected machine should meet some circumstances. Except the specific time

range of execution, a normal machine must be assigned in a specific subnet with a specific IP

address. On the following screen at the binary’s address .text:00405011, the call of API function

gethostbyname is detected.

7.1 Encryption and Decryption procedure

140

Figure 118: IDA graph view, gethostbyname function API call

 In continuous, on the following figure the part of the code that gets the IP address of the

current machine is being detected and hashing it. The function starts at binary’s

address .text:004018EA.

Figure 119: IDA graph view, custom function for hashing the IP address

Parts of this result is used to verify the IP. More specifically, it is compared in two pieces. On

the following figure we detect at binary’s address .text:0040297E a comparison with the value

0xB94F0850 and at binary’s address .text:00402988 a comparison with the value 0xBBACAB2F.

Chapter 7. Conclusion

 141

Figure 120: IDA graph view, custom function for IP validation in two pieces

Keep in mind that in section 2.4.3 VMware Workstation Setup/Virtual Network editor, a

provision is being made, so the IP is correctly configured in the right subnet. It would be hard to

patch the return bytes of this function during execution each time, so we bypass this check by

configuring correctly the virtual network.

The malware author used a custom sophisticated technique, where some part of the result is

used to decrypt part of the next code. The IP Address that gives resulting hash is 10.1.210.*. The

star symbol stands for all possible values, because only the first 3 bytes are being used. The result

of the IP address hashing is the hex value 49C60C2B94F0850BBACAB2F2538A286. This value

must be delaminated in four parts of 4 bytes, like the following structure: 49C60C2 B94F0850

BBACAB2F 2538A286.The first part, last 4 bytes in endian, the 0x2538A286 hex value is used

to decrypt the first part of the encrypted code in the binary.

The encryption and decryption have been done with the XOR procedure using a 4 byte key.

As it mentioned before, at binary’s address .text:402B25 where the hex value 0x1111111111111111

exists, the XOR is done using the key 0x2538A286.

7.1 Encryption and Decryption procedure

142

Figure 121: IDA graph view, custom en/decryption XOR function with 4 byte key (1)

Although on the following encrypted parts of the code, another key is being used.

Specifically, at binary’s address .text:403A11where the hex value 0x2222222222222222 exists,

the XOR is done using the key 0x2387645A.

Figure 122: IDA graph view, custom en/decryption XOR function with 4 byte key (2)

Chapter 7. Conclusion

 143

Also, at binary’s address .text:401721 where the hex value 0x3333333333333333 exists, the

XOR is done using the key 0xA345FFE0.

Figure 123: IDA graph view, custom en/decryption XOR function with 4 byte key (3)

At last, at binary’s address .text:401550 where the hex value 0x4444444444444444 exists,

the XOR is done using the key 0xFF44FFAA.

Figure 124: IDA graph view, custom en/decryption XOR function with 4 byte key (4)

7.2 Malware deflection

144

Using OllyDbg, the CryptGenRandom API call has been detected and analyzed. This

function leads to the above mention results. Note that, CryptGenRandom is a cryptographically

secure pseudorandom number generator function that is included in Microsoft CryptoAPI.

Figure 125: OllyDbg Breakpoints on CryptGenRandom API call

7.2 Malware deflection

Malware authors and specially ransomware authors, are creating mutexes81 in order to

check if a machine is already infected. If the analyst locates the hard-coded mutex name, can

emulate it and fool the ransomware that the machine is already infected.

7.3 The smart-dumb alternative way to deflect the Ransomware

Base64 encoding code and strings

Base64 is an encoding scheme originally designed to allow binary data to be represented

as ASCII text. Widespread in its use, Base64 seems to provide a level of security by making

sensitive information difficult to decipher. In reality, the use of Base64 provides a significant

81 Mutexes are global objects that coordinate multiple processes and threads. In the kernel they are called mutants.

Keep in mind that mutexes are usually hard-coded names.

Chapter 7. Conclusion

 145

advantage to attackers while providing minimal benefit to defenders. The use of Base64 can result

in the disclosure of passwords, bypass of data leakage protection systems and can even be used to

create a one click, obfuscated and self-contained cross site scripting attacks. 82

In malware analysis, is another well-known encoding technique utilized by malware

authors. Keep in mind that Base64 is from the MIME standard, which recognized the need for

converting binary to text for email attachments. Base64 has a set of only 64 characters (as the name

describes), and a standard for translating data within this limited set.

The MIME Base64 “alphabet” looks like this:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/=

Note that due to Base64 being a smaller set of characters, encoded data is often “longer”

than encoded data. Typically, we should expect an increase of about 33% (or 4 Base64 encoded

characters for every three decoded characters), give or take. Furthermore, attackers can also define

their own Base64 alphabets, which make standard conversion techniques useless.83

Identification and Decoding Base64

 The characteristics that make up a Base64 encoded string are fairly simple; it will typically

contain letters (A-Z and a-z), numbers (0-9) and the characters “/”, “+” and “=” where the equal

sign, if found, will always be found at the end of the string. Base64 strings usually contain a

multiple of 4 characters (e.g. 4, 8, 12, 16, etc.). In such cases, the minimum size for a Base64-

82 Fiscus Kevin, SANS Institute (2011, April), Base64 Can Get You Pwned. Source url: https://www.sans.org/reading-

room/whitepapers/auditing/base64-pwned-33759. [Accessed 24 02 2019].
83 M. B, "Malware Monday: Obfuscation," 19 12 2016. Source url: https://medium.com/@bromiley/malware-

monday-obfuscation-f65239146db0. [Accessed 24 02 2019].

7.3 The smart-dumb alternative way to deflect the Ransomware

146

encoded string is 4 characters. If the source string is not long enough to generate an output of 4

characters, one or two equal signs will be added for padding. This padding is found in most Base64

encoded strings where the encoding does not generate a number of characters that is divisible by

4, thus you often see either one or two equal signs at the end of Base64 encoded data. Based on

this definition however, the words “data”, “Data” and “Database” are all potentially valid Base64

(although they decode to random binary data) making positive validation of Base64 data difficult.

Making things worse, Base64 does not always use the special characters / and +. In some

implementations of Base64 a number of other special characters are used including the dash (-),

the underscore (_), the period (.), the colon (:), and the exclamation point (!). In addition, some

implementations of Base64 don’t use padding. As a result, Base64 can contain any combination

of letters (upper and lower case), numbers and various special characters (/+-_:!) that may or may

not have one or two equal signs at the end.

With byte-stats.py84, statistics are being generated for the different byte values found in the

under analysis PE. When we use this to analyze our Base64 encoded executable, we the following

output:

84 D. Stevens, "Decoding malware via simple statistical analysis," Didier Stevens Labs, 30 08 2017. Source url:

https://blog.nviso.be/2017/08/30/decoding-malware-via-simple-statistical-analysis/. [Accessed 24 02 2019].

Chapter 7. Conclusion

 147

Figure 126: Base64 bytes check with byte-stats.py

In the screenshot above see that we have 256 different byte values, and that 19% of the

byte values are Base64 characters. This is not a strong indication that the data in the under analysis

PE are Base64 encoded.

Using the option -r of byte-stats.py, an overview of the ranges of byte values is being

presented:

7.3 The smart-dumb alternative way to deflect the Ransomware

148

Figure 127: Base64 bytes check with specific range

Usually the range check of byte-stats.py would reveal the pattern of Base64 alphabet, but with the

256 length we assume that these characters constitute an alphabet of another encoding scheme.

XORSearch

Having no clue of the encoding scheme on our PE file, XOR operation could reveal

additional information. It is perspective of reverse engineering the static information that a PE file

offers. As an alternative of brute forcing any known encoding scheme on the under analysis PE

file, XORing definitely would be time effective. A tool is needed to try all possible combinations,

for every total of bytes that compose a string.

Chapter 7. Conclusion

 149

XORSearch85 is a program to search for a given string in an XOR, ROL, ROT or SHIFT encoded

binary file 86. XORSearch will try all XOR keys (0 to 255), ROL keys (1 to 7), ROT keys (1 to

25) and SHIFT keys (1 to 7) when searching. XORSearch also includes key 0, because this allows

to search in an unencoded binary file (X XOR 0 equals X). XORSearch does a bruteforce attack

with 8-bit keys and smaller 87.

At this point of our analysis we need given strings that are certainly contained as strings in the PE

file. On the sections 2.3. «VME Technologies» and 2.4. «General Local Virtual Machine

Detection», anti-virtualization techniques have been detected, so is a good start to search for them

as strings in the PE file:

• VBOX

• VMware

Figure 128: XORSearch: VBOX string found XORing with 4C

On the figure 73, the results of XORSearch is being presented, for the string “VBOX”, which is

found on the position 716F4 in the PE file. Furthermore, with parameter “-n 19”, 19 neighbor

characters are being also printed. The registry path “HARDWARE\ACPI\DSDT\VBOX__” is

85 D. Stevens, "XORSearch & XORStrings," Didier Stevens Labs, 30 01 2007. Source url:

https://blog.didierstevens.com/programs/xorsearch/. [Accessed 24 02 2019].
86 An XOR encoded binary file is a file where some (or all) bytes have been XORed with a constant value (the key).

A ROL (or ROR) encoded file has its bytes rotated by a certain number of bits (the key). A ROT encoded file has its
alphabetic characters (A-Z and a-z) rotated by a certain number of positions. A SHIFT encoded file has its bytes

shifted left by a certain number of bits (the key): all bits of the first byte shift left, the MSB of the second byte becomes

the LSB of the first byte, all bits of the second byte shift left, … XOR and ROL/ROR encoding is used by malware

programmers to obfuscate strings like URLs.
87 If the search string is found, XORSearch will print it until the 0 (byte zero) is encountered or until 50 characters

have been printed, whichever comes first. Unprintable characters are replaced by a dot.

7.3 The smart-dumb alternative way to deflect the Ransomware

150

revealed. The malware searched on registry for this specific value, so it can detect the Virtual Box

existence.

The idea of searching for known strings in the PE file that might be encoded, XORed in our case,

was accurate. On the next steps a list has been created with all the strings that could be contained

in the PE file.

Some functions that are already been detected as anti-debugging techniques would also help to

reveal the XOR pattern.

• debug

• time

• sleep

Figure 129: XORSearch: Debug string found XORing

The “debug” string was searched without case sensitivity, using the “-i” parameter and found as a

string in position 79C6E XORing with 00. This means that the actual input string was found

without XORing. The second result, XORing with 20, is being printed because of the case sensitive

parameter, which converts the capital to lower case and the opposite. As a result, no hidden “debug”

string was found in the PE file.

Figure 130: XORSearch: time string found XORing

Chapter 7. Conclusion

 151

The “time” string was found as a string in various positions, XORing with 00. This means

that the actual input string was found without XORing. As a result, no hidden “time” string was

found in the PE file.

Figure 131: XORSearch: sleep string found XORing

The “sleep” string was searched without case sensitivity, using the “-i” parameter and found

as a string in position 79D00 XORing with 00. This means that the actual input string was found

without XORing. The second result, XORing with 20, is being printed because of the case sensitive

parameter, which converts the capital to lower case and the opposite. As a result, no hidden “sleep”

string was found in the PE file.

As long as a ransomware is being analyzed, some certain type of files is interested in the attackers.

Searching on a huge list of file types extensions, the following file type extensions has been

detected:

txt doc docx xls xlsx

Table 8: selected file extentions for XORsearch

Figure 132: XORSearch: doc and docx string found XORing

7.3 The smart-dumb alternative way to deflect the Ransomware

152

On the figure 77, the results for the string “doc”, was found on the position 714E3 XORing with

0C, in the PE file. The string “docx” was also found on the same position (714E8 is next to 714E3),

but it is XORed with 22.

The malware author seems to have a sophisticated pattern using XOR with different keys for each

malware’s operation. Further analysis is needed so on the Figure 78, the string “xls” was searched,

which also contains the “xlsx” like the doc one.

Figure 133: XORSearch: xls and xlsx string found XORing

On the figure 77, the results for the string “doc”, was found on the position 714E3 XORing with

0C, in the PE file. The string “docx” was also found on the same position (714E8 is next to 714E3),

but it is XORed with 22. On the figure 78, the results of “xls”, was found on the positing 714EE

XORing with 38 and the result of “xlsx” was found on 714F3 XORing with 4E.

All these strings indicate that the attacker is searching for the extensions of certain type of files.

This is a strong clue that his malware is a ransomware.

Chapter 7. Conclusion

 153

But we have not searched for “txt” yet. On the following figure, the txt with case sensitivity, returns

a lot of junk results and them position is not near the above-mentioned type of files extensions.

The interesting results here are on the position 7167F, where the string is being XORed with 5D

and on the position 71651 where is being XORed with 4F. A file “readme.txt” appeared.

Figure 134: XORSearch: txt string found XORing

Searching for this specific “readme.txt” string and its neighbors, a filename that reveals a malicous

action is being returned. Specifically, on the figure 80, the path

“C:\DESTROYED_FILES__REAME.TXT” is being revealed. Another strong clue of

ransomware which destroys the files after encryption.

Figure 135: XORSearch: readme.txt string found XORing

7.3 The smart-dumb alternative way to deflect the Ransomware

154

The final position, that will be written down, in this case is 71678, where the string is being XORed

with 7D.

The digging starts, searching for known strings in the PE file that might be XORed, but this time

on targeted names of strings, related to ransomware. At first, the strings “NATO”, “container”,

“training”, “delivery”, “location”, “status” and “deploy” searched:

Figure 136: XORSearch: targeted string names found XORing

On the figure 81, the results for the string “NATO” was found on the position 71494

XORing with 37, the results for the string “container” was found on the position 7149A XORing

with 0B, the results for the string “indicator” was found on the position 714A5 XORing with 16,

the results for the string “training” was found on the position 714B0 XORing with 21, the results

for the string “delivery” was found on the position 714BA XORing with 2C, the results for the

string “location” was found on the position 714C4 XORing with 37, the results for the string

“status” was found on the position 714CE XORing with 42 and the results for the string “deploy”

was found on the position 714D6 XORing with 4D.

Chapter 7. Conclusion

 155

As long as the string search is focused on ransomware, encryption will take place and then the

unknown perpetrators will ask for ransom.

So, searching for string “crypt” and its neighbors, a whole paragraph is revealed from the ransom

message. More Specifically, on the figure 82 the phrase “We have encrypted lot of your files. If you

want to get their real content back, then send us 1000 euros and the data.bin file from this directory.

We then send you program that decrypts the encrypted files. Our email is aBit@bad.guys” is

revealed.

Figure 137: XORSearch: crypt string found XORing

At this point, a lot of information should be analyzed. The ransom cost is 1000 euros. The unknown

perpetrators request the ransom and the data.bin file in order to sent back an applocation that

decrypts the file. So the data.bin file should contain information for the encryption, its procedure

or even the key itself! At last, the email of unknown perpetrators is “aBit@bad.guys”.

The digging continues, searching for more strings in the PE, related to ransomware.

Considering that the data.bin file could give feedback to the unknown perpetrators for the victim’s

PC, the strings “username”, “computer”, “domain” and “money” are searched. The searched

results are being screenshotted on the figure 83 as follows:

• the string “username” was found on the position 79AB1 XORing with 00. This result is the

function GetUserNameA, that has been already found and analyzed on the 4.1.1. section.

• the string “computer” was found on the position 79B97 XORing with 00. This result is the

function GetComputernameExA, that has been already found and analyzed on the 4.1.1. section.

7.3 The smart-dumb alternative way to deflect the Ransomware

156

• the string “domain” was found on the position 75DA0 XORing with 20. This result is XORed

with 20 because the words are stored in capital (DOMAIN ERROR) and it is a system error.

• the string “money” was found in several positions 75DA0 XORing with 20. This result is

XORed with 20 because the words are stored in capital (DOMAIN ERROR) and it is a system

error.

Figure 138: XORSearch: username, computer, domain found

Figure 139: XORSearch: username, computer, domain, money strings found

Chapter 7. Conclusion

 157

All the strings that contains the keywork “money” are already revealed in .rdata on Appendix H.

In addition to the focused string search and having the knowledge that the malware checks

the IP Address of the infected machine, the string “10.1.210” was found in positions 7048C and

707D0, not XORing but ADDing with 35. Keep in mind that the given information that the

machine should be a subnet with range on IP Addresses 10.1.0.0-255 (/24) was incorrect.

