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Abstract

This dissertation describes the concept of Artificial Neural Networks for Cancer Prognosis
and Handwritten Digits Recognition. Artificial Neural Networks inspired by biological neural
networks, are efficiently used to model complex relationships between input signals and
outputs. When analyzing the detection of cancer cells the model chosen is a Multi-Layer
Perceptron, consisted of a variable number of hidden layers, trained using a back-propagation
algorithm. Taking into consideration the characteristics of cell nucleus, provided by Breast
Cancer Wisconsin dataset, the model can accurately classify the incident between benign and
malignant. Using various different settings of parameters and activation functions our model
achieved 97.35% accuracy, showing that it can provide an equivalent or even better
alternative to human diagnosis. For the handwritten digits recognition task, the MLP trained
using back-propagation algorithm achieved 93.9% accuracy. The noticeable is that the model
is having difficulty to distinguish digits that often confused by naked eye.

Hepidnqyn

H mapotvoa gpyacio pedetd v évvola tov Teyvntdv Nevpovikdv AKTO®OV GTOV TOREN TNG
[poPrenticng Avarvtiknig oty latpikn kot oty Avayvaopion Xepdypaowv Pneiov. To
Texvntdo Nevpikd Aiktvo eivar éva pabnpotikd poviéAo, eUmveLouévo amd Plodoyikd
VELPOVIKE OIKTLO, YPNOUYLOTOLEITOL OTOTEAEGUATIKA Yl0. VO, LLOVTEAOTOU|CEL TOAVTAOKESG
oyxéoelg petalh onpdtov ecddov kot ££0dwv. o 10 pépog mov agopd T Sidyveon
Kapkivov, TOo povtéAo mov emAéyOnke elvar éva  Perceptron mOAAAMAGDV emmES®V,
OTOTEAOVUEVO OO €va KPLPO EMIMed0, eKMAOELHEVO He aiyopiBuo omicOiog duadoonc.
Tpo@odoTtdVTAG TO VELPOVIKO LLE LETPNOELS XAPOUKTNPLOTIKOV OO TOV TUPNVO KUTTAPWOV, TOV
TOPEYETOL OO TO GUVOAO OedOUEVOV Yo TOV KOPKivo Tov pactod Tov Wisconsin, 1o
EKTOOEVIEVO LOVTELO pmopel va Ta&vopnoet pe akpifeia to meploTaTikd PETaED KaAo00ovg
Kol KoKonBovg. XpnolHomoidvTag SlPOPETIKOVG CLVOLAGHOVS TOV TOPOUETPOV KoL
aAAdCovTag TIg GVVAPTAOELS Evepyomoinong, to povtéro nétvuye 97,35% akpifeta, deiyvovrog
0Tt pumopet va TpoceEépet pa 16000V 1 akOo KOADTEPT EVOAAUKTIKY AVGT] CUYKPITIKG LLE
mv avBporvn ddyvoon. o 1o pépog tng gpyaciag mov aeopd TNV ovayvaplomn
YEPOYpapwv ynoiov, to MLP mov ekmadevtnke pe adyoplBpo omicOiog diddoomng méTvye
93,9% axpifeta. To aloonueiowto eivar 6TL To dikTLO dVOoKOAEVTNKE VO, dlakpivel ynoio mov
OLYYEOVTOL GUYVE KOl Otd YORVO pdTL.
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1. Introduction in Artificial Neural Networks

Artificial Neural Networks (ANNSs) are computational models inspired by biological neural
networks and are used to approximate functions that are generally unknown. In detail, they
are inspired by the behaviour of brain neurons and the electrical signals they transfer between
input (like the eyes or nerve endings in the hand), processing, and output from the brain (such
as the reaction to light, touch, or cold). The way neurons semantically communicate is an area
of ongoing research. Most Artificial Neural Networks are the biologically inspired simulations
performed on the computer to execute certain specific tasks like clustering, classification,
pattern recognition and many more.

Nowadays, with the explosion of interest in Machine Learning, Neural Networks are mainly
used for prediction and classification problems. Due to this, neural networks are successfully
applied across an expansible range of domains, in miscellaneous areas like finance, physics,
medicine, molecular biology and engineering.

1.1 History

It all began in 1943 when McCulloch and Pitts published an article [1], which showed that
even simple types of neural networks could, in principle, compute any arithmetic or logical
function. Between 1940°s and early 1950’s, there were many people examining the subject of
neurocomputing, whose job set the stage for later developments rather than causing them.

Mark I perceptron, the first neuro-computer, was created in 1958 by Rosenblatt at Cornell
University. The Mark I Perceptron was a linear system (two-layer Perceptron) and was useful
for solving problems where the input classes were linearly separable in the input space. In
1990, Hecht-Nielsen showed that a three-layer machine (multi-layer Perceptron, or MLP) was
capable of solving nonlinear separation problems.

After many “quiet” years, the Perceptron and ANNs returned to the foreground in 1986 with
the rediscovery of a backpropagation algorithm (as proposed by Rumelhart, Hinton, Williams
in [2]).

1.2 Feedforward Neural Networks

The Feedforward neural network was the first and simplest type. In this network the
information moves only in one direction, from the input layer directly through any hidden
layers to the output layer without cycles/loops as depicted in figure 1. Feedforward networks
can be constructed with various types of units, the simplest of which is the Perceptron,
presented in detail in 1.2.1.



Figure 1. Feedforward ANN architecture [7]

[1] https://towardsdatascience.com/applied-deep-learning-part-1-artificial-neural-networks-d7834{67a4{6

A more detailed analysis based on the above figure about ANN architecture and its layers:

* Input Layer: The nodes in this layer provide information from the outside world
to the network. No computation is performed in any of these Input nodes. Their role
is just to pass on the information to the hidden nodes.

* Hidden Layer: The Hidden nodes have no direct connection with the outside world
(therefore they are called “hidden”). In this layer, computations are performed, and
information is being transferred from the input nodes to the output nodes. A
Feedforward network despite having only a single input layer and a single output
layer, it can have zero or multiple Hidden Layers.

*  Output Nodes: The Output nodes are collectively referred to as the “Output Layer”
and are responsible for computations and transferring information from the network
(hidden layer) to the outside world.

1.2.1 Perceptron

The simplest kind of neural network is a single-layer perceptron network, which consists of a
single layer of output nodes.

The Perceptron is a linear (binary) classifier and consists of 4 parts the input values, the
weight and bias, the net sum and the activation function.

The inputs are fed directly to the outputs via a series of weights. All the inputs x are
multiplied with their weights (Figure 2).
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Figure 2. Input process in Perceptron.

All the multiplied values (between inputs and weights) are then added into weighted sum:
Y= Wo+ W1X1 + W2X2+ ..... + Wan

Bias node and its importance can be as well described with the constant ‘b’ of a linear
function: y = ax + b.
It allows to move the line up and down to fit the prediction with the data better.

An activation function is then applied to the weighted sum. The activation function applies a
step rule to check if the output of the weighting function is greater than zero or not.
Activation functions are described in detail in chapter 1.3.
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Figure 3. Activation Functions in a Single-layer Perceptron

The sum of the products of the weights and the inputs is calculated in each node, and if the
value is above the threshold, that has been set, (typically 0) the neuron fires and takes the
activated value (typically 1), otherwise it takes the deactivated value (typically -1).



1.3 Activation Functions and ANN’s

The most significant perspective of ANN ranges in its Activation Function, which introduces
non-linearity into the network. A neuron, as depicted in figure 3, calculates a “weighted sum”
of its inputs, adds the bias and decides whether it should be fired. Weights and the bias
transform the input linearly. The purpose of activation functions is to transform the input non-
linearly. This non-linearity gives the ability to the ANN to learn complex transformations
between input and output.

The activation functions are basically divided into 2 categories:
e Linear Activation Function
e Non-Linear Activation Functions

Activation functions are usually required to be non-linear, considering their role as mentioned
above, to make neural networks non-linear.

