
A Tool for Antivirus Evasion
pyRAT

Nikolaos Themelis

Department of Digital Systems Security
University of Piraeus

This thesis is submitted for the degree of
Master of Science in Digital Systems Security

University of Piraeus October 2018

I would like to dedicate this thesis to my loving parents . . .

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this thesis are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university.
This thesis is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
thesis contains fewer than 10,000 words including appendices and bibliography and
has fewer than 20 figures.

Nikolaos Themelis
October 2018

Acknowledgements

This project would not have been possible without the support of many people. Many
thanks to my supervisor, Mr. Monogioudis Ioannis who helped make some sense of the
confusion in the beginning and for providing guidance and feedback throughout this
project. Finally, a big thanks to my parents and my friends who endured this long
process with me, always offering support.

Abstract

Given today’s radically increasing number of cyber attacks, information security has
become one of the most complex and important issues of concern at the world’s leading
organizations. This has motivated a large number of penetration testers to indulge and
develop tools and techniques, similar to those used by real hackers, to attack systems
in order to reveal security flaws. The aim of this thesis was to design and implement a
tool (pyRAT) which automates the generation of Metasploit payload executables that
have the ability to invade systems without getting detected by most antivirus solutions.
pyRAT meets all the requirements of usability and makes use of the penetration testing
tool, called Metasploit Framework along with its features. The exploitation process
has the intention of gaining access to the vulnerable system by creating a meterpreter
session between the user and the target system. pyRAT is developed, strictly, for
educational purposes and its ultimate goal is to be a helpful tool during the process of
a penetration test. Any other malicious or illegal use of this tool is not recommended.
Overall, this work has provided a great learning opportunity in the area of ethical
hacking using penetration testing.

Περίληψη

Δεδομένου του ραγδαία αυξανόμενου αριθμού επιθέσεων στον κυβερνοχώρο, η ασφάλεια

πληροφοριών έχει καταστεί ένα από τα πιο περίπλοκα και, ταυτόχρονα, σημαντικά ζητή-

ματα που απασχολούν τους κορυφαίους οργανισμούς του κόσμου. Αυτό έχει παρακινή-

σει πολλούς penetration testers να επιδοθούν και να αναπτύξουν εργαλεία και τεχνικές,
παρόμοιες με εκείνες που χρησιμοποιούν οι χάκερς, για να επιτεθούν σε συστήματα και

να αποκαλύψουν ευπάθειες ασφαλείας. Σκοπός αυτής της διπλωματικής εργασίας ήταν ο

σχεδιασμός και η υλοποίηση ενός εργαλείου (pyRAT) που αυτοματοποιεί τη δημιουργία
κακόβουλων εκτελέσιμων αρχείων με σκοπό την επιτυχή εισβολή σε ευάλωτα συστήματα

χωρίς αυτά να εντοπίζονται από τα περισσότερα antiviruses. Το pyRAT πληροί όλες
τις απαιτήσεις για usability και κάνει χρήση του Metasploit Framework και των χαρακ-
τηριστικών του. Η διαδικασία του exploitation στοχεύει στην απόκτηση πρόσβασης στο
ευάλωτο σύστημα δημιουργώντας meterpreter μεταξύ του χρήστη και του συστήματος
στόχου. Το pyRAT αναπτύχθηκε αυστηρά για εκπαιδευτικούς σκοπούς και ο απώτερος
στόχος του είναι να γίνει ένα χρήσιμο εργαλείο κατά τη διάρκεια ενός ελέγχου διείσδυσης.

Δεν συνιστάται οποιαδήποτε άλλη κακόβουλη ή παράνομη χρήση αυτού του εργαλείου.

Συνολικά, το έργο αυτό προσέφερε μια ευκαιρία για απόκτηση γνώσεων και εμπειρίας

στον τομέα του ethical hacking και των δοκιμών διείσδυσης.

Contents

List of Figures xv

Acronyms xvii

1 Introduction 1
1.1 Background . 1
1.2 Problem statement . 2
1.3 Scope and purpose of the thesis . 2
1.4 Objectives of the thesis . 3
1.5 Structure of the thesis . 3

2 Theoretical Background 5
2.1 Information Security . 5
2.2 Penetration testing - Malware . 6

2.2.1 Penetration testing . 6
2.2.2 Malware . 6

2.3 General Information about the Metasploit Project 7
2.4 How does the Metasploit Framework work 7
2.5 Metasploit Framework Components . 9

2.5.1 Libraries . 9
2.5.2 Metasploit Interfaces . 9
2.5.3 Modules . 10

2.6 Exploiting a system using the Metasploit Framework 11
2.7 Famous vulnerabilities and exploits - Meterpreter 12

2.7.1 Famous vulnerabilities and exploits 12
2.7.2 Meterpreter . 12

2.8 Bypassing IDs and antivirus detection 13
2.9 Related Work . 14

xiv Contents

3 Technologies used for the development of pyRAT 15
3.1 Kali Linux Operating System . 15
3.2 Python programming language . 16
3.3 Metasploit Framework . 16

3.3.1 Running Metasploit remotely as a service - RPC API 17
3.3.2 Starting the RPC server for the Metasploit Framework using

msgrpc . 17
3.4 Msfvenom . 17
3.5 ClamAV – pyClamd . 18

3.5.1 ClamAV . 18
3.5.2 pyClamd . 18

3.6 peCloak . 18

4 pyRAT Presentation 21
4.1 General information about pyRAT . 21

4.1.1 Tool Overview . 21
4.1.2 Tool Configuration . 21
4.1.3 User Access Levels . 22
4.1.4 Installation and Logging In . 22

