
	
	 	

M.Sc.	Digital	Systems	Security	

ANALYSIS	AND	
IMPLEMENTATION	OF	THE	

FIDO	PROTOCOL	IN	A	
TRUSTED	ENVIRONMENT	

Author:	Anna	Angelogianni	
(annaaggelogianni@ssl-unipi.gr)		

University	of	Piraeus	6.7.2018	

Supervisor:	Christos	Xenakis	
(xenakis@unipi.gr)	

	

	 1	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
	
	 	

	

	 2	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

ACKNOWLEDGMENTS	
I	would	like	to	express	my	very	great	appreciation	to	my	supervisor	Professor	
Christos	Xenakis	for	his	valuable	and	constructive	suggestions	during	the	planning	
and	development	of	this	research	work.	His	willingness	to	give	his	time	so	generously	
has	been	very	much	appreciated.		
I	would	also	like	to	thank	Dr.	Christoforos	Ntantogian,	for	his	advice	and	assistance	in	
keeping	my	progress	on	schedule.		
My	grateful	thanks	are	also	extended	to	Mr.	Panagiotis	Nikitopoulos	for	his	help	in	
the	implementation	part,	our	conversations	helped	me	evolve	as	a	programmer.		
I	would	also	like	to	extend	my	thanks	to	all	my	professors	during	this	Master	that	
helped	me	grow	both	as	a	professional	and	as	a	human.	
Last	but	not	least,	I	wish	to	thank	my	parents	and	my	friends	for	their	support	and	
encouragement	throughout	my	studies.	
	
	
	
	
	
	
	 	

	

	 3	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
	 	

	

	 4	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

TABLE	OF	CONTENTS	
Acknowledgments	 2	

Table	of	Figures	 5	

Abstract	 7	

Chapter	1:	Introduction	 9	
1.1	The	problem	 9	
1.2	The	solution	 9	
1.3	The	benefits	 9	

Chapter	2:	FIDO	UAF,	U2F	and	FIDO	2	 10	
2.1	FIDO	UAF	Overview	 10	
Client	 10	
Relying	party	 10	

2.2	FIDO	UAF	User	Verification	Methods	 11	
2.3	FIDO	UAF	Attestation	Types	 11	
2.4	FIDO	UAF	Protocol	Conversations	 12	
1)	 Authenticator	Registration	 12	
2)	 User	Authentication	&	Transaction	Confirmation	 15	
3)	 Authenticator	Deregistration	 17	

2.5	FIDO	UAF	v1.1	vs	v1.2	 18	
2.6	FIDO	UAF	and	TEE,	SE,	TPM	 22	
2.7	FIDO	U2F	Overview	 24	
Client	 24	
Relying	Party	 25	

2.8	FIDO	U2F	Protocol	Conversations	 26	
1)	 Registration	 26	
2)	 Authentication	 26	

2.9	FIDO	2	Overview	 27	
2.10	FIDO	2	Protocol	Conversations	 28	
1)	 Registration	-	Authenticator_Make_Credential	 28	
2)	 Authentication–	Authenticator_Get_Assertion	 29	

2.11	FIDO	2	Client:	Microsoft	Edge	and	Windows	Hello	 30	
2.12	FIDO	2	Client:	Browsers	 30	
2.13	FIDO	2	Client:	OS	 31	
2.14	FIDO	2	vs	FIDO	UAF	and	U2F	 31	

Chapter	3:	Trust	Execution	Environment	 32	
3.1	TEE	Client	API:	Shared	Memory	and	Functions	 35	

	

	 5	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

1)	 Shared	Memory	 35	
2)	 TEE	Client	API	Functions	 36	

3.2	Trusted	User	Interface	API	(TUI)	 39	
3.3	TEE	Internal	Core	API	 40	
3.4	TEE	Implementations	 43	

Chapter	4:	TEE-FIDO	Implementation	 44	

Chapter	5:	Other	FIDO	Implementations	 46	
5.1	eBay	 46	
5.2	ReCRED	 46	

Recred	documentation	 47	

References	 48	

	

TABLE	OF	FIGURES	
figure	1:	FIDO	UAF	Protocol	Overview	...	11	
figure	2:	FIDO	UAF	Registration	Messages	Flow	..	14	
figure	3:	FIDO	UAF	Authentication	Messages	Flow	..	16	
figure	4:	FIDO	UAF	Deregistration	Messages	Flow	...	17	
figure	5:	FIDO	Authenticator's	Internal	Architecture	...	23	
figure	6:	FIDO	U2F	Registration	Messages	Flow	...	26	
figure	7:	FIDO	U2F	Authentication	Messages	Flow	..	27	
figure	8:	FIDO	2	Registration	Messages	Flow	...	29	
figure	9:	FIDO	2	Authentication	Messages	Flow	..	30	
figure	10:	PCB	Architecture	..	32	
figure	11:	REE	and	TEE	..	33	
figure	12:	TEE	Internal	Functions	...	34	
figure	13:	Global	Platform	Specifications	...	34	
figure	14:	TEE	scheme	..	36	
figure	15	ReCRED_D3.3_Description_of_DCA_protocols_and_technology_support	39	
figure	16:	FIDO	in	TEE	implementation	scheme	...	44	
figure	17:	CA	implementation	result	..	44	
figure	18:	TA	Implementation	result	..	45	
figure	19:	ReCRED	code	overview	..	46	
	
	
	
	
	 	

	

	 6	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	 	

	

	 7	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

ABSTRACT	
The	increasing	use	of	online	accounts	has	created	the	need	for	access	control	and	
security.	Different	authentication	techniques	have	been	proposed	over	the	years	but	
the	passwords	have	failed	to	be	replaced	yet.	FIDO	protocol	proposes	a	new	
authentication	scheme	that	guarantees	both	security	and	usability.	Nevertheless,	for	
every	protocol	to	be	secure,	trusted	hardware	is	also	needed	for	the	storage	of	
private	keys.	Therefore,	this	thesis	explores	both	FIDO	and	TEE	and	proposes	a	way	
to	combine	them	both	to	a	proven	secure	scheme.		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

	

	 8	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
	 	

	

	 9	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

CHAPTER	1:	INTRODUCTION	
1.1	The	problem		
The	extended	use	of	online	services	has	resulted	in	the	vast	adoption	of	passwords	as	
authentication	 schemes,	 aiming	 to	 create	 a	 secure	 environment	 for	 all	 parties	
involved.	
Unfortunately,	the	idea	of	passwords	has	many	problems	such	as:	

• The	easier	the	password	is	for	the	owner	to	remember	it,	the	easier	it	will	also	

be	for	the	attacker	to	guess.	

• Passwords	are	stolen	from	the	servers.	

• Users	are	entering	their	credentials	into	untrusted	apps.	

• Users	have	problems	remembering	the	different	passwords	used	for	different	

services	with	different	password	policies.	

In	general	terms,	users	do	not	know	where	they	enter	their	passwords	and	servers	do	
not	know	if	the	client	is	who	he	says.	
It	 is	 crucial	 to	 develop	 strong	 authentication	 schemes	 that	 combine	 security	 with	
usability.	

1.2	The	solution	
FIDO	(Fast	Identity	Online)	proposes	a	strong	authentication	scheme	in	which	the	user	
is	authenticated	to	 the	device	and	the	 latter	 is	authenticated	to	 the	server	using	a	
challenge-response	scheme	and	public	key	cryptography.		

