
Piraeus,2018

University of Piraeus
Department of Digital Systems
MSc. Digital Systems Security

Master Thesis

Machine Learning in the field of Information Security

Kalachanis Athanasios (MTE1510)

Supervisor

Dadoyan Christoforos

Page | 2

Acknowledgements

Here, I would like to take this chance to thank my family for supporting me throughout

my whole studies by any means possible. Also, I would like to thank all the friends that I

made throughout my studies, that we shared not only the same classrooms but also the

same life.

Lastly, I would like to express my sincere gratitude to my supervisor for his patience and

continuous support. His enthusiasm and in-depth knowledge made me eager to dive

more in depth and expand my knowledges on the fascinating field of information

security.

Page | 3

Abstract

The purpose of this thesis is to analyze existing machine learning application in the

information security field and demonstrate a machine learning malware classifier. At

first, we’ll make a brief introduction into data science, malware, machine learning and

adversarial machine learning. Moreover, we will concentrate on applications of machine

learning systems in the cyber security field and how an attacker can evade such

systems and impact the integrity, availability and confidentiality by exploiting the

classifiers vulnerabilities. Finally, we present a custom malware classifier as a proof of

concept executable files.

Page | 4

Related Work

There have been several types of studies carried out in the field of malware detection

and machine learning mostly aiming to provide a unified solution on detection

techniques or even different ways for an adversary to evade those methods.

On their research, Baldangombo, Jambaljav and Horng [32] proposed several feature

extraction methods based on PE headers, API and DLL function calls using as classifier

algorithms Naïve Bayes, J48 Decision Trees as well as Support Vector Machines. Their

result showed that the higher overall accuracy scored the J48 algorithm with 99%

detection rate.

Weilin Xu, Yanjun Qi, and David Evans, on their paper Automatically Evading

Classifiers [33], presented a general approach to search for evasive variants for PDF

malware classifiers. Their results suggest a general method for evaluating classifiers

used in security applications and raise serious doubts about the effectiveness of

classifiers based on superficial features in the presence of adversaries.

On “Automatic malware classification and new malware detection using machine

learning” [34] Liu Liu, Bao-sheng Wang, Bo Yu and Qiu-xi Zhong proposed a machine

learning based malware analysis system which uses the Share Nearest Neighbor

clustering algorithm in order to discover new malware families. Their results showed

that it was able to detect 86.7% of the new malware.

More on the Adversarial Machine Learning field, Ian Goodfellow on his “Practical Black-

Box Attacks against Machine Learning” [34] introduce an attack on a Deep Neural

Network which is used for classification with a success rate of 84.24%.

It is quite common for those studies to focus on solving a particular type of problem

under specific conditions, e.g. malware type. However, there hasn’t been any

methodology on how to implement malware detection along with machine learning

techniques.

Page | 5

Contents
Acknowledgements .. 2

Abstract .. 3

Related Work .. 4

1. Introduction .. 7

2. Portable Executable (PE) .. 8

2.1 Structure .. 8

3. Malware ... 11

3.1 Malware Types ... 11

3.2 Malware Detection & Countermeasures .. 13

3.3 Machine Learning for Malware Detection .. 14

4. Machine Learning ... 15

4. 1 Fundamentals ... 15

4.1.1 Supervised Learning .. 15

4.1.1.1 Classification .. 16

4.1.1.2 Regression ... 21

4.1.2 Unsupervised Learning.. 22

4.1.3 Semi-Supervised Learning.. 22

4.2 Machine Learning Examples.. 22

5. Adversarial Machine Learning .. 25

5.1 Threat Model .. 25

5.1.2 Evasion Attacks .. 25

5.1.3 Poisoning Attacks ... 27

5.2 Countermeasures .. 27

6 Implementation .. 29

6.1 Data Collection ... 29

6.2 Feature Selection ... 30

6.3 Training ... 31

6.4 Results... 33

6.5 Attacking the Classifier ... 34

6.5.1 Getting started .. 34

6.5.2 Malicious Payload Generation.. 34

6.5.3 Classification ... 35

Page | 6

6.5.4 Features ... 36

6.5.5 Evasive Transformation ... 37

Conclusions ... 39

References .. 40

Appendix ...42

Source code (Python) ..42

Page | 7

1. Introduction

The evolution computing capability of computer systems has led in the last decades to a

rapid increase in the volume of data produced, stored and transported. This created the

need to analyze and process large volumes and different types of data, something that

was not feasible with traditional models and tools. Also, the field of data science was

created that addresses this new reality in the data features and basic data categories.

This increased amount of data helped also the improvements of Machine Learning

algorithms, where until the last decade was not expected to work, nowadays they can

even outperform humans. An example of machine learning excellence is the AlphaGo

project of Google’s DeepMind. The first computer program that ever defeated a

professional Go player [30]. Moreover, as the technology advances and the usage of

complex algorithms is getting much easier to use, more and more applications are

created in order to help us with our day to day problems.

As for the Information Technology industry, a problem that has not yet been solved is

the existence of malicious software. Every day more and more new complex malwares

are released which aim to harm users and computer systems. The security industry has

not been able to completely defend against those threats there is a need for a more

“advanced” way of protecting against those-instead of the plain old solutions.

In this Thesis we present how machine learning is able to help the security industry and

especially malware classification.

Page | 8

2. Portable Executable (PE)

Most malwares nowadays are in the format of a portable executable (PE) format. Below

we mention the main structure and properties of a PE file.

The PE (Portable Executable) file format is used for executable files on 32 and 64- bit

Windows platforms. Not only EXE but also, for example, DLL, SYS and SCR files have

the PE file structure, which is a modified version of the COFF format [8]. The PE file

header consists of a MZ-DOS header and MS-DOS stub, the PE signature, the COFF

(PE) file header, and an optional header, the file headers are followed by section

headers and sections. Typical PE file layout shown on Figure 1.