Figure 140: XORSearch: specific IP Address found

On the following figure 85, some last targeted searched had been done, that reveals that the hash

“49C60C2B94F0850BBACAB2F2538A286” (hashed result of IP Address 10.1.0.*) is not

contained in the PE file. So it is assumed that another incorrect information was provided.

Figure 141: XORSearch: fail to find some clues that was provided from external information

Several more searches could be done with XORSearch, using as input the strings that was

found in basic static analysis. But the on malware analysis the analyst should focus on keypoints

and that is the reason that these searhes are enough, with a lot of information being revealed.

The most useful on the subject malware is the generated key that is encrypted and written

to the data.bin file. By brute forcing the data.bin file the key can by revealed, which is the string

“Believe you can and you're halfway there”. The bruteforce is applicable as long as only letters

and symbols are being contained. All files that are found, are encrypted with XOR operation, using

the generated key. At the end of the procedure the old version of the files is deleted.

7.4 Future work

158

7.4 Future work

 Shellcode authors must employ techniques to work around inherent limitations of the odd

runtime environment in which shellcode executes. This includes identifying where in memory the

shellcode is executing and manually resolving all of the shellcode’s external dependencies so that

it can interact with the system. To save on space, these dependencies are usually obfuscated by

using hash values instead of ASCII function names. It is not so common for nearly the entire

shellcode to be encoded so that it bypasses any data filtering by the targeted process. All of these

techniques can easily frustrate beginning analysts, but the provided material should help the reader

to recognize these activities, so you can instead focus on understanding the main functionality of

the shellcode.

List of tables

159

List of tables

Table 1: Notable Emulators and VMEs .. 20

Table 2: Brief Overview of J. Rutkowska’s Stealth Malware Taxonomy 22

Table 3: VMX configuration file recommended by SANS ... 30

Table 4: VMX configuration for the system time check ... 31

Table 5: “Swallowing” the Red Pill has been published as this four line code, generating almost a

single CPU instruction and that returns nonzero when in “Matrix”. ... 109

Table 6: VMX configuration file line addition CPUID and EAX manipulation 126

Table 7: VMX configuration file line addition CPUID and EDX manipulation 126

Table 8: selected file extentions for XORsearch .. 151

Table 9: StealthyTools.reg on Attached zipped files .. X

Table 10: registry Renames on VMware PowerShell script.ps1, Attached in zipped files XI

Table 11: Highlighting potential Anti-VM instructions with a python script in IDA Pro I

List of Figures

160

List of Figures

Figure 1: Single PC Lab .. 24

Figure 2: Virtual Network Editor settings .. 26

Figure 3: Virtual Machine Settings on network adapter ... 27

Figure 4: Local Area Connection Properties in VM OS ... 27

Figure 5: hexcode dump of a PE header .. 34

Figure 6: PEheader diagram sections broken up .. 35

Figure 7: malware.exe/IMAGE_NT_HEADER/IMAGE_FILE_HEADER................................ 36

Figure 8: PEview IMAGE_SECTION_HEADER .text .. 37

Figure 9: PEview IMAGE_SECTION_HEADER .data ... 37

Figure 10: PEview IMAGE_SECTION_HEADER .rdata .. 37

Figure 11: PEview IMAGE_SECTION_HEADER .eh_frame ... 38

Figure 12: PEview IMAGE_SECTION_HEADER .bss... 38

Figure 13: PEview IMAGE_SECTION_HEADER .idata .. 38

Figure 14: PEview IMAGE_SECTION_HEADER .CRT .. 38

Figure 15: PEview IMAGE_SECTION_HEADER .tls .. 39

Figure 16: Section .idata/IMPORT Address Table .. 39

Figure 17: Section .tls/Address of Callbacks.. 41

Figure 18:PEiD results .. 42

Figure 19: PEiD Details & TLS table view .. 43

Figure 20:DiE scan results... 45

Figure 21: DiE results for imports ... 45

Figure 22: DiE results for several packed sections ... 46

List of Figures

161

Figure 23:DiE PE basic info on Hex view with disasm .. 47

Figure 24: DiE Dos Header detailed preview in Hex disasm .. 48

Figure 25:DiE Stub header .. 49

Figure 26: DiE Characteristics on NT Header-File Headers ... 50

Figure 27: : DiE Characteristics on NT Header-Optional Headers ... 50

Figure 28: DiE import Directory and its offset ... 51

Figure 29: DiE TLS table in detail and in Hex view... 52

Figure 30: DiE, Directory of the ImportAddressTable (IAT) .. 53

Figure 31: DiE Visualization Entropy of .text section .. 54

Figure 32: DiE Visualization Entropy of all sections .. 54

Figure 33: PortexAnalyzer PE structure and Entropy visualization .. 55

Figure 34: PEstudio general information ... 58

Figure 35: PEstudio Indicators .. 58

Figure 36: PEstudio dos-stub ... 59

Figure 37: PEstudio file header ... 60

Figure 38: PEstudio optional headers .. 61

Figure 39: PEstudio sections and them RWE rights ... 61

Figure 40: PEstudio imports grouping and ranking .. 62

Figure 41: PEstudio strings ranking and evaluation ... 63

Figure 42: BinText string search and filtering .. 64

Figure 43: BinText filtering settings and strings length .. 65

Figure 44: Assembly: SetUnhandledExceptionFilter function call ... 73

Figure 45: Assembly: SetUnhandledExceptionFilter function call 2 .. 74

162

Figure 46: Process Explorer: malware’s Properties - Performance Graph - CPU usage 76

Figure 47: Process Explorer: malware’s Properties - Security - Permissions 77

Figure 48: Process Explorer: malware’s Properties - Threads - Stack - information on current

stack.. 78

Figure 49: Process Explorer: malware’s Properties - Threads - Module - General details for the

malicious file .. 79

Figure 50: Process Explorer: malware’s Properties - Threads - Module - no metadata for the

malicious file .. 79

Figure 51: Process Explorer: malware’s Properties - TCP/IP - no network activity 80

Figure 52: Process Explorer: malware’s Properties - Environment... 80

Figure 53: WinMerge Strings txt files comparison from Binary's Image and Memory's executable

 ... 81

Figure 54: WinMerge Strings txt files comparison from Binary's Image and Memory's

executable-2 .. 82

Figure 55: Process Hacker: malware.exe’s Statistics on Properties .. 83

Figure 56: Process Hacker: malware.exe’s Handles on Properties.. 83

Figure 57: Process Hacker: malware.exe’s Environment on Properties. 84

Figure 58: Process Hacker: malware.exe’s General Properties. (PEB address 0x7ffdf000)......... 84

Figure 59: Process Hacker: malware.exe’s Memory on Properties. .. 85

Figure 60: Process Hacker: malware.exe’s Modules on Properties. .. 85

Figure 61: Process Hacker: malware.exe’s Handle’s Statistics on Properties. 86

Figure 62: Process Monitor: Filter apply in PID of the under analysis malware (rtms.exe)......... 87

Figure 63: Process Monitor: List1 of all events .. 88

List of Figures

163

Figure 64: Process Monitor: List2 of all events .. 88

Figure 65: Process Monitor: List3 of all events .. 89

Figure 66: Process Monitor: Process start event - Event Properties - General............................. 89

Figure 67: Process Monitor: Process start event - Event Properties - Stack 90

Figure 68: Process Monitor: Create File event - Event Properties .. 90

Figure 69: Process Monitor: Process Exit .. 91

Figure 70:Regshot: comparison results of registry snapshots before and after rtms.exe run 92

Figure 71: Three coding levels example .. 95

Figure 72: Schematic overview of Userland, Kernelland and Hardware, under a VM Hypervisor

 ... 96

Figure 73: IDA Pro: Load PE file with analysis options ... 97

Figure 74: IDA View - text mode, PE entrance .. 98

Figure 75: IDA View - graph mode, PE entrance ... 98

Figure 76: IDA View - PE headers on assembly .. 99

Figure 77: IDA View - list of Exports .. 99

Figure 78: IDA Pro - imports ... 100

Figure 79: IDA - graph mode, Custom Date Validation Function ... 101

Figure 80: IDA Pro - Entry point choice .. 101

Figure 81: IDA Pro - TLScallback dynamic call .. 102

Figure 82: IDA Pro - TLScallback_0 ... 103

Figure 83: IDA Pro - TLScallback_1 ... 103

Figure 84: IDA View, IsDebuggerPresent all occurrences .. 104

Figure 85: IDA View - graph mode, IsDebuggerPresent at 00402730 105

164

Figure 86: IDA View - graph mode, custom PEB check IsDebugged 106

Figure 87: IDA View, large fs:30 - all occurrences ... 107

Figure 88: Red Pill VMware detection with Backdoor Command Number - patched 112

Figure 89: SEH Chain .. 115

Figure 90: IDA Pro, text view, sp-analysis failed ... 116

Figure 91: IDA Pro, graph view, Top level Exception Custom Handler 120

Figure 92: IDA Pro, graph view, time function calls .. 121

Figure 93:OllyDbg REPE SCAS instruction .. 121

Figure 94: IDA View, REPNE SCASB instruction all occurrences .. 122

Figure 95: OllyDbg series of ASCII characters loaded in memory endlessly 122

Figure 96: IDA graph view, nonstop loop subfunction text.405208 .. 123

Figure 97: IDA View, CPUID instructions all occurrences ... 124

Figure 98: IDA View, CPUID instructions, using eax = 0 and eax = 1 as parameter 124

Figure 99: IDA View, CPUID instructions, using eax = 0x80000000 and eax = 0x80000001 as

parameter .. 125

Figure 100: IDA Pro, graph view, CPUID highlighted green ... 127

Figure 101: IDA Pro, graph view, CPUID highlighted green2 ... 127

Figure 102: IDA Pro, text view, IN highlighted red.. 128

Figure 103: IDA Pro, text view, IN highlighted red2 .. 128

Figure 104: IDA Pro view, INT 3 occurrences ... 129

Figure 105: IDA Pro graph view, INT 3 trap to debugger NOP-ed ... 129

Figure 106: IDA Pro, graph view, sp-analysis fail return pointer abuse 131

Figure 107: IDA Pro, graph view, sp-analysis fail return pointer abuse2 131

List of Figures

165

Figure 108: IDA View, sleep function all occurrences.. 132

Figure 109: IDA View, sleep function in InterlockedIncrement thread mutex 133

Figure 110: IDA View, sleep function millisecond parameter ... 133

Figure 111: IDA View, exit function all occurrences .. 134

Figure 112: IDA graph mode, custom exit function ... 134

Figure 113: IDA graph mode, custom abort function ... 135

Figure 114: IDA graph mode, conditional jump abort function .. 135

Figure 115: IDA graph mode, switch case abort function ... 136

Figure 116: IDA graph mode, logical comparison abort function ... 136

Figure 117: IDA graph mode, TLS check abort function .. 136

Figure 118: IDA graph view, gethostbyname function API call .. 140

Figure 119: IDA graph view, custom function for hashing the IP address 140

Figure 120: IDA graph view, custom function for IP validation in two pieces 141

Figure 121: IDA graph view, custom en/decryption XOR function with 4 byte key (1) 142

Figure 122: IDA graph view, custom en/decryption XOR function with 4 byte key (2) 142

Figure 123: IDA graph view, custom en/decryption XOR function with 4 byte key (3) 143

Figure 124: IDA graph view, custom en/decryption XOR function with 4 byte key (4) 143

Figure 125: OllyDbg Breakpoints on CryptGenRandom API call .. 144

Figure 126: Base64 bytes check with byte-stats.py .. 147

Figure 127: Base64 bytes check with specific range .. 148

Figure 128: XORSearch: VBOX string found XORing with 4C .. 149

Figure 129: XORSearch: Debug string found XORing .. 150

Figure 130: XORSearch: time string found XORing.. 150

166

Figure 131: XORSearch: sleep string found XORing .. 151

Figure 132: XORSearch: doc and docx string found XORing .. 151

Figure 133: XORSearch: xls and xlsx string found XORing .. 152

Figure 134: XORSearch: txt string found XORing .. 153

Figure 135: XORSearch: readme.txt string found XORing .. 153

Figure 136: XORSearch: targeted string names found XORing ... 154

Figure 137: XORSearch: crypt string found XORing .. 155

Figure 138: XORSearch: username, computer, domain found .. 156

Figure 139: XORSearch: username, computer, domain, money strings found 156

Figure 140: XORSearch: specific IP Address found... 157

Figure 141: XORSearch: fail to find some clues that was provided from external information . 157

Figure 142: VirusTotal Results - 1 ... XII

Figure 143: VirusTotal Results - 2 .. XIII

Figure 144: VirusTotal Results - 3 .. XIV

Figure 145: VirusTotal Results – 4... XV

Figure 146: HybridAnalysis Results – 1 ... XVI

Figure 147: HybridAnalysis Results – 2 ... XVII

Figure 148: HybridAnalysis Results – 3 .. XVIII

Figure 149: HybridAnalysis Results – 4 ... XIX

Figure 150: Section Names & IMAGE_EXPORT_DIRECTORY Structure Members XX

Figure 151: Kernel32 Exports, IMAGE_IMPORT_DESCRIPTOR Structure, ImgDelayDescr

Structure, Resources from ADVAPI32.DLL ... XXI

List of Figures

167

Figure 152: Fields of IMAGE_DEBUG_DIRECTORY, IMAGE_COR20_HEADER Structure

 .. XXII

Figure 153: IMAGE_TLS_DIRECTORY Structure ... XXIII

.

Conclusion

168

Bibliography

[1] F. M. Last Name, "Article Title," Journal Title, pp. Pages From - To, Year.

[2] F. M. Last Name, Book Title, City Name: Publisher Name, Year.

[3] O. . Martinu and G. . McEwen, "Crime in the age of technology," , 2018. [Online]. Available:

https://bulletin.cepol.europa.eu/index.php/bulletin/article/download/337/286.

[Accessed 26 3 2019].

[4] J. Rutkowska, "Red Pill... or how to detect VMM using (almost) one CPU instruction,"

Invisible Things Lab, 01 November 2004. [Online]. Available:

http://web.archive.org/web/20110726182809/http://invisiblethings.org/papers/redpill

.html. [Accessed 01 02 2019].

[5] T. Klein, "Scooby Doo - VMware Fingerprint Suite," 2003. [Online]. Available:

http://web.archive.org/web/20061215022409/http://www.trapkit.de/research/vmm/sc

oopydoo/index.html. [Accessed 01 02 2019].

[6] T. Klein, "jerry - A(nother) VMware Fingerprinter," 2003. [Online]. Available:

http://web.archive.org/web/20061215022453/http://www.trapkit.de/research/vmm/je

rry/index.html. [Accessed 01 02 2019].

Conclusion

169

[7] T. Klein, "VMware fingerprint codes," 2003. [Online]. Available:

http://web.archive.org/web/20061215022430/http://www.trapkit.de/research/vmm/in

dex.html. [Accessed 01 02 2019].

[8] Quist, Danny; Smith, Val;, "Detecting the Presence of Virtual Machines Using the Local Data

Table," Offensive Computing, 25 04 2006. [Online]. Available:

http://web.archive.org/web/20060425123645/http://www.offensivecomputing.net/fil

es/active/0/vm.pdf. [Accessed 01 02 2019].

[9] T. Raffetsede, C. Kruege and E. Kirda, "Detecting System Emulators," Secure Systems Lab,

Technical University of Vienna, Austria, Vienna, Austria.

[10

]

Liston, Tom; Skoudis, Ed;, "On the Cutting Edge:Thwarting Virtual MachineDetection,"

SANS, 2006.

[11

]

L. Zeltser, "Virtual Machine Detection in Malware via Commercial Tools," 18 01 2007.

[Online]. Available: http://isc.sans.org/diary.html?storyid=1871&rss. [Accessed 01

02 2019].

[12

]

K. Zahn, "Case Study: 2012 DC3 DigitalForensic Challenge BasicMalware Analysis

Exercise," 24 08 2013. [Online]. Available: https://www.sans.org/reading-

room/whitepapers/malicious/case-study-2012-dc3-digital-forensic-challenge-basic-

malware-analysis-exercise-34330. [Accessed 01 02 2019].

170

[13

]

Sikorski, Michael; Honig, Andrew; Lawler, Stephen;, Practical Malware Analysis, San

Francisco, CA: No Starch Press, 2012, pp. 1 - 802.

