
Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 1

Πανεπιστήμιο Πειραιώς – Τμήμα Πληροφορικής
Πρόγραμμα Μεταπτυχιακών Σπουδών

«Πληροφορική»

Μεταπτυχιακή Διατριβή

Thesis Title Algorithmic techniques for the Tourist Trip Design Problem
Τίτλος Διατριβής Αλγοριθμικές τεχνικές για το πρόβλημα σχεδιασμού τουριστικών

διαδρομών
Ονοματεπώνυμο Φοιτητή Γεώργιος Σανιδάς
Πατρώνυμο Ζαφείριος
Αριθμός Μητρώου ΜΠΠΛ/15062
Επιβλέπων Χαράλαμπος Κωνσταντόπουλος, Αναπληρωτής Καθηγητής

Ημερομηνία Παράδοσης Μάιος 2019

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 2

Τριμελής Εξεταστική Επιτροπή

Χαράλαμπος
Κωνσταντόπουλος
Αναπλ. Καθηγητής

Άγγελος Πικράκης
Επικ. Καθηγητής

Ιωάννης Τασούλας
Επικ. Καθηγητής

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 3

Abstract

This paper concentrates on the Tourist Trip design problem, a practical application of the Team
Orienteering problem, providing an efficient visit schedule of points-of-interest based on
predetermined scores. A slightly modified version of a well-known algorithm based on the Iterated
Local Search (ILS) is utilized: in contrast to the original ILS algorithm, the tours created must visit
the selected Points of Interest (POIs) not only within their time windows but also the remaining time
after reaching a POI should be at least the suggested visit time for this POI. Otherwise, the visit is
considered unfeasible. Furthermore, the user is allowed to modify the score of each proposed POI
by certain percent based on the category it belongs to and on how many POIs of the same category
s/he has seen along the part of the tours completed so far.

Περίληψη

Η παρούσα εργασία επικεντρώνεται στο Πρόβλημα Σχεδιασμού Διαδρομών, μιας πρακτικής
εφαρμογής του Team Orienteering Problem που προσφέρει ένα αποτελεσματικό προγραμματισμό
διαδρομών σε σημεία ενδιαφέροντος (points of interest) βασισμένο σε προκαθορισμένες
βαθμολογίες. Μια ελαφρώς τροποποιημένη εκδοχή ενός πολύ γνωστού αλγορίθμου βασισμένου
στον Iterated Local Search (ILS) χρησιμοποιείται: σε αντίθεση με τον αρχικό ILS, οι δημιουργημένες
διαδρομές πρέπει να επισκέπτονται τα επιλεγμένα σημεία ενδιαφέροντος όχι απλά μόνο μέσα στο
χρονικό περιθώριο τους, αλλά ο υπολειπόμενος χρόνος που ακολουθεί τη μετάβαση στο σημείο
πρέπει να είναι τουλάχιστον ίσος με τον προτεινόμενο χρόνο επίσκεψης του συγκεκριμένου
σημείου. Αλλιώς, η επίσκεψη θεωρείται αδύνατη. Επιπλέον, ο χρήστης έχει τη δυνατότητα να
τροποποιεί το σκορ κάθε προτεινόμενου σημείου κατά ένα συγκεκριμένο ποσοστό ανάλογα με την
κατηγορία που αυτό ανήκει και με τον αριθμό των σημείων της κατηγορίας αυτής που έχει ήδη
επισκεφθεί.

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 4

Table of Contents

1. Introduction…………………………………………………………………………………………5
2. Literature Review………………………………………………...6
3. Iterated Local Search for TOPTW………………………………………………………………12

3.1 Introduction………………………………………………………………………………12
3.2 Mathematical Formulation……………………………………………………………...13
3.3 Methodology……………………………………………………………………………..14

3.3.1 Insertion step………………………………………………………………………..14
3.3.2 Shake step…………………………………………………………………………..15
3.3.3 Heuristic…………………………………………………………………………..…16
3.3.4 Visit time modification………………………………………………………………17
3.3.5 Point-of-interest categorization and user choice………………………………...17

4. Cluster based heuristics…………………………………………………………………………..18
4.1 Introduction………………………………………………………………………………..18
4.2 Cluster Search Cluster Ratio Algorithm……………………………………………….18
4.3 Cluster Search Cluster Routes Algorithm……………………………………………...20

5. Experimental results……………………………………………………………………………….21
5.1 Test instances………………………………………………………………………….…21
5.2 Results…………………………………………………………………………………….21

6. Conclusions…………………………………………………………………………………………39
7. References………………………………………………………………………………………….39

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 5

1. Introduction

The orienteering problem is a subset of the Traveling Salesman Problem and consequently is a NP-
hard problem, meaning no exact solution can be found. As such, an array of heuristic algorithms
have been used to deliver near optimal solutions. This thesis will focus on the Orienteering problem,
its most common extensions as well as its most famous practical application, the Tourist Trip
Design problem.

The Orienteering problem (OP) has its roots on a group of sports that combines running
and navigation in order to navigate quickly from point to point (also referred as nodes) in an
unknown terrain. The element of required speed is introduced by racing against the clock, i.e.
having a time limit. Within that time window, the participants are aiming to pass through as many
nodes as possible; each node has a score associated with it, by visiting it the participant claims that
score as her points. The goal then is to maximize the gathered points before the time limit is
reached.

The major subcategories of OP are created by introducing additional constraints, for
example attributing a time window to each node or having a different starting and ending point or
requiring that each node can only be visited once. OP can also be viewed as a graph, so another
example of added complexity is the decision whether the graph is directed or not.

This paper will introduce the most common variations of OP as they pertain to the practical
application that it focuses on. Those are the Team Orienteering problem that adds multiple tours,
the Orienteering problem with Time Windows, which allows a visit to node to be realized only within
the node’s time window and the Time dependent Orienteering problem. Then, the Iterated Local
Search algorithm, which is used to solve the Team Orienteering problem with Time Windows, is
presented along with two variations that group the nodes into clusters (CSCratio and CSCroutes).
Finally, our modifications to ILS are introduced: the first forces the participant to stay at each node
for the duration of its proposed visit, while the second groups the nodes into categories based on
their type and allows the user to modify the score of each node according to the categories that
interest him/her or have already been visited before.

2. Literature Review

2.1 The orienteering problem

First mentions of the orienteering problem have been from Tsiligirides, T. (1984)[1] and Golden, B.
L. , Levy, L. , & Vohra, R. (1987)[2]. The orienteering problem (OP) at its core combines node
selection .i.e. nodes with the task of pinpointing the shortest path between those nodes. In practice
the orienteering problem comes with the assumption of a fixed (time) budget and the task of
maximizing the total profit by visiting locations (nodes) with associated scores. Since not all nodes
can be visited due to time limitations, the OP can be viewed as combining two other combinatorial

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 6

problems, the Traveling Salesman (TSP) and the Knapsack problem. Naturally the OP is also a
combinatorial NP-hard problem.

The OP has been studied extensively and has been given a number of extensions and

practical applications. Vansteenwegen, P. , Souffriau, W. , & Van Oudheusden, D. (2011a)[3] ,
Feillet, D. , Dejax, P. , & Gendreau, M. (2005)[4] and Laporte, G. , & Rodríguez-Martín, I. (2007)[5]
are some of the surveys tasked with summing up proposed solutions for OP and it’s variants until
2009. A more recent survey (Aldy Gunawan, Hoong Chuin Lau ,Pieter Vansteenwegen (2016)) [6]
attempted to cover more recent solutions as well as put more focus on specific practical
applications.

2.1.1 Classical OP

Classical OP can be defined in the following way: Assuming a graph-like set of nodes N, with each
node i∈N, each with a respective non-negative score with N[i=1] the start and N[i=n] the end, the
goal is to design a path (or tour) that will maximize the total profit (the sum of the scores of the
nodes visited) within a predetermined time frame. A further limitation prescribes that each node
cannot be visited more than once.

OP is usually formulated mathematically, much like an integer problem thus:

First, there are two decision variables employed:

Xij =1, assuming a visit from node i to node j is viable; it will be 0 if not

ui = the position of node i in the tour

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑁𝑁−1

𝑗𝑗=2 𝑆𝑆𝑖𝑖𝑀𝑀𝑖𝑖𝑗𝑗 , 𝑁𝑁−1
𝑖𝑖=2 (0)

∑ 𝑀𝑀1𝑗𝑗 = ∑ 𝑀𝑀𝑖𝑖𝑁𝑁 = 1,𝑁𝑁−1

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=2 (1)

∑ 𝑀𝑀𝑖𝑖𝑖𝑖 = ∑ 𝑀𝑀𝑖𝑖𝑗𝑗 ≤ 1; ∀𝑘𝑘 = 2, . . . ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 𝑁𝑁 − 1, (2)

∑ ∑ 𝑡𝑡𝑖𝑖𝑗𝑗 𝑀𝑀𝑖𝑖𝑗𝑗 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 (3)

2 ≤ 𝑢𝑢𝑖𝑖 ≤ 𝑁𝑁; ∀𝑖𝑖 = 2, . . . ,𝑁𝑁, (4)

𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 1 ≤ (𝑁𝑁 − 1)�1 − 𝑀𝑀𝑖𝑖𝑗𝑗 �; ∀𝑖𝑖, 𝑗𝑗 = 2, . . . ,𝑁𝑁, (5)

𝑀𝑀𝑖𝑖𝑗𝑗 ∈ {0,1}; ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁 (6)

Function (0) maximizes the total collected profit of the path. Constraint(1) stipulates that the
path begins at node 1 and ends at node N. Constraint (2) guarantees that there is no isolated node
(all nodes are connected) and that each node cannot be visited more than once. Constraint (3) fixes
the time window of every path at most at 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚, thus ensuring the time budget limit. Generic
constraints (5) and (6) eliminate the possibility of subtour creation (see Miller, C., Tucker, A.,
Zemlin, R., 1960 [7]).

An important assumption of the generic formulation of OP is that travel time between nodes
is symmetric according to Euclidian metric, that is 𝑡𝑡𝑖𝑖𝑗𝑗 = 𝑡𝑡𝑗𝑗𝑖𝑖 . This assumption means that OP as

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 7

formulated so far represents an undirected complete graph. Most solution in the literature conform
to this interpretation.

The proof that OP is NP-hard was given by Golden et al. (1987)[8]; they proved that no

algorithm is expected to solve OP optimally. Not unlike any other NP-hard problem, OP proposed
solutions are mostly heuristic and approximation ones; exact solutions would be simply too time
consuming.