1.3.1 Step Function

Step function is one of the most common activation functions in neural networks. It produces
binary output that’s why it also called binary step function. The function produces 1 (or true)
when input passes threshold limit whereas it produces 0 (or false) when input does not pass
the given threshold.

Step function is not suitable for training in the backpropagation algorithm because its
derivative is zero, except the zero point, which is infinite. This leads to no change for any
value other than zero and no progress can be made. At the point zero, the derivate is infinite,
so the step is not manageable either.

In addition to that, even the smallest change in the value of weight can suddenly change the
neuron’s output from 0 to 1 and conversely from 1 to 0 (Figure 4).
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Figure 4. Step Function



With step function as ANN’s activation function, some tiny changes in any weight w could
lead to the perceptron output to jump suddenly from O to 1 (In figure 14: w+Aw = y+Ay). The
aim, however, is to have the weights change gradually to produce better results in the output.

1.3.2 Sigmoid Function

Sigmoid functions are assumed to be real-valued and differentiable, and their derivatives
exhibit a “bell-shaped” curve over the interval of interest. Sigmoid function has some
advantages over the step one:
e It is nonlinear in nature, so its combinations are also nonlinear. This that implies with
the fact that we can stack layers in a network.
* It works very well also in non-binary activations. It gives an analogue activation
unlike step function.
* It has a smooth gradient (which is used in back-prop algorithm).
* Itrepresents all output values between 0 and 1.
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Figure S. Sigmoid Function

Sigmoid function is widely used because it introduces non-linearity in a model. Without these
activation functions, a neural network will be very similar to that of a linear model (with no
use of layers). When used by each neuron in a multi-layer neural network, produces a new
representation of the original data, and allows for non-linear decision boundary, such as XOR
problems.

The problem with sigmoid is when the activations reach near the “near-horizontal” part of the
curve on either side. Gradient is small or has vanished and cannot make significant change
because of the extremely small value. In this case the network refuses to learn any further or
is dramatically slow. This is called the vanishing gradient problem.

Vanishing gradient problem depends on the choice of the activation function. In particularly,
sigmoid function crushes its input into a very small output range in a very non-linear fashion.
For example, sigmoid maps the real number line onto a strait range of [0, 1], as mentioned
above. This causes, large regions of the input space to be mapped to an extremely small
range. In these regions of the input space, even a large change in the input will produce a
small change in the output - hence the gradient is small.



In the backpropagation algorithm the gradient of sigmoid is being used:

do(x) '
dy

and let’s compute the gradient of o(x),
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1.3.3 Hyperbolic tangent Function (Tanh)

Tanh Function is a scaled sigmoid Function, that’s why it looks a lot like it:
e It’s also nonlinear in nature, which means the multiple layers can be stacked.
e Itis bound to range (-1, 1).
* The gradient is stronger for tanh than sigmoid, its derivatives are steeper.

2
f(x) = tanh(x) = Tro-2% 1 = 2sigmoid2(x) — 1

—2X

Deciding between the sigmoid or tanh will depend on the requirement of gradient strength.
Like sigmoid, tanh also has the vanishing gradient problem.
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Figure 6. Tanh(x) Function

1.3.4 ReLu Function

ReLu (Rectified Linear Unit) Function is nonlinear in its nature. It gives an output x, if x is
positive, and 0 if x is negative. Its range is [0, inf].

A(x) = max (0, x)

ReLu is less computationally expensive than tanh and sigmoid because it involves simpler
mathematical operations. That is a good point to consider when we are designing deep neural
nets.

Figure 7. ReLu Function
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1.3.5. Softmax Function

Softmax function calculates the probabilities distribution of the event over ‘n’ different
events. This function will calculate the probabilities of each target class over all possible
target classes. The calculated probabilities will be helpful for determining the target class for
the given inputs. Softmax properties:

* The calculated probabilities will be in the range of 0 to 1.
e The sum of all the probabilities is equal to one.

exp(yi)

>_;exp(Y;)

softmax(Y); =

The main advantage of using Softmax is the output probabilities range. If softmax function
used for multi-classification model it returns the probabilities of each class and the target
class will have the high probability.

The formula computes the exponential (e-power) of the given input value and the sum of
exponential values of all the values in the inputs. Then the ratio of the exponential of the input
value and the sum of exponential values is the output of the softmax function.

1.4 Other Feed Forward Networks

1.4.1 Multi-layer perceptrons
A Multi-Layer Perceptron (MLP) contains one or more hidden layers, in addition to one input

and one output layer). Unlike, a single layer perceptron which can only learn linear functions,
a multi-layer perceptron can also learn non — linear functions.

Input Layer Hidden Layer Output Layer

Figure 8. A multi-layer perceptron with one hidden layer
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* Bias node: Allows to move the line up and down to fit the prediction with the data
better. Just like the linear function y = ax + b, without b the line always goes through
the origin (0,0) causing a poorer fit.

* Input Layer: The Input layer of figure 2, has three nodes. The Bias node has a value
of 1. The other two nodes take X1 and X2 as external inputs, depending upon the
input dataset. The outputs from nodes in the Input layer are 1, X1 and X2 because no
computations take place in this layer. These values feed the Hidden Layer.

* Hidden Layer: In this layer we also have three nodes with the Bias node
having an output of 1. The output of the other two nodes in the Hidden layer depends
on the outputs from the Input layer (1, X1, X2) as well as the weights associated with
the connections (or edges). The “f” refers to the activation function. These outputs
are then fed to the nodes in the Output layer.

*  Output Layer: The Output layer has two nodes which take inputs from the Hidden
layer. The values calculated (Y1 and Y2) as a result of these computations are the
outputs of the Multi-Layer Perceptron.

1.4.2 Adaptive Linear Neuron (Adaline)

The Adaline is a network developed by d Widrow and Hoff at Stanford University in 1960,
having one single linear unit. Its architecture is similar to perceptron, except having one extra
feedback loop which is used to compare the actual output with the desired output. It uses a
bipolar activation function, weights, bias which are adjustable and delta rule in training phase
for minimizing the MSE (Mean-Squared Error) between the actual and the target output, as
described in [14].

The difference between the Adaline and the Perceptronis in the learning phase. The
Perceptron uses the class labels to learn model coefficients. The Adaline, in the other hand,
uses continuous predicted values to learn model coefficients, which is more “powerful”, since
it witnesses how much wrong or right the predicted result is. In figure 8 this difference is
depicted in the two networks’ architecture.

13
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Figure 9. Difference in architecture between Perceptron and Adaline (Source:
https://sebastianraschka.com/Articles/2015_singlelayer_neurons.html)

1.4.3 Multiple Adaptive Linear Neuron (Madaline)

Madaline is a network which consists of many Adaline networks in parallel. It is like an MLP,
where Adaline acts as the hidden layer between the input and the Madaline layer. The weights
and bias between the input and Adaline layers remain adjustable like in standard Adaline’s

architecture.

Learning algorithm for Madaline is known as MRII, for Madaline Rule II. In 1988, Winter
and Widrow in [10] showed that MRII has the ability to derive useful generalizations when
training adaptive nets on even 1% of the data given (input).

14
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Figure 10. Architecture of Madaline Network
(Source:
https://www.tutorialspoint.com/artificial neural network/artificial neural network supervised

learning.htm)

1.5 Training algorithms

1.5.1 Back-propagation algorithm

The Backpropagation algorithm as aforementioned in 1.1 section, originally introduce in
1970’s, but it’s importance fully appreciated in paper written by Rumelhart, Hinton, and
Williams in 1986 [20].