[14

]

Barham, P., Dragovic, B., Fraser K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., &

Warfield, A., "Xen and the Art of Virtualization," 2003.

[15

]

J. Rutkowska, "Stealth Malware Taxonomy," 11 2006. [Online]. Available:

blog.invisiblethings.org/papers/2006/rutkowska_malware_taxonomy.pdf. [Accessed

01 02 2019].

[16

]

A. Sanabria, "Malware Analysis: Environment Design and Artitecture," 18 01 2007. [Online].

Available: https://www.sans.org/reading-room/whitepapers/threats/malware-

analysis-environment-design-artitecture-1841. [Accessed 01 02 2019].

[17

]

K. Fiscus, "Base64 Can Get You Pwned," SANS Institute, 2011.

[18

]

M. B, "Malware Monday: Obfuscation," 19 12 2016. [Online]. Available:

https://medium.com/@bromiley/malware-monday-obfuscation-f65239146db0.

[Accessed 24 02 2019].

[19

]

D. Stevens, "Decoding malware via simple statistical analysis," Didier Stevens Labs, 30 08

2017. [Online]. Available: https://blog.nviso.be/2017/08/30/decoding-malware-via-

simple-statistical-analysis/. [Accessed 24 02 2019].

Conclusion

171

[20

]

D. Stevens, "XORSearch & XORStrings," Didier Stevens Labs, 01 2007. [Online]. Available:

https://blog.didierstevens.com/programs/xorsearch/. [Accessed 24 02 2019].

[21

]

Dilshan Keragala, "Detecting Malware and SandboxEvasion Techniques," SANS Institute,

January 16, 2016.

[22

]

Ferrie, Peter, "The “Ultimate”Anti-Debugging Reference," 5 4 2011. [Online]. Available:

https://anti-reversing.com/Downloads/Anti-Reversing/The_Ultimate_Anti-

Reversing_Reference.pdf. [Accessed 1 12 2018].

Appendix A

I

Appendices

Appendix A

Specifications of Host’s Hardware and Software, VM and VME installation and

configuration

A.1 Hardware specification of single PC lab

Processor:

Intel Core i7-3930K CPU 3.20GHz, 3200 Mhz, 6 Cores, 12 Logical Processors

Supporting:

Intel 64 architecture

 Intel HT Technology

 Intel VT-d

Intel VT-x

 Intel VT-x with EPT

Doe not support:

Intel vPro Technology88

Physical Memory (RAM):

32.0 GB

Hard Disk Drive for Host:

 120 GB SSD

Hard Disk Drive for Virtual Machines Storage

 2 x 3TB on software RAID 1.

A.2 Software specification of single PC lab

Host’s OS:Windows 10 Pro x64

VME software: VMware Workstation 14 Pro

A.3 VM Configuration

Note that, all software and configurations written in this section are my personal additions

based on Flare VM89.

88 It is preferred to have this feature, but on the current case was not available. Luckily the malware does not exploit

Intel’s Virtualization.
89 FLARE VM - a fully customizable, Windows-based security distribution for malware analysis and incident response.

A downloadable configuration script is provided to assist cyber security analysts in creating handy and versatile

toolboxes for malware analysis environments. It provides a convenient interface for them to obtain a useful set of

analysis tools directly from their original sources.

II

A.4 OS installation

For malware analysis, OS may vary, some malwares may only work on certain OS, so it

would be better to have several of them. In the case under analysis, Windows 7 Pro x64 have been

chosen. Any customized Virtual Machine in a Windows installation requires numerous tweaks and

tools to aid analysis. Unfortunately trying to maintain a custom VM like this is very laborious:

tools frequently get out of date and it is hard to change or add new things. There is also a constant

fear that if the VM gets corrupted it would be super tedious to replicate all of the settings and tools

that are being built up. To address this and many related challenges, a standardized (but easily

customizable) Windows-based security distribution called FLARE VM will be used.

A.5 Windows SDK and Framework

Install windows SDK and .Net Framework 4, which also installs WinDBG. (source url:

https://www.microsoft.com/en-us/download/details.aspx?id=8279).

A.6 Virtual Machine Environment Installation and configuration

1. Install VMware in your main operating system.

2. Install a new fresh Windows 7 Pro x64 version of your choice and update it.

3. Install VMware Tools addition.

4. Download, install and configure required software, via url. More specifically, the

deployment of the FLARE VM environment can be done by visiting the following URL

in Internet Explorer: https://github.com/fireeye/flare-vm/

A.7 FlareVM Installation Script

1. Decompress the FLARE VM repository to a directory of your choosing.

2. Start a new session of PowerShell with escalated privileges. FLARE VM attempts to

install additional software and modify system settings; therefore, escalated privileges

are required for installation.

3. Within PowerShell, change directory to the location where you have decompressed the

FLARE VM repository.

4. Enable unrestricted execution policy for PowerShell by executing the following

command and answering “Y” when prompted by PowerShell: Set-ExecutionPolicy

unrestricted

5. Execute the install.ps1 installation script: .\install.ps1.

6. You will be prompted to enter the current user’s password. FLARE VM needs the

current user’s password to automatically login after a reboot when installing.

Optionally, you can specify the current user’s password bypassing the “-password

<current_user_password>” at the command line. The rest of the installation process is

fully automated. Depending upon your internet speed the entire installation may take

up to one hour to finish. The VM also reboots multiple times due to the numerous

software installations’ requirements. Once the installation completes, the PowerShell

prompt remains open waiting for you to hit any key before exiting. After completing

Appendices

III

the installation, you will be presented with the following desktop environment:

(SCREENSHOT FROM FLARE VM HOME SCREEN)

7. At this point power off the VM, switch the VM networking mode to Host-Only, and

then take a snapshot to save a clean state of your analysis VM.

A.8 Installed Tools with FlareVm 90

 Android

 dex2jar

 apktool

 Debuggers

 flare-qdb

 scdbg

 OllyDbg + OllyDump + OllyDumpEx

 OllyDbg2 + OllyDumpEx

 x64dbg

 WinDbg + OllyDumpex + pykd

 Decompilers

 RetDec

 Delphi

 Interactive Delphi Reconstructor (IDR)

 Disassemblers

 IDA Free (5.0 & 7.0)

 Binary Ninja Demo

 radare2

 Cutter

 .Net

 de4dot

 Dot Net String Decoder (DNSD)

 dnSpy

 DotPeek

 ILSpy

 RunDotNetDll

 Flash

 FFDec

 Forensic

 Volatility

 Hex Editors

 FileInsight

 HxD

 010 Editor

IV

 Java

 JD-GUI

 Bytecode-Viewer

 Networking

 FakeNet-NG

 ncat

 nmap

 Wireshark

 Office

 Offvis

 OfficeMalScanner

 PDF

 PDFiD

 PDFParser

 PDFStreamDumper

 PE

 PEiD

 ExplorerSuite (CFF Explorer)

 PEview

 DIE

 PeStudio

 PEBear

 ResourceHacker

 LordPE

 Pentest

 MetaSploit

 Windows binaries from Kali Linux

 Text Editors

 SublimeText3

 Notepad++

 Vim

 Visual Basic

 VBDecompiler

 Web

 BurpSuite Free Edition

 Utilities

 FLOSS

 HashCalc

 HashMyFiles

 Checksum

 7zip

 Far Manager

 Putty

 Wget

 RawCap

 UPX

Appendices

V

 RegShot

 Process Hacker

 Sysinternals Suite

 API Monitor

 SpyStudio

 Shellcode Launcher

 Cygwin

 Unxutils

 Malcode Analyst Pack (MAP)

 XORSearch

 XORStrings

 Yara

 CyberChef

KernelModeDriverLoader

 Python, Modules, Tools

 Py2ExeDecompiler

 Python 2.7

 hexdump

 pefile

 winappdbg

 pycryptodome

 vivisect

 capstone-windows

 unicorn

 oletools

 unpy2exe

 uncompyle6

 Python 3

 unpy2exe

 uncompyle6

 Other91

 VC Redistributable Modules (2005, 2008, 2010, 2012, 2013, 2015, 2017)

 .Net versions 4.6.2 and 4.7.1

 Practical Malware Analysis Labs

 Google Chrome

 Cmder Mini

A.9 Staying up to date

Type the following command to update all of the packages to the most recent version:

cup all

91 For the live updated list of features please check the online blog on the source url:

https://www.fireeye.com/blog/threat-research/2018/11/flare-vm-update.html

VI

A.10 Extra useful tools

In addition to Flare VM toolset, some useful tools have been installed manually, to have a

complete gamma tool.

A.11 RDG packer detector

Download and extract RDG packer detector to C:\Tools\RDG (Source url:

http://www.rdgsoft.net/). When you run it for first time, it tries to setup context menu which I

choose yes. If you do so, you'll be able to right-click on binaries and let RDG scan it easily.

CFF Explorer

Download and install CFF Explorer. Run CFF Explorer, go to Settings and click Enable

shell extensions.

Ollydbg plugins

Download and extract Ollydbg to C:\Tools\Olly (source url:

http://www.ollydbg.de/odbg110.zip). Use this as Ollydbg.ini which will have nice theme (provided

by jacob@reddit.com) and then install the following Ollydbg plugins:

● Olly advanced (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.75)

● Olly breakpoint manager (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.76)

● OllyBonE (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.85)

● OllyDumpEx (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.3451)

● OdbgScript (source url:

https://sourceforge.net/projects/odbgscript/files/English%20Version/)

● StrongOD (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.2028)

● Ultra String Reference (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.107)

● CopyHexCode (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.3581)

● Multiline Ultimate Assemble (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.2805)

● ImportStudio (source url:

https://tuts4you.com/e107_plugins/download/download.php?view.3438)

At last goto Options -> Just in time debugging and make Ollydbg just-in-time debugger.

Handle

Download and install Handle (source url:

https://download.sysinternals.com/files/Handle.zip). Handle is a utility that displays information

about open handles for any process in the system. You can use it to see the programs that have a

Appendices

VII

file open, or to see the object types and names of all the handles of a program. Runs only via

terminal.

DebugView

Download and install DebugView (source url:

https://download.sysinternals.com/files/DebugView.zip). DebugView is an application that lets

you monitor debug output on your local system, or any computer on the network that you can reach

via TCP/IP. It is capable of displaying both kernel-mode and Win32 debug output, so you don't

need a debugger to catch the debug output your applications or device drivers generate, nor do you

need to modify your applications or drivers to use non-standard debug output APIs.

Autoruns for Windows

Download and install Autoruns for Windows (source url:

https://download.sysinternals.com/files/Autoruns.zip). This utility, which has the most

comprehensive knowledge of auto-starting locations of any startup monitor, shows you what

programs are configured to run during system bootup or login, and when you start various built-in

Windows applications like Internet Explorer, Explorer and media players. These programs and

drivers include ones in your startup folder, Run, RunOnce, and other Registry keys. Autoruns

reports Explorer shell extensions, toolbars, browser helper objects, Winlogon notifications, auto-

start services, and much more. Autoruns goes way beyond other autostart utilities.

Dependency Walker

Download and install Dependency Walker (source url:

http://www.dependencywalker.com/). Dependency Walker is a free utility that scans any 32-bit or

64-bit Windows module (exe, dll, ocx, sys, etc.) and builds a hierarchical tree diagram of all

dependent modules. For each module found, it lists all the functions that are exported by that

module, and which of those functions are actually being called by other modules. Another view

displays the minimum set of required files, along with detailed information about each file

including a full path to the file, base address, version numbers, machine type, debug information,

and more.

A.12 Snapshotting

At this point power off the VM, switch the VM networking mode to Host-Only, and then take a

second snapshot to save a clean state of your analysis VM.

Appendix B

VIII

Appendix B

StealthyTools.reg

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\Use

rData\S-1-5-18\Products\43F974C0D0E8C1C4D9CA1C70A1C60570\InstallProperties]

"LocalPackage"="C:\\Windows\\Installer\\124ec.msi"

"AuthorizedCDFPrefix"=""

"Comments"="Build "

"Contact"=""

"DisplayVersion"="8.1.30629.3138"

"HelpLink"=""

"HelpTelephone"=""

"InstallDate"="20170205"

"InstallLocation"="C:\\Program Files\\VMware\\VMware Tools\\"

"InstallSource"="C:\\Users\\Admin\\AppData\\Local\\Temp\\{0C479F34-8E0D-4C1C-9DAC-

C1071A6C5007}~setup\\"

"ModifyPath"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2e,00,65,00,78,\

 00,65,00,20,00,2f,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,00,\

 34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,39,\

 00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,00,\

 35,00,30,00,30,00,37,00,7d,00,00,00

"Publisher"="Microsoft Corporation"

"Readme"=""

"Size"=""

"EstimatedSize"=dword:0001685f

"UninstallString"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2e,00,65,00,\

 78,00,65,00,20,00,2f,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,\

 00,34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,\

 39,00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,\

 00,35,00,30,00,30,00,37,00,7d,00,00,00

"URLInfoAbout"=""

"URLUpdateInfo"=""

"VersionMajor"=dword:0000000a

"VersionMinor"=dword:00000000

"WindowsInstaller"=dword:00000001

"Version"=dword:0a00000a

"Language"=dword:00000409

"DisplayName"="Microsoft Visual C++ 2005 Redistributable - x86 8.1.30629.3138"

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall\{0

C479F34-8E0D-4C1C-9DAC-C1071A6C5007}]

"AuthorizedCDFPrefix"=""

"Comments"="Build "

"Contact"=""

"DisplayVersion"="8.1.30629.3138"

Appendices

IX

Windows Registry Editor Version 5.00

"HelpLink"=""

"HelpTelephone"=""

"InstallDate"="20170205"

"InstallLocation"="C:\\Program Files\\VMware\\VMware Tools\\"

"InstallSource"="C:\\Users\\Admin\\AppData\\Local\\Temp\\{0C479F34-8E0D-4C1C-9DAC-

C1071A6C5007}~setup\\"

"ModifyPath"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2e,00,65,00,78,\

 00,65,00,20,00,2f,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,00,\

 34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,39,\

 00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,00,\

 35,00,30,00,30,00,37,00,7d,00,00,00

"Publisher"="Microsoft Corporation"

"Readme"=""

"Size"=""

"EstimatedSize"=dword:0001685f

"UninstallString"=hex(2):4d,00,73,00,69,00,45,00,78,00,65,00,63,00,2e,00,65,00,\

 78,00,65,00,20,00,2f,00,49,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,\

 00,34,00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,\

 39,00,44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,\

 00,35,00,30,00,30,00,37,00,7d,00,00,00

"URLInfoAbout"=""

"URLUpdateInfo"=""

"VersionMajor"=dword:0000000a

"VersionMinor"=dword:00000000

"WindowsInstaller"=dword:00000001

"Version"=dword:0a00000a

"Language"=dword:00000409

"DisplayName"="Microsoft Visual C++ 2005 Redistributable - x86 8.1.30629.3138"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Installer\Products\43F974C0D0E8C1C4

D9CA1C70A1C60570]

"ProductName"="Microsoft Visual C++ 2005 Redistributable - x86 8.1.30629.3138"

"PackageCode"="769916177BF4A6642B24C24DE19F5D48"

"Language"=dword:00000409

"Version"=dword:0a00000a

"Assignment"=dword:00000001

"AdvertiseFlags"=dword:00000184

"ProductIcon"="C:\\Windows\\Installer\\{0C479F34-8E0D-4C1C-9DAC-C1071A6C5007}"

"InstanceType"=dword:00000000

"AuthorizedLUAApp"=dword:00000000

"DeploymentFlags"=dword:00000003

"Clients"=hex(7):3a,00,00,00,00,00

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Installer\Products\43F974C0D0E8C1C4

D9CA1C70A1C60570\SourceList]

X

Windows Registry Editor Version 5.00

"PackageName"="VMware Tools64.msi"

"LastUsedSource"=hex(2):6e,00,3b,00,31,00,3b,00,43,00,3a,00,5c,00,55,00,73,00,\

 65,00,72,00,73,00,5c,00,41,00,64,00,6d,00,69,00,6e,00,5c,00,41,00,70,00,70,\

 00,44,00,61,00,74,00,61,00,5c,00,4c,00,6f,00,63,00,61,00,6c,00,5c,00,54,00,\

 65,00,6d,00,70,00,5c,00,7b,00,30,00,43,00,34,00,37,00,39,00,46,00,33,00,34,\

 00,2d,00,38,00,45,00,30,00,44,00,2d,00,34,00,43,00,31,00,43,00,2d,00,39,00,\

 44,00,41,00,43,00,2d,00,43,00,31,00,30,00,37,00,31,00,41,00,36,00,43,00,35,\

 00,30,00,30,00,37,00,7d,00,7e,00,73,00,65,00,74,00,75,00,70,00,5c,00,00,00

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Installer\Products\43F974C0D0E8C1C4