However, a few researchers have proposed exact algorithms to solve OP, albeit on

instances with limited amount of nodes. Feillet et al. (2005a) produced a survey of sorts of exact
algorithms. Chief among them, Laporte and Martello (1990) [9] utilized branch-and-bound
algorithms on instances of up to 20 vertices, while Leifer and Rosenwein (1994) [10] built on their
formulation by adding a cutting plane method to achieve better upper bounds. Branch-and-cut
algorithms were later found to be able to solve instances of up to 500 vertices (Fischetti et al., 1998)
[11]

The main focus of literature is however, as mentioned earlier, the heuristic algorithms.
Tsiligirides (1984) who first introduced the term OP, based on the orienteering sport, suggested
both a stochastic and a deterministic algorithm, while Golden et al.(1987) a centre-of-gravity
algorithm. A 4-phase heuristic was introduced by Ramesh and Brown (1991) [12] and subsequently
Chao et al.(1996b) use a 5-step algorithm to outperform any other algorithm mentioned so far.

While various other ideas regarding the OP were introduced, a new solution by Schilde et

al.(2009) [13] which aimed to tackle the multi-objective variant was actually found to also outperform
Chao et al.(1996b)[14] 5 -step heuristic.

More recent approaches to the OP include Sevkli and Sevilden(2010 a and b) [15][16]

which focus on (Discreet) Strengthened Particle Swarm Optimization, Chekuri et al.(2012)-
approximation algorithms[17] and a few others which didn’t really offer dramatic performance
improvements. Dand et al’s(2013a) [18] branch-and-cut algorithm managed to improve 29 best-
known-solution on Chao et al’s(1996b) datasets.

2.1.2 Team Orienteering Problem (TOP)

The most common extension to the OP is allowing for multiple (P) paths within the same graph,
each starting and finishing at the predetermined respective positions (N[1] and N[n]) and having
𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 available time budget . Such a variation is called Team Orienteering Problem (TOP) and was
introduced by Chao et al (1996b).

TOP’s mathematical formulation is consequently very similar to the original OP’s.

Like in OP decision variables are employed:

xijp =1, assuming a visit from node i to node j in path p is viable ; it will be 0 if not

yip =1, if node i is visited in p

uip = the position of node i in path p

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑁𝑁−1

𝑖𝑖=2 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑃𝑃
𝑖𝑖=1 (7)

∑ ∑ 𝑁𝑁

𝑗𝑗=2 𝑀𝑀1𝑗𝑗𝑖𝑖 = ∑ ∑ 𝑁𝑁−1
𝑖𝑖=1 𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖 = 𝑃𝑃,𝑃𝑃

𝑖𝑖=1
𝑃𝑃
𝑖𝑖=1 (8)

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 8

∑ 𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 1; ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1,𝑃𝑃
𝑖𝑖=1 (9)

∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑁𝑁

𝑗𝑗=2 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖; ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁−1
𝑖𝑖=1 (10)

∑ ∑ 𝑡𝑡𝑖𝑖𝑗𝑗 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 (11)

2 ≤ 𝑢𝑢𝑖𝑖𝑖𝑖 ≤ 𝑁𝑁; ∀𝑖𝑖 = 2, . . . ,𝑁𝑁; ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 , (12)

𝑢𝑢𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑗𝑗𝑖𝑖 + 1 ≤ (𝑁𝑁 − 1)�1 − 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 �; ∀𝑖𝑖, 𝑗𝑗 = 2, . . . ,𝑁𝑁; ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 , (13)

𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖,𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1}; ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁; ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (14)

These constraints establish similar requirements to the OP: namely the limit time budget
available to each path, starting and end points for each path, a guarantee that each will be visited at
most once and that no subtours will be generated. Objective function (7), like in OP, states the goal
of maximizing the total realized profit.

Exact algorithms for the TOP were produced by Butt and Ryan(1999)[19] using column
generation and aiming at solving instances of up to 100 nodes. Boussier et al.(2007)[20] combined
column generation with branch-and-bound steps to significantly reduce computation times for
instances of 100 nodes.

Chao et al.(1996a) updated their 5-step heuristic to solve the OP, while Tang and Miller-
Hooks (2005)[21] utilized a tabu search heuristic in the context of an Adaptive Memory Procedure
(AMP). Several other metaheuristics were presented, among others by Archetti et al. (2007), Ke et
al. (2008), Vansteenwegen et al. (2009 b,c) and Souffriau et al. (in press). All four of them begin
with a starting solution and try to formulate a second one, which will replace the original if found
more profitable. In addition to profitability, emphasis is now placed on reducing computation times.

A common framework that is adopted by these so-called local search heuristics, includes

five actions that aim to maximize the total profit and two actions that aim at reducing travel time
between nodes.

Actions that aim at increasing total profit:

• Insert: This action utilizes cheapest insertion to add an extra node in any of the paths
• TwoInsert: Similar to above, but considering two extra nodes
• Replace: It examines all non-included nodes and inserts one if there is time budget available for

insertion. If there is no budget available, the node to be inserted replaces a lower-score one
that is already included.

• TwoReplace: Similar to the above, but now every combination of two non-included nodes is
considered for insertion.

• Change: Is a different, more drastic approach as five included nodes are removed from a path.
Subsequently, non-included nodes are inserted until there is no more time budget available. If
the new path that is created by this process is more profitable than the original, the solution is
saved, otherwise it is discarded.

Actions that aim at reducing computation times:

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 9

• 2-Opt: It replaces two edges included in the path with two new ones. If time reduction is achieved,
the change is kept.

• Swap: It swaps one node from a path with another one from another path.

2.1.3 Orienteering Problem with Time Windows (OPTW)

OPTW introduces a concept that drastically alters the procedures mentioned so far needed to solve
the OP. Time windows add an additional powerful constraint that a visit to a node can only begin
during that window. The decision variables used to formulate this problem are:

Xij =1, assuming a visit from node i to node j is viable; it will be 0 if not

yi = 1, if node i is visited; it will be 0 if not

si = the start of visit at node i

M = a constant

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑁𝑁

𝑗𝑗=2 𝑆𝑆𝑖𝑖𝑀𝑀𝑖𝑖𝑗𝑗 , 𝑁𝑁−1
𝑖𝑖=2 (15)

∑ 𝑀𝑀1𝑗𝑗 = ∑ 𝑀𝑀𝑖𝑖𝑁𝑁 = 1,𝑁𝑁−1

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=2 (16)

∑ 𝑀𝑀𝑖𝑖𝑖𝑖 = ∑ 𝑀𝑀𝑖𝑖𝑗𝑗 ≤ 1; ∀𝑘𝑘 = 2, . . . ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 𝑁𝑁 − 1, (17)

𝑠𝑠𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑗𝑗 ≤ 𝑀𝑀�1 − 𝑀𝑀𝑖𝑖𝑗𝑗 � ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁, (18)

∑ ∑ 𝑡𝑡𝑖𝑖𝑗𝑗 𝑀𝑀𝑖𝑖𝑗𝑗 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 (19)

𝑂𝑂𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁, (20)

𝑠𝑠𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁, (21)

𝑀𝑀𝑖𝑖𝑗𝑗 ∈ {0,1}; ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁 (22)

The time window constraint practically means that solutions that target the OP can’t solve
the OPTW whereas OPTW solutions can still be utilized to solve OP (Tricoire et al.(2010))[22] . With
this in mind, specific solutions of the OPTW started with Kantor and Rosenwein (1992)[23]. They
produced an insertion heuristic that uses a “score over insertion time” ratio to choose inserted
nodes while making sure that time windows are not violated. Mansini et al.(2006) [24] developed a
neighborhood search heuristic that targets the case where the starting node is also the end node.
Lastly, moving in the opposite direction Righini et Salasmi (2006,2009) [25][26] presented an exact
algorithm for the OPTW which used dynamic programming to optimally solve instances.

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 10

2.1.4 The Team Orienteering Problem with Time Windows (TOPTW)

TOPTW is probably the most common OP extension among those presented this far as it can serve
as the basis for a popular OP practical application, the Tourist Trip Design Problem.

Continuing with the same notation we have the following decision variables.

xijp =1, assuming a visit from node i to node j in path p is viable ; it will be 0 if not

yip =1, if node i is visited in p

sip = the start of visit at node i in path p

M = a constant

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑁𝑁−1

𝑖𝑖=2 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑃𝑃
𝑖𝑖=1 (23)

∑ ∑ 𝑁𝑁

𝑗𝑗=2 𝑀𝑀1𝑗𝑗𝑖𝑖 = ∑ ∑ 𝑁𝑁−1
𝑖𝑖=1 𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖 = 𝑃𝑃,𝑃𝑃

𝑖𝑖=1
𝑃𝑃
𝑖𝑖=1 (24)

∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑁𝑁

𝑗𝑗=2 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖; ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁−1
𝑖𝑖=1 (25)

𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑗𝑗𝑖𝑖 ≤ 𝑀𝑀�1 − 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 �; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (26)

∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑃𝑃
𝑖𝑖=1 ≤ 1 ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1, (27)

∑ ∑ 𝑡𝑡𝑖𝑖𝑗𝑗 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 , (28)

𝑂𝑂𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (29)

𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (30)

𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1}; ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (31)

Montemanni and Gambardella (2009) [27] developed new instances for TOPTW and
produced solution of up to 4 tours based on ant colony optimization, a hierarchical generalization of
the TOPTW. Vansteenwegen et al (2009d) [28] developed a fast metaheuristic called Iterated Local
Search (ILS) to solve the instances proposed with Solomon , whose optimal solutions are known.
ILS is the focal point of this thesis and will be covered in much greater detail later on. Tricoire et al
(2010) [29] proposed a Variable Neighborhood Search (VNS) algorithm; their results showed that
they managed to produce quality solutions for instances of up to 100 nodes with two tours in one
minute of computation time. Tricoire et al (2010) actually worked on the Multi Period Team
Orienteering Problem with Time Windows, a generalization of TOPTW.

2.2 The Time Dependent Orienteering Problem (TDOP)

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 11

TTDP does away with what has been a major assumption so far, that travel time between two
nodes is a constant value. Practically, this is an oversimplification that ignores unforeseen events or
network properties that may result in phenomena like congestion. Far more common occurrence is
of course the waiting in a station typically associated with public transport systems. As usual, the
formulation of the problem begins with the introduction of decision variables.

𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡 = 1: assuming a departure from node i in order to reach node j happens in time slot

t, it will be 0 otherwise
𝑊𝑊𝑖𝑖𝑗𝑗𝑡𝑡 : the actual time of the departure within timeslot t from node i in order to reach

node j
 𝜃𝜃𝑖𝑖𝑗𝑗𝑡𝑡 : slope coefficient of the linear time-dependent travel time

𝜂𝜂𝑖𝑖𝑗𝑗𝑡𝑡 : intercept coefficient of the linear time-dependent travel time
τ𝑖𝑖𝑗𝑗𝑡𝑡 : lower limit of time slot t for arc (i , j)
𝑇𝑇𝑖𝑖𝑖𝑖 : number of time slots for arc (i , j)

The objective function that maximizes the total profit is

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖
𝑡𝑡=1

𝑁𝑁
𝑗𝑗=2 𝑆𝑆𝑖𝑖𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡 , 𝑁𝑁−1

𝑖𝑖=2 (32)

The following constraints must be respected:

∑ 𝑋𝑋1𝑗𝑗1 = ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖
𝑡𝑡=1 𝑋𝑋𝑖𝑖𝑁𝑁𝑡𝑡 = 1,𝑁𝑁−1

𝑖𝑖=1
𝑁𝑁
𝑗𝑗=2 (33)

∑ ∑ 𝑇𝑇𝑖𝑖ℎ
𝑡𝑡=1 𝑋𝑋𝑖𝑖ℎ𝑡𝑡 = ∑ ∑ 𝑇𝑇ℎ𝑖𝑖

𝑡𝑡=1 𝑋𝑋ℎ𝑗𝑗𝑡𝑡 ≤ 1; ∀ℎ = 2, . . . ,𝑁𝑁 − 1,𝑁𝑁
𝑗𝑗=2

𝑁𝑁−1
𝑖𝑖=1 (34)

∑ ∑ [𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + (𝜃𝜃𝑖𝑖ℎ𝑡𝑡 𝑊𝑊𝑖𝑖ℎ𝑡𝑡 + 𝜂𝜂𝑖𝑖ℎ𝑡𝑡 𝛸𝛸𝑖𝑖ℎ𝑡𝑡)] 𝑇𝑇𝑖𝑖ℎ
𝑡𝑡=1 = ∑ ∑ 𝑇𝑇ℎ𝑖𝑖

𝑡𝑡=1 𝑊𝑊ℎ𝑗𝑗𝑡𝑡 ; ∀ℎ = 2, . . . ,𝑁𝑁 − 1,𝑁𝑁
𝑗𝑗=2

𝑁𝑁−1
𝑖𝑖=1 (35)

𝑋𝑋1𝑗𝑗1 τ𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑊𝑊𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡 τ𝑖𝑖𝑗𝑗(𝑡𝑡+1); 𝑖𝑖 = 1 … ,𝑁𝑁 − 1, 𝑗𝑗 = 2 … .𝑁𝑁; ∀𝑡𝑡 (36)

 ∑ ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖
𝑡𝑡=1 [θ𝑖𝑖𝑗𝑗𝑡𝑡 W𝑖𝑖𝑗𝑗𝑡𝑡 + η𝑖𝑖𝑗𝑗𝑡𝑡 𝑋𝑋𝑖𝑖𝑗𝑗𝑡𝑡)] 𝑁𝑁

𝑖𝑖=2 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁−1
𝑖𝑖=1 (37)

 𝑊𝑊1𝑖𝑖1 = 0; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁, (38)
 0 ≤ 𝑊𝑊𝑖𝑖𝑗𝑗𝑡𝑡 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ; ∀ 𝑡𝑡, 𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁 (39)

Constraint (33) forces the path to start and end at nodes 1 and N, while constraint (34)
ensures that each node is visited at most once. Constraint (35) removes any waiting time: it does so
by guaranteeing that the departure time of a subsequent node is the sum of the departure time of
the preceding node and the travel time needed to reach the former. Constraints (36) and (37)
enforce the limited travel time: they do that by categorizing the departure time in the right time slot.
Constraint (38) forces each path to start in the first time slot, while constraint (39) ensures that all
departure times are less than 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 .

Li(2012) employed network planning as well as dynamic node labeling programming to

construct an algorithm, while assuming a realistic transportation system with given start and end
nodes. Verbeeck et al.(2014a) utilized the concept of an Ant Colony System combined with a (time-
dependent) local search procedure with its own evaluation metric. Gunawan et al.(2014) solve
TDOP through a different prism, that of a practical application giving directions inside a large leisure
facility e.g. a museum, etc. Four metaheuristics are used to reach solutions with acceptable
computational times: a restart greedy algorithm, a restart Variable Neighborhood Descent heuristic,
a basic ILS and a modified ILS which uses an adaptive perturbation size.

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 12

As expected, a common extension of TDOP is the Time Dependent Orienteering Problem with
Time Windows (TDOPTW). Garcia et al.(2010,2013), Abbaspoor and Samadzadegan(2011) and
Gavalas et al(2014) are among the TDOPTW proposed solutions.

3. Iterated Local Search procedure for the Team Orienteering
Problem with Time Windows

3.1 Introduction

ILS is widely regarded as the most popular solution for the TOPTW. Its popularity derives from the
balance between computational time and high quality solutions that it achieves. It was introduced by
Pieter Vansteenwegen et al. in 2009. The paper was based on the idea of having an electronic
assistance application to help tourists plan their trip. It is thus a Tourist Trip Design problem, with
TOPTW its simplified version.

The premise is that the tourist-user needs help in organizing trips for each day he has at his
disposal. Each day trip will be relegated to a route. The goal then is to maximize the total score
collected by the fixed number of routes. A route naturally must be comprised by timely visits to
points of interest (POI) and must have a fixed duration. It is common for a route to have the same
starting and final point-node, for example a hotel, but this is not explicitly required.

An additional and very important requirement is the ability to quickly recalculate a proposed trip
because of altered real life circumstances. For example, if the user stays at a POI longer than
originally accounted for, a recalculation of the entire solution must be undertaken in order to utilize
this new information. This is a crucial point for the metaheuristic that will be employed to reach the
solution, as it is unlikely that a computational time of more than a few seconds will be deemed
acceptable by the user every time such a recalculation is needed. The introduction of this
requirement is what made ILS such an important metaheuristic in the literature.

3.2 Mathematical formulation

The mathematical formulation for the TOPTW was already given in literature but will be repeated
here for continuity.

As already stated, the locations to be visited are points of interest. Each POI in a set of n
locations, which can also be seen as a node i in a graph, has a score that is realized by visiting it, a
visiting time 𝑇𝑇𝑖𝑖 , and a time window in which it can be visited, i.e. an opening time and a closing time
[𝑂𝑂𝑖𝑖 ,𝐶𝐶𝑖𝑖]. The first node (1) and the end node (n) of every tour must be fixed and as already
mentioned may or may not be the same. Since each route usually corresponds to a single day so
naturally it has a time budget 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 which means that not all nodes can be visited in a route and
probably not even across a number of routes. The specific goal for each route then is to maximize
the total profit realized by visiting as many nodes as the time budget allows within their respective
windows. A node should only be visited once and the arrival at it can happen before it’s opening
time, but in this case a waiting time must be allowed for since the visit can’t actually occur before
the node’s opening time.

Due to the nature of the constraints imposed on it, TOPTW is a rather difficult problem to
solve; in fact Golden et al. have already proved that is an NP-hard problem, meaning an optimal

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 13

solution can’t be reached in polynomial time. In this context, developing a heuristic that can produce
a near-optimal solution in mere seconds is not a simple task.
Based on the notation introduced so far, TOPTW mathematical formulation begins with the following
decision variables:

xijp =1, when in route p node j is visited after the visit to node i ; it will be 0 if not

yip =1, if node i is visited in route p; it will be 0 if not

sip = the start of visit at node i in route p

M = a large constant

The following constraints reproduce the requirements mentioned above:

𝑀𝑀𝑀𝑀𝑀𝑀 ∑ ∑ 𝑁𝑁−1

𝑖𝑖=2 𝑆𝑆𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖 , 𝑃𝑃
𝑖𝑖=1

 (40)

∑ ∑ 𝑁𝑁

𝑗𝑗=2 𝑀𝑀1𝑗𝑗𝑖𝑖 = ∑ ∑ 𝑁𝑁−1
𝑖𝑖=1 𝑀𝑀𝑖𝑖𝑁𝑁𝑖𝑖 = 𝑃𝑃,𝑃𝑃

𝑖𝑖=1
𝑃𝑃
𝑖𝑖=1 (41)

∑ 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖 = ∑ 𝑁𝑁

𝑗𝑗=2 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 = 𝑦𝑦𝑖𝑖𝑖𝑖; ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 ,𝑁𝑁−1
𝑖𝑖=1 (42)

𝑠𝑠𝑖𝑖𝑖𝑖 + 𝑡𝑡𝑖𝑖𝑗𝑗 − 𝑠𝑠𝑗𝑗𝑖𝑖 ≤ 𝑀𝑀�1 − 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 �; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (43)

∑ 𝑦𝑦𝑖𝑖𝑖𝑖𝑃𝑃
𝑖𝑖=1 ≤ 1 ∀𝑘𝑘 = 2, . . . ,𝑁𝑁 − 1, (44)

∑ ∑ 𝑡𝑡𝑖𝑖𝑗𝑗 𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 ≤ 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 ,𝑁𝑁

𝑗𝑗=2
𝑁𝑁−1
𝑖𝑖=1 ∀𝑝𝑝 = 1, . . . ,𝑃𝑃 , (45)

𝑂𝑂𝑖𝑖 ≤ 𝑠𝑠𝑖𝑖𝑖𝑖; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (46)

𝑠𝑠𝑖𝑖𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖; ∀𝑖𝑖 = 1, . . . ,𝑁𝑁 − 1;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (47)

𝑀𝑀𝑖𝑖𝑗𝑗𝑖𝑖 ,𝑦𝑦𝑖𝑖𝑖𝑖 ∈ {0,1}; ∀𝑖𝑖, 𝑗𝑗 = 1, . . . ,𝑁𝑁;∀𝑝𝑝 = 1, . . . ,𝑃𝑃 (48)

Objective function (40) demands the maximization of total collected score S. Constraint (41)
ensures that all tours start at node 1 and end at node N. Constraint (42) guarantees the connectivity
of each tour while (43) it’s timeline. Constraint (44) ensures that each node cannot be visited more
than once and constraint (45) limits each tour’s duration to the predetermined time budget 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚.
Constraint (46) states that each visit cannot start before a POI’s opening time while (47) demands
that the visit cannot start after a POI’s closing time.

