

 «ПДпрочорікй»

Метатттихıаки́ Дıатрıßи́ $^{\text {м }}$

Thesis Title	Algorithmic techniques for the Tourist Trip Design Problem
	бıабро $\mu \omega ́ v$
	Гعف́pyıos \avióás
Патри́vuно	Zaprípos
ApıӨиós Mntpúou	МППN/15062
Emı ${ }_{\text {dém }}$	

Xарव́лантоऽ Kwvotavtótoù’os Avaтт. KaӨnүワтńs

Aүүعлоs Пıкрáкпs
Етוк. KaӨnүๆтйs

I ω ávvns Taooú ${ }^{2}$ as Етік. KaӨŋүпти́s

Abstract

This paper concentrates on the Tourist Trip design problem, a practical application of the Team Orienteering problem, providing an efficient visit schedule of points-of-interest based on predetermined scores. A slightly modified version of a well-known algorithm based on the Iterated Local Search (ILS) is utilized: in contrast to the original ILS algorithm, the tours created must visit the selected Points of Interest (POIs) not only within their time windows but also the remaining time after reaching a POI should be at least the suggested visit time for this POI. Otherwise, the visit is considered unfeasible. Furthermore, the user is allowed to modify the score of each proposed POI by certain percent based on the category it belongs to and on how many POIs of the same category s/he has seen along the part of the tours completed so far.

Пعрі́גпшn

 $\varepsilon ா เ \sigma \kappa \varepsilon \varphi \theta \varepsilon i ́$.

Table of Contents

1. Introduction 5
2. Literature Review
3. Iterated Local Search for TOPTW 12
3.1 Introduction 12
3.2 Mathematical Formulation 13
3.3 Methodology 14
3.3.1 Insertion step 14
3.3.2 Shake step 15
3.3.3 Heuristic 16
3.3.4 Visit time modification. 17
3.3.5 Point-of-interest categorization and user choice 17
4. Cluster based heuristics. 18
4.1 Introduction 18
4.2 Cluster Search Cluster Ratio Algorithm 18
4.3 Cluster Search Cluster Routes Algorithm 20
5. Experimental results 21
5.1 Test instances. 21
5.2 Results. 21
6. Conclusions 39
7. References 39

1. Introduction

The orienteering problem is a subset of the Traveling Salesman Problem and consequently is a NPhard problem, meaning no exact solution can be found. As such, an array of heuristic algorithms have been used to deliver near optimal solutions. This thesis will focus on the Orienteering problem, its most common extensions as well as its most famous practical application, the Tourist Trip Design problem.

The Orienteering problem (OP) has its roots on a group of sports that combines running and navigation in order to navigate quickly from point to point (also referred as nodes) in an unknown terrain. The element of required speed is introduced by racing against the clock, i.e. having a time limit. Within that time window, the participants are aiming to pass through as many nodes as possible; each node has a score associated with it, by visiting it the participant claims that score as her points. The goal then is to maximize the gathered points before the time limit is reached.

The major subcategories of OP are created by introducing additional constraints, for example attributing a time window to each node or having a different starting and ending point or requiring that each node can only be visited once. OP can also be viewed as a graph, so another example of added complexity is the decision whether the graph is directed or not.

This paper will introduce the most common variations of OP as they pertain to the practical application that it focuses on. Those are the Team Orienteering problem that adds multiple tours, the Orienteering problem with Time Windows, which allows a visit to node to be realized only within the node's time window and the Time dependent Orienteering problem. Then, the Iterated Local Search algorithm, which is used to solve the Team Orienteering problem with Time Windows, is presented along with two variations that group the nodes into clusters (CSCratio and CSCroutes). Finally, our modifications to ILS are introduced: the first forces the participant to stay at each node for the duration of its proposed visit, while the second groups the nodes into categories based on their type and allows the user to modify the score of each node according to the categories that interest him/her or have already been visited before.

2. Literature Review

2.1 The orienteering problem

First mentions of the orienteering problem have been from Tsiligirides, T. (1984)[1] and Golden, B. L. , Levy, L. , \& Vohra, R. (1987)[2]. The orienteering problem (OP) at its core combines node selection .i.e. nodes with the task of pinpointing the shortest path between those nodes. In practice the orienteering problem comes with the assumption of a fixed (time) budget and the task of maximizing the total profit by visiting locations (nodes) with associated scores. Since not all nodes can be visited due to time limitations, the OP can be viewed as combining two other combinatorial
problems, the Traveling Salesman (TSP) and the Knapsack problem. Naturally the OP is also a combinatorial NP-hard problem.

The OP has been studied extensively and has been given a number of extensions and practical applications. Vansteenwegen, P., Souffriau, W. , \& Van Oudheusden, D. (2011a)[3] , Feillet, D. , Dejax, P. , \& Gendreau, M. (2005)[4] and Laporte, G. , \& Rodríguez-Martín, I. (2007)[5] are some of the surveys tasked with summing up proposed solutions for OP and it's variants until 2009. A more recent survey (Aldy Gunawan, Hoong Chuin Lau ,Pieter Vansteenwegen (2016)) [6] attempted to cover more recent solutions as well as put more focus on specific practical applications.

2.1.1 Classical OP

Classical OP can be defined in the following way: Assuming a graph-like set of nodes N , with each node $i \in N$, each with a respective non-negative score with $N[i=1]$ the start and $N[i=n]$ the end, the goal is to design a path (or tour) that will maximize the total profit (the sum of the scores of the nodes visited) within a predetermined time frame. A further limitation prescribes that each node cannot be visited more than once.

OP is usually formulated mathematically, much like an integer problem thus:
First, there are two decision variables employed:

$$
X_{i j}=1 \text {, assuming a visit from node } i \text { to node } j \text { is viable; it will be } 0 \text { if not }
$$

$u_{i}=$ the position of node i in the tour

$$
\begin{align*}
& \operatorname{Max} \sum_{i=2}^{N-1} \sum_{j=2}^{N-1} S_{i} x_{i j}, \tag{0}\\
& \sum_{j=2}^{N} x_{1 j}=\sum_{i=1}^{N-1} x_{i N}=1, \tag{1}\\
& \sum_{i=1}^{N-1} x_{i k}=\sum_{j=2}^{N} x_{k j} \leq 1 ; \quad \forall k=2, \ldots, N-1, \tag{2}\\
& \sum_{i=1}^{N-1} \sum_{j=2}^{N} t_{i j} x_{i j} \leq T_{\max }, \tag{3}\\
& 2 \leq u_{i} \leq N ; \quad \forall i=2, \ldots, N, \tag{4}\\
& u_{i}-u_{j}+1 \leq(N-1)\left(1-x_{i j}\right) ; \quad \forall i, j=2, \ldots, N, \tag{5}\\
& x_{i j} \in\{0,1\} ; \forall i, j=1, \ldots, N \tag{6}
\end{align*}
$$

Function (0) maximizes the total collected profit of the path. Constraint(1) stipulates that the path begins at node 1 and ends at node N. Constraint (2) guarantees that there is no isolated node (all nodes are connected) and that each node cannot be visited more than once. Constraint (3) fixes the time window of every path at most at $T_{\max }$, thus ensuring the time budget limit. Generic constraints (5) and (6) eliminate the possibility of subtour creation (see Miller, C., Tucker, A., Zemlin, R., 1960 [7]).

An important assumption of the generic formulation of $O P$ is that travel time between nodes is symmetric according to Euclidian metric, that is $t_{i j}=t_{j i}$. This assumption means that OP as
formulated so far represents an undirected complete graph. Most solution in the literature conform to this interpretation.

The proof that OP is NP-hard was given by Golden et al. (1987)[8]; they proved that no algorithm is expected to solve OP optimally. Not unlike any other NP-hard problem, OP proposed solutions are mostly heuristic and approximation ones; exact solutions would be simply too time consuming.

However, a few researchers have proposed exact algorithms to solve OP, albeit on instances with limited amount of nodes. Feillet et al. (2005a) produced a survey of sorts of exact algorithms. Chief among them, Laporte and Martello (1990) [9] utilized branch-and-bound algorithms on instances of up to 20 vertices, while Leifer and Rosenwein (1994) [10] built on their formulation by adding a cutting plane method to achieve better upper bounds. Branch-and-cut algorithms were later found to be able to solve instances of up to 500 vertices (Fischetti et al., 1998) [11]

The main focus of literature is however, as mentioned earlier, the heuristic algorithms. Tsiligirides (1984) who first introduced the term OP, based on the orienteering sport, suggested both a stochastic and a deterministic algorithm, while Golden et al.(1987) a centre-of-gravity algorithm. A 4-phase heuristic was introduced by Ramesh and Brown (1991) [12] and subsequently Chao et al.(1996b) use a 5 -step algorithm to outperform any other algorithm mentioned so far.

While various other ideas regarding the OP were introduced, a new solution by Schilde et al.(2009) [13] which aimed to tackle the multi-objective variant was actually found to also outperform Chao et al.(1996b)[14] 5 -step heuristic.

More recent approaches to the OP include Sevkli and Sevilden(2010 a and b) [15][16] which focus on (Discreet) Strengthened Particle Swarm Optimization, Chekuri et al.(2012)approximation algorithms[17] and a few others which didn't really offer dramatic performance improvements. Dand et al's(2013a) [18] branch-and-cut algorithm managed to improve 29 best-known-solution on Chao et al's(1996b) datasets.

2.1.2 Team Orienteering Problem (TOP)

The most common extension to the OP is allowing for multiple (P) paths within the same graph, each starting and finishing at the predetermined respective positions ($\mathrm{N}[1]$ and $\mathrm{N}[\mathrm{n}]$) and having $T_{\max }$ available time budget. Such a variation is called Team Orienteering Problem (TOP) and was introduced by Chao et al (1996b).

TOP's mathematical formulation is consequently very similar to the original OP's.
Like in OP decision variables are employed:

$$
\begin{align*}
& \mathrm{x}_{\mathrm{ijp}}=1 \text {, assuming a visit from node } \mathrm{i} \text { to node } \mathrm{j} \text { in path } \mathrm{p} \text { is viable } ; \text { it will be } 0 \text { if not } \\
& \mathrm{y}_{\mathrm{ip}}=1 \text {, if node } \mathrm{i} \text { is visited in } \mathrm{p} \\
& \mathrm{u}_{\text {ip }}=\text { the position of node } \mathrm{i} \text { in path } \mathrm{p} \\
& \operatorname{Max} \sum_{p=1}^{P} \sum_{i=2}^{N-1} S_{i} y_{i p} \tag{7}\\
& \sum_{p=1}^{P} \sum_{j=2}^{N} x_{1 j p}=\sum_{p=1}^{P} \sum_{i=1}^{N-1} x_{i N p}=P, \tag{8}
\end{align*}
$$

$$
\begin{align*}
& \sum_{p=1}^{P} y_{k p} \leq 1 ; \quad \forall k=2, \ldots, N-1, \tag{9}\\
& \sum_{i=1}^{N-1} x_{i k p}=\sum_{j=2}^{N} x_{k j p}=y_{k p} ; \quad \forall k=2, \ldots, N-1 ; \forall p=1, \ldots, P, \tag{10}\\
& \sum_{i=1}^{N-1} \sum_{j=2}^{N} t_{i j} x_{i j p} \leq T_{\max } \quad \forall p=1, \ldots, P, \tag{11}\\
& 2 \leq u_{i p} \leq N ; \quad \forall i=2, \ldots, N ; \forall p=1, \ldots, P, \tag{12}\\
& u_{i p}-u_{j p}+1 \leq(N-1)\left(1-x_{i j p}\right) ; \forall i, j=2, \ldots, N ; \forall p=1, \ldots, P, \tag{13}\\
& x_{i j p}, y_{i p} \in\{0,1\} ; \forall i, j=1, \ldots, N ; \forall p=1, \ldots, P \tag{14}
\end{align*}
$$

These constraints establish similar requirements to the OP: namely the limit time budget available to each path, starting and end points for each path, a guarantee that each will be visited at most once and that no subtours will be generated. Objective function (7), like in OP, states the goal of maximizing the total realized profit.

Exact algorithms for the TOP were produced by Butt and Ryan(1999)[19] using column generation and aiming at solving instances of up to 100 nodes. Boussier et al.(2007)[20] combined column generation with branch-and-bound steps to significantly reduce computation times for instances of 100 nodes.

Chao et al.(1996a) updated their 5-step heuristic to solve the OP, while Tang and MillerHooks (2005)[21] utilized a tabu search heuristic in the context of an Adaptive Memory Procedure (AMP). Several other metaheuristics were presented, among others by Archetti et al. (2007), Ke et al. (2008), Vansteenwegen et al. (2009 b,c) and Souffriau et al. (in press). All four of them begin with a starting solution and try to formulate a second one, which will replace the original if found more profitable. In addition to profitability, emphasis is now placed on reducing computation times.