4.2 pyRAT GUI . 23
4.2.1 Starting window . 23
4.2.2 Choosing exploit . 24
4.2.3 Choosing payload . 25
4.2.4 Payload options . 26
4.2.5 Scanning payload with ClamAV 27
4.2.6 Scanning payload in VirusTotal 28
4.2.7 ClamAV’s results . 29
4.2.8 Final ClamAV’s results after hiding the payload 30

4.3 Exploitation: Proof of Concept (PoC) 31

5 Conclusions - Future Work 33
5.1 Conclusions . 33
5.2 Future Work . 33

6 References 35

Appendix A How to install and run pyRAT 37

List of Figures

2.1 Metasploit Framework . 8

4.1 pyRAT’s Starting window . 23
4.2 Choosing exploit . 24
4.3 Choosing payload . 25
4.4 Payload options . 26
4.5 Scanning payload with ClamAV . 27
4.6 Scanning with pyclamd . 27
4.7 Scanning payload in VirusTotal . 28
4.8 ClamAV’s results. Time to hide the payload. 29
4.9 Final ClamAV’s results after hiding the payload. 30
4.10 Scanning obfuscated payload in VirusTotal 31
4.11 Meterpreter successfully opened in target machine. 32

Acronyms

API Application Programming Interface

AV Antivirus

CIA Confidentiality, Integrity and Availability

CLI Command Line Interface

DB Database

DLL Dynamic Link Library

FTP File Transfer Protocol

FUD Fully Undetectable

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDS Intrusion Detection System

IPS Intrusion Prevention System

IRP Incident Response Plan

IT Information Technology

LAN Local Area Network

MSF Metasploit Framework

xviii Acronyms

NOP No OPeration

OS Operating System

OWASP Open Web Application Security Project

PDF Portable Document Format

pyRAT Python Rat

RPC Remote Procedure Call

RTF Rich Text Format

SSL Secure Socket Layer

Chapter 1

Introduction

1.1 Background
Nowadays, it is common knowledge, that the world has become a global village thanks
to the widespread use of the internet. The benefits of information for organizations are
innumerous. Increased dependency on information by organizations, though, has led to
an increase on the dependence of the CIA (Confidentiality, Integrity and Availability)
paradigm of information. As a result of the above, in today’s globally interconnected
economy, information security has become one of the most complex issues of concern
at the world’s leading organizations. Organizations that want to be successful have
information security at the top of their priorities. It is now more than evident, that it
is almost impossible for an enterprise in today’s information economy to transact its
business with ineffective information security. In the meanwhile, individual actions
have the potential to cause great damage. Securing today’s enterprise networks involves
more than simply patch management, firewalls, and user education; it requires frequent
realworld validation of what works and what fails. This is what penetration testing is
all about. Penetration testing probes the systems of an organization for weaknesses
and identifies what the organization needs to do to defend itself from a real intrusion.

This thesis focuses on the Metasploit Framework. This open source platform, that is
part of many of the penetration tester tool kits, provides a consistent, reliable library
of constantly updated exploits and offers a complete development environment for
building new tools and automating every aspect of a penetration test. Thus, based on
Metasploit and for the purposes of the current thesis, an antivirus evasion tool, called
pyRAT, was developed.

2 Introduction

1.2 Problem statement
Recently, there has been an increasing interest regarding the interaction between pene-
tration testers and the Metasploit Framework and, in particular, scripting Metasploit
and using it remotely. Although, Metasploit is a well known and widely used tool
among penetration testers, it does not support modules or scripts written in Python.
A possible cause of this problem is the lack of good documentation. As many other
projects developed by a community, a lot of its documentation is old or incomplete.
This has brought to light many difficulties and, despite the fact that, there is a good
amount of tools that interact with Metasploit, the majority is developed to run only in
a terminal environment.

Moreover, a confusion still exists in developing tools with a Graphical User Inter-
face that simultaneously take advantage of Metasploit’s features, and more specifically,
the ability of developing and executing exploit code against remote target machines.
Additionally, there was no desktop tool with the ability of generating Metasploit
payload executables that, with the use of some efficient obfuscation techniques, could
bypass most antivirus solutions. As a consequence, and based on the points that were
mentioned previously, this thesis discusses and presents a Metasploit-based desktop
application for antivirus evasion that can be used as a handy tool for penetration
testers with experience; or even for beginners.

1.3 Scope and purpose of the thesis
As mentioned above, this thesis will focus on the study, design and development of a
Metasploit-based tool, called pyRAT, that will let users interact with the Metasploit
Framework by using it remotely as a service. pyRAT’s purpose is to explore the
possibilities of Metasploit as a tool for penetration testing by providing a significant
and flexible way of creating malicious executable files that can invade target systems
without getting caught by the majority of antiviruses. The final part of this thesis
consists of running and evaluating tests with the generated payload executables on a
Windows 10 machine.

1.4 Objectives of the thesis 3

1.4 Objectives of the thesis
The main objectives of this thesis are the following:

1. Study and understand the key thematic areas.

2. Study of the basic needs and functions of the application.

3. Design and development of the application,

4. Run and use the application

5. Run tests in the target system to prove the successful evasion

6. Documentation

1.5 Structure of the thesis
This report consists of six chapters. Here is an overview of the content of each presented
chapter:

Chapter One: This chapter introduces the subject of this thesis, formulating the
definition of the problem. It, also, discusses the scope and the purpose of the thesis
and its objectives.