1.3	The	benefits	
• User	credentials	are	now	stored	on	the	user’s	device	in	a	trusted	environment.	

• Server	only	stores	the	public	key	of	the	user	authentication	process.	

• Users	do	not	have	to	remember	complex	passwords	(convenience	&	security).	

• Users	 can	 select	 the	 authentication	 mechanism	 of	 their	 preference	 (PIN,	

biometrics,	etc.)	and	use	it	for	different	services.	

• Authentication	keys	are	different	for	different	services.		

• FIDO	 protocol	 can	 be	 combined	 with	 existing	 technologies	 and	 it	 is	 highly	

extensible.		

• Both	the	server	and	the	client	are	protected.	

	
	
	 	

	

	 10	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

CHAPTER	2:	FIDO	UAF,	U2F	AND	FIDO	2	
There	are	two	key	protocols	within	FIDO:	FIDO	UAF	and	FIDO	U2F.		

2.1	FIDO	UAF	Overview	
The	Universal	Authentication	Protocol	(UAF)	allows	online	services	to	offer	password-
less	and	multi-factor	security.	There	are	two	basic	parties	involved	in	the	UAF	protocol:	
the	server	and	the	client.		
	

CLIENT	
The	client	side	includes	the	FIDO	UAF	client	which	implements:	

(a) the	client	side	of	FIDO	UAF	protocol,		
(b) the	FIDO	Authenticator	which	creates	the	key	for	the	cryptographic	challenge,	

combining	 for	 example	 a	 fingerprint	 input	 with	 the	 supported	 crypto	

algorithms,	and		

(c) the	Authenticator	Specific	Model	(ASM)	which	permits	the	communication	of	

the	FIDO	UAF	client	with	the	Authenticator.	

The	FIDO	Authenticator	 could	be	embedded	on	user’s	device	or	external	hardware	
(that	can	be	used	in	more	devices).	The	matcher,	which	performs	the	user	verification	
process,	 is	a	part	of	 the	authenticator.	Tampering	with	 the	matcher	could	crucially	
affect	the	security	of	the	protocol	and	therefore,	it	is	recommended	to	run	this	module	
in	a	 trusted	environment.	According	 to	 the	FIDO	UAF	 specifications,	 the	envisaged	
methods	for	user	verification	are	PIN	and	biometric-based.	Nevertheless,	FIDO	UAF	
also	supports	location	and	pattern-based	verification.		
In	 the	 implementation	 of	 PIN/passcode-based	 user	 verification	 methods,	 it	 is	
important	to	specify	the	base	of	the	numeric	system	(e.g.	10),	the	minimum	length	of	
the	PIN,	the	maximum	attempts	before	the	authenticator	blocks	this	method	and	the	
wait	time	after	blocking.		

RELYING	PARTY	
The	Relying	Party	includes:	

(a) the	 Web	 Server	 containing	 the	 service	 in	 which	 the	 user	 wants	 to	 be	
authenticated,	and		

(b) the	FIDO	server	which	ensures	that	only	trusted	applications	are	being	used.		

The	FIDO	Server	can	cryptographically	verify	that	user’s	FIDO	authenticator	is	indeed	
trusted	 and	 compliant	 with	 FIDO	 protocol	 using	 a	 process	 called	 authenticator	
attestation.		
	

	

	 11	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	1:	FIDO	UAF	Protocol	Overview	

	
The	 communication	 between	 the	 client	 and	 the	 server	 is	 achieved	 using	 the	 TLS	
protocol.	 The	 communication	 between	 the	 client	 and	 the	 FIDO	 client,	 as	 well	 as	
between	the	FIDO	client	and	the	authenticator	is	achieved	using	the	appropriate	API	
(UAF	API,	ASM	API).	

2.2	FIDO	UAF	User	Verification	Methods	
The	following	are	the	user	verification	methods	supported	on	user’s	local	device	by	
FIDO	UAF.	

• Fingerprint	
• Passcode	
• Voiceprint	
• Face	print	
• Location	
• Eye	print	
• Pattern	
• Handprint	

In	the	UAF	protocol	specifications	document,	the	envisaged	user	verification	
methods	are	PIN	and	biometric	based.		
FIDO	UAF	also	supports	silent	authenticators	which	do	not	requiring	any	types	of	
user	verification	or	user	presence	check.	

2.3	FIDO	UAF	Attestation	Types	
FIDO	UAD	proposes	3	types	of	attestation	

1. Basic	full	

In	which	a	group	of	authenticators	that	share	some	common	characteristics	

(i.e.	same	model),	possess	an	attestation	certificate	and	an	attestation	private	
key	which	they	use	to	sign	the	registration	object.	

	

	 12	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

2. Basic	surrogate	

In	which	the	key	registration	object	is	signed	using	Uauth.priv	key.	It	does	not	
provide	any	cryptographic	proof	of	the	authenticators	security	characteristics.	
It	is	used	if	the	authenticator	is	not	able	to	have	an	attestation	private	key.		

3. ECDAA	

Which	 proves	 the	 trust	 in	 the	 authenticator	 using	 Direct	 Anonymous	
Attestation	cryptographic	scheme	(DAA)	with	Elliptic	Curves.	

It	is	a	more	secure	alternative	than	the	basic	full	attestation	which	uses	“group	

keys”	and	it	combines	security	with	privacy.	In	ECDAA	if	the	key	is	stolen	it	does	
not	affect	other	authenticators.	

Another	solution	to	group	keys	is	the	use	of	individual	keys	combined	with	a	

Privacy-CA.	However,	involving	a	third	party	could	involve	other	risks	such	as	

threats	on	user’s	privacy	and	high	availability	requirements	on	behalf	of	the	
Privacy-CA.	

2.4	FIDO	UAF	Protocol	Conversations	
The	core	FIDO	UAF	protocol	consists	of	the	following	conversations	between	the	
FIDO	UAF	Client	and	the	FIDO	Server:	

1. Authenticator	Registration	

2. User	Authentication	

3. Transaction	Confirmation	
4. Authenticator	Deregistration		

The	enrollment	of	the	user	in	the	authenticator	does	not	concern	FIDO.		

1) AUTHENTICATOR	REGISTRATION	
The	registration	process	allows	the	Relying	Party	to	verify	the	authenticity	of	the	FIDO	
Authenticator	and	register	it	among	with	the	user’s	account.	Once	an	authenticator	
has	been	validated,	the	Relying	Party	can	assign	a	unique	identifier	number	(aaid)	to	
the	authenticator	that	can	be	used	in	future	communication	between	the	two	parties.	
	

§ Registration	request	and	registration	reply	

From	a	cryptographic	point	of	view,	after	the	registration	request	is	being	send	by	
the	FIDO	Client,	the	Server	will	reply	with	a	message	containing	the	following	
parameters:	username,	policy,	appID,	challenge.	
The	username	refers	to	the	parameter	that	helps	the	Authenticator	distinguish	the	
different	users	(different	keys)	of	the	same	application	(or	website),	the	policy	refers	
to	the	Relying	party’s	set	of	criteria	concering	the	acceptable	authenticators,	the	
appID	refers	to	the	parameter	used	by	UAF	Client	to	determine	if	the	application	is	
authorized	to	use	UAF	protocol	and	the	challenge	refers	to	a	random	value	send	to	
protect	against	replay	attacks.	