A common framework that is adopted by these so-called local search heuristics, includes five actions that aim to maximize the total profit and two actions that aim at reducing travel time between nodes.

Actions that aim at increasing total profit:

- Insert: This action utilizes cheapest insertion to add an extra node in any of the paths
- TwoInsert: Similar to above, but considering two extra nodes
- Replace: It examines all non-included nodes and inserts one if there is time budget available for insertion. If there is no budget available, the node to be inserted replaces a lower-score one that is already included.
- TwoReplace: Similar to the above, but now every combination of two non-included nodes is considered for insertion.
- Change: Is a different, more drastic approach as five included nodes are removed from a path. Subsequently, non-included nodes are inserted until there is no more time budget available. If the new path that is created by this process is more profitable than the original, the solution is saved, otherwise it is discarded.

Actions that aim at reducing computation times:

- 2-Opt: It replaces two edges included in the path with two new ones. If time reduction is achieved, the change is kept.
- Swap: It swaps one node from a path with another one from another path.

2.1.3 Orienteering Problem with Time Windows (OPTW)

OPTW introduces a concept that drastically alters the procedures mentioned so far needed to solve the OP. Time windows add an additional powerful constraint that a visit to a node can only begin during that window. The decision variables used to formulate this problem are:

$$
\begin{align*}
& \mathrm{X}_{\mathrm{ij}}=1, \text { assuming a visit from node } \mathrm{i} \text { to node } \mathrm{j} \text { is viable; it will be } 0 \text { if not } \\
& \mathrm{y}_{\mathrm{i}}=1 \text {, if node } \mathrm{i} \text { is visited; it will be } 0 \text { if not } \\
& \mathrm{s}_{\mathrm{i}}=\text { the start of visit at node } \mathrm{i} \\
& \mathrm{M}=\mathrm{a} \text { constant } \\
& \text { Max } \sum_{i=2}^{N-1} \sum_{j=2}^{N} S_{i} x_{i j}, \tag{15}\\
& \sum_{j=2}^{N} x_{1 j}=\sum_{i=1}^{N-1} x_{i N}=1, \tag{16}\\
& \sum_{i=1}^{N-1} x_{i k}=\sum_{j=2}^{N} x_{k j} \leq 1 ; \quad \forall k=2, \ldots, N-1, \tag{17}\\
& s_{i}+t_{i j}-s_{j} \leq M\left(1-x_{i j}\right) \quad \forall i, j=1, \ldots, N, \tag{18}\\
& \sum_{i=1}^{N-1} \sum_{j=2}^{N} t_{i j} x_{i j} \leq T_{\max }, \tag{19}\\
& O_{i} \leq s_{i} ; \quad \forall i=1, \ldots, N, \tag{20}\\
& s_{i} \leq C_{i} ; \quad \forall i=1, \ldots, N, \tag{21}\\
& x_{i j} \in\{0,1\} ; \forall i, j=1, \ldots, N \tag{22}
\end{align*}
$$

The time window constraint practically means that solutions that target the OP can't solve the OPTW whereas OPTW solutions can still be utilized to solve OP (Tricoire et al.(2010))[22] . With this in mind, specific solutions of the OPTW started with Kantor and Rosenwein (1992)[23]. They produced an insertion heuristic that uses a "score over insertion time" ratio to choose inserted nodes while making sure that time windows are not violated. Mansini et al.(2006) [24] developed a neighborhood search heuristic that targets the case where the starting node is also the end node. Lastly, moving in the opposite direction Righini et Salasmi $(2006,2009)$ [25][26] presented an exact algorithm for the OPTW which used dynamic programming to optimally solve instances.

2.1.4 The Team Orienteering Problem with Time Windows (TOPTW)

TOPTW is probably the most common OP extension among those presented this far as it can serve as the basis for a popular OP practical application, the Tourist Trip Design Problem.

Continuing with the same notation we have the following decision variables.
$x_{i j p}=1$, assuming a visit from node i to node j in path p is viable ; it will be 0 if not
$y_{\text {ip }}=1$, if node i is visited in p
$s_{i p}=$ the start of visit at node i in path p
$\mathrm{M}=\mathrm{a}$ constant
$\operatorname{Max} \sum_{p=1}^{P} \sum_{i=2}^{N-1} S_{i} y_{i p}$,
$\sum_{p=1}^{P} \sum_{j=2}^{N} x_{1 j p}=\sum_{p=1}^{P} \sum_{i=1}^{N-1} x_{i N p}=P$,
$\sum_{i=1}^{N-1} x_{i k p}=\sum_{j=2}^{N} x_{k j p}=y_{k p} ; \quad \forall k=2, \ldots, N-1 ; \forall p=1, \ldots, P$,
$s_{i p}+t_{i j}-s_{j p} \leq M\left(1-x_{i j p}\right) ; \forall i=1, \ldots, N-1 ; \forall p=1, \ldots, P$
$\sum_{p=1}^{P} y_{k p} \leq 1 \forall k=2, \ldots, N-1$,
$\sum_{i=1}^{N-1} \sum_{j=2}^{N} t_{i j} x_{i j p} \leq T_{\text {max }}, \forall p=1, \ldots, P$,
$O_{i} \leq s_{i p} ; \forall i=1, \ldots, N-1 ; \forall p=1, \ldots, P$
$s_{i p} \leq C_{i} ; \forall i=1, \ldots, N-1 ; \forall p=1, \ldots, P$
$x_{i j p}, y_{i p} \in\{0,1\} ; \forall i, j=1, \ldots, N ; \forall p=1, \ldots, P$

Montemanni and Gambardella (2009) [27] developed new instances for TOPTW and produced solution of up to 4 tours based on ant colony optimization, a hierarchical generalization of the TOPTW. Vansteenwegen et al (2009d) [28] developed a fast metaheuristic called Iterated Local Search (ILS) to solve the instances proposed with Solomon, whose optimal solutions are known. ILS is the focal point of this thesis and will be covered in much greater detail later on. Tricoire et al (2010) [29] proposed a Variable Neighborhood Search (VNS) algorithm; their results showed that they managed to produce quality solutions for instances of up to 100 nodes with two tours in one minute of computation time. Tricoire et al (2010) actually worked on the Multi Period Team Orienteering Problem with Time Windows, a generalization of TOPTW.

2.2 The Time Dependent Orienteering Problem (TDOP)

TTDP does away with what has been a major assumption so far, that travel time between two nodes is a constant value. Practically, this is an oversimplification that ignores unforeseen events or network properties that may result in phenomena like congestion. Far more common occurrence is of course the waiting in a station typically associated with public transport systems. As usual, the formulation of the problem begins with the introduction of decision variables.
$X_{i j t}=1$: assuming a departure from node i in order to reach node j happens in time slot t, it will be 0 otherwise
$W_{i j t}$: the actual time of the departure within timeslot t from node i in order to reach node j
$\theta_{i j t}$: slope coefficient of the linear time-dependent travel time
$\eta_{i j t}$: intercept coefficient of the linear time-dependent travel time
$\tau_{i j t}$: lower limit of time slot t for $\operatorname{arc}(i, j)$
$T_{i j}$: number of time slots for arc (i, j)
The objective function that maximizes the total profit is

$$
\begin{equation*}
\operatorname{Max} \sum_{i=2}^{N-1} \sum_{j=2}^{N} \sum_{t=1}^{T_{i j}} S_{i} X_{i j t}, \tag{32}
\end{equation*}
$$

The following constraints must be respected:

$$
\begin{align*}
& \sum_{j=2}^{N} X_{1 j 1}=\sum_{i=1}^{N-1} \sum_{t=1}^{T_{i N}} X_{i N t}=1, \tag{33}\\
& \sum_{i=1}^{N-1} \sum_{t=1}^{T_{i h}} X_{i h t}=\sum_{j=2}^{N} \sum_{t=1}^{T_{h j}} X_{h j t} \leq 1 ; \forall h=2, \ldots, N-1, \tag{34}\\
& \sum_{i=1}^{N-1} \sum_{t=1}^{T_{i h}}\left[W_{i h t}+\left(\theta_{i h t} W_{i h t}+\eta_{i h t} X_{i h t}\right)\right]=\sum_{j=2}^{N} \sum_{t=1}^{T_{h j}} W_{h j t} ; \forall h=2, \ldots, N-1, \tag{35}\\
& X_{1 j 1} \tau_{i j t} \leq W_{i j t} \leq X_{i j t} \tau_{i j(t+1)} ; i=1 \ldots, N-1, j=2 \ldots . N ; \forall t \tag{36}\\
& \left.\sum_{i=1}^{N-1} \sum_{j=2}^{N} \sum_{t=1}^{T_{i j}}\left[\theta_{i j t} W_{i j t}+\eta_{i j t} X_{i j t}\right)\right] \leq T_{\max } \tag{37}\\
& W_{1 i 1}=0 ; \forall i=1, \ldots, N, \quad \forall i=1, \ldots, \ldots, \ldots \tag{38}\\
& 0 \leq W_{i j t} \leq T_{\max } ; \forall t, i, j=1, \ldots, N \tag{39}
\end{align*}
$$

Constraint (33) forces the path to start and end at nodes 1 and N , while constraint (34) ensures that each node is visited at most once. Constraint (35) removes any waiting time: it does so by guaranteeing that the departure time of a subsequent node is the sum of the departure time of the preceding node and the travel time needed to reach the former. Constraints (36) and (37) enforce the limited travel time: they do that by categorizing the departure time in the right time slot. Constraint (38) forces each path to start in the first time slot, while constraint (39) ensures that all departure times are less than $T_{\max }$.

Li(2012) employed network planning as well as dynamic node labeling programming to construct an algorithm, while assuming a realistic transportation system with given start and end nodes. Verbeeck et al.(2014a) utilized the concept of an Ant Colony System combined with a (timedependent) local search procedure with its own evaluation metric. Gunawan et al.(2014) solve TDOP through a different prism, that of a practical application giving directions inside a large leisure facility e.g. a museum, etc. Four metaheuristics are used to reach solutions with acceptable computational times: a restart greedy algorithm, a restart Variable Neighborhood Descent heuristic, a basic ILS and a modified ILS which uses an adaptive perturbation size.

As expected, a common extension of TDOP is the Time Dependent Orienteering Problem with Time Windows (TDOPTW). Garcia et al.(2010,2013), Abbaspoor and Samadzadegan(2011) and Gavalas et al(2014) are among the TDOPTW proposed solutions.

3. Iterated Local Search procedure for the Team Orienteering Problem with Time Windows

3.1 Introduction

ILS is widely regarded as the most popular solution for the TOPTW. Its popularity derives from the balance between computational time and high quality solutions that it achieves. It was introduced by Pieter Vansteenwegen et al. in 2009. The paper was based on the idea of having an electronic assistance application to help tourists plan their trip. It is thus a Tourist Trip Design problem, with TOPTW its simplified version.

The premise is that the tourist-user needs help in organizing trips for each day he has at his disposal. Each day trip will be relegated to a route. The goal then is to maximize the total score collected by the fixed number of routes. A route naturally must be comprised by timely visits to points of interest (POI) and must have a fixed duration. It is common for a route to have the same starting and final point-node, for example a hotel, but this is not explicitly required.

An additional and very important requirement is the ability to quickly recalculate a proposed trip because of altered real life circumstances. For example, if the user stays at a POI longer than originally accounted for, a recalculation of the entire solution must be undertaken in order to utilize this new information. This is a crucial point for the metaheuristic that will be employed to reach the solution, as it is unlikely that a computational time of more than a few seconds will be deemed acceptable by the user every time such a recalculation is needed. The introduction of this requirement is what made ILS such an important metaheuristic in the literature.

3.2 Mathematical formulation

The mathematical formulation for the TOPTW was already given in literature but will be repeated here for continuity.

As already stated, the locations to be visited are points of interest. Each POI in a set of n locations, which can also be seen as a node i in a graph, has a score that is realized by visiting it, a visiting time T_{i}, and a time window in which it can be visited, i.e. an opening time and a closing time $\left[O_{i}, C_{i}\right]$. The first node (1) and the end node (n) of every tour must be fixed and as already mentioned may or may not be the same. Since each route usually corresponds to a single day so naturally it has a time budget $T_{\max }$ which means that not all nodes can be visited in a route and probably not even across a number of routes. The specific goal for each route then is to maximize the total profit realized by visiting as many nodes as the time budget allows within their respective windows. A node should only be visited once and the arrival at it can happen before it's opening time, but in this case a waiting time must be allowed for since the visit can't actually occur before the node's opening time.