Chapter Two: The second chapter covers the theoretical background and describes
in brief the theoretical concepts required for this thesis, such as Information Security
and its fundamentals, Metasploit Framework and its features, Penetration Testing and
malware. Moreover, the Related Work section names and specifies the characteristics
of some related tools.

Chapter Three: This chapter represents relevant information for understanding
the tool in depth. More specifically, it explains the details of the technologies that
have been used for the development of pyRAT.

Chapter Four: The fourth chapter presents the application, its workflow and a
proof of concept with the final tests in the target machine.

Chapter Five: The fifth chapter discusses the conclusions from the thesis process,
as well as useful data for a future work and suggests potential improvements on this
tool.

Chapter Six: References

Chapter 2

Theoretical Background

2.1 Information Security
According to the wikipedia’s definition, “Information security is the practice of prevent-
ing unauthorized access, use, disclosure, disruption, modification, inspection, recording
or destruction of information.” Information security’s main aim is to protect the con-
fidentiality, integrity and ensure availability of IT systems and business data while
maintaining a focus on efficient policy implementation. These objectives, also known as
the CIA triad, ensure that sensitive information is only disclosed to authorized parties
(confidentiality), prevent unauthorized modification of data (integrity) and guarantee
the data can be accessed by authorized parties when requested (availability)[1]. This
can be achieved through a multi-step risk management process that identifies assets,
threat sources, vulnerabilities, potential impacts followed by assessment of the effec-
tiveness of the risk management plan.

Threats to sensitive and private information come in many different forms, such
as malware and phishing attacks, identity theft and ransomware. Most people have
experienced software attacks of some sort. To deter attackers and mitigate vulner-
abilities at various points, multiple security controls are implemented. This should
minimize the impact of an attack. To be prepared for a security breach, companies and
security groups should have an Incident Response Plan (IRP) in place. This should
allow them to contain and limit the damage, remove the cause and apply updated
defense controls.[2]

6 Theoretical Background

2.2 Penetration testing - Malware

2.2.1 Penetration testing

A penetration test is a practice used by security professionals to assess the security of
a system. This process consists of attacking the system in order to reveal flaws that
could be exploited by a nefarious actor and informing the client of those vulnerabilities
along with recommended mitigation strategies. A penetration test target may be a
white box (which provides background and system information) or black box (which
provides only basic or no information except the company name). As one of the most
common techniques to assess information system security, penetration testing legally
attempts to break into the target system by utilizing tools and techniques similar to
those used by real hackers.[3]

2.2.2 Malware

The term malware is a contraction of malicious software. More specifically, malware is
any piece of software that was written with the intent of doing harm to data, devices
or to people. Viruses, worms, phishing attacks, Trojans, spyware are only some kinds
of malware.[4] The terms that are mainly encountered in this work are Virus and Trojan.

Virus

Viruses attach themselves to clean files and infect other clean files. They can spread
uncontrollably, damaging a system’s core functionality and deleting or corrupting files.
They usually appear as an executable file.

Trojan horse

This kind of malware disguises itself as legitimate software, or is included in legitimate
software that has been tampered with. It tends to create security backdoors in order
to let other malware in.

2.3 General Information about the Metasploit Project 7

2.3 General Information about the Metasploit Project
Metasploit Project was developed in 2003 by H. D. Moore as a computer security project
that provides information about security vulnerabilities and aids in penetration testing
and for exploit and IDS signature development. In the beginning it was written in Perl,
but it was completely rewritten in Ruby language in 2007. Its best-known sub-project
is the open source Metasploit Framework, a tool for developing and executing exploit
code against a remote target machine. It runs on Unix (including Linux and Mac OS
X) and on Windows. It can, also, be extended to use add-ons in multiple languages.
The Metasploit Project is well known for its anti-forensic and evasion tools, some of
which are built into the Metasploit Framework.[5]

2.4 How does the Metasploit Framework work
As mentioned above, the Metasploit Framework is a Ruby-based, modular penetration
testing platform that enables writing, testing, and executing exploit code. Put simply,
the Metasploit Framework:

• provides a basic command-line interface

• contains a large collection of quality assured exploits

• enables the user to launch a single exploit against a host

• can launch an exploit from a compromised machine against another target and
import files from numerous vulnerability scanners

8 Theoretical Background

Figure 2.1 Metasploit Framework

A drawback of the Metasploit Framework, as mentioned before, is the lack of good
documentation resulting in the lack of a complete list of available modules and their
description.

2.5 Metasploit Framework Components 9

2.5 Metasploit Framework Components
To be able to use Metasploit Framework at its full potential, it is more than necessary
to understand its structure. Metasploit Framework is a modular penetration testing
platform based on some core components: libraries, interfaces, modules, mixins, and
plugins.[5]

2.5.1 Libraries

The core of Metasploit Framework is composed of libraries. These libraries are
responsible for an interaction with various parts of the Metasploit Framework, such as
modules, plugins, interfaces and sessions.

• REX - Ruby Extension Library, is the most fundamental component of the entire
architecture. It handles sockets, protocols, servers and text transformations (SSL,
HTTP, Base64).

• Core - The Core library (msfcore) implements interfaces for exploit modules,
sessions, and plugins interaction.

• Base - The Base library (msfbase) is built on top of the Core library and provides
wrapper routines and utility classes.

2.5.2 Metasploit Interfaces

There are several interfaces available that can be used to access and utilize Metasploit
Framework. The most popular are maintained by Rapid7 and Strategic Cyber LLC.[5]

• Metasploit Express and Metasploit Pro are open-core commercial editions with a
web interface and additional features for easier automation of basic penetration
tests. More specifically:

– Metasploit Express - Metasploit Express was released in April 2010. It
offers a graphical user interface, integrates nmap for discovery, and adds
smart bruteforcing as well as automated evidence collection.