2.1 Structure

A Portable Executable (PE) basically contains two sections, which can be subdivided

into several sections. One is Header and the other is Section. The diagram below

shows a visualized version of the PE.

i PE file format structure [8]

2.1.1. DOS Header

DOS header starts with the first 64 bytes of every PE file. It’s there because DOS can

recognize it as a valid executable and can run it in the DOS stub mode.

Page | 9

2.1.2 DOS Stub

The DOS stub usually just prints a string, something like the message, “This program

cannot be run in DOS mode.”, which is shown when the PE tries to run in DOS mode. It

can be a full-blown DOS program.

When building applications on Windows, the linker sends instruction to a binary called

winstub.exe to the executable file. This file is kept in the address 0x3c, which is offset to

the next PE header section.

2.1.3 PE File Header

Like other executable files, a PE file has a collection of fields that defines what the rest

of file looks like. The header contains info such as the location and size of code,

2.1.4 Characteristics

• Signature: It only contains the signature so that it can be easily understandable

by windows loader. The letters P.E. followed by two 0’s tells everything.

• NumberOfSections: This defines the size of the section table, which

immediately follow the header.

• SizeOfOptionalHeader: This lies between top of the optional header and the

start of the section table. This is the size of the optional header that is required

for an executable file. This value should be zero for an object file.

• Characteristics: This is the characteristic fags that indicate an attribute of the

object or image file. It has a fag called Image_File_dll, which has the value

0x2000, indicating that the image is a DLL. It has also different fags that are not

required for us at this time

• Image_Optional_Header: This optional header contains most of the meaningful

information about the image, such as initial stack size, program entry point

location, preferred base address, operating system version, section alignment

information, and so forth. We can see the information in the snapshot below.

2.1.5 The Section Table

This table immediately follows the optional header. The location of this section of the

section table is determined by calculating the location of the first bytes after header. For

that, we have to use the size of the optional header. The number of the array members

is determined by NumberOfSections field in the file header (IMAGE_FILE_HEADER)

structure. The structure is called IMAGE_SECTION_HEADER.

Page | 10

The number of entries in the section table is given by NoOfSectionField in the file

header. Each section header has at least 40 bytes of entry. We will discuss some of the

important entries below.

• Name: An 8-byte null-padded UTF8 encoding string. This is can be null.

• VirtualSize: The actual size of the section’s data in bytes. This may be less than

the size of the section on disk.

• SizeOfRawData: The size of section’s data in the file on the disk.

• PointerToRawData: This is so useful because it is the offset from the file’s

beginning to the section’s data.

 • Characteristics: This fag describes the characteristics of the section.

2.1.6 The PE File Section

This section contains the main content of the file, including code, data, resources and

other executable files. Each section has a header and body.

 An application in Windows NT typically has nine different predefined sections, such as.

text, bss, rdata, data, rsrc, edata, idata, pdata, and. debug. Depending on the

application, some of these sections are used, but not all are used.

The Executable Code: In Windows, all code segments reside in a section called .text

section or CODE. We know that windows use a page-based virtual system, which

means having one large code section that is easier to manage for both the OS and

application developer. This also called as entry point and thunk table, which points to

IAT. We will discuss the thunk table in IAT.

• The. bss represents the uninitialized data for the application.

• The. rdata represents the read-only data on the file system, such as strings and

constants.

• The. rsrc is a resource section, which contains resource information of a

module. In many cases it shows icons and images that are part of the file’s

resources.

• The. edata section contains the export directory for an application or DLL.

When present, this section contains information about the names and addresses

of exported functions. We will discuss these in greater depth later.

• The. idata section contains various information about imported functions,

including the import directory and import address table. We will discuss these in

greater depth later.

Page | 11

3. Malware

Malware – short for malicious software – is a program that causes harm to a computer,

network or a user. [1]

Nowadays, a new virus is released every 4.2 seconds [2] so it is crucial to be able to

group them in categories depending on their behavior. Some of these categories of

malware are: ransomware, worms, trojan horses, rootkits, adware, spyware. etc. In this

chapter we will make a brief overview on those categories and their characteristics.

3.1 Malware Types

3.1.1 Virus

A virus is a code that recursively replicates a possibly evolved a copy of itself. In other

words, it is a computer program that attaches itself to other files or processes. [3]

Most commonly, a virus will be executed only if the victim runs an infected file. Upon

execution and therefore successful infection of the system, the virus replicates itself by

modifying existing programs and rewriting their source code with its own malicious

code.

3.1.2 Worms

Worms are network viruses, primarily replicating on networks Peter Szor. [1]

Typically, worms do not need a host file and execute themselves without the need of

user interaction. The main purpose of a worm malware is to use the computer network

in order to spread itself by exploiting vulnerabilities that the other computers in the

network may have.

3.1.3 Backdoor

A backdoor virus is used to allow access to the attackers remotely by entering the

computer system and without being detected running in the background. It is similar to

the Trojan Horse computer virus since they both expose the system to unwanted

remote access.

3.1.4 Trojan Horse

The Trojan Horse computer virus gets its name from an incident in Homer’s Iliad where

the Greeks sent a big wooden horse to the Trojans with an army of men hidden inside

of it and as soon as the Trojans brought the horse into their city, the Greek army came

out of the horse at night – surprising the Troyes and destroying the city of Troy, thus

Page | 12

ending the war. Same as the tale, a trojan horse is a basically a backdoor installed in a

legitimate looking program aiming to provide remote access to the affected machine.

3.1.5 Rootkit

A rootkit is a collection of malicious software used to elevate a low-privileged user’s

access on a system.

A subcategory of virus is the ware-like viruses. These are malware aimed to gain profit
for the attacker.

3.1.6 Spyware

Spyware is a computer virus aimed to spy upon the victim’s compromised system and

gather information and personal data in order to sell them and make profit.

3.1.7 Adware

Adware is generating profit for the attacker by generating advertisements to the victim

and forcing them to visit them. The profit of the attacker derives from how many times a

user clicks on the advertisements.

3.1.8 Ransomware

Ransomware are one of the most dangerous viruses. Usually if a victim is infected by a

ransomware it means that their data have been encrypted by the malware making them

unable to retrieve and the only way to get them is by paying the attacker a ransom.