	

	 13	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

§ Key	registration	request	

After	receiving	the	registration	message,	the	FIDO	UAF	Client	decides	whether	to	
proceed	or	not	by	discovering	all	the	authenticators	available	that	satisfy	the	Relying	
Party’s	policy	using	Authenticator	Specific	Module	(ASM).	
The	FIDO	UAF	Client	will	also	check	the	appID	by	asking	from	the	Relying	Party	for	
the	facet	list	which	contains	all	the	approved	applications	(or	websites).	
If	there	the	authenticator(s)	and	the	appID	are	indeed	approved,	the	process	
continues	with	the	UAF	Client	computing	the	final	challenge	parameter	(fcp)	which	
derives	from	the	server	challenge,	the	appID,	some	other	data	and	the	
KHAccessToken	which	derives	from	appID,	personaID	(an	identifier	provided	by	ASM	
used	to	associate	different	 registrations),	ASMToken	and	the	callerID	(the	ID	the	
platform	has	assigned	to	the	calling	FIDO	UAF	Client).	The	FIDO	UAF	Client	will	finally	
send	the	username,	the	hashed	fcp	and	the	hashed	KHAccessToken	to	the	
authenticator.	
	

§ Key	registration	reply	

The	Authenticator	after	receiving	these	values,	will	prompt	the	user	for	
authentication	and	generate	afterwards	a	set	of	keys,	a	public	and	a	private	user	
authentication	key	(Uauth.pub,	Uauth.priv)	that	will	store	in	its	secure	storage	and	
associate	with	the	username	and	the	KHAccessToken.	
The	Authenticator	will	create	the	Key	Registration	Data	(KRD)	which	contains	the	
hashed	fcp,	the	Uauth.pub,	the	aaid	(which	is	a	unique	identifier	assigned	to	all	FIDO	
Authenticators	that	share	the	same	characteristics),	the	attestation	certificate	
(related	to	related	to	the	Attestation	Key	whose	chain	up	to	the	Attestation	Root	
Certificate	 proves	trust	by	the	FIDO	Alliance)	and	some	other	values	and	signs	it,	
using	its	attestation	private	key.		
The	key	registration	is	subsequently	send	to	the	UAF	Client	and	then	to	the	FIDO	
Server	which	can	verify	whether	the	authenticator	is	trusted	by	the	aaid	and	the	
attestation	certificate	and	stores	the	Uauth.pub	key	in	a	database	to	authenticate	
the	user	in	the	future.	

	

	 14	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	2:	FIDO	UAF	Registration	Messages	Flow	 	

	

	 15	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

2) USER	AUTHENTICATION	&	TRANSACTION	CONFIRMATION	
The	 user	 authentication	 process	 (and	 the	 transaction	 confirmation)	 is	 based	 on	 a	
cryptographic	challenge-response	scheme	 in	which	 the	user	 is	prompt	by	 the	FIDO	
Server	 to	be	verified	 to	 the	FIDO	Authenticator	which	was	used	 in	 the	 registration	
process.	
Cryptographic	analysis:	
	

§ Authentication	Request	and	Authentication	message	

From	a	cryptographic	point	of	view,	after	the	authentication	request	is	being	send	by	
the	FIDO	Client,	the	Server	will	reply	with	a	message	containing	the	following	
parameters:	the	authenticator	policy,	the	appID	and	the	server	challenge.		
	

§ Key	Authentication	request	

The	FIDO	UAF	Client	will	check	the	appID	and	the	policy	to	determine	whether	the	
application	(or	website)	is	trusted	and	whether	UAF	Authenticators	meet	the	
requirements	by	the	Server’s	policy.	The	FIDO	Client	will	afterwards	compute	the	fcp	
and	the	fcp’s	hash	as	well	as	the	KHAccessToken	that	will	send	to	the	UAF	
Authenticator.	
	

§ Key	Authentication	reply	

The	UAF	Authenticator	will	verify	that	the	UAF	Client	is	authorized	to	ask	
authentication	for	the	specific	user	based	on	the	KHAccessToken.	In	order	to	unlock	
the	Uauth.priv	key,	the	user	will	be	triggered	to	enter	a	PIN	or	his	fingerprint.	The	
Authenticator	will	subsequently	create	the	SignedData	object	which	contains	the	
hashed	fcp	and	some	other	values	and	is	signed	by	using	the	UAuth.priv	key	which	is	
specific	for	the	appID	and	the	username.	
The	client	will	send	this	message	to	the	FIDO	Server	that	can	cryptographically	verify	
the	response	by	using	Uauth.pub.	
	

	

	 16	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	3:	FIDO	UAF	Authentication	Messages	Flow	 	

	

	 17	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

3) AUTHENTICATOR	DEREGISTRATION		
Deregistration	is	required	when	the	user	account	is	removed	at	the	relying	party.	The	
relying	party	can	trigger	the	deregistration	by	asking	the	authenticator	to	delete	the	
associated	UAF	credentials	that	are	bound	to	the	user	account.	
Cryptographic	analysis:	
	

§ Deregister	request	

The	FIDO	Client	needs	to	be	logged	in	to	the	Relying	Party.	The	later,	will	send	back	to	
the	FIDO	Client	a	deregistration	request	containing	the	authenticators	to	be	deleted.		
	

• Deregister	Authenticator	request	

The	FIDO	Client	will	ask	the	Authenticator	to	delete	the	keys	related	to	the	Relying	
party	by	indicating	the	associated	aaid	and	keyid	(the	id	of	the	credentials).	

	
figure	4:	FIDO	UAF	Deregistration	Messages	Flow	

	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 18	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

2.5	FIDO	UAF	v1.1	vs	v1.2	
document	 FIDO	UAF	1.1	 FIDO	UAF	1.2	

1.	Architectual	
Overview	

-	 -	

2.	Protocol	
Specification	

	 § 3.1.8	Client	Data	dictionary	

Alternative	to	fcp	structure	to	support	CTAP2	
and	WebAuthn	
Contains:	challenge,	origin	(similar	to	facetID),	
hashAlg,	token	binding	(similar	to	channel	
binding),	extensions	

§ 4.2.2	Revealing	KeyIDs	

Advice	concerning	when	keyID	should	be	
revealed	to	protect	against	attacks.	

3.		UAF	Client	
API	Transport	

§ 4.5.1	TODO	note:		

What	does	it	occur	

and	what	should	RP	

do	when	

authenticator	access	

is	denied	

§ 6.1.1	Android	FIDO	Client	

Should	=>	Must	
FIDO	UAF	Clients	running	on	Android	version	5	or	later	
must	not	declare	this	permission	and	they	also	must	
not	declare	the	related	"uses-permission".		

4.	UAF	ASM	
API	

	 § 5.2	Java	ASM	API	for	Android		

§ 5.3	C++	ASM	API	for	iOS		

§ 5.4	Windows	ASM	API		

	

§ 6	CTAP2	Interface		

Which	allows	an	authenticator	to	be	used	as	
external	from	FIDO2	or	WebAuthn	protocol.	
This	section	specifies	the	how	the	ASM	should	
process	the	information	received	via	FIDO	
CTAP2	Interface	to	the	FIDO	Authenticator.	