Due to the nature of the constraints imposed on it, TOPTW is a rather difficult problem to solve; in fact Golden et al. have already proved that is an NP-hard problem, meaning an optimal
solution can't be reached in polynomial time. In this context, developing a heuristic that can produce a near-optimal solution in mere seconds is not a simple task.
Based on the notation introduced so far, TOPTW mathematical formulation begins with the following decision variables:

$$
\begin{aligned}
& x_{i j p}=1, \text { when in route } p \text { node } j \text { is visited after the visit to node } i ; \text { it will be } 0 \text { if not } \\
& y_{i p}=1, \text { if node } i \text { is visited in route } p \text {; it will be } 0 \text { if not } \\
& S_{i p}=\text { the start of visit at node } i \text { in route } p \\
& M=\text { a large constant }
\end{aligned}
$$

The following constraints reproduce the requirements mentioned above:

$$
\begin{align*}
& \operatorname{Max} \sum_{p=1}^{P} \sum_{i=2}^{N-1} S_{i} y_{i p} \\
& \quad(40) \\
& \sum_{p=1}^{P} \sum_{j=2}^{N} x_{1 j p}=\sum_{p=1}^{P} \sum_{i=1}^{N-1} x_{i N p}=P, \tag{41}\\
& \sum_{i=1}^{N-1} x_{i k p}=\sum_{j=2}^{N} x_{k j p}=y_{k p} ; \forall k=2, \ldots, N-1 ; \forall p=1, \ldots, P, \tag{42}\\
& s_{i p}+t_{i j}-s_{j p} \leq M\left(1-x_{i j p}\right) ; \forall i=1, \ldots, N-1 ; \forall p=1, \ldots, P \tag{43}\\
& \sum_{p=1}^{P} y_{k p} \leq 1 \forall k=2, \ldots, N-1, \tag{44}\\
& \sum_{i=1}^{N-1} \sum_{j=2}^{N} t_{i j} x_{i j p} \leq T_{\max }, \forall p=1, \ldots, P \tag{45}\\
& O_{i} \leq s_{i p} ; \forall i=1, \ldots, N-1 ; \forall p=1, \ldots, P \tag{46}\\
& s_{i p} \leq C_{i} ; \forall i=1, \ldots, N-1 ; \forall p=1, \ldots, P \tag{47}\\
& x_{i j p}, y_{i p} \in\{0,1\} ; \forall i, j=1, \ldots, N ; \forall p=1, \ldots, P \tag{48}
\end{align*}
$$

Objective function (40) demands the maximization of total collected score S. Constraint (41) ensures that all tours start at node 1 and end at node N. Constraint (42) guarantees the connectivity of each tour while (43) it's timeline. Constraint (44) ensures that each node cannot be visited more than once and constraint (45) limits each tour's duration to the predetermined time budget $T_{\max }$. Constraint (46) states that each visit cannot start before a POl's opening time while (47) demands that the visit cannot start after a POI's closing time.

Vansteveegen et al(2009) seminal paper introduced a very fast local search procedure that also performs very well on the available data sets. The procedure is based on an insertion step and a removal (shaking) step to avoid local optima.

3.3 Methodology

3.3.1 Insertion step

The insertion step aims to add one after another all possible visits in a tour while simultaneously respecting the time budget available. In addition, after each node insertion it must ensure that all previously inserted nodes whose visits happen after the just inserted one still have their time windows respected. This is a key point for the computation speed of the whole algorithm, as there will be needed approximately as many such evaluations as there are possible nodes to be visited. A way had to be found to simplify and increase the speed of these calculations. The proposed solution was to record two helper variables for each included node, the Wait and the MaxShift. Intuitively, Wait represents the time that will have to pass before an actual visit to node can be started if someone arrives at it before it's opening time. If on the other hand the arrival a_{i} is during the node's time window, then Wait is zero.

$$
\begin{equation*}
\text { Wait }_{i}=\max \left[0, O_{i}-a_{i}\right] ; \tag{49}
\end{equation*}
$$

MaxShift represents the time a visit completion can be delayed while simultaneously respecting both its and all the following nodes time windows. MaxShift of node i is the sum of the Wait and the MaxShift of the following node $\mathrm{i}+1$ or the duration of its own visit as defined by its time window, whatever is less.

$$
\begin{equation*}
\text { MaxShift }_{i}=\min \left[C_{i}-S_{i}, \text { MaxShift }_{i+1}+\text { Wait }_{i+1}\right] \tag{50}
\end{equation*}
$$

Knowing the MaxShift of all nodes already included in a tour means that any evaluation regarding a new candidate node will take constant time instead of linear.

The delay each new node insertion will impose to the consequent nodes i.e., the total time expenditure of inserting a new node j between nodes i and k is given by the following formula:

$$
\begin{equation*}
\text { Shift }_{i}=c_{i j}+\text { Wait }_{j}+T_{j}+c_{j k}-c_{i k} \tag{51}
\end{equation*}
$$

In order for j to be eligible to be inserted between i and k, Shift t_{j} must be less than or equal to the sum of MaxShift $_{k}+$ Wait $_{k}$ of node k. Additionally, node j 's own time window must be respected.

The insertion procedure first calculates the best possible place of insertion in the tour for all not already included nodes by minimizing their possible Shift. Then an insertion metric for each node is calculated, which has the form of the following ratio:

$$
\begin{equation*}
\text { Ratio }_{i}=\left(S_{i}\right)^{2} / \text { Shift }_{i} \tag{52}
\end{equation*}
$$

The node with the highest ratio will be chosen for insertion in the tour. The ratio places more focus on the score of each node rather than it's time consumption because of the time windows constraint and that is manifested by having the square of the score rather than the score itself included in the calculation.

After the node with the highest ratio is inserted into the tour, a number of variables for the nodes already in the tour will need to be updated to facilitate the next insertion. Particularly important are the nodes that represent visits that are to happen after the recently inserted one. For these nodes, their arrival, waiting time, start of the actual visit, shift and MaxShift need to be updated. These variables are updated through the following formulas:

Wait $_{k^{*}}=\max \left[0\right.$, Wait $_{k}-$ Shift $\left._{j}\right] ;$
$a_{k^{*}}=a_{k}+$ Shift $_{j} ;$
Shift $_{k}=\max \left[0\right.$, Wait $_{j}-$ Wait $\left._{k}\right]$;
$s_{k^{*}}=s_{k}+$ Shift $_{k}$;
MaxShift $_{k^{*}}=$ MaxShift $_{k}-$ Shift $_{k}$;

All subsequent nodes will be updated through these formulas until the shift will be zero: after this point no other node would be affected by the insertion. MaxShift will also be updated for node j as well as its previous nodes.

The following figure presents the pseudocode of the insertion step.
For each not already included node:
Calculate shift and best possible insertion position;
Calculate ratio;
Insert node with highest ratio;
For inserted node j :
Calculate Arrival, Start (of actual visit), Wait;
For each node after recently inserted node j :
Update Arrival, Start (of actual visit), Wait, Shift, MaxShift;
For inserted node j :
Calculate MaxShift;
For each node before inserted node j;
Update MaxShift;

3.3.2 Shake Step

The insertion step is finished when there are no more possible insertions available. At that time, a shake step is introduced in order to avoid local optima. Specifically, a number of nodes will be removed from the tour to allow reinsertion in the pursuit of optimality. Two integers are used to represent two decisions needed at this point, the number of consecutives nodes to be removed (R_{p}) and the position in the tour that the removal will begin $\left(S_{p}\right)$. If the sequence of nodes to be removed includes the end node, the process will pick up with the starting node.

After the removal of one or more nodes, a gap will occur in the tour that will generate unnecessary waiting time. For that purpose, all nodes will be shifted towards the beginning of the tour to close that gap. However, if a node's time window doesn't allow for that node's shifting, the shifting stops and all subsequent nodes remain unchanged. Once the shake step is completed, all affected nodes will be updated by a process similar to the one used after the insertion step. Once again, nodes before the shaking sequence need only have their MaxShift updated. In the end, a gap that minimizes waiting time will have been introduced to the tour which will allow the insertion of more profitable nodes than the ones removed.

The following figure presents the pseudocode for the shake step:
For each tour:
Remove nodes between i and j inclusive;
Calculate Shift;
For each node after j:
Shift node towards starting node;
Update Arrival, Start, Shift, MaxShift, Wait;

For each node before i :
Update MaxShift;

3.3.3 The Heuristic

The ILS heuristic combines the two previously mentioned steps in the following way:
Since the problem at hand is TOPTW, we begin with a set of empty tours sized from 1 to m . The two parameters of the shake step $\left(R_{p}, S_{p}\right)$ are initialized to 1 . The heuristic records the best found solution after every iteration and will loop until no improvement appears after a given number of times. Every iteration begins with an insertion step that will loop until a so called local optimum is reached. If the current tour is more profitable than the so far best solution recorded, it replaces it as best incumbent solutions. In either case, the heuristic will move on to the next step, shake. After every shake S_{p} is increased by the current R_{p}, while R_{p} itself is increased by 1 . The shake step will then be performed with these parameters as input. S_{p} and R_{p} have been given upper limits through testing the algorithm until the best solutions were produced. Specifically, S_{p} cannot be more than the size of the smallest tour in the set, at which point this size will be subtracted from it in order to continue the process. On the other hand, if R_{p} reaches $\frac{n}{3 * m}$ where $\mathrm{n}=$ number of nodes and $m=n u m b e r s$ of tours to be created, it will reset to 1 . The only predetermined decisions then are the number of nodes available for consideration, the number of tours to be created and the number of iterations for the heuristic, after which no further improvement is needed. The latter is of course the result of the balance to be decided between the computation time and the quality of the produced solution. Through testing, the number that seems to be soft cap regarding the quality of the solution without adding unnecessary computation time is 150 .

The pseudocode for the heuristic is the following:

```
\(S_{p}=1 ;\)
\(R_{p}=1\);
NumberOflterations=0;
while NumberOfiterations<150:
        while localOptimum not reached:
                Perform InsertionStep;
if currentSolution better than bestFoundSolution:
                bestFoundSolution= currentSolution;
                \(R_{p}=1\);
                NumberOfiterations=0;
    else:
        NumberOflterations \(=\) NumberOflterations +1 ;
    Perform Shake ( \(S_{p}, R_{p}\) );
\(S_{p}=S_{p}+R_{p}\);
\(R_{p}=R_{p}+1\);
if \(S_{p}>=\) Size of smallest tour in set:
            \(S_{p}=S_{p}\) - Size of smallest tour in set;
if \(R_{p}=\frac{n}{3 * m}\) :
\(R_{p}=1\);
return bestFoundSolution;
```


3.3.4 Visit time modification

In the original ILS context, a visit is considered to take place if the arrival to one node happens anytime before the node's closing time. Thus, the visit's proposed duration is not always respected; a visit that lasts just one second is acceptable. Our approach is much stricter in this regard: a visit's proposed duration is always enforced. As a consequence we can expect lower total scores than the original ILS's results, since some of our tours will possibly contain fewer visits in order to accommodate our much stricter criteria.

3.3.5 Point-of-interest categorization and user choice

Another modification we introduce is the classification of POl's in categories based on their particular touristic purpose. For example, a POI can be classified as a museum, a theater, an open space and so on. The user is then given the choice to control the relative value each category has to them. Specifically, if a particular user has only a passing interest in museums, he can choose to reduce the proposed score of subsequent museum visits after a certain limit of already included museums in the designed tour is reached. Conversely, if a user is specifically interested in sights in open spaces, he can choose not to reduce the proposed score of subsequent open spaces visits no matter how many such visits are already planned. In summation, this modification allows the user to favor POI's of particular interest to him, while limiting those he is indifferent to, while maintaining the highest overall score of the whole tour possible.

4. Cluster based Heuristics for the Team Orienteering Problem with Time Windows

4.1 Introduction

Gavalas et al.[30] added another dimension to the TOPTW rooted in the ILS solving procedure: the division of the set of available nodes in clusters based on geographical criteria. The reasoning behind this addition is that ILS, during the evaluation of candidate nodes for insertion, will disregard high profit areas of nodes if these are far from the current solution in geographical terms. This of course happens because the ratio takes into account the time consumption of each visit through Shift, even though there is an attempt to mitigate this by squaring the score to place more emphasis in it. However, the problem still persists because ILS is evaluating each node individually. The proposed solution is to cluster nearby nodes creating profitable areas to increase those nodes attractiveness. The main idea is that if a high profit node is visited it's nearby nodes can also be visited without significant additional travel time. Having the concept of the Tourist Trip Design Problem in mind, this can mean that these nodes can be reached by walking, a highly desirable trait for a tourist.