– Metasploit Pro - Metasploit Pro contains some extra features such as
building and managing social engineering campaigns, web application testing

10 Theoretical Background

and an advanced Pro Console for generating dynamic payloads for antivirus
bypass.

• Metasploit Community - Metasploit Community Edition was released in
October 2011. It is a free, web-based user interface for Metasploit, mostly designed
for students and small businesses. Metasploit Community has a reduced set of
features, including network discovery, module browsing and manual exploitation.
The main advantages over Metasploit Framework are the web interface and the
integrated security scanner Nmap.

• MSFconsole - The console interface, provides an easy and interactive way to
access the features and options within Metasploit Framework.

• MSFgui - MSFgui is a Java based graphical interface with the additional benefit
of connecting to a remote msfrpcd session on a remote host.

• MSFcli - MSFcli was a non-interactive command line interface for automated
exploit testing. Since January 2015 it has been discontinued, though.

• Armitage - Armitage is a graphical cyber attack management tool for the
Metasploit Framework that visualizes targets and suggests exploits. Some of its
features are: host discovery, exploitation, pivoting, and privilege escalation.

• Cobalt Strike - Cobalt Strike is a collection of threat emulation tools provided
by Strategic Cyber LLC to work with the Metasploit Framework. It includes all
features of Armitage and adds post-exploitation tools.

2.5.3 Modules

Modules are components that can plug into Metasploit Framework core and they have
defined structure and interface. These components perform specific actions, such as
exploitation and scanning. There are several module types available, categorized by
the action that they perform. More specifically:[7]

• Exploit - It executes a sequence of commands to target a specific vulnerability
in order to provide the attacker access to the victim’s system. Active exploits
will exploit a specific target, run until completed, and then exit. Passive exploits
wait for incoming hosts, such as web browsers or FTP clients, and exploit them
when they connect.

2.6 Exploiting a system using the Metasploit Framework 11

• Payload - It is the malicious code that will be executed on the targeted machine
following a successful exploitation. The payload enables the user to define how he
wants to connect to the shell and what he wants to do to the target system after
the compromise. A payload can open, for example, a Meterpreter or a command
shell.

• Auxiliary modules - These modules do not establish or directly support access
between the tester and the target system; instead, they perform related functions
such as information gathering, database fingerprinting, network scanning, fuzzing,
or sniffing that support the exploitation phase.

• Post modules - Following a successful attack, these modules run on compromised
targets to gather useful data and pivot the attacker deeper into the target network.

• NOPs - They can be used to bypass the standard IDS and IPS NOP sled
signatures by toggling the processor flags or altering the state of registers in order
to facilitate buffer overflows during attacks.

• Payload encoders - When exploits must bypass antivirus defenses, these mod-
ules encode the payload so that it cannot be detected enabling the attacker to
evade the IDS and IPS signatures.

2.6 Exploiting a system using the Metasploit Frame-
work

The major advantage of the Metasploit Framework is the modular approach that it
has, which means that the combination of any exploit with any payload is possible.
Although exploits can occur in a variety of ways, one common method is for exploits to
be launched from malicious websites. The victim might visit such a site by accident, or
he might be tricked into clicking on a link to the malicious site within a phishing email
or open a malicious file. Such attacks usually target software coded in Java, unpatched
browsers or browser plugins, and they are commonly used to deploy malware onto
the victim’s computer. Put simply, the modules presented before are used together to
conduct reconnaissance and launch attacks against targets.
The steps for exploiting a target system using the Metasploit Framework can be
summarized as follows:

12 Theoretical Background

1. Choose and configure an exploit

2. Check the target system to determine if it is susceptible to attack by the chosen
exploit. This step is optional and is usually omitted to minimize the detection

3. Choose and configure the payload

4. Choose an encoding technique to bypass detection controls(IDs/IPs or antivirus
software)

5. Execute the exploit

To choose exploits and payloads, some information about the target system is
needed, such as the Operating System’s version. This information can be gleaned with
port scanning and OS fingerprinting tools such as Nmap. In addition, vulnerability
scanners such as Nexpose and OpenVAS can detect target system security flaws.

2.7 Famous vulnerabilities and exploits - Meter-
preter

2.7.1 Famous vulnerabilities and exploits

In recent years, many exploits have been used to commit massive data breaches and
malware attacks. In 2016, for example, Yahoo announced a hack that had occurred
years earlier had caused the data of 1 billion users to be leaked. One of the most
well-known exploits in recent years is EternalBlue, which attacks a patched flaw in the
Windows Server Message Block protocol.

2.7.2 Meterpreter

Meterpreter is an advanced, dynamically extensible payload that uses in-memory DLL
injection stagers and is extended over the network at runtime. It communicates over the
stager socket and provides a comprehensive client-side Ruby API. It features command
history, tab completion, channels, and more. Meterpreter is stealthy, it resides entirely
in memory and writes nothing to disk. By default, it uses encrypted communications
and leaves limited forensic evidence and impact on the victim machine. The most

2.8 Bypassing IDs and antivirus detection 13

commonly used meterpreter payload is the ‘windows/meterpreter/reverse_tcp’.[6]

2.8 Bypassing IDs and antivirus detection
The exploitation phase is the most dangerous one for the penetration tester or attacker
due to the fact that they are directly interacting with the target network or system and
there is a great chance for their activity to be logged or their identity be discovered.
Most networks and systems employ various types of defensive controls to minimize
the risk of attack. Network devices include routers, firewalls, intrusion detection and
prevention systems, and malware detection software. Although no specific methodol-
ogy or tool is undetectable, there are some configuration changes and specific tools
that will make detection more difficult. For example in this tool, two different meth-
ods have been used in order to make the malware as stealthy and obfuscated as possible.