§ 6.1	authenticatorMakeCredential		

§ 6.2	authenticatorGetAssertion		

§ 6.3	authenticatorGetNextAssertion		

§ 6.4	authenticatorCancel 	

§ 6.5	authenticatorReset		

§ 6.6	authenticatorGetInfo		

5.	UAF	
Authenticator	
Commands	

	 § 6.1.3	Command	Response	

Adds	more	information	about	RGB	display	
§ 6.3.4	Status	Code	&	6.4.4	Command	

Description	

	

	 19	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

Bound	authenticators	can	implement	
different	binding	method	for	the	keys.	

6.	UAF	APDU	 -	 -	

7.	Metadata	
Statement	

	 § 3.1	Authenticator	Attestation	GUID	(AAGUID)	

An	id	assigned	by	the	manufacturer	that	
Indicates	the	type	of	the	authenticator	
§ 3.10	Extension	Descriptor	dictionary	

Tag	parameter	is	added	in	the	dictionary	
which	refers	to	the	tag	of	the	extension	
§ 3.11	Alternative	Descriptions	dictionary	

Which	contains	the	description	in	different	
languages	
§ 4	Metadata	keys	

The	following	parameters	are	added	to	the	
Metadata	Statement	dictionary:	

-legalHeader	
-alternativeDescription	
-authenticationAlgorithm	
-publicKeyAlgEncodings	
-cryptoStrength	
-operatingEnv	

8.	Metadata	
Service	

	 § 3.1.2	Status	Report	dictionary	

The	following	parameters	are	added	to	the	
Status	Report	dictionary:	

-certificationDescriptor	
-certificateNumber	
-certificationPolicyVersion	
-certificationRequirementsVersion	

§ 3.1.5	Metadata	TOC	Payload	dictionary	

The	following	parameter	is	added	to	the	
Metadata	TOC	Payload	dictionary:	

-legalHeader	
9.	Registry	 -	 -	

10.	UAF	
Registry		

	 § 5.1	User	Verification	Method	Extension	

§ 5.2	User	ID	Extension	

§ 5.5	User	Verification	Caching	

This	extension	allows	the	RP	to	find	out	how	
long	ago	the	user	was	authenticated.	

11.	AppID	and	
FacetsID	

	 § 3.1.3.1	Dictionary	TrustedFacetList	

	

	 20	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

Which	is	an	array	of	TrustedFacets	(already	
defined)	

12.	ECDAA	
Algorithm	

	 This	specification	includes	the	fixes	of	the	issue	
regarding	the	Diffie-Hellman	oracle	w.r.t.	the	
secret	key	of	the	TPM	and	regarding	the	
potential	privacy	violations	by	fraudulent	TPMs	
as	proposed	in	[CCDLNU2017-DAA].		

§ 2.2	Architecture	Overview	

It	is	clarified	that	the	ECDAA-Join	operation	
takes	place	between	the	Authenticator	and	
the	ECDAA	Issuer	which	is	the	authenticator	
vendor.	
There	are	also	some	differences	concerning	
the	calculation	of	some	values	in	ECDAA-
Join	which	affect	

-ECDAA-Join	Algorithm	
-ECDAA-Join	Split	between	
Authenticator	and	ASM		
-ECDAA-Join	Split	between	TPM	and	
ASM		

13.	Security	
Reference	

	 § 3	Attack	Classification	

Attack	classes	are	specified	[AC1,	AC2,	AC3,	
AC4,	AC5,	AC6]	
§ 4	FIDO	Security	Goals	

[SG-16]	Assessable	level	of	security	
§ 5	FIDO	Security	Measures	

[SM-16]	Use	of	strong,	modern	
Cryptographic	Primitives	
[SM-17]	Resistance	to	Side	Channel	Attacks		
[SM-18]	Resistance	to	Injected	Faults	in	
Cryptographic	Functions		
[SM-19]	Bounded	Probability	of	a	Birthday	
Collision.		
[SM-20]	Individual	authenticators	are	
indistinguishable	provided	authenticators		
[SM-21]	Authentication	and	replay-
resistance		
[SM-22]	Certified	FIDO	Authenticators	fully	
described	by	the	vendor,	and	tested		
[SM-23]	Key	Handles	containing	a	key	are	
cryptographically	linked	with	the	
Authenticator		

	

	 21	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

[SM-24]	Design,	implementation	and	
manufacture	of	certified	FIDO	
Authenticators		
[SM-25]	Depending	on	the	certification	
level,	certified	authenticators	are	required		
[SM-26]	Input	Data	Validation		
[SM-27]	Protection	of	user	verification	
reference	data	and	biometric	data.		
[SM-28]	Resistance	to	Fault	Injection	
Attacks		
[SM-29]	Resistance	to	Remote	Timing	
Attacks		
	
§ 7	Threats	to	Client	Side	

T-1.1.2	Homograph	Mis-Authentication	
T-1.4.15	Compromised	the	internal	PRNG	
state	and	the	entropy	source		
T-1.4.16	Compromised	entropy	source	after	
successful	seeding	during	initialization		
T-1.4.17	Compromised	the	internal	PRNG	
state,	but	not	the	entropy	source		
T-1.4.18	Bad	Key	Generation		
T-1.4.19	Local	external	side	channel	attacks		
T-1.4.20	Internal	side	channel	attacks		
T-1.4.21	Error	injection	during	key	or	
signature	generation		
T-1.4.22	Birthday	Paradox	Collision		
T-1.4.23	Privacy	Reduction		
T-1.4.24	Covert	Channel		
T-1.4.25	Substitution	of	Protected	
Information		
T-1.4.26	Compromise	of	Protected	
Information		
T-1.4.27	Signature	or	registration	counter	
non-monotonicity		
T-1.4.28	Hostile	ASM	/	Client		
T-1.4.29	Debug	Interface		
T-1.4.30	Fault	induced	by	malformed	input		
T-1.4.31	Fault	Injection	Attack		
T-1.4.32	Remote	Timing	Attacks		
T-2.2.2	Linking	through	compromised	
Relying	Party	database		
T-5.1.3	Physical	Attack	on	a	User	Presence	
Authenticator		
T-5.1.4	Physical	Attack		

	

	 22	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

14.	Glossary	 	 The	following	definitions	have	been	added	to	
the	Glossary:	

-ECDAA	
-Test	of	User	Presence	
-User	Presence	Check	

It	is	also	added	in	the	definition	of	FIDO	
Authenticator	that	the	“Authenticators	specify	
in	the	Metadata	Statement	whether	they	have	
exclusive	control	over	the	data	being	signed	by	
the	Uauth	key.”		

	
	

2.6	FIDO	UAF	and	TEE,	SE,	TPM	
FIDO	proposes	a	secure	implementation	through	Trusted	Execution	Environment	
(TEE)	and	Secure	Element	(SE).	Trusted	Platform	Module	(TPM)	does	not	yet	support	
the	FIDO	UAF	attestation	model.	(These	technologies	are	explained	in	detail	in	the	
3rd	chapter	of	this	document)	
The	authenticator	might	be	implemented	in	separate	hardware	or	trusted	execution	
environments.	The	specifications	of	the	protocol	do	not	oblige	the	use	of	TEE	or	SE,	
nevertheless	they	underline	the	importance	of	protecting	some	specific	components	
suggesting	that	the	optimum	solution	is	the	TEE	or	SE,	depending	on	the	component.	
It	is	suggested	that	the	authenticator	should	be	implemented	in	a	TEE	(using	a	
special	“Trustlet”,	trusted	application	running	inside	TEE	to	perform	the	UAF	
operations)	and	communicate	with	an	SE	within	the	Authenticator,	where	all	the	
important	keys	could	be	stored.	
Generally,	it	is	important	to	protect	the	keys	and	the	functions	that	produce	the	keys	
whose	security	is	crucial	for	the	security	of	the	whole	protocol.	