There are two algorithms developed to handle this process, CSCRatio and CSCRoutes, both based on ILS. Both algorithms use the same procedure to form the clusters of nodes by employing the global k-means algorithm developed by Likas et al.[31], through which empty clusters are initialized during a preprocessing phase. Afterwards, in a phase common to both algorithms called RoutelnitPhase the m requested routes are each assigned exactly one node from the clusters. Since it is reasonable that the number of clusters will be greater than the number of routes, a decision must be reached over which clusters will provide the routes with nodes during this step. One approach would be to simply rank the clusters formed on total profit and pick the best ones. A more optimal one would be to be flexible at this stage and try various combinations of the best
clusters and stick with the ones giving better solutions at the algorithm stage. Whatever the approach decided, RoutelnitPhase takes as argument a m number of clusters from the listOfClusterSet and after finding the node with the highest score in it, delegates it to one of the m requested routes-tours. By doing this, the process ensures that various geographical areas from the set of available nodes will be represented and avoid getting trapped in high-scoring local nodes. The process then continues, much like ILS, with an insertion and a shake step, either by employing the CSCRatio or CCSCRoutes algorithm. Our stricter criterion of respecting a visit's proposed duration are also applied here.

4.2 Cluster Search Cluster Ratio

The insertion step of the CSCRatio algorithm has additional argument in a parameter called clusterParameter ≥ 1. ClusterParameter represents the emphasis decided to be given on the clustering of the nodes. The greater it is, the higher the chance a visit to a node will be accompanied by a visit to another node of the same cluster. The way this emphasis is introduced in the ILS is by creating a modified version of Shift i_{i} called shiftCluster r_{i} which is calculated by

Shift $_{i}$

 $\overline{\text { clusterParameter }}$. When clusterParameter is 1 , shiftCluster ${ }_{i}$ equals Shift $_{i}$, in which case we have the standard case of ILS. However, as clusterParameter increases the time consumption of a visit to a node in the same cluster of the current one decreases, making it more likely to be chosen compared to a node of a different cluster. This happens because the evaluation ratio is now given by the following type: Ratio $_{i}=\frac{\text { Score }_{i}^{2}}{\text { shiftCluster }_{i}}$. CSCRatio begins with the clusterParameter set at 1.3 and gradually decreases it by 0.1 at each quarter of the total iterations it will go through. So, in the beginning a much greater emphasis is placed on visiting nodes within the same cluster and as the iterations progress this emphasis declines until the cluster play no role in evaluating nodes at the last quarter of iterations. A balance then is reached between the benefits of visiting inside a cluster and the diversification that ILS provides.The shake step in the CSCRatio algorithm is very much like the respective step of ILS; a modification is made regarding the number of nodes that are to be moved. Specifically, in CSCRatio R_{p} is limited to half the size of the largest tour in the solution and not $\frac{n}{3 * m}$ which reduces computation time since the local optimum is reached faster than in the ILS having a smaller portion of the solution removed at each iteration. This reduction in computation time allows more iterations of the heuristic to be completed without taking more total execution time than the ILS.

The pseudocode of CSCRatio is given in the figure below:

Perform k-means algorithm : intiliaze k amount of clusters

Construct the listOfClusterSets


```
it2= 2*maxIterations
it3= 3*maxIterations
while listOfClusterSets not empty:
    remove all nodes included in currentSolution;
    theClusterSetldToInsert= listOfClusterSets.pop();
    RoutInitPhase(theClusterSetIdToInsert)
    S =1;
```

```
\(R_{p}=1\);
NumberOflterations=0;
while NumberOfiterations < maxIterations:
    if NumberOflterations <it2:
            if NumberOfIterations <it1:
                clusterParameter = 1.3;
            else:
                clusterParameter = 1.2;
else:
            if NumberOflterations <it3:
                clusterParameter = 1.1;
            else:
                clusterParameter = 1.0;
            while localOptimum not reached:
            CSCRatio_Insertion (clusterParameter);
if currentSolution better than bestFoundSolution:
            bestFoundSolution= currentSolution;
            \(R_{p}=1\);
            NumberOflterations=0;
else:
            NumberOflterations \(=\) NumberOfIterations +1 ;
if \(R_{p}>\frac{\text { currentSolution.sizeOfLargestTour }}{2}\) :
            \(R_{p}=1 ;\)
Perform Shake ( \(S_{p}, R_{p}\) );
\(S_{p}=S_{p}+R_{p}\);
\(R_{p}=R_{p}+1\);
if \(S_{p}>=\) Size of smallest tour in set:
            \(S_{p}=S_{p}\) - Size of smallest tour in set;
if \(R_{p}=\frac{n}{3 * m}\) :
    \(R_{p}=1\);
Return bestFoundSolution;
```


4.3 Cluster Search Cluster Routes algorithm

Within a tour p in a proposed solution of TOPTW we define a sub-tour of consecutive nodes that belong in the same cluster as a Cluster Route (CR) of p associated with cluster C and denoted as $C R_{C}^{p} . C R_{C}^{p}$ is greater than 1 and less than or equal to the size of cluste r C. A key difference of CSCRoutes from the CSCRatio is that it doesn't allow to return to a previously visited cluster, with the exception of the starting and ending node being in the same cluster. In that case, a reentry to the cluster is allowed. This difference means that for a tour p there can only be one $C R_{C}^{p}$ sub-tour and also that a node can't just be entered at any position in the tour; it has to be in proximity to the other nodes of the same cluster. This restriction will lead to lower-quality solutions compared to the ILS and CSCRatio but it will also take significant less execution time because the evaluation needed at each iteration will be a lot less in CSCRoutes insertion step.

The pseudocode of CSCSRoutes is presented in the following figure:

Perform k-means algorithm : intiliaze k amount of clusters
Construct the listOfClusterSets

```
while listOfClusterSets not empty:
    remove all nodes included in currentSolution;
    theClusterSetldToInsert= listOfClusterSets.pop();
    RoutInitPhase(theClusterSetIdToInsert)
    \(S_{p}=1\);
    \(R_{p}=1\);
    NumberOflterations=0;
    while NumberOfterations < maxlterations.
```

Return bestFoundSolution

```
```

while localOptimum not reached:

```
while localOptimum not reached:
    CSCRoutes_Insert;
    CSCRoutes_Insert;
if currentSolution better than bestFoundSolution:
if currentSolution better than bestFoundSolution:
    bestFoundSolution= currentSolution,
    bestFoundSolution= currentSolution,
    \(R_{p}=1\);
    \(R_{p}=1\);
    NumberOflterations=0;
    NumberOflterations=0;
else:
else:
    NumberOflterations \(=\) NumberOflterations +1 ;
    NumberOflterations \(=\) NumberOflterations +1 ;
if \(R_{p}>\frac{\text { currentSolution.sizeo fLargestTour }}{2}\) :
if \(R_{p}>\frac{\text { currentSolution.sizeo fLargestTour }}{2}\) :
\(R_{p}=1\);
\(R_{p}=1\);
Perform Shake ( \(S_{p}, R_{p}\) );
Perform Shake ( \(S_{p}, R_{p}\) );
\(S_{p}=S_{p}+R_{p}\);
\(S_{p}=S_{p}+R_{p}\);
\(R_{p}=R_{p}+1\);
\(R_{p}=R_{p}+1\);
if \(S_{p}>=\) Size of smallest tour in solution:
if \(S_{p}>=\) Size of smallest tour in solution:
\(S_{p}=S_{p}\) - Size of smallest tour in solution;
\(S_{p}=S_{p}\) - Size of smallest tour in solution;
if \(R_{p}=\frac{\begin{array}{c}S_{p} \\ n \\ 3 * m \\ R_{p}\end{array} \text { : }}{\text { : }}\)
if \(R_{p}=\frac{\begin{array}{c}S_{p} \\ n \\ 3 * m \\ R_{p}\end{array} \text { : }}{\text { : }}\)
\(R_{p}=1\);
```