D9CA1C70A1C60570\SourceList\Media]

"1"=";"

"2"=";"

"3"=";"

"4"=";"

"5"=";"

"6"=";"

"7"=";"

"8"=";"

"9"=";"

"10"=";"

"11"=";"

"12"=";"

"13"=";"

"14"=";"

"15"=";"

"17"=";"

"18"=";"

"19"=";"

"20"=";"

"21"=";"

"22"=";"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\Installer\Products\43F974C0D0E8C1C4

D9CA1C70A1C60570\SourceList\Net]

"1"=hex(2):43,00,3a,00,5c,00,55,00,73,00,65,00,72,00,73,00,5c,00,41,00,64,00,\

 6d,00,69,00,6e,00,5c,00,41,00,70,00,70,00,44,00,61,00,74,00,61,00,5c,00,4c,\

 00,6f,00,63,00,61,00,6c,00,5c,00,54,00,65,00,6d,00,70,00,5c,00,7b,00,30,00,\

 43,00,34,00,37,00,39,00,46,00,33,00,34,00,2d,00,38,00,45,00,30,00,44,00,2d,\

Table 9: StealthyTools.reg on Attached zipped files

Appendix C

XI

Appendix C

Registry Renames on VMware PowerShell script

$path = Get-ChildItem HKLM:\Software\Microsoft\Windows\CurrentVersion\Uninstall\

$results = $path | foreach-object {get-ItemProperty $_.pspath} | where {$_.DisplayName -

match "VMware"} | where {$_.Publisher -match "VMware,"}

foreach ($result in $results){

$line = $result.pspath

set-ItemProperty -path $line DisplayName -value "MyWare"

set-ItemProperty -path $line Publisher -value "MyWare, Inc"

}

Table 10: registry Renames on VMware PowerShell script.ps1, Attached in zipped files

Appendix D

XII

Appendix D

VirusTotal Results

Figure 142: VirusTotal Results - 1

Appendices

XIII

Figure 143: VirusTotal Results - 2

XIV

Figure 144: VirusTotal Results - 3

Appendices

XV

Figure 145: VirusTotal Results – 4

XVI

HybridAnalysis results

Figure 146: HybridAnalysis Results – 1

Appendices

XVII

Figure 147: HybridAnalysis Results – 2

XVIII

Figure 148: HybridAnalysis Results – 3

Appendices

XIX

Figure 149: HybridAnalysis Results – 4

Appendix E

XX

Appendix E

Win32 Portable Executable File Format

Figure 150: Section Names & IMAGE_EXPORT_DIRECTORY Structure Members

Appendices

XXI

Figure 151: Kernel32 Exports, IMAGE_IMPORT_DESCRIPTOR Structure, ImgDelayDescr Structure,

Resources from ADVAPI32.DLL

XXII

Figure 152: Fields of IMAGE_DEBUG_DIRECTORY, IMAGE_COR20_HEADER Structure

Appendices

XXIII

Figure 153: IMAGE_TLS_DIRECTORY Structure

Appendix F

XXIV

Appendix F

List of Imports

0048327C CryptAcquireContextW ADVAPI32

00483280 CryptGenRandom ADVAPI32

00483284 CryptReleaseContext ADVAPI32

00483288 GetUserNameA ADVAPI32

0048328C RegOpenKeyExA ADVAPI32

00483294 AddAtomA KERNEL32

00483298 CloseHandle KERNEL32

0048329C CreateMutexA KERNEL32

004832A0 CreateSemaphoreA KERNEL32

004832A4 DeleteCriticalSection KERNEL32

004832A8 EnterCriticalSection KERNEL32

004832AC ExitProcess KERNEL32

004832B0 FindAtomA KERNEL32

004832B4 FindClose KERNEL32

004832B8 FindFirstFileA KERNEL32

004832BC FindNextFileA KERNEL32

004832C0 GetAtomNameA KERNEL32

004832C4 GetComputerNameExA KERNEL32

004832C8 GetCurrentThreadId KERNEL32

004832CC GetLastError KERNEL32

004832D0 GetModuleHandleA KERNEL32

004832D4 GetProcAddress KERNEL32

004832D8 InitializeCriticalSection KERNEL32

004832DC InterlockedDecrement KERNEL32

004832E0 InterlockedExchange KERNEL32

004832E4 InterlockedIncrement KERNEL32

004832E8 IsDBCSLeadByteEx KERNEL32

004832EC IsDebuggerPresent KERNEL32

004832F0 LeaveCriticalSection KERNEL32

004832F4 MultiByteToWideChar KERNEL32

004832F8 ReleaseMutex KERNEL32

004832FC ReleaseSemaphore KERNEL32

00483300 SetLastError KERNEL32

00483304 SetUnhandledExceptionFilter KERNEL32

00483308 Sleep KERNEL32

0048330C TlsAlloc KERNEL32

00483310 TlsFree KERNEL32

00483314 TlsGetValue KERNEL32

00483318 TlsSetValue KERNEL32

0048331C VirtualProtect KERNEL32

00483320 VirtualQuery KERNEL32

00483324 WaitForSingleObject KERNEL32

00483328 WideCharToMultiByte KERNEL32

00483330 _fdopen msvcrt

00483334 _read msvcrt

00483338 _write msvcrt

00483340 __getmainargs msvcrt

00483344 __mb_cur_max msvcrt

00483348 __p__environ msvcrt

0048334C __p__fmode msvcrt

Appendices

XXV

0048327C CryptAcquireContextW ADVAPI32

00483350 __set_app_type msvcrt

00483354 _cexit msvcrt

00483358 _errno msvcrt

0048335C _filelengthi64 msvcrt

00483360 _fstati64 msvcrt

00483364 _iob msvcrt

00483368 _lseeki64 msvcrt

0048336C _onexit msvcrt

00483370 _setmode msvcrt

00483374 abort msvcrt

00483378 atexit msvcrt

0048337C atoi msvcrt

00483380 calloc msvcrt

00483384 exit msvcrt

00483388 fclose msvcrt

0048338C fflush msvcrt

00483390 fgetc msvcrt

00483394 fgetpos msvcrt

00483398 fopen msvcrt

0048339C fputc msvcrt

004833A0 fputs msvcrt

004833A4 fread msvcrt

004833A8 free msvcrt

004833AC fsetpos msvcrt

004833B0 fwrite msvcrt

004833B4 getc msvcrt

004833B8 getenv msvcrt

004833BC getwc msvcrt

004833C0 iswctype msvcrt

004833C4 localeconv msvcrt

004833C8 malloc msvcrt

004833CC memchr msvcrt

004833D0 memcmp msvcrt

004833D4 memcpy msvcrt

004833D8 memmove msvcrt

004833DC memset msvcrt

004833E0 putc msvcrt

004833E4 putwc msvcrt

004833E8 rand msvcrt

004833EC realloc msvcrt

004833F0 remove msvcrt

004833F4 setlocale msvcrt

004833F8 setvbuf msvcrt

004833FC signal msvcrt

00483400 sprintf msvcrt

00483404 srand msvcrt

00483408 strchr msvcrt

0048340C strcmp msvcrt

00483410 strcoll msvcrt

00483414 strerror msvcrt

00483418 strftime msvcrt

0048341C strlen msvcrt

XXVI

0048327C CryptAcquireContextW ADVAPI32

00483420 strtod msvcrt

00483424 strxfrm msvcrt

00483428 time msvcrt

0048342C towlower msvcrt

00483430 towupper msvcrt

00483434 ungetc msvcrt

00483438 ungetwc msvcrt

0048343C vfprintf msvcrt

00483440 wcscoll msvcrt

00483444 wcsftime msvcrt

00483448 wcslen msvcrt

0048344C wcsxfrm msvcrt

00483454 SHGetSpecialFolderPathA SHELL32

0048345C WSAStartup WSOCK32

00483460 gethostbyname WSOCK32

00483464 gethostname WSOCK32

Appendix G

XXVII

Appendix G

PortExAnalyzer PE file report

Report For rtms.exe

file size 0x7a800

full path C:\Users\Windows7Flare\Downloads\rtms.exe

Section Table

 1. .text 2. .data 3. .rdata 4. .eh_fram

--

Entropy 6.10 1.10 5.25 4.74

Pointer To Raw Data 0x400 0x71000 0x71400 0x78000

Size Of Raw Data 0x70c00 0x400 0x6c00 0x1600

Physical End 0x71000 0x71400 0x78000 0x79600

Virtual Address 0x1000 0x72000 0x73000 0x7a000

Virtual Size 0x70b48 0x258 0x6c00 0x14f8

-> actual virtual size 0x71000 0x1000 0x7000 0x2000

Pointer To Relocations 0x0 0x0 0x0 0x0

Number Of Relocations 0x0 0x0 0x0 0x0

Pointer To Line Numbers 0x0 0x0 0x0 0x0

Number Of Line Numbers 0x0 0x0 0x0 0x0

Code x

Initialized Data x x x x

Align 1 Byte x x

Align 2 Bytes x x x

Align 4 Bytes x x x x

Align 8 Bytes x x x

Align 16 Bytes x x x x

Align 32 Bytes x x x x

Align 64 Bytes x x x x

Align 256 Bytes x x

Align 512 Bytes x x x

Align 1024 Bytes x x x x

Align 2048 Bytes x x x

Align 4096 Bytes x x x x

Align 8192 Bytes x x x x

Execute x

Read x x x x

Write x x

 5. .bss 6. .idata 7. .CRT 8. .tls

--

Entropy 0.00 5.01 0.12 0.22

Pointer To Raw Data 0x79600 0x79600 0x7a400 0x7a600

Size Of Raw Data 0x0 0xe00 0x200 0x200

Physical End 0x79600 0x7a400 0x7a600 0x7a800

Virtual Address 0x7c000 0x83000 0x84000 0x85000

Virtual Size 0x6b80 0xcd8 0x18 0x20

-> actual virtual size 0x7000 0x1000 0x1000 0x1000

Pointer To Relocations 0x0 0x0 0x0 0x0

Number Of Relocations 0x0 0x0 0x0 0x0

Pointer To Line Numbers 0x0 0x0 0x0 0x0

Number Of Line Numbers 0x0 0x0 0x0 0x0

Initialized Data x x x

Uninitialized Data x

Align 1 Byte x x x

Align 2 Bytes x x x x

Align 4 Bytes x x x x

Align 8 Bytes x

Align 16 Bytes x x x x

Align 32 Bytes x x x x

Align 64 Bytes x x x x

Align 256 Bytes x x x

Align 512 Bytes x x x x

Align 1024 Bytes x x x x

Align 2048 Bytes x

XXVIII

Report For rtms.exe

Align 4096 Bytes x x x x

Align 8192 Bytes x x x x

Read x x x x

Write x x x x

MSDOS Header

description value file offset

signature word 0x5a4d 0x0

last page size 0x90 0x2

file pages 0x3 0x4

relocation items 0x0 0x6

header paragraphs 0x4 0x8

minimum number of paragraphs allocated 0x0 0xa

maximum number of paragraphs allocated 0xffff 0xc

initial SS value 0x0 0xe

initial SP value 0xb8 0x10

complemented checksum 0x0 0x12

initial IP value 0x0 0x14

pre-relocated initial CS value 0x0 0x16

relocation table offset 0x40 0x18

overlay number 0x0 0x1a

Reserved word 0x1c 0x0 0x1c

Reserved word 0x1e 0x0 0x1e

Reserved word 0x20 0x0 0x20

Reserved word 0x22 0x0 0x22

OEM identifier 0x0 0x24

OEM information 0x0 0x26

Reserved word 0x28 0x0 0x28

Reserved word 0x2a 0x0 0x2a

Reserved word 0x2c 0x0 0x2c

Reserved word 0x2f 0x0 0x2e

Reserved word 0x30 0x0 0x30

Reserved word 0x32 0x0 0x32

Reserved word 0x34 0x0 0x34

Reserved word 0x36 0x0 0x36

Reserved word 0x38 0x0 0x38

Reserved word 0x3a 0x0 0x3a

PE signature offset 0x80 0x3c

COFF File Header

time date stamp Oct 14, 2014 11:18:51 AM

machine type Intel 386 or later processors and compatible processors

characteristics * Image only, Windows CE, and Windows NT and later.

 * Image only.

 * COFF line numbers have been removed. DEPRECATED

 * COFF symbol table entries for local symbols have been removed. DEPRECATED

 * Machine is based on a 32-bit-word architecture.

 * Debugging is removed from the image file.

description value file offset

machine type 0x14c 0x84

number of sections 0x8 0x86

time date stamp 0x543cdc6b 0x88

pointer to symbol table (deprecated) 0x0 0x8c

number of symbols (deprecated) 0x0 0x90

size of optional header 0xe0 0x94

characteristics 0x30f 0x96

Optional Header

Magic Number: PE32, normal executable file

Entry Point is in section 1 with name .text

Appendices

XXIX

Report For rtms.exe

No DLL Characteristics

Subsystem: The Windows graphical user interface (GUI) subsystem

standard field value file offset

magic number 0x10b 0x98

major linker version 0x2 0x9a

minor linker version 0x16 0x9b

size of code 0x70c00 0x9c

size of initialized data 0x7a400 0xa0

size of unitialized data 0x0 0xa4

address of entry point 0x12a0 0xa8

address of base of code 0x1000 0xac

address of base of data 0x72000 0xb0

windows field value file offset

image base 0x400000 0xb4

section alignment in bytes 0x1000 0xb8

file alignment in bytes 0x200 0xbc

major operating system version 0x4 0xc0

minor operating system version 0x0 0xc2

major image version 0x1 0xc4

minor image version 0x0 0xc6

major subsystem version 0x4 0xc8

minor subsystem version 0x0 0xca

win32 version value (reserved) 0x0 0xcc

size of image in bytes 0x86000 0xd0

size of headers 0x400 0xd4

checksum 0x7bae2 0xd8

subsystem 0x2 0xdc

dll characteristics 0x0 0xde

size of stack reserve 0x200000 0xe0

size of stack commit 0x1000 0xe4

size of heap reserve 0x100000 0xe8

size of heap commit 0x1000 0xec

loader flags (reserved) 0x0 0xf0

number of rva and sizes 0x10 0xf4

data directory rva -> offset size in section file

offset

import table 0x83000 0x79600 0xcd8 6 .idata 0x100

TLS table 0x85000 0x7a600 0x18 8 .tls 0x140

IAT 0x8327c 0x7987c 0x1f0 6 .idata 0x158

Imports

ADVAPI32.DLL

[Registry]

rva: 0x8309c, va: 0x48308c, hint: 413, name: RegOpenKeyExA -> Opens the specified registry key.

[System Information]

rva: 0x83098, va: 0x48308c, hint: 245, name: GetUserNameA -> Retrieves the user name of the

current thread.

[Cryptography Functions] <Key Generation/Exchange>

rva: 0x83090, va: 0x48308c, hint: 110, name: CryptGenRandom -> Generates random data.

[Cryptography Functions] <Service Provider>

rva: 0x8308c, va: 0x48308c, hint: 94, name: CryptAcquireContextW -> Acquires a handle to the

current user's key container within a particular CSP.

rva: 0x83094, va: 0x48308c, hint: 120, name: CryptReleaseContext -> Releases the handle acquired

by the CryptAcquireContext function.

XXX

Report For rtms.exe

KERNEL32.dll

[Error Handling]

rva: 0x830dc, va: 0x4830a4, hint: 510, name: GetLastError -> Retrieves the calling thread's last-

error code value.

rva: 0x83110, va: 0x4830a4, hint: 1091, name: SetLastError -> Sets the last-error code for the

calling thread.

[Memory Management] <Virtual Memory>

rva: 0x8312c, va: 0x4830a4, hint: 1213, name: VirtualProtect -> Changes the access protection on

a region of committed pages in the virtual address space of the calling process.

rva: 0x83130, va: 0x4830a4, hint: 1215, name: VirtualQuery -> Provides information about a range

of pages in the virtual address space of the calling process.