	

	 23	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	5:	FIDO	Authenticator's	Internal	Architecture	

The	important	functions	and	keys	that	could	be	implemented	in	a	trusted	
environment	are	listed	in	the	following	table:	
Secure	Element	 • Attestation	private	key	[highly	recommended]	

• Matcher	

• Crypto	kernel	

• User	Verification	Model	

TEE	 • Matcher	

• Crypto	kernel		

• User	Verification	Model	

• Transaction	Confirmation	Display	

(implemented	with	Trusted	UI)	

• Wrap.sym	key	

• UAuth.priv	keys	

	

	 24	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

• Liveness	Detection/Presentation	Attack	

Detection	(in	the	case	of	PIN	based	matching)	

Trusted	Computing	Base	 • Facet	Mechanism	

	
Matcher:	By	definition,	the	matcher	component	is	part	of	the	authenticator.	This	
does	not	impose	any	restrictions	on	the	authenticator	implementation,	but	
implementers	need	to	make	sure	that	there	is	a	proper	security	boundary	binding	
the	matcher	and	the	other	parts	of	the	authenticator	together.		
Crypto	kernel:	The	crypto	kernel	is	a	module	of	the	authenticator	implementing	
cryptographic	functions	(key	generation,	signing,	wrapping,	etc)	necessary	for	UAF,	
and	having	access	to	UAuth.priv,	Attestation	Private	Key	and	Wrap.sym	
(symmetrically	encrypted	key	handles).	
User	Verification	Module:	If	the	User	Verification	Module	is	inside	the	Host,	for	
example	in	the	context	of	the	TEE,	the	UserVerificationToken	shall	be	generated	in	
the	Host	and	not	in	the	SE.	
This	specification	doesn't	specify	how	exactly	user	verification	must	be	performed	
inside	the	authenticator.	Verification	is	considered	to	be	an	authenticator,	and	
vendor,	specific	operation.	However,	it	is	proposed	how	the	vendor	User	Verify	
command	could	be	bound	to	UAF	Register	and	Sign	command	by	using	a	
UserVerificationToken.	

	
2.7	FIDO	U2F	Overview	
The	Universal	 Second	 Factor	 (U2F)	 protocol	 allows	online	 services	 to	 augment	 the	
security	of	their	existing	password	infrastructure	by	adding	a	strong	second	factor	to	
user	 login.	The	user	 logs	 in	using	a	username	and	password	as	before	but	can	also	
present	a	second	factor	device	any	time	he	chooses.	
FIDO	 supports	 software-based	 techniques	 but	 suggests	 the	 use	 of	 the	 appropriate	
hardware.	Hardware	supporting	U2F	is	compatible	with	modern	devices	without	the	
need	of	additional	drivers.	

CLIENT	
The	client	side	includes	of	the	FIDO	client	and	the	FIDO	U2F	device.	The	FIDO	client	is	
typically	a	web	browser	which	relays	the	messages	between	the	FIDO	U2F	device	(or	
U2F	token)	and	the	Relying	Party.	
The	FIDO	U2F	device	is	responsible	for	the	generation	of	U2F	tokens	which	provide	
cryptographic	assertions	used	by	the	Relying	Parties	to	verify	their	authenticity.	U2F	
Tokens	are	typically	small	special-purpose	devices	that	aren't	directly	connected	to	
the	Internet.	

	

	 25	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

RELYING	PARTY	
The	Relying	Party	 includes	the	Web	Server	containing	the	service	 in	which	the	user	
wants	 to	 be	 authenticated	 and	 the	 FIDO	 server	 which	 ensures	 that	 only	 trusted	
applications	are	being	used.		
FIDO	Server	can	cryptographically	verify	that	user’s	FIDO	U2F	device	is	indeed	trusted	
and	compliant	with	the	FIDO	protocol.	
The	communication	between	the	Relying	Party	and	the	FIDO	client	is	achieved	using	
the	 appropriate	 JavaScript	 API.	 FIDO	 also	 standardizes	 the	 form	 of	 the	 messages	
exchanged	between	the	FIDO	Client	and	the	U2F	device	sent	over	NFC,	Bluetooth	or	
USB.		 	

	

	 26	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

2.8	FIDO	U2F	Protocol	Conversations	
The	U2F	protocol	supports	2	operations:	registration	and	authentication.	

1) REGISTRATION	
The	registration	operation	 introduces	the	relying	party	to	a	 freshly-minted	key	pair	
produced	 by	 the	 U2F	 device.	 The	 browser	 implementation	 (using	 the	 appropriate	
JavaScript	code)	can	ensure	that	the	user	is	aware	of	this	dialogue.		
Cryptographic	analysis:	
	
§ Registration	request	

The	FIDO	Client	 contacts	 the	 relying	party	 to	obtain	 the	challenge	 and	 creates	 the	
hashed	challenge	parameter	which	also	includes	other	client	data:	type,	origin	(facetID	
of	the	caller),	channel	id	public	key.	The	FIDO	Client	will	send	the	challenge	parameter	
among	with	the	appID	to	the	U2F	device.	
	
§ Registration	response	

The	 U2F	 device,	 after	 ensuring	 user’s	 presence,	 will	 perform	 some	 cryptographic	
operations	 to	 generate	 the	 user	 public	 and	 private	 key	 and	 the	 key	 handle	which	
facilitates	the	identification	of	the	generated	keypair.	Afterwards,	the	U2F	device	will	
create	 the	 response	 message	 to	 the	 FIDO	 Client	 which	 includes	 the	 following	
parameters:	user	public	key,	key	handle	length,	key	handle,	attestation	certificate	and	
the	signature	of	the	appID,	challenge	parameter,	key	handle	and	user	public	key.	The	
FIDO	Client	will	forward	this	message	to	the	Relying	Party	which	will	store	the	user	
public	key	and	the	key	handle.		
	

	
figure	6:	FIDO	U2F	Registration	Messages	Flow	

	

2) AUTHENTICATION	
The	authentication	process	proves	possession	of	a	previously-registered	key	pair	 in	
order	 to	 verify	 that	 the	 U2F	 device	 is	 already	 registered	 to	 the	 service	 thus,	 it	 is	

	

	 27	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

trusted.	In	the	authentication	process	the	user	could	be	asked	to	verify	its	presence	
ex.	by	pushing	a	button,	before	the	U2F	device	signs	the	challenge.		
Cryptographic	analysis:	
	
§ Authentication	request	

The	FIDO	Client	 contacts	 the	 relying	party	 to	obtain	 the	challenge	 and	 creates	 the	
hashed	 challenge	 parameter	 which	 also	 includes	 other	 client	 data:	 type,	 origin,	
channel	 id	 public	 key.	 The	 FIDO	 Client	 can	 examine	 whether	 the	 U2F	 device	 is	
registered	by	sending	the	challenge	parameter	among	with	the	appID,	the	key	handle	
and	the	key	handle	length	to	the	U2F	device.	
	