$R_{p}=1$;

```

\section*{5 Experimental results}

\subsection*{5.1 Test Instances}

The modified ILS, CSCRatio and CSCRoutes algorithms are tested on the widely used datasets of Solomon. All data sets have 100 possible nodes to be visited and a fixed proposed visit duration for each node. It should be noted that these data sets are a particular fit for TOPTW problems; they are not suited for algorithms designed to solve TOP cases.

\subsection*{5.2 Results}

All computations are carried out on a personal portable computer with a Intel Core 2 Duo CPU @ 2.0 GHz with 3.0 GB Ram. These specs are actually lower than the ones used to run the original ILS and so meaningful comparison can be made regarding the computation time recorded.

Four sizes of tours for each instance were examined ( \(m=1,2,3,4\) ) to keep the tests directly related to the original ILS and also because in view of the Tourist Trip Design Problem, these sizes are contextually valid. Tables 1-4 present the results of our ILS variant with the stricter constraints on

POI visits (ILS_V.1) and contrast them with the original ILS. Tables 5-8 contrast our modified ILS with the accordingly modified version of the CSCRatio algorithm to examine possible benefits from employing clustering heuristics, while tables \(9-12\) do the same with the modified CSCRoutes algorithm.

Tables 13-16 display the impact the POI classification and the on-the-fly POI profit adjustments (ILS_V.2) have on our modified ILS. Our tighter constraints from ILS_V. 1 regarding the visit time are respected here as well. The results are based on an classification in 3 groups with the following parameters:
a. First group: POl's belonging to this group have a 40\% reduction in their scores if more than \(1 / 3\) of the nodes already included in that tour belong to it
b. Second group: POl's belonging to this group have a 70\% reduction in their scores if more than \(1 / 3\) of the nodes already included in that tour belong to it
c. Third group: POI's belonging to this group have a \(10 \%\) reduction in their scores if more than \(1 / 3\) of the nodes already included in that tour belong to it

The approach selected clearly rewards POl's of the third group while "punishing" those in the first group. All of the parameters selected are arbitrary and chosen randomly, while the user is free to change them at will.

As expected and demonstrated in the following tables, our modified ILS is slightly underperforming the original ILS due to the enforcing of much stricter criteria regarding the completion of each node visit in its suggested duration. The difference is on average a 1-10\% reduction in the score of each tour. It is a behavior observed when we move to the respective comparisons of the CSCRatio and CSCSRoutes algorithms.

The variant of ILS considering POI categorization and dynamic POI profits has very good results when the number of tours is less than 3. As that number increases, the algorithm struggles to find quality nodes after the score reduction and the overall tour score drops significantly.

Table 1 - Comparison between Original ILS and ILS_V. 1 for m=1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{Original ILS} & \multicolumn{3}{|c|}{ILS_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 320 & 10 & 0.4 & 300 & 10 & 0.04700 \\
\hline c102 & 360 & 11 & 0.3 & 320 & 11 & 0.07800 \\
\hline c103 & 390 & 10 & 0.5 & 380 & 11 & 0.07800 \\
\hline c104 & 400 & 10 & 0.3 & 390 & 11 & 0.06300 \\
\hline c105 & 340 & 10 & 0.3 & 310 & 9 & 0.04700 \\
\hline c106 & 340 & 10 & 0.3 & 310 & 10 & 0.04800 \\
\hline c107 & 360 & 11 & 0.3 & 320 & 10 & 0.06200 \\
\hline c108 & 370 & 11 & 0.3 & 320 & 10 & 0.06300 \\
\hline c109 & 380 & 11 & 0.3 & 340 & 11 & 0.06200 \\
\hline r101 & 182 & 7 & 0.1 & 186 & 8 & 0.09400 \\
\hline r102 & 286 & 11 & 0.2 & 247 & 10 & 0.06300 \\
\hline r103 & 286 & 10 & 0.2 & 252 & 10 & 0.09300 \\
\hline r104 & 297 & 11 & 0.2 & 268 & 11 & 0.07800 \\
\hline r105 & 247 & 11 & 0.1 & 215 & 9 & 0.06300 \\
\hline r106 & 293 & 11 & 0.2 & 258 & 10 & 0.14100 \\
\hline r107 & 288 & 10 & 0.2 & 243 & 11 & 0.12500 \\
\hline r108 & 297 & 11 & 0.2 & 233 & 11 & 0.07900 \\
\hline r109 & 276 & 11 & 0.2 & 264 & 11 & 0.09400 \\
\hline r110 & 281 & 11 & 0.3 & 247 & 11 & 0.07800 \\
\hline r111 & 295 & 11 & 0.2 & 276 & 11 & 0.09400 \\
\hline r112 & 295 & 11 & 0.2 & 274 & 11 & 0.07800 \\
\hline rc101 & 219 & 9 & 0.2 & 203 & 8 & 0.06200 \\
\hline rc102 & 259 & 9 & 0.2 & 245 & 10 & 0.06300 \\
\hline rc103 & 265 & 11 & 0.3 & 245 & 10 & 0.06300 \\
\hline rc104 & 297 & 11 & 0.3 & 240 & 10 & 0.05500 \\
\hline rc105 & 221 & 11 & 0.2 & 162 & 7 & 0.06300 \\
\hline rc106 & 239 & 11 & 0.2 & 200 & 8 & 0.04700 \\
\hline rc107 & 274 & 11 & 0.2 & 240 & 10 & 0.06300 \\
\hline rc108 & 288 & 11 & 0.2 & 240 & 10 & 0.06200 \\
\hline
\end{tabular}

Table 2 - Comparison between Original ILS and ILS_V. 1 for m=2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{Original ILS} & \multicolumn{3}{|c|}{ILS_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 590 & 21 & 1.4 & 540 & 18 & 0.18700 \\
\hline c102 & 650 & 22 & 0.9 & 610 & 21 & 0.32200 \\
\hline c103 & 700 & 22 & 1.2 & 660 & 22 & 0.12500 \\
\hline c104 & 750 & 22 & 1.5 & 700 & 22 & 0.22200 \\
\hline c105 & 640 & 21 & 0.8 & 540 & 18 & 0.12500 \\
\hline c106 & 320 & 20 & 0.8 & 550 & 18 & 0.18800 \\
\hline c107 & 670 & 22 & 1.4 & 570 & 18 & 0.12500 \\
\hline c108 & 670 & 22 & 0.8 & 570 & 19 & 0.14100 \\
\hline c109 & 710 & 22 & 0.9 & 640 & 20 & 0.18700 \\
\hline r101 & 330 & 13 & 0.4 & 307 & 13 & 0.14000 \\
\hline r102 & 508 & 21 & 0.9 & 455 & 18 & 0.18800 \\
\hline r103 & 513 & 20 & 0.9 & 450 & 19 & 0.15600 \\
\hline r104 & 539 & 22 & 1.5 & 483 & 21 & 0.15600 \\
\hline r105 & 430 & 18 & 0.8 & 369 & 16 & 0.12500 \\
\hline r106 & 529 & 21 & 0.9 & 438 & 19 & 0.10900 \\
\hline r107 & 529 & 21 & 1 & 483 & 20 & 0.14000 \\
\hline r108 & 549 & 24 & 1.4 & 486 & 21 & 0.13600 \\
\hline r109 & 498 & 22 & 0.5 & 412 & 18 & 0.10900 \\
\hline r110 & 515 & 22 & 1 & 435 & 19 & 0.14100 \\
\hline r111 & 535 & 23 & 0.6 & 471 & 20 & 0.12500 \\
\hline r112 & 515 & 21 & 0.5 & 450 & 20 & 0.12900 \\
\hline rc101 & 427 & 19 & 0.6 & 293 & 11 & 0.09400 \\
\hline rc102 & 494 & 20 & 0.8 & 326 & 14 & 0.10900 \\
\hline rc103 & 519 & 20 & 1.1 & 394 & 16 & 0.23400 \\
\hline rc104 & 565 & 22 & 0.7 & 459 & 18 & 0.14100 \\
\hline rc105 & 459 & 22 & 0.8 & 289 & 12 & 0.15600 \\
\hline rc106 & 458 & 20 & 0.6 & 377 & 15 & 0.12500 \\
\hline rc107 & 515 & 21 & 0.5 & 436 & 18 & 0.10900 \\
\hline rc108 & 546 & 23 & 0.6 & 464 & 19 & 0.12500 \\
\hline
\end{tabular}

Table 3 - Comparison between Original ILS and ILS_V. 1 for m=3
\begin{tabular}{lrrrrrl}
\hline & \multicolumn{3}{c}{ Original ILS } & \multicolumn{3}{c}{ ILS_V.1 } \\
\hline Name & Score & Visits & \multicolumn{1}{l}{ Comp. time } & Score & Visits & Comp. time \\
\hline c101 & 790 & 29 & 1.1 & 730 & 25 & 0.21900 \\
c102 & 890 & 32 & 2.1 & 800 & 29 & 0.37800 \\
c103 & 960 & 33 & 2.2 & 920 & 32 & 0.20300 \\
c104 & 1010 & 34 & 1.3 & 950 & 33 & 0.21800 \\
c105 & 840 & 30 & 1 & 780 & 26 & 0.20400 \\
c106 & 840 & 30 & 1.1 & 780 & 26 & 0.22500 \\
c107 & 900 & 33 & 1.5 & 760 & 25 & 0.19400 \\
c108 & 900 & 33 & 1.2 & 820 & 27 & 0.25000 \\
c109 & 950 & 33 & 2 & 860 & 28 & 0.20300 \\
& & & & & & \\
r101 & 481 & 21 & 0.8 & 415 & 18 & 0.20300 \\
r102 & 685 & 31 & 1 & 606 & 25 & 0.25000 \\
r103 & 720 & 31 & 2 & 630 & 27 & 0.17200 \\
r104 & 765 & 34 & 1.5 & 662 & 29 & 0.17200 \\
r105 & 609 & 27 & 2.3 & 519 & 22 & 0.16600 \\
r106 & 719 & 32 & 2.1 & 604 & 26 & 0.28900 \\
r107 & 747 & 33 & 1.1 & 611 & 26 & 0.21600 \\
r108 & 790 & 36 & 3.1 & 691 & 31 & 0.21700 \\
r109 & 699 & 31 & 1.8 & 580 & 24 & 0.24600 \\
r110 & 711 & 32 & 1.4 & 618 & 26 & 0.25000 \\
r111 & 764 & 34 & 1.8 & 654 & 28 & 0.26500 \\
r112 & 758 & 34 & 1.1 & 665 & 29 & 0.21900 \\
& & & & & & \\
rc101 & 604 & 29 & 1.4 & 448 & 17 & 0.18700 \\
rc102 & 698 & 30 & 1.3 & 486 & 20 & 0.18800 \\
rc103 & 747 & 30 & 1.1 & 588 & 22 & 0.21800 \\
rc104 & 822 & 33 & 1.3 & 690 & 27 & 0.18500 \\
rc105 & 654 & 28 & 0.8 & 422 & 17 & 0.25000 \\
rc106 & 678 & 31 & 1 & 546 & 21 & 0.18800 \\
rc107 & 745 & 31 & 0.9 & 602 & 24 & 0.17200 \\
rc108 & 757 & 29 & 1.1 & 648 & 26 & 0.20500 \\
\hline & & & & & &
\end{tabular}

Table 4 - Comparison between Original ILS and ILS_V. 1 for m=4
\begin{tabular}{lrrrrrl}
\hline & \multicolumn{3}{c}{ Original ILS } & \multicolumn{3}{c}{ ILS_V.1 } \\
\hline Name & Score & Visits & \multicolumn{1}{l}{ Comp. time } & Score & Visits & Comp. time \\
\hline c101 & 1000 & 39 & 3.8 & 910 & 31 & 0.31700 \\
c102 & 1090 & 43 & 1.8 & 980 & 35 & 0.37500 \\
c103 & 1150 & 44 & 2.5 & 1080 & 39 & 0.23500 \\
c104 & 1220 & 45 & 3 & 1160 & 42 & 0.35900 \\
c105 & 1030 & 40 & 1.8 & 950 & 33 & 0.25800 \\
c106 & 1040 & 40 & 2.1 & 940 & 32 & 0.25000 \\
c107 & 1100 & 43 & 2 & 950 & 33 & 0.31300 \\
c108 & 1100 & 44 & 3.6 & 970 & 34 & 0.26600 \\
c109 & 1180 & 45 & 2.5 & 1030 & 36 & 0.51500 \\
& & & & & & \\
r101 & 601 & 28 & 1.4 & 507 & 22 & 0.23500 \\
r102 & 807 & 39 & 1.7 & 687 & 29 & 0.26600 \\
r103 & 878 & 42 & 2.2 & 782 & 33 & 0.37500 \\
r104 & 941 & 45 & 3.8 & 808 & 36 & 0.26500 \\
r105 & 735 & 35 & 2.9 & 634 & 27 & 0.28200 \\
r106 & 870 & 41 & 3.5 & 725 & 31 & 0.28100 \\
r107 & 927 & 44 & 3.3 & 765 & 34 & 0.23000 \\
r108 & 982 & 47 & 3.2 & 865 & 38 & 0.23500 \\