Most antivirus software rely on signature matching to locate viruses and other malware.
They examine each executable for strings of code known to be present in viruses and
create an alarm when a suspect string is detected. Many of Metasploit’s attacks rely
on files that may possess a signature that, over time, has been identified by antivirus
vendors. In response to this, the Metasploit Framework allows standalone executables
to be encoded to bypass detection. Unfortunately, extensive testing of these executables
at public sites, such as virustotal.com, have lessened their effectiveness in bypassing
the AV software.

Furthermore, many tools that used to hide the payloads, such as crypters, pack-
ers, Metasploit’s encoders, now they are easily detected by most antivirus solutions.
Thus, the best tactic is to write custom payloads and keep them simple to be away
from antivirus detection rather than creating payloads using popular frameworks. In
the following chapters, it will be demonstrated how pyRAT manages to bypass most
antiviruses. It is important to notice, though, that the results shown in this thesis
may change when someone reads and then uses the tool as antivirus signatures are
constantly updated.

14 Theoretical Background

2.9 Related Work
Some related projects to pyRAT that could be mentioned here is Veil[7] and Phantom-
Evasion[8]. Both tools are written in python and are designed to generate metasploit
payloads that bypass common antivirus solutions. The most commonly used tool is
Veil, which can turn an arbitrary script or piece of shellcode into a Windows executable.
Phantom-Evasion is an interactive antivirus evasion tool to generate almost fully
undetectable (FUD) executable even with the most common 32 bit msfvenom payload.
Best performances are obtained with 64 bit payloads, though.

Chapter 3

Technologies used for the
development of pyRAT

This chapter presents the tools, technologies and methodologies that have been used
for the development of the application.

3.1 Kali Linux Operating System
The operating system that has been used for the development of pyRAT is Kali Linux.
Kali Linux is a Debian-based Linux distribution aimed at advanced penetration testing
and security auditing. It is also designed for digital forensics. Kali is developed,
funded and maintained by Offensive Security[9], a leading information security training
company and it was released on the 13th March, 2013 as the successor of BackTrack
Linux. Kali Linux can run natively when installed on a computer’s hard disk, can
be booted from a live CD or live USB, or it can run within a virtual machine. It is
completely free of charge.

Kali Linux has over 600 pre-installed tools which are geared towards various information
security tasks, such as penetration testing, security research, computer forensics and
reverse engineering; including Armitage (a graphical cyber attack management tool),
Nmap (a port scanner), Wireshark (a packet analyzer), John the Ripper password
cracker, Aircrack-ng (a software suite for penetration-testing wireless LANs), Burp
Suite and OWASP ZAP web application security scanners and, of course, Metasploit
Framework. These tools can be used for a number of purposes, most of which involve
exploiting a victim network or application, performing network discovery, or scanning
a target IP address. Many tools from Backtrack were eliminated to focus on the most

16 Technologies used for the development of pyRAT

popular penetration testing applications.[10]

3.2 Python programming language
pyRAT is written in Python. Python is an interpreted high-level and object-oriented
programming language with dynamic semantics for general-purpose programming. It
was created by Guido van Rossum and was first released in 1991. Its high-level built-in
data structures and the automatic memory management combined with dynamic typing
and dynamic binding, make it very attractive for developers among the globe, as well
as for use as a scripting language to connect existing components together. Python
is a simple and easy to learn programming language and supports a big amount of
modules and packages.

Python provides increased productivity. Since there is no compilation step, debugging
programs is easy. Instead, when the interpreter discovers an error, it raises an exception.
When the program does not catch the exception, the interpreter prints a stack trace.
The debugger is written in Python itself. Furthermore, the Python interpreter and the
extensive standard library are available in source or binary form without charge for all
major platforms.[11]

Finally, the tool’s GUI is designed with the use of Tkinter. Tkinter is the most
commonly used GUI Programming toolkit for Python and is a thin object-oriented
layer on top of Tcl/Tk.

3.3 Metasploit Framework
Metasploit, as mentioned before, is written in Ruby and does not support modules or
scripts written in Python. However, in order to run the application, a way to make
Metasploit Framework interact with Python, needed to be found. More specifically,
for the purposes of this project, Metasploit is necessary to run as a service and be
used remotely. The main advantage of running Metasploit remotely is that it can be
controlled with custom scripts and it can also be controlled from anywhere in the world

3.4 Msfvenom 17

and from any device that has a terminal and supports Ruby.