Vansteveegen et al(2009) seminal paper introduced a very fast local search procedure that also
performs very well on the available data sets. The procedure is based on an insertion step and a
removal (shaking) step to avoid local optima.

3.3 Methodology

3.3.1 Insertion step

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 14

The insertion step aims to add one after another all possible visits in a tour while simultaneously
respecting the time budget available. In addition, after each node insertion it must ensure that all
previously inserted nodes whose visits happen after the just inserted one still have their time
windows respected. This is a key point for the computation speed of the whole algorithm, as there
will be needed approximately as many such evaluations as there are possible nodes to be visited. A
way had to be found to simplify and increase the speed of these calculations. The proposed
solution was to record two helper variables for each included node, the Wait and the MaxShift.
Intuitively, Wait represents the time that will have to pass before an actual visit to node can be
started if someone arrives at it before it’s opening time. If on the other hand the arrival 𝑀𝑀𝑖𝑖 is during
the node’s time window, then Wait is zero.

𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖 = max [0,𝑂𝑂𝑖𝑖 − 𝑀𝑀𝑖𝑖]; (49)

MaxShift represents the time a visit completion can be delayed while simultaneously
respecting both its and all the following nodes time windows. MaxShift of node i is the sum of the
Wait and the MaxShift of the following node i+1 or the duration of its own visit as defined by its
time window, whatever is less.

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 = min [𝐶𝐶𝑖𝑖 − 𝑆𝑆𝑖𝑖 ,𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖+1 + 𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖+1]; (50)

Knowing the MaxShift of all nodes already included in a tour means that any evaluation
regarding a new candidate node will take constant time instead of linear.

The delay each new node insertion will impose to the consequent nodes i.e., the total time

expenditure of inserting a new node j between nodes i and k is given by the following formula:

𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑗𝑗 + 𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑗𝑗 + 𝑇𝑇𝑗𝑗 + 𝑐𝑐𝑗𝑗𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑖𝑖 ; (51)

In order for j to be eligible to be inserted between i and k, 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗 must be less than or equal
to the sum of 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 + 𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖 of node k. Additionally, node j ‘s own time window must be
respected.

The insertion procedure first calculates the best possible place of insertion in the tour for all
not already included nodes by minimizing their possible Shift. Then an insertion metric for each
node is calculated, which has the form of the following ratio:

 𝑅𝑅𝑀𝑀𝑡𝑡𝑖𝑖𝑅𝑅𝑖𝑖 = (𝑆𝑆𝑖𝑖)2/𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 (52)

The node with the highest ratio will be chosen for insertion in the tour. The ratio places
more focus on the score of each node rather than it’s time consumption because of the time
windows constraint and that is manifested by having the square of the score rather than the score
itself included in the calculation.

After the node with the highest ratio is inserted into the tour, a number of variables for the
nodes already in the tour will need to be updated to facilitate the next insertion. Particularly
important are the nodes that represent visits that are to happen after the recently inserted one. For
these nodes, their arrival, waiting time, start of the actual visit, shift and MaxShift need to be
updated. These variables are updated through the following formulas:

𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖∗ = max�0,𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖 − 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗 � ;

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 15

𝑀𝑀𝑖𝑖∗ = 𝑀𝑀𝑖𝑖 + 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑗𝑗;
𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 = max�0,𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑗𝑗 − 𝑊𝑊𝑀𝑀𝑖𝑖𝑡𝑡𝑖𝑖 � ;
𝑠𝑠𝑖𝑖∗ = 𝑠𝑠𝑖𝑖 + 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖;
𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖∗ = 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 − 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖;

All subsequent nodes will be updated through these formulas until the shift will be zero:
after this point no other node would be affected by the insertion. MaxShift will also be updated for
node j as well as its previous nodes.

The following figure presents the pseudocode of the insertion step.

For each not already included node:
 Calculate shift and best possible insertion position;
 Calculate ratio;
Insert node with highest ratio;
For inserted node j:
 Calculate Arrival, Start (of actual visit), Wait;
For each node after recently inserted node j:
 Update Arrival, Start (of actual visit), Wait, Shift, MaxShift;
For inserted node j:
 Calculate MaxShift;
For each node before inserted node j;
 Update MaxShift;

3.3.2 Shake Step

The insertion step is finished when there are no more possible insertions available. At that time, a
shake step is introduced in order to avoid local optima. Specifically, a number of nodes will be
removed from the tour to allow reinsertion in the pursuit of optimality. Two integers are used to
represent two decisions needed at this point, the number of consecutives nodes to be removed (𝑅𝑅𝑖𝑖)
and the position in the tour that the removal will begin (𝑆𝑆𝑖𝑖). If the sequence of nodes to be removed
includes the end node, the process will pick up with the starting node.

After the removal of one or more nodes, a gap will occur in the tour that will generate

unnecessary waiting time. For that purpose, all nodes will be shifted towards the beginning of the
tour to close that gap. However, if a node’s time window doesn’t allow for that node’s shifting, the
shifting stops and all subsequent nodes remain unchanged. Once the shake step is completed, all
affected nodes will be updated by a process similar to the one used after the insertion step. Once
again, nodes before the shaking sequence need only have their MaxShift updated. In the end, a
gap that minimizes waiting time will have been introduced to the tour which will allow the insertion of
more profitable nodes than the ones removed.

The following figure presents the pseudocode for the shake step:

For each tour:
 Remove nodes between i and j inclusive;
 Calculate Shift;
 For each node after j:
 Shift node towards starting node;
 Update Arrival, Start, Shift, MaxShift, Wait;

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 16

 For each node before i:
 Update MaxShift;

3.3.3 The Heuristic

The ILS heuristic combines the two previously mentioned steps in the following way:

Since the problem at hand is TOPTW, we begin with a set of empty tours sized from 1 to m. The
two parameters of the shake step (𝑅𝑅𝑖𝑖, 𝑆𝑆𝑖𝑖) are initialized to 1. The heuristic records the best found
solution after every iteration and will loop until no improvement appears after a given number of
times. Every iteration begins with an insertion step that will loop until a so called local optimum is
reached. If the current tour is more profitable than the so far best solution recorded, it replaces it as
best incumbent solutions. In either case, the heuristic will move on to the next step, shake. After
every shake 𝑆𝑆𝑖𝑖 is increased by the current 𝑅𝑅𝑖𝑖, while 𝑅𝑅𝑖𝑖 itself is increased by 1. The shake step will
then be performed with these parameters as input. 𝑆𝑆𝑖𝑖 and 𝑅𝑅𝑖𝑖 have been given upper limits through
testing the algorithm until the best solutions were produced. Specifically, 𝑆𝑆𝑖𝑖 cannot be more than
the size of the smallest tour in the set, at which point this size will be subtracted from it in order to
continue the process. On the other hand, if 𝑅𝑅𝑖𝑖 reaches 𝑛𝑛

3∗𝑚𝑚
 where n= number of nodes and

m=numbers of tours to be created, it will reset to 1. The only predetermined decisions then are the
number of nodes available for consideration, the number of tours to be created and the number of
iterations for the heuristic, after which no further improvement is needed. The latter is of course the
result of the balance to be decided between the computation time and the quality of the produced
solution. Through testing, the number that seems to be soft cap regarding the quality of the solution
without adding unnecessary computation time is 150.

The pseudocode for the heuristic is the following:

𝑆𝑆𝑖𝑖=1;
𝑅𝑅𝑖𝑖=1;
NumberOfIterations=0;
while NumberOfIterations<150:
 while localOptimum not reached:
 Perform InsertionStep;
 if currentSolution better than bestFoundSolution:
 bestFoundSolution= currentSolution;
 𝑅𝑅𝑖𝑖=1;

NumberOfIterations=0;
 else:
 NumberOfIterations = NumberOfIterations + 1;
 Perform Shake (𝑆𝑆𝑖𝑖,𝑅𝑅𝑖𝑖);
 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+ 𝑅𝑅𝑖𝑖;
 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖+ 1;
 if 𝑆𝑆𝑖𝑖 >= Size of smallest tour in set:
 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖 - Size of smallest tour in set;
 if 𝑅𝑅𝑖𝑖== 𝑛𝑛

3∗𝑚𝑚
:

 𝑅𝑅𝑖𝑖= 1;
 return bestFoundSolution;

3.3.4 Visit time modification

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 17

In the original ILS context, a visit is considered to take place if the arrival to one node happens
anytime before the node’s closing time. Thus, the visit’s proposed duration is not always respected;
a visit that lasts just one second is acceptable. Our approach is much stricter in this regard: a visit’s
proposed duration is always enforced. As a consequence we can expect lower total scores than the
original ILS’s results, since some of our tours will possibly contain fewer visits in order to
accommodate our much stricter criteria.

3.3.5 Point-of-interest categorization and user choice

Another modification we introduce is the classification of POI’s in categories based on their
particular touristic purpose. For example, a POI can be classified as a museum, a theater, an open
space and so on. The user is then given the choice to control the relative value each category has
to them. Specifically, if a particular user has only a passing interest in museums, he can choose to
reduce the proposed score of subsequent museum visits after a certain limit of already included
museums in the designed tour is reached. Conversely, if a user is specifically interested in sights in
open spaces, he can choose not to reduce the proposed score of subsequent open spaces visits no
matter how many such visits are already planned. In summation, this modification allows the user to
favor POI’s of particular interest to him, while limiting those he is indifferent to, while maintaining the
highest overall score of the whole tour possible.

4. Cluster based Heuristics for the Team Orienteering Problem
with Time Windows

4.1 Introduction

Gavalas et al.[30] added another dimension to the TOPTW rooted in the ILS solving procedure: the
division of the set of available nodes in clusters based on geographical criteria. The reasoning
behind this addition is that ILS, during the evaluation of candidate nodes for insertion, will disregard
high profit areas of nodes if these are far from the current solution in geographical terms. This of
course happens because the ratio takes into account the time consumption of each visit through
Shift, even though there is an attempt to mitigate this by squaring the score to place more emphasis
in it. However, the problem still persists because ILS is evaluating each node individually. The
proposed solution is to cluster nearby nodes creating profitable areas to increase those nodes
attractiveness. The main idea is that if a high profit node is visited it’s nearby nodes can also be
visited without significant additional travel time. Having the concept of the Tourist Trip Design
Problem in mind, this can mean that these nodes can be reached by walking, a highly desirable trait
for a tourist.