§ Authentication	response	

The	U2F	device	will	retrieve	the	key	pair	using	the	key	handle	and	create	the	response	
message	to	the	FIDO	Client,	which	includes	a	counter	and	a	signed	object	containing	
the	appID,	the	counter	and	the	challenge	parameter.	
The	FIDO	Client	will	forward	these	values	along	with	the	challenge	parameter	to	the	
Relying	Party,	which	can	verify	the	validity	of	the	signature	using	the	user	public	key	
obtained	during	registration.	
	

	
figure	7:	FIDO	U2F	Authentication	Messages	Flow	

2.9	FIDO	2	Overview	
The	FIDO	2	protocol	is	a	combination	of	3	protocols:		

• FIDO	UAF/U2F	

• FIDO	CTAP	(for	external	authenticators)	

• WebAuthn	(JavaScript	API)	

FIDO	2	comes	to	help	the	integration	of	the	FIDO	protocol	(especially	the	FIDO	UAF)	
on	user’s	machines.	In	the	new	version	of	the	protocol	the	FIDO	Server	is	a	universal	
server	which	implements	the	server’s	side	FIDO	protocol	and	communicates	with	the	

	

	 28	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

metadata	 service.	 In	 addition,	 the	 browser	 implements	 a	 JavaScript	 API	 which	
facilitates	 the	 communication	 with	 the	 FIDO	 Client.	 The	 FIDO	 Client	 now	 is	
implemented	by	the	OS	platform	which,	for	the	time	being,	it’s	Android	or	Windows.	
Therefore,	 the	 idea	 of	 a	 Web	 Authentication	 API	 is	 introduced	 in	 the	 new	
specifications	 that	 allow	 the	 Relying	 Party	 to	 communicate	with	 the	 authenticator	
through	the	client	(browser	and	OS).		
FIDO	2	refers	to	the	registration	(make	credential)	and	authentication	(get	assertion)	
process.	 Authenticator	 management	 actions	 such	 as	 credential	 deletion	
(deregistration)	 is	 the	 responsibility	 of	 a	 user	 interface	 and	 is	 deliberately	 omitted	
from	the	API	exposed	to	scripts.		
The	FIDO	CTAP	document	describes	 the	communication	between	FIDO	Clients	and	
external	authenticators.	
The	WebAuthn	 is	 the	W3C	 candidate	 recommendation	 for	 the	 implementation	 of	
FIDO	in	browsers.		
The	protocol	messages	exchanged	bear	a	great	resemblance	to	the	previous	FIDO	UAF	
and	 U2F	 protocol	 specifications.	 The	 scheme	 follows	 the	 logic	 of	 UAF	 protocol	
messages	 exchanged.	 The	 external	 authenticator	 can	 be	 a	 USB,	 NFC	 or	 Bluetooth	
device	as	it	was	on	the	U2F	specifications.		
The	below	scenarios	will	further	explain	the	adoption	of	FIDO	2:	

• Registration	using	a	phone	

The	user	will	sign	in	to	his	existing	account	with	the	authentication	method	he	
was	already	using	and	select	to	register	this	device	on	this	specific	webpage	or	

application.	Then	the	user	will	enter	his	authentication	method	i.e.	fingerprint	
and	complete	the	authenticator	registration	step.	

• Authentication	on	laptop	
The	user	will	enter	the	website	by	his	broswer	and	select	to	sign	in	using	his	

previously	registered	mobile	phone.	The	user	will	see	a	message	on	his	mobile	
phone	to	select	the	account	that	he	wants	to	enter	(if	more	than	one)	and	then	

enter	his	authentication	method	i.e.	fingerprint.	

If	 this	 step	 is	 completed	 successfully	 the	 user	 will	 be	 able	 to	 access	 the	

webpage	from	his	browser	on	his	laptop.	

	

2.10	FIDO	2	Protocol	Conversations	
1) REGISTRATION	-	AUTHENTICATOR_MAKE_CREDENTIAL	

The	registration	refers	to	the	enrollment	of	the	specific	authenticator	to	the	Relying	
Party.	The	bears	great	resemblance	to	UAF	and	U2F.	
The	authenticator	will	generate	a	key	pair	and	store	the	public	value	in	the	Relying	
Party’s	server	in	order	to	be	authenticated.	
Cryptographic	analysis:	
	
§ Registration	request	

	

	 29	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

The	FIDO	Client	contacts	the	relying	party	to	obtain	the	challenge	the	userInfo	and	the	
relyingPartyInfo.	The	Client	will	create	the	clientData	parameter	and	forward	it	to	the	
authenticator	among	with	the	challenge	the	userInfo	and	the	relyingPartyInfo.	
	
§ Registration	response	

The	Authenticator	after	receiving	these	values,	will	prompt	the	user	for	
authentication	and	generate	afterwards	a	set	of	keys,	a	public	and	a	private	user	
authentication	key		that	will	store	in	its	secure	storage	and	create	the	
attestationObject	which	contains	information	about	the	key	and	attestation	type	and	
format	and	will	return	it	to	the	Client.	The	Client	will	forward	the	attestationObject	
among	with	the	credentialId	and	the	ClientData	

	
figure	8:	FIDO	2	Registration	Messages	Flow	

source:	https://developers.yubico.com/FIDO2/		
	

2) AUTHENTICATION–	AUTHENTICATOR_GET_ASSERTION	
The	authentication	process	proves	possession	of	a	previously-registered	key	pair	 in	
order	to	verify	that	the	device	is	already	registered	to	the	service	thus,	it	is	trusted.	In	
the	 authentication	 process	 the	 user	 could	 be	 asked	 to	 verify	 its	 presence	 ex.	 by	
pushing	a	button,	before	the	device	signs	the	challenge.		
Cryptographic	analysis:	
	
§ Authentication	request	

The	FIDO	Client	 contacts	 the	 relying	party	 to	obtain	 the	challenge	 and	 creates	 the	
clientData	object	which	sends	to	the	Authenticator	among	with	the	relyingPartyInfo.	
	
§ Authentication	response	

	

	 30	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

The	authenticator	will	retrieve	the	key	pair	and	send	to	the	Client	the	signature	among	
with	 the	 credentialId	 and	 the	 authData.	 The	 Client	 will	 forward	 to	 the	 server	 the	
information	received	from	the	authenticator	plus	the	clientData	object.	

	
figure	9:	FIDO	2	Authentication	Messages	Flow	

source:	https://developers.yubico.com/FIDO2/		

2.11	FIDO	2	Client:	Microsoft	Edge	and	Windows	Hello	
WebAuthn	API	in	Microsoft	Edge	enables	web	applications	to	use	Windows	Hello	
biometrics	for	user	authentication.	Using	Web	Authentication	combined	with	
Windows	Hello,	the	server	sends	down	a	plaintext	challenge	to	the	browser.	Once	
Microsoft	Edge	is	able	to	verify	the	user	through	Windows	Hello,	the	system	will	sign	
the	challenge	with	a	private	key	previously	provisioned	for	this	user	and	send	the	
signature	back	to	the	server.	
When	you	use	the	makeCredential	method,	Microsoft	Edge	will	first	ask	Windows	
Hello	to	use	face	or	fingerprint	identification	to	verify	that	the	user	is	the	same	user	
as	the	one	logged	into	the	Windows	account.	Once	this	step	is	completed,	Microsoft	
Passport	will	generate	a	public/private	key	pair	and	store	the	private	key	in	the	
Trusted	Platform	Module	(TPM),	the	dedicated	crypto	processor	hardware	used	to	
store	credentials.	If	the	user	doesn’t	have	a	TPM	enabled	device,	these	keys	will	be	
stored	in	software.	These	credentials	are	created	per	origin,	per	Windows	account,	
and	will	not	be	roamed	because	they	are	tied	to	the	device.	This	means	that	you’ll	
need	to	make	sure	the	user	registers	to	use	Windows	Hello	for	every	device	they	
use.	
Once	 the	 getAssertion	 call	 is	 made,	Microsoft	 Edge	 will	 show	 the	Windows	 Hello	
prompt,	which	will	verify	the	identity	of	the	user	using	biometrics.	After	the	user	is	
verified,	the	challenge	will	be	signed	within	the	TPM	and	the	promise	will	return	with	
an	assertion	object	that	contains	the	signature	and	other	metadata	for	you	to	send	to	
the	server:	