The Backpropagation algorithm belongs to supervised learning techniques, which means that
the network learns from labelled training data. The output values are compared with the
correct answer to compute the value of some predefined error-function (in most cases with
sigmoid function). The error is then fed back through the network. Using this information, the
algorithm adjusts the weights of each connection in order to reduce the value of the error
function by some small amount. This process is repeated until the output error is below a
predetermined threshold. Once the above algorithm terminates, the ANN has been trained and
its able to work with new inputs.

The Backpropagation mode is preferred versus the forward one, because it’s computationally
cheaper. Forward-wise algorithm leads to a multiplication of large matrices for each
network’s layer till the output layer which would result as a multiplication of a large matrix
by a vector. Unlike, the backwards approach which starts with a multiplication of a matrix by
a vector, which leads to another vector and so on. So, the efficiency of Backprop algorithms
is that matrix-vector multiplications instead of matrix-matrix multiplications are taken place.

1.5.2 Backpropagation Basics
One of the most important elements of Back-prop algorithm is the gradient computation,

which leads to the calculation of the new synaptic weights. As depicted in the picture below,
the re-calculation of the new weights begins from the output and gradually moving backwards

15



to the input layer. The goal of backpropagation is to optimize the weights so that the neural
network can learn how to correctly map arbitrary inputs to outputs.

The Backpropagation algorithm uses the chain rule, to calculate the derivatives from one
layer to another. The Chain Rule is defined as follows:

df df du

The figure below showcases how the chain rule works in computational graphs, backward
pass. For example:

dz2/dx2 1h2/dz2

Figure 11. Chain Rule in applied Backward pass

z1 =271 (X1, X2) hy=h; (z1, z0) P=P (h,, h)
7= 7 (X1, X2) h, =h, ( )

The computation of partial derivative of P with respect to x;, by applying the chain rule:

dx1 0hl O0x1 oh2 0x1

ap ap . oh1 ap . oh2

dh1 _ 0h1l 0z1 | dhl 9z2 oh2 9z1 N 022
dx1 9z1 dx1 0z2 0x1 > 9x1 dx1 dx1
dp _ Jp _(ahl_azl 6h1_622 n ap ( % %
dx1 0hl “0z1 O0x1 0z2 0x1 oh2 ox1 ox1

The figure below depicts the process of back-propagation algorithm applied in an ANN, in
order to redefine the values of the weights.

16
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Figure 12. Back-propagation process in Artificial Neural Network.

In the forward pass the error is calculated relative to the desired output. The objective is to
minimize the error across all training samples. This process requires the recalculation of
weights wl & w2 by applying the back-propagation algorithm. Assuming that the activation

1
function, in the example of figure 11, is sigmoid function and the loss function is E =—
(Y — X2)2.

Moving backwards, from stepl in order to recalculate w2 by applying the chain rule:

8E _ 8E 8X2 8P2 ()
w2 8X2 5P2 w2

2E Y- X2
sxz (VX2
ox2 the derivati fsi id activati S0 () _ 1
5P2 1s the derivative of sigmoid activation, 500 o(x) (1 - o(x)),
§X2 _
SO m—XZ (1—X2)
5P2 .
Sw2

SE
Combining them in "’ > sy~ (Y-X2)-X2-(1-X2)- X1

OFE
The new value of w2 is : w2 new = w2-o - ——
ow2

Moving backwards, from step2 in order to recalculate wl by applying the chain rule:

SE _ S8E 8§X16P1 (y
Swil  8X16P16wi
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— 2 = o) (1 o),

. SP1 is the derivative of sigmoid activation, 500
SO %2 X1-(1-X1)
5P1
swi
SE . o : : .
. Sxi°m order to compute this derivative, the chain rule must be applied again:
SE _  8E 8§X26P2

o Y=(Y-X2)?®-X2-(1-X2)“ w2, [3, 4 have been

5X1 - 8X2 8P2 6X1

computed from previous step.

A very simple example with equations, about how the chain rule works in the scheme below:

7\

P| v=a+u p =)y

b=} /
¢ 2>» u=be \_/

da dv da

1.6 Convolutional Neural Networks

Convolutional Neural Networks (ConvNets or CNNs) are a category of ANNs, successfully
used in the field of pattern recognition and classification within images. A simple
Convolutional Network is a sequence of layers that produce by transforming the input using
some activation function. The layers used are the Convolutional layer, the RELU layer, the
Pooling layer, the Dropout Layer and finally the Fully Connected Layer.

While some layers (RELU/Pooling) perform a fixed function on their input, others
(Convolutional/Fully Connected layer) take into consideration additional parameters like the
biases and weights of the Neurons.

Here’s a brief description of each layer and its role in the network:

Convolutional Layer: Produces the Activation or Feature map by applying various filters
(feature identifiers) to the input image.

RELU Layer: Because throughout the system, the operations used are linear, the gradient
decreases exponentially. This results in the lower layers of the system to train slowly. In order
to help with the problem of the vanishing gradient, the RELU layer is used to inject

18



nonlinearity to the system. The function used is the f(x) = max (0, x) to all the input values.
Other nonlinear functions like the sigmoid can also be used.

Pooling layer: It is often applied after the RELU layers and it outputs the maximum number
in every filter sub region. This helps in decreasing the volume of calculations in subsequent
layers and more importantly controls the chance of the model over-fitting the training data.

Dropout Layer: Without the use of the Pooling and Dropout layer the weights of the network
are so tuned to the training samples that don’t perform well on new samples. The Dropout
layer randomly removes a set of activations by setting their values to zero.

Fully Connected layer: It’s the final layer of the network. It receives the output of the
previous layers and outputs an N dimensional vector where N is the number of classes that the
network has to identify. Each member of this array represents the probability of a certain
class.

1.6.1 Inception V3

In 2014 Google proposed a deep convolutional neural network codenamed Inception that
achieved a new state of the art score for classification and detection in the ImageNet Large-
Scale Visual Recognition Challenge 2014. The first incarnation of this architecture, Google
Net, a 22-layer deep network has been subjected to further improvement with its latest
incarnation being Inception V3.

The real power of the Inception network is its ability to use its prior learned knowledge in
order to be able to solve more specific classification problems. This is achieved through
transfer learning and the ability it gives to users to retrain its final layer (fully connected
layer) depending on their specific needs.

Convolution
AvgPool
MaxPool
Concat [ l
Dropout
@ Fully connected
@ Softmax

Figure 13. GoogleNet Architecture
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Figure 14. Inception V3 Node
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2. Neural Networks and Artificial Intelligence

An Artificial Neural Network consists of an interconnected group of artificial neurons, which
use mathematical or computational models, to process given information. They are widely
used to model intricate relationships between inputs and outputs, as well as to find hidden
patterns in data. As aforementioned, application areas of ANN’s include medical diagnosis,
finance applications, data mining, etc.

Neural Networks have been successfully used for Bankruptcy predictions. The prediction of
bankruptcies is an extensively studied subject since it is inextricably tied with a banks’
lending decisions and therefore its profitability. Specifically, in the work of Atiya [3],
achieves 85.5% accuracy (from 81.46%) on the Bankruptcy classification problem. This was
achieved by introducing a number of new indicators (book value/total assets BV/TA;, cash
flow/total assets CF/TA;, rate of change of cash flow per share ROC(CF); etc) to Merton’s
already existing prediction model.

Medical diagnosis via image recognition is also an area, where ANN’s contribution has
proven to be more than useful. In 2017, Esteva et al. [4], trained a deep convolutional network
with a 192,450 clinical images of skin disease in order to classify skin lesions. The outcome
was an algorithm that could classify lesions from photographic images similar to those taken
with a mobile phone. Their model’s performance in detecting malignant melanomas and
carcinomas, was tested against certified and trained dermatologists. The system was used in
two different use cases, keratinocyte carcinomas versus benign seborrheic keratoses; and
malignant melanomas versus benign nevi [5], [6]. The authors suggest that this technique
could be used outside the clinic as a visual screen for cancer. More specifically, mobile
devices supplied with these deep neural networks (like smartphones) can possibly provide
low cost access to vital diagnostic care.

