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Abstract
During the last decades, a significant increase in life expectancy has been observed
in most countries around the world. This change is mainly due to the improvement
of living conditions and the development of medical science. Consequently, a serious
demographic problem arises from the increasing number of elderly, combined with low
fertility rates. Population ageing creates an additional cost for life insurers and annuity
providers. In this spirit, the development of efficient methods to model and forecast the
mortality rates of a population is a key challenge for actuaries and demographers. This
thesis exploits actuarial credibility techniques to propose novel mortality modelling
methods, aiming to contribute in more accurate demographic projections. Before intro-
ducing these methods, we firstly examine and review the existing modelling techniques.
Greek population data are incorporated into the most used stochastic mortality models
under a common age-period-cohort framework. The fitting performance of each model
is thoroughly evaluated, while projection results for both genders are also illustrated
in pricing insurance-related products. In addition, we propose a credibility regression
approach with random coefficients to model and forecast the mortality dynamics for
populations with limited data. The results on Greek mortality data indicate that credibil-
ity regression contributes to more accurate forecasts, compared with those produced
from the Lee and Carter (1992) and Cairns et al. (2006) models. Then, the credibility
regression model is extended to a multi-level hierarchical credibility regression model
for mortality data of multiple populations in a hierarchical form. The forecasting per-
formances between the hierarchical model, the Lee-Carter model and two Lee-Carter
extensions for multiple populations are compared for both genders of three northern
European countries (Ireland, Norway, Finland). Empirical illustrations show that the
proposed method produces more accurate forecasts. Finally, we present a credibility for-
mulation of the Lee-Carter method particularly designed for multi-population mortality
modelling. Differently from the standard Lee-Carter methodology, where the time index
is assumed to follow an appropriate time series process, herein, the period dynamics
of mortality are estimated under a crossed classification credibility framework. The
forecasting performances between the proposed model, the Lee-Carter model and two
Lee-Carter extensions for multiple populations are compared for both genders of three
developed countries (United Kingdom, USA, Japan). The numerical results indicate
that the proposed model contributes to more accurate forecasts.





Περίληψη

Τις τελευταίες δεκαετίες παρατηρήθηκε σημαντική αύξηση του προσδόκιμου ζωής στις

περισσότερες χώρες του κόσμου. Η αλλαγή αυτή οφείλεται κυρίως στη βελτίωση των
συνθηκών διαβίωσης και στην ανάπτυξη της ιατρικής επιστήμης. Κατά συνέπεια, ένα σο-
βαρό δημογραφικό πρόβλημα προκύπτει από τον αυξανόμενο αριθμό των ηλικιωμένων σε

συνδυασμό με το χαμηλά ποσοστά γονιμότητας. Η γήρανση του πληθυσμού δημιουργεί
ένα επιπλέον κόστος για τους ασφαλιστές ζωής και τους παρόχους συντάξεων. Στο
πλαίσιο αυτό, η ανάπτυξη αποτελεσματικών μεθόδων για τη μοντελοποίηση και πρόβ-
λεψη των ποσοστών θνησιμότητας ενός πληθυσμού αποτελεί βασική πρόκληση για τους

αναλογιστές και τους δημογράφους. H παρούσα διατριβή προτείνει νέες τεχνικές πρόβ-
λεψης θνησιμότητας, χρησιμοποιώντας αναλογιστικές μεθόδους μοντελοποίησης από
τη θεωρία αξιοπιστίας χαρτοφυλακίου, με σκοπό τη συμβολή τους σε πιο ακριβείς
δημογραφικές προβολές. Πριν παρουσιάσουμε τις μεθόδους αυτές, αρχικά εξετάζουμε
τις υπάρχουσες τεχνικές μοντελοποίησης. Τα ελληνικά δεδομένα προσαρμόζονται στα
κυριότερα μοντέλα θνησιμότητας, τα οποία υπόκεινται σε ένα ευρύτερο πλαίσιο μελέτης
μοντέλων ηλικίας-περιόδου-γενεάς. Η καταλληλότητα προσαρμογής του κάθε μοντέλου
αξιολογήθηκε διεξοδικά, ενώ τα αποτελέσματα των προβλέψεων για τα δυο φύλλα απο-
τυπώνονται και ως προς την τιμολόγηση ασφαλιστικών προϊόντων. Στη συνέχεια, προ-
τείνουμε ένα μοντέλο παλινδρόμησης αξιοπιστίας με τυχαίους συντελεστές για τη μον-

τελοποίηση και την πρόβλεψη θνησιμότητας πληθυσμών με περιορισμένο αριθμό δε-

δομένων. Τα αποτελέσματα του μοντέλου πάνω στα ελληνικά δεδομένα έδειξαν ότι
η χρήση μεθόδων αξιοπιστίας συμβάλλει σε ακριβέστερες προβλέψεις, σε σύγκριση
με εκείνες που προκύπτουν από τα μοντέλα Lee and Carter (1992) και Cairns et al.
(2006). Στη συνέχεια, το μοντέλο παλινδρόμησης αξιοπιστίας χαρτοφυλακίου επεκτείνε-
ται σε ένα ιεραρχικό μοντέλο παλινδρόμησης χαρτοφυλακίου για τη μοντελοποίηση δε-

δομένων θνησιμότητας πολλών πληθυσμών σε ιεραρχική μορφή. Οι προβλέψεις μεταξύ
του ιεραρχικού μοντέλου, του μοντέλου Lee-Carter και δύο επεκτάσεων του μοντέλου
Lee-Carter για πολλαπλούς πληθυσμούς συγκρίνονται ανά φύλο, για τρεις χώρες της
Βόρειας Ευρώπης (Ιρλανδία, Νορβηγία και Φινλανδία). Τα αποτελέσματα των προβ-
λέψεων δείχνουν ότι η προτεινόμενη μέθοδος οδηγεί σε πιο ακριβείς προβλέψεις. Τέλος,
παρουσιάζουμε μια μέθοδο τροποποίησης του μοντέλου Lee-Carter, μέσω της θεωρίας
αξιοπιστίας χαρτοφυλακίου, ειδικά σχεδιασμένη για τη μοντελοποίηση της θνησιμότητας
μεταξύ πολλαπλών πληθυσμών. Διαφορετικά από τη βασική μεθοδολογία Lee-Carter,
όπου η παράμετρος περιόδου ακολουθεί ένα κατάλληλο μοντέλο χρονολογικών σειρών,
στην προτεινόμενη μέθοδο, η θνησιμότητα εκτιμάται βάσει της μεθόδου αξιοπιστίας
σταυρωτής ταξινόμησης. Οι προβλέψεις μεταξύ του προτεινόμενου μοντέλου, του μον-
τέλου Lee-Carter και δύο επεκτάσεων του μοντέλου Lee-Carter για πολλαπλούς πλ-
ηθυσμούς συγκρίνονται ανά φύλο, για τα δεδομένα τριών ανεπτυγμένων χωρών (Ην-
ωμένο Βασίλειο, ΗΠΑ και Ιαπωνία). Τα αποτελέσματα των προβλέψεων δείχνουν ότι
το προτεινόμενο μοντέλο συμβάλλει σε πιο ακριβείς προβλέψεις.
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Chapter 1

Introduction

1.1 Background and Motivation

During the last decades, mortality has significantly declined in most developed countries
around the world, mainly due to the continuous improvement of living conditions and the
evolution of medical science and technology. Eventually, the decline in mortality creates
higher financial responsibilities for governments and annuity providers. Consequently,
finding ways to manage the mortality dynamics of a population is a very important
step in building a sustainable health and pension system. In this spirit, actuaries and
demographers are focused on the development of novel methods to model and forecast
the mortality rates of a population.

1.2 Single Population Mortality Models

In the literature, several methods have been proposed in order to capture the mortality
trends of a population. Lee and Carter (1992) proposed a pioneer modelling method
to forecast the mortality of the total population of the United States, by decompos-
ing the mortality rates into age and period parameters. A remarkable variant of the
Lee–Carter method, particularly designed for higher ages, was proposed by Cairns et al.
(2006). In the literature, we can find many extensions to these methods. Renshaw and
Haberman (2006) extended the Lee–Carter model by including a cohort effect, while
Plat (2009) proposed a model which combines preferable characteristics of the Lee
and Carter (1992) and Cairns et al. (2006) models. Despite its variants and extensions,
the Lee-Carter model inspired many authors to introduce more sophisticated methods
by including additional parameters. Hyndman and Ullah (2007) used functional data
analysis and penalized regression splines in their modelling framework and Hatzopoulos
and Haberman (2009) proposed a mortality modelling approach under the framework of
generalized linear models (GLM), while Hatzopoulos and Haberman (2011) extended
this approach by incorporating cohort effects.



2 | Introduction

Last years, many studies have been conducted to compare mortality models on
datasets of various countries. Booth et al. (2006) compared the accuracy of the forecasts
obtained by five extensions of the Lee-Carter method using data from ten developed
countries, while Shang et al. (2011) extended this accuracy comparison by using ten
methods and incorporating data from fourteen selected countries. Cairns et al. (2009)
and Haberman and Renshaw (2011) compared the fitting and forecasting performance
of different stochastic models for England & Wales and the United States mortality
experience. Gaille (2012) applied the Lee-Carter and the Heligman-Pollard models to
Swiss mortality rates and compared the financial impacts of their forecasts on future
pension liabilities. Stoeldraijer et al. (2013) compared the forecasts obtained from
the Lee-Carter method and its extensions with the official forecasts obtained from the
statistical offices in Europe to evaluate the differences for the case of Netherlands.
Hatzopoulos and Haberman (2015) proposed a dynamic parametric model, within the
GLM framework, for analyzing the cohort mortality survival function for Sweden,
Norway, England & Wales and Denmark. In addition, Van Berkum et al. (2016)
analyzed the impact of allowing for multiple structural changes on a large collection of
mortality models fitted on Dutch and Belgian male data and Maccheroni and Nocito
(2017) backtested the forecasting performance of the Lee and Carter (1992) and the
Cairns et al. (2006) models on Italian data.

A common issue in mortality modelling is that, for some countries, there are not
enough historical data. This issue affects the existing modelling methods, which
inevitably base their forecasts on datasets of a limited period of observations. Li et al.
(2004) extended the Lee–Carter model to be applied for Chinese and South Korean
mortality data, which are available at only a few points in time and at unevenly spaced
intervals. Zhao (2012) modified the Lee–Carter model by incorporating linearized cubic
splines and other additive functions to approximate the model parameters and forecast
mortality for short-base-period Chinese data. Huang and Browne (2017) presented
a stochastic modification of the CMI (Continuous Mortality Investigation) model to
project mortality improvement rates for limited Chinese data using clustering analysis
techniques and Wang et al. (2018) proposed a mortality modelling approach for small
populations with a combination of data aggregation and graduation. Also, Kostaki and
Zafeiris (2019) reviewed the typical problems and limitations of empirical mortality
data in small populations and proposed some ways to deal with them.

Differently from the above Lee–Carter variants and extensions, alternative modelling
approaches can also serve as a tool in mortality modelling for populations with limited
data. Based on the actuarial credibility theory, these approaches aim to model the period
patterns of limited mortality data for a specific age, using information from a wider age
span. Bühlmann (1967) established the theoretical foundation of modern credibility
theory (also known as greatest accuracy credibility theory) and Hachemeister (1975)
introduced a credibility regression model to estimate auto-mobile bodily injury claims
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for various states in the USA. For an extensive review on credibility theory for non-life
insurance, we also refer to Goovaerts et al. (1990), Bühlmann and Gisler (2005) and
Klugman et al. (2012).

Regarding some life insurance applications of credibility theory, Hardy and Panjer
(1998) used empirical Bayes credibility theory to provide a theoretical basis for the cal-
culation of risk measures associated with mortality risk for insurance companies. Salhi
et al. (2016) proposed a credibility approach, which consists on reviewing the fitting
parameters of a Makeham mortality curve, as new observations arrive. Schinzinger
et al. (2016) presented a multivariate evolutionary credibility model for mortality im-
provement rates to describe the joint dynamics of mortality through time in several
populations. Tsai and Lin (2017a) applied Bühlmann credibility to mortality data of
Japan, the United Kingdom and the United States, while Tsai and Lin (2017b) incor-
porated Bühlmann credibility into the Lee and Carter (1992) model, the Cairns et al.
(2006) model and the linear relational model of Tsai and Yang (2015) to improve
forecasting performance for the United Kingdom dataset. Moreover, Li and Lu (2018)
proposed a Bayesian non-parametric model for the mortality of a small population,
when a benchmark mortality table of a larger population is also available and serves
as part of the prior information. By using an adaptive smoothing procedure based
on the local likelihood, Salhi and Thérond (2018) proposed a methodology to adjust
the graduated mortality table based on credibility techniques and Gong et al. (2018)
highlighted the importance of using credibility procedures in individual life and annuity
business.

1.3 Multi-Population Mortality Models

Wilson (2001) observed a global convergence in mortality, setting a basis for the
development of multi-population mortality models. Models like the aforementioned
ones ignore the dependence structure across populations and may lead to isolated and
divergent forecasts among populations. On the other hand, considering the mortality
dependency across populations could eliminate this divergent behaviour and potentially
improve the forecasting performance by incorporating more data. The most widely
used extensions of the Lee-Carter model for multiple populations are the Carter and
Lee (1992) approach, which applies a common time-varying index to all populations
and the Li and Lee (2005) approach, which proposes a two-step procedure to model
mortality dynamics for multiple populations.

In the literature, we can find many contributions regarding multi-population mortal-
ity modelling. Li and Hardy (2011) assumed that there is a linear relationship between
the time varying index of a base population and the other populations and Cairns et al.
(2011) introduced a Bayesian framework to jointly model two populations. Hatzopoulos
and Haberman (2013) presented a coherent mortality modelling structure under the
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GLM framework for analyzing mortality dynamics using worldwide data from the
Human Mortality Database. D’Amato et al. (2014) extended the Lee-Carter model in
order to take into account the existence of dependence in mortality data across multiple
populations and Kleinow (2015) developed a common age effect model for multiple
populations. Li et al. (2015) generalized a single-population mortality model in different
possible ways to fit two or more populations and measured the basis risk in longevity
hedges. Wan and Bertschi (2015) proposed a coherent model for Swiss data. Tsai
and Wu (2018) incorporated the hierarchical credibility of Jewell (1975) to model
the mortality rates for multiple populations and Tsai and Zhang (2019) proposed a
multi-dimensional Bühlmann credibility approach to model mortality rates for multiple
populations.

1.4 Objectives and Thesis Outline

This thesis first investigates the fitting and forecasting performance of the most used
single and multi-population mortality models in the literature and then exploits actuarial
credibility modelling techniques in order to build novel mortality models, which could
potentially contribute to more accurate demographic projections. The rest of this thesis
is organized as follows:

Chapter 2 comparatively applies the most widely used mortality models in the
literature, for the first time, to Greek data. An analysis of their fitting behaviour was
conducted and the corresponding forecasting results were evaluated. More specifically,
we incorporated the Greek mortality data into seven mortality models under a common
age-period-cohort framework. The fitting performance of each model was thoroughly
evaluated based on information criteria values, as well as the likelihood ratio test, and
their robustness to period changes was investigated. In addition, parameter risk in
forecasts was assessed by employing bootstrapping techniques. For completeness,
projection results for both genders were also illustrated in pricing insurance-related
products.

Chapter 3 proposes a credibility regression approach with random coefficients to
model and forecast the mortality dynamics of a given population with limited data. Age-
specific mortality rates are modelled and extrapolation methods are utilized to estimate
future mortality rates. The results on Greek mortality data indicate that credibility
regression contributed to more accurate forecasts than those produced from the Lee
and Carter (1992) and Cairns et al. (2006). An application on pricing insurance-related
products is also provided.

Chapter 4 proposes a multi-level hierarchical credibility regression method to model
multi-population mortality data in a hierarchical form. Future mortality rates are derived
using different extrapolation techniques, while the forecasting performances between
the proposed model, the classical Lee-Carter model and two Lee-Carter extensions
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for multiple populations are compared for both genders of three northern European
countries (Ireland, Norway, Finland). Empirical illustrations show that the proposed
method produces more accurate forecasts, based on the mean absolute percentage
forecast error (MAPFE) values.

Chapter 5 presents a credibility formulation of the Lee-Carter method particularly
designed for multi-population mortality modelling. Differently from the standard
Lee-Carter methodology, where the Lee-Carter time index is assumed to follow an
appropriate time series process, herein, the period dynamics of mortality are estimated
under a crossed classification credibility framework. The forecasting performances
between the proposed model, the classical Lee-Carter model and two Lee-Carter ex-
tensions for multiple populations are compared for both genders of three developed
countries (United Kingdom, USA, Japan). The numerical results indicate that the
proposed model contributes to more accurate forecasts, based on the mean absolute
percentage forecast error (MAPFE) values. Finally, Chapter 6 presents the general
conclusions of this thesis.





Chapter 2

Stochastic Mortality Modelling under
the Age-Period-Cohort Framework

2.1 Introduction

During the last decades, a significant increase in life expectancy has been observed
worldwide. This change is mainly due to the human race dynamics, the improvement
of living conditions and the development of medical science. Due to these factors, life
expectancy in Greece has been increased from 70.2 to 78 years for males and 73.8 to
83.3 years for females during the period from 1961 to 2010, almost 9 years on average
for both genders in 50 years (http://ec.europa.eu/eurostat/data/database).

From a human point of view, this increase in life expectancy constitutes positive
news. However, for governments and annuity providers this is not necessarily the case,
because higher life expectancy increases future pension costs, as benefits have to be
provided over a longer period.

Especially, for the case of Greece, Tsimbos et al. (2011) presented estimates of life
expectancy at birth for males and females based on regional life tables, constructed for
the 51 administrative national departments for years 1991, 2001 and 2007. Kalogirou
et al. (2012) estimated appropriate mortality measures for the three main categories of
causes of death, for the 51 national prefectures and Verropoulou and Tsimbos (2016)
examined, for the first time in Greece, mortality by cause of death among immigrants.
Hatzopoulos and Haberman (2009) applied a parametrized approach, under the GLM
framework, to forecast mortality using Greek data for years 1957-2006 and Zafeiris and
Kostaki (2017) examined the mortality characteristics of the Greek population for years
1961 to 2014.

In general, actuaries and demographers are focused on the development of methods
that could estimate future mortality trends of a population. In this direction Hunt and
Blake (2015) introduced an age-period-cohort (APC) classification scheme for the
existing mortality models that was then deployed by Villegas et al. (2017). Our study

http://ec.europa.eu/eurostat/data/database
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builds upon these works to investigate how the APC framework can be implemented
with Greek data. A comparative analysis of the fitting methods is performed and the
corresponding forecasting results for the Greek population are illustrated. In addition,
forecasts are applied to price net premiums of insurance-related products.

The rest of this chapter is organized as follows. Section 2.2 illustrates an overview
of the stochastic mortality models that Greek data fit. Section 2.3 describes fitting proce-
dures, while Section 2.4 illustrates the mortality projection results for each model, along
with an application in pricing insurance-related products. Our findings in comparison
with those from the original papers are presented in Section 2.5. Concluding remarks
are given in Section 2.6.

2.2 Mortality Modelling

In this section, we review the most widely used mortality models in the literature that
belong to a common APC framework. According to Booth and Tickle (2008), mortality
forecasting methods have been mainly developed under three notions, the “expectation”,
the “explanation” and the “extrapolation”, each one of them having its positive and
negative points.

In expectation methods, mortality forecasting is based on an expert’s opinion, which
incorporates specific demographic or other relevant knowledge, but sometimes can
lead to subjectivity or bias errors. Explanatory methods are based on structural or
epidemiological models of certain causes of death involving known risk factors and
they are generally limited to short-term forecasting. Extrapolative is the most promising
and modern research method as it assumes that past mortality trends will continue in the
future. Hence, all the models that will be discussed in the following sections incorporate
the extrapolative method and they take the advantage of using time series models that
give a probabilistic confidence interval for the forecasts.

Recent research activity aims to investigate the similarities among stochastic models
in order to highlight their common properties. Aro and Pennanen (2011) fitted a
general modelling framework into Finnish data that allows for multiple risk factors and
guarantees that the parameter estimates are well-defined. Later, Hunt and Blake (2015)
proposed a general APC modelling structure that encloses most of the existing mortality
models. In the following, this APC framework of stochastic mortality modelling is
described and then, it is illustrated using Greek data.

2.2.1 The Age-Period-Cohort Framework

Let us denote the observed number of deaths at at age x and year t as dx,t and central
(at the middle of year t) population exposures as Ex,t . Initial exposures are then approx-
imated by E0

x,t ≈ Ex,t +(1/2)dx,t . Therefore, the one-year probability of death at age x
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and year t is defined by qx,t = dx,t/E0
x,t and the death rate by mx,t = dx,t/Ex,t . According

to Cairns et al. (2009), under the assumption that force of mortality remains constant
over each year of integer age and over each calendar year, death rate mx,t and force of
mortality µx,t

1 coincide. Above conventions are adopted in this study.
A stochastic APC model links a response variable (usually the one-year probability

of death qx,t or the force of mortality µx,t) to an appropriate predictor, dependent on age
x = x1, . . . ,xk, period t = t1, . . . ,xn, and cohort (year of birth) c = t1 − xk, . . . , tn − x1

for a population. This structure is given by the following formula

ηx,t = αx +
N∑

i=1

β
(i)
x κ

(i)
t +β

(0)
x γt−x , (2.1)

where ηx,t denotes the link function, which transforms a mortality rate measure into a
suitable modelling form, αx is the static age function that expresses the general shape
of mortality by age, β

(i)
x κ

(i)
t is a set of N age-period terms, determining the mortality

trends, where κ
(i)
t indicates the general pattern of mortality through the time, while β

(i)
x

shows this pattern of mortality change across ages and β
(0)
x γt−x is the age-cohort term,

where γt−x ≡ γc captures the effects of each year of birth c and β
(0)
x modifies this effect

across ages.
The choice of the response variable that is transformed by the link function ηx,t

depends on the format of mortality data. For instance, if the random variable of the
number of deaths at age x and year t, Dx,t ∼Binomial(E0

x,t ,qx,t) with E(Dx,t/E0
x,t) = qx,t ,

then initial exposures E0
x,t should be used. If random variable Dx,t ∼ Poisson(Ex,t µx,t)

with E(Dx,t/Ex,t) = µx,t , the central exposures Ex,t are used. Hence, under the Binomial
distribution assumption, the logit expression for the probability of death is used and
link function takes the form ηx,t = logitqx,t = log qx,t

1−qx,t
, while if a Poisson distribution

of deaths is assumed, then ηx,t = log µx,t . For details, see Hunt and Blake (2015) and
Villegas et al. (2017). We note that presence of the bilinear terms βxκt classifies the
APC modelling structure into the generalised non linear family of models, discussed by
Currie (2016). It has to be mentioned that models with smoothing functions will be not
considered in this study2.

Finally, we have to point out that in a mortality study, specific structural charac-
teristics of the dataset should affect model choice. For instance, if there is evidence
for cohort effects in our data, then a model with a cohort parameter should be selected.
Moreover, if we believe that there is randomness in mortality rates from one year to the
next, then our choice lies between models that incorporate more than one period factors.

1According to Cairns et al. (2009), the force of mortality can be viewed as the instantaneous death
rate at exact time t for a person aged exactly x at time t.

2For instance, Hyndman and Ullah (2007) used functional data analysis and penalized regression
splines in their modelling framework.
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2.2.2 Data and Assumptions

The observed number of deaths dx,t and the central exposures Ex,t for the Greek popula-
tion were directly obtained from the Human Mortality Database (HMD, 2017). In HMD,
Greek data are available by gender and age for the observation period of 1981 to 2013.
Moreover, as suggested by Haberman and Renshaw (2011), for consistency in model
comparison, all models should be fitted using the same distributional assumptions and
results should be shown using the same mortality measure. Therefore, we assume a
Binomial distribution of deaths using link function ηx,t = logitqx,t .

For our study, only the ages from x1 = 60 to xk = 89 will be considered, as most of
the models that will be discussed in next sections have been particularly designed for
higher ages. Also, in order to obtain more reliable fitting and forecasting conclusions,
only data of the historical period from t1 = 1981 to tn = 2010 were exploited, leaving
last three years3 out for backtesting reasons.

Furthermore, Cairns et al. (2009) point out that the reliability of the estimated cohort
parameters γt−x depends on the number of the observations for each birth year. Our
analysis was repeated by excluding cohorts with less than three to ten observations.
Especially for datasets with short periods of time, excluding more than five cohorts
seems to be excessive. Nevertheless, excluding male and female cohorts with less than
eight observations (1892–1899 and 1943–1950) provides a better balance between the
fitting and forecasting behaviour of Greek data. This choice gave us almost the same
fitting results in comparison with the fact of excluding less cohorts, but led us to more
reasonable forecasts, possibly due to avoiding overfitting of the cohort effect.

2.2.3 Age-Period-Cohort Mortality Models: A Review of Methods

In this subsection, we review the seven most widely used stochastic mortality models,
labelled Mi, i = 1, . . . ,7. The models of this section can be classified in the APC
framework (2.1), assuming a Binomial distribution of deaths with ηx,t = logitqx,t . The
seven models M1–M7 are listed in Table 4.1.

M1: The Lee-Carter Model

One of the most popular and widely applied models was proposed by Lee and Carter
(1992) to forecast the mortality rates of the United States. In its original version, the
model uses principal component analysis in order to decompose the bilinear age-period
matrix of log death rates into a single age parameter and a time index used in forecasting.
Many variants and extensions of this model followed. For some works related to the
Lee-Carter method and its modifications, we refer to Lee and Miller (2001), Booth et al.
(2002) and De Jong and Tickle (2006). In Booth et al. (2002), the Lee-Carter method

3Due to the limited availability of Greek data in HMD, years 2011–2013 correspond to a percentage
of 10% of the whole fitting year span.
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was embedded in a Poisson regression setting to model the Belgian death rates. The
Lee-Carter model predictor is given by ηx,t = αx +β

(1)
x κ

(1)
t , imposing the following

constraints
∑

x β
(1)
x = 1 and

∑
t κ

(1)
t = 0 to ensure identifiability of the model predictor.

M2: The Renshaw-Haberman Model

Renshaw and Haberman (2006) extended the Lee-Carter model by including a cohort
parameter to ηx,t = αx +β

(1)
x κ

(1)
t +β

(0)
x γt−x . Haberman and Renshaw (2011) investi-

gated certain complications of this model associated with predictions efficiency and
the capture of the cohort effect for both United States and England & Wales mortality
experience. These issues were resolved by using a simpler model predictor given by
ηx,t = αx +β

(1)
x κ

(1)
t + γt−x, assuming independence between the period and cohort pa-

rameters. This model will be considered in our application, incorporating the following
identifiability constraints

∑
x β

(1)
x = 1,

∑
t κ

(1)
t = 0 and

∑
c γc = 0 , where c is the set

of cohort years of birth that have been fitted in the model.

M3: The "Age-Period-Cohort" Currie Model

Currie (2006) presented in the actuarial literature a demographic model structure, firstly
discussed by Hobcraft et al. (1982). Its predictor is given by ηx,t = αx +κ

(1)
t + γt−x.

We can easily observe that this simple APC structure is a simplification of the previous
model, considering that β

(1)
x = 1. Hence, period and cohort parameter estimates can

be obtained as in M2 under the identifiability constraints
∑

t κ
(1)
t = 0,

∑
c γc = 0 and∑

c cγc = 0 .

M4: The Plat Model

After combining characteristics of other models, Plat (2009) proposed a three period
factor model ηx,t = αx+κ

(1)
t +(x− x̄)κ(2)

t +(x− x̄)+κ
(3)
t +γt−x, where x̄ is the average

age in the data. Then, he compared the fitting quality with datasets from the United
States, England & Wales and Netherlands and noticed that when the age range is limited
to higher ages (60 years or older), the reduced expression of his model predictor ηx,t =

αx +κ
(1)
t +(x− x̄)κ(2)

t + γt−x should be ideally used. Thus, latter model structure is
adopted for our application, using

∑
t κ

(1)
t = 0,

∑
t κ

(2)
t = 0,

∑
c γc = 0,

∑
c cγc = 0

and
∑

c c2γc = 0 constraints to eliminate identifiability issues.

M5: The Cairns-Blake-Dowd Model

In order to reduce the number of free parameters, Cairns et al. (2006) proposed a
parsimonious model for the data from England & Wales, incorporating only two period
factors in the absence of a static age function and cohort terms. This model predictor is
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given by ηx,t = κ
(1)
t +(x− x̄)κ(2)

t . This structure has no identifiability issues, hence no
constraints were taken into consideration.

M6: The "Cohort" Cairns et al. Model

Cairns et al. (2009) extended M5 to include a cohort effect as ηx,t = κ
(1)
t +(x− x̄)κ(2)

t +

γt−x. Note that this model structure is a reduced version of Plat’s structure without a
static age term, under the following constraints

∑
c γc = 0 and

∑
c cγc = 0 .

M7: The "Quadratic" Cairns et al. Model

A more complicated structure for M6 was introduced by Cairns et al. (2009), which
includes an additional quadratic age effect with a period term. The model predictor is
given by ηx,t = κ

(1)
t +(x− x̄)κ(2)

t +
(
(x− x̄)2 − σ̂

2
x
)
κ
(3)
t + γt−x , where the constant σ̂

2
x

is the mean of (x− x̄)2. This model is identifiable under the transformations
∑

c γc = 0,∑
c cγc = 0 and

∑
c c2γc = 0 .

Finally, another extension of M6 with a decreasing cohort effect was also discussed
in Cairns et al. (2009), given by ηx,t = κ

(1)
t +(x− x̄)κ(2)

t +(xd − x)γt−x, where xd is a
constant parameter and its predictor is identifiable under

∑
c γc = 0. Unfortunately,

this model revealed some dangers associated with its use, according to Cairns et al.
(2011), where it led to very implausible results in forecasting the United States male
mortality. Hence, due to the above issues, this model structure will not be considered in
this study4.

Table 2.1 Structure overview of M1 −M7 mortality models.