3.3.1 Running Metasploit remotely as a service - RPC API

The RPC API enables to programmatically drive the Metasploit Framework and
commercial products using HTTP-based Remote Procedure Call services. The RPC
service can be used to locally or remotely execute Metasploit commands to perform
basic tasks like running modules, communicating with the database, interacting with
sessions, exporting data, and generating reports. The Metasploit products are written
primarily in Ruby, which is the easiest way to use the remote API. However, in addition
to Ruby, any language with support for HTTPS and MessagePack, such as Python,
Java, and C, can be used to take advantage of the RPC API. The method that is used
to start the RPC service is the msgrpc plugin.[12]

3.3.2 Starting the RPC server for the Metasploit Framework
using msgrpc

Before the RPC interface can be used, the RPC server must be started. If the Metasploit
Framework is being used, the server will start by loading the msgrpc plugin. The
msgrpc plugin provides a MessagePack[13] interface that spawns a listener on a defined
port and allows the issuing of remote commands in order to facilitate interactions with
Metasploit.[14]

3.4 Msfvenom
Msfvenom was used for the generation of the payload executables. Msfvenom is a
combination of msfpayload and msfencode putting both of these tools into a single
Framework instance. The Metasploit Framework had included these useful tools
for quite some time. These tools were extremely useful for generating payloads in
various formats and encoding these payloads using various encoder modules. Msfvenom
replaced both msfpayload and msfencode as of June 8th, 2015.[15]
The main advantages of msfvenom are:

• One single tool

• Standardized command line options

18 Technologies used for the development of pyRAT

• Increased speed

3.5 ClamAV – pyClamd

3.5.1 ClamAV

The antivirus that has been used for the payload scanning is Clam AntiVirus. ClamAV
is an open source antivirus engine for detecting trojans, viruses, malware and other
malicious threats. One of its main uses is on mail servers as a server-side email virus
scanner. The application was developed for Unix and has third party versions available
for Linux, Mac OS X, Solaris and other operating systems. ClamAV includes a num-
ber of utilities: a command-line scanner, automatic database updater and a scalable
multi-threaded daemon, running on an antivirus engine from a shared library. The ap-
plication has support for many formats like Zip, RAR, Tar, most mail file formats, ELF
executables and Portable Executable (PE). It also supports many document formats,
including Microsoft Office, HTML, RTF and PDF. To use the ClamAV antivirus engine
on Linux, Mac OS X and Windows an open-source python module, called pyClamd,
can be used.[16]

3.5.2 pyClamd

For the automated use of ClamAV the use of pyClamd was necessary. pyClamd is a
python interface to Clamd (ClamAV daemon). pyClamd adds virus detection capabili-
ties to the python software in an efficient and easy way and is released as open-source
software.[17][18]

3.6 peCloak
The main goal of pyRAT was to generate payload executables that could bypass most
antiviruses. This was accomplished with the use of peCloak. peCloak is a simple
proof-of-concept python script that automates multiple tricks to hide a malicious
windows executable in order to evade common antivirus solutions. peCloak is used in
pyRAT as an obfuscator for the generated payloads. More specifically, peCloak uses

3.6 peCloak 19

simple XOR, ADD and SUB instructions in the encoder to defeat signature based
detection. Its goal is to defeat any sandbox-based, heuristic run time detections that
might be employed by an AV product and finally, to minimize the static nature of the
decoding/heuristic code that would be included in the modified executable to avoid
having it become a signature for AV detection.[19][20]

Chapter 4

pyRAT Presentation

This chapter presents:

• The implementation of the web application at technical level

• And the application’s user manual

4.1 General information about pyRAT
As mentioned before, pyRAT is a user-friendly desktop application and is designed to
generate metasploit payload executables for Windows machines, as stealthy as possible,
in order to bypass common antivirus solutions.

4.1.1 Tool Overview

pyRAT operates on Kali Linux Operating System where Metasploit Framework is
pre-installed. It also runs on other operating systems, such as Mac OS X and on
Windows, but only after manually installing Metasploit Framework on them. Cur-
rently, and for the purposes of this thesis, it has been tested only on Kali Linux, though.

4.1.2 Tool Configuration

pyRAT requires connection to the Internet in order to connect to Metasploit’s database
and retrieve the exploits and payloads. Moreover, the target machine must be connected
to the Internet. If not, the listener that will be waiting on the attacker’s machine will

22 pyRAT Presentation

not be able to ‘listen’ anything from the victim’s machine and the attack will not be
successful even if the antivirus has been bypassed.

4.1.3 User Access Levels

Everyone can use the application, but only users with some basic knowledge of Metas-
ploit and its functionality will be able to use the tool properly and at its full potential
and make a successful attack. Without this basic knowledge they might struggle in
order to understand how Metasploit payloads work and how the exploitation needs to
be done in order to compromise a system.

4.1.4 Installation and Logging In

This section explains how to get pyRAT and install it on the computer. pyRAT can
be used immediately without any further configuration. The installation version is
currently available and can be downloaded/cloned from GitHub (details in Appendix)
and has to be installed on a directory on the host computer.

4.2 pyRAT GUI 23

4.2 pyRAT GUI
This section, presents the pyRAT’s GUI and describes in detail its workflow. Thus, a
use case to demonstrate how to use pyRAT is necessary.

4.2.1 Starting window

Figure 4.1 Starting window

Figure 4.1 shows the starting window of pyRAT. By pressing the "Show Exploits"
button, pyRAT starts the first phase.

24 pyRAT Presentation

4.2.2 Choosing exploit

In the first phase(Figure 4.2), the user views a variety of exploits(currently only for
Windows OS) from Metasploits Exploit DB. By clicking on the desired radiobutton,
the user chooses which exploit he wants to use. Then, proceeds to the next step by
pressing the ’Show Compatible Payloads’ button.
It should be noted that it is necessary that the user already made a reconnaissance on
the target machine to find potential vulnerabilities. This reconnaissance has to take
place prior to running the application, in order to achieve a successful exploitation.

Figure 4.2 Choosing exploit

4.2 pyRAT GUI 25

4.2.3 Choosing payload

Figure 4.3 shows the second phase, where the user views the compatible, with the chosen
exploit, payloads (only the meterpreter ones). By clicking on the desired radiobutton,
the user chooses which payload he wants to generate, in order to compromise the target
system. Then, proceeds to the next step by pressing the ’Choose Payload’ button.