3.1.9 Polymorphic

A polymorphic virus is a self-encrypted malware designed to avoid detection by antivirus

scanners. Upon infection, the polymorphic virus re-encrypts itself and duplicates by

creating usable, albeit slightly modified, copies of itself.

3.1.10 Advanced Persistent Threats

Advanced persistent threats are a general term for describing a multi-step,

sophisticated, stealthy attack on a network aiming to gain permanent access on the

infrastructure. These types of threats are aimed mostly on organizations, or companies

rather than a single user.

Page | 13

3.2 Malware Detection & Countermeasures
Over the years, organizations have found various ways of dealing with malware. At first

endpoint protection on each computer was enough in order to stop most of the common

threats but as the years passed attackers were able to evade them. Below are

mentioned the different types of malware detection so far.

3.2.1 Signature-Based Detection

Signature-based detection works by searching for particular sequences of bytes within

an object in order to identify exceptionally a particular version of a virus [4].

This is the most straight-forward way of malware detection. This detection method is

called static analysis and relies on already known file fingerprints, static strings or file

metadata which are known to be malicious. In real world scenarios, when an antivirus

scans a file to check if it is malicious or not, the first step it takes is to check it against

some predefined rules. For example, first it will check if it is a known file by computing

its hash and cross-checking it through a list of known malicious software. If there is a

match then the file is flagged as malicious. But this type of detection can only help in the

detection of well-known malwares.

The problem with this type of detection is that it is based on signature databases, which

need to be updated regularly in order to prevent as much as more viruses as possible.

It is not considered a good practice to protect computer systems only with this

technique, besides the fact that nowadays most AV products have built huge databases

with signatures and are able to detect any already known virus; the amount of malware

that get generated every day [2] makes this detection inadequate. Also, due to the

nature of malwares in general, it is really easy for an attacker to create variants of the

malware and therefore bypass the signature-based detection [5].

3.2.2 Heuristic-Based Detection

In order to overcome signature-based detection’s limitations, a heuristic-based detection

was developed. This type of detection is also referred as behavior-based detection.

How it works is it searches for abnormal activity, keystrokes and suspicious network

traffic rather than checking just for predefined signatures. It is considered to be the most

reliable way of detecting malware [7], mostly because it can very well deal with

unknown/new viruses. The main problem with this type of detection is that it is time-

consuming, it generates more false-positives than the signature-based detection [1] and

accuracy of detection is based on the implementation. A good method of implementing

heuristic-based detections is by utilizing sandboxes where we can safely run the file and

monitor its behavior.

Page | 14

3.3 Machine Learning for Malware Detection

As mentioned before, malware detection is mostly based on signatures of already

known malwares and it is difficult for them to detect polymorphic viruses that are able to

change their signatures or even 0-day malwares. Also, heuristics detection is not

enough due to the high number of false positives [1]. So, there is a need for newer

detection methods with higher accuracy and more reliable results. A solution is by

combining heuristics-based analysis along with machine learning methods for better

detection rates.

For example, we can combine these two modules by analyzing the file’s data in two

phases: pre-execution and post-execution. The first phase can be done by analyzing

the file with the “traditional” ways like static analysis, signature-based checks etc. After

that, and always under a controlled isolated environment (e.g. sandbox), we run the file

and collect data about its behavior. Lastly, according to the data we collected from the

file, we can feed them to our machine learning algorithm in order to make a prediction if

it is malicious or benign combining them with the results from the previous phases.

It is important that when we rely on approaches where we combine different methods

for detections, in our case signature-based, behavioral and machine learning, to

properly define the threshold for each phase so that we do not create overhead to the

overall analysis.

Page | 15

4. Machine Learning

Here we will give a brief overview of the machine learning field in order to better

understand the practical part of this Thesis.

Machine learning [9] is a scientific field that lies in the intersection of fields of computer

science, engineering and statistics. Its application is broad as it is a tool that can applied

to a multitude of problems related to data work and interpretation. In particular, machine

learning is an area of artificial intelligence that involves the development of algorithms

and methods that allow computers to "learn". Its goal is to build customizable and

flexible computer programs that operate on the basis of automated data sets analysis

rather than the intuition of the engineers who programmed them.

Typically, machine learning programs use training examples in order to build a model

that will enable them to make reliable predictions.

In this chapter we will describe the fundamentals of machine learning, the algorithms in

use, what are the applications of machine learning today and how it is used in the

information security field.

4. 1 Fundamentals

On a high level, we can divide machine learning techniques into two categories:

supervised and unsupervised learning.

4.1.1 Supervised Learning
As supervised learning we call the techniques used to learn the relationship between

independent attributes and a designated dependent attribute (the label) [9]. In general,

supervised learning the type of machine learning which is done with data that are

labeled.

For example, if we want to make a classifier that will be able to detect malware, the data

that we will need to use in order to train our model, have to be labeled as either

malicious or benign.

Supervised learning solves two types of problems, classification and regression.

Page | 16

4.1.1.1 Classification

In classification, the goal is to predict the class to which an object belongs based on its

property values. The basic point is that the categories are distinct.

A well-known example of the use of classification is the recognition of spam emails.

Searching for a word is not sufficient to sort the message. But the occurrence of specific

words combined with the size of the message and other factors leads to precision

classification, something that is achieved with the help of engineering learning

algorithms.

ii Classification example

Some of the algorithms that are used for classification are: Decision Trees, Logistic

Regression, Random Forest, k-Nearest Neighbors, etc. [10]

Page | 17

Deciscion Trees

As the name suggests, decision trees are data structures in the format of a tree. More

specifically, for the creation of the tree, the training dataset is used and also for making

the prediction on the test data. The goal of this algorithm is to get the most accurate

result with as less as decisions possible. A very naïve example of a decision tree is

show in the following picture below where it demonstrates a classification problem of

whether a person is fit or not.

iii Decision tree

K-nearest neighbors

K-Nearest Neighbors (KNN) is considered one of the most accurate machine learning

algorithms and yet quite simple. Its distinct characteristic from the other machine

learning algorithms, is that it is a non-parametric algorithm, which means that it does not

make assumptions about the structure of the data. This is a really important feature

because in most of the real-world problems that machine learning algorithms face

today, they almost always deal with unstructured data. So, KNN can be a first choice

when we want to solve a classification problem without any prior knowledge about the

data.