Model Structure Original Papers

M1 logitqx,t = αx +β
(1)
x κ

(1)
t Lee and Carter (1992)

M2 logitqx,t = αx +β
(1)
x κ

(1)
t + γt−x Renshaw and Haberman (2006)

M3 logitqx,t = αx +κ
(1)
t + γt−x Currie (2006)

M4 logitqx,t = αx +κ
(1)
t +(x− x̄)κ(2)

t + γt−x Plat (2009)

M5 logitqx,t = κ
(1)
t +(x− x̄)κ(2)

t Cairns et al. (2006)

M6 logitqx,t = κ
(1)
t +(x− x̄)κ(2)

t + γt−x Cairns et al. (2009)

M7 logitqx,t = κ
(1)
t +(x− x̄)κ(2)

t +((x− x̄)2− σ̂
2
x )κ

(3)
t +γt−x Cairns et al. (2009)

4As Hunt and Blake (2015) point out, in practice, M7 has been proved the most popular extension
of the original Cairns et al. (2006) model, since it gives a better fit than M6, while the age function for
the cohort parameters in M8 may be more complicated to fit data due to the estimation of the additional
constant parameter xd .
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2.3 Model Fit

In this section, we describe the fitting methods whereby model parameters can be
estimated. Lee and Carter (1992) estimated model parameters using singular value
decomposition (SVD) in the context of least squares fitting method, while Renshaw
and Haberman (2003) minimised the deviance of their predictor structure. Following
Brouhns et al. (2002), we estimate age, period and cohort parameters by maximising
model’s likelihood. Under the assumption of a Binomial distribution, log-likelihood for
models M1 - M7 is given in Villegas et al. (2017) as

L(dx,t) =
∑
x,t

ωx,t

{
dx,t log

(
d̂x,t

E0
x,t

)
+(E0

x,t −dx,t) log
(

E0
x,t − d̂x,t

E0
x,t

)
+ log

(
E0

x,t
dx,t

)}
, (2.2)

where E0
x,t is the initial exposure, while f−1 now denotes the inverse link function of

f (u) = logitu. Then, the expected number of deaths for each model is given by

d̂x,t = E0
x,t f−1

(
αx +

N∑
i=1

β
(i)
x κ

(i)
t + γt−x

)
, (2.3)

with N = 1 for M1 - M3, N = 2 for M4 - M6 and N = 3 for M7 and the prior weights ωx,t

are defined as

ωx,t =

{
0, if a (x, t) data cell is omitted,
1, if data cell is included.

(2.4)

For the implementation of mortality models, there are various R-packages in the
literature. In particular, the standard Lee-Carter model and some of its extensions
are included in the “demography” (Hyndman et al., 2014) package, while Butt et al.
(2014) developed the “ilc” package that contains the Renshaw-Haberman family related
models. Turner and Firth (2015) provided the “gnm” package, which facilitates the
fitting procedure and the parameters estimation of generalized nonlinear models and
Villegas et al. (2017) introduced the powerful “StMoMo” package that incorporates all
the fitting algorithms that we used in this chapter.

It is worth mentioning that when we firstly fitted M2 to Greek female data, κ
(1)
t

showed an upward trend compared to decreasing γt−x values. This is the result of the
well-known identifiability issues of the Renshaw-Haberman model. To overcome this
issue, we considered an additional constraint for the cohort parameter, according to
Hunt and Villegas (2015).

We also note that fitting models M1–M4 under the Poisson assumption (ηx,t =

log µx,t), as they were firstly adjusted in original papers, gave us similar parameter
estimates. In addition, robustness of parameter estimates was examined by using two
different fitting periods of data: 1981–2000 and 1981–2010. Figures 2.1–2.7 illustrate
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the maximum likelihood estimates under the Binomial assumption for models M1–
M7 respectively, for Greek males and females, aged 60–89. Solid lines correspond
to parameter estimates for the fitting period 1981–2010, while dotted lines for the
period 1981–2000. In the following, we give some explanatory comments on parameter
estimates.

2.3.1 Parameter Estimates

The αx estimates (Figure 2.1) show an almost linear upward trend for both genders,
which is similar for models M2–M4, therefore it is omitted from Figures 2.2–2.4. The
estimates for κ

(1)
t decrease in every mortality model, indicating a general mortality

improvement for both genders over the time.
For each one of the (five) models that incorporate a cohort parameter, estimates

cannot be safely interpreted as they depend on the whole model setting, including
possible interactions with κ

(2)
t , κ

(3)
t parameters and the corresponding age effects. More

precisely, cohort estimates of M2 (Figure 2.2), M3 (Figure 2.3), M6 (Figure 2.6) and M7

(Figure 2.7) show an increase until year 1915 and decreasing fluctuations for the rest of
the cohort years, while M4 cohort estimates (Figure 2.4) fluctuate over the entire period.

2.3.2 Robustness

As Cairns et al. (2009) pointed out, an important property of a model is the robustness
of its parameter estimates relative to changes in the range of fitted data. That is,
parameter estimates should not change significantly when fitting to a shorter data range.
Consequently, a possible lack of robustness for a model means that is sensitive to
changes in the period of fitted data and brings into question the appropriateness of its
use for projections or other relevant applications that wholly rely on them.

Dotted lines in Figures 2.1–2.7 indicate that none of the seven models suffers
from serious robustness issues. However, use of a fitting range with less data results
to an abrupt increase of β

(1)
x female estimates (bottom-left panel of Figure 2.2) and

that remains unchanged even if we repeated model fit, considering less cohorts to be
excluded. On the contrary, models M5 (Figure 2.5) and M6 (Figure 2.6) seem to be the
most robust ones for both genders.
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Figure 2.1 M1: αx, β
(1)
x and κ

(1)
t estimated parameters for males (top panels) and females

(bottom panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 2.2 M2: β
(1)
x , κ

(1)
t and γc estimated parameters for males (top panels) and females

(bottom panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 2.3 M3: κ
(1)
t and γc estimated parameters for males (top panels) and females (bottom

panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 2.4 M4: β
(1)
x , κ

(1)
t and γc estimated parameters for males (top panels) and females

(bottom panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 2.5 M5: κ
(1)
t and κ

(2)
t estimated parameters for males (top panels) and females (bottom

panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 2.6 M6: κ
(1)
t ,κ

(2)
t and γc estimated parameters for males (top panels) and females

(bottom panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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Figure 2.7 M7: κ
(1)
t ,κ

(2)
t ,κ

(3)
t and γc estimated parameters for males (left panels) and females

(right panels), aged 60–89, fitted in 1981–2010 (solid lines) and 1981–2000 (dotted lines).
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2.3.3 Goodness of Fit Diagnostics

A model’s goodness of fit is measured by the scaled residual deviance between the
observed and the fitted data, which depends on the chosen distributional assumption. As
discussed in Pitacco et al. (2009), lack of randomness in the residuals patterns indicates
the inability of a model to capture specific age, period or cohort effects.

Under the Binomial distribution assumption of deaths, residual deviance for each
model is defined by Debón et al. (2010) as

D(dx,t , d̂x,t) =
∑
x,t

dev(x, t) =
∑
x,t

2ωx,t

{
dx,t log

(
dx,t

d̂x,t

)
+(E0

x,t −dx,t) log
(

E0
x,t −dx,t

E0
x,t − d̂x,t

)}
.

Then, standardised deviance is given by Pitacco et al. (2009) as

rx,t = sign(dx,t − d̂x,t)

(
dev(x, t)

φ̂

)1/2

. (2.5)

The weights ωx,t in (2.3.3) are defined as in (2.4) and

φ̂ =
D(dx,t , d̂x,t)

ν
,

where ν expresses the degrees of freedom of the model (the number of the observations
minus the number of the model parameters).

Figures 2.8–2.14 plot the residuals deviance against age, period (calendar year) and
cohort (year of birth) for models M1–M7, fitted for ages 60–89 of period 1981–2010 for
males and females. According to the structural features of each model, we can make
some comments.

• The evident dispersion of residuals in the right panels of Figures 2.8 and 2.12
reveal the inability of models M1 and M5, respectively to capture the cohort effect.

• The strong patterns, appeared in left panels of Figures 2.12 and 2.13 illustrate the
weakness of models M5 and M6 respectively to capture the age effects, especially
for females.

• All the models capture effectively the period effects.
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Figure 2.8 Residuals deviance of M1 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.
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Figure 2.9 Residuals deviance of M2 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.
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Figure 2.10 Residuals deviance of M3 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.
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Figure 2.11 Residuals deviance of M4 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.
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Figure 2.12 Residuals deviance of M5 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.
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Figure 2.13 Residuals deviance of M6 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.



2.3 Model Fit | 23

60 65 70 75 80 85 90

-3
-2

-1
0

1
2

3

age

re
si

du
al

s

1980 1985 1990 1995 2000 2005 2010

-3
-2

-1
0

1
2

3

calendar year

re
si

du
al

s

1890 1900 1910 1920 1930 1940 1950

-3
-2

-1
0

1
2

3

year of birth

re
si

du
al

s

60 65 70 75 80 85 90

-3
-2

-1
0

1
2

3

age

re
si

du
al

s

1980 1985 1990 1995 2000 2005 2010

-3
-2

-1
0

1
2

3

calendar year

re
si

du
al

s

1890 1900 1910 1920 1930 1940 1950

-3
-2

-1
0

1
2

3

year of birth

re
si

du
al

s

Figure 2.14 Residuals deviance of M7 for males (top panels) and females (bottom panels) for
period 1981–2010 and ages 60–89 in Greece.

Information Criteria

Generally, a better fit is expected from models with more parameters. According to
Haberman and Renshaw (2011), an alternative way to address this conjecture is to
penalize the model parameters using AIC (Akaike, 1974) and BIC (Schwarz, 1978)
information criteria for each model. In addition, Hurvich and Tsai (1989) derived a
correction of the Akaike criterion, the AIC(c), which is more suitable for small samples.
Therefore, we use AIC, AIC(c) and BIC, which are defined for Mi, i = 1, . . . ,7 as

AICi(c) = AICi +
2ki(ki +1)
n− ki −1

, with AICi = 2ki −2log L̂i

and
BICi = (logn)ki −2log L̂i ,

where L̂i is the maximum likelihood estimate, ki is the number of the effective param-
eters5 estimated by Mi and n is the number of the observations. Smaller AIC, AIC(c)
and BIC values indicate a better model fitting. Table 5.2 presents the log likelihood
estimates along with the number of the effective parameters and the corresponding AIC,
AIC(c) and BIC values of M1–M7 (ranking order in brackets), for males and females.

5The sum of the estimated parameters minus those that reflect each model’s constraints.
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Table 2.2 The log likelihood and the number of the effective parameters along with AIC(c),
AIC and BIC values (ranking order in brackets) of the mortality models for males and females.

Males

Model Log Likelihood
Effective

AIC AIC(c) BIC
Parameters

M1 −4487.643 88 9151.287(7) 9172.483(7) 9566.560(7)
M2 −4191.779 129 8641.558(4) 8689.610(4) 9250.311(4)
M3 −4218.961 100 8637.922(3) 8665.708(3) 9109.823(2)
M4 −4202.953 128 8661.907(5) 8709.151(5) 9265.940(5)
M5 −4501.146 60 9122.291(6) 9131.835(6) 9405.432(6)
M6 −4209.024 101 8620.048(2) 8648.429(2) 9096.669(1)
M7 −4160.547 130 8581.094(1) 8629.960(1) 9194.565(3)

Females

M1 −4980.632 88 10,137.265(6) 10,158.461(6) 10,552.538(6)
M2 −4254.321 129 8766.643(3) 8814.694(3) 9375.395(3)
M3 −4367.542 100 8935.085(4) 8962.870(4) 9406.986(4)
M4 −4235.015 128 8726.030(2) 8773.275(2) 9330.064(2)
M5 −5279.019 60 10,678.038(7) 10,687.581(7) 10,961.178(7)
M6 −4474.985 101 9151.969(5) 9180.349(5) 9628.590(5)
M7 −4209.487 130 8678.975(1) 8727.841(1) 9292.447(1)

In line with BIC male results, M6 is on top, M3 follows and M7 is third, while AIC
and AIC(c) male rankings coincide, with M7, M6, M3 being on top. Note that BIC
penalizes model parameters stronger than AIC and AIC(c), we therefore expect to rank
better models containing less parameters. For females, all information criteria coincide
to M7, M4 and M2 rank order. Unsurprisingly, M1 and M5 models hold the worst criteria
ranking for both genders, indicating that cohort effect must be taken into account in
Greek male and female mortality modelling.

Likelihood-Ratio Test

In Table 4.1, we can easily observe that some models are special cases of others. More
specifically models M1 and M3 are nested within M2, M3 in M4, M5 nests in M6 and
M7 and finally, M6 is nested within M7. In order to test the null hypothesis that the
nested model is the correct versus the alternative hypothesis that the more general is
correct, we follow Cairns et al. (2009) in using the Likelihood Ratio (LR) test. Six pairs
of tested models and their statistics are presented for both genders in Table 5.3. LR
statistic is given by ψ

LR = 2log L̂2
L̂1
, where L̂2 is the maximum likelihood estimate of the

general model and L̂1 of the nested model, while ψ
LR approximates a χ

2 distribution,
with n2 − n1 degrees of freedom, where n2 are the degrees of the general model and n1

of the nested model. For each pair of models in Table 5.3, null hypothesis is rejected in
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a significance level α , since ψ
LR > χ

2
(n2−n1),α

or the p-value = 1−F
χ2
(n2−n1)

(ψLR). Our

testing results confirm information criteria rankings, suggesting that models with more
parameters fit on Greek data better than more parsimonious models.

Table 2.3 Likelihood ratio test statistics for pairs of nested models (H0) within general models
(H1).

Males

HHH000: Nested Model HHH111: General Model
Likelihood Ratio

Degrees of Freedom ppp-Value
Test Statistic

M1 M2 591.730 41 <0.0001
M3 M2 54.364 29 <0.0001
M3 M4 32.015 28 <0.0001
M5 M6 584.240 41 <0.0001
M5 M7 681.200 70 <0.0001
M6 M7 96.955 29 <0.0001

Females

M1 M2 1452.600 41 <0.0001
M3 M2 226.440 29 <0.0001
M3 M4 265.050 28 <0.0001
M5 M6 1608.100 41 <0.0001
M5 M7 2139.100 70 <0.0001
M6 M7 530.990 29 <0.0001

2.4 Mortality Projection

In this section, we estimate future mortality rates using models M1–M7 for both genders.
Projection methods are based on the extrapolation of period and cohort parameters
for each model fitted on Greek data. Currie (2016) stated that the key point in order
to obtain as accurate as possible mortality forecasts is to select the most appropriate
time series models that reflect to period and cohort dynamics for a given population. In
similar comparative studies, Cairns et al. (2011) and Haberman and Renshaw (2011)
modelled period indices using a multivariate random walk with a drift and cohort indices
with univariate ARIMA models.

In our case, we thoroughly selected an appropriate univariate ARIMA model for
each period and cohort index over a range of candidate models, according to KPSS
(Kwiatkowski et al., 1992), ADF (Dickey and Fuller, 1979) and PP (Phillips and Perron,
1988) unit root tests and the information criteria values. More precisely, our choice was
based on time series overall performance against AIC, AICc and BIC penalized scores.
Discordance issues between criteria values were addressed by preferring simpler time
series models on grounds of parsimony. Therefore, κt’s in models M2, M3, M4, M6 and
M7 are assumed to be independent of the corresponding γc’s for each mortality model,
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following respectively univariate ARIMA(p,d,q) processes of the forms

(1−φ1B−·· ·−φpBp)(1−B)d
κt = δ +(1+θ1B+ · · ·+θqBq)et , (2.6)

(1−φ
′
1B−·· ·−φ

′
pBp)(1−B)d

γc = δ
′
+(1+θ

′
1B+ · · ·+θ

′
qBq)e

′
c , (2.7)

where Bd is a time lag operator (also known as back-shift operator) that shifts data d
periods back, δ and δ

′
are constant drift parameters, φ1, · · · ,φp and φ

′
1, · · · ,φ

′
p are the

autoregressive coefficients with φp ̸= 0, φ
′
p ̸= 0, while θ1, · · · ,θq and θ

′
1, · · · ,θ

′
q are the

moving average parameters with θq ̸= 0, θ
′
q ̸= 0 and et , e

′
c are white noise processes.

Tables 2.4 and 2.5 present the selected ARIMA models for period and cohort indices,
respectively for males and females. For all models period indices are assumed to be
modelled independently. Also remind that M1 and M5 do not incorporate a cohort index.

Time series equations (2.6) and (2.7) were simulated to produce 1000 trajectories for
future values of the period κ̂tn+s and the cohort γ̂tn+s−x indices, where s = 1,2, · · · ,20
denotes the years of the forecasting horizon. Then, future simulated mortality values
are extracted using

ˆlogitqx,tn+s = αx +
N∑

i=1

β
(i)
x κ̂

(i)
tn+s + γ̂tn+s−x ,

or

q̂x,tn+s =
exp(αx +

∑N
i=1 β

(i)
x κ̂

(i)
tn+s + γ̂tn+s−x)

1+ exp(αx +
∑N

i=1 β
(i)
x κ̂

(i)
tn+s + γ̂tn+s−x)

, (2.8)

where tn = 2010 is the last year of the fitting period and ˆlogitqx,tn+s denotes the logit-
transform of future probabilities of death for each age x for models M1–M7.

Short-term male and female forecast errors of period 2011–2013 were extracted for
models M1–M7, while for the sake of comparison, extrapolation was firstly performed
by using fitted jump-off rates6 and secondly by using actual rates for the year 2010
(Table 2.6), taken directly from HMD. Measures show that models M2, M3, M4 and M6

produce better forecasts for both genders (ranking order in brackets), either by using
fitted or actual jump-off rates. Especially, when fitted rates are used, models M2 and M3

distinguish for both genders, while for actual rates M4 and M3 are dominant for males
and M6 outperforms for females. In any case, all of the three error measures give the
higher error values for M1, M5 and M7, indicating the presence of cohort effects in male
and female mortality indices that cannot be captured by models M1, M5 and a possible
overfitting behaviour of M7.

6The probabilities of death in the last year of the fitting period.
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Table 2.4 Selected ARIMA(p,d,q) models for the period index κ
(i)
t , i = 1,2,3 of male and

female mortality models.

Males

Model κ
(1)
t κ

(2)
t κ

(3)
t

M1 ARIMA(0,2,2) —– —–
M2 ARIMA(0,1,1) with drift —– —–
M3 ARIMA(1,1,0) with drift —– —–
M4 ARIMA(0,2,2) ARIMA(2,1,0) with drift —–
M5 ARIMA(1,2,1) ARIMA(2,1,0) with drift —–
M6 ARIMA(0,2,2) with drift ARIMA(0,1,1) with drift —–
M7 ARIMA(1,2,1) ARIMA(2,2,0) ARIMA(0,1,1) with drift

Females

Model κ
(1)
t κ

(2)
t κ

(3)
t

M1 ARIMA(1,1,0) with drift —– —–
M2 ARIMA(3,1,0) with drift —– —–
M3 ARIMA(3,1,0) with drift —– —–
M4 ARIMA(1,1,0) with drift ARIMA(1,1,0) with drift —–
M5 ARIMA(0,2,2) ARIMA(0,1,0) with drift —–
M6 ARIMA(0,1,1) with drift ARIMA(0,1,1) with drift —–
M7 ARIMA(2,1,0) with drift ARIMA(2,2,0) ARIMA(0,1,1) with drift

Table 2.5 Selected ARIMA(p,d,q) models for the cohort index γc of male and female mortality
models.

Model γc for Males γc for Females

M2 ARIMA(2,1,0) ARIMA(2,1,1) with drift
M3 ARIMA(0,0,1) ARIMA(4,1,1)
M4 ARIMA(0,0,2) ARIMA(4,1,1)
M6 ARIMA(0,1,3) ARIMA(3,0,2)
M7 ARIMA(0,0,1) ARIMA(4,0,1)

The predictive power of mortality models was evaluated by measuring the differ-
ences (errors) between the observed and the forecasted values for the same period. For
the first three out-of-sample years of projection (tn = 2010, s = 1,2,3), in which Greek
mortality data are available in HMD, forecast accuracy of models M1–M7 can be evalu-
ated by averaging the mean absolute error (MAE) and the mean absolute percentage
error (MAPE) values over the 3-years period for ages 60 to 89, defined by

MAEavg =
1

3× (89−60+1)

3∑
s=1

89∑
x=60

∣∣q̂x,2010+s −qx,2010+s
∣∣×100 , (2.9)



28 | Stochastic Mortality Modelling under the Age-Period-Cohort Framework

MAPEavg =
1

3× (89−60+1)

3∑
s=1

89∑
x=60

∣∣∣∣ q̂x,2010+s −qx,2010+s

qx,2010+s

∣∣∣∣ . (2.10)

Table 2.6 Averaged values (ranking order in brackets) of MAE and MAPE measures of the
forecasting period 2011–2013 using fitted or actual jump-off rates for males and females.

Fitted Jump-off Rates

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEavg 0.332(6) 0.251(1) 0.253(2) 0.287(3) 0.327(5) 0.295(4) 0.346(7)
MAPEavg 10.194(4) 6.496(1) 6.583(2) 9.385(3) 10.935(6) 10.559(5) 15.697(7)

Females

MAEavg 0.207(4) 0.147(1) 0.165(2) 0.219(5) 0.234(6) 0.198(3) 0.281(7)
MAPEavg 10.363(3) 6.052(1) 7.981(2) 12.239(5) 13.396(6) 11.216(4) 22.340(7)

Actual Jump-off Rates

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEavg 0.273(6) 0.213(3) 0.208(2) 0.192(1) 0.289(7) 0.237(4) 0.247(5)
MAPEavg 6.780(5) 5.222(2) 5.086(1) 5.371(3) 6.916(6) 6.020(4) 8.545(7)

Females

MAEavg 0.213(6) 0.180(3) 0.168(2) 0.196(4) 0.200(5) 0.165(1) 0.250(7)
MAPEavg 7.073(5) 5.570(2) 5.336(1) 6.225(4) 7.283(6) 5.866(3) 11.818(7)

Long-term mortality projections for a 20 year horizon ahead were obtained using
(2.8) with actual jump-off rates for the seven mortality models, incorporating 1000
simulation trajectories of the selected period and cohort indices. The simulated one
year probabilities of death (in logarithmic scale) for models M1–M7 are illustrated for
both genders in Figure 2.15.

Plotting results reveal the appropriateness of a mortality model for long-term fore-
casting. In addition, according to Cairns et al. (2011); Villegas et al. (2017) differences
in uncertainty levels of each model indicates the significance of model risk in mortality
forecasting.

Figure 2.15 shows that M1, M2 and M3 forecasts seem to be implausible for both
genders, since fans at age 85 are notably narrower than at age 65. Furthermore, M4 and
M6 fans at age 75 show a weak, but not significant increase for both genders, while fans
at age 85 show some decreasing fluctuations. On the other hand, parsimonious model
M5 performs well in general for both genders. Finally, female fans of model M7 are
narrower age 75 and 85 than at 65 and show an unreasonable increase in older ages.
This is mainly because forecasts are linked to the estimated cohort effect of Figure 2.7
that exhibits a steep, upward and linear trend between cohort years 1930 and 1940.
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Fig. 2.15 Cont.
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Figure 2.15 Long-term mortality projection results at ages x = 65 (bottom lines), x = 75 (middle
lines) and x = 85 (top lines) derived from models M1–M7 fitted to males (left panels) and females
(right panels) for ages 60–89 of the period 1981–2010. The shades regions in the projection
period 2011–2030 denote the 50%, 80% and 95% prediction intervals.
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2.4.1 Assessing Parameter Risk

We observe that mortality projections obtained with stochastic models incorporate only
the forecast error that arises from the estimation of the period and the cohort indices,
ignoring the effects of the so called parameter risk.

Especially, for countries with limited data experience such as Greece, use of boot-
strapping techniques is required to address this issue. Therefore, we exploit the advan-
tages of a residual bootstrapping method to assess the parameter uncertainty in mortality
projections for the seven models, described in the previous sections.

In their study, Renshaw and Haberman (2008) proposed a residual bootstrapped
method to accommodate uncertainty in estimating the parameters of the Lee-Carter
model under the Poisson assumption of deaths. In our case, we produce bootstrap
samples under the Binomial distribution assumption, following a slightly modified
approach described by Debón et al. (2010).

Simulations were carried out using “StMoMo” R-package and 1000 trajectories were
generated to compare the prediction intervals of the forecast error and the parameter
estimation uncertainty of projections. Figure 2.16 illustrates for both genders the 95%
prediction intervals for the probabilities of death at ages x = 65, x = 75 and x = 85
for models M1–M7, fitted to Greek data for ages 60–89 of the period 1981–2010. The
historical rates are denoted by thick dots, solid lines denote the corresponding fitted
rates and dot-dashed lines depict the 95% confidence intervals including parameter
uncertainty. For the projection period 2011–2030, dashed lines represent the central
forecast values and dot lines show the 95% prediction intervals excluding parameter
uncertainty. The dot-dashed lines depict the 95% prediction intervals accounting for
parameter uncertainty.

Figure 2.16 shows an evident parameter uncertainty in the projection period for
males (left panels) of models M2 (age 85) and M7 (ages 65 and 85). Parameter variability
is also observed for females of the same models (right panels), with an implausible
upward trend for M7 at age 75 and 85, which indicates the inappropriateness of this
model to forecast female mortality at higher ages.
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Fig. 2.16 Cont.
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Figure 2.16 95% prediction intervals for the probabilities of death at ages x = 65, x = 75 and
x = 85 for models M1–M7, fitted to males (left panels) and females (right panels) for ages 60–89
and the period 1981–2010 (thick dots). Solid lines denote the corresponding fitted rates and
dot-dashed lines depict the 95% confidence intervals including parameter uncertainty. For the
projection period 2011–2030, the central forecast values are given by dashed lines. Dashed
lines and dot lines show the 95% prediction intervals with and without parameter uncertainty,
respectively.
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2.4.2 Application in Insurance-Related Products

An appropriate mortality modelling method constitutes an essential tool in pricing in-
surance products. In addition, as Lovász (2011) point out, insurance-related application
results reflect the appropriateness of a model choice. In the following, we apply the
cohort mortality forecasts obtained from M1–M7 to calculate life insurance premiums,
similarly as in Tsai and Lin (2017b). Let us denote as A1

x,tn+1:K
the fully discrete life

insurance premium issued to an insured aged x in year tn +1, payable at the end of the
year of death, if it occurs within a term of K years and as A

x,tn+1:
1
K

the pure endowment

issued to an insured aged x in year tn +1, payable at the end of K years in case of being
alive. Net premiums (NP) are given respectively by

A1
x,tn+1:K

=

K−1∑
k=0

k px,tn+1 . qx+k,tn+1+k . (1+ i)−(k+1) , (2.11)

A
x,tn+1:

1
K
= K px,tn+1 . (1+ i)−K , (2.12)

where k px,tn+1 denotes the k-year survival probability for age x in year tn +1, while its
estimate is given by k p̂x,tn+1 = p̂x,tn+1. . . . .p̂x+k−1,tn+1+k−1, k = 1, . . . ,K −1 (similarly
for K p̂x,tn+1), i is the interest rate and 0 p̂x,tn+1 = 1.

Since mortality projection models are typically used for pension applications, it
would also be beneficial to see the performance of a life annuity product. Let us denote
as äx,tn+1:k a discrete life annuity-due of an insured aged x in year tn +1, payable on
an annual basis for up to K years, so long as insured survives. Actuarial present value
(APV) is given by

äx,tn+1:K =

K−1∑
k=0

k px,tn+1 . (1+ i)−k . (2.13)

Hence, we apply the estimated mortality rates obtained from M1–M7, fitted to 1981–
2000 with actual jump-off rates to calculate life insurance NPs and annuity APV for
ages 60–79 with K = 10, assuming i = 4%. As before, we use averaged MAE and
MAPE to evaluate the errors between forecasted NPs and those produced from the
observed mortality rates for the years 2001–2010. For each model, error measures for
life insurance premiums are given by

MAE(K=10)
x =

1
20

79∑
x=60

∣∣∣∣Â1
x,2001:10

−A1
x,2001:10

∣∣∣∣×100 , (2.14)

MAPE(K=10)
x =

1
20

79∑
x=60

∣∣∣∣∣∣
Â1

x,2001:10
−A1

x,2001:10

A1
x,2001:10

∣∣∣∣∣∣ . (2.15)
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Similarly, MAE and MAPE formulas are adjusted for pure endowment or annuity
products by replacing A1

x,tn+1:K
with A

x,tn+1:
1
K

or äx,tn+1:K in (2.14) and (2.15). Table

2.7 presents the averaged values of MAE and MAPE values in ranking order for a 10
year forecasted life insurance, pure endowment and life annuity using actual jump-off
rates for males and females, aged 60–79 in 2001–2010.

Table 2.7 Averaged values (ranking order in brackets) of MAE and MAPE measures for 10 year
forecasted life insurance, pure endowment and life annuity values using actual jump-off rates
for males and females, aged 60–79 in 2001–2010.

Life Insurance

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEx 2.222(6) 1.242(1) 2.284(7) 2.199(5) 2.020(4) 1.456(2) 1.799(3)
MAPEx 7.651(6) 5.536(1) 8.895(7) 7.626(5) 7.412(4) 5.557(2) 6.490(3)

Females

MAEx 1.605(6) 0.870(1) 0.885(2) 1.494(5) 0.914(3) 1.016(4) 2.150(7)
MAPEx 9.264(5) 6.404(1) 6.901(3) 9.268(6) 6.426(2) 6.930(4) 11.883(7)

Pure Endowment

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEx 1.605(6) 0.927(1) 1.666(7) 1.590(5) 1.451(4) 1.039(2) 1.293(3)
MAPEx 4.114(7) 2.190(1) 4.094(6) 4.064(5) 3.619(4) 2.531(2) 3.212(3)

Females

MAEx 1.198(6) 0.623(1) 0.651(2) 1.091(5) 0.690(3) 0.738(4) 1.556(7)
MAPEx 2.615(6) 1.282(2) 1.242(1) 2.250(5) 1.408(3) 1.565(4) 3.240(7)

Life Annuity

Males

Error M1 M2 M3 M4 M5 M6 M7

MAEx 7.711(6) 5.506(2) 8.132(7) 7.637(5) 6.781(4) 5.225(1) 5.924(3)
MAPEx 1.127(6) 0.785(2) 1.168(7) 1.112(5) 0.980(4) 0.748(1) 0.856(3)

Females

MAEx 5.484(6) 2.465(1) 2.944(2) 4.995(5) 3.254(4) 3.091(3) 6.466(7)
MAPEx 0.754(6) 0.325(1) 0.386(2) 0.673(5) 0.439(4) 0.416(3) 0.873(7)

Figure 2.17 illustrates the MAE and MAPE values against age for life insurance and
annuity products, respectively for males (left panels) and females (right panels) for the
top four models in ranking. According to MAE and MAPE values, models M2, M6 and
M7 produce better insurance-related forecasts for males, while M2, M3 and M5 are the
top ranked models for females. For both genders, measures show that M2 outperforms
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in aggregate. However, regarding its robustness (especially for female data) and taking
into account values of Table 2.7, a good insurance-related model choice should also
be M6 for males and M3 for females. This fact is also evident in Figure 2.17, where
absolute error and absolute percentage error values against age for the corresponding
models lie on the lower levels for all the insurance products.