There are two algorithms developed to handle this process, CSCRatio and CSCRoutes, both
based on ILS. Both algorithms use the same procedure to form the clusters of nodes by employing
the global k-means algorithm developed by Likas et al.[31], through which empty clusters are
initialized during a preprocessing phase. Afterwards, in a phase common to both algorithms called
RouteInitPhase the m requested routes are each assigned exactly one node from the clusters.
Since it is reasonable that the number of clusters will be greater than the number of routes, a
decision must be reached over which clusters will provide the routes with nodes during this step.
One approach would be to simply rank the clusters formed on total profit and pick the best ones. A
more optimal one would be to be flexible at this stage and try various combinations of the best

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 18

clusters and stick with the ones giving better solutions at the algorithm stage. Whatever the
approach decided, RouteInitPhase takes as argument a m number of clusters from the
listOfClusterSet and after finding the node with the highest score in it, delegates it to one of the m
requested routes-tours. By doing this, the process ensures that various geographical areas from the
set of available nodes will be represented and avoid getting trapped in high-scoring local nodes.
The process then continues, much like ILS, with an insertion and a shake step, either by employing
the CSCRatio or CCSCRoutes algorithm. Our stricter criterion of respecting a visit’s proposed
duration are also applied here.

4.2 Cluster Search Cluster Ratio

The insertion step of the CSCRatio algorithm has additional argument in a parameter called
clusterParameter ≥ 1. ClusterParameter represents the emphasis decided to be given on the
clustering of the nodes. The greater it is, the higher the chance a visit to a node will be
accompanied by a visit to another node of the same cluster. The way this emphasis is introduced in
the ILS is by creating a modified version of 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖 called 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝐶𝐶𝑖𝑖𝑢𝑢𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 which is calculated by

𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖
clusterParameter

. When clusterParameter is 1, 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝐶𝐶𝑖𝑖𝑢𝑢𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 equals 𝑆𝑆ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖, in which case we have the
standard case of ILS. However, as clusterParameter increases the time consumption of a visit to a
node in the same cluster of the current one decreases, making it more likely to be chosen
compared to a node of a different cluster. This happens because the evaluation ratio is now given
by the following type: 𝑅𝑅𝑀𝑀𝑡𝑡𝑖𝑖𝑅𝑅𝑖𝑖 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖

2

𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠𝑡𝑡𝑆𝑆𝑆𝑆𝑖𝑖
. CSCRatio begins with the clusterParameter set at 1.3

and gradually decreases it by 0.1 at each quarter of the total iterations it will go through. So, in the
beginning a much greater emphasis is placed on visiting nodes within the same cluster and as the
iterations progress this emphasis declines until the cluster play no role in evaluating nodes at the
last quarter of iterations. A balance then is reached between the benefits of visiting inside a cluster
and the diversification that ILS provides.

The shake step in the CSCRatio algorithm is very much like the respective step of ILS; a
modification is made regarding the number of nodes that are to be moved. Specifically, in CSCRatio
𝑅𝑅𝑖𝑖 is limited to half the size of the largest tour in the solution and not 𝑛𝑛

3∗𝑚𝑚
 which reduces

computation time since the local optimum is reached faster than in the ILS having a smaller portion
of the solution removed at each iteration. This reduction in computation time allows more iterations
of the heuristic to be completed without taking more total execution time than the ILS.

The pseudocode of CSCRatio is given in the figure below:

Perform k-means algorithm : intiliaze k amount of clusters
 Construct the listOfClusterSets
it1= 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑆𝑆𝑆𝑆𝑚𝑚𝑡𝑡𝑖𝑖𝑆𝑆𝑛𝑛𝑠𝑠

4
;

it2= 2∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑆𝑆𝑆𝑆𝑚𝑚𝑡𝑡𝑖𝑖𝑆𝑆𝑛𝑛𝑠𝑠
4

;

it3= 3∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡𝑆𝑆𝑆𝑆𝑚𝑚𝑡𝑡𝑖𝑖𝑆𝑆𝑛𝑛𝑠𝑠
4

;

while listOfClusterSets not empty:
 remove all nodes included in currentSolution;
 theClusterSetIdToInsert= listOfClusterSets.pop();

 RoutInitPhase(theClusterSetIdToInsert)

𝑆𝑆𝑖𝑖=1;

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 19

𝑅𝑅𝑖𝑖=1;
NumberOfIterations=0;
while NumberOfIterations < maxIterations:
 if NumberOfIterations <it2:
 if NumberOfIterations <it1:
 clusterParameter = 1.3;
 else:
 clusterParameter = 1.2;
 else:
 if NumberOfIterations <it3:
 clusterParameter = 1.1;
 else:
 clusterParameter = 1.0;

 while localOptimum not reached:
 CSCRatio_Insertion (clusterParameter);
 if currentSolution better than bestFoundSolution:
 bestFoundSolution= currentSolution;
 𝑅𝑅𝑖𝑖=1;

NumberOfIterations=0;
 else:
 NumberOfIterations = NumberOfIterations + 1;

 if 𝑅𝑅𝑖𝑖 > 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑡𝑡𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑆𝑆𝑛𝑛.𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚𝑆𝑆𝑠𝑠𝑆𝑆𝑠𝑠𝑡𝑡𝑇𝑇𝑆𝑆𝑖𝑖𝑆𝑆
2

:
 𝑅𝑅𝑖𝑖=1;

 Perform Shake (𝑆𝑆𝑖𝑖,𝑅𝑅𝑖𝑖);
 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+ 𝑅𝑅𝑖𝑖;
 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖+ 1;
 if 𝑆𝑆𝑖𝑖 >= Size of smallest tour in set:
 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖 - Size of smallest tour in set;
 if 𝑅𝑅𝑖𝑖== 𝑛𝑛

3∗𝑚𝑚
:

 𝑅𝑅𝑖𝑖= 1;
 Return bestFoundSolution;

4.3 Cluster Search Cluster Routes algorithm

Within a tour p in a proposed solution of TOPTW we define a sub-tour of consecutive nodes that
belong in the same cluster as a Cluster Route (CR) of p associated with cluster C and denoted as
𝐶𝐶𝑅𝑅𝑖𝑖

𝑖𝑖. 𝐶𝐶𝑅𝑅𝑖𝑖
𝑖𝑖 is greater than 1 and less than or equal to the size of cluste r C. A key difference of

CSCRoutes from the CSCRatio is that it doesn’t allow to return to a previously visited cluster, with
the exception of the starting and ending node being in the same cluster. In that case, a reentry to
the cluster is allowed. This difference means that for a tour p there can only be one 𝐶𝐶𝑅𝑅𝑖𝑖

𝑖𝑖 sub-tour
and also that a node can’t just be entered at any position in the tour; it has to be in proximity to the
other nodes of the same cluster. This restriction will lead to lower-quality solutions compared to the
ILS and CSCRatio but it will also take significant less execution time because the evaluation
needed at each iteration will be a lot less in CSCRoutes insertion step.

The pseudocode of CSCSRoutes is presented in the following figure:

Perform k-means algorithm : intiliaze k amount of clusters
 Construct the listOfClusterSets

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 20

while listOfClusterSets not empty:
 remove all nodes included in currentSolution;
 theClusterSetIdToInsert= listOfClusterSets.pop();

 RoutInitPhase(theClusterSetIdToInsert)

𝑆𝑆𝑖𝑖=1;
𝑅𝑅𝑖𝑖=1;
NumberOfIterations=0;
while NumberOfIterations < maxIterations:

 while localOptimum not reached:
 CSCRoutes_Insert;
 if currentSolution better than bestFoundSolution:
 bestFoundSolution= currentSolution;
 𝑅𝑅𝑖𝑖=1;

NumberOfIterations=0;
 else:
 NumberOfIterations = NumberOfIterations + 1;

 if 𝑅𝑅𝑖𝑖 > 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑡𝑡𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑆𝑆𝑛𝑛.𝑠𝑠𝑖𝑖𝑠𝑠𝑆𝑆𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚𝑆𝑆𝑠𝑠𝑆𝑆𝑠𝑠𝑡𝑡𝑇𝑇𝑆𝑆𝑖𝑖𝑆𝑆
2

:
 𝑅𝑅𝑖𝑖=1;

 Perform Shake (𝑆𝑆𝑖𝑖,𝑅𝑅𝑖𝑖);
 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖+ 𝑅𝑅𝑖𝑖;
 𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑖𝑖+ 1;
 if 𝑆𝑆𝑖𝑖 >= Size of smallest tour in solution:
 𝑆𝑆𝑖𝑖 = 𝑆𝑆𝑖𝑖 - Size of smallest tour in solution;
 if 𝑅𝑅𝑖𝑖== 𝑛𝑛

3∗𝑚𝑚
:

 𝑅𝑅𝑖𝑖= 1;
 Return bestFoundSolution

5 Experimental results

5.1 Test Instances

The modified ILS, CSCRatio and CSCRoutes algorithms are tested on the widely used datasets of
Solomon. All data sets have 100 possible nodes to be visited and a fixed proposed visit duration for
each node. It should be noted that these data sets are a particular fit for TOPTW problems; they are
not suited for algorithms designed to solve TOP cases.

5.2 Results

All computations are carried out on a personal portable computer with a Intel Core 2 Duo CPU @
2.0GHz with 3.0GB Ram. These specs are actually lower than the ones used to run the original ILS
and so meaningful comparison can be made regarding the computation time recorded.

Four sizes of tours for each instance were examined (m=1,2,3,4) to keep the tests directly related to
the original ILS and also because in view of the Tourist Trip Design Problem, these sizes are
contextually valid. Tables 1-4 present the results of our ILS variant with the stricter constraints on

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 21

POI visits (ILS_V.1) and contrast them with the original ILS. Tables 5-8 contrast our modified ILS
with the accordingly modified version of the CSCRatio algorithm to examine possible benefits from
employing clustering heuristics, while tables 9-12 do the same with the modified CSCRoutes
algorithm.

Tables 13-16 display the impact the POI classification and the on-the-fly POI profit adjustments
(ILS_V.2) have on our modified ILS. Our tighter constraints from ILS_V.1 regarding the visit time
are respected here as well. The results are based on an classification in 3 groups with the following
parameters:

a. First group: POI’s belonging to this group have a 40% reduction in their scores if more than

1/3 of the nodes already included in that tour belong to it
b. Second group: POI’s belonging to this group have a 70% reduction in their scores if more

than 1/3 of the nodes already included in that tour belong to it
c. Third group: POI’s belonging to this group have a 10% reduction in their scores if more than

1/3 of the nodes already included in that tour belong to it

The approach selected clearly rewards POI’s of the third group while “punishing” those in the
first group. All of the parameters selected are arbitrary and chosen randomly, while the user is free
to change them at will.