KNN is also characterized a lazy algorithm. What this means is that there is no training

phase of the model for generalizing the data. The KNN algorithm Is based on feature

similarity. For example, we have a dataset with two classes: C1, C2 and want to classify

if a given sample S should be classified as either to the first or the second class.

Page | 18

iv kNN example

So, the class that the sample S will be assigned to depends solely on the number we

set k. In this case, if k=1 then the sample will be classified in the first Class C1 since

there is only one object near the k circle of the class C1. Rather than, if k=3 it will be

assigned to the second class C2.

Page | 19

Random Forest

Tin Kam Ho first introduced the general method of random decision forests at AT&T Bell

Labs in 1995 [29]. The thought is, that the algorithm deducts the classification label for

new documents from a set of decision trees where for each tree, a sample is selected

from the training data, and a decision tree is created by choosing a random subset of all

features (hence “Random”).

This is the one of the most popular machine learning algorithm because it does not

require any data preparation and modelling and has very good results. A Random

Forest is a set of decision trees producing better prediction accuracy.

v Random forest architecture

Page | 20

Suppose a training set is given as: [X1, X2, X3, X4] with corresponding labels as [L1,

L2, L3, L4], random forest may create three decision trees taking input of subset for

example,

- [X1, X2, X3]

- [X1, X2, X4]

- [X2, X3, X4]

So finally, it predicts based on the majority of votes from each of the decision trees

made.

Support Vector Machines (SVM)

This machine learning algorithm is not only used to solve classification as well as

regression problems. The main idea of SVM is that it finds a hyperplane which

differentiates two classes clearly.

vi Support Vector Machine (SVM)

As shown in the picture above, with the hyperplane we separated the classes the best

way possible. The term support vector refers to the points (data entries) lying closest to

the hyperplane. The further our classes are from the hyperplane the more accurate the

prediction is, so it is common for a problem to find multiple hyperplanes. The purpose of

the SVM algorithm is to find a hyperplane that will result in the maximum margins

possible.

Page | 21

Naïve Bayes

The Naïve Bayes classification machine learning algorithm is based on the Bayes

Theorem [31]. The main characteristic of its method is that it evaluates every feature

individually, regardless of any correlations and bases its prediction on the Bayes

Theorem. Its drawback is that in most of the problems features have at least some level

of correlation between each other.

4.1.1.2 Regression

The regression is the predictive value of a numeric value. A common example is finding

the optimal line that runs through a set of points and represents the function.

vii Regression example

A continuous output variable is a real-value, such as an integer or floating-point value.

These are often quantities, such as amounts and sizes [11].

For example, a house may be predicted to sell for a specific dollar value, perhaps in the

range of $100,000 to $200,000.

• A regression problem requires the prediction of a quantity.

Page | 22

• A regression can have real valued or discrete input variables.

• A problem with multiple input variables is often called a multivariate regression

problem.

• A regression problem where input variables are ordered by time is called a time

series forecasting problem.

4.1.2 Unsupervised Learning
In unsupervised learning, the learning part is done without examples, and the algorithm

is called to learn a concept from a set of data by creating the standards that exist, if

any. Typically, unsupervised learning employs a clustering technique in order to group

the unlabeled samples based on certain similarity (or distance) measures.

Unsupervised learning solves several kinds of problems such as grouping, probability

density estimation, diminution of dimensions etc. For example, a clustering problem is

where you want to discover the inherent groupings in the data, such as grouping

customers by purchasing behavior. Or, an association rule learning problem is where

you want to discover rules that describe large portions of your data, such as people that

buy X also tend to buy Y. [11]

4.1.3 Semi-Supervised Learning
As the title suggests, in semi-supervised learning some training data are labeled but

most of them are not. This is quite common in a lot of real world machine learning

problems as it is considered time-consuming to label huge amounts of data. Whereas,

unlabeled data are much easier to collect.

You can also use supervised learning techniques to make best guess predictions for the

unlabeled data, feed that data back into the supervised learning algorithm as training

data and use the model to make predictions on new unseen data.

4.2 Machine Learning Examples
Machine learning is highly used nowadays due to the fact that the cloud solutions

provide the ability to train huge amount of data without big costs for computing

processing. Below are mentioned some examples categorized by their sector:

4.2.1 Retail
Most of the online shop (Amazon, E-bay, etc.) are using machine learning in order to

provide to retailers personalized recommendations based on their purchases, or even

their activity while browsing the website, thus providing a better customer service

experience.

Page | 23

4.2.2 Social Media Services
Facebook’s DeepFace [12] algorithm uses facial dataset from the millions of Facebook’s

users in order to detect nuances between human faces. Other than that, most social

media nowadays they make suggestions on their users which are solely based on

machine learning algorithms. For example, the People You May Know feature, or the

Face Recognition for auto-tagging your friends on Facebook photos.

In the same type of machine learning application, Spotify [14], as well as Netflix use

machine learning algorithm in order to figure out your likes and dislikes and suggest

music or movies you might like. All these suggestions are refined as long as the user

interacts more with the application and eventually they give better results. For example,

if you are a newly registered user on Netflix, some of the suggestions may seem

irrelevant for your preferences. However, after using the service more and more, and

importantly provide feedback for every movie or TV series you watch, the algorithm is

able to predict with a higher rate which shows you might be interested in.

4.2.3 Email
To further improve its phishing-detection performance, Google uses machine learning

algorithms in order to detect spam emails. They also built a system that delays some

Gmail messages for a little bit longer to perform more detailed phishing analysis [15].

Also, Gmail provides the option of “Smart Replies” where it suggests three responses

based on the email you received [16].

4.2.4 Personal Assistants
Machine learning is important part of personal assistants since it enables them to collect

and refine information based on the user’s previous involvement with them [13].