r109 & 866 & 40 & 2.1 & 763 & 33 & 0.27700 \\
r110 & 870 & 42 & 2 & 768 & 34 & 0.48400 \\
r111 & 935 & 45 & 2 & 805 & 35 & 0.21900 \\
r112 & 939 & 44 & 3.1 & 830 & 37 & 0.23500 \\
& & & & & & \\
rc101 & 794 & 37 & 1.9 & 598 & 23 & 0.28100 \\
rc102 & 881 & 42 & 2.3 & 656 & 27 & 0.31300 \\
rc103 & 947 & 42 & 2 & 777 & 30 & 0.25000 \\
rc104 & 1019 & 43 & 1.7 & 833 & 33 & 0.34100 \\
rc105 & 841 & 37 & 1.5 & 601 & 23 & 0.32800 \\
r106 & 874 & 37 & 2.5 & 728 & 28 & 0.28100 \\
r107 & 951 & 42 & 1.9 & 773 & 30 & 0.26700 \\
rc108 & 998 & 43 & 2 & 837 & 33 & 0.23400 \\
\hline & & & & & & \\
\hline
\end{tabular}

Table 5 - Comparison between ILS_V. 1 and CSCRatio_V. 1 for m=1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRatio_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 300 & 10 & 0.047 & 300 & 10 & 1.885 \\
\hline c102 & 320 & 11 & 0.078 & 330 & 11 & 2.745 \\
\hline c103 & 380 & 11 & 0.078 & 390 & 11 & 2.915 \\
\hline c104 & 390 & 11 & 0.063 & 390 & 11 & 2.811 \\
\hline c105 & 310 & 9 & 0.047 & 320 & 10 & 2.54 \\
\hline c106 & 310 & 10 & 0.048 & 310 & 10 & 2.56 \\
\hline c107 & 320 & 10 & 0.062 & 300 & 10 & 3.405 \\
\hline c108 & 320 & 10 & 0.063 & 320 & 10 & 2.903 \\
\hline c109 & 340 & 11 & 0.062 & 350 & 10 & 4.256 \\
\hline r101 & 186 & 8 & 0.094 & 142 & 7 & 0.186 \\
\hline r102 & 247 & 10 & 0.063 & 246 & 10 & 0.271 \\
\hline r103 & 252 & 10 & 0.093 & 268 & 11 & 0.297 \\
\hline r104 & 268 & 11 & 0.078 & 266 & 12 & 0.337 \\
\hline r105 & 215 & 9 & 0.063 & 159 & 7 & 0.261 \\
\hline r106 & 258 & 10 & 0.141 & 258 & 10 & 0.371 \\
\hline r107 & 243 & 11 & 0.125 & 267 & 11 & 0.475 \\
\hline r108 & 233 & 11 & 0.079 & 265 & 12 & 0.515 \\
\hline r109 & 264 & 11 & 0.094 & 238 & 10 & 0.581 \\
\hline r110 & 247 & 11 & 0.078 & 243 & 11 & 0.495 \\
\hline r111 & 276 & 11 & 0.094 & 272 & 11 & 0.68 \\
\hline r112 & 274 & 11 & 0.078 & 262 & 12 & 0.701 \\
\hline rc101 & 203 & 8 & 0.062 & 180 & 7 & 2.453 \\
\hline rc102 & 245 & 10 & 0.063 & 222 & 9 & 4.156 \\
\hline rc103 & 245 & 10 & 0.063 & 222 & 9 & 4.234 \\
\hline rc104 & 240 & 10 & 0.055 & 243 & 10 & 5.109 \\
\hline rc105 & 162 & 7 & 0.063 & 162 & 7 & 2.75 \\
\hline rc106 & 200 & 8 & 0.047 & 200 & 8 & 4.219 \\
\hline rc107 & 240 & 10 & 0.063 & 220 & 9 & 4.781 \\
\hline rc108 & 240 & 10 & 0.062 & 240 & 10 & 4.375 \\
\hline
\end{tabular}

Table 6 - Comparison between ILS_V. 1 and CSCRatio_V. 1 for m=2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRatio_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 540 & 18 & 0.187 & 540 & 18 & 9.247 \\
\hline c102 & 610 & 21 & 0.322 & 610 & 21 & 13.097 \\
\hline c103 & 660 & 22 & 0.125 & 650 & 22 & 10.513 \\
\hline c104 & 700 & 22 & 0.222 & 700 & 23 & 9.516 \\
\hline c105 & 540 & 18 & 0.125 & 520 & 18 & 6.328 \\
\hline c106 & 550 & 18 & 0.188 & 550 & 18 & 6.273 \\
\hline c107 & 570 & 18 & 0.125 & 540 & 18 & 6.781 \\
\hline c108 & 570 & 19 & 0.141 & 560 & 19 & 7.187 \\
\hline c109 & 640 & 20 & 0.187 & 620 & 21 & 8.408 \\
\hline r101 & 307 & 13 & 0.14 & 251 & 11 & 1.139 \\
\hline r102 & 455 & 18 & 0.188 & 419 & 18 & 1.706 \\
\hline r103 & 450 & 19 & 0.156 & 463 & 19 & 2.077 \\
\hline r104 & 483 & 21 & 0.156 & 507 & 22 & 2.391 \\
\hline r105 & 369 & 16 & 0.125 & 362 & 15 & 1.711 \\
\hline r106 & 438 & 19 & 0.109 & 429 & 18 & 2.136 \\
\hline r107 & 483 & 20 & 0.14 & 473 & 20 & 3.085 \\
\hline r108 & 486 & 21 & 0.136 & 521 & 23 & 3.918 \\
\hline r109 & 412 & 18 & 0.109 & 411 & 18 & 3.374 \\
\hline r110 & 435 & 19 & 0.141 & 419 & 19 & 3.528 \\
\hline r111 & 471 & 20 & 0.125 & 462 & 20 & 4.176 \\
\hline r112 & 450 & 20 & 0.129 & 485 & 20 & 4.359 \\
\hline rc101 & 293 & 11 & 0.094 & 344 & 13 & 6.36 \\
\hline rc102 & 326 & 14 & 0.109 & 385 & 16 & 8.094 \\
\hline rc103 & 394 & 16 & 0.234 & 440 & 17 & 8.906 \\
\hline rc104 & 459 & 18 & 0.141 & 478 & 19 & 10.641 \\
\hline rc105 & 289 & 12 & 0.156 & 369 & 15 & 11.625 \\
\hline rc106 & 377 & 15 & 0.125 & 370 & 15 & 12.841 \\
\hline rc107 & 436 & 18 & 0.109 & 429 & 18 & 11.797 \\
\hline rc108 & 464 & 19 & 0.125 & 447 & 17 & 10.547 \\
\hline
\end{tabular}

Table 7 - Comparison between ILS_V. 1 and CSCRatio_V. 1 for m=3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRatio_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp time \\
\hline c101 & 730 & 25 & 0.219 & 730 & 25 & 10.564 \\
\hline c102 & 800 & 29 & 0.378 & 780 & 28 & 22.648 \\
\hline c103 & 920 & 32 & 0.203 & 920 & 32 & 21.702 \\
\hline c104 & 950 & 33 & 0.218 & 920 & 32 & 19.339 \\
\hline c105 & 780 & 26 & 0.204 & 780 & 26 & 21.529 \\
\hline c106 & 780 & 26 & 0.225 & 780 & 26 & 17.257 \\
\hline c107 & 760 & 25 & 0.194 & 810 & 27 & 22.382 \\
\hline c108 & 820 & 27 & 0.25 & 760 & 26 & 14.899 \\
\hline c109 & 860 & 28 & 0.203 & 840 & 28 & 20.18 \\
\hline r101 & 415 & 18 & 0.203 & 386 & 17 & 4.481 \\
\hline r102 & 606 & 25 & 0.25 & 563 & 24 & 7.035 \\
\hline r103 & 630 & 27 & 0.172 & 642 & 27 & 6.458 \\
\hline r104 & 662 & 29 & 0.172 & 661 & 29 & 6.858 \\
\hline r105 & 519 & 22 & 0.166 & 494 & 22 & 5.134 \\
\hline r106 & 604 & 26 & 0.289 & 598 & 25 & 5.906 \\
\hline r107 & 611 & 26 & 0.216 & 642 & 28 & 6.729 \\
\hline r108 & 691 & 31 & 0.217 & 707 & 30 & 7.546 \\
\hline r109 & 580 & 24 & 0.246 & 601 & 25 & 9.655 \\
\hline r110 & 618 & 26 & 0.25 & 610 & 27 & 13.391 \\
\hline r111 & 654 & 28 & 0.265 & 695 & 30 & 12.82 \\
\hline r112 & 665 & 29 & 0.219 & 630 & 29 & 14.068 \\
\hline rc101 & 448 & 17 & 0.187 & 500 & 19 & 13 \\
\hline rc102 & 486 & 20 & 0.188 & 546 & 22 & 15.687 \\
\hline rc103 & 588 & 22 & 0.218 & 632 & 26 & 19.547 \\
\hline rc104 & 690 & 27 & 0.185 & 688 & 27 & 24.438 \\
\hline rc105 & 422 & 17 & 0.25 & 483 & 20 & 13.89 \\
\hline rc106 & 546 & 21 & 0.188 & 528 & 21 & 16.203 \\
\hline rc107 & 602 & 24 & 0.172 & 602 & 24 & 18.625 \\
\hline rc108 & 648 & 26 & 0.205 & 678 & 27 & 23.343 \\
\hline
\end{tabular}

Table 8 - Comparison between ILS_V. 1 and CSCRatio_V. 1 for m=4
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRatio_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 910 & 31 & 0.317 & 870 & 31 & 20.144 \\
\hline c102 & 980 & 35 & 0.375 & 910 & 33 & 20.698 \\
\hline c103 & 1080 & 39 & 0.235 & 1070 & 39 & 24.596 \\
\hline c104 & 1160 & 42 & 0.359 & 1150 & 42 & 26.85 \\
\hline c105 & 950 & 33 & 0.258 & 900 & 32 & 34.904 \\
\hline c106 & 940 & 32 & 0.25 & 910 & 31 & 30.429 \\
\hline c107 & 950 & 33 & 0.313 & 920 & 32 & 22.453 \\
\hline c108 & 970 & 34 & 0.266 & 950 & 33 & 22.625 \\
\hline c109 & 1030 & 36 & 0.515 & 1000 & 35 & 24.937 \\
\hline r101 & 507 & 22 & 0.235 & 458 & 22 & 9.766 \\
\hline r102 & 687 & 29 & 0.266 & 663 & 28 & 9.369 \\
\hline r103 & 782 & 33 & 0.375 & 708 & 31 & 11.163 \\
\hline r104 & 808 & 36 & 0.265 & 804 & 35 & 12.487 \\
\hline r105 & 634 & 27 & 0.282 & 653 & 28 & 9.685 \\
\hline r106 & 725 & 31 & 0.281 & 727 & 32 & 18.817 \\
\hline r107 & 765 & 34 & 0.23 & 764 & 33 & 16.447 \\
\hline r108 & 865 & 38 & 0.235 & 899 & 39 & 16.058 \\
\hline r109 & 763 & 33 & 0.277 & 747 & 32 & 14.724 \\
\hline r110 & 768 & 34 & 0.484 & 752 & 33 & 18.671 \\
\hline r111 & 805 & 35 & 0.219 & 844 & 37 & 15.625 \\
\hline r112 & 830 & 37 & 0.235 & 814 & 36 & 19.068 \\
\hline rc101 & 598 & 23 & 0.281 & 619 & 23 & 18.546 \\
\hline rc102 & 656 & 27 & 0.313 & 736 & 30 & 29.828 \\
\hline rc103 & 777 & 30 & 0.25 & 832 & 32 & 28.344 \\
\hline rc104 & 833 & 33 & 0.341 & 869 & 34 & 29.531 \\
\hline rc105 & 601 & 23 & 0.328 & 621 & 24 & 23.125 \\
\hline rc106 & 728 & 28 & 0.281 & 711 & 27 & 26.844 \\
\hline rc107 & 773 & 30 & 0.267 & 813 & 31 & 33.64 \\
\hline rc108 & 837 & 33 & 0.234 & 838 & 33 & 30 \\
\hline
\end{tabular}

Table 9 - Comparison between ILS_V. 1 and CSCRoutes_V. 1 for m=1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{ILS_V. 1} & \multicolumn{3}{|r|}{CSCRoutes_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 300 & 10 & 0.047 & 250 & 9 & 0.281 \\
\hline c102 & 320 & 11 & 0.078 & 340 & 11 & 0.281 \\
\hline c103 & 380 & 11 & 0.078 & 350 & 11 & 0.359 \\
\hline c104 & 390 & 11 & 0.063 & 390 & 11 & 0.313 \\
\hline c105 & 310 & 9 & 0.047 & 300 & 9 & 0.25 \\
\hline c106 & 310 & 10 & 0.048 & 290 & 9 & 0.25 \\
\hline c107 & 320 & 10 & 0.062 & 310 & 10 & 0.25 \\
\hline c108 & 320 & 10 & 0.063 & 350 & 11 & 0.266 \\
\hline c109 & 340 & 11 & 0.062 & 340 & 10 & 0.437 \\
\hline r101 & 186 & 8 & 0.094 & 131 & 5 & 0.36 \\
\hline r102 & 247 & 10 & 0.063 & 275 & 10 & 0.359 \\
\hline r103 & 252 & 10 & 0.093 & 263 & 11 & 0.391 \\
\hline r104 & 268 & 11 & 0.078 & 288 & 12 & 0.391 \\
\hline r105 & 215 & 9 & 0.063 & 177 & 7 & 0.25 \\
\hline r106 & 258 & 10 & 0.141 & 279 & 11 & 0.546 \\
\hline r107 & 243 & 11 & 0.125 & 263 & 11 & 0.343 \\
\hline r108 & 233 & 11 & 0.079 & 265 & 11 & 0.375 \\
\hline r109 & 264 & 11 & 0.094 & 234 & 10 & 0.359 \\
\hline r110 & 247 & 11 & 0.078 & 225 & 10 & 0.265 \\
\hline r111 & 276 & 11 & 0.094 & 243 & 10 & 0.157 \\
\hline r112 & 274 & 11 & 0.078 & 253 & 11 & 0.266 \\
\hline rc101 & 203 & 8 & 0.062 & 189 & 7 & 0.172 \\
\hline rc102 & 245 & 10 & 0.063 & 222 & 9 & 0.281 \\
\hline rc103 & 245 & 10 & 0.063 & 222 & 9 & 0.25 \\
\hline rc104 & 240 & 10 & 0.055 & 229 & 9 & 0.313 \\
\hline rc105 & 162 & 7 & 0.063 & 173 & 7 & 0.094 \\
\hline rc106 & 200 & 8 & 0.047 & 174 & 7 & 0.219 \\
\hline rc107 & 240 & 10 & 0.063 & 231 & 9 & 0.22 \\
\hline rc108 & 240 & 10 & 0.062 & 271 & 10 & 0.234 \\
\hline
\end{tabular}