2.5 Results

In this section, we summarize the fitting and forecasting results of this analysis and
our findings are compared with the corresponding results obtained from the original
papers. Our study shows that all the models capture effectively the period effects for
both genders. We can also notice that the most parsimonious models M1 and M5 do not
capture the cohort effect as it is illustrated in the right panels of male and female scatter
plots of residual deviance in Figures 2.8 and 2.12. Furthermore, models M5 and M6

seem to be inadequate to capture the age effects, especially for females (left panels in
Figures 2.12 and 2.13).

AIC and AIC(c) scores coincide to the fact that models M7, M6 and M3 outperform
in ordered ranking for males, while in the BIC rankings7 M6 is on top, M3 follows
and M7 is third. For females, all measure values show that M7 comes out first, M4

second and M2 follows. For both genders, models M1 and M5 have the worst criteria
ranking for both genders, lacking a cohort term that must be taken into account in Greek
male and female mortality modelling. Likelihood ratio results confirm the information
criteria ranking, indicating that the more complicated models M2, M4, M6 and M7 are
in aggregate more suitable for modelling Greek mortality.

Mortality projections derived from the seven models are illustrated for both genders
in Figure 2.15. Plotting results show that long-term forecasts from model M1, M2 and
M3 seem to be unreliable for both genders, since figures at age 85 are notably narrower
than at age 65. In addition, model M7 for females shows an implausible increase of
mortality rates at ages 75 and 85. However, forecast accuracy measures of Table 2.6
suggests that models M2, M3, M5 and M6 produce better short-term forecasts for both
genders.

Parameter uncertainty is evident in models M2 and M7 for both genders in higher
ages (Figure 2.16). Parameter variability is also observed in model M5 for females,
while while the implausible upward trend for M7 at age 75 and 85 raise some questions
regarding the appropriateness of this model to forecast Greek female mortality.

7Inconsistency in male ranking results is expected, since BIC criterion penalizes stronger models with
more parameters.
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Figure 2.17 Absolute error and absolute percentage error values of life insurance and annuity
products for the top four models in ranking for males (left panels) and females (right panels).

2.5.1 Comparison with Original Papers

Here, we present the commonalities and differences between estimation results of our
study and the corresponding findings obtained from the original papers.

Lee and Carter (1992) modelled the mortality rates of the entire United States
population for grouped ages 0–85+ of years 1933–1987. The same year, Carter and
Lee (1992) implemented their model for males and females separately, using the SVD
method to derive forecasts of the κ

(1)
t time index for a full range of grouped ages

0–85+ of the years 1933–1988. Fitted values of αx and β
(1)
x for Greek males and

females of our study show similar trends with the corresponding results obtained for
both genders of the United States population data. Likewise, comparing our estimates
with the corresponding Belgian results obtained from the Poisson Lee-Carter approach
of Brouhns et al. (2002), we observed that their maximum likelihood estimates of αx,
β
(1)
x and κ

(1)
t for ages 60–98 in the years 1960–1998 are in line with the Greek results,

especially for males, where the estimates lie between the same levels.
The Haberman and Renshaw (2011) model estimates obtained from fitting ages

55–89 of years 1961–2007 for England & Wales male data. Even if estimates show
similar patterns, they cannot be directly compared with our results, since authors used
different model constraints in their analysis (see Haberman and Renshaw, 2011, p. 37).
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The Currie (2006) model was initially fitted to selected assured lives, aged 20–
90, for the years 1947–2002. Estimates of αx are in accordance with our results for
both genders. The period component of the model shows an upward trend between
1950–1975, but after the year 1980, it complies with Greek patterns.

Plat (2009) fitted his model to three different data sets of males, for the United states
(ages 20–84, years 1961–2005), the England & Wales (ages 20–89, years 1961–2005)
and the Netherlands (ages 20–90, years 1951–2005). Estimated parameters αx and κ

(1)
t ,

κ
(2)
t and γt−x were illustrated only for the United States mortality data. Although his αx

and κ
(1)
t male estimates were based on a wide age range of data fitted onto his extended

model form, they totally agree with our corresponding values exported from the reduced
model form used for Greek data of ages 60–89. In the contrary, κ

(2)
t parameter estimates

have completely different trends for the entire common period, while the γt−x parameter
values show similar patterns with the Greek males between cohort years 1890–1930
(Figure 2.4).

Cairns et al. (2006) illustrated their model using England & Wales data of males,
aged 60–90, for the years 1961–2002. Their results show that κ

(1)
t estimated values

have a steep downward trend for the whole fitting period, while κ
(2)
t values follow

an opposite upward trend for the same years. Estimates of these two parameters are
obviously similar with the corresponding Greek results, obtained for ages 60–89 of
period 1981–2010. This is more evident for κ

(2)
t parameter, where its values lie between

the same levels for all countries.
The Cairns et al. (2009) “cohort” extension of the Cairns et al. (2006) model was

fitted to England & Wales (1961–2004) and United States (1968–2003) male data for
ages 60–89. κ

(1)
t and κ

(2)
t estimates for England & Wales data are in accordance with

the Greek values, showing a decreasing trend for the first parameter and an upward
trend for the second one, respectively. Cohort estimates lie between the same levels with
the Greek ones, with an exception after birth year 1935, where Greek cohort estimates
jump abruptly to higher levels. The corresponding κt results for the United States data
are quite similar, but the γt−x parameter estimates show a steep fall around the year
1920 in comparison with the derived Greek results.

The “quadratic” extension of the Cairns et al. (2006) model was illustrated in Cairns
et al. (2009) for the England & Wales (1961–2004) and the United States (1968–2003)
male data for ages 60–89. Although κ

(1)
t , κ

(2)
t and γt−x estimates for England &

Wales and United States males take similar values and show the same patterns with the
corresponding Greek population data, some differences are observed in the estimates
κ
(3)
t , where a steep, upward trend between the years 1985–2003 is evident for both

countries in contrast with the decreasing Greek values.
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2.6 Concluding Remarks

A comparative analysis of seven stochastic mortality models of a common APC frame-
work was conducted for Greek male and female data. The fitting behaviour of each
model was examined using specific criteria and the corresponding forecasting results
were presented. Fitting behaviour of each model was evaluated using AIC, AIC(c) and
BIC information criteria, as well as the likelihood ratio test. Models M3, M6 and M7 for
males and M2 , M4 and M7 for females were respectively distinguished for their fitting
performance.

Although in such analyses is highly important all of the considered models should
provide a good fit to historical data, it does not imply that a model which fits better the
historical data does necessarily give the best forecasting results. That point was also
underlined in similar studies that have been conducted for other datasets in the literature
(Cairns et al., 2011). Especially for the case of Greece, a cohort effect was identified in
the data that was accounted for the selection of the most appropriate mortality model.

The accuracy of the short-term forecasts was assessed by the MAE and the MAPE
error values. Backtesting results show that models M2, M3 and M4 for males and M2,
M3 and M6 for females provide with the most reliable short-term forecasts. Parameter
uncertainty was also identified in some cases (more evident in M2 for males and M7 for
females), indicating the inappropriateness of the corresponding models for long-term
forecasts.

In addition, parameter estimates for Greek data were compared with the correspond-
ing results obtained from the original papers, where each model was initially discussed
and implemented, revealing several commonalities in patterns.

The main contribution of this chapter is to be the first work in comparing the fitting
and the forecasting performance of the APC mortality models on Greek data, with
applications in pricing insurance-related products. Unfortunately, the limited availability
of historical data was an additional drawback for a more effective modelling.

Finally, animated Figures 2.18–2.24 illustrate the overall evolution of death rates for
each model as an alternative, interactive way to present our results. Animated figures
were created using the “animation” R-package. For instructions on using this package,
see Xie (2013).
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Figure 2.18 M1 for males and females.

Figure 2.19 M2 for males and females.

Figure 2.20 M3 for males and females.
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Figure 2.21 M4 for males and females.

Figure 2.22 M5 for males and females.

Figure 2.23 M6 for males and females.
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Figure 2.24 M7 for males and females.





Chapter 3

Credibility Regression Mortality
Models for Populations with Limited
Data

3.1 Introduction

An issue that sometimes appears in mortality modelling is that, for some countries,
there are too few data to fit. This issue affects the existing modelling methods, which
inevitably base their forecasts on population datasets of a limited historical period of
observations. In the literature, there are extensions of the Lee–Carter method that can
be utilized when dealing with limited datasets. For instance, Li et al. (2004) extended
the Lee–Carter model to be applied for Chinese and South Korean mortality data, which
are available at only a few points in time and at unevenly spaced intervals. Zhao (2012)
modified the Lee–Carter model by incorporating linearized cubic splines and other
additive functions to approximate the model parameters and forecast mortality for
short-base-period Chinese data. Also, Huang and Browne (2017) presented a stochastic
modification of the CMI (Continuous Mortality Investigation) model to project mortality
improvement rates for limited Chinese data using clustering analysis techniques.

Recently, some alternative modelling approaches have also been proposed as a tool
in mortality forecasting. Differently from the above Lee–Carter variants and extensions,
these approaches are based on credibility theory, aiming to model the period patterns
of limited mortality data for a specific age, using information from a wider age span.
Bühlmann (1967) established the theoretical foundation of modern credibility theory and
Hachemeister (1975) introduced a credibility regression model to estimate auto-mobile
bodily injury claims for various states in the USA.

Credibility regression has a long history in credibility literature, with applications
mainly in non-life insurance. De Vylder (1978) proposed credibility estimators for
the structural parameters in a more general regression model. Norberg (1980) pro-
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posed empirical credibility estimators under various model assumptions and established
asymptotic optimality. Ledolter et al. (1991) derived a credibility method that allows
for time-varying parameters in the process. Pitselis (2004) presented the relationship
between claim amounts and a set of explanatory variables into a credibility regression
model with cross-section and time effects, with applications for general insurance data.

Two recent contributions to modelling mortality under a credibility framework
were made by Tsai and Lin (2017a, 2017b). In the first paper, they applied Bühlmann
credibility to mortality data of Japan, the United Kingdom and the United States,
while, in the second one, they incorporated Bühlmann credibility into the Lee and
Carter (1992) model, the Cairns–Blake–Dowd model (Cairns et al., 2006) and the linear
relational model of Tsai and Yang (2015) to improve forecasting performance for the
Unitingdomed Kingdom dataset.

However, it has been observed that the age-specific mortality rates show a clear
downward trend over time. Moreover, when we have limited mortality data experience
for a specific age, but extensive data experience for the entire age range, the use of
credibility regression techniques should be preferred to capture mortality trends. Our
study aims to exploit the advantages of credibility regression compared with the most
widely used mortality models, as an alternative to Bühlmann credibility, to forecast the
mortality rates, especially for populations with limited data.

The rest of this chapter is organized as follows: Section 3.2 briefly reviews the
Lee–Carter, the Cairns–Blake–Dowd and the random coefficients regression models.
Section 3.3 proposes a credibility regression approach with random coefficients and
a special case with fixed coefficients to model mortality rates. Section 3.4 presents
the extrapolation methods used to estimate future mortality rates under the credibility
regression approaches. An empirical illustration using Greek male and female data is
presented in Section 3.5.1, in which forecasting performances of credibility regression,
and the Lee–Carter and Cairns–Blake–Dowd methods are evaluated with the MAFE
and RMSFE measures. A comparison between Bühlmann credibility and credibility
regression forecasting methods is also presented in Section 3.5.3 and an application on
pricing insurance-related products follows in Section 3.5.4. Finally, concluding remarks
are discussed in Section 3.6.

3.2 Mortality Modelling: A Review of Methods

In this section, we briefly review the Lee–Carter model, the Cairns–Blake–Dowd model
and the random coefficients regression models that will be utilized in next sections.
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3.2.1 The Lee–Carter Model

In its original form, the Lee–Carter (LC) model links the natural logarithm of the ob-
served mortality rates Yt,x = logm(t,x) for age x = x0, . . . ,xk−1 and year t = t0, . . . , tn−1

with the following model predictor

Yt,x = α
(1)
x +α

(2)
x κt + εt,x, (3.1)

where α
(1)
x is an age parameter that reflects the average mortality at age x, κt is a period

parameter which indicates the general level of mortality in year t and α
(2)
x is an age

parameter that indicates the deviation from the average mortality at age x, as the general
level of mortality changes. The errors εt,x are expected to be normally distributed, with
zero mean and constant variance, reflecting specific period and age effects not captured
by the model. Thus, after assuming that errors are independent and homoscedastic
with zero mean, Lee and Carter (1992) suggested a close approximation to the SVD
(Singular Value Decomposition) method, under the constraints

∑xk−1
x=x0

α
(2)
x = 1 and∑tn−1

t=t0 κt = 0, to obtain the following parameter estimates

α̂
(1)
x =

1
tn−1 − t0 +1

tn−1∑
t=t0

logm(t,x) , κ̂t =

xk−1∑
x=x0

[logm(t,x)− α̂
(1)
x ] ,

α̂
(2)
x =

∑tn−1
t=t0[logm(t,x)− α̂

(1)
x ]κ̂t∑tn−1

t=t0 κ̂2
t

.

Later on, to allow for heteroscedasticity in error variance, Brouhns et al. (2002)
assumed that D(t,x) follows a Poisson distribution with mean m(t,x) ·E(t,x). Under this
approach, age and period parameters are estimated by maximising the log-likelihood
function of (3.1). After choosing one of the above estimation approaches, period
estimates are extrapolated using time series methods. Lee and Carter (1992) suggested
a random walk with a drift parameter θ̂ to project period parameter for h = 1,2, . . . ,H
years ahead, according to κ̂tn−1+h = κ̂tn−1 + θ̂h. Then, projected κts are utilized along
with the estimates of age parameters α

(1)
x and α

(2)
x to obtain the following mortality

forecasts

Ŷtn−1+h,x = α̂
(1)
x + α̂

(2)
x κ̂tn−1+h = Ŷtn−1,x +(α̂

(2)
x θ̂)h, for h = 1,2, . . . ,H. (3.2)

3.2.2 The Cairns–Blake–Dowd Model

The Cairns–Blake–Dowd (CBD) model links the logit transformation of one-year
probabilities of death Yt,x = logitq(t,x) with the following model predictor

Yt,x = logitq(t,x) = κ
(1)
t +(x− x̄)κ(2)

t + εt,x, (3.3)
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where κ
(1)
t is a period parameter which indicates the general level of mortality in year

t and κ
(2)
t is a period parameter that shows how mortality affects each age, while x̄ is

the mean age of the considered fitting age interval and εt,x reflects specific effects not
captured by the model and is expected to be normally distributed, with zero mean and
constant variance. Again, we briefly present the estimates of the model parameters,
which can be obtained by regressing logitq(t,x) on (x− x̄) for each t

κ̂
(1)
t =

1
xk−1 − x0 +1

xk−1∑
x=x0

logitq(t,x) and κ̂
(2)
t =

∑xk−1
x=x0

[logitq(t,x)(x− x̄)]∑xk−1
x=x0

(x− x̄)2 .

Alternatively, Cairns et al. (2009) assumed that deaths follow a Poisson distribution
with mean m(t,x) ·E(t,x), where m(t,x) = − log[1− q(t,x)]. Then, the CBD model
parameters are obtained by maximizing the log-likelihood function of (3.3). Assuming
that period estimates are independent, each one of them is extrapolated using a random
walk with a drift parameter (θ̂i, i = 1,2) and then mortality forecasts for h = 1,2, . . . ,H
are obtained by

Ŷtn−1+h,x = (κ̂
(1)
tn−1

+ θ̂1h)+(x− x̄)(κ̂(2)
tn−1

+ θ̂2h) = Ŷtn−1,x +[θ̂1 +(x− x̄)θ̂2]h . (3.4)

Remark 3.1. We can easily observe that expressions in Equations (3.2) and (3.4) are
both linear functions of the forecasting horizon h, where their intercepts are equal to the
fitted rates of the last observed year and their slopes are the products of the estimated
age parameters with the drift terms.

3.2.3 The Random Coefficients Regression Model

Empirical data indicate that mortality in each age x = x0, . . . ,xk−1 decreases over time.
Especially in higher ages, mortality rates have been significantly improving over the
last few years. We are interested in a model structure able to capture the improvement
trends and describe the mortality evolution through time. For this reason, we consider a
regression structure with random coefficients, aiming to capture the underlying mortality
effects that are not included in the explanatory variables.

For each age x, the regression model with random coefficients is defined by Yt,x =

β1t,x+
∑p

k=2 βkt,xZkt,x+ε0t,x , for t = t0, t1, . . . , tn−1, where Yt,x is the response variable,
βkt,x, k = 1,2, . . . , p are the random coefficients and Zkt,x are the explanatory variables.
Then, each coefficient element can be decomposed in βkt,x = βk,x + εkt,x, for all t and
k, with βk,x and εkt,x being the fixed and random parts, respectively, assuming that
E(εkt,x) = 0, Var(εkt,x) = σ

2
k,x for all t and Cov(εkt,x,εk′ t ′ ,x) = 0 for k ̸= k

′
and t ̸= t

′
.

The above formulation means that the unknown regression coefficients can take different
values over an observed period. Actually, mortality dynamics for a specific age can
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vary over time, due to unknown or exogenous1 factors. For more details on regression
models with random coefficients, we refer to the works of Hildreth and Houck (1968),
Hsiao (1986) and Greene (2012).

The random coefficients regression model may be reduced to a fixed coefficients
model with heteroscedastic variances, defined as

Yt,x = β1,x +

p∑
k=2

βk,xZkt,x + vt,x, with vt,x = (ε0t,x + ε1t,x)+
∑p

k=2 Zkt,xεkt,x, (3.5)

where

E(vt,x) = 0, Var(vt,x) = (σ2
0,x +σ2

1,x)+
∑p

k=2 σ2
k,xZ2

kt,x and Cov(vt,x,vt ′ ,x) = 0, (3.6)

for all x and t, with t ̸= t
′
. We have to point out that error variances σ

2
0,x and σ

2
1,x

cannot be identified separately, while the sum (σ2
0,x +σ

2
1,x) can be. Therefore, without

loss of generality, σ
2
0,x is dropped and the above variance is simplified to Var(vt,x) =

σ2
1,x +

∑p
k=2 σ2

k,xZ2
kt,x. Note that variance heteroscedasticity is still present even if

σ
2
k,x = σ

2
x for k = 1,2, . . . , p, due to the existence of squared explanatory variables Z2

kt,x.

3.3 Credibility Regression Mortality Models

In this section, we propose a mortality modelling approach embedded, for the first
time, in a credibility regression framework with random coefficients. The parameter
estimation procedure is described and a special case with fixed coefficients is also
provided.

3.3.1 A Credibility Regression Approach with Random Coefficients

Denote D(t,x) as the observed number of deaths at age x in year t and E(t,x) as
the average population aged x during year t (also called as population exposure to
risk). Then, age-specific mortality rates m(t,x) are obtained by the ratio D(t,x)/E(t,x)
and one-year probabilities of death can be derived from the identity q(t,x) = 1−
exp[−m(t,x)], which is implied by the assumption of a constant force of mortality over
each year of integer age and over each calendar year.

We assume that response variable Yt,x refers to an appropriate transform (log or logit)
of a mortality measure

[
m(t,x) or q(t,x)

]
for age x = x0, . . . ,xk−1 of year t = t0, . . . , tn−1,

where variable x corresponds to consecutive integer ages (k in total) and t corresponds
to consecutive calendar years (n in total). We also consider Ax as an age-related random

1Medical, biological, environmental or other factors that affect mortality evolution of each corre-
sponding age over consecutive years are treated as unknown or exogenous due to the lack of specific
data.
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risk parameter, YYY x = (Yt0,x,Yt1,x, . . . ,Ytn−1,x)
′
as a mortality vector and ZZZx as the design

matrix of explanatory variables. We note that, in general, the design matrix could consist
of various explanatory variables that reflect mortality characteristics. For instance, in a
medical study, mortality may depend on various factors, such as the genetic background
of an individual aged x, the life style, the nutrition, the toxicity of the environment,
a possible infectious cause (bacteria, parasites, or fungi) or other socio-demographic
factors that should affect mortality dynamics. Therefore, the pair that describes mortality
evolution in age x is (Ax,YYY x), under the following assumptions:

(i) The pairs (Ax0,YYY x0), (Ax1,YYY x1), . . . , (Axk−1,YYY xk−1) are independent and Ax0, . . . ,

Axk−1 are independent and identically distributed.

(ii) E(YYY x|Ax) = ZZZxβββ (Ax), where ZZZx is a fixed n× p design matrix of full rank p (< n)
and βββ (Ax) is an unknown regression vector of length p.

(iii) Cov(YYY x|Ax) = diag
[
dt0t0(Ax), . . . ,dtn−1tn−1(Ax)

]
,

where dtt(Ax) = σ
2
1 (Ax)+

p∑
k=2

σ
2
k (Ax) Z2

kt,x, with σ
2
1 (Ax) = σ

2
01(Ax)+σ

2
11(Ax),

or in matrix formulation as

Cov(YYY x|Ax) =


σ

2
1 (Ax)+

p∑
k=2

σ
2
k (Ax) Z2

kt0,x 0
. . .

0 σ
2
1 (Ax)+

p∑
k=2

σ
2
k (Ax) Z2

ktn−1,x


.

The structural parameters are defined as follows

bbb = E(βββ (Ax)), ΦΦΦ = Cov[βββ (Ax)], sss2 = E[σσσ2(Ax)] = E
[(

σ
2
1 (Ax), . . . ,σ

2
p(Ax)

)′]
and ∆∆∆x = E[Cov(YYY x|Ax)].

(3.7)

In such a regression setting, ∆∆∆x has to be estimated. Consequently, instead of the
ordinary least squares method, regression coefficients are estimated with the generalised
least squares method (GLS). Then, an individual estimator of βββ (Ax) can be obtained by

β̂ββ x = (ZZZ
′
x∆∆∆

−1
x ZZZx)

−1ZZZ
′
x∆∆∆

−1
x YYY x and Cov(β̂ββ x|Ax) = (ZZZ

′
x∆∆∆

−1
x ZZZx)

−1. (3.8)
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Theorem 3.2. Under the above assumptions, the credibility estimator of βββ (Ax) is given
by

BBBRC
x =CCCx β̂ββ x +(III −CCCx) bbb, (3.9)

with
CCCx = ΦΦΦ(ΞΞΞx +ΦΦΦ)−1, (3.10)

where β̂ββ x is given in (3.8), bbb and ΦΦΦ are defined in (3.7), ΞΞΞx = E[Cov(β̂ββ x|Ax)] and III is
the p× p identity matrix.

Proof: The mean square error of (3.9) can be defined in terms of the norm ∥.∥2
E as

Q = ∥βββ (Ax)−BBBRC
x ∥2

E

= E{[βββ (Ax)−BBBRC
x ]

′
[βββ (Ax)−BBBRC

x ]} (3.11)

= E
[[

βββ
0(Ax)

]′
βββ

0(Ax)+(βββ 0
x)

′
CCC

′
x CCCx βββ

0
x − [βββ 0(Ax)]

′
CCCx βββ

0
x − (CCCx βββ

0
x)

′
βββ

0(Ax)

]
,

where βββ
0(Ax) = βββ (Ax)−bbb and βββ

0
x = βββ x−bbb . Using the product rule and differentiating

(3.11) with respect to matrix CCCx, we have

∂Q
∂ (CCCx)

= −2E
[
βββ

0(Ax)(βββ
0
x)

′
−CCCx βββ

0
x (βββ

0
x)

′]
. (3.12)

By substituting the values of βββ
0(Ax) and βββ

0
x and setting (3.12) equal to zero, we obtain

CCCx = E
{
[βββ (Ax)−bbb] [βββ x −bbb]

′}{
E
[
(βββ x −bbb)(βββ x −bbb)

′
]}−1

= Cov[βββ (Ax),βββ x] [Cov(βββ x)]
−1

=
{

E {Cov[βββ (Ax),βββ x|Ax]}+Cov{E[βββ (Ax)|Ax],E[βββ x|Ax]
}}

[Cov(βββ x)]
−1

= {0+Cov[βββ (Ax)]}{E[Cov(βββ x|Ax)+Cov[E(βββ x|Ax)]}−1,

which yields (3.10).
Then, the credibility estimator of future mortality rates Ytn−1+h,x, h = 1,2, . . . ,H may
be compactly written as

YYY n+h
x = ZZZn+h

x BBBRC
x ,

where ZZZn+h
x denotes the design matrix of future periods.

3.3.2 Estimation of Structural Parameters

To estimate the structural parameters of the random coefficients credibility regres-
sion model, we can proceed similarly as in Hildreth and Houck (1968). Let rrrx =

(rt0,x, . . . ,rtn−1,x)
′
be the vector of the least squares residuals from the regression of YYY x
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on ZZZx given Ax, which is obtained by

rrrx = YYY x −ZZZxβ̂ββ x = MMMxvvvx, (3.13)

where β̂ββ x = (ZZZ
′
xZZZx)

−1ZZZ
′
xYYY x is the least squares estimator of coefficients in ordinary

regression, MMMx = III −ZZZx(ZZZ
′
xZZZx)

−1ZZZ
′
x is a symmetric and idempotent matrix of order

n×n and vvvx = YYY x −ZZZx βββ (Ax) is the error term. Then, given Ax, the variance matrix of
rrrx, via (3.6), becomes

E(rrrxrrr
′
x|Ax) = E(MMMxvvvxvvv

′
xMMMx|Ax), (3.14)

from which we can get
E(ṙrrx|Ax) = ṀMMxŻZZxσσσ

2(Ax), (3.15)

where ṙrrx =(r2
t0,x, . . . ,r

2
tn−1,x)

′
, ṀMMx = {m2

ts,x}t,s=t0,...,tn−1 and ŻZZx = {Z2
kt,x}k=1,...,p, t=t0,...,tn−1

are the Hadamard products of matrices rrrx, MMMx and ZZZx, respectively, while σσσ
2(Ax) is as

defined in (3.7). In addition, (3.15) implies that, for given Ax, least squares residuals ṙrrx

are regressed on σσσ
2(Ax), which yields

ṙrrx = ṀMMxŻZZxσσσ
2(Ax)+ eeex = GGGxσσσ

2(Ax)+ eeex, (3.16)

where GGGx = ṀMMxŻZZx and eeex is a n×1 disturbance vector, such that E(eeex|Ax) = 0. Hence,
its variance-covariance matrix is given by

Cov(eeex|Ax) = E{[ṙrrx −E(ṙrrx|Ax)][ṙrrx −E(ṙrrx|Ax)]
′
|Ax}

= E(ṙrrx|Ax)[E(ṙrrx|Ax)]
′
+2E(rrrxrrr

′
x|Ax)∗E(rrrxrrr

′
x|Ax)−E(ṙrrx|Ax)[E(ṙrrx|Ax)]

′

= 2Ψ̇ΨΨx, (3.17)

where Ψ̇ΨΨx represents the Hadamard product of matrix ΨΨΨx by itself, with

ΨΨΨx = E(rrrxrrr
′
x|Ax) = E(MMMxvvvx(MMMxvvvx)

′
|Ax) = MMMxE(vvvxvvv

′
x|Ax)MMMx = MMMx∆∆∆xMMMx.

Then, if σ
2
k s are known, the GLS estimator of σσσ

2(Ax) in (3.16) is obtained by minimising
the criterion function [ṙrrx −GGGxσσσ

2(Ax)]
′
(2Ψ̇ΨΨx)

−1[ṙrrx −GGGxσσσ
2(Ax)], which gives

σ̂σσ
2
x = (GGG

′
xΨ̇ΨΨ

−1
x GGGx)

−1GGG
′
xΨ̇ΨΨ

−1
x ṙrrx . (3.18)

However, estimators of βββ (Ax) in (3.8) and σσσ
2(Ax) in (3.18) are non-operational, because

the variance-covariance matrices ∆∆∆x and 2Ψ̇ΨΨx are functions of unknown variances.
Therefore, operational estimators of βββ (Ax) and σσσ

2(Ax) can be obtained by replacing

unknown matrices with estimators ∆̂∆∆x and 2̂Ψ̇ΨΨx, respectively. A least squares estimator
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of the unknown variances σσσ
2(Ax) is directly obtained from (3.16) as follows

σ̂σσ
2
x = (GGG

′
xGGGx)

−1GGG
′
xṙrrx

= [(ṀMMxŻZZx)
′
(ṀMMxŻZZx)]

−1(ṀMMxŻZZx)
′
ṙrrx (3.19)

= (ŻZZ
′

xṀMM2
x ŻZZx)

−1ŻZZ
′

xṀMMxṙrrx ,

where equality ṀMM
′

x = ṀMMx holds true, since (MMMx ∗MMMx)
′
= MMMx ∗MMMx for a symmetric matrix

MMMx.

Remark 3.3. In the actuarial literature, there are many other types of estimators
for variance in (3.16). For instance, Hildreth and Houck (1968) suggested the un-
biased estimator σ̂σσ

2 (alt1)
x = (ŻZZ

′

xṀMMxŻZZx)
−1ŻZZ

′

xṙrrx, while Rao (1973) proposed the so-
called “Minimum Norm Quadratic Unbiased Estimator” (MINQUE), which is given by
σ̂σσ

2 (alt2)
x = (ŻZZ

′

xṀMMxŻZZx)
−1ŻZZ

′

xṀMMxṙrrx.

The random coefficients (RC) credibility estimator of βββ (Ax), which is denoted as
B̂BB

RC
x = (B̂RC

1x , . . . , B̂
RC
px )

′
, is given by

B̂BB
RC
x = ĈCCx

̂̂
β x +(III −ĈCCx) b̂bb , (3.20)

where ̂̂
β x = (ZZZ

′
x∆̂∆∆

−1
x ZZZx)

−1ZZZ
′
x∆̂∆∆

−1
x YYY x

and ∆̂∆∆x = diag
(

δ̂
x
t0t0, ..., δ̂

x
tn−1,tn−1

)
, with δ̂

x
tt = ŝ2

1 +

p∑
k=2

ŝ2
kZ2

kt,x, t = t0, ..., tn−1, obtained

according to (3.7), by using the mean of the estimated variances in (3.19). Future
mortality estimates follow from

ŶYY
n+h
x = ZZZn+h

x B̂BB
RC
x = ZZZn+h

x ĈCCx
̂̂
β x +ZZZn+h

x (III −ĈCCx) b̂bb, h = 1,2, . . . ,H, (3.21)

where ĈCCx = Φ̂ΦΦ(Ξ̂ΞΞx + Φ̂ΦΦ)−1, x = x0, . . . ,xk−1, is the corresponding credibility factor. We
suggest the following estimators for parameters bbb, ΞΞΞx and ΦΦΦ to obtain De Vylder’s
(1978) optimality (minimum variance within the class of unbiased estimators)

b̂bb = (

xk−1∑
x=x0

ĈCCx)
−1

xk−1∑
x=x0

ĈCCx
̂̂
β x , (3.22)

Ξ̂ΞΞx =
1

xk−1 − x0 +1

xk−1∑
x′=x0

(ZZZ
′
x∆̂∆∆

−1
x′ ZZZx)

−1 (3.23)
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and

Φ̂ΦΦ =
1

xk−1 − x0

xk−1∑
x=x0

ĈCCx(
̂̂
β x − b̂bb)(

̂̂
β x − b̂bb)

′
. (3.24)

Note that the estimators of Φ̂ΦΦ and b̂bb are implicit functions of the parameter to be

estimated and should be calculated iteratively, by imposing (Φ̂ΦΦ+ Φ̂ΦΦ

′
)/2 = 0 to retain

symmetry after each iteration.