Another work that proves how useful can ANNs be in the medical sector is by Snow, et al [7].
Through their work they pursued to determine, whether ANNs would be helpful to predict
biopsy results in men with uneven screening test(s) and to predict treatment effect after
radical prostatectomy. Their proposed neural network, predicted the biopsy result with 87%
accuracy and the probability of tumor recurrence with 90% accuracy. They conclude, that
trained neural networks can be very helpful in decision making for prostate tumor patients.

2.1 Model Selection of ANN

As mentioned above (Chapter 1.2), an Artificial Neural Network consists of 3 layers. The
input, the hidden and the output layer. The most challenging and difficult part when designing
an ANN, is to decide the number of hidden layers, if needed, as well as the number of nodes
in hidden layers.

2.1.1 Input & Output Layer Neurons

Being able to identify the number of input and output layers and number of their neurons is
the easiest part of the design procedure. Every network has a single input and output layer.
The number of neurons in the input layer is equal to the number of input variables in the
dataset being processed. The number of neurons in the output layer is equal to the number of
outputs associated with each input.

For example, having to design an ANN for the iris dataset (for dataset information &
description, https://archive.ics.uci.edu/ml/datasets/iris). The number of nodes constituting the
input layer would be four which equals to the number of attributes (sepal length in cm, sepal
width in cm, petal length in cm & petal width in cm). The number of nodes constituting the
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output layer equals to three, which are the three different classes/species (Iris Setosa, Iris
Versicolour & Iris Virginica).

2.1.2 Hidden Layers and Neurons

The challenge is knowing the number of hidden layers and their neurons. The number of
hidden layers depends on the complexity of the data. In case where the data is linearly
separable, a hidden layer is not even necessary.

Deciding the number of neurons in the hidden layers is a decisive part of the neural network’s
overall architecture, since these layers have a tremendous influence on the final output. Both
the number of hidden layers and the number of neurons in each of them must be carefully
examined.

Using too few neurons in the hidden layers will result in something called under fitting.
Under fitting is a state when there are too few neurons in the hidden layers to sufficiently
detect the signals in a complicated data set. In other words, the neural network created is not
complex enough to map with precision the relationship between a dataset’s attributes and a
target output.

On the other hand, it’s important to keep in mind that using too many neurons in the hidden
layers comes at a cost. The most common problem is over fitting. Over fitting occurs when
the neural network has so much information processing capacity that the limited amount of
information contained in the training set is not enough to train all the neurons in the hidden
layers. This means that the network has simply memorized the training data but has not
learned to generalize to new examples.

Over fitting can be a serious problem when training a neural network, especially in cases
where the dataset consists of many parameters. Srivastava, et al in their work [15], introduce
the Dropout method, proving with experiments that is a way to prevent neural networks from
over fitting.

Too many neurons in a neural network, apart from over fitting, can also have another cost. An
overly large number of neurons in the hidden layers can increase the learning time to the point
that is impossible to sufficiently train it.

In conclusion, an underfed model will have high training and testing error and an overfit
model will have extremely low training error but high testing error. Obviously, there must be
a balance between over fitting and under fitting in order for a network to be accurate and have
good fit. Van der Wmp Wil, et al in [16] proposed a two-step approach to control in some
way the balance between over fitting and under fitting.
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2.2 Man versus Machine

2.2.1 Anatomy of a Biological Neural Network

Biological neurons, as depicted in figure 15, consist of a cell nucleus, which receives input
from other neurons through a web of input terminals, or branches, called dendrites. The
combination of dendrites is often referred to as a “dendritic tree”, which receives stimulus or
inhibitory signals from other neurons via an electrochemical exchange of neurotransmitters.

The extent of the input signals, that reach the cell nucleus depends both on the width of the
action potentials propagating from the previous neuron and on the conductivity of the ion
channels feeding into the dendrites. The ion channels are responsible for the flow of electrical
signals passing through the neuron’s membrane.

More frequent or larger magnitude input signals generally result in better conductivity ion
channels, or easier signal propagation. Depending on this signal aggregated from all synapses
from the dendritic tree, the neuron is either “activated” or “inhibited”, or in other words,
switched “on” or switched “off”, after a process called neural summation. The neutron has an
electrochemical threshold, analogous to an activation function in artificial neural networks,
which governs whether the accumulated information is enough to “activate” the neuron. The
result is then fed into other neurons and the process begins again.

Cell body
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Axon hillock ) Synaptic terminals
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/
/ % Dendritic branches

Figure 15. Anatomy of Biological Neural Network (Source: Wikipedia)

2.2.2 Learning in Biological Neural Networks

In biological neural networks, like these in mammal brain, learning is achieved by making
small pinches to an existing representation, its configuration contains significant information
before any learning is conducted. The strengths of connections between neurons, or weights,
do not start as random, are genetically derived as a product of human evolution.
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Over time, the network learns how to perform new functions by adjusting both topology and
weights. The fact that there is an initial representation that works well for many tasks is
supported by research, which suggests that as young as one-month old new-borns are able to
recognize faces demonstrated by their learning to differentiate between strangers and their
parents. In other words, the concept of a human face has largely been passed down
genetically from parent to child.

The same phenomenon applies to other tasks as well. In the sense of “tasks” both passives
tasks, such as recognizing generic objects to process sound as speech patterns, and active
tasks, like movement and speech, are encompassed. These skills are learned gradually, and
progressively smaller tweaks are used to refine them. The precise topologies are a function of
the types of stimuli upon which these biological neural networks are trained. A prominent
example is the monocular deprivation studies led by Hubel and Wiesel [19]. The study
involved forcing an animal’s eye shut for two months during development and observing the
changes to their primary visual cortex.

2.2.3 Learning in Artificial Neural Networks

Contrariwise to Biological Neural Networks, Artificial Neural Networks (ANNSs), are
commonly trained from scratch, using a fixed topology chosen for the problem. In the
present, their topologies do not change over time and weights are randomly initialized and
adjusted via an optimization algorithm to map the input data to the desired output.

Nevertheless, ANNs can also learn based on a pre-existing representation. This procedure is
known as fine-tuning. The process of fine-tuning consists of conforming the weights from a
pre-trained network topology at a relatively slow learning rate in order to perform well on
newly supplied input training data.

Whether training from scratch or fine-tuning, the weight update process begins by passing
data through the neural network, measuring the outcome, and modifying the weights based on
the deviation between the target and the desired output. This whole process represents how an
artificial neural network “learns”. Weights are gradually pushed in the directions that most
increase performance of the desired task like maximizing recognition accuracy. This concept
of learning can be compared to a child learning how to recognize, for example, animals. After
failed attempts and feedback on the accuracy of the answer, the child tries until achieving the
correct response.

24



Dendrite _
Axon Terminal

Node of
Ranvier

Inputs Weights
: w

XM,
; X1. W Sum Activation
X 2 Function
e Output

st ()

Schwann cell -

Myelin sheath
Nucleus

Figure 16. Structure of a typical neuron (left) VS artificial neuron (right) (Source: Wikipedia)

2.2.4 Learning Methods and ANN’s

The concept of learning is to gain knowledge of by study, experience or by being taught by
connoisseur. There are two types of learning, either talking about people learning or machine
learning.

Supervised Learning is the most common for pattern, speech and text recognition for
artificial neural networks. With this procedure, the training data the network is being fed with,
includes both the input and the desired results. Via this procedure, there is an input x, an
output Y and an algorithm which is used in order, the ANN, to learn the mapping function
between x and Y (Y=f(x)). These methods are fast and accurate, as long as a proper training,
validation and test set has been constructed. The most common, disadvantage that these
methods can result to is the phenomenon of “over fitting” (Figure 17). This happens when the
network, fails to learn the underlying function and just despots the data. This process results
having a poorly trained network that has great performance on the data used in training phase,
but really bad when it comes to new data.
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Figure 17. The three possible states of supervised learning (Under fitting, Good Fit &
Over fitting)

Unsupervised Learning, as its name reveals is an independent method because there is no
supervision of a “teacher”. During a model’s training phase, using unsupervised learning, the
input vectors of similar type are joined to form clusters.