Table 10 - Comparison between ILS_V. 1 and CSCRoutes_V. 1 for m=2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRoutes_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 540 & 18 & 0.187 & 470 & 16 & 0.407 \\
\hline c102 & 610 & 21 & 0.322 & 410 & 16 & 0.141 \\
\hline c103 & 660 & 22 & 0.125 & 630 & 22 & 0.406 \\
\hline c104 & 700 & 22 & 0.222 & 670 & 22 & 0.609 \\
\hline c105 & 540 & 18 & 0.125 & 510 & 17 & 0.391 \\
\hline c106 & 550 & 18 & 0.188 & 520 & 18 & 0.39 \\
\hline c107 & 570 & 18 & 0.125 & 540 & 18 & 0.453 \\
\hline c108 & 570 & 19 & 0.141 & 540 & 19 & 0.328 \\
\hline c109 & 640 & 20 & 0.187 & 600 & 21 & 0.391 \\
\hline r101 & 307 & 13 & 0.14 & 239 & 10 & 0.218 \\
\hline r102 & 455 & 18 & 0.188 & 439 & 18 & 0.313 \\
\hline r103 & 450 & 19 & 0.156 & 465 & 19 & 0.329 \\
\hline r104 & 483 & 21 & 0.156 & 499 & 21 & 0.422 \\
\hline r105 & 369 & 16 & 0.125 & 298 & 13 & 0.218 \\
\hline r106 & 438 & 19 & 0.109 & 428 & 19 & 0.391 \\
\hline r107 & 483 & 20 & 0.14 & 455 & 20 & 0.328 \\
\hline r108 & 486 & 21 & 0.136 & 499 & 21 & 0.578 \\
\hline r109 & 412 & 18 & 0.109 & 403 & 17 & 0.437 \\
\hline r110 & 435 & 19 & 0.141 & 437 & 19 & 0.328 \\
\hline r111 & 471 & 20 & 0.125 & 487 & 21 & 0.297 \\
\hline r112 & 450 & 20 & 0.129 & 491 & 21 & 0.375 \\
\hline rc101 & 293 & 11 & 0.094 & 311 & 12 & 0.187 \\
\hline rc102 & 326 & 14 & 0.109 & 350 & 14 & 0.266 \\
\hline rc103 & 394 & 16 & 0.234 & 423 & 17 & 0.438 \\
\hline rc104 & 459 & 18 & 0.141 & 448 & 18 & 0.313 \\
\hline rc105 & 289 & 12 & 0.156 & 352 & 14 & 0.234 \\
\hline rc106 & 377 & 15 & 0.125 & 371 & 15 & 0.266 \\
\hline rc107 & 436 & 18 & 0.109 & 430 & 17 & 0.297 \\
\hline rc108 & 464 & 19 & 0.125 & 447 & 18 & 0.328 \\
\hline
\end{tabular}

Table 11 - Comparison between ILS_V. 1 and CSCRoutes_V. 1 for m=3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRoutes_V. 1} \\
\hline Name & Score & Visits & Comp time & Score & Visits & Comp. time \\
\hline c101 & 730 & 25 & 0.219 & 660 & 23 & 0.359 \\
\hline c102 & 800 & 29 & 0.378 & 760 & 28 & 0.5 \\
\hline c103 & 920 & 32 & 0.203 & 880 & 31 & 0.562 \\
\hline c104 & 950 & 33 & 0.218 & 950 & 33 & 0.844 \\
\hline c105 & 780 & 26 & 0.204 & 710 & 24 & 0.531 \\
\hline c106 & 780 & 26 & 0.225 & 660 & 24 & 0.641 \\
\hline c107 & 760 & 25 & 0.194 & 770 & 26 & 0.5 \\
\hline c108 & 820 & 27 & 0.25 & 770 & 25 & 0.532 \\
\hline c109 & 860 & 28 & 0.203 & 870 & 29 & 0.5 \\
\hline r101 & 415 & 18 & 0.203 & 347 & 14 & 0.171 \\
\hline r102 & 606 & 25 & 0.25 & 606 & 25 & 0.563 \\
\hline r103 & 630 & 27 & 0.172 & 645 & 28 & 0.546 \\
\hline r104 & 662 & 29 & 0.172 & 688 & 30 & 0.781 \\
\hline r105 & 519 & 22 & 0.166 & 490 & 21 & 0.312 \\
\hline r106 & 604 & 26 & 0.289 & 585 & 24 & 0.547 \\
\hline r107 & 611 & 26 & 0.216 & 651 & 28 & 0.453 \\
\hline r108 & 691 & 31 & 0.217 & 697 & 30 & 0.734 \\
\hline r109 & 580 & 24 & 0.246 & 598 & 25 & 0.61 \\
\hline r110 & 618 & 26 & 0.25 & 625 & 27 & 0.641 \\
\hline r111 & 654 & 28 & 0.265 & 661 & 28 & 0.469 \\
\hline r112 & 665 & 29 & 0.219 & 697 & 30 & 0.719 \\
\hline rc101 & 448 & 17 & 0.187 & 476 & 18 & 0.406 \\
\hline rc102 & 486 & 20 & 0.188 & 534 & 21 & 0.453 \\
\hline rc103 & 588 & 22 & 0.218 & 614 & 24 & 0.407 \\
\hline rc104 & 690 & 27 & 0.185 & 649 & 26 & 0.375 \\
\hline rc105 & 422 & 17 & 0.25 & 502 & 20 & 0.328 \\
\hline rc106 & 546 & 21 & 0.188 & 523 & 20 & 0.25 \\
\hline rc107 & 602 & 24 & 0.172 & 632 & 25 & 0.343 \\
\hline rc108 & 648 & 26 & 0.205 & 623 & 24 & 0.453 \\
\hline
\end{tabular}

Table 12 - Comparison between ILS_V. 1 and CSCRoutes_V. 1 for m=4
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & \multicolumn{2}{|r|}{ILS_V. 1} & \multicolumn{3}{|c|}{CSCRoutes_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 910 & 31 & 0.317 & 860 & 30 & 0.312 \\
\hline c102 & 980 & 35 & 0.375 & 930 & 34 & 0.469 \\
\hline c103 & 1080 & 39 & 0.235 & 1050 & 38 & 0.531 \\
\hline c104 & 1160 & 42 & 0.359 & 1150 & 42 & 0.765 \\
\hline c105 & 950 & 33 & 0.258 & 860 & 30 & 0.766 \\
\hline c106 & 940 & 32 & 0.25 & 880 & 32 & 0.469 \\
\hline c107 & 950 & 33 & 0.313 & 950 & 33 & 0.75 \\
\hline c108 & 970 & 34 & 0.266 & 930 & 33 & 0.765 \\
\hline c109 & 1030 & 36 & 0.515 & 980 & 35 & 0.766 \\
\hline r101 & 507 & 22 & 0.235 & 421 & 18 & 0.171 \\
\hline r102 & 687 & 29 & 0.266 & 643 & 27 & 0.563 \\
\hline r103 & 782 & 33 & 0.375 & 595 & 26 & 0.359 \\
\hline r104 & 808 & 36 & 0.265 & 799 & 35 & 0.578 \\
\hline r105 & 634 & 27 & 0.282 & 620 & 26 & 0.328 \\
\hline r106 & 725 & 31 & 0.281 & 730 & 31 & 0.547 \\
\hline r107 & 765 & 34 & 0.23 & 728 & 33 & 0.532 \\
\hline r108 & 865 & 38 & 0.235 & 829 & 36 & 0.516 \\
\hline r109 & 763 & 33 & 0.277 & 711 & 30 & 0.594 \\
\hline r110 & 768 & 34 & 0.484 & 726 & 33 & 0.64 \\
\hline r111 & 805 & 35 & 0.219 & 833 & 36 & 0.516 \\
\hline r112 & 830 & 37 & 0.235 & 818 & 37 & 0.453 \\
\hline rc101 & 598 & 23 & 0.281 & 540 & 21 & 0.297 \\
\hline rc102 & 656 & 27 & 0.313 & 649 & 25 & 0.36 \\
\hline rc103 & 777 & 30 & 0.25 & 749 & 29 & 0.391 \\
\hline rc104 & 833 & 33 & 0.341 & 844 & 33 & 0.391 \\
\hline rc105 & 601 & 23 & 0.328 & 624 & 24 & 0.313 \\
\hline rc106 & 728 & 28 & 0.281 & 732 & 28 & 0.438 \\
\hline rc107 & 773 & 30 & 0.267 & 798 & 31 & 0.484 \\
\hline rc108 & 837 & 33 & 0.234 & 820 & 32 & 0.453 \\
\hline
\end{tabular}

Table 13 - Comparison between ILS_V. 2 and ILS_V. 1 for m=1
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{ILS_V. 2} & \multicolumn{3}{|c|}{ILS_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 288 & 9 & 0.09 & 300 & 10 & 0.04700 \\
\hline c102 & 300 & 10 & 0.11 & 320 & 11 & 0.07800 \\
\hline c103 & 370 & 11 & 0.11 & 380 & 11 & 0.07800 \\
\hline c104 & 390 & 11 & 0.11 & 390 & 11 & 0.06300 \\
\hline c105 & 290 & 9 & 0.09 & 310 & 9 & 0.04700 \\
\hline c106 & 280 & 8 & 0.15 & 310 & 10 & 0.04800 \\
\hline c107 & 300 & 9 & 0.17 & 320 & 10 & 0.06200 \\
\hline c108 & 300 & 9 & 0.09 & 320 & 10 & 0.06300 \\
\hline c109 & 340 & 10 & 0.11 & 340 & 11 & 0.06200 \\
\hline r101 & 168 & 7 & 0.19 & 186 & 8 & 0.09400 \\
\hline r102 & 244 & 10 & 0.3 & 247 & 10 & 0.06300 \\
\hline r103 & 191 & 9 & 0.2 & 252 & 10 & 0.09300 \\
\hline r104 & 203 & 9 & 0.24 & 268 & 11 & 0.07800 \\
\hline r105 & 202 & 8 & 0.12 & 215 & 9 & 0.06300 \\
\hline r106 & 217 & 10 & 0.29 & 258 & 10 & 0.14100 \\
\hline r107 & 207 & 9 & 0.13 & 243 & 11 & 0.12500 \\
\hline r108 & 192 & 10 & 0.18 & 233 & 11 & 0.07900 \\
\hline r109 & 192 & 10 & 0.17 & 264 & 11 & 0.09400 \\
\hline r110 & 210 & 9 & 0.14 & 247 & 11 & 0.07800 \\
\hline r111 & 239 & 9 & 0.2 & 276 & 11 & 0.09400 \\
\hline r112 & 223 & 10 & 0.28 & 274 & 11 & 0.07800 \\
\hline rc101 & 151 & 7 & 0.06 & 203 & 8 & 0.06200 \\
\hline rc102 & 200 & 9 & 0.09 & 245 & 10 & 0.06300 \\
\hline rc103 & 200 & 9 & 0.09 & 245 & 10 & 0.06300 \\
\hline rc104 & 195 & 9 & 0.09 & 240 & 10 & 0.05500 \\
\hline rc105 & 138 & 7 & 0.09 & 162 & 7 & 0.06300 \\
\hline rc106 & 200 & 8 & 0.1 & 200 & 8 & 0.04700 \\
\hline rc107 & 199 & 10 & 0.1 & 240 & 10 & 0.06300 \\
\hline rc108 & 191 & 10 & 0.1 & 240 & 10 & 0.06200 \\
\hline
\end{tabular}

Table 14 - Comparison between ILS_V. 2 and ILS_V. 1 for m=2
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{ILS_V. 2} & \multicolumn{3}{|c|}{ILS_V. 1} \\
\hline Name & Score & Visits & Comp time & Score & Visits & Comp. time \\
\hline c101 & 432 & 15 & 0.17 & 540 & 18 & 0.18700 \\
\hline c102 & 456 & 17 & 0.2 & 610 & 21 & 0.32200 \\
\hline c103 & 610 & 21 & 0.23 & 660 & 22 & 0.12500 \\
\hline c104 & 583 & 21 & 0.26 & 700 & 22 & 0.22200 \\
\hline c105 & 480 & 15 & 0.31 & 540 & 18 & 0.12500 \\
\hline c106 & 500 & 16 & 0.29 & 550 & 18 & 0.18800 \\
\hline c107 & 500 & 16 & 0.31 & 570 & 18 & 0.12500 \\
\hline c108 & 457 & 16 & 0.24 & 570 & 19 & 0.14100 \\
\hline c109 & 550 & 18 & 0.27 & 640 & 20 & 0.18700 \\
\hline r101 & 250 & 10 & 0.29 & 307 & 13 & 0.14000 \\
\hline r102 & 321 & 15 & 0.31 & 455 & 18 & 0.18800 \\
\hline r103 & 322 & 16 & 0.31 & 450 & 19 & 0.15600 \\
\hline r104 & 395 & 17 & 0.32 & 483 & 21 & 0.15600 \\
\hline r105 & 311 & 14 & 0.2 & 369 & 16 & 0.12500 \\
\hline r106 & 330 & 15 & 0.23 & 438 & 19 & 0.10900 \\
\hline r107 & 322 & 16 & 0.25 & 483 & 20 & 0.14000 \\
\hline r108 & 352 & 18 & 0.21 & 486 & 21 & 0.13600 \\
\hline r109 & 331 & 18 & 0.37 & 412 & 18 & 0.10900 \\
\hline r110 & 354 & 16 & 0.31 & 435 & 19 & 0.14100 \\
\hline r111 & 367 & 16 & 0.23 & 471 & 20 & 0.12500 \\
\hline r112 & 354 & 17 & 0.18 & 450 & 20 & 0.12900 \\
\hline rc101 & 251 & 12 & 0.35 & 293 & 11 & 0.09400 \\
\hline rc102 & 270 & 14 & 0.29 & 326 & 14 & 0.10900 \\
\hline rc103 & 279 & 15 & 0.42 & 394 & 16 & 0.23400 \\
\hline rc104 & 313 & 17 & 0.64 & 459 & 18 & 0.14100 \\
\hline rc105 & 268 & 11 & 0.39 & 289 & 12 & 0.15600 \\
\hline rc106 & 308 & 14 & 0.73 & 377 & 15 & 0.12500 \\
\hline rc107 & 306 & 16 & 0.71 & 436 & 18 & 0.10900 \\
\hline rc108 & 304 & 16 & 0.62 & 464 & 19 & 0.12500 \\
\hline
\end{tabular}

Table 15 - Comparison between ILS_V. 2 and ILS_V. 1 for \(\mathrm{m}=3\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{ILS_V. 2} & \multicolumn{3}{|c|}{ILS_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 474 & 21 & 0.46 & 730 & 25 & 0.21900 \\
\hline c102 & 538 & 23 & 1.12 & 800 & 29 & 0.37800 \\
\hline c103 & 760 & 27 & 0.39 & 920 & 32 & 0.20300 \\
\hline c104 & 721 & 30 & 0.38 & 950 & 33 & 0.21800 \\
\hline c105 & 630 & 21 & 0.34 & 780 & 26 & 0.20400 \\
\hline c106 & 617 & 23 & 0.39 & 780 & 26 & 0.22500 \\
\hline c107 & 670 & 23 & 0.36 & 760 & 25 & 0.19400 \\