[Dynamic-Link Library]

rva: 0x830e0, va: 0x4830a4, hint: 529, name: GetModuleHandleA -> Retrieves a module handle for

the specified module.

rva: 0x830e4, va: 0x4830a4, hint: 577, name: GetProcAddress -> Retrieves the address of an

exported function or variable from the specified DLL.

[Synchronization] <Interlocked>

rva: 0x830ec, va: 0x4830a4, hint: 743, name: InterlockedDecrement -> Decrements (decreases by

one) the value of the specified 32-bit variable as an atomic operation.

rva: 0x830f0, va: 0x4830a4, hint: 744, name: InterlockedExchange -> Sets a 32-bit variable to

the specified value as an atomic operation.

rva: 0x830f4, va: 0x4830a4, hint: 747, name: InterlockedIncrement -> Increments (increases by

one) the value of the specified 32-bit variable as an atomic operation.

[Structured Exception Handling]

rva: 0x83114, va: 0x4830a4, hint: 1140, name: SetUnhandledExceptionFilter -> Enables an

application to supersede the top-level exception handler of each thread and process.

[Synchronization] <Mutex>

rva: 0x830ac, va: 0x4830a4, hint: 154, name: CreateMutexA -> Creates or opens a named or unnamed

mutex object.

rva: 0x83108, va: 0x4830a4, hint: 974, name: ReleaseMutex -> Releases ownership of the specified

mutex object.

[Debugging]

rva: 0x830fc, va: 0x4830a4, hint: 764, name: IsDebuggerPresent -> Determines whether the calling

process is being debugged by a user-mode debugger.

[Synchronization] <Wait>

rva: 0x83134, va: 0x4830a4, hint: 1223, name: WaitForSingleObject -> Waits until the specified

object is in the signaled state or the time-out interval elapses.

[Process and Thread] <Process>

rva: 0x830bc, va: 0x4830a4, hint: 279, name: ExitProcess -> Ends the calling process and all its

threads.

[Process and Thread] <Thread>

rva: 0x830d8, va: 0x4830a4, hint: 451, name: GetCurrentThreadId -> Retrieves the thread identifier

of the calling thread.

rva: 0x83118, va: 0x4830a4, hint: 1152, name: Sleep -> Suspends the execution of the current

thread for a specified interval.

rva: 0x8311c, va: 0x4830a4, hint: 1171, name: TlsAlloc -> Allocates a thread local storage (TLS)

index.

rva: 0x83120, va: 0x4830a4, hint: 1172, name: TlsFree -> Releases a TLS index.

rva: 0x83124, va: 0x4830a4, hint: 1173, name: TlsGetValue -> Retrieves the value in the calling

thread's TLS slot for a specified TLS index.

rva: 0x83128, va: 0x4830a4, hint: 1174, name: TlsSetValue -> Stores a value in the calling

thread's TLS slot for a specified TLS index.

[File Management]

rva: 0x830c4, va: 0x4830a4, hint: 300, name: FindClose -> Closes a file search handle opened by

the FindFirstFile, FindFirstFileEx, FindFirstFileNameW, FindFirstFileNameTransactedW,

FindFirstFileTransacted, FindFirstStreamTransactedW, or FindFirstStreamW functions.

rva: 0x830c8, va: 0x4830a4, hint: 304, name: FindFirstFileA -> Searches a directory for a file

or subdirectory with a name that matches a specific name (or partial name if wildcards are used).

Appendices

XXXI

Report For rtms.exe

rva: 0x830cc, va: 0x4830a4, hint: 321, name: FindNextFileA -> Continues a file search from a

previous call to the FindFirstFile, FindFirstFileEx, or FindFirstFileTransacted functions.

[Atom]

rva: 0x830a4, va: 0x4830a4, hint: 3, name: AddAtomA -> no description

rva: 0x830c0, va: 0x4830a4, hint: 298, name: FindAtomA -> no description

rva: 0x830d0, va: 0x4830a4, hint: 363, name: GetAtomNameA -> no description

[System Information]

rva: 0x830d4, va: 0x4830a4, hint: 395, name: GetComputerNameExA -> Retrieves the NetBIOS or DNS

name of the local computer.

[Synchronization] <Critical section>

rva: 0x830b4, va: 0x4830a4, hint: 207, name: DeleteCriticalSection -> Releases all resources

used by an unowned critical section object.

rva: 0x830b8, va: 0x4830a4, hint: 236, name: EnterCriticalSection -> Waits for ownership of the

specified critical section object.

rva: 0x830e8, va: 0x4830a4, hint: 734, name: InitializeCriticalSection -> Initializes a critical

section object.

rva: 0x83100, va: 0x4830a4, hint: 814, name: LeaveCriticalSection -> Releases ownership of the

specified critical section object.

[Unicode and Character Set]

rva: 0x830f8, va: 0x4830a4, hint: 763, name: IsDBCSLeadByteEx -> Determines if a specified

character is potentially a lead byte.

rva: 0x83104, va: 0x4830a4, hint: 860, name: MultiByteToWideChar -> Maps a character string to

a UTF-16 (wide character) string.

rva: 0x83138, va: 0x4830a4, hint: 1247, name: WideCharToMultiByte -> Maps a UTF-16 (wide

character) string to a new character string.

[Handle and Object]

rva: 0x830a8, va: 0x4830a4, hint: 82, name: CloseHandle -> Closes an open object handle.

[Synchronization] <Semaphore>

rva: 0x830b0, va: 0x4830a4, hint: 169, name: CreateSemaphoreA -> Creates or opens a named or

unnamed semaphore object.

rva: 0x8310c, va: 0x4830a4, hint: 978, name: ReleaseSemaphore -> Increases the count of the

specified semaphore object by a specified amount.

msvcrt.dll

[Other]

rva: 0x83140, va: 0x483140, hint: 23, name: _fdopen

rva: 0x83144, va: 0x483140, hint: 64, name: _read

rva: 0x83148, va: 0x483140, hint: 109, name: _write

msvcrt.dll

[Other]

rva: 0x83150, va: 0x483150, hint: 55, name: __getmainargs

rva: 0x83154, va: 0x483150, hint: 65, name: __mb_cur_max

rva: 0x83158, va: 0x483150, hint: 77, name: __p__environ

rva: 0x8315c, va: 0x483150, hint: 79, name: __p__fmode

rva: 0x83160, va: 0x483150, hint: 99, name: __set_app_type

rva: 0x83164, va: 0x483150, hint: 147, name: _cexit

rva: 0x83168, va: 0x483150, hint: 182, name: _errno

rva: 0x8316c, va: 0x483150, hint: 203, name: _filelengthi64

rva: 0x83170, va: 0x483150, hint: 224, name: _fstati64

rva: 0x83174, va: 0x483150, hint: 266, name: _iob

rva: 0x83178, va: 0x483150, hint: 317, name: _lseeki64

rva: 0x8317c, va: 0x483150, hint: 383, name: _onexit

rva: 0x83180, va: 0x483150, hint: 426, name: _setmode

rva: 0x83184, va: 0x483150, hint: 583, name: abort

rva: 0x83188, va: 0x483150, hint: 590, name: atexit

rva: 0x8318c, va: 0x483150, hint: 592, name: atoi

rva: 0x83190, va: 0x483150, hint: 595, name: calloc

rva: 0x83194, va: 0x483150, hint: 604, name: exit

XXXII

Report For rtms.exe

rva: 0x83198, va: 0x483150, hint: 607, name: fclose

rva: 0x8319c, va: 0x483150, hint: 610, name: fflush

rva: 0x831a0, va: 0x483150, hint: 611, name: fgetc

rva: 0x831a4, va: 0x483150, hint: 612, name: fgetpos

rva: 0x831a8, va: 0x483150, hint: 618, name: fopen

rva: 0x831ac, va: 0x483150, hint: 620, name: fputc

rva: 0x831b0, va: 0x483150, hint: 621, name: fputs

rva: 0x831b4, va: 0x483150, hint: 624, name: fread

rva: 0x831b8, va: 0x483150, hint: 625, name: free

rva: 0x831bc, va: 0x483150, hint: 630, name: fsetpos

rva: 0x831c0, va: 0x483150, hint: 633, name: fwrite

rva: 0x831c4, va: 0x483150, hint: 635, name: getc

rva: 0x831c8, va: 0x483150, hint: 637, name: getenv

rva: 0x831cc, va: 0x483150, hint: 639, name: getwc

rva: 0x831d0, va: 0x483150, hint: 658, name: iswctype

rva: 0x831d4, va: 0x483150, hint: 671, name: localeconv

rva: 0x831d8, va: 0x483150, hint: 676, name: malloc

rva: 0x831dc, va: 0x483150, hint: 680, name: memchr

rva: 0x831e0, va: 0x483150, hint: 681, name: memcmp

rva: 0x831e4, va: 0x483150, hint: 682, name: memcpy

rva: 0x831e8, va: 0x483150, hint: 683, name: memmove

rva: 0x831ec, va: 0x483150, hint: 684, name: memset

rva: 0x831f0, va: 0x483150, hint: 690, name: putc

rva: 0x831f4, va: 0x483150, hint: 693, name: putwc

rva: 0x831f8, va: 0x483150, hint: 697, name: rand

rva: 0x831fc, va: 0x483150, hint: 698, name: realloc

rva: 0x83200, va: 0x483150, hint: 699, name: remove

rva: 0x83204, va: 0x483150, hint: 704, name: setlocale

rva: 0x83208, va: 0x483150, hint: 705, name: setvbuf

rva: 0x8320c, va: 0x483150, hint: 706, name: signal

rva: 0x83210, va: 0x483150, hint: 709, name: sprintf

rva: 0x83214, va: 0x483150, hint: 711, name: srand

rva: 0x83218, va: 0x483150, hint: 714, name: strchr

rva: 0x8321c, va: 0x483150, hint: 715, name: strcmp

rva: 0x83220, va: 0x483150, hint: 716, name: strcoll

rva: 0x83224, va: 0x483150, hint: 719, name: strerror

rva: 0x83228, va: 0x483150, hint: 720, name: strftime

rva: 0x8322c, va: 0x483150, hint: 721, name: strlen

rva: 0x83230, va: 0x483150, hint: 729, name: strtod

rva: 0x83234, va: 0x483150, hint: 733, name: strxfrm

rva: 0x83238, va: 0x483150, hint: 739, name: time

rva: 0x8323c, va: 0x483150, hint: 744, name: towlower

rva: 0x83240, va: 0x483150, hint: 745, name: towupper

rva: 0x83244, va: 0x483150, hint: 746, name: ungetc

rva: 0x83248, va: 0x483150, hint: 747, name: ungetwc

rva: 0x8324c, va: 0x483150, hint: 748, name: vfprintf

rva: 0x83250, va: 0x483150, hint: 757, name: wcscoll

rva: 0x83254, va: 0x483150, hint: 760, name: wcsftime

rva: 0x83258, va: 0x483150, hint: 761, name: wcslen

rva: 0x8325c, va: 0x483150, hint: 774, name: wcsxfrm

SHELL32.DLL

[Deprecated Shell APIs]

rva: 0x83264, va: 0x483264, hint: 106, name: SHGetSpecialFolderPathA -> SHGetSpecialFolderPath

is not supported. Instead, use ShGetFolderPath.

WSOCK32.DLL

[Winsock]

rva: 0x8326c, va: 0x48326c, hint: 31, name: WSAStartup -> Initiates use of WS2_32.DLL by a

process.

rva: 0x83270, va: 0x48326c, hint: 41, name: gethostbyname -> Retrieves host information

corresponding to a host name from a host database. Deprecated: use getaddrinfo instead.

rva: 0x83274, va: 0x48326c, hint: 42, name: gethostname -> Retrieves the standard host name for

the local computer.

Appendices

XXXIII

Report For rtms.exe

Anomalies

* Deprecated Characteristic in COFF File Header: IMAGE_FILE_LINE_NUMS_STRIPPED

* Deprecated Characteristic in COFF File Header: IMAGE_FILE_LOCAL_SYMS_STRIPPED

* COFF Header: Time date stamp is in the future

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_1BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_8BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_256BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_2048BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 1 with name .text: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_8BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_2048BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 2 with name .data: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_8BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_2048BYTES characteristic is only valid for

object files

XXXIV

Report For rtms.exe

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 3 with name .rdata: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_1BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_256BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid

for object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid

for object files

* Section Header 4 with name .eh_fram: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid

for object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for object

files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for object

files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_8BYTES characteristic is only valid for object

files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_2048BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section Header 5 with name .bss: POINTER_TO_RAW_DATA must be 0 for sections with only

uninitialized data, but is: 497152

* Section Header 5 with name .bss: SIZE_OF_RAW_DATA is 0

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_1BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_256BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

Appendices

XXXV

Report For rtms.exe

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 6 with name .idata: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_1BYTES characteristic is only valid for object

files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for object

files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for object

files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_256BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 7 with name .CRT: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_1BYTES characteristic is only valid for object

files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_2BYTES characteristic is only valid for object

files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_4BYTES characteristic is only valid for object

files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_16BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_32BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_64BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_256BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_512BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_1024BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_4096BYTES characteristic is only valid for

object files

* Section Header 8 with name .tls: IMAGE_SCN_ALIGN_8192BYTES characteristic is only valid for

object files

* Section name is unusual: .eh_fram

* Section name is unusual: .CRT

* Section 5 with name .bss (range: 497152--497152) physically overlaps with section .idata with

number 6 (range: 497152--500736)

* Section 1 with name .text has write and execute characteristics.

* Entry point is in writeable section 1 with name .text

* Section Header 1 with name .text has unusual characteristics, that shouldn't be there:

Initialized Data, Align 1 Byte, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes,

Align 64 Bytes, Align 256 Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align

8192 Bytes, Write

* Section Header 2 with name .data has unusual characteristics, that shouldn't be there: Align

2 Bytes, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 512

Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Section Header 3 with name .rdata has unusual characteristics, that shouldn't be there: Align

2 Bytes, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 512

Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Section Header 5 with name .bss has unusual characteristics, that shouldn't be there: Align 2

Bytes, Align 4 Bytes, Align 8 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 512

Bytes, Align 1024 Bytes, Align 2048 Bytes, Align 4096 Bytes, Align 8192 Bytes

XXXVI

Report For rtms.exe

* Section Header 6 with name .idata has unusual characteristics, that shouldn't be there: Align

1 Byte, Align 2 Bytes, Align 4 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 256

Bytes, Align 512 Bytes, Align 1024 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Section Header 8 with name .tls has unusual characteristics, that shouldn't be there: Align 1

Byte, Align 2 Bytes, Align 4 Bytes, Align 16 Bytes, Align 32 Bytes, Align 64 Bytes, Align 256

Bytes, Align 512 Bytes, Align 1024 Bytes, Align 4096 Bytes, Align 8192 Bytes

* Import function typical for code injection: VirtualProtect may set PAGE_EXECUTE flag for memory

region

Hashes

MD5: 01fd682d16dfe26e180f4c7cd74cfb62

SHA256: 6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92

Section Type Hash Value

1. .text MD5 0b8cc6de10f7599a080799dc88261b21

 SHA256 79e1284fa66133c50da8d4fdb7fe21d274b32c910eccaace9803654739dd91a4

2. .data MD5 fa3a6789ad95497d492e3f04ef4c542c

 SHA256 32ab69ef87d8f1ee2100380c3a5b3728de65f892a5b3cc6f1c7fd1f888cfd35a

3. .rdata MD5 2c75a15b7835393fcd86e041e7419e63

 SHA256 50d2b44107b1c53d832dbb3f7de656cc1fd871084f80c00c81d3d9ea6c113819

4. .eh_fram MD5 f834ed6184729a99174882df3a2b34ed

 SHA256 b872e0625e488b5fc46397502a401dda3733aa6941d91b54b908c8a11d6d03a9

5. .bss MD5

 SHA256

6. .idata MD5 cb9ca5b2eb102a48e266d1a379482165

 SHA256 58904b76a7cf526ed9762b7f5cda81e5f736bca6237dbdd703fa92d526b766b4

7. .CRT MD5 f26044af392c5594ad34576aca15d1db

 SHA256 c2d9414c1b11bfddf9b8ecc61ad5eac4df86a503cb520ce210a77fb51797d5a3

8. .tls MD5 b79dfdf69cb172a8497793b5d97c5214

 SHA256 763567f0cbcb1844c227829aad3d41e9cb39442093acdc8218354b0ea20a828a

--- end of report ---

Appendix H

I

Appendix H

BinText Strings list

File: malware.exe

MD5: 01fd682d16dfe26e180f4c7cd74cfb62

Size: 501760

Ascii Strings:

0000004D !This program cannot be run in DOS mode.