4.2.5 Information Security
Google’s reCAPTCHA uses machine learning in order to distinguish between human and bots

on the web. reCAPTCHA offers more than just spam protection. Every time our CAPTCHAs are

solved, that human effort helps digitize text, annotate images, and build machine learning

datasets. This in turn helps preserve books, improve maps, and solve hard AI problems. [17]

Companies like DeepInstinct [18] where one of the first ones that use deep learning in

order to detect anomalies in the cyber security field.

Respond Software [19] is a company which developed a method to run domain experts

through a set of scenarios that they have to ‘rate’. Based on that input, they then build a

statistical model which distinguishes ‘information’ from ‘noise’.

The following figure presents some of the usages of machine learning in cyber security.

Page | 24

viii ML in cyber-security

Even more and more cyber security firms are implementing Machine Learning

algorithms in order to be able to stay ahead in the race against adversaries.

As long as more and more organizations invest in machine learning in order to improve

their services, inevitably their security of those solutions is tested by the information

security community. Therefore, a new field has raised which intersects between

machine learning and computer security, and it’s called Adversarial Machine Learning

[20].

Page | 25

5. Adversarial Machine Learning

5.1 Threat Model

As in a regular penetration test where the adversary tries to infiltrate computer systems

by exploiting known, or even unknown, vulnerabilities; the same approach applies for

adversarial machine learning. We can even categorize the types of adversarial attacks

on the classifiers as black, grey or white box. A black-box is when the adversary has no

information about the classifier he is trying to exploit, grey-box when he has partial

information (e.g. percentage of prediction), and white-box is when the attacker knows

how the classifier is built, where the data come from etc.

At high level the attacks on machine learning classifiers can be divided into: evasion or

poisoning attacks.

5.1.2 Evasion Attacks

Evasion attacks are the simplest kind of attacks where the adversaries try to manipulate

their sample in order to be misclassified by the classifier [21] [22]. An example is the

following picture [24], where a correctly classified image of a panda is being slightly

modified by adding the second image, which is basically noise in order to manipulate

the data of the initial image. The image on the right is the variant generated in which

humans are not able to notice any difference between the original one but the classifier

fails to classify it correctly.

A common way to find perturbations forcing models to make wrong predictions is to

compute adversarial examples [20]. The yield perturbations that are very slight and

often indistinguishable to humans, yet force machine learning models to produce wrong

predictions.

Note that despite being indistinguishable to the human eye, the perturbation is sufficient

to change the model’s prediction. Indeed, the perturbation is computed to minimize a

Page | 26

specific norm in the input domain while increasing the model’s prediction error. This

effectively pushes the input, which was originally correctly classified, across the model’s

decision boundary into a wrong class. This phenomenon is illustrated in the 2D Figure

below, for a problem with two output classes.

ix

Most attacks which are based on adversarial examples require that the adversary has

some knowledge on the machine learning model parameters in order to optimize the

adversarial samples better.

Page | 27

5.1.3 Poisoning Attacks

An attacker can inject arbitrary data during the learning phase of the classifier in order

to influence the results of the classifier. For example, imagine an IDS which uses its

incoming traffic as training data in order to train their classifier model that detects

anomalous traffic, an adversary can send traffic to the network that will increase the

prediction error of the algorithm. This is an attack on the integrity of the data of the

classifier [23].

The attacks on the classifier extend beyond the usual attacks on Privacy, Availability

and Integrity, as we are used to in the information security field. Researchers [25] have

categorized potential attacks in 3 properties:

1. If the attack is exploratory or causative. Meaning if the adversary is able to

identify the learning outcomes from the classifier or even influence the data.

2. Whether the attack is targeted or indiscriminate. For example, if the attack has a

more wide-flexible goal or is targeted on a single purpose (e.g. bypass my own

malware from a classifier, or bypass any malware from the classifier)

3. Lastly, if the attack focuses on any of the Integrity, Privacy, Availability. The

integrity refers to the data of the model, the availability on the false-positive rate

and the privacy about information from the model itself.

x. Attack Model

5.2 Countermeasures

Like any other computer problem that needs a security solution, the solution is not

straightforward. We need to use layered defenses in order to minimize the risk of our

machine learning model. For poisoning attacks, the defenses rely mostly on the integrity

of our data set. Identifying the sources of our data and evaluating if they are reliable is a

good security practice when we are building our model. Moreover, since most datasets

Page | 28

come from various sources it’s unable to check every single one of them. So, it is

necessary to have built-in checks while training your algorithm.

Adversarial training is a brute force solution where we generate a lot of adversarial

examples and explicitly train the model with them in order for it to learn how to identify

them.

Another straight forward solution is by training two classifiers - one with the base

training set, and another with the base training set and the new data sample. Both

classifiers are then subjected to a set of tests in order to determine their accuracy. If the

second classifier is significantly worse than the first then the new training data can be

discarded marked as malicious.

The following table represents some of the defenses against the attacks mentioned

earlier.

xi Defenses

These countermeasures though, rely on poisoning attacks only, whereas evasion

attacks are much harder to counter since improved machine learning algorithms are

also better at generating evasion attacks. It is highly important for an organization that

utilizes machine learning in their production environment to consider this drawback of

machine learning algorithms in general and be able to accept a security attack on the

classifier without big impact on the organizational assets.

Page | 29

6 Implementation

For this Thesis we focused on supervised learning and more specifically on

classification. We created a malware classifier for portable executable (PE) files as a

proof of concept. We compared various well-known classification algorithms and chose

the one that performed best. We collected our dataset from various online resources,

containing both malicious and legitimate files.

We divided the phases of our machine learning implementation into four steps: data

collection, feature selection, model training & evaluation. This is a high-level approach;

every step included more sub-steps but for the purposes of this Thesis we mention in

details only the four of them.

Before engaging in those steps, there were a couple of decisions that we made in order

to proceed with our implementation. First of all, the data type we chose for our

implementation is Portable Executable (PE) file format. For malware detection there are

also plenty of options besides executables, we could also choose Microsoft Word

documents, PDF files, or even PowerShell scripts. It is highly important for our data to

be of the same type in order for our model to work properly.