3.3.3 Credibility Regression with Fixed Coefficients as Special Case
In the case of fixed regression’s coefficients, the previous model reduces to a special
case of Hachemeister’s (1975) model with no weighs, i.e., WWW x = III. In particular,
some weights may appear in each regression line of Ax. For instance, population
exposures E(t,x), for t = t0, . . . , tn−1 can be used as weights. In this case, we have the
standard regression case of Hachemeister’s model. To proceed, we follow the same
Assumptions (i) and (ii) as in the random coefficients case, but covariance matrix in
Assumption (iii) is simplified to Cov(YYY x|Ax) = σ

2(Ax)WWW x, where WWW x is a fixed n×n
positive definite diagonal matrix, with weights WWW x = diag [E(t0,x), . . . ,E(tn−1,x)]. The
structural parameters are now defined as

bbb = E[βββ (Ax)], UUU = Cov[βββ (Ax)] and s2 = E[σ2(Ax)] (3.25)

and the ordinary least squares estimator of the coefficients vector βββ (Ax) is given by

β̂ββ x = (ZZZ
′
xWWW

−1
x ZZZx)

−1ZZZ
′
xWWW

−1
x YYY x . (3.26)

The variance-covariance matrix is obtained by Cov(β̂ββ x|Ax) = σ
2(Ax)(ZZZ

′
xWWW

−1
x ZZZx)

−1,
while its expected value is given by

E[Cov(β̂ββ x|Ax)] = E[σ2(Ax)(ZZZ
′
xWWW

−1
x ZZZx)

−1] = s2(ZZZ
′
xWWW

−1
x ZZZx)

−1. (3.27)

Based on the above assumptions, the credibility estimator B̂BB
FC
x = (B̂FC

1x , . . . , B̂
FC
px )

′
of

βββ (Ax) for the fixed coefficients (FC) model is given by

B̂BB
FC
x = K̂KKx β̂ββ x +(III − K̂KKx) b̂bb , (3.28)

where K̂KKx = ÛUU [ŝ2(ZZZ
′
xWWW

−1
x ZZZx)

−1 +ÛUU ]−1 is the estimated credibility factor. Similarly,
for the derivation of (3.28), we refer to Bühlmann and Gisler (2005). To recapture De
Vylder’s (1978) optimality, we use the following estimators

ŝ2 =
1

(xk−1 − x0 +1)(tn−1 − t0 +1− p)

xk−1∑
x=x0

(YYY x −ZZZxβ̂ββ x)
′
WWW−1

x (YYY x −ZZZxβ̂ββ x) , (3.29)
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ÛUU =
1

xk−1 − x0

xk−1∑
x=x0

K̂KKx(β̂ββ x − b̂bb)(β̂ββ x − b̂bb)
′
, (3.30)

b̂bb = (

xk−1∑
x=x0

K̂KKx)
−1

xk−1∑
x=x0

K̂KKx β̂ββ x . (3.31)

Again, the estimators of ÛUU and b̂bb should be calculated iteratively, imposing (ÛUU +

ÛUU
′
)/2 = 0 after each iteration.

3.4 Extrapolation Methods for Estimating Future Mor-
tality Rates

In this section, we fit the random coefficients (RC) and the fixed coefficients (FC)
credibility regression models to mortality rates for age x = x0, . . . ,xk−1 of year t =
t0, . . . , tn−1. For both models, the fitted rates up to year tn−1 can be compactly written as
ŶYY x = ZZZxβ̂ββ x. As we noted before, design matrix ZZZx could consist of various independent
variables that reflect risk factors for any given age x, but due to lack of specific data,
we assume that YYY xs for each given age x, depend only on the period effects of each
calendar year, i.e., ZZZx = ZZZ. However, if specific data are available, for instance in case
of life insurance datasets, then more explanatory variables can be incorporated in the
regression model. Henceforth, we consider the same design matrix for all YYY xs, i.e.,

ZZZ =

(
1 1 . . . 1
1 2 . . . n

)′

.

3.4.1 Standard Extrapolation Method (SEM)

Based on current fitting data of the response variable ŶYY x = (Yt0,x,Yt1,x, . . . ,Ytn−1,x)
′
,

mortality rates for one-year ahead are estimated by

Ŷtn−1+1,x = B̂c
1x + B̂c

2x (tn−1 − t0 +2), (3.32)

where c = RC or FC. Similarly, estimates of future mortality rates for age x =

x0, . . . ,xk−1 are given by extrapolating one-year ahead estimates of (3.32) to Ŷtn−1+h,x =

B̂c
1x + B̂c

2x (tn−1 − t0 + 1 + h), for h = 2,3, . . . ,H, where the credibility estimators
B̂BB

c
x = (B̂c

1x, B̂
c
2x)

′
are obtained by (3.20) for the RC or (3.28) for the FC model. Hence,

under this method, future estimates are based on the mortality data of the initial fitting
span [t0, tn−1].

3.4.2 Other Extrapolation Methods

In practice, two additional methods can also be used to extrapolate mortality rates
over a given forecasting horizon h = 1,2, . . . ,H. Thus, for each one of the RC and
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FC models, one-year ahead estimates Ŷtn−1+1,x can be embedded to the existing fit-
ting span, with Yt0,x simultaneously excluded from it, so that the fitting year span is
moved forward by one year each time to [t1, tn−1 + 1], [t2, tn−1 + 2], [t3, tn−1 + 3], . . .
Then, after repeating the estimation procedure, we can consecutively obtain Ŷtn−1+2,x,
Ŷtn−1+3,x,Ŷtn−1+4,x, . . . ,Ŷtn−1+H,x. Under this “moving extrapolation method (MEM)”,
future estimates are based on more recent mortality trends.

Alternatively, one-year ahead estimates Ŷtn−1+1,x can be embedded to the existing
fitting span, without removing Yt0,x, so that the fitting year span is extended by one year
each time to [t0, tn−1+1], [t0, tn−1+2], [t0, tn−1+3], . . . . Hence, in each estimation step,
credibility regression models are fitted on a continuously extended response variable,
to obtain Ŷtn−1+2,x, Ŷtn−1+3,x, Ŷtn−1+4,x, . . . ,Ŷtn−1+H,x. Under this “extended extrapolation
method (EEM)”, future mortality trends are based on both the initial mortality rates and
the recent ones that have been obtained after each estimation step. Similar practical
approaches have also been adopted by Luan (2015). The numerical results in the
following section justify that all methods can be efficiently applied in actuarial practice.

3.5 Empirical Illustration

In this section, the Lee–Carter (LC), the Cairns–Blake–Dowd (CBD) and the credibility
regression models are fitted on Greek mortality data. Then, forecasting results are
evaluated using the mean absolute forecast error (MAFE) and the root mean of squared
forecast error (RMSFE) measures. Greek data have a limited number of historical
mortality observations (1981–2013), which are available on the Human Mortality
Database (2017), structured by year, age and gender.

Furthermore, in life insurance datasets similar limitations frequently exist. Credi-
bility regression can efficiently capture the underlying data trends, especially in cases
where there is limited mortality experience for a specific age, but extensive experience
for the entire age range (the case of Greek data). Of course, credibility regression
methods can also be used for larger datasets.

Mortality evolution for the period 1981–2010 in Greece is illustrated in Figures 3.1
and 3.2 for logm(t,x) and logitq(t,x), respectively. Both mortality measures show a
downward trend for discrete ages x = 40, 60, 80 of males (left panels of Figures 3.1 and
3.2) and females (middle panels of Figures 3.1 and 3.2). In addition, for both genders,
average mortality decline shows a clear downward trend over time (right panels of 3.1
and 3.2).
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Figure 3.1 Observed logm(t,x) of the period 1981–2010 in Greece, for males (left) and females
(middle) at the age of 40, 60 and 80. Average male and female logm(t,x) values over ages 15–84
are illustrated in (right), where straight lines show the corresponding trends in mortality decline.
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Figure 3.2 Observed logitq(t,x) of the period 1981–2010 in Greece, for males (left) and
females (middle) at the age of 40, 60 and 80. Average male and female logitq(t,x) values
over ages 15–84 are illustrated in (right), where straight lines show the corresponding trends in
mortality decline.

3.5.1 Forecasting Results

For the numerical illustration that follows, we used the empirical age-specific mortality
rates m(t,x) from 1981 to 2010, for males and females at the ages of 15 to 84. This
age span choice is in accordance with similar studies (Tsai and Lin 2017a, 2017b) as
it corresponds to the age of a young adult up to the overall level of life expectancy in
developed countries. To ensure robustness, relative to changes in the fitting range of
data, we used two age and three period spans to extract forecasts for a 10-year (H = 10)
forecasting horizon, presented in Table 3.1. In particular, for the FC model, we used
WWW x = III as weights. The credibility regression mortality methods, as well as the LC and
the CBD mortality models, were developed into the R (R Core Team, 2017) statistical
software, using our own routines. Exceptionally, for the Poisson LC and CBD fitting
methods, we used the “LifeMetrics” R package2.

2This software, which is not part of CRAN, is available from http://www.macs.hw.ac.uk/
~andrewc/lifemetrics/.

http://www.macs.hw.ac.uk/~andrewc/lifemetrics/
http://www.macs.hw.ac.uk/~andrewc/lifemetrics/
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Table 3.1 Selected fitting and forecasting periods.

Fitting Ages Fitting Period Forecasting Period

[x0,xk−1] [t0, tn−1] [tn−1 +1, tn−1 +H]

[15,84] [1981,2000] [2001,2010]
[15,84] [1986,2000] [2001,2010]
[15,84] [1991,2000] [2001,2010]

[55,84] [1981,2000] [2001,2010]
[55,84] [1986,2000] [2001,2010]
[55,84] [1991,2000] [2001,2010]

To retain linearity over each corresponding fitting period, the logarithmic transform
Yt,x = logm(t,x) was used for the age-specific mortality rates and the logit transform

Yt,x = logitq(t,x) = log
q(t,x)

1−q(t,x)
for the one-year probabilities of death. Forecast

errors were then evaluated over the 10-year forecasting horizon using MAFE and
RMSFE measures3, where smaller values indicate a better forecasting performance.
Averaged (avg) MAFE and RMSFE values are obtained by using

MAFEavg =
1

H × (xk−1 − x0 +1)

H∑
h=1

xk−1∑
x=x0

|m̂(tn−1 +h,x)−m(tn−1 +h,x)|×100 (3.33)

and

RMSFEavg =

√√√√ 1
H × (xk−1 − x0 +1)

H∑
h=1

xk−1∑
x=x0

[
m̂(tn−1 +h,x)−m(tn−1 +h,x)

]2×100 . (3.34)

Similarly, in the case of using Yt,x = logitq(t,x) as response variable, m(t,x) should
be replaced by q(t,x) in above formulas. Forecast accuracy results at percentage (%)
scales are evaluated over the period [2001,2010]. MAFE and RMSFE values for fitting
ages [15,84], using Yt,x = logm(t,x) are illustrated in Table 3.2 (a) and (b), respectively,
while the corresponding values for ages [55,84] with Yt,x = logitq(t,x) are presented
in Table 3.3 (a) and (b), respectively. Note that CBD model is included only for
comparisons in fitting ages [55,84], as it has been particularly designed for higher ages.

3For instance, use of MAFE is demonstrated in the modelling comparison study of Shang et al. (2011),
while RMSFE in Hansen (2013) and Van Berkum et al. (2016).
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Table 3.2 MAFE and RMSFE values of forecasts over the period [2001,2010] for ages [15,84].

(a) MAFE Values

MMMAAAFFFEEE [[[111555,,,888444]]] Lee–Carter Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-
Poisson

SEM MEM EEM SEM MEM EEM

[1981,2000]
Male 0.1513 0.1569 0.1338 0.1205 0.1322 0.1352 0.1256 0.1361

Female 0.0831 0.0861 0.0702 0.0740 0.0711 0.0691 0.0657 0.0690

[1986,2000]
Male 0.1684 0.1514 0.1175 0.1196 0.1158 0.1203 0.1221 0.1206

Female 0.0625 0.0799 0.0650 0.0696 0.0758 0.0608 0.0651 0.0613

[1991,2000]
Male 0.1468 0.1681 0.1275 0.1257 0.1280 0.1288 0.1289 0.1289

Female 0.0763 0.0959 0.0705 0.0678 0.0750 0.0622 0.0663 0.0669

Average 0.1147(7) 0.1231(8) 0.0974(5) 0.0962(3) 0.0997(6) 0.0961(2) 0.0956(1) 0.0971(4)

(b) RMSFE Values

RRRMMMSSSFFFEEE [[[111555,,,888444]]] Lee–Carter Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-
Poisson

SEM MEM EEM SEM MEM EEM

[1981,2000]
Male 0.3165 0.3220 0.2661 0.2349 0.2629 0.2716 0.2511 0.2745

Female 0.1791 0.1825 0.1398 0.1594 0.1457 0.1376 0.1365 0.1374

[1986,2000]
Male 0.3543 0.3200 0.2257 0.2265 0.2204 0.2362 0.2364 0.2375

Female 0.1307 0.1742 0.1410 0.1509 0.1700 0.1264 0.1385 0.1288

[1991,2000]
Male 0.3180 0.4010 0.2478 0.2457 0.2470 0.2570 0.2551 0.2516

Female 0.1694 0.2415 0.1580 0.1511 0.1707 0.1302 0.1438 0.1476

Average 0.2447(7) 0.2735(8) 0.1964(4) 0.1948(3) 0.2028(6) 0.1932(1) 0.1936(2) 0.1962(5)

For both genders, accuracy results for ages [15,84] and [55,84] indicate that, for
each fitting period, credibility regression methods outperform the LC and CBD models
for both error measures. Average values over the whole period are given in the last rows
of each measure’s subtable.

More precisely, for ages [15,84], the FC-MEM and FC-SEM produce the smallest
average MAFE and RMSFE, while for ages [55,84], RC-MEM performs better in
average under both measures, which indicates that forecasts for higher ages are based
on more recent mortality trends. Moreover, we observe that errors are getting evidently
larger, when shortening the age fitting span to [55,84]. This is due to the fact that
both |m̂(tn−1 +h,x)−m(tn−1 +h,x)| in (3.33) and

[
m̂(tn−1+h,x)−m(tn−1+h,x)

]2 in
(3.34) are generally increasing with age x. Therefore, MAFEavg and RMSFEavg for
ages [55,84] are larger than those for [15,84].

We note that, for our comparison, we used the Lee–Carter (1992) and Cairns–Blake–
Dowd (2006) models, which incorporate only age and period effects. Models with
cohort parameters were intentionally excluded from our analysis to be consistent with
the age-period structure of the proposed credibility regression methods that model the
period dynamics of mortality across the ages.
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Table 3.3 MAFE and RMSFE values of forecasts over the period [2001,2010] for ages [55,84].

(a) MAFE Values

MMMAAAFFFEEE [[[555555,,,888444]]] Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

[1981,2000]
Male 0.3191 0.3322 0.2924 0.3247 0.2885 0.2642 0.2846 0.2871 0.2673 0.2870

Female 0.1884 0.1933 0.1694 0.1884 0.1624 0.1458 0.1611 0.1629 0.1448 0.1627

[1986,2000]
Male 0.2928 0.3186 0.2682 0.2988 0.2506 0.2547 0.2494 0.2544 0.2581 0.2541

Female 0.1577 0.1769 0.1618 0.1708 0.1287 0.1377 0.1344 0.1289 0.1351 0.1288

[1991,2000]
Male 0.3091 0.3622 0.2790 0.3348 0.2483 0.2461 0.2464 0.2538 0.2493 0.2525

Female 0.1723 0.2126 0.1659 0.1868 0.1324 0.1350 0.1363 0.1363 0.1382 0.1361

Average 0.2399(8) 0.2660(10) 0.2228(7) 0.2507(9) 0.2018(3) 0.1973(1) 0.2020(4) 0.2039(6) 0.1988(2) 0.2035(5)

(b) RMSFE Values

RRRMMMSSSFFFEEE [[[555555,,,888444]]] Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Fitting Period Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

[1981,2000]
Male 0.4616 0.4848 0.3904 0.4467 0.4041 0.3644 0.3963 0.4065 0.3786 0.4061

Female 0.2795 0.2842 0.2221 0.2512 0.2260 0.1996 0.2213 0.2304 0.2010 0.2299

[1986,2000]
Male 0.4320 0.4872 0.3551 0.4073 0.3506 0.3522 0.3419 0.3631 0.3653 0.3618

Female 0.2340 0.2699 0.2165 0.2244 0.1805 0.1940 0.1895 0.1803 0.1897 0.1800

[1991,2000]
Male 0.4671 0.6129 0.3698 0.4625 0.3484 0.3423 0.3389 0.3660 0.3501 0.3616

Female 0.2652 0.3721 0.2202 0.2510 0.1866 0.1888 0.1912 0.1961 0.1930 0.1954

Average 0.3566(9) 0.4185(10) 0.2957(7) 0.3405(8) 0.2827(4) 0.2736(1) 0.2799(3) 0.2904(6) 0.2796(2) 0.2891(5)

3.5.2 Credibility Effects on Mortality Modelling

In the preceding section, we used the proposed credibility regression methods to estimate
the actual mortality trend for a specific age, by weighting the mortality trend for this age
and the mean trend over a wider group of ages that encompasses much more information.
Figure 3.3 illustrates the downward trend of the actual (observed) logitq(t,x) for Greek
males (left panel) and females (right panel), aged 55, 65 and 75 over the period 1981–
2010.

The intuition behind using credibility regression is that the proposed methods
could potentially lead us to more accurate estimates for the intercept and the slope
of the mortality curve for a given age x = x0, . . . ,xk−1. To assure this, we used the
absolute forecast errors by age (AFEx) to compare the trend (intercept and slope) of the
logitq(2000+h,x), h = 1, . . . ,10 between the actual rates and the rates produced from
the best performing models for both genders over years [2001,2010], with and without
credibility, for pension ages [65,84], fitted for [1981,2000]. For each model, AFEx can
be obtained by AFEx = |logit q̂(2000+h,x)− logitq(2000+h,x)|×100 .
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Figure 3.3 Observed logitq(t,x) of the period 1981–2010 in Greece, for males (left) and females
(right) at the age of 55, 65 and 75.

Figure 3.4 displays the AFEx comparison results, which indicate that, almost for all
ages, credibility regression methods (dot lines) perform better than the LC (solid lines)
and CBD (dashed lines) models. An alternative way to see how close the credibility
forecasts are to the the actual mortality trend, Figure 3.5 illustrates the intercept and
the slope of the actual rates and the forecasted ones for some ages, under the best
performing methods (based on AFEx) with credibility (FC-MEM for males and RC-
MEM for females) and without credibility (LC, CBD).

The trend lines for the RC-MEM and FC-MEM forecasts can be easily extracted
using the ordinary least squares method. Recall that, the intercept and the slope for the
LC and CBD models is given by Equations (3.2) and (3.4), respectively (Remark 3.1),
while for the credibility method RC by (3.20) and for FC by (3.28). The illustrated
results in Figure 3.5 indicate that intercepts and slopes of the FC-MEM (for males) and
RC-MEM (for females) lines are closer to the actual ones, which set the best starting
point for the forecasts.
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Figure 3.4 AFE values against age of logitq(2000+h,x), h = 1, . . . ,10 between the actual rates
and the rates produced from the best performing models with and without credibility for males
(left) and females (right) over [2001,2010], fitted to pension ages [65,84] for years [1981,2000].
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Figure 3.5 Intercept and slope estimates of logitq(2000+h,x) for h = 1, . . . ,10 and ages x = 66
for males and x = 67 for females, with credibility (dot-dashed lines for FC-MEM and RC-MEM)
and without credibility (dashed lines for LC and dot lines for CBD). Solid lines show the actual
mortality and its trend.

3.5.3 Comparison with the Bühlmann Credibility Approach

Tsai and Lin (2017a) proposed a Bühlmann credibility approach to forecast mortality
rates for both genders in Japan, the United Kingdom and the United States. This model
can be directly obtained from the more general regression model, presented in Section

3.3.3, if we set ZZZx =
(

1 1 . . . 1
)′

and WWW x = III for x = x0, . . . ,xk−1. Then, from

(3.26), βββ x is equal to Y x and the model parameters, which are scalars now, can be
estimated by

ŝ2 =
1

(xk−1 − x0 +1)(tn−1 − t0)

xk−1∑
x=x0

tn−1∑
t=t0

(
Yt,x −Y x

)
, (3.35)

b̂ =
1

xk−1 − x0 +1

xk−1∑
x=x0

Y x =
1

(xk−1 − x0 +1)(tn−1 − t0 +1)

xk−1∑
x=x0

tn−1∑
t=t0

Yt,x = Y , (3.36)

Û =
1

xk−1 − x0

xk−1∑
x=x0

(
Y x −Y

)
− ŝ2

tn−1 − t0 +1
, (3.37)

K̂ =
[
(tn−1 − t0 +1) Û

][
ŝ2 +(tn−1 − t0 +1) Û

]−1
. (3.38)



3.5 Empirical Illustration | 63

The Bühlmann credibility estimates for one year ahead can be obtained by

Ŷtn−1+1,x = K̂ Y x +(1− K̂) Y , for x = x0, . . . ,xk−1 . (3.39)

In contrast to the credibility regression approaches, which aim to capture the down-
ward trend of m(t,x)s over t, for the Bühlmann credibility approach to be applied, this
downward trend must be eliminated. For this reason, Tsai and Lin (2017a) applied the
Bühlmann credibility model on the time series of mortality rate changes rather than the
mortality rate levels, i.e., Yt,x = logm(t,x)− logm(t −1,x), for t1, . . . , tn−1. Then, they
proposed two strategies for estimating Yt+h,x, h = 2, . . . ,H. The first strategy expands
fitting window (EW) by one year, similarly with the EEM regression method, described
in Section 3.4 and the second one moves fitting window (MW) by one year, similarly
with the MEM regression method. In what follows, we compare the forecasting perfor-
mance between the Bühlmann and the credibility regression methods on Greek data. To
be consistent with the Bühlmann modelling framework of Tsai and Lin (2017a), age
fitting spans [21,85] and [56,85] were selected and forecast errors were also evaluated
under the averaged MAPFE values, which is defined by

MAPFEavg =
1

H × (xk−1 − x0 +1)

H∑
h=1

xk−1∑
x=x0

|m̂(tn−1 +h,x)−m(tn−1 +h,x)|
|m(tn−1 +h,x)|

×100.

Error values for each gender were evaluated by fitting Yt,xs for periods [1982,2000],
[1986,2000], and [1990,2000]. Comparison of averaged MAFE, RMSFE and MAPFE4

results between Bühlmann and credibility regression methods is given for both genders
in Table 3.4 (a) – (c) for ages [21,85] and Table 3.5 (a) – (c) for ages [56,85].

The results indicate that credibility regression methods produce the smallest MAFE,
RMSFE and MAPFE values for the majority of the selected fitting periods for both
age spans. More precisely, the FC-MEM method has the best average performance
according to MAFE and MAPFE values for ages [21,85], while the RC-MEM method
seems to be more appropriate to capture future mortality trends for older ages [56,85].
We note that the smallest values in average are produced by different regression methods,
depending on which measure is used. Such inconsistencies are expected due to the
nature of MAFE, RMSFE and MAPFE formulas. That was also pointed out by Tsai
and Yang (2015).

4To be distinguished, MAFE and RMSFE averaged error values are rounded to four decimal points,
while, for MAPFE values, two decimal points are enough.
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Table 3.4 MAFE, RMSFE and MAPFE values of forecast errors over the period [2001,2010]
for ages [21,85].

(a) MAFE Values

MMMAAAFFFEEE [[[222111,,,888555]]] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982,2000]
Male 0.2348 0.2334 0.1404 0.1287 0.1379 0.1444 0.1361 0.1460

Female 0.0930 0.0931 0.0816 0.0882 0.0843 0.0791 0.0780 0.0790

[1986,2000]
Male 0.2170 0.2294 0.1329 0.1321 0.1306 0.1364 0.1358 0.1373

Female 0.0918 0.0919 0.0782 0.0852 0.0909 0.0741 0.0805 0.0747

[1990,2000]
Male 0.2355 0.2258 0.1399 0.1392 0.1369 0.1434 0.1422 0.1423

Female 0.0954 0.0933 0.0836 0.0839 0.0879 0.0798 0.0818 0.0802

Average 0.1613(8) 0.1612(7) 0.1094(2) 0.1096(4) 0.1114(6) 0.1095(3) 0.1091(1) 0.1099(5)

(b) RMSFE Values

RRRMMMSSSFFFEEE [[[222111,,,888555]]] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982,2000]
Male 0.4980 0.4948 0.2633 0.2342 0.2566 0.2756 0.2564 0.2799

Female 0.1795 0.1795 0.1613 0.1884 0.1730 0.1540 0.1581 0.1541

[1986,2000]
Male 0.4584 0.4861 0.2447 0.2387 0.2386 0.2564 0.2532 0.2591

Female 0.1767 0.1772 0.1633 0.1781 0.1999 0.1484 0.1643 0.1502

[1990,2000]
Male 0.4997 0.4765 0.2578 0.2574 0.2472 0.2704 0.2666 0.2668

Female 0.1849 0.1802 0.1640 0.1761 0.1767 0.1567 0.1674 0.1570

Average 0.3329(8) 0.3324(7) 0.2091(1) 0.2122(5) 0.2153(6) 0.2103(2) 0.2110(3) 0.2112(4)

(c) MAPFE Values

MMMAAAPPPFFFEEE [[[222111,,,888555]]] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982,2000]
Male 11.90 11.86 11.97 11.24 11.80 11.95 11.43 12.00

Female 13.75 13.76 11.66 11.83 11.69 11.66 11.54 11.66

[1986,2000]
Male 11.30 11.71 12.05 10.76 11.73 11.86 10.72 11.90

Female 13.71 13.72 11.52 11.82 11.89 11.56 11.73 11.55

[1990,2000]
Male 11.93 11.60 10.81 9.81 10.60 10.57 9.71 10.52

Female 13.83 13.77 11.84 11.79 12.08 12.05 11.83 11.99

Average 12.73(7) 12.74(8) 11.64(6) 11.21(2) 11.63(5) 11.61(4) 11.16(1) 11.60(3)
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Table 3.5 MAFE, RMSFE and MAPFE values of forecast errors over the period [2001,2010]
for ages [56,85].

(a) MAFE Values

MMMAAAFFFEEE [[[555666,,,888555]]] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982,2000]
Male 0.3599 0.3503 0.3272 0.3012 0.3210 0.3262 0.3036 0.3255

Female 0.1686 0.1623 0.1717 0.1633 0.1735 0.1711 0.1595 0.1709

[1986,2000]
Male 0.3233 0.3430 0.2893 0.2958 0.2886 0.2946 0.2991 0.2937

Female 0.1481 0.1539 0.1534 0.1601 0.1617 0.1495 0.1573 0.1511

[1990,2000]
Male 0.3745 0.3641 0.2958 0.2934 0.2937 0.2999 0.2954 0.2973

Female 0.1670 0.1646 0.1617 0.1616 0.1613 0.1601 0.1625 0.1615

Average 0.2569(8) 0.2564(7) 0.2332(3) 0.2293(1) 0.2333(4) 0.2336(6) 0.2296(2) 0.2334(5)

(b) RMSFE Values

RRRMMMSSSFFFEEE [[[555666,,,888555]]] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982,2000]
Male 0.5411 0.5261 0.4670 0.4213 0.4524 0.4700 0.4305 0.4679

Female 0.2358 0.2282 0.2368 0.2242 0.2366 0.2389 0.2202 0.2381

[1986,2000]
Male 0.4852 0.5159 0.4065 0.4138 0.3987 0.4221 0.4224 0.4185

Female 0.2120 0.2178 0.2151 0.2235 0.2271 0.2089 0.2192 0.2107

[1990,2000]
Male 0.5636 0.5472 0.4139 0.4130 0.4072 0.4291 0.4184 0.4195

Female 0.2338 0.2307 0.2243 0.2246 0.2236 0.2217 0.2257 0.2232

Average 0.3786(8) 0.3777(7) 0.3273(4) 0.3201(1) 0.3243(3) 0.3318(6) 0.3227(2) 0.3297(5)

(c) MAPFE Values

MMMAAAPPPFFFEEE [[[555666,,,888555]]] Bühlmann Methods Regression Methods – RC Regression Methods – FC

Fitting Period Gender EW MW SEM MEM EEM SEM MEM EEM

[1982,2000]
Male 9.53 9.34 9.48 9.17 9.54 9.29 8.97 9.31

Female 9.93 9.72 9.98 9.81 10.36 9.65 9.43 9.69

[1986,2000]
Male 8.82 9.20 8.78 8.97 8.99 8.61 8.85 8.66

Female 9.23 9.45 9.14 9.42 9.62 8.84 9.26 8.98

[1990,2000]
Male 9.82 9.61 8.85 8.74 9.00 8.62 8.74 8.78

Female 9.88 9.81 9.49 9.33 9.46 9.32 9.37 9.48

Average 9.54(8) 9.52(7) 9.29(5) 9.24(4) 9.50(6) 9.06(1) 9.10(2) 9.15(3)

3.5.4 Application in Insurance-Related Products

In this section, we apply the mortality forecasts obtained from the Lee–Carter, the
Cairns–Blake–Dowd and the credibility regression models to calculate life premiums,
reflecting the appropriateness of each model in pricing applications. Denote A1

tn−1+1,x:K
as the fully discrete life insurance premium, payable at the end of the year of death, if it
occurs within a term of K years and A

tn−1+1,x:
1
K

as the pure endowment, payable at the

end of K years in case of being alive. Both products are issued to an insured aged x in
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year tn−1 +1. Net premiums (NP) are obtained (see Bozikas and Pitselis, 2018) by

A1
tn−1+1,x:K

=
K−1∑
k=0

k ptn−1+1,x . q(tn−1 +1+ k,x+ k) . (1+ i)−(k+1) , (3.40)

A
tn−1+1,x:

1
K
= K ptn−1+1,x . (1+ i)−K , (3.41)

where k ptn−1+1,x denotes the k-year survival probability for age x in year tn−1 +1, while
its estimate is given by k p̂tn−1+1,x = p̂tn−1+1,x. . . . .p̂tn−1+1+k−1,x+k−1, k = 1, . . . ,K − 1
and similarly for K p̂tn−1+1,x, where i is the interest rate and 0 p̂tn−1+1,x = 1. In addition,
to see the performance on a life annuity product, typically used for pension applications,
denote ätn−1+1,x:k as the discrete life annuity-due at age x in year tn−1 + 1, payable
annually for up to K years. Its actuarial present value (APV) can be obtained by

ätn−1+1,x:K =
K−1∑
k=0

k ptn−1+1,x . (1+ i)−k . (3.42)

Then, we apply the estimated mortality rates obtained from the LC, CBD and credibility
methods, fitted to 1981–2000 rates, to calculate the NPs and APVs for ages 55–74 with
K = 10, assuming i = 4%. The errors between forecasted values and those produced
from the observed mortality rates for the years 2001–2010 are evaluated using MAFE
and RMSFE, which are defined by

MAFEavg =
1

20

74∑
x=55

∣∣∣∣Â1
2001,x:10

−A1
2001,x:10

∣∣∣∣×100 , (3.43)

RMSFEavg =

√√√√ 1
20

74∑
x=55

(Â1
2001,x:10

−A1
2001,x:10

)2 ×100 . (3.44)

Similarly, MAFE and RMSFE formulas are adjusted for pure endowment or annuity
products by replacing A1

tn−1+1,x:K
with A

tn−1+1,x:
1
K

or ätn−1+1,x:K in Equations (3.43)

and (3.44). Table 3.6 presents the averaged error values in ranking order for a 10
year forecasted life insurance, pure endowment and life annuity for both genders, aged
55–74 in 2001–2010. In addition, Figure 3.6 illustrates the absolute forecast error values
against each corresponding age (AFEx) for the top LC, CBD, RC and FC credibility
regression methods for males and females, according to Table 3.6 values. For each

model, AFEx is obtained from AFEx =

∣∣∣∣Â1
x,2001:10

−A1
x,2001:10

∣∣∣∣×100.