000001C8 .rdata

000001EE `@.eh_fram

00000216 0@.bss

00000240 .idata

.text:401551 DDDDDDDD'

.text:401624 ?.?1L)

.text:401671 DDDDDDD

.text:401721 33333333'

.text:402C37 8%n$y%

.text:403A11 """"""""

.text:403B25 ^d@g~h

.text:403B2C #Zd@g~l

.text:403C1D Xd@g~`

.text:403C60 w~l@g~`

.text:403CD4 'XdoGRf

.text:4055ED D$4<f@

.text:405605 D$@IV@

.text:405685 D$4<f@

.text:405F04 D$4<f@

.text:405FFD D$4<f@

.text:406355 p< t6v

.text:40635C <@t$<Pt

.text:40665D D$T<f@

.text:406BB4 D$D<f@

.text:406BCF D$P@l@

.text:406D51 9t$0wa

.text:406DC9 D$4<f@

.text:406DE1 D$@zn@

.text:407245 D$4<f@

.text:407331 D$4<f@

.text:40741D D$4<f@

.text:407509 D$4<f@

.text:4075F5 D$4<f@

.text:4076E1 D$4<f@

.text:4077CD D$4<f@

.text:4077E5 D$@ux@

.text:4078B9 D$4<f@

.text:4078D1 D$@ay@

.text:4079A5 D$4<f@

.text:4079BD D$@Mz@

.text:407A91 D$4<f@

.text:407AA9 D$@1{@

.text:407B61 D$4<f@

.text:407B79 D$@m|@

.text:407CB1 D$4<f@

.text:407E39 D$4<f@

.text:408194 \$,;\$4t3

.text:408343 D$D<f@

.text:4085BC D$4<f@

.text:408781 D$4<f@

.text:409949 D$4<f@

.text:409AA5 D$4<f@

.text:40A129 D$D<f@

.text:40A434 D$D<f@

.text:40A764 D$D<f@

.text:40AA15 D$4<f@

.text:40AC8C D$T<f@

.text:40B1F5 D$4<f@

II

File: malware.exe

.text:40B249 D$4<f@

.text:40B2F5 D$4<f@

.text:40B391 D$4<f@

.text:40B519 D$4<f@

.text:40B605 D$4<f@

.text:40B782 D$4<f@

.text:40B905 D$4<f@

.text:40BA4A D$4<f@

.text:40BBA9 D$4<f@

.text:40BD5E l$L9l$D

.text:40C6FC S4Qf@u

.text:40C735 D$4<f@

.text:40C80D D$4<f@

.text:40CA15 D$4<f@

.text:40CB0F D$4<f@

.text:40CC2B D$D<f@

.text:40CFE7 D$T<f@

.text:40D215 D$ 9D$,

.text:40D410 D$D<f@

.text:40D57E \$$+\$

.text:40D7E4 D$D<f@

.text:40DC6B D$D<f@

.text:40DE4E t\;D$$

.text:40E0BC D$D<f@

.text:40E4A4 D$D<f@

.text:40E67A f9D$"t

.text:40E89C D$D<f@

.text:40F45C D$4<f@

.text:40F509 D$4<f@

.text:40F905 D$4<f@

.text:40FA19 D$4<f@

.text:40FB91 D$4<f@

.text:40FC5D D$4<f@

.text:40FE99 D$4<f@

.text:40FF65 D$4<f@

.text:410031 D$4<f@

.text:41010D D$4<f@

.text:410219 D$4<f@

.text:4103B5 D$4<f@

.text:41044D D$4<f@

.text:4107AD D$4<f@

.text:410959 D$4<f@

.text:410C41 D$4<f@

.text:410D01 D$4<f@

.text:410FE9 D$4<f@

.text:4110A9 D$4<f@

.text:411167 D$4<f@

.text:411216 D$\;D$pt

.text:4112FB D$4<f@

.text:4113AA D$\;D$pt

.text:4114A7 D$4<f@

.text:411558 D$\;D$pt

.text:411727 D$4<f@

.text:411A88 t$@;t$DsL

.text:411C35 uU;D$Ds?

.text:411D74 D$D<f@

.text:412080 D$D<f@

.text:412557 D$D<f@

.text:41256F D$Pb&A

.text:4129CB D$D<f@

.text:413020 ;\$dsf

.text:413117 sU;t$Tr

.text:41322D D$4<f@

.text:41354F 8<VtL<Kuh

.text:413D16 <EtN<I|

.text:413D1E <J~.<Lt6<Xu

.text:41412F <rt!<Vt

.text:41417D C ;C$}L

.text:414205 S ;S$}

.text:4149BE tL<EtH<.tD

Appendices

III

File: malware.exe

.text:4153DE t<<Et8

.text:415873 <_t|<$

.text:41C58E 9l$Xv.

.text:41FA97 9D$tu7

.text:421136)D$T)D$P)D$L

.text:4213D5 L$)L$T

.text:4220C3 |$4+t$(

.text:422109 9D$Ds%

.text:4221C7 9D$Ds'