6.1 Data Collection

We collected a total of 2221 legitimate files from Windows 10 core system files.

Specifically, from the following paths from my personal computer:

1. # Paths for legitimate executables
2. C:\Windows\System32
3. C:\Program Files\
4. C:\Program Files (x86)\

For the malicious executables we used Virus Share’s malware collection [27]. In total

we had 1998 malicious files for our learning algorithm.

We stored them in different folders, malicious and clean and used a python program to

parse them, extract their features and store them in a CSV file.

1. # Import our data.csv with the list of executables
2. data = pandas.read_csv('C://Users//Ethan//Desktop//Malware-

Classifier//data.csv', sep='|')
3. x = data.drop(['Name', 'md5', 'clean'], axis=1).values
4. y = data['clean'].values
5.
6. # Divide clean and malicious files in two lists for further usage
7. clean = data[0:2222].drop(['clean'], axis=1)
8. malicious = data[2222::].drop(['clean'], axis=1)
9.
10. print "Total number of entries: %s" % len(y)

Page | 30

11. print "%s clean and %s malicious" % (len(clean),len(malicious))
12. # Sample Output
13. Total number of entries: 4218
14. 2222 clean and 1996 malicious

Sample legitimate entry:

1. calc.exe|60b7c0fead45f2066e5b805a91f4f0fc|332|224|258|9|0|339456|435712|0|77164|4096|33
5872|16777216|4096|512|6|1|6|1|6|1|786432|1024|834864|2|33088|262144|8192|1048576|4096|
0|16|4|5.47901717806|1.23095974357|7.54041397387|193792.0|15360|403456|193549.25|15164|
403352|16|380|12|0|91|6.98314896545|2.88489987072|7.94986627576|4378.82417582|230|27569
|72|16|1

Sample malicious entry:

1. VirusShare_a3f6169845e9c5fb2c3f80fd48513d2b|a3f6169845e9c5fb2c3f80fd48513d2b|332|224|25
8|10|0|118784|382464|0|59882|4096|122880|4194304|4096|512|5|1|0|0|5|1|520192|1024|55364
8|2|33088|1048576|4096|1048576|4096|0|16|5|5.66094145399|4.20006478048|7.95987755287|10
0249.6|9216|335360|101703.4|9354|335248|7|112|0|0|26|6.97809692101|2.45849222582|7.9885
3208613|12840.3846154|48|20394|72|14|0

The next step is to select which features we are going to use from our PE files for our

model.

6.2 Feature Selection
Feature selection is a very important step for the efficiency of our classifier. In most of

the real-world learning problems, the features which are selected in order to represent

data are too many making it harder for the algorithm to understand which of them are

relevant to the target concept [26]. And by harder we basically mean that it will make the

learning process of the algorithm longer and probably not with good performance.

We extracted most of the PE parameters possible like: DllCharacteristics,

SizeOfOptionalHeaders, ResourcesMaxEntropy, etc. and used a Tree-Based feature

selection algorithm [28]

1. # So, in order to select the best features for our case we can
2. # use the Tree-Based feature selection algorithm
3. # http://scikit-learn.org/stable/modules/feature_selection.html#tree-based-feature-

selection
4.
5. clf = ExtraTreesClassifier()

Page | 31

6. f_selector = clf.fit(x, y)
7. model = SelectFromModel(f_selector, prefit=True)
8. X_new = model.transform(x)
9. X_new.shape
10.
11. nb_features = X_new.shape[1]
12. indices = np.argsort(f_selector.feature_importances_)[::-1][:nb_features]
13. features = [data.columns[2+indices[f]] for f in range(nb_features)]
14.
15. print features
16.
17. ['DllCharacteristics', 'Subsystem', 'SizeOfOptionalHeader', 'VersionInformationSize', '

ResourcesMaxEntropy', 'MajorSubsystemVersion', 'ResourcesMinEntropy', 'SectionAlignment
', 'MajorLinkerVersion', 'ResourcesMeanEntropy', 'SectionsMaxEntropy', 'Machine', 'Size
OfHeaders', 'FileAlignment', 'LoadConfigurationSize']

6.3 Training

Before proceeding with training our model, we have to select which classification

algorithm we will use. In order to do that we need to compare some of them and choose

the one that performs the best with our current dataset.

After running the test on four of the most common classification algorithms we got the

following results:

Page | 32

So, we will use the RandomForest as our classifier as it performed the best with our

training data.

1. # For the classification part we selected the RandomForest algorithm.
2. # But first of all, we need to get our training and test data.
3.
4. x_train, x_test, y_train, y_test = cross_validation.train_test_split(X_new, y ,test_siz

e=0.2)
5.
6. clf = RandomForestClassifier(n_estimators=50) # we can play with n for better results
7. clf.fit(x_train, y_train)
8. score = clf.score(x_test, y_test)
9. print("Random Forest classification results : %f %%" % (score*100))
10.
11. # Output
12. Random Forest classification results: 99.35100 %

98.00% 98.20% 98.40% 98.60% 98.80% 99.00% 99.20% 99.40% 99.60%

Decision Tree

Random Forest

Gradient Boosting

AdaBoost

Decision Tree Random Forest Gradient Boosting AdaBoost

Results 98.96% 99.35% 98.76% 98.56%

Classification Algorithms

Page | 33

6.4 Results

Some samples we tried with our classifier and their results:

Filename VirusTotal Classifier

Putty.exe 1/60 Clean

Skype-portable.exe 4/67 Clean

Msf_reverse_shell.exe 50/63 Malicious

Msf_reverse_shell(enc).exe 48/63 Malicious

Msf_reverse_shell.exe
(peCloak)

35/64 Malicious

Msf_reverse_shell.exe
(ssl encypted)

49/65 Malicious

0day crypter N/A Malicious (n>65)

Putty_64bit.exe 0/63 Malicious (FP)

Skype_64bit.exe 1/67 Malicious (FP)

In total our classifier was able to detect malicious PE files with a successful rate of

99,28%.