According to MAFE and RMSFE values for both genders and insurance products
in Table 3.6, credibility regression models produce better insurance-related forecasts
in comparison with the LC and CBD modelling methods. We can easily observe that
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for each gender, error measures coincide in the same ranking order for all insurance
products. In particular, measures show that credibility regression methods under a
moving fitting span outperform LC and CBD methods in aggregate, with FC-MEM
being dominant and RC-MEM following. This fact is also evident in Figure 3.6, where
absolute error values against age for the MEM regression models lie on the lower
levels for all the insurance products. Nevertheless, the FC-SEM should also be a good
modelling choice for pricing insurance-related products.

Table 3.6 MAFE and RMSFE values (ranking order in brackets) for a 10-year forecasted life
insurance, a pure endowment and a life annuity for males and females of ages 55–74 during
2001–2010.

(a) Life Insurance

MMMAAAFFFEEEaaavvvggg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

Male 1.6019(8) 1.5640(7) 1.7151(10) 1.6794(9) 1.5000(6) 1.4169(2) 1.4924(5) 1.4735(3) 1.3932(1) 1.4741(4)
Female 1.0264(6) 1.0269(7) 1.2141(10) 1.1079(9) 1.0262(5) 0.9317(2) 1.0346(8) 0.9898(3) 0.8840(1) 0.9910(4)

RRRMMMSSSFFFEEEaaavvvggg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

Male 1.8423(8) 1.8043(7) 1.9401(10) 1.9089(9) 1.7125(6) 1.6143(2) 1.7043(5) 1.6871(3) 1.5989(1) 1.6875(4)
Female 1.2320(8) 1.2294(7) 1.4023(10) 1.2918(9) 1.2133(5) 1.0965(2) 1.2215(6) 1.1744(3) 1.0494(1) 1.1756(4)

(b) Pure Endowment

MMMAAAFFFEEEaaavvvggg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

Male 1.1439(8) 1.1139(7) 1.2417(10) 1.2044(9) 1.0722(6) 1.0153(2) 1.0681(5) 1.0512(3) 0.9942(1) 1.0518(4)
Female 0.7181(7) 0.7192(8) 0.8894(10) 0.7923(9) 0.7340(5) 0.6717(2) 0.7463(6) 0.7026(3) 0.6297(1) 0.7038(4)

RRRMMMSSSFFFEEEaaavvvggg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

Male 1.3274(8) 1.2975(7) 1.4104(10) 1.3786(9) 1.2347(6) 1.1659(2) 1.2303(5) 1.2150(3) 1.1535(1) 1.2154(4)
Female 0.8745(8) 0.8717(7) 1.0310(10) 0.9319(9) 0.8774(5) 0.7968(2) 0.8889(6) 0.8440(3) 0.7552(1) 0.8451(4)

(c) Life Annuity

MMMAAAFFFEEEaaavvvggg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

Male 5.4466(8) 5.2602(7) 6.3032(10) 5.7857(9) 5.1642(6) 4.9260(2) 5.1561(5) 5.0331(3) 4.7893(1) 5.0369(4)
Female 2.9140(7) 2.9361(8) 4.4471(10) 3.5932(9) 3.1527(5) 2.9479(2) 3.2151(6) 2.9656(3) 2.7024(1) 2.9721(4)

RRRMMMSSSFFFEEEaaavvvggg Mortality Models Random Coefficients (RC) Fixed Coefficients (FC)

Gender LC LC-
Poisson

CBD CBD-
Poisson

SEM MEM EEM SEM MEM EEM

Male 6.6138(7) 6.4342(8) 7.2583(10) 6.8729(9) 6.1786(6) 5.8730(2) 6.1608(5) 6.0681(3) 5.7919(1) 6.0704(4)
Female 3.7013(7) 3.7218(8) 5.1510(10) 4.3300(9) 3.9187(5) 3.6344(2) 3.9846(6) 3.7084(3) 3.3878(1) 3.7155(4)
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Figure 3.6 AFE values against age of life insurance and annuity products for the top LC, CBD
and credibility regression models for males (left panels) and females (right panels): (a) life
insurance AFEs for males; (b) life insurance AFEs for females; (c) pure endowment AFEs for
males; (d) pure endowment AFEs for females; (e) life annuity AFEs for males; and (f) life
annuity AFEs for females.
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3.6 Concluding Remarks

Credibility regression techniques seem to be of special interest and particularly useful
for mortality datasets of a relatively short historical period of observations (limited data),
as they can efficiently capture the underlying mortality trend for a given age, using all
the information gained from populations of other ages. This chapter proposes mortality
modelling approaches embedded, for the first time, in a credibility regression framework.
In our illustration on Greek data, credibility regression approaches resulted in better
forecasts for both genders (in terms of MAFE and RMSFE measures), compared to
the Lee–Carter and Cairns–Blake–Dowd models, as well as the Bühlmann credibility
approach (Tsai and Lin, 2017a). Their performance was also evaluated on insurance-
related applications.

Specifically, in Section 3.3, we proposed a credibility regression mortality frame-
work with random coefficients and a special case with fixed coefficients. To estimate
future mortality rates, we presented extrapolation methods for each credibility approach
in Section 3.4. The applicability of our modelling approaches was comparatively
illustrated on Greek male and female data in Section 3.5, accompanied with an expla-
nation of the credibility effects in mortality modelling and a pricing application on
insurance-related products. From our analysis, we concluded that, in aggregate, credi-
bility modelling methods performed better than the LC and CBD methods. Forecasting
accuracy results indicate that, for the whole age fitting span, fixed coefficients credibility
methods performed better on average, while, for higher ages, the RC-MEM should also
be a good choice. In addition, the FC-MEM performed a bit better in aggregate on
pricing insurance-related products.

Furthermore, we noted that FC-SEM credibility forecasts were closer to observed
rates for the same periods, when we used population exposure to risk as weights,
i.e., WWW x = diag [E(t0,x), . . . ,E(tn−1,x)] , for x = x0, . . . ,xk−1, but weighted regression
is restricted for use only under the SEM , as E(t,x)s are practically unknown for
the upcoming years. Additionally, during the estimation procedure for the random
regression models, we observed that, if we use the MINQUE estimator (Remark 3.3)
instead of (3.19), error values for all the credibility modelling methods become even
smaller for both genders.

For the sake of comparability, the Bühlmann credibility approach (Tsai and Lin,
2017a) was applied on our dataset in Section 3.5, where the credibility regression
methods resulted to better forecasts based on MAFE, RMSFE and MAPFE measures.
In addition, credibility regression methods had a very good forecasting performance,
when we applied them to the datasets of other countries for a limited selected fitting
period (1980–2000), such as Belgium, Finland, Norway, Ireland, Slovakia and New
Zealand.





Chapter 4

A Hierarchical Credibility Regression
Mortality Model for Multiple
Populations
4.1 Introduction

In the previous chapter, we described how credibility regression can be used to model
the mortality trends of a population, especially in cases where there is limited mortality
experience for a specific age, but extensive experience for the entire age range. Even if
credibility regression can yield desirable results when it is applied on mortality rates of a
single population, a question arises when we deal with datasets of multiple populations.
Since Wilson (2001) observed a global convergence in mortality, many multi-population
mortality models have been developed to account for any relationship between multiple
populations (see Introduction, Section 1.3).

Hierarchical credibility can accommodate classification schemes, where multi-
population mortality data can be represented in a hierarchical form. Jewell (1975)
extended Bühlmann credibility into a hierarchical structure. Under this specification,
Tsai and Wu (2018) modelled the mortality rates for multiple populations. Furthermore,
Jewell’s model was generalized to a hierarchical credibility regression model with
random parameters on two levels in Sundt (1979) and on multiple levels in Sundt (1980).
This chapter extends the credibility regression mortality approach of the previous
chapter (Bozikas and Pitselis, 2019) to its multi-level hierarchical counterpart to derive
multi-population mortality forecasts, using a different approach than Sundt (1980) for
the estimation of model parameters.

The rest of this chapter is organized as follows. Section 4.2 reviews two widely
used Lee-Carter extensions for multiple populations. Section 4.3 presents the multi-
level credibility mortality model, with a detailed description of parameters estimation.
Section 4.4 gives a numerical illustration on projecting age specific mortality rates for
males and females using data from three countries in northern Europe, the Ireland, the
Finland and the Norway. Concluding remarks are presented in Section 4.5.
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4.2 Multi-Population Mortality Models: A Review of
Methods

In this section, we briefly review the most popular and widely applied multi-population
mortality models, the joint-k model extension for multiple populations presented in
Carter and Lee (1992) and the augmented common factor model proposed by Li and
Lee (2005). We denote D(t,xgc) as the observed number of deaths and E(t,xgc) as the
average population (exposure to risk) in calendar year t = t1, . . . , tn, for age x= x1, . . . ,xk,
gender g = 1, . . . ,G (G = 2, i.e. male = 1, female = 2) and country c = 1, . . . ,C .
Then, the corresponding age-specific mortality rates m(t,xgc) are obtained by the ratio
D(t,xgc)/E(t,xgc).

4.2.1 The joint-K model

Carter and Lee (1992) proposed a model structure for multiple populations, in which
mortality is jointly driven by a single period parameter Kt as follows

logmt,xgc = αxgc +βxgcKt + εt,xgc, (4.1)

where αxgc and βxgc are defined as in the original Lee-Carter model, but now, Kt is the
common period parameter of the mortality level in year t for gender g and country c.
Errors εt,xgc are assumed independent and identically distributed. Then, constraints∑C

c=1
∑G

g=1
∑xk

x=x1
βxgc = 1 and

∑tn
t=t1 Kt = 0 lead to the following parameter estimates

α̂xgc =
1

tn − t1 +1

tn∑
t=t1

logmt,xgc, K̂t =
C∑

c=1

G∑
g=1

xk∑
x=x1

[log m̂t,xgc − α̂xgc]

and

β̂xgc =

∑tn
t=t1 [logmt,xgc − α̂xgc] K̂t∑tn

t=t1 K̂2
t

.

The common period parameter K̂t is assumed to follow a random walk with a drift θ ,
K̂t = K̂t−1 +θ + εt , where the time trend errors εt are again assumed to be independent
and identically distributed, and independent of the model errors εt,xgc. The drift parame-

ter is estimated by θ̂ = 1
tn−t1

∑tn
t=t1+1(K̂t − K̂t−1) =

K̂tn−K̂t1
n−1 and then it used to project

period estimates K̂tn+h = K̂tn + θ̂h. Thus, projected mortality rates for h = 1,2, . . . years
ahead, for age x, gender g and country c are given by

log m̂tn+h,xgc = α̂xgc + β̂xgcK̂tn+h = log m̂tn,xgc +(β̂xgcθ̂)h . (4.2)
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4.2.2 The augmented common factor model

To avoid long-run divergence in mean mortality forecasts for multiple countries, Li and
Lee (2005) modified the original Lee-Carter model by setting a common age parameter
Bx and the same period parameter Kt for all populations as follows

logmt,xgc = αxgc +BxKt + εt,xgc. (4.3)

Again, we use two constraints
∑C

c=1
∑G

g=1
∑xk

x=x1
wgcBx = 1, and

∑tn
t=t1 Kt = 0, where

wgc is the weight for gender g in country c, set to be proportional to the total number of
populations, i.e., wgc = 1/(GC). The model parameters are estimated by

α̂xgc =
1

tn − t1 +1

tn∑
t=t1

logmt,xgc, K̂t =

C∑
c=1

G∑
g=1

xk∑
x=x1

wgc [logmt,xgc − α̂xgc]

and

B̂x =

∑C
c=1
∑G

g=1
∑tn

t=t1 wgc [logmt,xgc − α̂xgc] K̂t∑tn
t=t1 K̂2

t
.

To include the individual differences in the trends, Li and Lee (2005) suggested an
additional factor α

′
xgcκ

′
t,gc to form the augmented common factor model

logmt,xgc = αxgc +Bx Kt +α
′
xgcκ

′
t,gc + εt,xgc .

Assuming the extra constraint
∑xk

x=x1
α

′
xgc = 1, the additional parameters are estimated

as

κ̂
′
t,gc =

xk∑
x=x1

[
logmt,xgc − α̂xgc − B̂xK̂t

]
and

α̂
′
xgc =

∑tn
t=t1

[
logmt,xgc − α̂xgc − B̂xK̂t

]
κ̂

′
t,gc∑tn

t=t1 κ̂
′2
t,gc

.

Both period parameters K̂t and κ̂
′
t,gc follow a random walk model with a drift, given by

K̂t = K̂t−1+θ +εt and κ̂
′
t,gc = κ̂

′
t−1,gc+θ

′
gc+εt,gc, respectively, where time trend errors

εt and εt,gc are assumed to be independent and identically distributed, and independent
of the model error εt,xgc. The drift parameters can be estimated by

θ̂ =
1

tn − t1

tn∑
t=t1+1

(K̂t − K̂t−1) =
K̂tn − K̂t1

n−1

and

θ̂
′
gc =

1
tn − t1

tn∑
t=t1+1

(κ̂
′
t,gc − κ̂

′
t−1,gc) =

κ̂
′
tn,gc − κ̂

′
t1,gc

n−1
.
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Then, projected mortality rates for h = 1,2, . . . years ahead, for age x, gender g and
country c are obtained by

log m̂tn+h,xgc = α̂xgc + B̂xK̂tn+h + α̂
′
xgcκ̂

′
tn+h,gc

= log m̂tn,xgc +(B̂xθ̂ + α̂
′
xgcθ̂

′
gc)h . (4.4)

Table 4.1 lists the model structure of the original Lee-Carter (1992) model (LC) for a
single population, as well as its two extensions for multiple populations, the joint-K
model (LCjoK) and the augmented common factor model (LCacf).

Table 4.1 Structure overview of multi-population Lee-Carter models.

Model Structure Original Papers

LC logmt,xgc = αxgc +βxgc ·κt,gc + εt,xgc Lee and Carter (1992)

LCjoK logmt,xgc = αxgc +βxgc ·Kt + εt,xgc Carter and Lee (1992)

LCacf logmt,xgc = αxgc +Bx ·Kt +α
′
xgc ·κ

′
t,gc + εt,xgc Li and Lee (2005)

Remark 4.1. We can easily observe that expressions (4.2) and (4.4) are linear functions
of the forecasting horizon h, where their intercept equal to the fitted rates of the last
observed year and their slope is the product of the estimated age parameters with the
drift terms.

4.3 Credibility Mortality Modelling for Multiple Popu-
lations

In this section, we present a multi-level hierarchical credibility regression (henceforth
HCR) approach to model mortality for multiple populations. Beginning from the bottom,
mortality data are first classified by age (Level 1). Ages are then grouped by gender
(Level 2) and genders by country (Level 3) to constitute a multi-country credibility
structure. Each level is also associated with a random risk variable that reflects specific
characteristics for each country, gender and age. More precisely, country level is
associated with a random variable Θc, c = 1, . . . ,C, gender level is associated with Θgc,
g = 1, . . . ,Gc, and age level by Θxgc, x = x1, . . . ,xkgc (see Figure 4.1).
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Multi-Country

Country
Θ1

. . . Country
Θc

Level 3:

Gender
Θ1c|Θc

. . . Gender
Θgc|Θc

Level 2:

Age
Θx1gc|Θgc,Θc

. . .

Mortality Data
Yt1,x1gc|Θx1gc,Θgc,Θc

...

Yt,x1gc|Θx1gc,Θgc,Θc
...

Ytn,x1gc|Θx1gc,Θgc,Θc

Age
Θxgc|Θgc,Θc

Level 1:

Mortality Data
Yt1,xgc|Θxgc,Θgc,Θc

...

Yt,xgc|Θxgc,Θgc,Θc
...

Ytn,xgc|Θxgc,Θgc,Θc

Age
Θxkgcgc|Θgc,Θc

. . .

Mortality Data
Yt1,xkgc gc|Θxkgc gc,Θgc,Θc

...

Yt,xkgc gc|Θxkgcgc,Θgc,Θc
...

Ytn,xkgc gc|Θxkgc gc,Θgc,Θc

Gender
ΘGc|Θc

. . .

Country
ΘC

. . .

Figure 4.1 A multi-level hierarchical credibility structure.

4.3.1 Assumptions and Notation

We assume that the observable variable Yt,xgc corresponds to the log transform of
mortality rates mt,x for t = t1, . . . , tn, x = x1, . . . ,xkgc , g = 1, . . . ,Gc and c = 1, . . . ,C. We
denote YYY xgc = (Yt1,xgc, . . . ,Ytn,xgc)

′
as the mortality vector for age x, gender g, country

c and ZZZxgc as the corresponding design matrix of explanatory variables. We note that
in general, design matrix could consist of various explanatory variables that reflect
mortality characteristics. However, due to lack of data related with other mortality
factors, we assume that for each age, gender and country, mortality rates are only
affected by time trends. Thus, for all x,g and c the observable variables and the design
matrices for Level 1 (age), Level 2 (gender) and Level 3 (country) are denoted as
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YYY xgc = (logmt1,xgc, . . . , logmtn,xgc)
′
, ZZZxgc =

(
1 1 · · · 1
1 2 · · · n

)′

, (Level 1), (4.5)

YYY gc = (YYY
′
x1gc, . . . ,YYY

′
xkgc gc)

′
, ZZZgc = (ZZZ

′
x1gc, . . . ,ZZZ

′
xkgc gc)

′
, (Level 2) (4.6)

and

YYY c = (YYY
′
1c, . . . ,YYY

′
Gcc)

′
, ZZZc = (ZZZ

′
1c, . . . ,ZZZ

′
Gcc)

′
, (Level 3). (4.7)

Then, country c consists of the set variables {Θxgc,Θgc,Θc,YYY c} for x = x1, . . . ,xkgc , g =

1, . . . ,Gc, gender g consists of the variables {Θxgc,Θgc,YYY gc} for x = x1, . . . ,xkgc and age
x consists of {Θxgc,YYY xgc} under the following assumptions:

(A1) The countries are independent.

(A2) For each c = 1, . . . ,C and for given Θc, the genders {Θxgc,Θgc,YYY gc} are condi-
tionally independent.

(A3) For each c= 1, . . . ,C and g= 1, . . . ,Gc and for given (Θgc,Θc), the ages {Θxgc,YYY xgc}
are conditionally independent.

(A4) For each c = 1, . . . ,C, g = 1, . . . ,Gc, x = x1, . . . ,xkgc and for given (Θxgc,Θgc,Θc),
the mortality observations YYY xgc are conditionally independent.

(A5) All the vectors (Θxgc,Θgc,Θc) for c = 1, . . . ,C, g = 1, . . . ,Gc and x = x1, . . . ,xkgc

are identically distributed.

(A6) E(YYY xgc|Θxgc,Θgc,Θc) = ZZZxgc βββ (Θxgc,Θgc,Θc), for t = t1, ..., tn, where ZZZxgc is a
n×2 design matrix and βββ (Θxgc,Θgc,Θc) is the coefficients vector.

(A7) Cov(YYY xgc|Θxgc,Θgc,Θc) = σ
2(Θxgc,Θgc,Θc) WWW−1

xgc, where WWW xgc is a fixed posi-
tive definite diagonal (n×n) matrix with known elements wt,xgc for c = 1, . . . ,C,
g = 1, . . . ,Gc, x = x1, . . . ,xkgc and t = t1, . . . , tn.

The structural parameters of the hierarchical credibility regression model are given by

(S1) βββ = E[βββ (Θxgc,Θgc,Θc)],

(S2) s2 = E[σ2(Θxgc,Θgc,Θc)],

(S3) AAA = E
{

Cov[βββ (Θxgc,Θgc,Θc)|Θgc,Θc]
}

,

(S4) UUU = E
{

Cov[βββ (Θgc,Θc)|Θc]
}

,

(S5) ΨΨΨ = Cov[βββ (Θc)].
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The regression coefficients for Level 1 are given by

β̂ββ xgc = (ZZZ
′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgcYYY xgc, (Level 1), (4.8)

with conditional covariance

Cov(β̂ββ xgc|Θxgc,Θgc,Θc) = σ
2(Θxgc,Θgc,Θc)(ZZZ

′
xgcWWW xgcZZZxgc)

−1 , (4.9)

while for the other levels we have

β̂ββ gc = (

xkgc∑
x=x1

KKKxgc)
−1

xkgc∑
x=x1

KKKxgcβ̂ββ xgc, (Level 2), (4.10)

β̂ββ c = (

Gc∑
g=1

KKKgc)
−1

Gc∑
g=1

KKKgcβ̂ββ gc, (Level 3) (4.11)

and for the higher multi-country level

β̂ββ = (
C∑

c=1

KKKc)
−1

C∑
c=1

KKKcβ̂ββ c . (4.12)

The corresponding credibility factors for each level are respectively defined by

KKKxgc = AAA[AAA+ s2(ZZZ
′
xgcWWW xgcZZZxgc)

−1]−1, (Level 1), (4.13)

KKKgc =UUU [UUU +(

xkgc∑
x=x1

KKKxgc)
−1AAA]−1, (Level 2) (4.14)

and
KKKc = ΨΨΨ[ΨΨΨ+(

Gc∑
g=1

KKKgc)
−1UUU ]−1, (Level 3). (4.15)

Theorem 4.2. Based on the above assumptions and notation, we obtain the following
expressions for the conditional expectations

E[βββ (Θxgc,Θgc,Θc)|Θxgc,Θgc,Θc] = βββ (Θxgc,Θgc,Θc), (4.16)

E[βββ (Θxgc,Θgc,Θc)|Θgc,Θc] = βββ (Θgc,Θc), (4.17)

E[βββ (Θxgc,Θgc,Θc)|Θc] = βββ (Θc), (4.18)

E[βββ (Θgc,Θc)|Θc] = βββ (Θc), (4.19)
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E[βββ (Θc)|Θc] = βββ (Θc), (4.20)

E[βββ (Θc)] = βββ , (4.21)

E[β̂ββ xgc|Θxgc,Θgc,Θc] = βββ (Θxgc,Θgc,Θc), (4.22)

E[β̂ββ xgc|Θgc,Θc] = βββ (Θgc,Θc), (4.23)

E[β̂ββ xgc|Θc] = βββ (Θc), (4.24)

E(β̂ββ xgc) = βββ , (4.25)

E(β̂ββ gc) = βββ , (4.26)

E(β̂ββ c) = βββ . (4.27)

Proof: Expressions (4.16)-(4.21) are notations. Expression (4.22) can be easily proved
using assumptions (A6) and (4.8)

E[β̂ββ xgc|Θxgc,Θgc,Θc] = (ZZZ
′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgc E(YYY xgc|Θxgc,Θgc,Θc)

= (ZZZ
′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgcZZZxgc βββ (Θxgc,Θgc,Θc)

= βββ (Θxgc,Θgc,Θc).

From (4.17), we can easily get (4.23)

E[β̂ββ xgc|Θgc,Θc] = E
[
E[β̂ββ xgc|Θxgc,Θgc,Θc]|Θgc,Θc

]

= E[βββ (Θxgc,Θgc,Θc)|Θgc,Θc]

= βββ (Θgc,Θc),
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while from (4.19) we can prove (4.24)

E[β̂ββ xgc|Θc] = E
[
E[β̂ββ xgc|Θgc,Θc]|Θc

]

= E[βββ (Θgc,Θc)|Θc] = βββ (Θc).

Similarly, the proof of (4.25) is direct from (4.21) and (4.24)

E(β̂ββ xgc) = E
[
E(β̂ββ xgc|Θc)

]

= E[βββ (Θc)] = βββ ,

while (4.26) follows from (4.10) and (4.25)

E(β̂ββ gc) = (

xkgc∑
x=x1

KKKxgc)
−1

xkgc∑
x=x1

KKKxgcE(β̂ββ xgc) = βββ .

Finally, (4.27) can be directly proved using (4.11) and (4.26)

E(β̂ββ c) = (
Gc∑

g=1

KKKgc)
−1

Gc∑
g=1

KKKgcE(β̂ββ gc) = βββ .

Theorem 4.3. Based on Theorem 4.2, we can prove the following expressions for the
conditional covariances

Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′] = δcc′ [δgg′(δxx′AAA+UUU)+ΨΨΨ], (4.28)

Cov[βββ (Θgc,Θc), β̂ββ x′g′c′] = δcc′(δgg′UUU +ΨΨΨ), (4.29)

Cov[βββ (Θc), β̂ββ x′g′c′] = δcc′ΨΨΨ, (4.30)

Cov(β̂ββ xgc, β̂ββ x′g′c′) = Cov(β̂ββ x′g′c′, β̂ββ xgc)

= δcc′{δgg′[δxx′(AAA+ s2(ZZZ
′
xgcWWW xgcZZZxgc)

−1)+UUU ]+ΨΨΨ},

(4.31)

Cov(β̂ββ gc, β̂ββ x′g′c′) = δcc′{δgg′[(

xkgc∑
x=x1

KKKxgc)
−1 AAA+ UUU ]+ΨΨΨ}, (4.32)
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Cov(β̂ββ xgc, β̂ββ g′c′) = δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}, (4.33)

Cov(β̂ββ gc, β̂ββ g′c′) = δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}

= δcc′{δgg′[(

xkgc∑
x=x1

KKKxgc)
−1AAA+UUU ]+ΨΨΨ},

(4.34)

Cov(β̂ββ c, β̂ββ x′g′c′) = δcc′[(

Gc∑
g=1

KKKgc)
−1UUU +ΨΨΨ], (4.35)

Cov(β̂ββ xgc, β̂ββ c′) = δcc′[UUU (

Gc∑
g′=1

KKK′
g′c′)

−1 +ΨΨΨ], (4.36)

Cov(β̂ββ c, β̂ββ g′c′) = δcc′[(

Gc∑
g=1

KKKgc)
−1 UUU +ΨΨΨ], (4.37)

Cov(β̂ββ gc, β̂ββ c′) = δcc′[UUU (

Gc∑
g′=1

KKK′
g′c′)

−1 +ΨΨΨ], (4.38)

Cov(β̂ββ c, β̂ββ c′) = δcc′ [UUU (

Gc∑
g′=1

KKK′
g′c′)

−1 +ΨΨΨ] = δcc′[(

Gc∑
c=1

KKKgc)
−1UUU +ΨΨΨ], (4.39)

Cov(β̂ββ , β̂ββ c′) = (
C∑

c=1

KKKc)
−1

ΨΨΨ, (4.40)

Cov(β̂ββ c, β̂ββ ) = ΨΨΨ(

C∑
c′=1

KKK′
c′)

−1, (4.41)

Cov(β̂ββ , β̂ββ ) = (
C∑

c=1

KKKc)
−1

ΨΨΨ = ΨΨΨ(
C∑

c′=1

KKK′
c′)

−1. (4.42)
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Proof: For the proof of Theorem 4.3, we use the following properties of transpose
matrices.

• The transpose of the inverse of a square matrix MMM equals the inverse of the
transpose of the same matrix, i.e. (MMM−1)

′
= (MMM

′
)−1,

• The transpose of the inverse sum of matrices is the inverse sum of transposes, that

is
[(∑

MMM
)−1
]′
=
[(∑

MMM
′ )]−1

.