.text:422E6C T$8+T$<

.text:42321F t$ +\$,

.text:423E1D D$ 9D$X

.text:42455D D$4<f@

.text:424759 D$4<f@

.text:424771 D$@>HB

.text:424875 D$4<f@

.text:42488D D$@ZIB

.text:4249A9 D$4<f@

.text:424AC5 D$4<f@

.text:424C11 D$4<f@

.text:424CE1 D$4<f@

.text:424CF9 D$@bMB

.text:424DC1 D$4<f@

.text:424EDD D$4<f@

.text:425011 D$4<f@

.text:42512D D$4<f@

.text:425279 D$4<f@

.text:425349 D$4<f@

.text:425EAE D$;D$$r

.text:4263AE ;\$4w,

.text:426566 ;\$DwD

.text:4265DC ;\$$w2

.text:426641 ;\$$w9

.text:4266CB ;t$4wK

.text:4269B2 D$;D$$r

.text:427021 ;\$$wE1

.text:427098 ;\$$w2

.text:4270FD ;\$$w9

.text:427187 ;t$4wK

.text:427C9D D$D<f@

.text:427E39 D$D<f@

.text:427FDD D$D<f@

.text:42819D D$D<f@

.text:42835D D$D<f@

.text:428521 D$D<f@

.text:4289E7 D$D<f@

.text:428B82 D$D<f@

.text:428CCD 9D$$wW@

.text:428E99 D$D<f@

.text:428FBE T$(9T$

.text:429059 D$D<f@

.text:4291A5 9D$ wU@

.text:429368 D$T<f@

.text:429520 T$ 9T$4

.text:4297FA T$ 9T$4

.text:4298ED T$ 9T$4

.text:429F24 D$T<f@

.text:42AAF4 D$T<f@

.text:42ACAC T$ 9T$4

.text:42AF86 T$ 9T$4

.text:42B079 T$ 9T$4

.text:42B6B1 D$T<f@

.text:42B868 T$ f9T$8

.text:42BB4A T$ f9T$8

.text:42BC46 T$ f9T$8

.text:42C27F D$d<f@

.text:42C44C D$(8H$

.text:42CA45 \$(8CJ

.text:42CA7D D$(8H%

IV

File: malware.exe

.text:42CA8E D$(8P$

.text:42CAB3 D$(8PLt

.text:42CBE1 T$(8Z$

.text:42CFF3 D$d<f@

.text:42D1A4 D$08H$

.text:42D1E2 \$$9\$@

.text:42D1F2 D$ 9D$D

.text:42D55A \$$9\$@

.text:42D56A D$ 9D$D

.text:42D6B0 \$$9\$@

.text:42D779 \$08CJ

.text:42D7B1 D$08H%

.text:42D7C2 D$08P$

.text:42D7E7 D$08PLt

.text:42D915 T$08Z$

.text:42DD06 D$D<f@

.text:42F401 D$D<f@

.text:42F5AD D$D<f@

.text:42F759 D$D<f@

.text:42FAB4 D$T<f@

.text:42FC78 T$ 9T$4

.text:42FFB4 L$,f9L$

.text:42FFCB T$ 9T$4

.text:430108 T$ 9T$4

.text:430720 D$T<f@

.text:4313A0 D$T<f@

.text:431564 T$ 9T$4

.text:4318A0 L$,f9L$

.text:4318B7 T$ 9T$4

.text:4319F4 T$ 9T$4

.text:43200D D$T<f@

.text:432028 D$`;,C

.text:4321D0 T$ f9T$8

.text:432510 L$0f9L$

.text:432527 T$ f9T$8

.text:43266C T$ f9T$8

.text:432C87 D$d<f@

.text:432CA2 D$p_:C

.text:432E59 D$(f9P$

.text:43356A \$(f9Cp

.text:4335A5 D$(f9P&

.text:4335B7 D$(f9P$

.text:4335DE D$(f9Ptt

.text:43371E \$(f9S$

.text:433AAB D$d<f@

.text:433C65 D$0f9P$

.text:433CA4 D$$9D$@

.text:433CB4 T$ 9T$D

.text:434080 L$8f9L$

.text:434097 \$$9\$@

.text:4340A7 D$ 9D$D

.text:434230 \$$9\$@

.text:43433A \$0f9Cp

.text:434375 D$0f9P&

.text:434387 D$0f9P$

.text:4343AE D$0f9Ptt

.text:4344EE \$0f9S$

.text:434861 D$T<f@

.text:43497B D$(f9P&

.text:43498D D$(f9P$

.text:434AF2 D$(f9P&

.text:434E5D D$(f9P$

.text:434FA7 D$(f9Pr

.text:4350BB L$(f9Ar

.text:4352B6 \$(f9K$

.text:4353F2 \$(f9Ar

.text:435425 D$(f9P&

.text:435433 D$(f9P$

.text:43552E \$(f9K$

.text:4360A0 D$L<f@

Appendices

V

File: malware.exe

.text:4360BB D$X2bC

.text:436264 D$L<f@

.text:436428 D$L<f@

.text:4398C5 D$l9D$

.text:439919 L$l9L$ t

.text:439D4A CG;} u

.text:43A17C t6;|$Ds0

.text:43B447 D$l9D$

.text:43B4A9 L$l9L$

.text:43BCFA t<;\$4s6

.text:43FD0B D$T<f@

.text:43FEEC D$D<f@

.text:442398 D$T<f@

.text:4425FC D$D<f@

.text:442617 D$Pr'D

.text:442AD6 D$t<f@

.text:442B98 \$(9\$(

.text:442E04 L$,+L$4

.text:442E65 9D$,vG

.text:443202 D$t<f@

.text:4432C4 \$(9\$(

.text:443530 L$,+L$4

.text:443591 9D$,vG

.text:443C2A D$t<f@

.text:443F7F L$0+L$4

.text:444006 9D$0vG

.text:444356 D$t<f@

.text:4446C5 D$0+D$4

.text:44474A 9D$0vG

.text:444E6C D$4<f@

.text:44506C D$4<f@

.text:445311 D$4<f@

.text:445399 D$4<f@

.text:4453E5 D$4<f@

.text:4455EC 9T$0s&

.text:44561A B9D$0w

.text:4456F0 ;\$8wb

.text:445D65 D$4<f@

.text:4460DE D$D<f@

.text:4465CB \$X+\$T

.text:446651 D$X9D$Tt

.text:4467AD D$4<f@

.text:446B09 D$4<f@

.text:44707D D$4<f@

.text:4471DD D$4<f@

.text:44733E D$4<f@

.text:44744E D$4<f@

.text:4475F4 D$D<f@

.text:4477E8 D$D<f@

.text:4479DC D$D<f@

.text:447BD0 D$D<f@

.text:447DC4 D$D<f@

.text:447FB8 D$D<f@

.text:4481AC D$D<f@

.text:4483A0 D$D<f@

.text:448594 D$D<f@

.text:448788 D$D<f@

.text:44897C D$D<f@

.text:448BE3 D$D<f@

.text:448EC7 D$D<f@

.text:449198 D$4<f@

.text:449384 D$4<f@

.text:449568 D$4<f@

.text:44972C D$4<f@

.text:4498F8 D$4<f@

.text:449AD3 D$D<f@

.text:449CF5 D$T<f@

.text:449EF7 D$D<f@

.text:44A0E0 D$4<f@

VI

File: malware.exe

.text:44A2BC D$4<f@

.text:44A727 D$4<f@

.text:44A908 D$4<f@

.text:44AB25 D$4<f@

.text:44AC19 D$4<f@

.text:44AE24 D$4<f@

.text:44B034 D$D<f@

.text:44B24C D$D<f@

.text:44B4C3 D$D<f@

.text:44B6D8 D$4<f@

.text:44B863 D$D<f@

.text:44B90E D$p#D$t@u

.text:44BA39 D$T<f@

.text:44BAE0 D$p#D$t@u

.text:44BBF4 D$D<f@

.text:44BDAC D$4<f@

.text:44C15B D$T<f@

.text:44C452 D$T<f@

.text:44C746 D$T<f@

.text:44CA2B D$T<f@

.text:44CD13 D$T<f@

.text:44CFFF D$T<f@

.text:44D301 D$T<f@

.text:44D601 D$T<f@

.text:44D8E5 D$4<f@

.text:44D9CD D$4<f@

.text:44DBAC D$4<f@

.text:44E168 D$4<f@

.text:44E350 D$4<f@

.text:44E5DD D$4<f@

.text:44E665 D$4<f@

.text:44E6B1 D$4<f@

.text:44E8A0 9L$@s*

.text:44E994 9l$Dw|

.text:44E99C +l$D;l$HwZ

.text:44EF95 D$4<f@

.text:44F2A3 D$D<f@

.text:44F2FC 9L$$w~

.text:44F75F \$X+\$T

.text:44F768 +T$P+T$T

.text:44F7F9 L$X9L$Tt

.text:44F92D D$4<f@

.text:44FC8D D$4<f@

.text:45048D D$4<f@

.text:450545 D$4<f@

.text:4505FD D$4<f@

.text:4506B5 D$4<f@

.text:45076D D$4<f@

.text:450825 D$4<f@

.text:4508DD D$4<f@

.text:450995 D$4<f@

.text:450A4D D$4<f@

.text:450B05 D$4<f@

.text:450BBD D$4<f@

.text:450C75 D$4<f@

.text:450D2D D$4<f@

.text:450DE5 D$4<f@

.text:450E9D D$4<f@

.text:450F55 D$4<f@

.text:45100D D$4<f@

.text:4510C5 D$4<f@

.text:45117D D$4<f@

.text:451235 D$4<f@

.text:4512ED D$4<f@

.text:4513A5 D$4<f@

.text:45145D D$4<f@

.text:451515 D$4<f@

.text:4515D5 D$4<f@

.text:451693 D$D<f@

.text:451825 D$4<f@

Appendices

VII

File: malware.exe

.text:4518E1 D$4<f@

.text:45199F D$D<f@

.text:451B31 D$4<f@

.text:451C05 D$4<f@

.text:451CED D$4<f@

.text:451DD5 D$4<f@

.text:451E93 D$D<f@

.text:452025 D$4<f@

.text:4520E1 D$4<f@

.text:4520F9 D$@e!E

.text:45219F D$D<f@

.text:452331 D$4<f@

.text:452405 D$4<f@

.text:4524ED D$4<f@

.text:452AE8 D$ #D$$@u

.text:452B4C D$D<f@

.text:452B64 D$P>,E

.text:452DD5 D$ #D$$@

.text:4537C9 D$0#D$4@

.text:453922 P4R@tx

.text:453984 D$0#D$4@t

.text:453BE8 L$(;K`

.text:453D9D T$(;S`

.text:453E66 L$(;K`

.text:453E85 D$4<f@

.text:454019 D$4<f@

.text:454031 D$@mAE

.text:4541AD D$4<f@

.text:4541C5 D$@:BE

.text:454289 D$4<f@

.text:454359 D$4<f@

.text:454900 D$ #D$$@u

.text:454968 D$D<f@

.text:454980 D$PZJE

.text:454BF1 D$ #D$$@

.text:45553B D$@#D$D@

.text:455682 P4Qf@u

.text:455704 D$0#D$4@

.text:4558D6 P4Uf@t

.text:455964 L$8;Kd

.text:455B2D T$8;Sd

.text:455BF6 L$8;Kd

.text:455C15 D$4<f@

.text:455C2D D$@m]E

.text:455DAD D$4<f@

.text:455F45 D$4<f@

.text:456021 D$4<f@

.text:4560F1 D$4<f@

.text:456109 D$@raE

.text:4562B9 D$D<f@

.text:4562D1 D$PGdE

.text:4564D9 D$D<f@

.text:4564F1 D$PkfE

.text:4566FD D$D<f@

.text:456715 D$P6hE

.text:4568C6 D$4<f@

.text:4568DE D$@'jE

.text:456ABA D$4<f@

.text:456CAE D$4<f@

.text:456E4D D$4<f@

.text:456E65 D$@(oE

.text:456F9D D$4<f@

.text:456FB5 D$@lpE

.text:4570E1 D$4<f@

.text:45733D D$D<f@

.text:457561 D$D<f@

.text:457785 D$D<f@

.text:457952 D$4<f@

.text:457B46 D$4<f@

VIII

File: malware.exe

.text:457D3A D$4<f@

.text:457D52 D$@J~E

.text:457ED9 D$4<f@

.text:458029 D$4<f@

.text:45816D D$4<f@

.text:4582D4 D$D<f@

.text:4584C8 D$D<f@

.text:4586BC D$D<f@

.text:4588B0 D$D<f@

.text:458AA4 D$D<f@

.text:458C98 D$D<f@

.text:458E8C D$D<f@

.text:459080 D$D<f@

.text:459274 D$D<f@

.text:459468 D$D<f@

.text:45965C D$D<f@

.text:4598A8 D$D<f@

.text:4599B8 tbf9D$*t

.text:459B7C D$D<f@

.text:459C4E tyf9D$&t

.text:459C62 D$$f9D$&

.text:459E34 D$4<f@

.text:45A030 D$4<f@

.text:45A224 D$4<f@

.text:45A3EC D$4<f@

.text:45A5B8 D$4<f@

.text:45A793 D$D<f@

.text:45A9B5 D$T<f@

.text:45ABB7 D$D<f@

.text:45ADA0 D$4<f@

.text:45AF80 D$4<f@

.text:45B408 D$4<f@

.text:45B5F8 D$4<f@

.text:45B819 D$4<f@

.text:45B90D D$4<f@

.text:45BB1C D$4<f@

.text:45BD2C D$D<f@

.text:45BF44 D$D<f@

.text:45C1BC D$D<f@

.text:45C3E0 D$4<f@

.text:45C56B D$D<f@

.text:45C616 D$p#D$t@u

.text:45C741 D$T<f@

.text:45C7E8 D$p#D$t@u

.text:45C8FC D$D<f@

.text:45CAB4 D$4<f@

.text:45CE63 D$T<f@

.text:45D136 D$T<f@

.text:45D406 D$T<f@

.text:45D6C7 D$T<f@

.text:45D98B D$T<f@

.text:45DC53 D$T<f@

.text:45DF31 D$T<f@

.text:45E20D D$T<f@

.text:45E4CD D$4<f@

.text:45E5B9 D$4<f@

.text:45E798 D$4<f@

.text:45EBB9 D$D<f@

.text:45ED8D D$D<f@

.text:45EF65 D$D<f@

.text:45F0E2 D$4<f@

.text:45F25A D$4<f@

.text:45F3D6 D$4<f@

.text:45F4F9 D$4<f@

.text:45F641 D$4<f@

.text:45F77D D$4<f@

.text:45F9AD D$D<f@

.text:45FB85 D$D<f@

.text:45FD5D D$D<f@

.text:45FEDA D$4<f@

Appendices

IX

File: malware.exe

.text:460052 D$4<f@

.text:4601CE D$4<f@

.text:4602F1 D$4<f@

.text:460439 D$4<f@

.text:460575 D$4<f@

.text:4606A9 D$4<f@

.text:46080D D$4<f@

.text:46096E D$4<f@

.text:460A7E D$4<f@

.text:460D1D D$D<f@

.text:460EE5 D$D<f@

.text:4610AD D$D<f@

.text:461219 D$4<f@

.text:461389 D$4<f@

.text:4614FD D$4<f@

.text:46161D D$4<f@

.text:461755 D$4<f@

.text:461881 D$4<f@

.text:461AA1 D$D<f@

.text:461C69 D$D<f@

.text:461E35 D$D<f@

.text:461FA5 D$4<f@

.text:462115 D$4<f@

.text:46212D D$@+"F

.text:462289 D$4<f@

.text:4622A1 D$@H#F

.text:4623A9 D$4<f@

.text:4623C1 D$@o$F

.text:4624E1 D$4<f@

.text:46260D D$4<f@

.text:462733 D$4<f@

.text:462833 D$4<f@

.text:46296B D$4<f@

.text:462983 D$@1*F

.text:462A6B D$4<f@

.text:462A83 D$@1+F

.text:462BA3 D$4<f@

.text:462BBB D$@y,F

.text:462CE3 D$4<f@

.text:462E5B D$4<f@

.text:462E73 D$@1/F

.text:462F9B D$4<f@

.text:462FB3 D$@q0F

.text:463329 E9l$4~)

.text:46339F P4W@t/EF9l$4~'

.text:463485 D$4<f@

.text:4638E7 E9l$4~8

.text:46396B P4Rf@t@E

.text:463976 9l$4~6

.text:463A69 D$4<f@

.text:463CAF D$4<f@

.text:463CC7 D$@u=F

.text:463DAF D$4<f@

.text:463DC7 D$@u>F

.text:463EE7 D$4<f@

.text:463FE7 D$4<f@

.text:46411F D$4<f@

.text:464227 D$4<f@

.text:464367 D$4<f@

.text:46437F D$@SDF

.text:4644BF D$4<f@

.text:4659DB D$4<f@

.text:465AEF D$4<f@

.text:465C3B D$4<f@

.text:465D4F D$4<f@

.text:465D67 D$@)^F

.text:465E9B D$4<f@

.text:465EB3 D$@u_F

.text:465FAF D$4<f@

X

File: malware.exe

.text:4660FB D$4<f@

.text:46620F D$4<f@

.text:468D4B L$D)L$@

.text:468FB7 P(Qf9G

.text:469079 D$4<f@

.text:46914D D$4<f@

.text:469209 D$4<f@

.text:4692AD D$4<f@

.text:469381 D$4<f@

.text:469455 D$4<f@

.text:469511 D$4<f@

.text:4695B5 D$4<f@

.text:4697F9 D$4<f@

.text:46989D D$4<f@

.text:469941 D$4<f@

.text:4699E5 D$4<f@

.text:469AA1 D$4<f@

.text:469B45 D$4<f@

.text:469BE9 D$4<f@

.text:469C8D D$4<f@

.text:469D31 D$4<f@

.text:469DD5 D$4<f@

.text:469E91 D$4<f@

.text:469F35 D$4<f@

.text:469FD9 D$4<f@

.text:46A089 D$4<f@

.text:46A139 D$4<f@

.text:46A1E9 D$4<f@

.text:46A299 D$4<f@

.text:46A349 D$4<f@

.text:46A3F9 D$4<f@

.text:46A4A9 D$4<f@

.text:46A559 D$4<f@

.text:46A609 D$4<f@

.text:46A6B9 D$4<f@

.text:46A769 D$4<f@

.text:46AB61 D$4<f@

.text:46AEF9 D$4<f@

.text:46B019 D$4<f@

.text:46B2FD D$4<f@

.text:46B661 D$4<f@

.text:46B785 D$4<f@

.text:46BDDC ;\$4t!

.text:46C18C D$D<f@

.text:46C750 D$D<f@

.text:46CD19 D$4<f@

.text:46CE6D D$4<f@

.text:46E6E8 D$D<f@

.text:46EDE1 D$4<f@

.text:46EEC5 D$4<f@

.text:46EFBD D$4<f@

.text:46F066 D$4<f@

.text:46F170 D$4<f@

.text:46F43C D$D<f@

.text:46F5C4 D$ 9D$

.text:46F7E0 D$4<f@

.text:46FA9F D$D<f@

.rdata:473000 libgcj-13.dll

.rdata:47300E _Jv_RegisterClasses

.rdata:4730B0 US@HOHOF!

.rdata:4730BA HI@EZI^U,

.rdata:4730C4 [XTVC^XY7

.rdata:4730CE 16#671B

.rdata:4730D6)(=!"4M

.rdata:473154]V[JAHL]\

.rdata:47318F [WVL]VL

.rdata:4731D5 \QJ][LWJA

.rdata:4731F1 HJW_JYU

.rdata:4731FE \][JAHLK

.rdata:47320B]V[JAHL]\

Appendices

XI

File: malware.exe

.rdata:473229 YzQLxZY\

.rdata:473238 3+*<;= 6*+0)&#*<00=*.+"*A;7;o

.rdata:473264 >G!98.)/2$89";418.""/8<908S)%)}

.rdata:473287),9,c/$#M

.rdata:4732B8 list::_M_check_equal_allocators

.rdata:473350 basic_string::at

.rdata:473361 basic_string::copy

.rdata:473374 basic_string::compare

.rdata:47338A basic_string::_S_create

.rdata:4733A2 basic_string::assign

.rdata:4733B7 basic_string::_M_replace_aux

.rdata:4733D4 basic_string::replace

.rdata:4733EA basic_string::insert

.rdata:4733FF basic_string::erase

.rdata:473413 basic_string::append

.rdata:473428 basic_string::resize

.rdata:473440 basic_string::_S_construct null not valid

.rdata:47346A basic_string::basic_string

.rdata:473485 basic_string::substr

.rdata:4734B4 basic_filebuf::xsgetn error reading the file

.rdata:4734E4 basic_filebuf::underflow codecvt::max_length() is not valid

.rdata:473520 basic_filebuf::underflow incomplete character in file

.rdata:473558 basic_filebuf::underflow invalid byte sequence in file

.rdata:473590 basic_filebuf::underflow error reading the file

.rdata:4735C0 basic_filebuf::_M_convert_to_external conversion error

.rdata:4735F8 basic_ios::clear

.rdata:47360C std::future_error

.rdata:473620 ios_base::_M_grow_words is not valid

.rdata:473648 ios_base::_M_grow_words allocation failed

.rdata:473720 __gnu_cxx::__concurrence_lock_error

.rdata:473744 __gnu_cxx::__concurrence_unlock_error

.rdata:473840 __gnu_cxx::__concurrence_lock_error

.rdata:473864 __gnu_cxx::__concurrence_unlock_error

.rdata:47388C locale::_S_normalize_category category not found

.rdata:4738F0 locale::_Impl::_M_replace_facet

.rdata:473934 std::exception

.rdata:473943 std::bad_exception

.rdata:473958 eh_globals

.rdata:473968 __gnu_cxx::__concurrence_lock_error

.rdata:47398C __gnu_cxx::__concurrence_unlock_error

.rdata:4739B8 std::bad_alloc

.rdata:473A40 basic_string::at

.rdata:473A51 basic_string::copy

.rdata:473A64 basic_string::compare

.rdata:473A7A basic_string::_S_create

.rdata:473A92 basic_string::assign

.rdata:473AA7 basic_string::_M_replace_aux

.rdata:473AC4 basic_string::replace

.rdata:473ADA basic_string::insert

.rdata:473AEF basic_string::erase

.rdata:473B03 basic_string::append

.rdata:473B18 basic_string::resize

.rdata:473B30 basic_string::_S_construct null not valid

.rdata:473B5A basic_string::basic_string

.rdata:473B75 basic_string::substr

.rdata:473C80 %m/%d/%y

.rdata:473C8F %H:%M:%S

.rdata:473FF4 %m/%d/%y

.rdata:474003 %H:%M:%S

.rdata:474120 __unexpected_handler_sh

.rdata:474138 __terminate_handler_sh

.rdata:474150 std::bad_cast

.rdata:474160 std::bad_typeid

.rdata:474180 generic

.rdata:474188 system

.rdata:474220 *N12_GLOBAL__N_122generic_error_categoryE

.rdata:474260 *N12_GLOBAL__N_121system_error_categoryE

.rdata:4742A0 future

.rdata:4742A7 Broken promise

XII

File: malware.exe

.rdata:4742B6 Future already retrieved

.rdata:4742CF Promise already satisfied

.rdata:4742E9 No associated state

.rdata:4742FD Unknown error

.rdata:474360 *N12_GLOBAL__N_121future_error_categoryE

.rdata:4743A0 regex_error

.rdata:4743AC __gnu_cxx::__concurrence_lock_error

.rdata:4743D0 __gnu_cxx::__concurrence_unlock_error

.rdata:474634 locale::facet::_S_create_c_locale name not valid

.rdata:47466C LC_CTYPE

.rdata:474675 LC_NUMERIC

.rdata:474680 LC_TIME

.rdata:474688 LC_COLLATE

.rdata:474693 LC_MONETARY

.rdata:47469F LC_MESSAGES

.rdata:474700 pure virtual method called

.rdata:47471C deleted virtual method called

.rdata:474774 xdigit

.rdata:474788 -+xX0123456789abcdef0123456789ABCDEF

.rdata:4747AD -+xX0123456789abcdefABCDEF

.rdata:4747C8 -0123456789

.rdata:474878 %m/%d/%y

.rdata:474881 %H:%M:%S

.rdata:474891 Sunday

.rdata:474898 Monday

.rdata:47489F Tuesday

.rdata:4748A7 Wednesday

.rdata:4748B1 Thursday

.rdata:4748BA Friday

.rdata:4748C1 Saturday

.rdata:4748E6 January

.rdata:4748EE February

.rdata:474911 August

.rdata:474918 September

.rdata:474922 October

.rdata:47492A November

.rdata:474933 December

.rdata:474B48 terminate called recursively

.rdata:474B68 terminate called after throwing an instance of '

.rdata:474B9C terminate called without an active exception

.rdata:474BCA what():

.rdata:474CFC _GLOBAL_

.rdata:474D05 (anonymous namespace)

.rdata:474E34 string literal

.rdata:4752EB JArray

.rdata:4752F5 vtable for

.rdata:475301 VTT for

.rdata:47530A construction vtable for

.rdata:475328 typeinfo for

.rdata:475336 typeinfo name for

.rdata:475349 typeinfo fn for

.rdata:47535A non-virtual thunk to

.rdata:475370 virtual thunk to

.rdata:475382 covariant return thunk to

.rdata:47539D java Class for

.rdata:4753AD guard variable for

.rdata:4753C1 reference temporary #

.rdata:4753DD hidden alias for

.rdata:4753EF transaction clone for

.rdata:475406 non-transaction clone for

.rdata:475427 _Accum

.rdata:47542E _Fract

.rdata:475438 operator

.rdata:475441 operator

.rdata:475476 java resource

.rdata:475485 decltype (

.rdata:475499 {parm#

.rdata:4754A0 global constructors keyed to

.rdata:4754BE global destructors keyed to

.rdata:4754DB {lambda(

Appendices

XIII

File: malware.exe

.rdata:4754E7 {unnamed type#

.rdata:4754F6 [clone

.rdata:475630 restrict

.rdata:47563A volatile

.rdata:475644 const

.rdata:47564E complex

.rdata:475657 imaginary

.rdata:475666 __vector(

.rdata:475710 {default arg#

.rdata:47576C signed char

.rdata:47577D boolean

.rdata:47578F double

.rdata:475796 long double

.rdata:4757A8 __float128

.rdata:4757B3 unsigned char

.rdata:4757C5 unsigned int

.rdata:4757D2 unsigned

.rdata:4757E0 unsigned long

.rdata:4757EE __int128

.rdata:4757F7 unsigned __int128

.rdata:47580F unsigned short

.rdata:475823 wchar_t

.rdata:47582B long long

.rdata:475835 unsigned long long

.rdata:475848 decimal32

.rdata:475852 decimal64

.rdata:47585C decimal128

.rdata:47586C char16_t

.rdata:475875 char32_t

.rdata:47587E decltype(nullptr)

.rdata:475B34 std::allocator

.rdata:475B43 allocator

.rdata:475B4D std::basic_string

.rdata:475B5F basic_string

.rdata:475B6C std::string

.rdata:475B78 std::basic_string<char, std::char_traits<char>, std::allocator<char> >

.rdata:475BBF std::istream

.rdata:475BCC std::basic_istream<char, std::char_traits<char> >

.rdata:475BFE basic_istream

.rdata:475C0C std::ostream

.rdata:475C1C std::basic_ostream<char, std::char_traits<char> >

.rdata:475C4E basic_ostream

.rdata:475C5C std::iostream

.rdata:475C6C std::basic_iostream<char, std::char_traits<char> >

.rdata:475C9F basic_iostream

.rdata:475D9A alignof

.rdata:475DBC delete[]

.rdata:475DCE delete

.rdata:475E0C operator""

.rdata:475EA4 sizeof

.rdata:475EBB throw

.rdata:476284 Mingw runtime failure:

.rdata:47629C VirtualQuery failed for %d bytes at address %p

.rdata:4762D0 Unknown pseudo relocation protocol version %d.