Evaluation Score

False positive 1.237624 %

False negative 0.227273 %

Page | 34

6.5 Attacking the Classifier
For the purposes of this Thesis we attempt to demonstrate an evasion attack.

6.5.1 Getting started

Since we know how the model works, the classifier it uses, the features it extracts, etc. it

is considered a white-box attack.

A successful attack will be if we manage to find a variant of our malicious file which will

be classified as legitimate by the classifier. In order to succeed we need to modify our

existing malicious file by making small changes into its data, and most importantly to the

features that the classifier uses for classifications, so that it gets misclassified as clean

classifier. Another successful attack would be if we can manage to create a new clean

file which is falsely classified as malicious by the classifier.

The steps we followed are the following:

1. Generate malicious payload

2. Analyze it with our classifier

3. If it is classified as malicious perform one cycle of evasive transformation and

analyze it again

4. Continue the same process until the file is classified as legitimate or the file is

corrupted.

6.5.2 Malicious Payload Generation
We used Metasploit to generate a malicious windows reverse shell.

Page | 35

6.5.3 Classification

We test it against our classifier and we see that it detects that it is a malicious file.

From the execution of the classifier we see that the important features it selected for the

classification are: SizeOfOptionalHeader, DllCharacteristics, Subsystem, Machine,

SectionAlignment, MajorLinkerVersion, Characteristics, SectionsMaxEntropy,

ResourcesMaxEntropy, ImageBase, VersionInformationSize,

MajorOperatingSystemVersion.

Features Values

DllCharacteristics 0

Subsystem 2

Machine 332

SizeOfOptionalHeader 224

MajorSubsystemVersion 4

SectionAlignment 4096

MajorLinkerVersion 6

Characteristics 271

SectionsMaxEntropy 7.03113498351

ResourcesMaxEntropy 3.49991259693

ImageBase 4194304

VersionInformationSize 17

MajorOperatingSystemVersion 4

Page | 36

6.5.4 Features
Then we extract the files pe features in order to manipulate the ones who are relevant and the

classifier uses.

The advantage that the adversary has in white-box attacks is that he can fine-tune the

evasion cycle in order to have better results against the specific classifier. This means

that we will adjust our encoder in order to modify the features that are important for the

classification.

Page | 37

6.5.5 Evasive Transformation

For the generation of adversarial examples, we used an open-source encoder for PE

files and we modified it in order to better perform against the classifier.

Features (after encoding) Values

DllCharacteristics 0

Subsystem 2

Machine 332

SizeOfOptionalHeader 224

MajorSubsystemVersion 4

SectionAlignment 4096

MajorLinkerVersion 6

Characteristics 271

SectionsMaxEntropy 7.03113498351

ResourcesMaxEntropy 0

ImageBase 4194304

VersionInformationSize 17

MajorOperatingSystemVersion 4

Page | 38

As we can observe the encoder identified that only by changing the value

ResourcesMaxEntropy is sufficient in order for our payload to be misclassified as

clean.

This is expected since Entropy is one of the features with the highest “weight” in our

classifier. Usually files with high entropy values are more likely to be malicious that’s

why our classifier bases its prediction a lot from the values of the features

SectionsMaxEntropy and ResourcesMaxEntropy.

Page | 39

Conclusions

The results from our malware classifier implementation show that there is promising

future on machine learning for the security industry but the traditional methods of

detection are still valid. It is also worth mentioning that in the most cases, the antiviruses

detected the malicious payloads during their “Heuristics” analysis of the file. Although,

the sample data that we used were not a lot, they gave us a very good overview of what

are the important features for malware detection. Also, for future work it may be

interesting to see how the classifier would perform it is trained with a very large amount

of data, and how well does it detect adversarial input.

Page | 40

References
[1] The Art of Computer Virus Research and Defense. Szor P. February 2005

[2] https://www.gdatasoftware.com/blog/2017/04/29666-malware-trends-2017

[3] A Comparative Study of Virus Detection Techniques, Sulaiman Al Amro, Ali Alkhalifah,

November 2015

[4] Morales, J.A., 2008. A behavior-based approach to virus detection, Florida International

University. Sulaiman Al Amro, Ali Alkhalifah

[5] Signature Based Malware Detection is Dead, James Scott, Sr. Fellow. ICIT, February 2017

[6] Conry-Murray, A., 2002. Behavior-blocking stops unknown malicious code. Network

Magazine.

[7] Morales, J. A., Clarke, P. J. and Deng, Y., 2010. Identification of file infecting viruses through

detection of self-reference replication. Journal in computer virology, 6(2), pp. 161-180

[8] Microsoft, "Microsoft Portable Executable and Common Object File Format

https://msdn.microsoft.com/enus/windows/hardware/gg463119.aspx

[9] R. Kohavi and F. Provost, "Glossary of terms," Machine Learning, vol. 30, no. 2–3, pp. 271–

274, 1998

[10] Supervised Machine Learning: A Review of Classification Techniques, S. B. Kotsiantis, July

2007

[11] https://machinelearningmastery.com/classification-versus-regression-in-machine-

learning/

[12] http://www.adweek.com/digital/deepface/

[13] https://www.amazon.jobs/en/teams/alexa-machine-learning

[14] https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-

music-19a41ab76efe

[15] https://techcrunch.com/2017/05/31/google-says-its-machine-learning-tech-now-blocks-99-9-

of-gmail-spam-and-phishing-messages/

[16] https://blog.google/products/gmail/save-time-with-smart-reply-in-gmail/

[17] https://www.google.com/recaptcha/intro/v3beta.html

[18] https://www.deepinstinct.com/

[19] https://respond-software.com/pages/product

[20] Intriguing properties of neural networks, C. Szegedy et al., arxiv 2014

[21] D. Lowd and C. Meek, “Adversarial learning,” in ACM SIGKDD International Conference on

Knowledge Discovery in Data Mining, 2005, pp. 641–647.