Hence, (4.28) is proved as follows

Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′] = E{Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′|Θc]}

+ Cov{E[βββ (Θxgc,Θgc,Θc)|Θc],E[β̂ββ x′g′c′ |Θc]}

= E
{

Cov
{

E[βββ (Θxgc,Θgc,Θc)|Θgc,Θc],E[β̂ββ x′g′c′|Θgc,Θc]|Θc
}}

+E
{

E
{

Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′|Θgc,Θc]|Θc
}}

+ δcc′Cov[βββ (Θc)]

= δcc′δgg′E{Cov[βββ (Θgc,Θc)|Θc]}

+ E

{
E
{

Cov
{

E[βββ (Θxgc,Θgc,Θc)|Θxgc,Θgc,Θc],E[β̂ββ x′g′c′|Θxgc,Θgc,Θc]|Θgc,Θc

}
|Θc

}}

+ E
{

E
{

E
{

Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′|Θxgc,Θgc,Θc]|Θgc,Θc
}
|Θc

}}
+ δcc′Cov[βββ (Θc)]

= δcc′δgg′E{Cov[βββ (Θgc,Θc)|Θc]}

+δcc′δgg′δxx′E
{

E
{

Cov[βββ (Θxgc,Θgc,Θc)|Θgc,Θc]|Θc
}}

+0+ δcc′Cov[βββ (Θc)]

= δcc′δgg′UUU +δcc′δgg′δxx′AAA+δcc′ΨΨΨ

= δcc′[δgg′(δxx′AAA+UUU)+ΨΨΨ].
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Similarly, we can obtain (4.29) and (4.30) as

Cov[βββ (Θgc,Θc), β̂ββ x′g′c′] = E{Cov[βββ (Θgc,Θc), β̂ββ x′g′c′|Θc]}

+ Cov{E[βββ (Θgc,Θc)|Θc],E[β̂ββ x′g′c′|Θc]}

= E
{

Cov
{

E[βββ (Θgc,Θc)|Θgc,Θc],E[β̂ββ x′g′c′|Θgc,Θc]|Θc
}}

+ E
{

E
{

Cov[βββ (Θgc,Θc), β̂ββ x′g′c′|Θgc,Θc]|Θc
}}

+ δcc′Cov[βββ (Θc)]

= δcc′δgg′E{Cov[βββ (Θgc,Θc)|Θc]}+0+ δcc′Cov[βββ (Θc)]

= δcc′(δgg′UUU +ΨΨΨ),

Cov[βββ (Θc), β̂ββ x′g′c′] = E{Cov[βββ (Θc), β̂ββ x′g′c′|Θc]}+ Cov{E[βββ (Θc)|Θc],E[β̂ββ x′g′c′|Θc]}

= 0+δcc′Cov[βββ (Θc)]

= δcc′ΨΨΨ.

Expression (4.31) can be proved by

Cov(β̂ββ xgc, β̂ββ x′g′c′) = E[Cov(β̂ββ xgc, β̂ββ x′g′c′|Θc)]+Cov[E(β̂ββ xgc|Θc],E(β̂ββ x′g′c′|Θc)]

= E
{

Cov
[
E(β̂ββ xgc|Θgc,Θc),E(β̂ββ x′g′c′|Θgc,Θc)

]
|Θc

}

+ E
{

E
[
Cov(β̂ββ xgc, β̂ββ x′g′c′|Θgc,Θc)|Θc

]}
+δcc′ Cov[βββ (Θc)]

= δcc′δgg′E{Cov[βββ (Θgc,Θc)|Θc]}

+ E
{

E
{

Cov[E(β̂ββ xgc|Θxgc,Θgc,Θc),E(β̂ββ x′g′c′|Θxgc,Θgc,Θc)|Θgc,Θc]|Θc
}}
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+ E
{

E
{

E
[
Cov(β̂ββ xgc, β̂ββ x′g′c′|Θxgc,Θgc,Θc)|Θgc,Θc

]
|Θc

}}
+δcc′ Cov[βββ (Θc)]

= δcc′δgg′ UUU

+ δcc′δgg′δxx′ AAA

+ E
{

E
{

E
[
σ

2(Θxgc,Θgc,Θc)(ZZZ
′
xgcWWW xgcZZZxgc)

−1|Θgc,Θc
]
|Θc

}}

+ δcc′ Cov[βββ (Θc)]

= δcc′δgg′UUU +δcc′δgg′δxx′AAA+δcc′δgg′δxx′ s2 (ZZZ
′
xgcWWW xgcZZZxgc)

−1 +δcc′ΨΨΨ

= δcc′
{

δgg′
[
δxx′(AAA+ s2(ZZZ

′
xgcWWW xgcZZZxgc)

−1)+UUU
]
+ΨΨΨ

}

= δcc′
{

δgg′
[
δxx′(AAA+ s2(ZZZ

′
x′g′c′WWW x′g′c′ZZZx′g′c′)

−1)+UUU
]
+ΨΨΨ

}
= Cov(β̂ββ x′g′c′, β̂ββ xgc).

Expression (4.31) can also be proved by using the covariance property Cov(β̂ββ x′g′c′, β̂ββ xgc)=

Cov(β̂ββ xgc, β̂ββ x′g′c′)
′
and taking into account the symmetry of matrices AAA,UUU and ΨΨΨ. For

(4.32) and (4.33) we have

Cov(β̂ββ gc, β̂ββ x′g′c′) = Cov
[( xkgc∑

x=x1

KKKxgc

)−1 xkgc∑
x=x1

KKKxgcβ̂ββ xgc, β̂ββ x′g′c′

]

=

( xkgc∑
x=x1

KKKxgc

)−1[ xkgc∑
x=x1

KKKxgcCov(β̂ββ xgc, β̂ββ x′g′c′)

]

=

( xkgc∑
x=x1

KKKxgc

)−1{ xkgc∑
x=x1

KKKxgc δcc′{δgg′[δxx′(AAA+ s2(ZZZ
′
xgWWW xgZZZxg)

−1)+UUU ]+ΨΨΨ}
}

=

( xkgc∑
x=x1

KKKxgc

)−1[ xkgc∑
x=x1

KKKxgc δcc′δgg′δxx′(AAA+ s2(ZZZ
′
xgWWW xgZZZxg)

−1)
]
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+

( xkgc∑
x=x1

KKKxgc

)−1( xkgc∑
x=x1

KKKxgc δcc′δgg′UUU
)
+

( xkgc∑
x=x1

KKKxgc

)−1( xkgc∑
x=x1

KKKxgc δcc′ΨΨΨ
)

=

( xkgc∑
x=x1

KKKxgc

)−1[
δcc′δgg′ AAA [AAA+ s2(ZZZ

′
xgcWWW xgcZZZxgc)

−1]−1(AAA+ s2(ZZZ
′
xgWWW xgZZZxg)

−1)
]

+

( xkgc∑
x=x1

KKKxgc

)−1[ xkgc∑
x=x1

KKKxgc(δcc′δgg′UUU +δcc′ΨΨΨ)
]

= δcc′
{

δgg′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+ UUU

]
+ΨΨΨ

}
,

Cov(β̂ββ xgc, β̂ββ g′c′) = Cov
[

β̂ββ xgc,

( xkgc∑
x′=x1

KKKx′g′c′

)−1 xkgc∑
x′=x1

KKKx′g′c′ β̂ββ x′g′c′

]

= E
[
(β̂ββ xgc −βββ )

xkgc∑
x′=x1

(β̂ββ x′g′c′ −βββ )
′
KKK

′
x′g′c′

( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1]

=

xkgc∑
x=x1

E
[
(β̂ββ xgc −βββ )(β̂ββ x′g′c′ −βββ )

′
]
KKK

′
x′g′c′

( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

=

[ xkgc∑
x′=x1

Cov
(

β̂ββ xgc, β̂ββ x′g′c′

)
KKK

′
x′g′c

]( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

=

[ xkgc∑
x′=x1

δcc′
{

δgg′
[
δxx′(AAA+ s2(ZZZ

′
x′g′c′WWW x′g′c′ZZZx′g′c′)

−1)+UUU
]
+ΨΨΨ

}
KKK

′
x′g′c

]( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

=

[
δcc′δgg′[AAA+ s2(ZZZ

′
x′g′c′WWW x′g′c′ZZZx′g′c′)

−1]KKK
′
x′g′c

]( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1
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+

(
δcc′δgg′UUU

xkgc∑
x′=x1

KKK
′
x′g′c

)( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

+

(
δcc′ΨΨΨ

xkgc∑
x′=x1

KKK
′
x′g′c

)( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

= δcc′δgg′AAA
( xkgc∑

x′=x1

KKK
′
x′g′c′

)−1

δcc′δgg′UUU +δcc′ΨΨΨ

= δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}.

Expression (4.33) can also be directly proved by (4.32) as follows

Cov(β̂ββ xgc, β̂ββ g′c′) = Cov(β̂ββ g′c′, β̂ββ xgc)
′

= δcc′

{
δgg′

[[( xkgc∑
x′=x1

KKKx′g′c′
)−1

AAA
]′
+ UUU

]
+ΨΨΨ

}

= δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}.

Expression (4.34) is obtained as

Cov(β̂ββ gc, β̂ββ g′c′) = Cov
[( xkgc∑

x=x1

KKKxgc

)−1 xkgc∑
x=x1

KKKxgcβ̂ββ xgc, β̂ββ g′c′

]

=

( xkgc∑
x=x1

KKKxgc

)−1[ xkgc∑
x=x1

KKKxgcCov(β̂ββ xgc, β̂ββ g′c′)

]

=

( xkgc∑
x=x1

KKKxgc

)−1{ xkgc∑
x=x1

KKKxgc δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}
}

= δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}.
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Symmetry of (4.34) can be proved from

Cov(β̂ββ g′c′, β̂ββ gc) = Cov(β̂ββ gc, β̂ββ g′c′)
′
= δcc′

{
δgg′
[( xkgc∑

x′=x1

KKKx′g′c′
)−1

AAA+ UUU
]
+ΨΨΨ

}
,

taking into account the symmetry of matrices AAA,UUU and ΨΨΨ or by using (4.32) as

Cov(β̂ββ gc, β̂ββ g′c′) = Cov
[

β̂ββ gc,

( xkgc∑
x′=x1

KKKx′g′c′

)−1 xkgc∑
x′=x1

KKKx′g′c′ β̂ββ x′g′c′

]

= E
[
(β̂ββ gc −βββ )

xkgc∑
x′=x1

(β̂ββ x′g′c′ −βββ )
′
KKK

′
x′g′c′

( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1]

=

xkgc∑
x′=x1

E
[
(β̂ββ gc −βββ )(β̂ββ x′g′c′ −βββ )

′
]
KKK

′
x′g′c′

( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

=

[ xkgc∑
x′=x1

Cov
(

β̂ββ gc, β̂ββ x′g′c′

)
KKK

′
x′g′c′

]( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

=

[ xkgc∑
x′=x1

δcc′
{

δgg′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+ UUU

]
+ΨΨΨ

}
KKK

′
x′g′c′

]( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

= δcc′
{

δgg′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+ UUU

]
+ΨΨΨ

}( xkgc∑
x′=x1

KKK
′
x′g′c′

)( xkgc∑
x′=x1

KKK
′
x′g′c′

)−1

= δcc′
{

δgg′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+ UUU

]
+ΨΨΨ

}
.

From expression (4.32), we can get (4.35) as

Cov(β̂ββ c, β̂ββ x′g′c′) = Cov
[( Gc∑

g=1

KKKgc

)−1 Gc∑
g=1

KKKgcβ̂ββ gc, β̂ββ x′g′c′

]
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=

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgc Cov(β̂ββ gc, β̂ββ x′g′c′)

=

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgc Cov(β̂ββ gc, β̂ββ x′g′c′)

=

( Gc∑
g=1

KKKgc

)−1{
KKKgc δcc′

[
(

xkgc∑
x=x1

KKKxgc)
−1 AAA+ UUU

]
+
( Gc∑

g=1

KKKgcΨΨΨ

)}

=

( Gc∑
g=1

KKKgc

)−1{
UUU
[
UUU +

( xkgc∑
x=x1

KKKxgc

)−1
AAA
]−1

δcc′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+UUU

]}

+

( Gc∑
g=1

KKKgc

)−1

δcc′
( Gc∑

g=1

KKKgcΨΨΨ

)

= δcc′
[( Gc∑

g=1

KKKgc
)−1UUU +ΨΨΨ

]
.

Expression (4.36) can be proved using

Cov(β̂ββ x′g′c′, β̂ββ c) = Cov(β̂ββ c, β̂ββ x′g′c′)
′
= δcc′

[
UUU
( Gc∑

g=1

KKK
′
gc
)−1

+ΨΨΨ

]
,

exploiting symmetry of matrices AAA,UUU and ΨΨΨ or alternatively by using (4.33)

Cov(β̂ββ xgc, β̂ββ c′) = Cov
[

β̂ββ xgc,

( Gc∑
g′=1

KKKg′c′

)−1 Gc∑
g′=1

KKKg′c′ β̂ββ g′c′

]

= E
[
(β̂ββ xgc −βββ )

Gc∑
g′=1

(β̂ββ g′c′ −βββ )
′
KKK

′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1]

=

Gc∑
g′=1

E
[
(β̂ββ xgc −βββ )(β̂ββ g′c′ −βββ )

′
]
KKK

′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1
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=

Gc∑
g′=1

Cov(β̂ββ xgc, β̂ββ g′c′)KKK
′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1

=

[ Gc∑
g′=1

δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}KKK
′
g′c′

]( Gc∑
g′=1

KKK
′
g′c′

)−1

=

{
δcc′

[
AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU
]

KKK
′
g′c′ +δcc′ ΨΨΨ

( Gc∑
g′=1

KKK
′
g′c′

)}( Gc∑
g′=1

KKK
′
g′c′

)−1

= δcc′ UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1

+δcc′ ΨΨΨ

= δcc′

[
UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1

+ΨΨΨ

]
.

Expression (4.37) is obtained by (4.34) as follows

Cov(β̂ββ c, β̂ββ g′c′) = Cov
[( Gc∑

g=1

KKKgc

)−1 Gc∑
g=1

KKKgcβ̂ββ gc, β̂ββ g′c′

]

=

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgcCov(β̂ββ gc, β̂ββ g′c′)

=

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgcδcc′
{

δgg′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+ UUU

]
+ΨΨΨ

}

=

( Gc∑
g=1

KKKgc

)−1

UUU
[
UUU +

( xkgc∑
x=x1

KKKxgc

)−1
AAA
]−1

δcc′
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+ UUU

]

+

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgcδcc′ΨΨΨ
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= δcc′
[( Gc∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]
.

and from Cov(β̂ββ g′c′, β̂ββ c) = Cov(β̂ββ c, β̂ββ g′c′)
′
= δcc′

[
UUU
( Gc∑

g=1

KKK
′
gc

)−1
+ΨΨΨ

]
, expression

(4.38) yields from

Cov(β̂ββ gc, β̂ββ c′) = δcc′
[
UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1
+ΨΨΨ

]
,

or by using (4.34)

Cov(β̂ββ gc, β̂ββ c′) = Cov
[

β̂ββ gc,

( Gc∑
g′=1

KKKg′c′

)−1 Gc∑
g′=1

KKKg′c′ β̂ββ g′c′

]

= E
[
(β̂ββ gc −βββ )

Gc∑
g′=1

(β̂ββ g′c′ −βββ )
′
KKK

′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1]

=

Gc∑
g′=1

E
[
(β̂ββ gc −βββ )(β̂ββ g′c′ −βββ )

′
]
KKK

′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1

=

[ Gc∑
g′=1

Cov
(

β̂ββ gc, β̂ββ g′c′

)
KKK

′
g′c′

]( Gc∑
g′=1

KKK
′
g′c′

)−1

=

[ Gc∑
g′=1

δcc′{δgg′[AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU ]+ΨΨΨ}KKK
′
g′c′

]( Gc∑
g′=1

KKK
′
g′c′

)−1

=

{
δcc′

[
AAA (

xkgc∑
x′=x1

KKK′
x′g′c′)

−1 +UUU
]

KKK
′
g′c′ +δcc′ ΨΨΨ

( Gc∑
g′=1

KKK
′
g′c′

)}( Gc∑
g′=1

KKK
′
g′c′

)−1

= δcc′ UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1

+δcc′ ΨΨΨ
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= δcc′

[
UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1

+ΨΨΨ

]
.

From (4.38), we can prove (4.39)

Cov(β̂ββ c, β̂ββ c′) = Cov
[( Gc∑

g=1

KKKgc

)−1 Gc∑
g=1

KKKgcβ̂ββ gc, β̂ββ c′

]

=

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgcCov(β̂ββ gc, β̂ββ c′)

=

( Gc∑
g=1

KKKgc

)−1 Gc∑
g=1

KKKgcδcc′
[
UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1
+ΨΨΨ

]

= δcc′
[
UUU
( Hc∑

g′=1

KKK
′
g′c′

)−1
+ΨΨΨ

]

and if we use Cov(β̂ββ c′, β̂ββ c) = Cov(β̂ββ c, β̂ββ c′)
′
= δcc′

[( Hc∑
g′=1

KKKg′c′
)−1

UUU +ΨΨΨ

]
, the symme-

try of (4.39) is proved from

Cov(β̂ββ c, β̂ββ c′) = δcc′
[( Gc∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]
,

or alternatively using (4.37)

Cov(β̂ββ c, β̂ββ c′) = Cov
[

β̂ββ c,

( Gc∑
g′=1

KKKg′c′

)−1 Gc∑
g′=1

KKKg′c′ β̂ββ g′c′

]

= E
[
(β̂ββ c −βββ )

Gc∑
g′=1

(β̂ββ g′c′ −βββ )
′
KKK

′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1]

=

Gc∑
g′=1

E
[
(β̂ββ c −βββ )(β̂ββ g′c′ −βββ )

′
]
KKK

′
g′c′

( Gc∑
g′=1

KKK
′
g′c′

)−1
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=

[ Gc∑
g′=1

Cov
(

β̂ββ c, β̂ββ g′c′

)
KKK

′
g′c′

]( Gc∑
g′=1

KKK
′
g′c′

)−1

=

[ Gc∑
g′=1

δcc′
[( Gc∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]
KKK

′
g′c′

]( Gc∑
g′=1

KKK
′
g′c′

)−1

= δcc′
[( Gc∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]( Gc∑
g′=1

KKK
′
g′c′

)( Gc∑
g′=1

KKK
′
g′c′

)−1

= δcc′
[( Gc∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]
.

Similarly, (4.40) can be obtained using (4.39) as follows

Cov(β̂ββ , β̂ββ c′) = Cov
[( C∑

c=1

KKKc

)−1 C∑
c=1

KKKcβ̂ββ c, β̂ββ c′

]

=

( C∑
c=1

KKKc

)−1[ C∑
c=1

KKKc Cov(β̂ββ c, β̂ββ c′)

]

=

( C∑
c=1

KKKc

)−1{ C∑
c=1

KKKc δcc′
[( Gc∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]}

=

( C∑
c=1

KKKc

)−1{
KKKc

[( Gc∑
g=1

KKKgc

)−1
UUU +ΨΨΨ

]}

=

( C∑
c=1

KKKc

)−1{
ΨΨΨ

[( Gc∑
g=1

KKKgc

)−1
UUU +ΨΨΨ

]−1[( Gc∑
g=1

KKKgc

)−1
UUU +ΨΨΨ

]}

=

( C∑
c=1

KKKc

)−1

ΨΨΨ,



92 | A Hierarchical Credibility Regression Mortality Model for Multiple Populations

while (4.41) can be obtained as

Cov(β̂ββ c, β̂ββ ) = Cov
[

β̂ββ c,

( C∑
c′=1

KKKc′

)−1 C∑
c′=1

KKKc′ β̂ββ c′

]

= E
[
(β̂ββ c −βββ )

C∑
c′=1

(β̂ββ c′ −βββ )
′
KKK

′
c′

( C∑
c′=1

KKK
′
c′

)−1]

=
C∑

c′=1

E
[
(β̂ββ c −βββ )(β̂ββ c′ −βββ )

′
]
KKK

′
c′

( C∑
c′=1

KKK
′
c′

)−1

=

[ C∑
c′=1

Cov
(

β̂ββ c, β̂ββ c′

)
KKK

′
c′

]( C∑
c′=1

KKK
′
c′

)−1

=

[ C∑
c′=1

δcc′
[
UUU
( Hc∑

g′=1

KKK
′
g′c′

)−1
+ΨΨΨ

]
KKK

′
c′

]( C∑
c′=1

KKK
′
c′

)−1

=

[ C∑
c′=1

δcc′
[
UUU
( Hc∑

g′=1

KKK
′
g′c′

)−1
+ΨΨΨ

][
UUU
( Gc∑

g′=1

KKK
′
g′c′

)−1
+ΨΨΨ

]−1
ΨΨΨ

]( C∑
c′=1

KKK
′
c′

)−1

= ΨΨΨ

( C∑
c′=1

KKK
′
c′

)−1

,

or alternatively using property

Cov(β̂ββ c, β̂ββ ) = Cov(β̂ββ , β̂ββ c)
′
= ΨΨΨ

( C∑
c′=1

KKK
′
c′

)−1

.

Finally, (4.42) can be proved from (4.40)

Cov(β̂ββ , β̂ββ ) = Cov
[

β̂ββ ,

( C∑
c′=1

KKKc′

)−1 C∑
c′=1

KKKc′ β̂ββ c′

]

= E
[
(β̂ββ −βββ )

C∑
c′=1

(β̂ββ c′ −βββ )
′
KKK

′
c′

( C∑
c′=1

KKK
′
c′

)−1]
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=
C∑

c′=1

E
[
(β̂ββ −βββ )(β̂ββ c′ −βββ )

′
]
KKK

′
c′

( C∑
c′=1

KKK
′
c′

)−1

=

[ C∑
c′=1

Cov
(

β̂ββ , β̂ββ c′

)
KKK

′
c′

]( C∑
c′=1

KKK
′
c′

)−1

=

[ C∑
c′=1

( C∑
c=1

KKKc

)−1

ΨΨΨKKK
′
c′

]( C∑
c′=1

KKK
′
c′

)−1

=

( C∑
c=1

KKKc

)−1

ΨΨΨ

( C∑
c′=1

KKK
′
c′

)( C∑
c′=1

KKK
′
c′

)−1

=

( C∑
c=1

KKKc

)−1

ΨΨΨ,

while the symmetric expression of (4.41) is given by

Cov(β̂ββ , β̂ββ ) = Cov
[( C∑

c=1

KKKc

)−1 C∑
c=1

KKKc β̂ββ c, β̂ββ

]

=

( C∑
c=1

KKKc

)−1[ C∑
c=1

KKKc Cov(β̂ββ c, β̂ββ )

]

=

( C∑
c=1

KKKc

)−1[ C∑
c=1

KKKc ΨΨΨ

( C∑
c′=1

KKK
′
c′

)−1]

= ΨΨΨ

( C∑
c′=1

KKK
′
c′

)−1

.

4.3.2 Estimation of Parameters

In this section, we present the linear credibility estimators for each level (country-
gender-age) of our hierarchical regression model. For Level 3 (country), we consider

YYYCred
c = ZZZc βββ

Cred
c (Θc), (4.43)
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where YYYCred
c = (YYYCred

′

1 , ...,YYYCred
′

C )
′
and

βββ
Cred
c (Θc) = KKKc β̂ββ c +(III −KKKc) βββ , (4.44)

with KKKc defined by (4.15) and III the 2×2 identity matrix.
For Level 2 (gender), we have

YYYCred
gc = ZZZgc βββ

Cred
gc (Θgc,Θc), (4.45)

where YYYCred
gc = (YYYCred

′

1c , ...,YYYCred
′

Gcc )
′
and

βββ
Cred
gc (Θgc,Θc) = KKKgc β̂ββ gc +(III −KKKgc) βββ

Cred
c (Θc) , (4.46)

with KKKgc obtained from (4.14). For Level 1 (age), estimator is defined by

YYYCred
xgc = ZZZxgc βββ

Cred
xgc (Θxgc,Θgc,Θc), (4.47)

where YYYCred
xgc (Θxgc,Θgc,Θc) = (YCred

t1,xgc, ...,Y
Cred
tn,xgc)

′
and

βββ
Cred
xgc (Θxgc,Θgc,Θc) = KKKxgc β̂ββ xgc +(III −KKKxgc) βββ

Cred
gc (Θgc,Θc) , (4.48)

with KKKxgc as it is given by (4.13).

The following theorem reviews the optimal projection results, which imply the best
linear estimators in hierarchical credibility regression

[
De Vylder (1976), Sundt (1979;

1980)
]
. For the proof, we refer to Bühlmann and Gisler (2005).

Theorem 4.4. Let βββ
Cred
c (Θc) be the linear estimator of βββ (Θc), βββ

Cred
gc (Θgc,Θc) be the

linear estimator of βββ (Θgc,Θc) and βββ
Cred
xgc (Θxgc,Θgc,Θc) be the linear estimator of

βββ (Θxgc,Θgc,Θc). Then, a) βββ
Cred
c (Θc) is the best linear credibility estimator of βββ (Θc)

if it satisfies

E[βββCred
c (Θc)] = E[βββ (Θc)] (4.49)

and

Cov[βββCred
c (Θc), β̂ββ x′g′c′] = Cov[βββ (Θc), β̂ββ x′g′c′], (4.50)

b) βββ
Cred
gc (Θgc,Θc) is the best linear credibility estimator of βββ (Θgc,Θc) if it satisfies

E[βββCred
gc (Θgc,Θc)] = E[βββ (Θgc,Θc)] (4.51)
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and

Cov[βββCred
gc (Θgc,Θc), β̂ββ x′g′c′] = Cov[βββ (Θgc,Θc), β̂ββ x′g′c′], (4.52)

c) βββ
Cred
xgc (Θxgc,Θgc,Θc) is the best linear credibility estimator of βββ (Θxgc,Θgc,Θc) if it

satisfies

E[βββCred
xgc (Θxgc,Θgc,Θc)] = E[βββ (Θxgc,Θgc,Θc)] (4.53)

and

Cov[βββCred
xgc (Θxgc,Θgc,Θc), β̂ββ x′g′c′] = Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′]. (4.54)

The next lemma gives the conditions for the best linear credibility estimators of regres-
sion coefficients for our hierarchical model.

Lemma 4.5. Based on (4.49)-(4.54), the best linear estimators for Level 3 (country),
Level 2 (gender) and Level 1 (age) are given by

a) βββ
Cred
c (Θc) = KKKc β̂ββ c +(III −KKKc) βββ (Level 3), (4.55)

b) βββ
Cred
gc (Θgc,Θc) = KKKgc β̂ββ gc +(III −KKKgc) βββ

Cred
c (Θc) (Level 2), (4.56)

c) βββ
Cred
xgc (Θxgc,Θgc,Θc) = KKKxgc β̂ββ xgc +(III −KKKxgc) βββ

Cred
gc (Θgc,Θc) (Level 1), (4.57)

where KKKc, KKKgc and KKKxgc are defined in (4.15), (4.14) and (4.13), respectively.

Proof: a) For country level it is sufficient to show that (4.55) satisfies (4.49) and (4.50)
of Theorem (4.4). Expectation unbiasedness holds from (4.27) and (4.21), as follows

E
[
βββ

Cred(Θc)
]
= E

[
KKKc β̂ββ c +(III −KKKc) βββ

]
= KKKc E

[
β̂ββ c
]
+(III −KKKc) βββ

= βββ = E
[
βββ (Θc)

]
. (4.58)
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The covariance condition is proved using expression (4.35) and (4.30).

Cov[βββ (Θc)
Cred, β̂ββ x′g′c′) = Cov

[
KKKc β̂ββ c +(III −KKKc) βββ , β̂ββ x′g′c′

]
= KKKc Cov(β̂ββ c, β̂ββ x′g′c′)+(III −KKKc) Cov(βββ , β̂ββ x′g′c′)

= KKKc Cov(β̂ββ c, β̂ββ x′g′c′)+0

= ΨΨΨ[ΨΨΨ+(

Gc∑
g=1

KKKgc)
−1UUU ]−1

δcc′[(

Gc∑
g=1

KKKgc)
−1UUU +ΨΨΨ]

= δcc′ΨΨΨ = Cov[βββ (Θc), β̂ββ x′g′c′]. (4.59)

b) Similarly, for gender level it is sufficient to show that (4.56) satisfies (4.51) and
(4.52). The expectation condition can be proved by (4.26), (4.58), (4.25) and (4.23) as

E
[
βββ

Cred(Θgc,Θc)
]
= E

[
KKKgcβ̂ββ gc +(III −KKKgc) βββ

Cred(Θc)
]

= KKKgcE
[
β̂ββ gc
]
+(III −KKKgc) E

[
βββ

Cred(Θc)
]

= βββ = E(β̂ββ xgc) = E
[
E(β̂ββ xgc|Θgc,Θc)

]
= E

[
βββ (Θgc,Θc)

]
. (4.60)

Then, from (4.32), (4.61) and (4.29) we get

Cov[βββ (Θgc,Θc)
Cred, β̂ββ x′g′c′] =

= Cov[KKKgcβ̂ββ gc +(III −KKKgc) βββ
Cred(Θc), β̂ββ x′g′c′]

= KKKgcCov(β̂ββ gc, β̂ββ x′g′c′)+(III −KKKgc) Cov[βββCred(Θc), β̂ββ x′g′c′]

=UUU [UUU +(

xkgc∑
x=x1

KKKxgc)
−1AAA]−1{

δcc′{δgg′[(

xkgc∑
x=x1

KKKxgc)
−1 AAA+ UUU ]+ΨΨΨ}

}

+
{

III −UUU [UUU +(

xkgc∑
x=x1

KKKxgc)
−1AAA]−1}

δcc′ΨΨΨ
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= δcc′(δgg′UUU +ΨΨΨ) = Cov[βββ (Θgc,Θc), β̂ββ x′g′c′]. (4.61)

c) Finally, for the estimator (4.57) of age level, we have to prove (4.51) and (4.52). For
the expectation condition, we use (4.25), (4.60) and (S1) as follows

E
[
βββ

Cred(Θxgc,Θgc,Θc)
]
= E

[
KKKxgcβ̂ββ xgc +(III −KKKxgc) βββ

Cred(Θgc,Θc)
]

= KKKxgcE
[
β̂ββ xgc

]
+(III −KKKxgc) E

[
βββ

Cred(Θgc,Θc)
]

= βββ = E
[
βββ (Θxgc,Θgc,Θc)

]
,

while for the covariance, the proof is given by using (4.31), (4.61) and (4.28)

Cov[βββCred(Θxgc,Θgc,Θc), β̂ββ x′g′c′]

= Cov[KKKxgc β̂ββ xgc +(III −KKKxgc) βββ
Cred(Θgc,Θc), β̂ββ x′g′c′]

= KKKxgcCov(β̂ββ xgc, β̂ββ x′g′c′)+(III −KKKxgc) Cov[βββCred(Θgc,Θc), β̂ββ x′g′c′]

= KKKxgcδcc′{δgg′ [δxx′(AAA+ s2(ZZZ
′
xgcWWW xgcZZZxgc)

−1)+UUU ]+ΨΨΨ}

+(III −KKKxgc) δcc′(δgg′UUU +ΨΨΨ)

= δcc′[δgg′(δxx′AAA+UUU)+ΨΨΨ] = Cov[βββ (Θxgc,Θgc,Θc), β̂ββ x′g′c′].