.rdata:476304 Unknown pseudo relocation bit size %d.

.rdata:476330 fc_static

.rdata:47633A fc_key

.rdata:476341 use_fc_key

.rdata:47634C sjlj_once

.rdata:476358 gcc-shmem-tdm2

.rdata:4763DC xdigit

.rdata:476476 (null)

.rdata:47647D PRINTF_EXPONENT_DIGITS

.rdata:476760 Infinity

.rdata:476920 ABCDEF

.rdata:476927 abcdef

.rdata:47692E 0123456789

.rdata:477560 N10__cxxabiv115__forced_unwindE

.rdata:477580 N10__cxxabiv117__class_type_infoE

XIV

File: malware.exe

.rdata:4775C0 N10__cxxabiv119__foreign_exceptionE

.rdata:477600 N10__cxxabiv120__si_class_type_infoE

.rdata:477640 N10__cxxabiv121__vmi_class_type_infoE

.rdata:477680 N9__gnu_cxx13stdio_filebufIcSt11char_traitsIcEEE

.rdata:4776C0 N9__gnu_cxx13stdio_filebufIwSt11char_traitsIwEEE

.rdata:477700 N9__gnu_cxx18stdio_sync_filebufIcSt11char_traitsIcEEE

.rdata:477740 N9__gnu_cxx18stdio_sync_filebufIwSt11char_traitsIwEEE

.rdata:477780 N9__gnu_cxx20recursive_init_errorE

.rdata:4777C0 N9__gnu_cxx24__concurrence_lock_errorE

.rdata:477800 N9__gnu_cxx26__concurrence_unlock_errorE

.rdata:477840 NSt6locale5facetE

.rdata:477854 NSt8ios_base7failureE

.rdata:477878 St10bad_typeid

.rdata:477888 St10ctype_base

.rdata:477898 St10money_base

.rdata:4778A8 St10moneypunctIcLb0EE

.rdata:4778C0 St10moneypunctIcLb1EE

.rdata:4778D8 St10moneypunctIwLb0EE

.rdata:4778F0 St10moneypunctIwLb1EE

.rdata:477908 St11__timepunctIcE

.rdata:47791C St11__timepunctIwE

.rdata:477930 St11logic_error

.rdata:477940 St11range_error

.rdata:477950 St11regex_error

.rdata:477960 St12codecvt_base

.rdata:477974 St12ctype_bynameIcE

.rdata:477988 St12ctype_bynameIwE

.rdata:47799C St12domain_error

.rdata:4779B0 St12future_error

.rdata:4779C4 St12length_error

.rdata:4779D8 St12out_of_range

.rdata:4779EC St12system_error

.rdata:477A00 St13bad_exception

.rdata:477A20 St13basic_filebufIcSt11char_traitsIcEE

.rdata:477A60 St13basic_filebufIwSt11char_traitsIwEE

.rdata:477AA0 St13basic_fstreamIcSt11char_traitsIcEE

.rdata:477AE0 St13basic_fstreamIwSt11char_traitsIwEE

.rdata:477B20 St13basic_istreamIwSt11char_traitsIwEE

.rdata:477B60 St13basic_ostreamIwSt11char_traitsIwEE

.rdata:477BA0 St13messages_base

.rdata:477BB4 St13runtime_error

.rdata:477BE0 St14basic_ifstreamIcSt11char_traitsIcEE

.rdata:477C20 St14basic_ifstreamIwSt11char_traitsIwEE

.rdata:477C60 St14basic_iostreamIwSt11char_traitsIwEE

.rdata:477CA0 St14basic_ofstreamIcSt11char_traitsIcEE

.rdata:477CE0 St14basic_ofstreamIwSt11char_traitsIwEE

.rdata:477D20 St14codecvt_bynameIcciE

.rdata:477D38 St14codecvt_bynameIwciE

.rdata:477D50 St14collate_bynameIcE

.rdata:477D68 St14collate_bynameIwE

.rdata:477D80 St14error_category

.rdata:477D94 St14overflow_error

.rdata:477DC0 St15basic_streambufIcSt11char_traitsIcEE

.rdata:477E00 St15basic_streambufIwSt11char_traitsIwEE

.rdata:477E40 St15messages_bynameIcE

.rdata:477E58 St15messages_bynameIwE

.rdata:477E70 St15numpunct_bynameIcE

.rdata:477E88 St15numpunct_bynameIwE

.rdata:477EA0 St15time_get_bynameIcSt19istreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:477F00 St15time_get_bynameIwSt19istreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:477F60 St15time_put_bynameIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:477FC0 St15time_put_bynameIwSt19ostreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:478020 St15underflow_error

.rdata:478034 St16__numpunct_cacheIcE

.rdata:47804C St16__numpunct_cacheIwE

.rdata:478064 St16invalid_argument

.rdata:47807C St17__timepunct_cacheIcE

.rdata:478098 St17__timepunct_cacheIwE

.rdata:4780B4 St17bad_function_call

.rdata:4780CC St17moneypunct_bynameIcLb0EE

Appendices

XV

File: malware.exe

.rdata:4780EC St17moneypunct_bynameIcLb1EE

.rdata:47810C St17moneypunct_bynameIwLb0EE

.rdata:47812C St17moneypunct_bynameIwLb1EE

.rdata:47814C St18__moneypunct_cacheIcLb0EE

.rdata:47816C St18__moneypunct_cacheIcLb1EE

.rdata:47818C St18__moneypunct_cacheIwLb0EE

.rdata:4781AC St18__moneypunct_cacheIwLb1EE

.rdata:4781CC St21__ctype_abstract_baseIcE

.rdata:4781EC St21__ctype_abstract_baseIwE

.rdata:478220 St23__codecvt_abstract_baseIcciE

.rdata:478260 St23__codecvt_abstract_baseIwciE

.rdata:4782A0 St5ctypeIcE

.rdata:4782AC St5ctypeIwE

.rdata:4782B8 St7codecvtIcciE

.rdata:4782C8 St7codecvtIwciE

.rdata:4782D8 St7collateIcE

.rdata:4782E8 St7collateIwE

.rdata:478300 St7num_getIcSt19istreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:478340 St7num_getIwSt19istreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:478380 St7num_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:4783C0 St7num_putIwSt19ostreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:478400 St8bad_cast

.rdata:47840C St8ios_base

.rdata:478418 St8messagesIcE

.rdata:478428 St8messagesIwE

.rdata:478438 St8numpunctIcE

.rdata:478448 St8numpunctIwE

.rdata:478460 St8time_getIcSt19istreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:4784A0 St8time_getIwSt19istreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:4784E0 St8time_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:478520 St8time_putIwSt19ostreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:478560 St9bad_alloc

.rdata:478580 St9basic_iosIcSt11char_traitsIcEE

.rdata:4785C0 St9basic_iosIwSt11char_traitsIwEE

.rdata:478600 St9exception

.rdata:478620 St9money_getIcSt19istreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:478660 St9money_getIwSt19istreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:4786A0 St9mon

.rdata:4786A6 ey_putIcSt19ostreambuf_iteratorIcSt11char_traitsIcEEE

.rdata:4786E0 St9money_putIwSt19ostreambuf_iteratorIwSt11char_traitsIwEEE

.rdata:478720 St9time_base

.rdata:478730 St9type_info

.idata:48346E CryptAcquireContextW

.idata:483486 CryptGenRandom

.idata:483498 CryptReleaseContext

.idata:4834AE GetUserNameA

.idata:4834BE RegOpenKeyExA

.idata:4834CE AddAtomA

.idata:4834DA CloseHandle

.idata:4834E8 CreateMutexA

.idata:4834F8 CreateSemaphoreA

.idata:48350C DeleteCriticalSection

.idata:483524 EnterCriticalSection

.idata:48353C ExitProcess

.idata:48354A FindAtomA

.idata:483556 FindClose

.idata:483562 FindFirstFileA

.idata:483574 FindNextFileA

.idata:483584 GetAtomNameA

.idata:483594 GetComputerNameExA

.idata:4835AA GetCurrentThreadId

.idata:4835C0 GetLastError

.idata:4835D0 GetModuleHandleA

.idata:4835E4 GetProcAddress

.idata:4835F6 InitializeCriticalSection

.idata:483612 InterlockedDecrement

.idata:48362A InterlockedExchange

.idata:483640 InterlockedIncrement

.idata:483658 IsDBCSLeadByteEx

XVI

File: malware.exe

.idata:48366C IsDebuggerPresent

.idata:483680 LeaveCriticalSection

.idata:483698 MultiByteToWideChar

.idata:4836AE ReleaseMutex

.idata:4836BE ReleaseSemaphore

.idata:4836D2 SetLastError

.idata:4836E2 SetUnhandledExceptionFilter

.idata:483708 TlsAlloc

.idata:483714 TlsFree

.idata:48371E TlsGetValue

.idata:48372C TlsSetValue

.idata:48373A VirtualProtect

.idata:48374C VirtualQuery

.idata:48375C WaitForSingleObject

.idata:483772 WideCharToMultiByte

.idata:483788 _fdopen

.idata:48379A _write

.idata:4837A4 __getmainargs

.idata:4837B4 __mb_cur_max

.idata:4837C4 __p__environ

.idata:4837D4 __p__fmode

.idata:4837E2 __set_app_type

.idata:4837F4 _cexit

.idata:4837FE _errno

.idata:483808 _filelengthi64

.idata:48381A _fstati64

.idata:48382E _lseeki64

.idata:48383A _onexit

.idata:483844 _setmode

.idata:483858 atexit

.idata:48386A calloc

.idata:48387C fclose

.idata:483886 fflush

.idata:483898 fgetpos

.idata:4838CA fsetpos

.idata:4838D4 fwrite

.idata:4838E6 getenv

.idata:4838F8 iswctype

.idata:483904 localeconv

.idata:483912 malloc

.idata:48391C memchr

.idata:483926 memcmp

.idata:483930 memcpy

.idata:48393A memmove

.idata:483944 memset

.idata:483966 realloc

.idata:483970 remove

.idata:48397A setlocale

.idata:483986 setvbuf

.idata:483990 signal

.idata:48399A sprintf

.idata:4839AC strchr

.idata:4839B6 strcmp

.idata:4839C0 strcoll

.idata:4839CA strerror

.idata:4839D6 strftime

.idata:4839E2 strlen

.idata:4839EC strtod

.idata:4839F6 strxfrm

.idata:483A08 towlower

.idata:483A14 towupper

.idata:483A20 ungetc

.idata:483A2A ungetwc

.idata:483A34 vfprintf

.idata:483A40 wcscoll

.idata:483A4A wcsftime

.idata:483A56 wcslen

.idata:483A60 wcsxfrm

.idata:483A6A SHGetSpecialFolderPathA

.idata:483A84 WSAStartup

Appendices

XVII

File: malware.exe

.idata:483A92 gethostbyname

.idata:483AA2 gethostname

.idata:483AC4 ADVAPI32.DLL

.idata:483B6C KERNEL32.dll

.idata:483B88 msvcrt.dll

.idata:483CA4 msvcrt.dll

.idata:483CB4 SHELL32.DLL

.idata:483CCC WSOCK32.DLL

Unicode Strings:

.rdata:474460 XXXXXXXXXX

.rdata:474482 UUUUUUEEEEEEEEEEEEEEEEEEEE

.rdata:4744C2 VVVVVVFFFFFFFFFFFFFFFFFFFF

.rdata:474966 c%m/%d/%y

.rdata:47497A %H:%M:%S

.rdata:47499A Sunday

.rdata:4749A8 Monday

.rdata:4749B6 Tuesday

.rdata:4749C6 Wednesday

.rdata:4749DA Thursday

.rdata:4749EC Friday

.rdata:4749FA Saturday

.rdata:474A44 January

.rdata:474A54 February

.rdata:474A9A August

.rdata:474AA8 September

.rdata:474ABC October

.rdata:474ACC November

.rdata:474ADE December

.rdata:476466 f(null)

Appendix I

I

Appendix I

Anti-VM instructions detection with a python script

from idautils import *

from idc import *

heads = Heads(SegStart(ScreenEA()), SegEnd(ScreenEA()))

antiVM = []

for i in heads:

 if (GetMnem(i) == "sidt" \

 or GetMnem(i) == "sgdt" \

 or GetMnem(i) == "sldt" \

 or GetMnem(i) == "smsw" \

 or GetMnem(i) == "str" \

 or GetMnem(i) == "in" \

 or GetMnem(i) == "cpuid"):

 antiVM.append(i)

print "Number of potential Anti-VM instructions: %d" % (len(antiVM))

for i in antiVM:

 SetColor(i, CIC_ITEM, 0x0000ff)

 Message("Anti-VM: %08x\n" % i)

Table 11: Highlighting potential Anti-VM instructions with a python script in IDA Pro

Attached zipped files provided

II

Attached zipped files

Attached zipped files provided

1. hybrid-Analysis results.pdf

2. report-0fb3e4c1b9fdbb05b7c429ddc854b204.pdf

3. 6d2ee6b36047cdaf2c20012d1f687e2abebf71d82c420d45f2f12cee0635cf92 _ ANY.RUN

- Automated Malware Analysis Service.pdf

4. VirusTotal.pdf

5. VirusTotal-behaviour.pdf

6. VirusTotal-details.pdf

7. STARTEX RANSOMWARE FINAL DOCUMENTATION.pdf

8. Windows Functions for Malware Analysis.txt

9. VirusTotal_mlr.txt

10. RTSC SCRIPT.py

11. surface analysis report.txt

12. strings_mlr.txt

13. find anti-VM instructions.py

14. imports.txt

15. exports.txt

16. breakpoints.txt

17. install.ps1.txt

18. debugging_gdb_linux_vmware.pdf

19. sample files for rnsm.rar

20. inputlist_XorSearch.txt

Appendices

III

21. VM config files.zip

22. Installed Tools Flare vm.txt

23. Boxstarter.WebLaunch.application

24. registry Renames on Vmware powershell script.ps1

25. base64dump.py

26. ProcessExporerStrings_Image.txt

27. ProcessExporerStrings_Memory.txt

28. COMPARISON OF 2 SHOTS.txt

29. proc mon Logfile.XML

30. PortExAnalyzer Results report.txt

IV

Footnotes

i European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET

ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2017,” Executive Director of Europol, ISBN

978-92-95200-80-7, pages 18-32, 2017, Source URL: https://www.europol.europa.eu/activities-
services/main-reports/internet-organised-crime-threat-assessment-iocta-2017.

ii European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET

ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2018,” Executive Director of Europol, ISBN
978-92-95200-94-4, pages 16-29, 2017, Source URL: https://www.europol.europa.eu/activities-

services/main-reports/internet-organised-crime-threat-assessment-iocta-2018
iii European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET

ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2014,” Executive Director of Europol, ISBN:
978-92-95078-96-3, pages 23-27, 2014, Source URL: https://www.europol.europa.eu/activities-

services/main-reports/internet-organised-crime-threat-assessment-iocta-2014
iv European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET

ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2015,” Executive Director of Europol, ISBN

978-92-95200-65-4, pages 18-27, 2015, Source URL: https://www.europol.europa.eu/activities-

services/main-reports/internet-organised-crime-threat-assessment-iocta-2015
v European Union Agency for Law Enforcement Cooperation (Europol), “THE INTERNET

ORGANISED CRIME THREAT ASSESSMENT (IOCTA) 2016,” Executive Director of Europol, ISBN

978-92-95200-75-3, pages 17-23, 2016, Source URL: https://www.europol.europa.eu/activities-

services/main-reports/internet-organised-crime-threat-assessment-iocta-2016