2.12	FIDO	2	Client:	Browsers	
• Firefox	

	

	 31	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

• Chrome	
• Microsoft	Edge	

2.13	FIDO	2	Client:	OS	
• Windows	

• Android	

• Mac	OS	(via	3rd	party	development)	

2.14	FIDO	2	vs	FIDO	UAF	and	U2F	
Authenticators	that	only	support	the	FIDO	U2F	Attestation	Statement	Format	have	
no	mechanism	to	store	a	user	handle,	so	the	returned	userHandle	will	always	be	null.		
	
	 	

	

	 32	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

CHAPTER	3:	TRUST	EXECUTION	ENVIRONMENT		
GlobalPlatform	defines	a	TEE	as	a	secure	area	in	the	main	processor	in	a	smart	phone	
(or	 any	 connected	 device)	 that	 ensures	 sensitive	 data	 is	 stored,	 processed,	 and	
protected	in	an	isolated,	trusted	environment.1	
GlobalPlatform	 with	 its	 alliances	 have	 documented	 the	 specifications	 of	 this	
technology.	
REE	
The	 Rich	 Execution	 Environment	 is	 comprising	 at	 least	 one	 Rich	 OS	 and	 all	 other	
components	of	the	device	(SoCs,	other	discrete	components,	firmware,	and	software)	
which	execute,	host,	and	support	the	Rich	OS.	WARNING:	In	the	previous	version	of	
the	Global	Platform	specification	document	the	REE	was	considered	to	be	everything	
outside	 of	 the	 Trust	 Execution	 Environment	 under	 consideration.	 In	 the	 new	
definition,	other	entities	are	acknowledged.		
TEE	
An	 execution	 environment	 that	 runs	 alongside	 but	 isolated	 from	 a	 Rich	 Execution	
Environment	 (REE).	 A	 TEE	meets	 certain	 security	 capabilities	 and	 requirements:	 It	
protects	 from	 general	 software	 attacks	 and	 can,	 therefore,	 resist	 a	 set	 of	 defined	
threats.	 In	general	 terms,	 the	TEE	offers	an	execution	space	that	provides	a	higher	
level	of	security	than	a	Rich	OS,	although	the	TEE	is	not	as	secure	as	an	SE,	the	security	
it	offers	is	sufficient	for	most	applications.		
A	typical	board	level	chipset	architecture	of	a	mobile	device,	which	consist	a	Printed	
Circuit	Board	(PCB)	and	several	components,	is	depicted	in	the	image	below:	

	
figure	10:	PCB	Architecture	

REE	has	access	to	the	untrusted	resources,	which	can	be	implemented	on-chip	(Soc)	
or	 off-chip	 in	 other	 components	 on	 the	 PCB.	 The	 REE	 cannot	 access	 the	 trusted	
resources.	This	access	control	is	enforced	through	physical	isolation,	hardware	logic	
based	isolation,	or	cryptographic	isolation	methods.	The	only	way	for	the	REE	to	get	
access	to	trusted	resources	is	via	any	API	entry	points	or	services	exposed	by	the	TEE	

1	
https://www.globalplatform.org/certification/TEE_Security_Certification_Presentati
on-FINAL1.pdf		

	

	 33	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

and	accessed	through,	for	example,	the	TEE	Client	API.2	There	is	a	REE	Communication	
Agent	which	provides	REE	support	for	messaging	between	the	Client	Application	and	
the	Trusted	Application.	

	

figure	11:	REE	and	TEE	

There	is	no	specific	implementation	architecture	for	these	components	(TEE,	REE,	SE).	
The	TEE	implementation	could	be	either	hardware	or	software.	
Trusted	OS	components	consist	of:	

• The	 Trusted	 Core	 Framework	 (also	 part	 of	 TEE	 Internal	 Core	 API)	 which	
provides	OS	functionality	to	Trusted	Applications.	

• Trusted	device	drivers	which	aid	the	communication	with	trusted	peripherals.	
There	is	also	the	TEE	Communication	Agent	which	works	with	the	REE	Communication	
Agent	 to	safely	 transfer	 the	messages	between	the	Client	Application	 (CA)	and	 the	
Trusted	Application	(TA).	The	CA	will	create	a	session	in	order	to	communicate	with	
the	TA.	
	(This	will	be	explained	more	thoroughly	in	the	Client	API	paragraph)	
Each	TA	has	a	TA	interface	which	encompass	a	set	of	entry	point	functions	that	the	
Trusted	 Core	 Framework	 implementation	 calls	 to	 inform	 the	 TA	 about	 life-cycle	
changes	(ex.	creates	an	instance)	and	to	relay	communication	between	Clients	and	the	
TA	 (ex.	 notifies	 the	 instance	 that	 a	 new	 client	 is	 connecting	 or	 when	 it	 invokes	
commands).	Once	the	Trusted	Core	Framework	has	called	one	of	the	TA	entry	points,	
the	TA	can	make	use	of	the	TEE	Internal	Core	API	to	access	the	facilities	of	the	Trusted	
OS.	

2	GPD_TEE_SystemArch_v1.1_Public_Release.pdf		

	

	 34	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	12:	TEE	Internal	Functions	

An	overview	of	TEE	Architecture	(and	the	respected	documents	from	GlobalPlatform	
specifications)	can	be	depicted	in	the	following	figure:		

	
figure	13:	Global	Platform	Specifications	

TEE	Architecture

Trusted	
Application

TA	Debug	
API

Internal	
API

Shared	
Memory

Client
Application

Client	
API

Shared	
Memory

Internal	API's

Internal	Core	
API

Trusted	Core	
Framework	API

Trusted	Storage	API	
for	data	&	keys

Crypto	Operations	API

Time	
API

Arithmetical	
API

Sockets	
API

TLS

UDP

TCPSecure	Element	API

Trusted	User	Interface	
API

TA	Debug	
API

Debug	Log	Message

Post	Mortem	Reporting	

	

	 35	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

3.1	TEE	Client	API:	Shared	Memory	and	Functions		
The	Client	API	provides	a	communication	channel	between	the	CA	and	the	TA.	Within	
the	 trusted	 environment	 this	 specification	 identifies	 two	 distinct	 classes	 of	
component:	the	hosting	code	of	the	TEE	itself,	and	the	Trusted	Applications	which	run	
on	 top	 of	 it.	 There	 is	 no	 definition	 of	 the	 expected	 implementation	 in	 the	 TEE	
specification	document.	
Within	the	REE	this	specification	identifies	three	distinct	classes	of	component:		

• The	CA	which	make	use	of	the	TEE	Client	API.	 	
• The	TEE	Client	API	library	implementation.	 		
• The	communications	stack	which	is	shared	amongst	all	CA,	and	whose	role	is	

to	 handle	the	communications	between	the	REE	and	the	TEE.	 	
	