As expected and demonstrated in the following tables, our modified ILS is slightly
underperforming the original ILS due to the enforcing of much stricter criteria regarding the
completion of each node visit in its suggested duration. The difference is on average a 1-10%
reduction in the score of each tour. It is a behavior observed when we move to the respective
comparisons of the CSCRatio and CSCSRoutes algorithms.

The variant of ILS considering POI categorization and dynamic POI profits has very good
results when the number of tours is less than 3. As that number increases, the algorithm struggles
to find quality nodes after the score reduction and the overall tour score drops significantly.

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 22

Table 1 – Comparison between Original ILS and ILS_V.1 for m=1

Original ILS

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

320 10 0.4

300 10 0.04700

c102

360 11 0.3

320 11 0.07800
c103

390 10 0.5

380 11 0.07800

c104

400 10 0.3

390 11 0.06300
c105

340 10 0.3

310 9 0.04700

c106

340 10 0.3

310 10 0.04800
c107

360 11 0.3

320 10 0.06200

c108

370 11 0.3

320 10 0.06300
c109

380 11 0.3

340 11 0.06200

 r101

182 7 0.1

186 8 0.09400
r102

286 11 0.2

247 10 0.06300

r103

286 10 0.2

252 10 0.09300
r104

297 11 0.2

268 11 0.07800

r105

247 11 0.1

215 9 0.06300
r106

293 11 0.2

258 10 0.14100

r107

288 10 0.2

243 11 0.12500
r108

297 11 0.2

233 11 0.07900

r109

276 11 0.2

264 11 0.09400
r110

281 11 0.3

247 11 0.07800

r111

295 11 0.2

276 11 0.09400
r112

295 11 0.2

274 11 0.07800

 rc101

219 9 0.2

203 8 0.06200
rc102

259 9 0.2

245 10 0.06300

rc103

265 11 0.3

245 10 0.06300
rc104

297 11 0.3

240 10 0.05500

rc105

221 11 0.2

162 7 0.06300
rc106

239 11 0.2

200 8 0.04700

rc107

274 11 0.2

240 10 0.06300
rc108

288 11 0.2

240 10 0.06200

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 23

Table 2 – Comparison between Original ILS and ILS_V.1 for m=2

Original ILS

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

590 21 1.4

540 18 0.18700

c102

650 22 0.9

610 21 0.32200
c103

700 22 1.2

660 22 0.12500

c104

750 22 1.5

700 22 0.22200
c105

640 21 0.8

540 18 0.12500

c106

320 20 0.8

550 18 0.18800
c107

670 22 1.4

570 18 0.12500

c108

670 22 0.8

570 19 0.14100
c109

710 22 0.9

640 20 0.18700

 r101

330 13 0.4

307 13 0.14000
r102

508 21 0.9

455 18 0.18800

r103

513 20 0.9

450 19 0.15600
r104

539 22 1.5

483 21 0.15600

r105

430 18 0.8

369 16 0.12500
r106

529 21 0.9

438 19 0.10900

r107

529 21 1

483 20 0.14000
r108

549 24 1.4

486 21 0.13600

r109

498 22 0.5

412 18 0.10900
r110

515 22 1

435 19 0.14100

r111

535 23 0.6

471 20 0.12500
r112

515 21 0.5

450 20 0.12900

 rc101

427 19 0.6

293 11 0.09400
rc102

494 20 0.8

326 14 0.10900

rc103

519 20 1.1

394 16 0.23400
rc104

565 22 0.7

459 18 0.14100

rc105

459 22 0.8

289 12 0.15600
rc106

458 20 0.6

377 15 0.12500

rc107

515 21 0.5

436 18 0.10900
rc108

546 23 0.6

464 19 0.12500

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 24

Table 3 – Comparison between Original ILS and ILS_V.1 for m=3

Original ILS

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

790 29 1.1

730 25 0.21900

c102

890 32 2.1

800 29 0.37800
c103

960 33 2.2

920 32 0.20300

c104

1010 34 1.3

950 33 0.21800
c105

840 30 1

780 26 0.20400

c106

840 30 1.1

780 26 0.22500
c107

900 33 1.5

760 25 0.19400

c108

900 33 1.2

820 27 0.25000
c109

950 33 2

860 28 0.20300

 r101

481 21 0.8

415 18 0.20300
r102

685 31 1

606 25 0.25000

r103

720 31 2

630 27 0.17200
r104

765 34 1.5

662 29 0.17200

r105

609 27 2.3

519 22 0.16600
r106

719 32 2.1

604 26 0.28900

r107

747 33 1.1

611 26 0.21600
r108

790 36 3.1

691 31 0.21700

r109

699 31 1.8

580 24 0.24600
r110

711 32 1.4

618 26 0.25000

r111

764 34 1.8

654 28 0.26500
r112

758 34 1.1

665 29 0.21900

 rc101

604 29 1.4

448 17 0.18700
rc102

698 30 1.3

486 20 0.18800

rc103

747 30 1.1

588 22 0.21800
rc104

822 33 1.3

690 27 0.18500

rc105

654 28 0.8

422 17 0.25000
rc106

678 31 1

546 21 0.18800

rc107

745 31 0.9

602 24 0.17200
rc108

757 29 1.1

648 26 0.20500

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 25

Table 4 – Comparison between Original ILS and ILS_V.1 for m=4

Original ILS

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

1000 39 3.8

910 31 0.31700

c102

1090 43 1.8

980 35 0.37500
c103

1150 44 2.5

1080 39 0.23500

c104

1220 45 3

1160 42 0.35900
c105

1030 40 1.8

950 33 0.25800

c106

1040 40 2.1

940 32 0.25000
c107

1100 43 2

950 33 0.31300

c108

1100 44 3.6

970 34 0.26600
c109

1180 45 2.5

1030 36 0.51500

 r101

601 28 1.4

507 22 0.23500
r102

807 39 1.7

687 29 0.26600

r103

878 42 2.2

782 33 0.37500
r104

941 45 3.8

808 36 0.26500

r105

735 35 2.9

634 27 0.28200
r106

870 41 3.5

725 31 0.28100

r107

927 44 3.3

765 34 0.23000
r108

982 47 3.2

865 38 0.23500

r109

866 40 2.1

763 33 0.27700
r110

870 42 2

768 34 0.48400

r111

935 45 2

805 35 0.21900
r112

939 44 3.1

830 37 0.23500

 rc101

794 37 1.9

598 23 0.28100
rc102

881 42 2.3

656 27 0.31300

rc103

947 42 2

777 30 0.25000
rc104

1019 43 1.7

833 33 0.34100

rc105

841 37 1.5

601 23 0.32800
rc106

874 37 2.5

728 28 0.28100

rc107

951 42 1.9

773 30 0.26700
rc108

998 43 2

837 33 0.23400

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 26

Table 5 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=1

 ILS_V.1

 CSCRatio_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

300 10 0.047

300 10 1.885

c102

320 11 0.078

330 11 2.745
c103

380 11 0.078

390 11 2.915

c104

390 11 0.063

390 11 2.811
c105

310 9 0.047

320 10 2.54

c106

310 10 0.048

310 10 2.56
c107

320 10 0.062

300 10 3.405

c108

320 10 0.063

320 10 2.903
c109

340 11 0.062

350 10 4.256

 r101

186 8 0.094

142 7 0.186
r102

247 10 0.063

246 10 0.271

r103

252 10 0.093

268 11 0.297
r104

268 11 0.078

266 12 0.337

r105

215 9 0.063

159 7 0.261
r106

258 10 0.141

258 10 0.371

r107

243 11 0.125

267 11 0.475
r108

233 11 0.079

265 12 0.515

r109

264 11 0.094

238 10 0.581
r110

247 11 0.078

243 11 0.495

r111

276 11 0.094

272 11 0.68
r112

274 11 0.078

262 12 0.701

 rc101

203 8 0.062

180 7 2.453
rc102

245 10 0.063

222 9 4.156

rc103

245 10 0.063

222 9 4.234
rc104

240 10 0.055

243 10 5.109

rc105

162 7 0.063

162 7 2.75
rc106

200 8 0.047

200 8 4.219

rc107

240 10 0.063

220 9 4.781
rc108

240 10 0.062

240 10 4.375

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 27

Table 6 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=2

 ILS_V.1

 CSCRatio_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

540 18 0.187

540 18 9.247

c102

610 21 0.322

610 21 13.097
c103

660 22 0.125

650 22 10.513

c104

700 22 0.222

700 23 9.516
c105

540 18 0.125

520 18 6.328

c106

550 18 0.188

550 18 6.273
c107

570 18 0.125

540 18 6.781

c108

570 19 0.141

560 19 7.187
c109

640 20 0.187

620 21 8.408

 r101

307 13 0.14

251 11 1.139
r102

455 18 0.188

419 18 1.706

r103

450 19 0.156

463 19 2.077
r104

483 21 0.156

507 22 2.391

r105

369 16 0.125

362 15 1.711
r106

438 19 0.109

429 18 2.136

r107

483 20 0.14

473 20 3.085
r108

486 21 0.136

521 23 3.918

r109

412 18 0.109

411 18 3.374
r110

435 19 0.141

419 19 3.528

r111

471 20 0.125

462 20 4.176
r112

450 20 0.129

485 20 4.359

 rc101

293 11 0.094

344 13 6.36
rc102

326 14 0.109

385 16 8.094

rc103

394 16 0.234

440 17 8.906
rc104

459 18 0.141

478 19 10.641

rc105

289 12 0.156

369 15 11.625
rc106

377 15 0.125

370 15 12.841

rc107

436 18 0.109

429 18 11.797
rc108

464 19 0.125

447 17 10.547

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 28

Table 7 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=3

 ILS_V.1

 CSCRatio_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

730 25 0.219

730 25 10.564

c102

800 29 0.378

780 28 22.648
c103

920 32 0.203

920 32 21.702

c104

950 33 0.218

920 32 19.339
c105

780 26 0.204

780 26 21.529

c106

780 26 0.225

780 26 17.257
c107

760 25 0.194

810 27 22.382

c108

820 27 0.25

760 26 14.899
c109

860 28 0.203

840 28 20.18

 r101

415 18 0.203

386 17 4.481
r102

606 25 0.25

563 24 7.035

r103

630 27 0.172

642 27 6.458
r104

662 29 0.172

661 29 6.858

r105

519 22 0.166

494 22 5.134
r106

604 26 0.289

598 25 5.906

r107

611 26 0.216

642 28 6.729
r108

691 31 0.217

707 30 7.546

r109

580 24 0.246

601 25 9.655
r110

618 26 0.25

610 27 13.391

r111

654 28 0.265

695 30 12.82
r112

665 29 0.219

630 29 14.068