When a new input pattern is applied, then the neural network gives an output response
indicating the class to which input pattern belongs. In this method, there is no feedback from
the environment like for example what should be the desired output and whether it is correct
or not. Therefore, in this type of learning the network itself must discover the patterns,
features from the input data and the relation for the input data over the output.

Self Organized Maps (SOM) belong to this category [29]. A SOM is a ANN that has a set of
neurons connected to form a topological grid (usually rectangular). When some pattern is
presented to an SOM, the neuron with closest weight vector is considered a winner and its
weights are adapted to the pattern, as well as the weights of its neighbourhood. In this way an
SOM naturally finds data clusters.
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Clustering is the most typical example of unsupervised learning strategy. Clustering is the
organization of unlabeled data into similarity groups called clusters (Figure 18). A cluster is a
collection of data items which are “similar” between them, and “dissimilar” to data items in
other clusters.

—

Figure 18. Clustering: The process of grouping similar entities together (Source:
https://towardsdatascience.com/clustering-unsupervised-learning-788b215b074b)

Cluster analysis is a main task of data mining, and a common technique for data analysis,
used in many fields, like machine learning and image recognition. Detailed analysis about
clustering and its algorithms can be found in [29].
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3. Preliminary Experiments

In this section, preliminary experiments done in MATLAB, are presented and basics steps of
MATLAB’s provided toolbox for ANN are introduced.

MATLAB'’s toolbox is ideal for experimenting in building networks. It contains all basic
functionalities, graphs (ROC Area, Confusion Matrix) and datasets to play with.

3.1 MATLAB & Neural Networks

Engineering and IT teams are using MATLAB to build today’s advanced Big Data Analytic
systems ranging from predictive maintenance and telematics to advanced driver assistance
systems and sensor analytics. MATLAB is considered to be one of the best tools, because it
offers essential capabilities not found in business intelligence systems or other open source
languages.

MATLAB provides to its users a full set of statistics and machine learning functionality, plus
advanced methods such as nonlinear optimization, system identification, and thousands of
prebuilt algorithms for image and video processing, financial modelling, control system
design.

In order to work with neural networks and train them, we use MATLAB’s Toolbox for ANN.
Once, the software is successfully installed, the toolbox and its functionalities can be
launched simply by writing, in MATLAB’s environment, ‘nnstart’ and pressing Enter (Figure
19).

00 MATLAB R2014b

PEHLAEROS (3] search Documentation 0

New Variable |+ Analyze Code o) {0} Preferences () (‘4 Community
O a5 3 2 a == &)
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= = o L}? i t = L Open Variable v éf Run and Time o — ﬁ Set Path o 3 Request Support

lew New Open {-|Compare Impo ve imulin| youl lelp
Script ¥ v & Data Workspace (7 Clear Workspace v [ Clear Commands v  Library v Im Parallel v v E_Ir_bAdd-Ons v

FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES

< o (& & [/ » Users » al » Documents » MATLAB P
Current Folder [OBl Command Window [Cl Workspace ®

K Name a f{ » nnstartl Name 4 Value
Details ~
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Figure 19. Command ‘nnstart’

This leads to a pop-up window, ‘Neural Network Start’, which showcases the available
options, depending on what each user wants to apply on the data (Figure 20).
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Figure 20. ‘Neural Network Start’ pop-up window.

In order to train a ANN, to recognize and classify properly the data given, the ‘Pattern
recognition and classification’ tool (nprtool) is the most suitable choice. It can be launched
either by clicking on it or by typing the command ‘nprtool’ in the command window.

Once, the command is executed the user is being lead to a new window, which explains the
use of the selected tool as well as the architecture of the Neural Network used (Figure 21).

[ JoN ] Neural Pattern Recognition (nprtool)

iﬁ@ Welcome to the Neural Pattern Recognition app.

Solve a pattern-recognition problem with a two-layer feed-forward network.

Introduction Neural Network

In pattern recognition problems, you want a neural network to classify N
inputs into a set of target categories. Hidden Layer Output Layer

Input Output
For example, recognize the vineyard that a particular bottle of wine came
from, based on chemical analysis ; or classify a tumor as
benign or malignant, based on uniformity of cell size, clump thickness,
mitosis 5

The Neural Pattern Recognition app will help you select data, create and

train a network, and evaluate its performance using cross-entropy and A two-layer feed-forward network, with sigmoid hidden and softmax

confusion matrices. output neurons , can classify vectors arbitrarily well, given
enough neurons in its hidden layer.

The network will be trained with scaled conjugate gradient
backpropagation

$ To continue, click [Next].

& Neural Network Start 44 welcome 4 Back | ® Next @ cancel

Figure 21. Neural Network Recognition Tab
The neural network provided, is a two-layer feed-forward network, with sigmoid in hidden

layer (1.5.2) and a softmax in the output. The network is trained with scaled conjugate
gradient backpropagation (SCG), which is quoted in detail in the next paragraphs.
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With ‘Next’ button the user can select the dataset to work with. The dataset can either be from
the sample that MATLAB provides, or uploaded from user’s files (Figure 22).

[ NoN ] Neural Pattern Recognition (nprtool)
Select Data
What inputs and targets define your pattern recognition problem?
Get Data from Workspace Summary
Input data to present to the network. Inputs 'irisinputs’ is a 4x150 matrix, representing static data: 150 samples
= of 4 elements.
Bk Inputs: irisinputs B
Target data defining desire network output. Targets 'irisTargets' is a 3x150 matrix, representing static data: 150
samples of 3 elements.
@ Targets: irisTargets B@ P
Samples are: © [ Matrix columns ) [E] Matrix rows

Want to try out this tool with an example data set?

Load Example Data Set

$ To continue, click [Next].

& Neural Network Start 144 welcome @ Back | W Next @ cancel

Figure 22. Select Data Tab

To show a quick example, Iris dataset has been selected for the results seen below. With
‘Load Example Data Set’ button, the datasets provided by MATLAB are being shown. Its
dataset comes with a description of the number of classes, attributes etc. as Figure 23
showcases. ‘Import’ button to load the dataset & ‘Next’.

Select Data
What inputs and targets define your pattern recognition problem?

Get Data fro @ Pattern Recognition Data Set Chooser
Input data & Select a data set: Description
ik Inputs:
Simple Classes Filename: jris_dataset
Iris Flowers
Target data Breast Cancer Pattern recognition is the process of training a neural network to assign
Types of Glass the correct target classes to a set of input patterns. Once trained the
@ Targets: A !
Thyroid network can be used to classify patterns it has not seen before.
Wine Vintage . L
Samples are| This dataset can be used to create a neural network that classifies iris

flowers into three species.
LOAD iris_dataset.MAT loads these two variables:
irisinputs - a 4x150 matrix of four attributes of 1000 flowers.

1. Sepal length in cm
2. Sepal width in cm
3. Petal length in cm
4. Petal width in cm

irisTargets - a 3x150 matrix of 1000 associated class vectors
1 defining which of four classes each input is assigned to. Classes

are represented by a 1 in one of four rows, with zeros in the others.
Want to try

3 Import @ Cancel

@ Loading dataset.

& Neural Network Start ¢ Welcome € Back W Next @ cancel

Figure 23. Example Data Sets provided by MATLAB
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Iris flower data set is one of the most popular dataset, for clustering and classification
problems. The dataset contains a set of 150 records under 4 attributes:

* Petal Length in cm

e Petal Width in cm

* Sepal Length in cm

e Sepal width in cm, which is described as Inputs.