Figure 4.3 Choosing payload

26 pyRAT Presentation

4.2.4 Payload options

Figure 4.4 shows a form that consists of four input fields that must be filled with the
exploit and payload options such as localhost, localport, remote host, etc. It is possible
to add here additional options in the third input field, but only if is required by the
chosen exploit or by the chosen payload. Finally, by clicking the “Generate Payload”
button, the user generates the payload.
Furthermore, it has to be highlighted that the generated payload is binded with a legit
executable file in order to trick some antiviruses and make the user more willing to
open it, than if it looked like a random executable file. In this case the legit file that
has been used is the “notepad++.exe”.

Figure 4.4 Payload options

4.2 pyRAT GUI 27

4.2.5 Scanning payload with ClamAV

In this phase, the user wants to check if the payload, that has been generated in the
previous step, is detectable by antiviruses. For the purposes of this application, as
mentioned in the previous chapter, the ClamAV’s daemon pyClamd is used.

Figure 4.5 Scanning

Figure 4.6 Scanning payload with ClamAV

28 pyRAT Presentation

4.2.6 Scanning payload in VirusTotal

Additionally, the user can manually scan the malware in an online scanner, like VirusTo-
tal (Figure 4.7) to see the amount of antiviruses that have recognised the payload as a
virus. Although, it is not considered as best practice to upload payloads to VirusTotal,
this is done only for demonstration purposes.

Figure 4.7 Scanning payload in VirusTotal

4.2 pyRAT GUI 29

4.2.7 ClamAV’s results

Figure 4.8 shows that if the file is caught by ClamAV, the user has the choice to hide
the payload, by clicking the “Hide Payload” button. By doing that, the user will be
able to bypass most antiviruses and compromise the target system.

Figure 4.8 ClamAV’s results. Time to hide the payload.

30 pyRAT Presentation

4.2.8 Final ClamAV’s results after hiding the payload

Figure 4.9 shows the final phase, where the hidden payload is scanned again and the
user can see the ClamAV’s final results where the scanned payload seems to be clean.

Figure 4.9 Final ClamAV’s results after hiding the payload.

4.3 Exploitation: Proof of Concept (PoC) 31

4.3 Exploitation: Proof of Concept (PoC)
After testing the hidden payload to see how many antiviruses it can bypass, the attacker
should send the malicious executable to the victim and trick him to open the file. For
this part, the use of some social engineering is necessary. Figure 4.10 shows that the
obfuscated payload is detected only by 10/67 antiviruses, instead of 30/66 AVs (Figure
4.7) that had detected the virus before the obfuscation.

Figure 4.10 Scanning obfuscated payload in VirusTotal

Next step, is to setup a listener in Metasploit and wait for the victim to open the
malicious file to get a meterpreter shell; if everything is done right. Thus, in order
to start the listener to test the payload, the malicious user could use the following
commands in msfconsole:

32 pyRAT Presentation

msf > use multi/handler
msf > set payload windows/meterpreter/reverse_tcp

msf > set lhost 192.168.2.87
msf > set lport 4444
msf > run

Figure 4.11 Meterpreter successfully opened in target machine.

Finally, after tricking the victim to open the executable file, the malicious user will
be waiting on his machine for the meterpreter to open. With the meterpreter active,
the attacker will have fully compromised the victim’s machine.
Figure 4.11 shows that after following the previous steps, a meterpreter was activated
and the target system’s details are revealed through the meterpreter command "sysinfo".

Chapter 5

Conclusions - Future Work

The last chapter of this thesis presents the conclusions that have been made during
the preparation, work and implementation of pyRAT. Finally, and to go a step further
in this thesis’ approach, the future work that could be done to improve this tool, is
mentioned.

5.1 Conclusions
In this thesis, a Metasploit-based desktop tool was developed using Python and its
modules. This application takes advantage of the Metasploit Framework and its
features. The main objective of the work was to present this technology and to show in
a simple and clear way how to achieve an invasion on a system effectively and stealthy
without getting caught by the majority of antiviruses. It is also worth mentioning
that pyRAT can be an important tool for those who want to practise themselves with
Metasploit’s exploits and penetration testing in general.

5.2 Future Work
This project can be a starting point for later theses or projects aiming at adding more
features and improving the tool. Some of the issues that could be done in the future are
the expansion of the targeted systems, due to the fact that currently the application
targets only Windows users and general performance improvements. Additionally,
pyRAT could be enhanced with an automated interaction with VirusTotal online
scanner.

Chapter 6

References

[1] "What is confidentiality, integrity, and availability (CIA triad)?"

https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-
CIA

[2] "What is information security (infosec)?"

https://searchsecurity.techtarget.com/definition/information-security-infosec

[3] "What is Penetration Testing?"

https://www.coresecurity.com/content/penetration-testing

[4] "What is Malware?"

https://www.avg.com/en/signal/what-is-malware

[5] "Metasploit Framework"

https://metasploit.help.rapid7.com/docs/msf-overview

[6] "About the Metasploit Meterpreter"

https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/

[7] "Veil-Framework"

https://github.com/Veil-Framework/Veil

[8] "Phantom Evasion" https://github.com/oddcod3/Phantom-Evasion

[9] "Offensive Security"

https://www.offensive-security.com/

https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://whatis.techtarget.com/definition/Confidentiality-integrity-and-availability-CIA
https://searchsecurity.techtarget.com/definition/information-security-infosec
https://www.coresecurity.com/content/penetration-testing
https://www.avg.com/en/signal/what-is-malware
https://metasploit.help.rapid7.com/docs/msf-overview
https://www.offensive-security.com/metasploit-unleashed/about-meterpreter/
https://github.com/Veil-Framework/Veil
https://github.com/oddcod3/Phantom-Evasion
https://www.offensive-security.com/