 rc101

448 17 0.187

500 19 13
rc102

486 20 0.188

546 22 15.687

rc103

588 22 0.218

632 26 19.547
rc104

690 27 0.185

688 27 24.438

rc105

422 17 0.25

483 20 13.89
rc106

546 21 0.188

528 21 16.203

rc107

602 24 0.172

602 24 18.625
rc108

648 26 0.205

678 27 23.343

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 29

Table 8 – Comparison between ILS_V.1 and CSCRatio_V.1 for m=4

 ILS_V.1

 CSCRatio_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

910 31 0.317

870 31 20.144

c102

980 35 0.375

910 33 20.698
c103

1080 39 0.235

1070 39 24.596

c104

1160 42 0.359

1150 42 26.85
c105

950 33 0.258

900 32 34.904

c106

940 32 0.25

910 31 30.429
c107

950 33 0.313

920 32 22.453

c108

970 34 0.266

950 33 22.625
c109

1030 36 0.515

1000 35 24.937

 r101

507 22 0.235

458 22 9.766
r102

687 29 0.266

663 28 9.369

r103

782 33 0.375

708 31 11.163
r104

808 36 0.265

804 35 12.487

r105

634 27 0.282

653 28 9.685
r106

725 31 0.281

727 32 18.817

r107

765 34 0.23

764 33 16.447
r108

865 38 0.235

899 39 16.058

r109

763 33 0.277

747 32 14.724
r110

768 34 0.484

752 33 18.671

r111

805 35 0.219

844 37 15.625
r112

830 37 0.235

814 36 19.068

 rc101

598 23 0.281

619 23 18.546
rc102

656 27 0.313

736 30 29.828

rc103

777 30 0.25

832 32 28.344
rc104

833 33 0.341

869 34 29.531

rc105

601 23 0.328

621 24 23.125
rc106

728 28 0.281

711 27 26.844

rc107

773 30 0.267

813 31 33.64
rc108

837 33 0.234

838 33 30

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 30

Table 9 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=1

ILS_V.1

 CSCRoutes_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

300 10 0.047

250 9 0.281

c102

320 11 0.078

340 11 0.281
c103

380 11 0.078

350 11 0.359

c104

390 11 0.063

390 11 0.313
c105

310 9 0.047

300 9 0.25

c106

310 10 0.048

290 9 0.25
c107

320 10 0.062

310 10 0.25

c108

320 10 0.063

350 11 0.266
c109

340 11 0.062

340 10 0.437

 r101

186 8 0.094

131 5 0.36
r102

247 10 0.063

275 10 0.359

r103

252 10 0.093

263 11 0.391
r104

268 11 0.078

288 12 0.391

r105

215 9 0.063

177 7 0.25
r106

258 10 0.141

279 11 0.546

r107

243 11 0.125

263 11 0.343
r108

233 11 0.079

265 11 0.375

r109

264 11 0.094

234 10 0.359
r110

247 11 0.078

225 10 0.265

r111

276 11 0.094

243 10 0.157
r112

274 11 0.078

253 11 0.266

 rc101

203 8 0.062

189 7 0.172
rc102

245 10 0.063

222 9 0.281

rc103

245 10 0.063

222 9 0.25
rc104

240 10 0.055

229 9 0.313

rc105

162 7 0.063

173 7 0.094
rc106

200 8 0.047

174 7 0.219

rc107

240 10 0.063

231 9 0.22
rc108

240 10 0.062

271 10 0.234

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 31

Table 10 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=2

ILS_V.1

 CSCRoutes_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

540 18 0.187

470 16 0.407

c102

610 21 0.322

410 16 0.141
c103

660 22 0.125

630 22 0.406

c104

700 22 0.222

670 22 0.609
c105

540 18 0.125

510 17 0.391

c106

550 18 0.188

520 18 0.39
c107

570 18 0.125

540 18 0.453

c108

570 19 0.141

540 19 0.328
c109

640 20 0.187

600 21 0.391

 r101

307 13 0.14

239 10 0.218
r102

455 18 0.188

439 18 0.313

r103

450 19 0.156

465 19 0.329
r104

483 21 0.156

499 21 0.422

r105

369 16 0.125

298 13 0.218
r106

438 19 0.109

428 19 0.391

r107

483 20 0.14

455 20 0.328
r108

486 21 0.136

499 21 0.578

r109

412 18 0.109

403 17 0.437
r110

435 19 0.141

437 19 0.328

r111

471 20 0.125

487 21 0.297
r112

450 20 0.129

491 21 0.375

 rc101

293 11 0.094

311 12 0.187
rc102

326 14 0.109

350 14 0.266

rc103

394 16 0.234

423 17 0.438
rc104

459 18 0.141

448 18 0.313

rc105

289 12 0.156

352 14 0.234
rc106

377 15 0.125

371 15 0.266

rc107

436 18 0.109

430 17 0.297
rc108

464 19 0.125

447 18 0.328

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 32

Table 11 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=3

ILS_V.1

 CSCRoutes_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

730 25 0.219

660 23 0.359

c102

800 29 0.378

760 28 0.5
c103

920 32 0.203

880 31 0.562

c104

950 33 0.218

950 33 0.844
c105

780 26 0.204

710 24 0.531

c106

780 26 0.225

660 24 0.641
c107

760 25 0.194

770 26 0.5

c108

820 27 0.25

770 25 0.532
c109

860 28 0.203

870 29 0.5

 r101

415 18 0.203

347 14 0.171
r102

606 25 0.25

606 25 0.563

r103

630 27 0.172

645 28 0.546
r104

662 29 0.172

688 30 0.781

r105

519 22 0.166

490 21 0.312
r106

604 26 0.289

585 24 0.547

r107

611 26 0.216

651 28 0.453
r108

691 31 0.217

697 30 0.734

r109

580 24 0.246

598 25 0.61
r110

618 26 0.25

625 27 0.641

r111

654 28 0.265

661 28 0.469
r112

665 29 0.219

697 30 0.719

 rc101

448 17 0.187

476 18 0.406
rc102

486 20 0.188

534 21 0.453

rc103

588 22 0.218

614 24 0.407
rc104

690 27 0.185

649 26 0.375

rc105

422 17 0.25

502 20 0.328
rc106

546 21 0.188

523 20 0.25

rc107

602 24 0.172

632 25 0.343
rc108

648 26 0.205

623 24 0.453

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 33

Table 12 – Comparison between ILS_V.1 and CSCRoutes_V.1 for m=4

ILS_V.1

 CSCRoutes_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

910 31 0.317

860 30 0.312

c102

980 35 0.375

930 34 0.469
c103

1080 39 0.235

1050 38 0.531

c104

1160 42 0.359

1150 42 0.765
c105

950 33 0.258

860 30 0.766

c106

940 32 0.25

880 32 0.469
c107

950 33 0.313

950 33 0.75

c108

970 34 0.266

930 33 0.765
c109

1030 36 0.515

980 35 0.766

 r101

507 22 0.235

421 18 0.171
r102

687 29 0.266

643 27 0.563

r103

782 33 0.375

595 26 0.359
r104

808 36 0.265

799 35 0.578

r105

634 27 0.282

620 26 0.328
r106

725 31 0.281

730 31 0.547

r107

765 34 0.23

728 33 0.532
r108

865 38 0.235

829 36 0.516

r109

763 33 0.277

711 30 0.594
r110

768 34 0.484

726 33 0.64

r111

805 35 0.219

833 36 0.516
r112

830 37 0.235

818 37 0.453

 rc101

598 23 0.281

540 21 0.297
rc102

656 27 0.313

649 25 0.36

rc103

777 30 0.25

749 29 0.391
rc104

833 33 0.341

844 33 0.391

rc105

601 23 0.328

624 24 0.313
rc106

728 28 0.281

732 28 0.438

rc107

773 30 0.267

798 31 0.484
rc108

837 33 0.234

820 32 0.453

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 34

Table 13 – Comparison between ILS_V.2 and ILS_V.1 for m=1

ILS_V.2

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

288 9 0.09

300 10 0.04700

c102

300 10 0.11

320 11 0.07800
c103

370 11 0.11

380 11 0.07800

c104

390 11 0.11

390 11 0.06300
c105

290 9 0.09

310 9 0.04700

c106

280 8 0.15

310 10 0.04800
c107

300 9 0.17

320 10 0.06200

c108

300 9 0.09

320 10 0.06300
c109

340 10 0.11

340 11 0.06200

 r101

168 7 0.19

186 8 0.09400
r102

244 10 0.3

247 10 0.06300

r103

191 9 0.2

252 10 0.09300
r104

203 9 0.24

268 11 0.07800

r105

202 8 0.12

215 9 0.06300
r106

217 10 0.29

258 10 0.14100

r107

207 9 0.13

243 11 0.12500
r108

192 10 0.18

233 11 0.07900

r109

192 10 0.17

264 11 0.09400
r110

210 9 0.14

247 11 0.07800

r111

239 9 0.2

276 11 0.09400
r112

223 10 0.28

274 11 0.07800

 rc101

151 7 0.06

203 8 0.06200
rc102

200 9 0.09

245 10 0.06300

rc103

200 9 0.09

245 10 0.06300
rc104

195 9 0.09

240 10 0.05500

rc105

138 7 0.09

162 7 0.06300
rc106

200 8 0.1

200 8 0.04700

rc107

199 10 0.1

240 10 0.06300
rc108

191 10 0.1

240 10 0.06200

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 35

Table 14 – Comparison between ILS_V.2 and ILS_V.1 for m=2

ILS_V.2

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

432 15 0.17

540 18 0.18700

c102

456 17 0.2

610 21 0.32200
c103

610 21 0.23

660 22 0.12500

c104

583 21 0.26

700 22 0.22200
c105

480 15 0.31

540 18 0.12500

c106

500 16 0.29

550 18 0.18800
c107

500 16 0.31

570 18 0.12500

c108

457 16 0.24

570 19 0.14100
c109

550 18 0.27

640 20 0.18700

 r101

250 10 0.29

307 13 0.14000
r102

321 15 0.31

455 18 0.18800

r103

322 16 0.31

450 19 0.15600
r104

395 17 0.32

483 21 0.15600

r105

311 14 0.2

369 16 0.12500
r106

330 15 0.23

438 19 0.10900

r107

322 16 0.25

483 20 0.14000
r108

352 18 0.21

486 21 0.13600

r109

331 18 0.37

412 18 0.10900
r110

354 16 0.31

435 19 0.14100

r111

367 16 0.23

471 20 0.12500
r112

354 17 0.18

450 20 0.12900

 rc101

251 12 0.35

293 11 0.09400
rc102

270 14 0.29

326 14 0.10900

rc103

279 15 0.42

394 16 0.23400
rc104

313 17 0.64

459 18 0.14100

rc105

268 11 0.39

289 12 0.15600
rc106

308 14 0.73

377 15 0.12500

rc107

306 16 0.71

436 18 0.10900
rc108

304 16 0.62

464 19 0.12500

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 36

Table 15 – Comparison between ILS_V.2 and ILS_V.1 for m=3