The Targets a 3*150 matrix of class vectors, which showcases the class of the flower, ex.
[0,1,0] the flower belongs to 2™ class.

After loading the dataset, its divided randomly in three individual datasets:
* Training Data
* Validation Data
e Testing Data

Validation and Testing data are by default equally divided (15% each), but the user can
change it, in order to experiment and increase network’s performance (Figure 24).

000 Neural Pattern Recognition (nprtool)
Validation and Test Data
a Set aside some samples for validation and testing.
Select Percentages Explanation
& Randomly divide up the 150 samples: & Three Kinds of Samples:
@ Training: 70% 104 samples @ Training:

These are presented to the network during training, and the network is

W Validation: 15% 23 samples  adjusted according to its error.

23 samples @ Validation:

These are used to measure network generalization, and to halt training
when generalization stops improving.

W Testing: 15%

W Testing:
These have no effect on training and so provide an independent measure of
network performance during and after training.

Restore Defaults

é Change percentages if desired, then click [Next] to continue.

& Neural Network Start 144 welcome @ Back | & Next @ cancel

Figure 24. Validation and Test Data tab

By clicking ‘Restore Defaults’ the Validation & Testing data percentage are restored to 15%
each. By clicking ‘Next’ button, the user can regulate the number of neurons the hidden layer
will have. The default number of hidden neurons is 10 (Figure 25).
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[ NON ] Neural Pattern Recognition (nprtool)

m Network Architecture

Set the dimensions of the self-organizing map's output layer.

Hidden Layer Recommendation

Define a pattern recognition neural network. (patternnet) Return to this panel and change the number of neurons if the network does
not perform well after training.

Number of Hidden Neurons: 10

Restore Defaults

Neural Network

Hidden Layer Output Layer

Output

10 8

$ Change settings if desired, then click [Next] to continue.

& Neural Network Start 144 welcome | 4@ Back | &) Next @ cancel

Figure 25. Network Architecture tab

By clicking ‘Next’ the network is created, and it is ready for training (Figure 26). Depending
on the results of the first experiment the user, with ‘Back’ button, can change both the
allocation between Test & Validation data and the number of hidden neurons in order to

retrain the network. These changes often lead to increased network’s performance &
accuracy.

[ NoN ] Neural Pattern Recognition (nprtool)
Train Network
Train the network to classify the inputs according to the targets.
Train Network Results
Train using scaled conj gradient backp ion. (trainscg) & samples CE () %E
@ Training: 104 = =
0y Train N
@ Validation: 23 - -
o Testing: 23 - -
Training automatically stops when lization stops improving, as
indicated by an increase in the cross-entropy error of the validation Plot Confusion Plot ROC
samples.
Notes
Yy Training multiple times will generate different results Minimizing Cross-Entropy results in good
due to different initial conditions and sampling. classification. Lower values are better. Zero means
no error.

[%) Percent Error indicates the fraction of samples which
are misclassified. A value of 0 means no
misclassifications, 100 indicates maximum
misclassifications.

o Train network, then click [Next].

& Neural Network Start 44 welcome 4@ Back | ® Next @ cancel

Figure 26. Train Network tab
After the training is finished a pop-up window, shows a summary of the trained model.

Depending on these results the user can decide what actions should be taken to achieve better
performance (which factors should be changed, as mentioned above).
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® O Neural Network Training (nntraintool)

Neural Network

Hidden Output

Output

Algorithms

Data Division: Random (dividerand)

Training: Scaled Conjugate Gradient (trainscg)
Performance: Cross-Entropy (crossentropy)
Calculations: MEX

Progress
Epoch: o [ 15 iterations 1000
Time: [ 0:00:00
Performance: o866 [ 0.0122 | 0.00
Gradient: 0.543 |_43 1.00e-06
Validation Checks: o [ 3 | e
Plots
[ Performance ] (plotperform)
Training State (plottrainstate)
Error Histogram (ploterrhist)
Confusion (plotconfusion)
Receiver Operating Characteristic (plotroc)
1 epochs

Plotiinterval:B\ (oo

«f” Validation stop.

@ stop Training . | @ Cancel

Figure 27. Neural Network’s training results

By choosing, each one of the provided plot tabs, a new pop up window shows up with the
corresponding plot:

Performance (plotperfom)

Best Validation Performance is 0.083487 at epoch 9
100 :

-
S

Cross-Entropy (crossentropy)
)
[

107

15 Epochs

Figure 28. Performance plot
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Training State (plottrainstate)

100 Gradient = 0.044329, atepoch 15
T T

gradient
)

val fail
w
T
*
1

N
T
*
*

1

L 2

o
A g

15 Epochs

L 2

e
=)
&

Figure 29. Training State plot

The plot shows variation in gradient coefficient with respect to number of epochs. The final
value of gradient coefficient at epoch number 15 is 0.044329 (Figure 29).
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Figure 30. Error Histogram plot

x-axis: Error value (Targets — Outputs)
y-axis: Number of Instances
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Confusion (plotconfusion)
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Figure 31. Confusion Matrix plot
The Confusion Matrix is a N x N table which showcases the number of false positives, false
negatives, true positives, and true negatives. In this case, the “plotconfusion” command

presents 4 confusion matrices, one for each set (training, test & validation) and one for the
overall set.

False Negatives (FN): These are cases in which the algorithm has predicted ‘No’, and the
actual result is ‘Yes’.

False Positives (FP): These are cases in which the algorithm has predicted ‘Yes’, and the
actual result is ‘No’.

True Positives (TP): These are cases in which the algorithm has predicted ‘Yes’, and the
actual result is also ‘Yes’.

True Negatives (TN): These are cases in which the algorithm has predicted ‘No’, and the
actual result is also ‘No’.
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Receiver Operating Characteristic (plotroc)
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Figure 32. ROC plot

Another metric, which is commonly used in order to observe how well the neural network has
fit data is the receiver operating characteristic plot. This shows how the false positive and true
positive rates relate for all the possible values of threshold varied from O to 1.

The further left and up the line is, the fewer false positives need to be accepted in order to get
a high true positive rate. The best classifiers will have a line going from the bottom left
corner, to the top left corner, to the top right corner, or close to that (Figure 32).
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3.1.1 Scaled Conjugate Gradient Method

Matlab’s library for neural networks uses the Scaled Conjugate Gradient method (SCG). This
method is a variety of classic Gradient Descent Methods. The algorithm is based upon a class
of optimization techniques well known in numerical analysis as the Conjugate Gradient
Methods. SCG uses second order information from the neural network but requires only O(N)
memory usage, where N is the number of weights in the network. SCG does not contain any
user-dependent parameters whose values are crucial for the success of SCG. By using a step
size scaling mechanism, SCG avoids a time-consuming line search per learning iteration,
which makes the algorithm faster than other second-order algorithms (see [13] for deeper
mathematical analysis).

The supremacy of the Conjugate Gradient Methods over the Steepest descent ones has been
studied by Osadcha & Marszaek in [13] and is depicted in Figure 33 below (also included in
the paper aforementioned):

Conjugate gradient method Steepest descent method
N n Iteration | Time inms | Time in ti | lteration | Time in ms | Time in ti
5 25 13 | 1983 128 0 1780
10 | 100 33 36 68281 405 34 64634
15 | 225 49 286 530934 837 272 505238
20 | 400 65 1680 3110493 1413 1621 3002271
25 | 625 79 6499 12032438 2003 6329 11716167
30 | 900 94 20053 37122809 2909 19606 36295497

Figure 33. Results after comparison between Conjugate Gradient and Steepest Descent methods.
(Source: http://ceur-ws.org/Vol-1853/p01.pdf)
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4. Machine Learning and Applications

4.1 Machine Learning and Healthcare

As already mentioned, applications of Machine Learning can become more than useful in any
malformation early detection. Doctors can benefit from advanced analytics, provided by these
applications, having a comprehensive picture about patients’ health care and treatment.
Healthcare informatics combined with Machine Learning algorithms can upgrade level of
quality and efficiency of healthcare industry [18]. Integrating these applications in smart
devices (like smartphones), can reduce the cost of specialized medical examinations, making
them affordable to a wide range of patients. In this way, prevention and early detection of
cancer or other diseases can be accessible by everybody. Considering the importance of
developing healthcare applications, the neural networks designed to predict breast cancer.