\hline c108 & 522 & 22 & 0.33 & 820 & 27 & 0.25000 \\
\hline c109 & 676 & 25 & 0.79 & 860 & 28 & 0.20300 \\
\hline r101 & 324 & 16 & 0.34 & 415 & 18 & 0.20300 \\
\hline r102 & 393 & 19 & 0.34 & 606 & 25 & 0.25000 \\
\hline r103 & 437 & 23 & 0.4 & 630 & 27 & 0.17200 \\
\hline r104 & 510 & 25 & 0.51 & 662 & 29 & 0.17200 \\
\hline r105 & 388 & 20 & 0.33 & 519 & 22 & 0.16600 \\
\hline r106 & 412 & 21 & 0.55 & 604 & 26 & 0.28900 \\
\hline r107 & 452 & 23 & 0.32 & 611 & 26 & 0.21600 \\
\hline r108 & 470 & 25 & 0.3 & 691 & 31 & 0.21700 \\
\hline r109 & 437 & 23 & 0.31 & 580 & 24 & 0.24600 \\
\hline r110 & 406 & 21 & 0.39 & 618 & 26 & 0.25000 \\
\hline r111 & 465 & 23 & 0.38 & 654 & 28 & 0.26500 \\
\hline r112 & 452 & 23 & 0.31 & 665 & 29 & 0.21900 \\
\hline rc101 & 326 & 17 & 0.48 & 448 & 17 & 0.18700 \\
\hline rc102 & 349 & 18 & 0.68 & 486 & 20 & 0.18800 \\
\hline rc103 & 306 & 20 & 0.35 & 588 & 22 & 0.21800 \\
\hline rc104 & 324 & 21 & 0.49 & 690 & 27 & 0.18500 \\
\hline rc105 & 338 & 16 & 0.41 & 422 & 17 & 0.25000 \\
\hline rc106 & 372 & 19 & 0.46 & 546 & 21 & 0.18800 \\
\hline rc107 & 333 & 22 & 0.42 & 602 & 24 & 0.17200 \\
\hline rc108 & 317 & 22 & 0.39 & 648 & 26 & 0.20500 \\
\hline
\end{tabular}

Table 16 - Comparison between ILS_V. 2 and ILS_V. 1 for m=4
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|r|}{ILS_V. 2} & \multicolumn{3}{|c|}{ILS_V. 1} \\
\hline Name & Score & Visits & Comp. time & Score & Visits & Comp. time \\
\hline c101 & 549 & 23 & 0.67 & 910 & 31 & 0.31700 \\
\hline c102 & 555 & 28 & 0.34 & 980 & 35 & 0.37500 \\
\hline c103 & 829 & 31 & 0.36 & 1080 & 39 & 0.23500 \\
\hline c104 & 728 & 35 & 0.26 & 1160 & 42 & 0.35900 \\
\hline c105 & 740 & 27 & 0.39 & 950 & 33 & 0.25800 \\
\hline c106 & 664 & 28 & 0.34 & 940 & 32 & 0.25000 \\
\hline c107 & 759 & 28 & 0.6 & 950 & 33 & 0.31300 \\
\hline c108 & 541 & 27 & 0.34 & 970 & 34 & 0.26600 \\
\hline c109 & 705 & 32 & 0.31 & 1030 & 36 & 0.51500 \\
\hline r101 & 401 & 20 & 0.38 & 507 & 22 & 0.23500 \\
\hline r102 & 427 & 22 & 0.52 & 687 & 29 & 0.26600 \\
\hline r103 & 475 & 26 & 0.29 & 782 & 33 & 0.37500 \\
\hline r104 & 480 & 28 & 0.28 & 808 & 36 & 0.26500 \\
\hline r105 & 470 & 24 & 0.32 & 634 & 27 & 0.28200 \\
\hline r106 & 473 & 25 & 0.31 & 725 & 31 & 0.28100 \\
\hline r107 & 525 & 30 & 0.28 & 765 & 34 & 0.23000 \\
\hline r108 & 529 & 29 & 0.26 & 865 & 38 & 0.23500 \\
\hline r109 & 453 & 28 & 0.28 & 763 & 33 & 0.27700 \\
\hline r110 & 508 & 27 & 0.29 & 768 & 34 & 0.48400 \\
\hline r111 & 456 & 29 & 0.31 & 805 & 35 & 0.21900 \\
\hline r112 & 477 & 28 & 0.25 & 830 & 37 & 0.23500 \\
\hline rc101 & 402 & 22 & 0.51 & 598 & 23 & 0.28100 \\
\hline rc102 & 372 & 22 & 0.65 & 656 & 27 & 0.31300 \\
\hline rc103 & 318 & 25 & 0.61 & 777 & 30 & 0.25000 \\
\hline rc104 & 327 & 25 & 0.56 & 833 & 33 & 0.34100 \\
\hline rc105 & 370 & 20 & 0.46 & 601 & 23 & 0.32800 \\
\hline rc106 & 417 & 23 & 0.46 & 728 & 28 & 0.28100 \\
\hline rc107 & 346 & 27 & 0.74 & 773 & 30 & 0.26700 \\
\hline rc108 & 322 & 27 & 0.83 & 837 & 33 & 0.23400 \\
\hline
\end{tabular}

\section*{6. Conclusions}

The first most obvious contribution of the thesis is the inclusion of the realistic "requirement" to spend a minimum amount of time at a point of interest in order for it to be considered "visited". The time proposed is tailored for each POI specifically and can even be modified according to the user's preference, making it a quite valuable feature for any tourist trip planner.

The second meaningful contribution also involves taking into account user preferences: the user is invited to place emphasis on a particular category of POl's, to avoid another one or potentially choose a balanced approach. This kind of features really applies a practical perspective to ILS.

As far as performance is concerned, our implementation of ILS is very close to the original. Naturally, the features we introduced impose powerful constraints to the performance of the algorithm, which is still very much within acceptable limits from a practical point of view.

\section*{7. References}
[1] Tsiligirides T. Heuristic methods applied to orienteering ,Journal of the Operational Research Society1984;35:797-809
[2] Golden B, Levy L ,Vohra R The orienteering problem, Naval Research Logistics 1987;34:30718.
[3] Vansteenwegen, P. , Souffriau, W. , \& Van Oudheusden, D. (2011a). The orienteering problem: A survey. European Journal of Operational Research, 209 (1), 1-10
[4] Feillet, D. , Dejax, P. , \& Gendreau, M. (2005). Traveling salesman problems with prof- its. Transportation Science, 39 (2), 188-205
[5] Laporte, G. , \& Rodríguez-Martín, I. (2007). Locating a cycle in a transportation or a telecommunications network. Networks, 50 (1), 92-108
[6] Orienteering Problem: A survey of recent variants, solution approaches and applications
Aldy Gunawan a , *, Hoong Chuin Lau a , Pieter Vansteenwegen b
[7] Miller, C., Tucker, A., Zemlin, R., 1960 Integer Programming Formulation of Traveling Salesman
Problems, Journal of the ACM (JACM), Volume 7 Issue 4, Oct. 1960 ,Pages 326-329
[8] GoldenB, LevyL, VohraR, The orienteering problem, Naval Research Logistics 1987;34:307-18.
[9] Laporte G, Martello S, The selective travelling salesman problem, Discrete Applied Mathematics 1990;26:193-207.
[10] Leifer and Rosenwein, Strong linear programming relaxations for the orienteering problem, European Journal of Operational Research, 1994, vol. 73, issue 3, 517-523
[11] Fischetti et al, Solving the Orienteering Problem through Branch-and-Cut, Informs Journal on Computing 10(2):133-148 • May 1998
[12] R.Ramesh \& Kathleen M.Brown, An efficient four-phase heuristic for the generalized orienteering problem, Computers \& Operations Research, Volume 18, Issue 2, 1991, Pages 151165
[13] Schilde et al.(2009), Metaheuristics for the bi-objective orienteering problem, Swarm Intelligence 3(3):179-201, May 2009
[14] Chao I, Golden B ,Wasil E, A fast and effective heuristic for the orienteering problem, European Journal of Operational Research 1996 ;88:475-89.
[15] Sevkli, Z. , \& Sevilgen, F. E. (2010a). Discrete particle swarm optimization for the orienteering problem. In Proceedings of the IEEE congress on evolutionary compu- tation (CEC 2010), Barcelona, Spain (pp. 3234-3241) .
[16] Sevkli, Z., \& Sevilgen, F. E. (2010b). StPSO: Strengthened particle swarm opti- mization. Turkish Journal of Electrical Engineering \& Computer Sciences, 18 (6), 1095-1114
[17] Chekuri, C. , Korula, N. , \& Pál, M. (2012). Improved algorithms for orienteering and related problems. ACM Transactions on Algorithms, 8, 661-670
[18] Dang, D.-C. , El-Hajj, R. , \& Moukrim, A. (2013a). A branch-and-cut algorithm for solving the team orienteering problem. In C. Gomes, \& M. Sellmann (Eds.), Integration of AI and OR techniques in constraint programming for combinatorial optimization problems. Lecture Notes in Computer Science: 7874 (pp. 332-339). Springer
[19] Butt, S., Ryan, D., 1999. An optimal solution procedure for the multiple tour maximum collection problem using column generation. Computers and Operations Research 26, 427-441.
[20] Boussier, S., Feillet, D., Gendreau, M., 2007. An exact algorithm for the team orienteering problem. 4OR 5, 211-230.
[21] Tang, H., Miller-Hooks, E., 2005. A tabu search heuristic for the team orienteering problem. Computer and Operations Research 32, 1379-1407.
[22] Tricoire, F., Romauch, M., Doerner, K., Hartl, R., 2010. Heuristics for the multi-period orienteering problem with multiple time windows. Computers and Operations Research 37 (2), 351367
[23] Kantor, M., Rosenwein, M., 1992. The orienteering problem with time windows. The Journal of the Operational Research Society 43 (6), 629-635
[24] Mansini, R., Pelizzari, M., Wolfer, R. 2006. A granular variable neighbourhood search heuristic for the tour orienteering problem with time windows. Technical Report R.T 2006-02-52, University of Brescia, Italy.
[25] Righini, G., Salani, M. 2006. Dynamic programming for the orienteering problem with time windows. Technical Report 91 2006, Dipartimento di Tecnologie dell'Informazione, Universita degli Studi Milano, Crema, Italy.
[26] Righini, G., Salani, M., 2008. New dynamic programming algorithms for the resource constrained elementary shortest path. Networks 51 (3), 155-170.
[27] Montemanni, R., Gambardella, L., 2009. Ant colony system for team orienteering problems with time windows. Foundations of computing and Decision Sciences 34 (4), 287-306.
[28] Vansteenwegen, P., Souffriau, W., Vanden Berghe, G., Van Oudheusden, D., 2009d. Iterated local search for the team orienteering problem with time windows. Computers and Operations Research 36 (12), 3281-3290
[29] Tricoire, F., Romauch, M., Doerner, K., Hartl, R., 2010. Heuristics for the multi-period orienteering problem with multiple time windows. Computers and Operations Research 37 (2), 351367.
[30] Gavalas, D. , Konstantopoulos, C. , Mastakas, K., Pantziou, G. , \& Tasoulas, Y. (2013). Cluster-based heuristics for the team orienteering problem with time windows. In V. Bonifaci, C. Demetrescu, \& A. Marchetti-Spaccamela (Eds.), Experimental algorihtms. Lecture Notes in Computer Science: 7933 (pp. 390-401). Springer
[31] A. Likas, N. Vlassis, and J. Verbeek. The global k-means clustering algorithm.
Pattern Recognition, 36(2):451-461, 2003.```