ILS_V.2

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

474 21 0.46

730 25 0.21900

c102

538 23 1.12

800 29 0.37800
c103

760 27 0.39

920 32 0.20300

c104

721 30 0.38

950 33 0.21800
c105

630 21 0.34

780 26 0.20400

c106

617 23 0.39

780 26 0.22500
c107

670 23 0.36

760 25 0.19400

c108

522 22 0.33

820 27 0.25000
c109

676 25 0.79

860 28 0.20300

 r101

324 16 0.34

415 18 0.20300
r102

393 19 0.34

606 25 0.25000

r103

437 23 0.4

630 27 0.17200
r104

510 25 0.51

662 29 0.17200

r105

388 20 0.33

519 22 0.16600
r106

412 21 0.55

604 26 0.28900

r107

452 23 0.32

611 26 0.21600
r108

470 25 0.3

691 31 0.21700

r109

437 23 0.31

580 24 0.24600
r110

406 21 0.39

618 26 0.25000

r111

465 23 0.38

654 28 0.26500
r112

452 23 0.31

665 29 0.21900

 rc101

326 17 0.48

448 17 0.18700
rc102

349 18 0.68

486 20 0.18800

rc103

306 20 0.35

588 22 0.21800
rc104

324 21 0.49

690 27 0.18500

rc105

338 16 0.41

422 17 0.25000
rc106

372 19 0.46

546 21 0.18800

rc107

333 22 0.42

602 24 0.17200
rc108

317 22 0.39

648 26 0.20500

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 37

Table 16 – Comparison between ILS_V.2 and ILS_V.1 for m=4

ILS_V.2

 ILS_V.1

Name

Score Visits Comp. time

Score Visits Comp. time
c101

549 23 0.67

910 31 0.31700

c102

555 28 0.34

980 35 0.37500
c103

829 31 0.36

1080 39 0.23500

c104

728 35 0.26

1160 42 0.35900
c105

740 27 0.39

950 33 0.25800

c106

664 28 0.34

940 32 0.25000
c107

759 28 0.6

950 33 0.31300

c108

541 27 0.34

970 34 0.26600
c109

705 32 0.31

1030 36 0.51500

 r101

401 20 0.38

507 22 0.23500
r102

427 22 0.52

687 29 0.26600

r103

475 26 0.29

782 33 0.37500
r104

480 28 0.28

808 36 0.26500

r105

470 24 0.32

634 27 0.28200
r106

473 25 0.31

725 31 0.28100

r107

525 30 0.28

765 34 0.23000
r108

529 29 0.26

865 38 0.23500

r109

453 28 0.28

763 33 0.27700
r110

508 27 0.29

768 34 0.48400

r111

456 29 0.31

805 35 0.21900
r112

477 28 0.25

830 37 0.23500

 rc101

402 22 0.51

598 23 0.28100
rc102

372 22 0.65

656 27 0.31300

rc103

318 25 0.61

777 30 0.25000
rc104

327 25 0.56

833 33 0.34100

rc105

370 20 0.46

601 23 0.32800
rc106

417 23 0.46

728 28 0.28100

rc107

346 27 0.74

773 30 0.26700
rc108

322 27 0.83

837 33 0.23400

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 38

6. Conclusions

The first most obvious contribution of the thesis is the inclusion of the realistic “requirement” to
spend a minimum amount of time at a point of interest in order for it to be considered “visited”. The
time proposed is tailored for each POI specifically and can even be modified according to the user’s
preference, making it a quite valuable feature for any tourist trip planner.

The second meaningful contribution also involves taking into account user preferences: the
user is invited to place emphasis on a particular category of POI’s, to avoid another one or
potentially choose a balanced approach. This kind of features really applies a practical perspective
to ILS.

As far as performance is concerned, our implementation of ILS is very close to the original.
Naturally, the features we introduced impose powerful constraints to the performance of the
algorithm, which is still very much within acceptable limits from a practical point of view.

7. References

[1] Tsiligirides T. Heuristic methods applied to orienteering ,Journal of the Operational Research
Society1984;35:797–809
[2] Golden B, Levy L ,Vohra R The orienteering problem, Naval Research Logistics 1987;34:307–
18.
[3] Vansteenwegen, P. , Souffriau, W. , & Van Oudheusden, D. (2011a). The orienteering problem:
A survey. European Journal of Operational Research, 209 (1), 1–10
[4] Feillet, D. , Dejax, P. , & Gendreau, M. (2005). Traveling salesman problems with prof- its.
Transportation Science, 39 (2), 188–205
[5] Laporte, G. , & Rodríguez-Martín, I. (2007). Locating a cycle in a transportation or a
telecommunications network. Networks, 50 (1), 92–108
[6] Orienteering Problem: A survey of recent variants, solution approaches and applications
Aldy Gunawan a , ∗, Hoong Chuin Lau a , Pieter Vansteenwegen b
[7] Miller, C., Tucker, A., Zemlin, R., 1960 Integer Programming Formulation of Traveling Salesman
Problems, Journal of the ACM (JACM), Volume 7 Issue 4, Oct. 1960 ,Pages 326-329
[8] GoldenB, LevyL, VohraR, The orienteering problem, Naval Research Logistics 1987;34:307–18.
[9] Laporte G, Martello S, The selective travelling salesman problem, Discrete Applied Mathematics
1990;26:193–207.
[10] Leifer and Rosenwein, Strong linear programming relaxations for the orienteering problem,
European Journal of Operational Research, 1994, vol. 73, issue 3, 517-523
[11] Fischetti et al, Solving the Orienteering Problem through Branch-and-Cut, Informs Journal on
Computing 10(2):133-148 · May 1998
[12] R.Ramesh & Kathleen M.Brown, An efficient four-phase heuristic for the generalized
orienteering problem, Computers & Operations Research, Volume 18, Issue 2, 1991, Pages 151-
165
[13] Schilde et al.(2009), Metaheuristics for the bi-objective orienteering problem, Swarm
Intelligence 3(3):179-201, May 2009
[14] Chao I, Golden B ,Wasil E, A fast and effective heuristic for the orienteering problem, European
Journal of Operational Research 1996 ;88:475–89.
[15] Sevkli, Z. , & Sevilgen, F. E. (2010a). Discrete particle swarm optimization for the orienteering
problem. In Proceedings of the IEEE congress on evolutionary compu- tation (CEC 2010),
Barcelona, Spain (pp. 3234–3241) .
[16] Sevkli, Z. , & Sevilgen, F. E. (2010b). StPSO: Strengthened particle swarm opti- mization.
Turkish Journal of Electrical Engineering & Computer Sciences, 18 (6), 1095–1114

Μεταπτυχιακή Διατριβή Σανιδάς Γεώργιος

 39

[17] Chekuri, C. , Korula, N. , & Pál, M. (2012). Improved algorithms for orienteering and related
problems. ACM Transactions on Algorithms, 8 , 661–670
[18] Dang, D.-C. , El-Hajj, R. , & Moukrim, A. (2013a). A branch-and-cut algorithm for solving the
team orienteering problem. In C. Gomes, & M. Sellmann (Eds.), Integration of AI and OR
techniques in constraint programming for combinatorial optimization problems. Lecture Notes in
Computer Science: 7874 (pp. 332–339). Springer
[19] Butt, S., Ryan, D., 1999. An optimal solution procedure for the multiple tour maximum collection
problem using column generation. Computers and Operations Research 26, 427–441.
[20] Boussier, S., Feillet, D., Gendreau, M., 2007. An exact algorithm for the team orienteering
problem. 4OR 5, 211–230.
[21] Tang, H., Miller-Hooks, E., 2005. A tabu search heuristic for the team orienteering problem.
Computer and Operations Research 32, 1379–1407.
[22] Tricoire, F., Romauch, M., Doerner, K., Hartl, R., 2010. Heuristics for the multi-period
orienteering problem with multiple time windows. Computers and Operations Research 37 (2), 351–
367
[23] Kantor, M., Rosenwein, M., 1992. The orienteering problem with time windows. The
Journal of the Operational Research Society 43 (6), 629–635
[24] Mansini, R., Pelizzari, M., Wolfer, R. 2006. A granular variable neighbourhood search heuristic
for the tour orienteering problem with time windows. Technical Report R.T 2006-02-52, University of
Brescia, Italy.
[25] Righini, G., Salani, M. 2006. Dynamic programming for the orienteering problem with time
windows. Technical Report 91 2006, Dipartimento di Tecnologie dell’Informazione, Universita degli
Studi Milano, Crema, Italy.
[26] Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource
constrained elementary shortest path. Networks 51 (3), 155–170.
[27] Montemanni, R., Gambardella, L., 2009. Ant colony system for team orienteering problems with
time windows. Foundations of computing and Decision Sciences 34 (4), 287–306.
[28] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D., 2009d. Iterated
local search for the team orienteering problem with time windows. Computers and Operations
Research 36 (12), 3281–3290
[29] Tricoire, F., Romauch, M., Doerner, K., Hartl, R., 2010. Heuristics for the multi-period
orienteering problem with multiple time windows. Computers and Operations Research 37 (2), 351–
367.
[30] Gavalas, D. , Konstantopoulos, C. , Mastakas, K. , Pantziou, G. , & Tasoulas, Y. (2013).
Cluster-based heuristics for the team orienteering problem with time windows. In V. Bonifaci, C.
Demetrescu, & A. Marchetti-Spaccamela (Eds.), Experimental algorihtms. Lecture Notes in
Computer Science: 7933 (pp. 390–401). Springer
[31] A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm.
Pattern Recognition, 36(2):451- 461, 2003.