https://www.gdatasoftware.com/blog/2017/04/29666-malware-trends-2017
https://msdn.microsoft.com/enus/windows/hardware/gg463119.aspx
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
http://www.adweek.com/digital/deepface/
https://www.amazon.jobs/en/teams/alexa-machine-learning
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://medium.com/s/story/spotifys-discover-weekly-how-machine-learning-finds-your-new-music-19a41ab76efe
https://techcrunch.com/2017/05/31/google-says-its-machine-learning-tech-now-blocks-99-9-of-gmail-spam-and-phishing-messages/
https://techcrunch.com/2017/05/31/google-says-its-machine-learning-tech-now-blocks-99-9-of-gmail-spam-and-phishing-messages/
https://blog.google/products/gmail/save-time-with-smart-reply-in-gmail/
https://www.google.com/recaptcha/intro/v3beta.html
https://www.deepinstinct.com/
https://respond-software.com/pages/product

Page | 41

[22] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. In

KDD ’04: Proceedings of the 2004 ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 99–108. ACM Press, 2004.

[23] Biggio, B., Nelson, B., & Laskov, P. (2012). Poisoning attacks against support vector

machines. arXiv preprint arXiv:1206.6389.

[24] Explaining and Harnessing Adversarial Examples, I. Goodfellow et al., ICLR 2015

[25] https://people.eecs.berkeley.edu/~tygar/papers/SML2/Adversarial_AISEC.pdf

[26] A Practical Approach to Feature Selection, K Kira, L A. Rendell, 1992

[27] https://archive.org/download/virusshare_malware_collection_000

[28] http://scikit-learn.org/stable/modules/feature_selection.html#tree-based-feature-selection

[29] Random decision forests, T K Ho, 1995 Bell Labs.

[30] https://deepmind.com/research/alphago/

[31] https://en.wikipedia.org/wiki/Bayes%27_theorem

[32] A Static Malware Detection System Using Data Mining Methods, Usukhbayar

Baldangombo, Nyamjav Jambaljav, Shi-Jinn Horng, 2013

[33] Weilin Xu, Yanjun Qi, and David Evans. Automatically Evading Classifiers, A Case Study

on PDF Malware Classifiers. Network and Distributed Systems Symposium 2016, 21-24

February 2016, San Diego,

[34] Practical Black-Box Attacks against Machine Learning, N. Papernot, 2016

https://people.eecs.berkeley.edu/~tygar/papers/SML2/Adversarial_AISEC.pdf
https://archive.org/download/virusshare_malware_collection_000
http://scikit-learn.org/stable/modules/feature_selection.html#tree-based-feature-selection
https://en.wikipedia.org/wiki/Bayes%27_theorem

Page | 42

Appendix

Source code (Python)

1. '''''
2. @author Thanos Kalachanis - MTE1510
3. '''
4. import os
5. import pandas
6. import extractor
7. import numpy as np
8. import matplotlib.mlab as mlab
9. import matplotlib.pyplot as plt
10. from sklearn import cross_validation
11. from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier
12. from sklearn.feature_selection import SelectFromModel
13.
14. # Import our data.csv with the list of executables
15. data = pandas.read_csv('C://Users//Ethan//Desktop//Malware-

Classifier//data.csv', sep='|')
16. x = data.drop(['Name', 'md5', 'clean'], axis=1).values
17. y = data['clean'].values
18.
19. # Divide clean and malicious files in two lists for further usage
20. clean = data[0:2222].drop(['clean'], axis=1)
21. malicious = data[2222::].drop(['clean'], axis=1)
22.
23. print "Total number of entries: %s" % len(y)
24. print "%s clean and %s malicious" % (len(clean),len(malicious))
25.
26. # So in order to select the best features for our case we can
27. # use the Tree-Based feature selection algorithm
28. # http://scikit-learn.org/stable/modules/feature_selection.html#tree-based-feature-

selection
29. clf = ExtraTreesClassifier()
30. f_selector = clf.fit(x, y)
31. model = SelectFromModel(f_selector, prefit=True)
32. X_new = model.transform(x)
33. X_new.shape
34.
35. nb_features = X_new.shape[1]
36. indices = np.argsort(f_selector.feature_importances_)[::-1][:nb_features]
37. features = [data.columns[2+indices[f]] for f in range(nb_features)]
38.
39. print features
40.
41. # For the classification part we selected the RandomForest algorithm.
42. # But first of all we need to set our training and test data.
43. x_train, x_test, y_train, y_test = cross_validation.train_test_split(X_new, y ,test_siz

e=0.2)
44.
45. clf = RandomForestClassifier(n_estimators=75) # we can play with n for better results
46. clf.fit(x_train, y_train)
47. score = clf.score(x_test, y_test)
48. print("Random Forest classification results : %f %%" % (score*100))
49.
50. # So let's check the algorithm against one of our metasploit generated payload!
51. file = "C://Users//Ethan//Desktop//msf_reverse.exe"
52. data = extractor.extract_infos(file)
53. pe_features = map(lambda x:data[x], features)

Page | 43

54. res = clf.predict([pe_features])[0]
55. if res:
56. print "File %s is Malicious!" % file
57. else:
58. print "File %s is Clean!" % file
59.
60. print "------------------------"
61. print "Printing PE Features"
62. print "------------------------"
63. for f,p in zip(features,pe_features):
64. print f,p
65.
66. ''''' Sample output
67.
68. File C://Users//Ethan//Desktop//msf_reverse.exe is Malicious!
69. ------------------------
70. Printing PE Features
71. ------------------------
72. DllCharacteristics 0
73. Subsystem 2
74. SizeOfOptionalHeader 224
75. VersionInformationSize 17
76. ResourcesMaxEntropy 0
77. MajorSubsystemVersion 4
78. ResourcesMinEntropy 0
79. SectionAlignment 4096
80. MajorLinkerVersion 6
81. ResourcesMeanEntropy 0
82. SectionsMaxEntropy 7.01671734144
83. Machine 332
84. SizeOfHeaders 4096
85. FileAlignment 4096
86. LoadConfigurationSize 0
87. '''