Theorem 4.6. The unbiased estimators of the structural parameters s2, AAA, UUU and ΨΨΨ

are given by the following formulas

ŝ2 =
1∑C

c=1
∑Gc

g=1
∑xkgc

x=x1(n−2)

C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

(YYY xgc −ZZZxgcβ̂ββ xgc)
′
WWW xgc(YYY xgc −ZZZxgcβ̂ββ xgc), (4.62)

ÂAA =
1∑C

c=1
∑Gc

g=1(xkgc − x1)

C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc(β̂ββ xgc − β̂ββ gc)(β̂ββ xgc − β̂ββ gc)
′
, (4.63)
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ÛUU =
1∑C

c=1(Gc −1)

C∑
c=1

Gc∑
g=1

KKKgc(β̂ββ gc − β̂ββ c)(β̂ββ gc − β̂ββ c)
′
, (4.64)

Ψ̂ΨΨ =
1

(C−1)

C∑
c=1

KKKc(β̂ββ c − β̂ββ )(β̂ββ c − β̂ββ )
′
. (4.65)

Proof: For the proof of expression (4.62) let

S⋆ = E
[
(YYY xgc −ZZZxgcβ̂ββ xgc)

′
WWW xgc(YYY xgc −ZZZxgcβ̂ββ xgc)

]

= E
[
YYY

′
xgcWWW xgcYYY xgc −YYY

′
xgcWWW xgcZZZxgcβ̂ββ xgc

− (β̂ββ xgc)
′
ZZZ

′
xgcWWW xgcYYY xgc + (β̂ββ xgc)

′
ZZZ

′
xgcWWW xgcZZZxgcβ̂ββ xgc

]

= E
[
YYY

′
xgc

(
WWW xgc −WWW xgcZZZxgc(ZZZ

′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgc

)
YYY xgc

]

= E
{

tr
[
YYY

′
xgc

(
WWW xgc −WWW xgcZZZxgc(ZZZ

′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgc

)
YYY xgc

]}
,

as matrix multiplication of above matrices gives a number equal to its trace. Also,
we have that tr(ABC) = tr(BCA), since trace is invariant under cyclic permutations of
random matrices A(m×n),B(n×n),C(n×m). Therefore,

S⋆ = tr
[(

WWW xgc −WWW xgcZZZxgc(ZZZ
′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgc

)
E
(

YYY xgcYYY
′
xgc

)]
,

where
E
(

YYY xgcYYY
′
xgc

)
= s2 WWW−1

xgc +ZZZxgcβββ βββ
′
ZZZ

′
xgc .

By recalling the linearity of trace, we take

S⋆ = tr
(

s2WWW
′
xgcWWW xgc

)
+ tr

(
WWW xgcZZZxgc βββ βββ

′
ZZZ

′
xgc

)
− tr

[
WWW xgcZZZxgc(ZZZ

′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgcs2 WWW−1

xgc

]
− tr

[
WWW xgcZZZxgc(ZZZ

′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgcZZZxgc βββ βββ

′
ZZZ

′
xgc

]

= s2 tr
(

WWW
′
xgcWWW xgc)+ tr

(
WWW xgcZZZxgc βββ βββ

′
ZZZ

′
xgc

)
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− s2 tr
[
(ZZZ

′
xgcWWW xgcZZZxgc)

−1ZZZ
′
xgcWWW xgcZZZxgc

]
− tr

(
WWW xgcZZZxgc βββ βββ

′
ZZZ

′
xgc

)

= s2
[
tr(IIIn)− tr(III2

)]

= s2 (n−2).

Hence,

E(ŝ2) =
1∑C

c=1
∑Gc

g=1
∑xkgc

x=x1(n−2)

C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

S⋆ = s2.

For the proof of (4.63), we have

E[ÂAA
⋆
] = E

[ C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc(β̂ββ xgc − β̂ββ gc)(β̂ββ xgc − ˆβββ gc)
′
]

= E
{ C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

[
(β̂ββ xgc −βββ )− (β̂ββ gc −βββ )

][
(β̂ββ xgc −βββ )− (β̂ββ gc −βββ )

]′}

= E
[ C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc(β̂ββ xgc −βββ )(β̂ββ xgc −βββ )
′
− (β̂ββ xgc −βββ )(β̂ββ gc −βββ )

′

− (β̂ββ gc −βββ )(β̂ββ xgc −βββ )
′
+(β̂ββ gc −βββ )(β̂ββ gc −βββ )

′
]

=

C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

[
Cov(β̂ββ xgc, β̂ββ xgc)−Cov(β̂ββ xgc, β̂ββ gc)−Cov(β̂ββ gc, β̂ββ xgc)+Cov(β̂ββ gc, β̂ββ gc)

]

=
C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

[
AAA+ s2(ZZZ

′
xgcWWW xgcZZZxgc)

−1 +UUU +ΨΨΨ

]

−
C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

[
AAA
( xkgc∑

x=x1

KKK
′
xgc

)−1
+UUU +ΨΨΨ

]



100 | A Hierarchical Credibility Regression Mortality Model for Multiple Populations

−
C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

[
(

xkgc∑
x=x1

KKKxgc)
−1AAA+UUU +ΨΨΨ

]

+

C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

[
AAA
( xkgc∑

x=x1

KKK
′
xgc

)−1
+UUU +ΨΨΨ

]

=
C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

{[
AAA+ s2(ZZZ

′
xgcWWW xgcZZZxgc)

−1 +UUU +ΨΨΨ

]
−
[( xkgc∑

x=x1

KKKxgc

)−1
AAA+UUU +ΨΨΨ

]}

=

C∑
c=1

Gc∑
g=1

xkgc∑
x=x1

AAA
[
AAA+ s2(ZZZ

′
xgcWWW xgcZZZxgc)

−1
]−1[

AAA+ s2(ZZZ
′
xgcWWW xgcZZZxgc)

−1
]

−
C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

KKKxgc

( xkgc∑
x=x1

KKKxgc

)−1
AAA

=
C∑

c=1

Gc∑
g=1

xkgc∑
x=x1

AAA−
C∑

c=1

Gc∑
g=1

AAA =
C∑

c=1

Gc∑
g=1

(xkgc − x1)AAA.

Similarly, (4.64) is proved as follows

E[ÛUU
⋆
] = E

[ C∑
c=1

Gc∑
g=1

KKKgc(β̂ββ gc − β̂ββ c)(β̂ββ gc − β̂ββ c)
′
]

= E
{ C∑

c=1

Gc∑
g=1

KKKgc

[
(β̂ββ gc −βββ )− (β̂ββ c −βββ )

][
(β̂ββ gc −βββ )− (β̂ββ c −βββ )

]′}

= E
[ C∑

c=1

Gc∑
g=1

KKKgc(β̂ββ gc −βββ )(β̂ββ gc −βββ )
′
− (β̂ββ gc −βββ )(β̂ββ c −βββ )

′

− (β̂ββ c −βββ )(β̂ββ gc −βββ )
′
+(β̂ββ c −βββ )(β̂ββ c −βββ )

′
]
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=
C∑

c=1

Gc∑
g=1

KKKgc

[
Cov(β̂ββ gc, β̂ββ gc)−Cov(β̂ββ gc, β̂ββ c)−Cov(β̂ββ c, β̂ββ gc)+Cov(β̂ββ c, β̂ββ c)

]

=
C∑

c=1

Gc∑
g=1

KKKgc

{[( xkgc∑
x=x1

KKKxgc

)−1
AAA+UUU +ΨΨΨ

]
−
[
UUU
( G∑

g=1

KKK
′
gc

)−1
+ΨΨΨ

]

−
[( G∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]
+
[
UUU
( G∑

g=1

KKK
′
gc

)−1
+ΨΨΨ

]}

=
C∑

c=1

Gc∑
g=1

KKKgc

{[( xkgc∑
x=x1

KKKxgc

)−1
AAA+UUU +ΨΨΨ

]
−
[( G∑

g=1

KKKgc

)−1
UUU +ΨΨΨ

]}

=
C∑

c=1

Gc∑
g=1

KKKgc

[( xkgc∑
x=x1

KKKxgc

)−1
AAA+UUU

]
−

C∑
c=1

Gc∑
g=1

KKKgc

[( G∑
g=1

KKKgc

)−1
UUU
]

=
C∑

c=1

Gc∑
g=1

UUU [UUU +
( xkgc∑

x=x1

KKKxgc

)−1
AAA]−1

[( xkgc∑
x=x1

KKKxgc

)−1
AAA+UUU

]
−

C∑
c=1

UUU

=

C∑
c=1

(Gc −1)UUU ,

and finally, (4.65) is obtained as follows

E[Ψ̂ΨΨ
⋆
] = E

[ C∑
c=1

KKKc(β̂ββ c − β̂ββ )(β̂ββ c − β̂ββ )
′
]

= E
{ C∑

c=1

KKKc

[
(β̂ββ c −βββ )− (β̂ββ −βββ )

][
(β̂ββ c −βββ )− (β̂ββ −βββ )

]′}

= E
[ C∑

c=1

KKKc(β̂ββ c −βββ )(β̂ββ c −βββ )
′
− (β̂ββ c −βββ )(β̂ββ −βββ )

′
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− (β̂ββ −βββ )(β̂ββ c −βββ )
′
+(β̂ββ −βββ )(β̂ββ −βββ )

′
]

=
C∑

c=1

KKKc

[
Cov(β̂ββ c, β̂ββ c)−Cov(β̂ββ c, β̂ββ )−Cov(β̂ββ , β̂ββ c)+Cov(β̂ββ , β̂ββ )

]

=
C∑

c=1

KKKc

[( G∑
g=1

KKKgc

)−1
UUU +ΨΨΨ

]
−

C∑
c=1

KKKc

[( C∑
c=1

KKKc

)−1

ΨΨΨ

]

=

C∑
c=1

ΨΨΨ

[
ΨΨΨ+(

Gc∑
g=1

KKKgc)
−1UUU

]−1[( G∑
g=1

KKKgc

)−1
UUU +ΨΨΨ

]
−

C∑
c=1

KKKc

[( C∑
c=1

KKKc

)−1

ΨΨΨ

]

= (C−1)ΨΨΨ.

4.3.3 Estimation of Future Mortality Rates

In this Section, we fit the logmt,xgc rates for year t = t1, . . . , tn, age x = x1, . . . ,xkgc ,
gender g = 1, . . . ,Gc and country c = 1, . . . ,C to the HCR model. Hence, fitted rates
up to year tn can be compactly written as ŶYY xgc = ZZZxgc β̂ββ xgc for x = x1, . . . ,xkgc , g =

1, . . . ,Gc, c = 1, . . . ,C and mortality rates for one-year ahead are estimated by

YCred
tn+1,xgc = log m̂Cred

tn+1,xgc = β
Cred
1,xgc +β

Cred
2,xgc (n+1). (4.66)

Then, we can employ two methods to extrapolate mortality rates over a given forecasting
horizon h = 1,2, . . . ,H.

4.3.4 Method 1: Initial Fitting Span (IF)

The estimates of future mortality rates for ages x = x1, . . . ,xkgc are given by extrap-
olating one-year ahead estimates (4.66) to log m̂Cred

tn+h,xgc = β̂
Cred
1,xgc + β̂

Cred
2,xgc (n+ h), for

h = 2, . . . ,H. Under this method, forecasts are based on the mortality data of the initial
fitting span.

4.3.5 Method 2: Moving Fitting Span (MF)

In actuarial practice, we can use the MF method to estimate future mortality rates.
One-year ahead estimates log m̂Cred

tn+1,xgc are embedded to the existing fitting span and
logmt1,xgc is simultaneously excluded from it, such that the fitting year span is moved
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by one year each time to [t2, tn +1], [t3, tn +2], [t4, tn +3] and on. Then, after estimating
structural parameters, we can consecutively obtain log m̂Cred

tn+2,xgc, . . . , log m̂Cred
tn+H,xgc. Simi-

lar practical methods have also been applied by Tsai and Zhang (2019). We note that
under the MF method forecasts are based on more recent mortality trends, while for
both extrapolation methods, one-year ahead estimates log m̂Cred

tn+1,xgc are the same.

4.4 Empirical Illustration

In this section, we evaluate the LCjoK, the LCacf model and the proposed credibility
model on mortality data for both genders of Ireland, Finland and Norway. Mortality
data are obtained from the Human Mortality Database (HMD, 2017), including calendar
years from 1960 to 2010. Mortality evolution over the period 1960-2010 in Ireland,
Finland and Norway is illustrated in Figures 4.2a, 4.2b and 4.2c, respectively, where the
observed rates show a downward trend for discrete ages x = 40, 60, 80 for males in
the left panels and females in the middle panels. In addition, average mortality decline
shows a steep downward trend over time in the right panels of Figures 4.2a, 4.2b and
4.2c for both genders of each country.

For the numerical illustration that follows, we set wt,xgc = 1 and kgc = k ages, imply-
ing no weights and the same number of fitted ages for any gender g and country c. Then,
the logmt,xgc rates are fitted on selected periods of totally n = 41 ([t1, tn] = [1960,2000])
years and k = 65 ([x1,xk] = [20,84]) ages. We consider two forecasting periods [tn +
1, tn +H], h = 1 · · · , H, for an H = 10 years span (2001-2010) and an H = 20 years
span (1991-2010). Also, for robustness (relative to changes in the fitting period of data)
fitting and forecasting periods are partitioned in various sub-periods, presented in Table
4.2. The HCR mortality methods were built into the R (R Core Team, 2017) statistical
software, by creating our own routines.

Table 4.2 Selected fitting and forecasting periods.

Fitting Length Fitting Period Forecasting Horizon Forecasting Period

n [t1, tn] H [tn +1, tn +H]

n = 41 [1960,2000]

H = 10

[2001,2010]
n = 31 [1970,2000] [2001,2010]
n = 21 [1980,2000] [2001,2010]
n = 11 [1990,2000] [2001,2010]

n = 31 [1960,1990]
H = 20

[1991,2010]
n = 21 [1970,1990] [1991,2010]
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(c) Norway

Figure 4.2 Observed logm(t,xgc) of period 1960-2010 in Ireland, Finland and Norway at the
age of 40, 60 and 80 for males in the left panel and females in the middle panel. Average male
and female logm(t,x) values over the ages 20-84 are illustrated in the right panel, where straight
lines show the corresponding trends in mortality decline.
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4.4.1 Forecasting Results

The original LC model (Chapter 3, Section 3.2.1) is fitted for the selected periods of
Table 4.2, separately on six single populations (the males of Ireland, the females of
Ireland, the males of Finland, the females of Finland, the males of Norway and the
females of Norway), while the LCjoK, the LCacf, the HCRIF and the HCRMF models
are jointly applied to six populations.

The forecasting performances of the LC, the LCjoK, the LCacf and the HCR models
are comparatively evaluated using the mean absolute percentage forecast error (MAPFE)
measure. MAPFE has been used in many studies to measure forecast errors. For some
of them, see D’Amato et al. (2012), Lin and Tsai (2015) and Tsai and Wu (2018).
MAPFE average (avg) values over the selected forecasting horizon H, for age x, gender
g and country c are defined as

MAPFEavg =
1

H × k

H∑
h=1

xk∑
x=x1

∣∣∣∣∣exp
[

log m̂Cred
tn+h,xgc

]
−m(tn +h,xgc)

m(tn +h,xgc)

∣∣∣∣∣×100 .

Accuracy results over the 10-year forecasting period [2001,2010] are presented for
both genders of Ireland, Finland and Norway in Tables 4.3 (a), (b), (c) and (d), for
fitting periods [1960,2000], [1970,2000], [1980,2000] and [1990,2000], respectively.
The corresponding results over the 20-year forecasting period are given in Tables 4.4
(a) and (b), for fitting periods [1960,1990] and [1970,1990], respectively. MAPFE
results indicate that HCR models gave us the better forecasts in average, compared with
the single and the multi-population Lee-Carter models for both genders of the three
countries (six populations in total). Boldface numbers indicate the lowest error values
over the corresponding fitting periods for each gender, while average values over the
six populations are given in the last row of each fitting subtable. The ranking order
(based on the lowest values) is given in brackets and shows that for each one of the
selected fitting and forecasting periods, the HCRMF and the HCRIF models outperform
in average.

From the Lee-Carter type models, the LCacf gave us the lowest error values for
Finland males of fitting period 1960-2000. Also, the single population LC model
produced the lowest errors for Norway male data of years 1960-2000. For consistency,
the forecasting performance was also evaluated with other well-known measures, such
as the mean absolute forecast error (MAFE), the root sum of squared forecast error
(RSSFE) and the root mean of squared forecast error (RMSFE), leading us to the same
ranking results, with the HCRMF and the HCRIF models being on top.
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Table 4.3 Averaged MAPFE values (%) over the 10 year forecasting period [2001,2010] for
the Lee-Carter type and the proposed hierarchical models fitted on years (a) [1960,2000], (b)
[1970,2000], (c) [1980,2000] and (d) [1990,2000], for both genders of Ireland, Finland and
Norway.

MAPFE[[[222000000111,,,222000111000]]]
[[[ttt111,,,222000000000]]] Lee-Carter Models Hierarchical Models

Country Gender LC LCjoK LCacf HCRIF HCRMF

(a) Fitting period: [1960,2000]

Ireland
Male 28.99 31.92 29.05 30.45 27.86
Female 27.14 23.95 27.42 21.47 20.44

Finland
Male 12.65 16.07 12.14 14.52 13.18
Female 19.29 16.33 18.13 16.04 15.94

Norway
Male 22.85 26.96 23.62 26.24 23.43
Female 16.18 15.71 15.80 14.82 14.87

Average 21.18(4) 21.82(5) 21.03(3) 20.59(2) 19.29(1)

(b) Fitting period: [1970,2000]

Ireland
Male 26.48 27.18 25.75 23.74 22.40
Female 25.38 21.93 25.55 18.87 18.75

Finland
Male 12.42 14.29 12.24 12.08 12.38
Female 19.31 17.32 18.60 16.40 17.19

Norway
Male 19.92 21.91 19.95 19.78 18.81
Female 16.59 16.47 16.08 15.28 15.89

Average 20.02(5) 19.85(4) 19.69(3) 17.69(2) 17.57(1)

(c) Fitting period: [1980,2000]

Ireland
Male 24.91 25.44 23.57 21.72 22.49
Female 24.38 22.43 24.39 19.86 20.77

Finland
Male 13.17 15.16 13.87 13.12 11.38
Female 21.42 19.83 21.40 18.58 17.12

Norway
Male 18.75 17.11 18.54 15.77 14.13
Female 18.15 17.64 16.88 16.45 15.28

Average 20.13(5) 19.60(3) 19.78(4) 17.58(2) 16.86(1)

(d) Fitting period: [1990,2000]

Ireland
Male 28.39 30.26 26.13 25.14 23.13
Female 27.52 28.06 29.05 23.06 24.79

Finland
Male 12.20 12.42 10.78 9.84 9.97
Female 20.32 18.81 21.86 15.35 15.47

Norway
Male 17.19 15.80 16.92 13.86 16.17
Female 17.78 17.46 17.32 14.04 15.17

Average 20.57(5) 20.47(4) 20.34(3) 16.88(1) 17.45(2)
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Table 4.4 Averaged MAPFE values (%) over the 20 year forecasting period [1991,2010] for the
Lee-Carter type and the proposed hierarchical models fitted on years (a) [1960,1990] and (b)
[1970,1990], for both genders of Ireland, Finland and Norway.

MAPFE[[[111999999111,,,222000111000]]]
[[[ttt111,,,111999999000]]] Lee-Carter Models Hierarchical Models

Country Gender LC LCjoK LCacf HCRIF HCRMF

(a) Fitting period: [1960,1990]

Ireland
Male 28.53 34.06 28.16 32.39 26.88
Female 25.14 25.67 23.60 21.44 18.53

Finland
Male 23.27 19.42 23.04 16.64 13.87
Female 18.28 16.06 16.73 16.83 16.68

Norway
Male 29.42 32.32 30.10 31.46 27.77
Female 16.44 15.18 16.12 14.04 14.53

Average 23.51(4) 23.78(5) 22.96(3) 22.13(2) 19.71(1)

(b) Fitting period: [1970,1990]

Ireland
Male 25.79 28.24 23.13 23.07 19.61
Female 23.24 23.62 23.06 17.82 16.07

Finland
Male 19.42 16.07 19.28 12.25 13.59
Female 18.78 16.58 17.42 16.20 17.00

Norway
Male 24.17 27.26 23.43 24.47 25.07
Female 17.88 16.43 17.71 14.83 16.43

Average 21.55(5) 21.37(4) 20.67(3) 18.11(2) 17.96(1)

From the results of Tables 4.3 and 4.4, we can also observe that deviations in the
average MAPFE values between the best performed HCR and Lee-Carter models range
between 8% - 17%. This means that if we use the HCRMF instead of the LCacf to model
mortality for years 1960-1990, the 20-year average forecasting performance for both
genders of the three countries gets improved by 14%, while for years 1960-2000 the
10-year forecasting performance gets improved by 8% and if we use the HCRIF instead
of the LCacf for years 1990-2000 the 10-year forecasting performance gets improved by
17%.

4.5 Concluding Remarks

In this chapter, we proposed a hierarchical credibility regression method to model the
mortality data of multiple counties, genders and ages, structured in a hierarchical form.
We considered different extrapolation strategies to derive future mortality rates, and
then, we compared the forecasting performances between the hierarchical model and
two Lee-Carter extensions for multiple populations. Based on the accuracy results,
the proposed models gave us a better forecasting performance in comparison with the



108 | A Hierarchical Credibility Regression Mortality Model for Multiple Populations

Lee-Carter models. This indicates that hierarchical credibility regression modelling
can be effectively applied to mortality datasets of multiple populations, with possible
similarities in their demographic or socio-economic structure.

To summarize, the averaged MAPFE results show that the best performing method
in average is the HCRMF, which indicates that mortality forecasts should be generally
be based on more recent observations. In addition, the forecasting performance of the
hierarchical model was even better when it was applied applied only for Finland and
Norway datasets of both genders (4 populations), resulting to even smaller MAPFE
values for the selected periods.



Chapter 5

A Crossed Classification Credibility
Mortality Model for Multiple
Populations

5.1 Introduction

In the previous chapter, we proposed a hierarchical credibility regression method to
model the mortality between multiple counties, genders and ages. Under this method,
age-specific mortality data for each gender are assumed to be nested into multiple
countries. An extension of the hierarchical credibility is the crossed classification
credibility model, in which mortality factors can also be modelled symmetrically.

Dannenburg et al. (1996) proposed the two-way crossed classification model, where
every contract in an insurance portfolio is assumed to be affected by the same number
of risk factors. Goulet (2001) generalized this model, allowing for a variable number of
risk factors per contract and Fung and Xu (2008) estimated the structural parameters of
the crossed classification credibility model using linear mixed models.

In this chapter, we present a multi-population mortality model, based on crossed
classification credibility techniques. Differently from the standard Lee-Carter method-
ology, where the Lee-Carter time index is assumed to follow an appropriate time series
process, under the proposed approach, period dynamics of mortality are modelled
under a two-way crossed classification credibility framework. This approach estimates
the impact of gender and country characteristics on mortality, allowing for possible
interaction effects between them.

This chapter is organized as follows. Section 5.2 describes a different formulation
of the original Lee-Carter model and then proposes a crossed classification credibility
model for multiple populations, with a detailed description for the parameter estimation
and the forecasting procedure. Section 5.3 presents an empirical illustration of the
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proposed method on males and females from three developed countries, the United
Kingdom (UK), the USA and Japan. Section 5.4 concludes this chapter.

5.2 A Credible Extension of the Lee-Carter Method for
Multiple Populations

In this section, we first review the original Lee-Carter (1992) model for a single
population and then we propose a credible extension for multiple populations. Let us
denote Dt,xgc as the observed number of deaths and Et,xgc as the average population
(exposure to risk) in consecutive calendar years t = t1, . . . , tn, ages x= x1, . . . ,xk, genders
g = 1, . . . ,G (G = 2, i.e., male = 1, female = 2) and countries c = 1, . . . ,C. Then,
mortality rates mt,xgc are obtained by the ratio Dt,xgc/Et,xgc. The original Lee-Carter
(1992) model is given as follows

logmt,xgc = αxgc +βxgc κt,gc + εt,xgc, (5.1)

where αxgc is an age parameter that reflects the average mortality at age x for gender g
and country c, κt,gc is a period parameter which indicates the general level of mortality
in year t for gender g and country c and βxgc is an age parameter that indicates the
corresponding deviation from the average mortality, as the general level of mortality
changes. Errors εt,xgc are assumed to be normally distributed, with zero mean and
constant variance, εt,xgc ∼N(0, σ

2
ε ), reflecting period, age, gender and country effects

not captured by the model. Lee and Carter (1992) estimated the model parameters using
a close approximation to the singular value decomposition method under the constraints

∑tn
t=t1 κt,gc = 0 and

∑tn
t=t1 εt,xgc = 0, (5.2)

which give
α̂xgc =

1
tn−t1+1

∑tn
t=t1 logmt,xgc (5.3)

and constraints ∑xk
x=x1

βxgc = 1 and
∑xk

x=x1
εt,xgc = 0, (5.4)

which yield
κ̂t,gc =

∑xk
x=x1

[logmt,xgc − α̂xgc] . (5.5)

Then, by regressing (logmt,xgc − α̂xgc) on κ̂t,gc for each age x (without an intercept
term), we obtain

β̂xgc =

∑tn
t=t1 [logmt,xgc − α̂xgc] κ̂t,gc∑tn

t=t1 κ̂2
t,gc

. (5.6)
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After estimating the model parameters, Lee and Carter (1992) suggested a random
walk with a drift parameter θgc to model period estimates for each gender g of country
c, i.e., κ̂t,gc = κ̂t−1,gc +θgc + εt,gc, where the time trend errors εt,gc are assumed to be
independent and identically distributed, and independent of the model errors εt,xgc. The
drift parameter is then estimated by θ̂gc =

1
tn−t1

∑tn
t=t1+1(κ̂t,gc− κ̂t−1,gc) =

1
n−1(κ̂tn,gc−

κ̂t1,gc). Hence, κ̂tn,gc are first projected h = 1,2, . . . years ahead using κ̂tn+h,gc = κ̂tn,gc +

θ̂gc ·h and then future mortality estimates in year tn +h, for age x, gender g and country
c are obtained by

log m̂tn+h,xgc = α̂xgc + β̂xgc · κ̂tn+h,gc = log m̂tn,xgc +(β̂xgc · θ̂gc) ·h . (5.7)

5.2.1 Modelling the Period Improvements of Mortality

Instead of modelling the mortality rate levels according to the original Lee-Carter
methodology, many studies have shown that is more advantageous to target on the
mortality improvement rates. In order to capture the dependence structure between
ages (more accurately), Mitchell et al. (2013) reformulated the Lee-Carter model by
targeting to the log mortality improvement. This formulation was later adopted by
Schinzinger et al. (2016) and Tsai and Lin (2017b) to model the log improvement rates
of the original Lee-Carter model under a classical credibility framework. Following the
same approach, we consider the random variable of the log improvement rates

Mt,xgc = log mt,xgc
mt−1,xgc

= logmt,xgc − logmt−1,xgc, (5.8)

for t = t2, . . . , tn, x = x1, . . . ,xk, g = 1, . . . ,G and c = 1, . . . ,C. Then by substituting
(5.1) into (5.8), we can get

Mt,xgc = βxgc ·∆κt,gc +∆εt,xgc, (5.9)

where ∆κt,gc = κt,gc − κt−1,gc expresses the general level of mortality improvement
between consecutive years, while βxgc reflects the sensitivity to this mortality improve-
ment. The errors ∆εt,xgc = εt,xgc − εt−1,xgc are assumed to be independent, identically
distributed and independent from ∆κt,gc. Given each age x, gender g and country c, we
assume that ∆εt,xgc is a white noise process, ∆εt,xgc ∼N(0, 2 ·σ2

ε ) such that the mortality
improvement rates Mt,xgc are independent for t = t2, . . . , tn. To ensure identifiability of
model (5.9), again constraints in (5.4) are considered. Also, summing Mt,xgc over x
using (5.4) gives

Mt,.gc =

xk∑
x=x1

Mt,xgc =

xk∑
x=x1

βxgc ∆κt,gc +

xk∑
x=x1

∆εt,xgc = ∆κt,gc, (5.10)
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which connects the aggregate (for all ages) mortality improvement rates for consecutive
years with the general level of mortality improvement between these years, without
involving the age structure x, for gender g and country c, implied by βxgc. This
advantage has also been highlighted by Schinzinger et al. (2016). Expression (5.10) can
be equivalently obtained by taking the first differences of κ̂t,gc with respect to t in (5.5).

Under formulation (5.9), one-year ahead mortality estimates for age x, gender g and
country c can be obtained by

log m̂tn+1,xgc = log m̂tn,xgc + β̂xgc · ∆̂κtn+1,gc, (5.11)

or recursively, for h = 2, . . .H years ahead by

logm̂tn+h,xgc = log m̂tn,xgc + β̂xgc

h∑
s=1

∆̂κtn+s,gc, (5.12)

where β̂xgc is estimated by (5.6) and ∆̂κtn+h,gc is projected using a time series model.
Selecting an appropriate time series model for the ∆̂κt,gc process is a crucial stage in
mortality projection. Slightly different time series models can lead to evident deviations
in future mortality estimates. This sensitivity, as well as possible limitations in data
availability, can make forecasting even harder. However, the random walk with a
drift model is widely adopted, serving as a compromise for the majority of mortality
modelling studies.

5.2.2 The Crossed Classification Credibility Framework

Differently from the standard Lee-Carter methodology, in which ∆κt,gcs are assumed
to follow an appropriate time series process, herein we propose a two-way crossed
classification credibility approach to model the crossed effects between genders and
countries. Under this two-way model, mortality improvement is affected by two
qualitative risk factors and the possible interactions between them. Let us consider two
categories of risk factors, associated with gender and country characteristics, denoted
by the random variables K(1)

g , g = 1, . . . ,G and K
(2)
c , c = 1, . . . ,C, respectively. Under

this specification, the gender and country dynamics of mortality improvement can be
decomposed (additively) into independent variance components by assuming that the
elements of the gender-related vector (K(1)

1 , . . . ,K
(1)
G ) and the country-related vector

(K
(2)
1 , . . . ,K

(2)
C ) are independent and identically distributed, with all of their elements

being mutually independent across vectors. The conditional means and variance are
then defined as

E(∆κt,gc|K(1)
g ,K

(2)
c ) = µ12(K

(1)
g ,K

(2)
c ),
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E(∆κt,gc|K(1)
g ) = µ1(K

(1)
g ),

E(∆κt,gc|K(2)
c ) = µ2(K

(2)
c ),

E[Var(∆κt,gc|Kg,Kc)] = s2.

Under the above assumptions, ∆κt,gc in (5.10) can be formulated into a two-way crossed
classification model

∆κt,gc = µ + k(1)g + k(2)c + k(12)
gc + εt,gc, (5.13)

for t = t2, . . . , tn (n−1 years), gender g= 1 (males),2 (females) and country c= 1, . . . ,C
assuming that

E(k(1)g ) = E(k(2)c ) = E(k(12)
gc ) = E(εt,gc) = 0 (5.14)

and

Var(k(1)g ) = σ
2
g , Var(k(2)c ) = σ

2
c , Var(k(12)

gc ) = σ
2
gc, Var(εt,gc) = s2. (5.15)

Table 5.1 Gender, country and interaction terms in the two-way crossed classification model.