The Neural Networks are implemented with Python’s library Scikit-learn. Scikit-learn has a
class called MLPClassifier, which has been used to create and train the networks presented in
the next sections. MLP uses backpropagation method to train the network. The hyper
parameters that were changed have been recorded in result tables (Tables 1-3 & Tables 5-8).
For the Confusion Matrices (Figure 37 & 38) library Matplotlib has been used.

4.1.1 Risk Factors and Breast Cancer

Breast Cancer is the deadliest cancer among women. It’s the most commonly occurring
cancer in women and the second most common cancer overall. In 2018, there were over 2
million new cases, based on the statistics publish by World Cancer Research Fund, WCRF !,

By the risk factor, doctors define anything that increases the risk of developing cancer. Risk
factors for breast cancer are grouped into two basic categories: risk factors you can control
and risk factors you can’t control [22].

Among risk factor you can control is exercise, alcohol, smoking and diet. Studies have shown
that the lack of exercise and smoking are associated with a small increase in breast cancer
risk. On the other hand, age, race and family history of cancer are included in risk factor you
cannot control (Figure 34). Studies have shown that white women are slightly more likely to
develop breast cancer than African American women [23].

[1] (https://www.wcrf.org/dietandcancer/cancer-trends/breast-cancer-statistics)
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Figure 34. Number of Breast Cancer Incidents in relation to risk factor “Age”
(Source: Wikipedia)

4.1.2 Breast Cancer Diagnosis

Early detection of breast cancer can increase the survival rate. The 5-year relative survival
rate for women with stage O or stage I is close to 100%. The corresponding rate for women
with stage II, drops to 93%, with information provided in American Cancer Society’s website
[1]

Diagnosis can be done with a variety of medical tests and with the supervision of an expert
[26]. More specifically:

* Diagnostic Mammogram: It is a more detailed X-ray of the breast.

* Breast ultrasound: Gives detailed pictures of areas inside the breast, produced by
sound waves.

* Magnetic Resonance Imaging (MRI): The MRI scan will make detailed pictures of
areas inside the breast.

* Biopsy: It’s a test that tissue or fluid is removed from the breast to be looked at under
a microscope.

STAGE OF BREAST CANCER 5 YEAR SURVIVAL RATE
STAGE 0 100 %
STAGE 1 100 %
STAGE 11 Around 93 %
STAGE III Around 72 %
STAGE IV 28 %

Table above showcases the survival rate depending on cancer stage 12,
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4.1.3 Dataset Description

The dataset used to feed the neural network is “Wisconsin Diagnostic Breast Cancer
(WDBC)” and can be found in The UC Irvine Machine Learning Repository website ). The
dataset consists of 569 instances and 32 attributes.

Attribute Information:
1) ID Number

2) Diagnosis (B = Benign, M = Malignant)
3) The other 30 columns provide information about ten-real valued features for each cell

nucleus:
a. radius (mean of distances from center to points on the perimeter)
b. texture (standard deviation of gray-scale values)
c. perimeter
d. area
e. smoothness (local variation in radius length)
f. compactness (perimeter2 / area — 1.0)
g. concavity (severity of concave portions of the contour)
h. concave points (number of concave portions of the contour)
i. symmetry
j. fractal dimension ("coastline approximation" - 1)

The mean, standard error and "worst" or largest (mean of the three largest values) of these
features were computed for each image, resulting in 30 features. For instance, field 3 is Mean
Radius, field 13 is Radius SE, field 23 is Worst Radius.

Features are computed from a digitized image of a fine needle aspirate (FNA) of a breast
mass. They describe characteristics of the cell nuclei present in the image.

Separating plane described above was obtained using Multisurface Method-Tree (MSM-T), a
classification method constructing decision tree using linear programming [24]. The actual
linear program used to obtain the separating plane in the 3-dimensional space is the one
described by Bennett and Mangasarian in [25].

The dataset was created by:

Wolberg, General Surgery Dept., University of Wisconsin, Clinical Sciences Center.
Street, Computer Sciences Dept., University of Wisconsin.

Mangasarian, Computer Sciences Dept., University of Wisconsin.

[1] https://www.cancer.org/cancer/breast-cancer/understanding-a-breast-cancer-diagnosis/breast-cancer-survival-
rates.html

[2] Based on data & statistics provided by: https://seer.cancer.gov/data/

[3] https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29
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4.1.4 Experimental Evaluation

The model was created and trained with the back-propagation method. The tables below
present the results and the parameters used for each experiment:

Hidden
layer size

100 ‘ 100 ‘ 100 ‘ 100 ‘ 100 ‘ 100 ‘ 100 ‘ 100 ‘ 100

Activation Logistic Logistic Logistic Logistic Logistic =~ ReLu ReLu ReLu ReLu

Solver Adam Adam Adam Sgd Sgd Sgd Sgd Adam Adam
Alpha 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001
Max_iter 2000 2500 2500 2000 2500 2000 2500 2000 2500
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 93.8%  94.69% 97.35% 90.26% 85.84% 85.84% 76.99% 95.57% 97.34%

Table 1. Accuracy with experiments based on architecture with 1 hidden layer and 100 hidden
neurons.

Hidden
layer size

35 ‘ 35 ‘ 35 ‘ 35 ‘ 35 ‘ 35 ‘ 35 ‘ 35
Activation = ReLu ReLu Logistic  Logistic ReLu ReLu  Logistic Logistic
Solver Adam Adam Adam Adam Sgd Sgd Sgd Sgd
Alpha 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Max_iter 2000 12000 2000 12000 2000 12000 2000 12000
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80

Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 96.46% 92.92% 95.57%  97.34%  76.99% 76.80% 88.49% 92.03%

Table 2. Accuracy with experiments based on architecture with 1 hidden layer and 35 hidden
neurons.
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Hidden

10 10 10 10 10 10 10 10
layer size

Activation = ReLu ReLu Logistic  Logistic ReLu ReLu  Logistic Logistic

Solver Adam Adam Adam Adam Sgd Sgd Sgd Sgd

Alpha 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Max_iter 2000 4500 2000 4500 2000 4500 2000 4500
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 94.69% 93.81% 95.57% 97.35%  89.38%  79.64% 91.15% 92.92%

Table 3. Accuracy with experiments based on architecture with 1 hidden layer and 10 hidden
neurons.

The train and the test set were not randomly split up, in order to apply parameter changes on
the exact same dataset and compare the results. The experiments processed on different MLP
models, changing parameters like numbers of hidden neurons and activation functions. The
activation functions used in the experimental process were sigmoid and ReLu.

Based on the above results, the conclusion drawn is that ‘sgd’ (Stochastic Gradient Descent)
solver gives bigger accuracy when having as activation function “Logistic” (Sigmoid), that
the ReLu. The ANN having 35 hidden neurons achieved 97.35% accuracy after 12000 epochs
comparatively with the one having 100 hidden neurons which reached the same accuracy at
2500 epochs.

Loss Over Epochs

Loss

L A ,L aA I S b
T

0 250 500 750 1000 1250 1500 1750 2000
Epochs

Figure 35. Graph of Loss Over Epochs

42



The graph in figure 36 depicts the results of accuracy between an ANN and an SVM. The
ANN used for plotting, has 100 hidden neurons & ‘relu’ as activation function. The SVM
used with linear kernel.