36 References

[10] "What is Kali Linux?"

https://docs.kali.org/introduction/what-is-kali-linux

[11] "What is Python?"

https://www.python.org/doc/essays/blurb/

[12] "RPC API"

https://metasploit.help.rapid7.com/docs/rpc-api

[13] "What is MessagePack?"

https://msgpack.org/index.html

[14] "SpiderLabs/msfrpc"

https://github.com/SpiderLabs/msfrpc/tree/master/python-msfrpc

[15] "MSFvenom"

https://www.offensive-security.com/metasploit-unleashed/msfvenom/

[16] "What is ClamAV?"

https://www.clamav.net/about

[17] "pyClamd - use ClamAV antivirus from Python"

https://www.decalage.info/python/pyclamd

[18] "pyClamd : Clamav with python"

https://xael.org/pages/pyclamd-en.html

[19] "peCloak.py – An Experiment in AV Evasion"

https://www.securitysift.com/pecloak-py-an-experiment-in-av-evasion/

[20] "peCloakCapstone/peCloak.py"

https://github.com/v-p-b/peCloakCapstone/blob/master/peCloak.py

https://www.python.org/doc/essays/blurb/
https://metasploit.help.rapid7.com/docs/rpc-api
https://msgpack.org/index.html
https://github.com/SpiderLabs/msfrpc/tree/master/python-msfrpc
https://www.offensive-security.com/metasploit-unleashed/msfvenom/
https://www.clamav.net/about
https://www.decalage.info/python/pyclamd
https://xael.org/pages/pyclamd-en.html
https://www.securitysift.com/pecloak-py-an-experiment-in-av-evasion/
https://github.com/v-p-b/peCloakCapstone/blob/master/peCloak.py

Appendix A

How to install and run pyRAT

Kali Linux OS

pyRAT - version 1.0

1. Download pyRAT from https://github.com/nikosthem/pyRAT/
or clone it with: git clone https://github.com/nikosthem/pyRAT.git

2. To connect to the RPC service, download the msfrpc module from
https://github.com/SpiderLabs/msfrpc/
or clone it with: git clone https://github.com/SpiderLabs/msfrpc.git

3. Download and install ClamAV with the command:
root@kali: apt-get install clamav

4. Download and install pyClamd from https://xael.org/pages/pyclamd-en.html
and run the following commands in terminal:

• python setup.py install

• sudo apt install clamav-daemon

• sudo service clamav-daemon start

5. Issue this command inside msfconsole:
msf > load msgrpc Pass=abc123

If all goes well, the following response will be shown in the console, which
tells the IP address, username, and password that will be used for the connection
to the msgrpc server:

https://github.com/nikosthem/pyRAT/
https://www.github.com/https://github.com/SpiderLabs/msfrpc
https://xael.org/pages/pyclamd-en.html

38 How to install and run pyRAT

* MSGRPC Service: 127.0.0.1:55552

* MSGRPC Username: msf

* MSGRPC Password: abc123

* Successfully loaded plugin: msgrpc

6. Run pyRAT.py and enjoy hacking!

	Contents
	List of Figures
	Acronyms
	1 Introduction
	1.1 Background
	1.2 Problem statement
	1.3 Scope and purpose of the thesis
	1.4 Objectives of the thesis
	1.5 Structure of the thesis

	2 Theoretical Background
	2.1 Information Security
	2.2 Penetration testing - Malware
	2.2.1 Penetration testing
	2.2.2 Malware

	2.3 General Information about the Metasploit Project
	2.4 How does the Metasploit Framework work
	2.5 Metasploit Framework Components
	2.5.1 Libraries
	2.5.2 Metasploit Interfaces
	2.5.3 Modules

	2.6 Exploiting a system using the Metasploit Framework
	2.7 Famous vulnerabilities and exploits - Meterpreter
	2.7.1 Famous vulnerabilities and exploits
	2.7.2 Meterpreter

	2.8 Bypassing IDs and antivirus detection
	2.9 Related Work

	3 Technologies used for the development of pyRAT
	3.1 Kali Linux Operating System
	3.2 Python programming language
	3.3 Metasploit Framework
	3.3.1 Running Metasploit remotely as a service - RPC API
	3.3.2 Starting the RPC server for the Metasploit Framework using msgrpc

	3.4 Msfvenom
	3.5 ClamAV – pyClamd
	3.5.1 ClamAV
	3.5.2 pyClamd

	3.6 peCloak

	4 pyRAT Presentation
	4.1 General information about pyRAT
	4.1.1 Tool Overview
	4.1.2 Tool Configuration
	4.1.3 User Access Levels
	4.1.4 Installation and Logging In

	4.2 pyRAT GUI
	4.2.1 Starting window
	4.2.2 Choosing exploit
	4.2.3 Choosing payload
	4.2.4 Payload options
	4.2.5 Scanning payload with ClamAV
	4.2.6 Scanning payload in VirusTotal
	4.2.7 ClamAV’s results
	4.2.8 Final ClamAV’s results after hiding the payload

	4.3 Exploitation: Proof of Concept (PoC)

	5 Conclusions - Future Work
	5.1 Conclusions
	5.2 Future Work

	6 References
	Appendix A How to install and run pyRAT