Gender
Country

k(2)1 . . . k(2)C

k(1)1
k(12)

11 . . . k(12)
1C

...
...

...
...

k(1)G
k(12)

G1 . . . k(12)
GC

The gender and country factors, along with their interaction terms of model (5.13) are
given in Table 5.1. The one-year ahead credibility estimator of the general level of
mortality improvement for gender g and country c in the two-way crossed classification
model is given by the following theorem. For a detailed proof of this theorem, we refer
to Dannenburg et al. (1996, pp. 109-113).

Theorem 5.1. The credibility estimator of ∆κtn+1,gc under the two-way crossed classifi-
cation model is given by

∆̂κ
Cred
tn+1,gc = Z(12)

∆κ.,gc +(1−Z(12))(µ̂ + k̂(1)g + k̂(2)c ). (5.16)

Sketch of Proof: Note that the credibility estimator of ∆κtn+1,gc is directly obtained by
using the credibility estimators for each one of the terms appeared in model (5.13) as
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follows
∆̂κ

Cred
tn+1,gc = µ̂ + k̂(1)g + k̂(2)c + k̂(12)

gc , (5.17)

where the credibility estimators of gender and country factors k(1)g , k(2)c and k(12)
gc are

given by

k̂(12)
gc = Z(12)

gc (∆κ.,gc − µ̂ − k̂(1)g − k̂(2)c ), (5.18)

k̂(1)g = Z(1)(∆κ.,g.− µ̂)−Z(1) 1
C

C∑
c=1

k̂(2)c , (5.19)

k̂(2)c = Z(2)(∆κ.,.c − µ̂)−Z(2) 1
G

G∑
g=1

k̂(1)g . (5.20)

Thus, expression (5.16) is derived by substituting (5.18) into (5.17).
In terms of credibility theory, future estimates for the general level of mortality

improvement given in (5.16) can be interpreted as the weighted average of the character-
istics within a specific gender-country selection ∆κ.,gc (individual) and the overall mean
µ̂ (collective), plus two terms that correspond to gender k̂(1)g and country k̂(2)c factors,
estimated by (5.19) and (5.20), respectively. The estimators for the terms, appeared in
(5.16), (5.19), (5.20) and (5.18), are presented in the next section.

5.2.3 Estimation of Model Parameters

Following Dannenburg et al. (1996), the credibility factors are given by

Z(12) =
σ2

gc

σ2
gc + s2/(n−1)

,

Z(1) =
C ·σ2

g

C ·σ2
g +σ2

gc + s2/(n−1)
, (5.21)

Z(2) =
G ·σ2

c
G ·σ2

c +σ2
gc + s2/(n−1)

and the means are defined as

∆κ.,gc =
1

n−1

tn∑
t=t2

∆κt,gc, ∆κ.,g. =
1
C

C∑
c=1

∆κ.,gc, ∆κ.,.c =
1
G

G∑
g=1

∆κ.,gc. (5.22)



5.2 A Credible Extension of the Lee-Carter Method for Multiple Populations | 115

The structural parameters are estimated by

µ̂ = ∆κ.,.. =
1

C ·G (n−1)

C∑
c=1

G∑
g=1

tn∑
t=t2

∆̂κt,gc =
1

C ·G

C∑
c=1

G∑
g=1

∆κ.,gc, (5.23)

ŝ2 =
1

C ·G (n−2)

C∑
c=1

G∑
g=1

tn∑
t=t2

(∆̂κt,gc −∆κ.,gc)
2, (5.24)

while the estimators of σ
2
g , σ

2
c and σ

2
gc can be obtained as solutions of the following

linear system of equations

G∑
g=1

1
G

[ C∑
c=1

1
C
(∆κ.,gc −∆κ.,g.)

2 − ŝ2 C−1
C(n−1)

]
= (σ2

c +σ
2
gc)(1−

G∑
g=1

C∑
c=1

1
G
(

1
C
)2),

C∑
c=1

1
C

[ G∑
g=1

1
G
(∆κ.,gc −∆κ.,.c)

2 − ŝ2 G−1
G(n−1)

]
= (σ2

g +σ
2
gc)(1−

C∑
c=1

G∑
g=1

1
C
(

1
G
)2),

G∑
g=1

C∑
c=1

1
G ·C

(∆κ.,gc −∆κ.,..)
2 − ŝ2 G ·C−1

G ·C(n−1)
= σ

2
g (1−

G∑
g=1

(
1
G
)2) +

+ σ
2
c (1−

C∑
c=1

(
1
C
)2)+ σ

2
gc(1−

G∑
g=1

C∑
c=1

(
1

G ·C
)2).

Remark 5.2. Theoretically, the above estimation can yield non positive estimates
for any of σ̂

2
g , σ̂

2
c , σ̂

2
gc. So if σ̂

2
gc ≤ 0, then Z(12)

gc is set to be zero valued and from
(5.16), ∆̂κ

Cred
tn+1,gc equals to the overall mean µ̂ . Moreover, if σ̂

2
gc is positive, but one

of σ̂
2
g or σ̂

2
c is non positive, then Z(1) or Z(2) are zero valued and ∆̂κ

Cred
tn+1,gc yields

Z(12)
∆κ.,gc +(1−Z(12))(µ̂ + k̂(2)c ) or Z(12)

∆κ.,gc +(1−Z(12))(µ̂ + k̂(1)g ), respectively.
In particular, if σ̂

2
gc is positive, but both σ̂

2
g and σ̂

2
c are non positive, then estimator (5.16)

reduces to the Bühlmann credibility formula, i.e., ∆̂κ
Cred
tn+1,gc = Z(12)

∆κ.,gc+(1−Z(12))µ̂ .

The results of Remark 5.2 are summarized as follows

∆̂κ
Cred
tn+1,gc =


µ̂, if σ̂

2
gc ≤ 0,

Z(12)
∆κ.,gc +(1−Z(12))(µ̂ + k̂(2)c ), if σ̂

2
gc > 0, σ̂

2
c > 0 and σ̂

2
g ≤ 0,

Z(12)
∆κ.,gc +(1−Z(12))(µ̂ + k̂(1)g ), if σ̂

2
gc > 0, σ̂

2
g > 0 and σ̂

2
c ≤ 0,

Z(12)
∆κ.,gc +(1−Z(12))µ̂, if σ̂

2
gc > 0, σ̂

2
g ≤ 0 and σ̂

2
c ≤ 0.
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5.2.4 Mortality Forecasting

Substituting (5.16) into (5.11) gives the one-year ahead credibility forecast of the
mortality improvement rates, for age x, gender g and country c as follows

M̂Cred
tn+1,xgc = β̂xgc · ∆̂κ

Cred
tn+1,gc = β̂xgc

[
Z(12) ·∆κ.,gc +(1−Z(12)) (µ̂ + k̂(1)g + k̂(2)c )

]
.(5.25)

Yet recall that βxgc is estimated by (5.6). Lemma 5.3 shows that the credibility estimator
of the one-year ahead mortality improvement rates M̂Cred

tn+1,xgc preserves the crossed
classification credibility form, similarly with estimator (5.16) for the general level of
mortality improvement.

Lemma 5.3. The credibility estimator of the one-year ahead mortality improvement
rates M̂Cred

tn+1,.gc can be obtained by

M̂Cred
tn+1,xgc = Z(12) ·M.,xgc +(1−Z(12))(β̂xgc ·M.,...+ β̂xgc ·M̂(1)

g + β̂xgc ·M̂(2)
c ), (5.26)

Proof: For the proof of Lemma (5.3), note that for any arbitrary x,g and c, the credibility
factor Z(12) is a scalar, thus expression (5.25) can be rearranged as

M̂Cred
tn+1,xgc = Z(12)(

β̂xgc ·∆κ.,gc
)
+
(
1−Z(12))(

β̂xgc · µ̂ + β̂x,gc · k̂(1)g + β̂xgc · k̂(2)c
)
. (5.27)

Now, averaging (5.9) with respect to t yields

M.,xgc =
1

n−1

tn∑
t=t2

Mt,xgc =
1

n−1

tn∑
t=t2

βxgc ·∆κt,gc = βxgc ·∆κ.,gc , (5.28)

while summing (5.28) over x gives M.,.gc = ∆κ.,gc , which is connected with (5.28) by
M.,xgc = β̂xgc ·M.,.gc. Further averaging M.,.gc with respect to g and c yields

M.,.g. =
1
G

G∑
g=1

M.,.gc =
1
G

G∑
g=1

∆κ.,gc = ∆κ.,.c , (5.29)

M.,..c =
1
C

C∑
c=1

M.,.gc =
1
C

C∑
c=1

∆κ.,gc = ∆κ.,g. (5.30)

and

M.,... =
1

C ·G

C∑
c=1

G∑
g=1

M.,.gc =
1

C ·G

C∑
c=1

G∑
g=1

∆κ.,gc = ∆κ.,.. = µ̂ . (5.31)
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Similarly, k̂(1)g in (5.19) and k̂(2)c in (5.20) may be rewritten as

M̂
(1)
g = Z(1)(M.,..c −M.,...)−Z(1) 1

C

C∑
c=1

M̂
(2)
c (5.32)

and

M̂
(2)
c = Z(2)(M.,.g.−M.,...)−Z(2) 1

G

G∑
g=1

M̂
(1)
g , (5.33)

respectively. Then, substituting (5.28)–(5.33) into (5.27) yields (5.26).
In the two-way crossed classification credibility estimator (5.26), the individual mean
is represented by M.,xgc (= β̂xgc ·M.,.gc), while the collective mean by β̂xgc ·M.,..., plus
two additional factors, β̂xgc ·M̂(1)

g and β̂xgc ·M̂(2)
c , which express the influence of gender

and country effects.

Remark 5.4. Summing (5.26) over x gives

M̂Cred
tn+1,.gc = Z(12) ·M.,.gc +(1−Z(12)) (M.,...+M̂

(1)
g +M̂

(2)
c ). (5.34)

Estimator (5.34) allows to study the overall improvement of future mortality M̂Cred
tn+1,.gc

from the aggregate mortality dynamics ∆κ.,gc, without involving the β̂xgc effects of age
x, for gender g and country c.

To summarize, the credibility estimator of one-year ahead mortality rates log m̂Cred
tn+1,xgc

can be directly obtained by substituting (5.25) in (5.8)

log m̂Cred
tn+1,xgc = logmtn,xgc + M̂Cred

tn+1,xgc , (5.35)

or recursively, for h years ahead by

log m̂Cred
tn+h,xgc = logmtn,xgc +

h∑
s=1

M̂Cred
tn+s,xgc . (5.36)

In order to obtain future mortality rates log m̂Cred
tn+h,xgc, for h = 2,3, . . . ,H years ahead,

we first have to estimate mortality improvement rates M̂Cred
tn+h,xgc in (5.36). Tsai and Lin

(2017b) proposed two methods to determine future mortality rates under the Bülmann
credibility approach. Similarly, we employ the moving fitting (MF) and the expanding
fitting (EF) methods to estimate future mortality improvement rates under the crossed
classification mortality framework as follows.

Method 1: Moving Fitting (MF)

Under this method, the one-year ahead credibility estimate of mortality improvement
rates M̂Cred

tn+1,xgc, obtained by (5.25), is embedded to the existing fitting span, while
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the first observed rates Mt2,xgc are simultaneously excluded from it. Thus, the fit-
ting span is moved by one year to [t3, tn + 1], keeping a constant fitting length, to
form [Mt3,xgc,M̂Cred

tn+1,xgc], which by (5.9) are decomposed to [∆̂κt3,gc, ∆̂κtn+1,gc]. After
following the parameter estimation procedure of Section 5.2.3, ∆̂κ

Cred
tn+2,gc is derived

from (5.16) and then is incorporated into (5.25) to obtain M̂Cred
tn+2,xgc. By repeating the

same steps, we can consecutively obtain M̂Cred
tn+3,xgc, . . . ,M̂

Cred
tn+H,xgc, which by (5.36) yield

m̂Cred
tn+3,xgc, . . . , m̂

Cred
tn+H,xgc, respectively. Under the MF method, a credibility expression

for M̂Cred
tn+h,xgc for h = 2,3, . . . ,H, age x, gender g and country c equals

β̂xgc ·Z(12)(tn +h) ·∆κ.,gc(tn +h)+ β̂xgc
[
1−Z(12)(tn +h)

] [
∆κ.,..(tn +h)+ k̂(1)g + k̂(2)c

]
, (5.37)

where

∆κ.,gc(tn +h) =
1

n−1

tn+h−1∑
t=t1+h

∆̂κt,gc, (5.38)

∆κ.,..(tn +h) =
1

C ·G

C∑
c=1

G∑
g=1

∆κ.,gc(tn +h) (5.39)

and

Z(12)
gc (tn +h) =

σ2
gc

σ2
gc + s2/(n−1)

, (5.40)

with ∆κ.,gc(tn + h), ∆κ.,..(tn + h) and Z(12)(tn + h) being the ∆κ.,gc, ∆κ.,.. and Z(12)

for year tn + h, respectively. Note that β̂xgc, as well as {s2, σ
2
gc} in Z(12)(tn + h) and

{∆κ.,g., ∆κ.,.c, µ̂} in k̂(1)g and k̂(2)c are estimated over [t1 +h, tn +h−1].

Method 2: Expanding Fitting (EF)

Here the one-year ahead credibility estimate of mortality improvement rates M̂Cred
tn+1,xgc

is embedded to the existing fitting span, but Mt2,xgc is not removed from it. Thus, the
fitting span is expanded by one year to [t2, tn +1] to form [Mt2,xgc,M̂Cred

tn+1,xgc], which by
(5.9) are decomposed to [∆̂κt2,gc, ∆̂κtn+1,gc]. By repeating the estimation procedure of
Section 5.2.3, we derive ∆̂κ

Cred
tn+3,gc and M̂Cred

tn+3,xgc, using (5.16) and (5.25), respectively.
We follow the same steps to obtain M̂Cred

tn+2,xgc, . . . ,M̂
Cred
tn+H,xgc, which by (5.36) yields

m̂Cred
tn+2,xgc, . . . , m̂

Cred
tn+H,xgc. Again, the credibility formula of M̂Cred

tn+h,xgc, for h = 2,3, . . . ,H
is given by (5.37), but now

∆κ.,gc(tn +h) =
1

n+h−2

tn+h−1∑
t=t2

∆̂κt,gc, (5.41)

∆κ.,..(tn +h) =
1

C ·G

C∑
c=1

G∑
g=1

∆κ.,gc(tn +h) (5.42)
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and

Z(12)(tn +h) =
σ2

gc

σ2
gc + s2/(n+h−2)

. (5.43)

Under the EF method, the rest of model components should be estimated over [t2, tn +
h−1]. MF and EF formulas follow directly from the estimation procedure of Section
5.2.3 to generalize (5.25) for an h-years ahead forecasting horizon. We note that under
the MF method, future estimates are based on the mortality experience, gained from the
rates of the most recent calendar years, while under the EF method, the whole historical
mortality experience is taken into account.

5.3 Empirical illustration

In this Section, we evaluate the forecasting performance of the proposed model, com-
paratively with the the joint-k (Carter and Lee, 1992) and the augmented common factor
(Li and Lee, 2005) multi-populations models, presented in Chapter 4 (Section 4.2). For
the numerical illustration, we use data for both genders of three developed countries,
the UK, the USA and Japan. The crossed classification credibility mortality model was
built into the R statistical software (R Core Team, 2017), by creating our own routines.

5.3.1 Numerical Results

In this Section, we fit the LC, the LCjoK, the LCacf models and the proposed credibility
model to mortality data for both genders of UK, USA and Japan. Mortality data
were obtained from the Human Mortality Database (HMD, 2017), covering calendar
years from 1960 to 2015. Figure 5.1 indicates the downward trend of logmt,xgc rates
over the period 1960–2015 for ages x = 40, 60, 80 of both genders in UK, USA and
Japan, respectively. This downward trend is eliminated by considering the mortality
improvement rates Mt,xgc = logmt,xgc − logmt−1,xgc, illustrated in Figure 5.2.

To proceed, we consider two risk factors, where gender G is the first factor and
country C is the second factor. The first factor consists of two categories, with g = 1 for
males and g = 2 for females, while the second factor includes three categories, c = 1
for UK, c = 2 for USA and c = 3 for Japan.
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Figure 5.1 logmt,xgc rates of period 1960–2015 for: (a) UK males, (b) USA males, (c) Japanese
males, (d) UK females, (e) USA females and (f) Japanese females at the age of 40 (solid lines),
60 (dashed lines) and 80 (dotted lines).

Model (5.13) for the general level of mortality improvement ∆κt,gc can be represented
by Table 5.2. For the numerical illustration that follows, we set same number of
fitted years n and ages k for any selected gender g and country c. Thus, we consider
the mortality improvement rates Mt,xgc of n = 56 ([t1, tn] = [1960,2015]) years and k =
65([x1,xk] = [20,84]) ages, for males and females (G= 2) of selected countries (C = 3).
Model (5.9) decomposes mortality improvement into βxgc and ∆κt,gc parameters, given
by (5.6) and (5.10), respectively. The one year ahead estimates ∆κtn+1,gc for the general
level of mortality improvement are estimated by (5.16) and the corresponding mortality
improvement rates can then be derived by (5.25).
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Figure 5.2 Mt,xgc improvement rates of period 1961–2015 for: (a) UK males, (b) USA males,
(c) Japanese males, (d) UK females, (e) USA females and (f) Japanese females at the age of 40
(solid lines), 60 (dashed lines) and 80 (dotted lines).

Table 5.2 Two-way tabular formulation of ∆κt,gc, for t = t2, . . . , tn.

Gender
Country

UK (c = 1) USA (c = 2) Japan (c = 3)

Males (g = 1)
∆κt2,11 ∆κt2,12 ∆κt2,13

...
...

...
∆κtn,11 ∆κtn,12 ∆κtn,13

Females (g = 2)
∆κt2,21 ∆κt2,22 ∆κt2,23

...
...

...
∆κtn,21 ∆κtn,22 ∆κtn,23

5.3.2 Interpretation of Credibility Estimates

To better understand how the proposed credibility approach contributes in multi-
population mortality modelling, let us consider the observed mortality rates for years
1960− 2000, ages [20,84] for both genders of UK, USA and Japan. Our aim is to
estimate mortality rates for the next year. Figure 5.3 depicts the estimated values for the
general level of mortality improvement over the whole period, including the credibility
estimates for year 2001, while Table 5.3 presents the estimated parameters of model
(5.16).
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Figure 5.3 ∆̂κt,gc estimates for the general level of 1961–2001 mortality improvement for:
(a) UK males, (b) USA males, (c) Japanese males, (d) UK females, (e) USA females and (f)
Japanese females.

For example, the one year ahead estimates for the general level of mortality improvement
of year 2001 are directly obtained by substituting the values of Table 5.3 into (5.16).
Thus, the estimate for the UK males can be written as

−0.760690= 0.202901 ·(−0.747607)+(1−0.202901) ·(−1.106842+0.046297+0.296524).

We can easily observe that the credibility factors within cells Z(12) = 20% and within
genders Z(1) = 40% are both much smaller than Z(2) = 93%. This means that more
credibility should be given to the mortality experience within countries. Also, the
existence of k̂(1)g and k̂(2)c is significant for the derivation of future estimates. A credibility
factor Z(12) equal to 20% implies that the above formula assigns more weight to the
overall mean −1.1068, which is corrected by the sum of the estimated gender and
country factors (0.046297+ 0.296524). Under this correction, the one year ahead
estimate (−0.760689) is quite close to the estimated mean value (−0.747607), finally
differing only by 1.7%.
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Table 5.3 Estimated parameters for the one year ahead credibility estimates for year 2001.

(a) Credibility factors

Z(12) Z(1) Z(2)

0.202901 0.397808 0.929935

(b) Gender factors

k̂(1)g
g = 1 (Males) 0.046297

g = 2 (Females) -0.046308

(c) Country factors

k̂(2)c
c = 1 (UK) c = 2 (USA) c = 3 (Japan)
0.296524 0.337690 -0.634199

(d) Estimated means

∆κ.,gc c = 1 (UK) c = 2 (USA) c = 3 (Japan)

g = 1 (Males) -0.747607 -0.731227 -1.492506

g = 2 (Females) -0.828357 -0.756201 -2.085154

(e) Credibility estimates

∆̂κ
Cred
2001,gc c = 1 (UK) c = 2 (USA) c = 3 (Japan)

g = 1 (Males) -0.760690 -0.724553 -1.653710

g = 2 (Females) -0.850890 -0.803436 -1.847775

(f) Structural parameters

µ̂ ŝ2
σ

2
g σ

2
c σ

2
gc

-1.106842 1.560731 0.0107789 0.324847 0.009932

5.3.3 Evaluation of Forecasts

After estimating the ∆̂κt,gc, the long-term mortality estimates can be derived by (5.36),
choosing between one of the MF or EF extrapolation methods. Thus, the LCjoK, the
LCacf, the MF and the EF models were fitted to mortality data of six populations,
including both genders (G = 2) of UK, USA and Japan (C = 3), while the single
population LC model was fitted separately on males and females for each country. To
ensure robustness of forecasts, all the methods were applied for various fitting and
forecasting periods, presented in Table 5.4. The forecasting performance of each model
was evaluated using the mean absolute percentage forecast error (MAPFE) measure.
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The averaged (avg) MAPFE values over the selected forecasting horizon H, for age x,
gender g and country c are defined by

MAPFEavg =
1

H × k

H∑
h=1

xk∑
x=x1

∣∣∣∣∣exp
[

log m̂(tn +h,xgc)
]
−m(tn +h,xgc)

m(tn +h,xgc)

∣∣∣∣∣×100 .

Table 5.4 Fitting and forecasting periods.

Fitting Length Fitting Period Forecasting Horizon Forecasting Period

n [t1, tn] H [tn +1, tn +H]

n = 51 [1960,2010]
H = 5

[2011,2015]
n = 41 [1970,2010] [2011,2015]

n = 46 [1960,2005]
H = 10

[2006,2015]
n = 36 [1970,2005] [2006,2015]

n = 41 [1960,2000]
H = 15

[2001,2015]
n = 31 [1970,2000] [2001,2015]

The evaluation results are presented in Table 5.5, for six different fitting and fore-
casting periods of both genders in UK, USA and Japan. MAPFE values indicate that
the proposed method gave us the better forecasts in average (ranking order in brackets),
compared with the single and the multi-population Lee-Carter models for both genders
of the three countries (six populations in total). Regarding the Lee-Carter type mod-
els, the LCacf gave us the lowest error values for the majority of the selected periods.
Surprisingly, the single population Lee-Carter model produced lower average errors
in comparison with its multi-population counterparts for the fitting period of years
1970-2000. For consistency, forecasting performance was also evaluated with other
well-known measures such as the mean absolute forecast error (MAFE), the root sum of
squared forecast error (RSSFE) and the root mean of squared forecast error (RMSFE),
leading us to the same ranking results, with the MF and EF methods being again on top.
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Table 5.5 Averaged MAPFE values (%) for the Lee-Carter type and the proposed credibility
models fitted on years (a) [1960,2010], (b) [1960,2005], (c) [1960,2000], (d) [1970,2010], (e)
[1970,2005] and (f) [1970,2000] for both genders of UK, USA and Japan, aged 20−84.

(a) Fitting period: [[[111999666000,,,222000111000]]], forecasting period: [[[222000111111,,,222000111555]]]

MAPFE Lee-Carter Models (LC) Credibility Models (CM)

Country Gender LC LCjoK LCacf CMMF CMEF

UK
Male 11.29 17.47 10.59 6.49 6.51
Female 7.19 10.12 7.47 5.83 5.84

USA
Male 6.62 7.22 6.39 3.65 3.64
Female 7.99 8.13 7.78 3.86 3.85

Japan
Male 7.72 7.66 7.87 5.28 5.25
Female 8.87 15.81 6.60 5.41 5.39

Average 8.28(4) 11.07(5) 7.78(3) 5.09(2) 5.08(1)

(b) Fitting period: [[[111999666000,,,222000000555]]], forecasting period: [[[222000000666,,,222000111555]]]

Country Gender LC LCjoK LCacf MF EF

UK
Male 12.95 19.91 13.38 8.31 8.56
Female 9.80 12.80 9.75 7.54 7.72

USA
Male 8.42 10.06 8.26 5.89 5.96
Female 8.51 8.74 8.74 5.34 5.28

Japan
Male 8.43 8.19 8.90 5.57 5.58
Female 12.14 15.91 10.22 5.65 5.78

Average 10.04(4) 12.60(5) 9.87(3) 6.38(1) 6.48(2)

(c) Fitting period: [[[111999666000,,,222000000000]]], forecasting period: [[[222000000111,,,222000111555]]]

Country Gender LC LCjoK LCacf CMMF CMEF

UK
Male 17.27 21.71 18.24 14.19 14.71
Female 12.39 13.82 12.57 9.05 9.45

USA
Male 9.50 12.13 8.59 8.57 8.57
Female 8.55 9.55 8.89 8.62 8.29

Japan
Male 9.03 10.48 9.50 6.22 6.34
Female 16.07 18.11 14.69 7.71 8.54

Average 12.14(4) 14.30(5) 12.08(3) 9.06(1) 9.32(2)

(d) Fitting period: [[[111999777000,,,222000111000]]], forecasting period: [[[222000111111,,,222000111555]]]

Country Gender LC LCjoK LCacf MF EF

UK
Male 11.29 13.68 10.32 6.43 6.42
Female 6.30 7.47 6.37 5.75 5.74

USA
Male 7.05 6.55 6.90 4.05 4.02
Female 8.23 7.87 7.72 4.18 4.18

Japan
Male 5.93 5.93 5.99 5.59 5.47
Female 5.81 12.48 5.81 5.66 5.61

Average 7.43(4) 9.00(5) 7.19(3) 5.27(2) 5.24(1)
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Table 5.5 Cont.

(e) Fitting period: [[[111999777000,,,222000000555]]], forecasting period: [[[222000000666,,,222000111555]]]

Country Gender LC LCjoK LCacf MF EF

UK
Male 12.60 15.76 12.06 7.63 7.79
Female 8.90 10.16 8.65 7.08 7.16

USA
Male 8.49 8.99 8.55 5.65 5.58
Female 9.31 9.29 9.35 5.38 5.46

Japan
Male 6.91 6.70 7.12 5.87 5.54
Female 8.39 12.77 7.94 5.81 5.77

Average 9.10(4) 10.61(5) 8.95(3) 6.24(2) 6.22(1)

(f) Fitting period: [[[111999777000,,,222000000000]]], forecasting period: [[[222000000111,,,222000111555]]]

Country Gender LC LCjoK LCacf MF EF

UK
Male 16.28 18.04 16.33 13.57 13.73
Female 11.22 11.67 11.40 8.46 8.68

USA
Male 10.06 10.88 9.69 8.92 8.68
Female 9.84 10.38 10.12 9.11 9.24

Japan
Male 8.45 9.36 8.94 5.70 6.31
Female 12.54 15.03 12.02 6.56 7.58

Average 11.40(3) 12.56(5) 11.42(4) 8.72(1) 9.04(2)

5.4 Concluding Remarks

In this chapter, we presented a credibility formulation of the Lee-Carter method particu-
larly designed for multi-population mortality modelling. Differently from the standard
Lee-Carter methodology, where the time index is assumed to follow an appropriate
time series process, under our approach, the period dynamics of mortality are modelled
under a crossed classification credibility formulation. This approach allows to model
the gender and country mortality effects, as well as the possible interactions that may
exist between multiple genders and countries.

The future mortality rates were derived by incorporating different extrapolation
methods and the forecasting performance between the proposed method and two Lee-
Carter extensions for multiple populations was thoroughly evaluated. Numerical results
on mortality data of different periods, for both genders of the UK, the USA and Japan
show that the MF and the EF credibility methods have the best forecasting performance,
based on MAPFE values, for all the fitting and forecasting periods.



Chapter 6

General Conclusions

This thesis combined aspects of life and non-life insurance to propose novel mortality
modelling methods. Based on the actuarial credibility modelling techniques, we devel-
oped innovative methods, aiming to model and forecast mortality for a single or multiple
populations. Before introducing these methods, in Chapter 2, we examined the fitting
and forecasting performance of the most used stochastic mortality models on Greek
data. Furthermore, an application of mortality modelling in pricing insurance-related
products was also included.

However, it is highly important to point out that modelling efficiency and forecasting
reliability may also depend on unexpected events or other factors. For this reason, in
Chapter 3, we proposed a credibility regression mortality framework with random
coefficients to model mortality data. The applicability of this modelling approach
was comparatively illustrated on Greek mortality data with a pricing application on
insurance-related products.

In Chapter 4, we extended the credibility regression mortality framework to a
multi-level hierarchical structure, which models mortality for multiple populations of
different ages, genders and countries in a hierarchical form. The efficiency of this
method was illustrated on multi-population mortality data for both genders of three
northern European countries, the Ireland, the Finland and the Norway.

In Chapter 5, we presented a mortality model for multiple populations, based on
crossed classification credibility techniques. More specifically, period dynamics of
mortality are modelled under a two-way crossed classification credibility framework.
Under this specification, modelling procedure takes into account the impact of gender
and country characteristics on mortality improvement and allows for possible interaction
effects that may exist between them. The proposed method was thoroughly illustrated
on mortality data for both genders of three well-developed countries, the UK, the USA
and Japan.

To sum up, the proposed methods aimed to derive future mortality rates per age,
gender and country, which are essential for the construction of a life table (period or
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cohort). Then, any quantity of demographic or actuarial interest (e.g. life expectancies,
annuities) can be derived from this table.

Regarding some possible demographic extensions of our work, we note that even if
this thesis deals with applications on all-cause mortality data, the use of our methods
is not restricted to these data. For example, the hierarchical model of Chapter 4 can
accommodate datasets for different causes of death, per age, gender or country. In
addition, Lee (1993) suggested the use of the Lee-Carter method to model to forecast
the time series of US fertility. Accordingly, the crossed classification model of Chapter
5 can be implemented on fertility modelling studies.

Finally, we have to mention that all of the proposed methods throughout this
thesis were implemented using the "open source" R statistical software (R Core Team,
2017). Specifically, we developed our own R routines to build the credibility regression
mortality model of Chapter 3, the hierarchical credibility regression mortality model of
Chapter 4 and the crossed classification credibility mortality model of Chapter 5. The
numerical illustrations of each model are fully applicable and provide encouragement
that credibility modelling approaches could contribute to demographic projections,
beyond the scopes of this thesis.
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