96- I
93 A . -
ANN SVM

Figure 36. Accuracy Comparison ANN vs SVM

O
21

Accuracy %
O
=

Actual

10

Predicted

Figure 37. Confusion Matrix of ANN (Graph)
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n=113 Predicted 0 Predicted 1

Actual 0 26 0

Actual 1 6 &1

Table 4. Confusion Matrix of ANN.

The confusion matrix is used to visualize the performance of an algorithm (Figure 37). In this
confusion matrix, depicted above (Table 4), the ANN predicted correct 107 instances out of
113. All correct predictions are located in the diagonal of this matrix.

Sensitivity refers to the model's ability to correctly detect ill patients who really have the
condition. In the example of a medical test used to identify a disease, the sensitivity of the test
is the proportion of people who test positive for the disease among those who have the
disease. Specificity, on the other hand, relates to the model’s ability to correctly classify non-
malignant instances as negative to cancer.

4.2 Machine Learning and Optical Character Recognition

Machine learning is the process of recognizing patterns by using algorithms. One of the
important aspects of machine learning is its application potential such as speech recognition,
speaker identification, multimedia document recognition (MDR), automatic medical
diagnosis.

Handwritten digits recognition is a very intricate field of research in Optical Character
Recognition (OCR), as each personal possess unique handwriting style [26]. Neural Networks
have been used to recognize and predict the handwritten digits and are recommended as the
best approach so far. In [27] Al-Mansoori achieved an overall accuracy of 99.32 % using an
MLP Neural Network to recognize digits from 0 to 9.

4.2.1 Dataset Description

The dataset used to feed the neural network is “Optical Recognition of Handwritten Digits”
and can be found in The UC Irvine Machine Learning Repository website ', The dataset
consists of 1767 instances and 64 attributes. Preprocessing programs available by MNIST
were used to extract normalized bitmaps of handwritten digits from a preprinted form. 32x32
bitmaps are divided into non overlapping blocks of 4x4. This generates an input matrix of 8x8
where each element is an integer in the range 0..16.

*  Number of attributes 64 + 1 class attribute
* Input attributes are integers in the range 0...16.
* The last attribute define the class code is 0...9.

[1] https://archive.ics.uci.edu/ml/datasets/opticaltrecognition+oft+handwritten+digits
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4.2.2 Experimental Evaluation

The model was created and trained with the back-propagation method. The tables below
present the results and the parameters used for each experiment.

Hidden
layer size

80 ‘ 80 ‘ 80 ‘ 80 ‘ 80 ‘ 80 ‘ 80 ‘ 80
Activation Logistic Logistic Logistic Logistic =~ ReLu ReLu ReLu ReLu

Solver Adam Adam Sgd Sgd Sgd Sgd Adam Adam
Alpha 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Max_iter 2000 1500 2000 1500 2000 1500 2000 1500
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 92.1%  92.2% 92.2% 91.4%  93.4%  92.8% 93.03% 93.9%

Table 5. Accuracy with experiments based on architecture with 1 hidden layer and 80 hidden
neurons.

Hidden
layer size

35 ‘ 35 ‘ 35 ‘ 35 ‘ 35 ‘ 35 ‘ 35 ‘ 35
Activation = ReLu ReLu Logistic  Logistic ReLu ReLu  Logistic Logistic

Solver Adam Adam Adam Adam Sgd Sgd Sgd Sgd

Alpha 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Max_iter 2000 1500 2000 1500 2000 1500 2000 1500
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 90.5% 91.64%  92.2% 93% 90.8% 89.7%  91.4%  90.8%

Table 6. Accuracy with experiments based on architecture with 1 hidden layer and 35 hidden
neurons.
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Hidden

21 21 21 21 21 21 21 21
layer size

Activation = ReLu ReLu Logistic  Logistic ReLu ReLu  Logistic Logistic

Solver Adam Adam Adam Adam Sgd Sgd Sgd Sgd

Alpha 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Max_iter 2000 1500 2000 1500 2000 1500 2000 1500
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 91.8%  93.6% 92.2%  90.57% 93.31% 89.69% 90.5%  90.3%

Table 7. Accuracy with experiments based on architecture with 1 hidden layer and 21 hidden
neurons.

Hidden

15 15 15 15 15 15 15 15
layer size

Activation Logistic Logistic Logistic Logistic =~ ReLu ReLu ReLu ReLu

Solver Adam Adam Sgd Sgd Sgd Sgd Adam Adam
Alpha 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Max_iter 2000 1500 2000 1500 2000 1500 2000 1500
Train 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80
Test 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20

Accuracy 89.1%  89.4% 90.3%  89.13% 90.5% @ 88.7%  91.4%  90.2%

Table 8. Accuracy with experiments based on architecture with 1 hidden layer and 15 hidden
neurons.
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Figure 38. Confusion Matrix of ANN (Graph)
n=359 Pred.0 | Pred.1 | Pred.2 | Pred.3 | Pred.4 | Pred.5 | Pred.6 | Pred.7 | Pred.8 Pred. 9
Actual 0 33 0 0 0 1 0 1 0 0 0
Actual 1 0 30 0 0 0 0 0 0 0 6
Actual 2 0 0 34 0 0 0 0 0 0 0
Actual 3 0 0 1 30 0 2 0 0 4 0
Actual 4 0 1 0 0 34 0 0 0 1 1
Actual 5 0 0 0 0 0 37 0 0 0 0
Actual 6 0 1 0 0 0 0 36 0 0 0
Actual 7 0 0 0 0 0 0 0 35 1 0
Actual 8 1 1 0 1 1 1 0 0 27 1
Actual 9 0 0 0 0 0 2 0 0 1 34

Table 9. Multiclass Confusion Matrix of ANN.
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From the results depicted in the tables above, it seems that the number of hidden neurons can
induce the network’s accuracy. By comparing the accuracy results between the networks with
21 and 15 hidden neurons, the diminution of accuracy rates in the second one is remarkable.

The confusion matrix is used to visualize the performance of an algorithm (Figure 38). As
depicted in table 8 the ANN predicted correct 330 (sum the diagonal elements of the matrix)
instances out of 359. The network seems to have problem to distinguish ‘1°, which is
confused with ‘9’ and ‘3’ often predicted as ‘8’, an incident which regularly takes place in
real life as well.
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5. Conclusions

Artificial neural networks are efficiently applied in classification tasks, in this dissertation, in
medical diagnosis and optical character recognition. In this work, we examined the
performance of two different types of Artificial Neural Networks each one on different
purpose. Both models have reached a noteworthy rate of accuracy which can be compared to
the one produced by human experts.

The general conclusions drawn from the above experiments are the following:

a. The model’s performance can be heavily effected by parameters like the number of hidden
neurons, epochs and the combination of solvers and the activation function. Thus, researchers
must cope with the cumbersome task of fine tuning these hyper parameters in order to achieve
the highest possible scores.

b. No matter how carefully the aforementioned parameters are chosen, the resulting model’s
performance is additionally affected by the distribution of classes inside the training dataset.
For example, in the case of cancer diagnosis, since cancer is a rare case, training datasets are
biased in favour of the benign class. The lack of malignant cases in public medical datasets is
decisive for the model’s learning process and subsequent performance. This fact explains the
low sensitivity rates.

The results from the experiments conducted above, show that the proposed diagnosis neural
network could, with further training and fine tuning, be useful for identifying possible
infected persons. Undoubtedly, ANNs are one of the most effective Al tools, in medical
diagnosis and treatment and suggest that there is an expanding role for machine learning in
the future of medicine. Nevertheless, medical diagnosis applications must be developed and
applied with care as well as the supervision of an expert.

Future work could also include a more careful evaluation of the network design, where
different combination of parameters and pre-processing of the data is used. It could also be
very interesting if we could see how the weights of neurons are shaped during the
experiments. Additionally, it could be very intriguing to see how the accuracy of the network
is formed when it’s trained with a larger dataset.
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