In	a	session,	the	logical	connection	exists	between	a	CA	and	a	specific	TA.	A	Session	is	
opened	by	the	CA	within	the	scope	of	a	particular	TEE	Context.		
When	creating	a	new	Session,	the	CA	must	identify	the	TA’s	which	it	wishes	to	connect	
to	using	the	Universally	Unique	Identifier	(UUID)	of	the	TA.	The	open	session	operation	
allows	 an	 initial	 data	 exchange	 to	 be	made	with	 the	 TA,	 if	 this	 is	 required	 in	 the	
protocol	between	the	CA	and	the	TA.		
The	 Session	 MAY	 be	 opened	 using	 a	 specific	 connection	 method	 that	 can	 carry	
additional	connection	data,	such	as	data	about	the	user	or	user-group	running	the	CA,	
or	about	the	CA	itself.		
When	a	CA	creates	a	session	with	a	TA,	it	connects	to	an	instance	(which	can	be	one	
for	all	sessions	or	a	different	one	for	each	session)	of	that	TA	and	invokes	commands	
(a	message	including	a	Command	Identifier	and	Operation	Parameters	to	initiate	an	
operation)	 using	 the	 Client	 API.	 It	 is	 up	 to	 the	 TA	 to	 define	 the	 combinations	 of	
commands	and	their	parameters	that	are	valid	to	execute.		
A	TA	instance	has	physical	memory	address	space	which	is	separated	from	the	physical	
memory	 address	 space	 of	 all	 other	 TA	 instances.	 The	 TA	 instance	 memory	 space	
contains	the	TA	instance	heap	and	writable	global	static	data.	
All	 code	 executed	 in	 a	 TA	 is	 executed	 by	 tasks	 which	 keep	 a	 record	 of	 execution	
history.	Tasks	MUST	be	created	every	time	the	Trusted	OS	calls	an	entry	point	of	the	
TA.		

1) SHARED	MEMORY	
The	shared	memory	used	to	transfer	data	between	CA	and	TA	can	be	either	existing	
in	the	CA	memory	which	is	subsequently	registered	with	the	TEE	Client	API	or	memory	
which	is	allocated	on	behalf	of	the	CA	using	the	TEE	Client	API.		
When	possible	the	implementation	of	the	communications	channel	beneath	the	TEE	
Client	API	 should	 try	 to	 directly	map	 Shared	Memory	 in	 to	 the	 TA	memory	 space,	
enabling	true	zero-copy	data	transfer.	 In	cases	when	zero-copy	data	transfer	 is	not	
possible	(ex.	TEE	and	CA	do	not	have	access	to	the	same	physical	memory	system)	the	
specification	determines	synchronization	points	aiming	to	synchronize	the	TEE	Client	
API	and	the	shared	memory	block.	
The	 memory	 buffer	 used	 in	 an	 operation	 may	 be	 released	 immediately	 after	 its	
completion	and	the	TA	must	not	be	able	to	access	it.		

	

	 36	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	14:	TEE	scheme	

2) TEE	CLIENT	API	FUNCTIONS	
TEE	Client	API	defines	a	set	of	C	functions	and	structures	which	enable	the	developers	
to	 perform	 the	 required	 steps	 for	 establishing	 a	 connection	 and	 exchanging	 data	
between	CA	and	TA.	The	following	ones	are	used	perform	a	typical	operation	inside	
TEE:	

1. TEEC_InitializeContext		
The	 TEEC_Context	 is	 the	main	 logical	 container	which	 links	 a	 CA	with	 a	
particular	TEE.		
This	function	initializes	a	new	TEE	Context,	forming	a	connection	between	
CA	and	the	TEE	identified	by	the	string	identifier	name.		

	
	

name:	refers	to	the	name	of	TEE	connected	to	
context:	a	TEEC_Context	structure	 	

2. TEEC_FinalizeContext		
This	 function	 finalizes	 an	 initialized	 TEE	 Context,	 closing	 the	 connection	
between	the	CA	and	the	TEE.	The	CA	MUST	only	call	this	function	when	all	
Sessions	inside	this	TEE	Context	have	been	closed	and	all	Shared	Memory	
blocks	have	been	released.		

	

3. TEEC_RegisterSharedMemory		
This	function	registers	a	block	of	existing	CA	memory	as	a	block	of	Shared	
Memory	within	the	scope	of	the	specified	TEE	Context,	in	accordance	with	
the	 parameters	 which	 have	 been	 set	 by	 the	 CA	 inside	 the	 sharedMem	
structure.		

TEEC_Result TEEC_InitializeContext(
const char* name,
TEEC_Context* context)

void TEEC_FinalizeContext(
 TEEC_Context* context)

	

	 37	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	

sharedMem:	MUST	 point	 to	 the	 Shared	Memory	 structure	 defining	 the	
memory	region	to	register	

4. TEEC_AllocateSharedMemory		
This	 function	 allocates	 a	 new	 block	 of	 memory	 as	 a	 block	 of	 Shared	
Memory	within	the	scope	of	the	specified	TEE	Context,	in	accordance	with	
the	 parameters	 which	 have	 been	 set	 by	 the	 CA	 inside	 the	 sharedMem	
structure.		

	
	

5. TEEC_ReleaseSharedMemory		
This	 function	 deregisters	 or	 deallocates	 a	 previously	 initialized	 block	 of	
Shared	Memory.	

	
	

6. TEEC_OpenSession	
The	TEEC_Session	is	a	logical	container	which	links	a	CA	with	a	particular	
TEE.	
This	function	opens	a	new	Session	between	the	CA	and	the	specified	TA.		

session:	 	 a	 pointer	 to	 a	 Session	 structure	 to	 open	  	
destination:	a	pointer	to	a	structure	containing	the	UUID	(which	is	used	to	
uniquely	identify	the	TA)	of	the	destination	TA	
connectionMethod:	the	method	of	connection	to	use	 	
connectionData:	any	necessary	data	 required	 to	 support	 the	connection	
method	chosen	 	
operation:	 a	 pointer	 to	 an	Operation	 containing	 a	 set	 of	 Parameters	 to	
exchange	with	the	TA 	
returnOrigin:	a	pointer	to	a	variable	which	will	contain	the	return	origin	 	

	
7. TEEC_CloseSession		

This	function	closes	a	Session	which	has	been	opened	with	a	TA.		
All	Commands	within	the	Session	MUST	have	completed	before	calling	this	
function.		

TEEC_Result TEEC_RegisterSharedMemory(
 TEEC_Context* context,
 TEEC_SharedMemory* sharedMem)

TEEC_Result TEEC_AllocateSharedMemory(
 TEEC_Context* context,
 TEEC_SharedMemory* sharedMem)

void TEEC_ReleaseSharedMemory (
 TEEC_SharedMemory* sharedMem)

TEEC_Result TEEC_OpenSession (
 TEEC_Context* context,
 TEEC_Session* session,
 const TEEC_UUID* destination,
 uint32_t connectionMethod,
 const void* connectionData,
 TEEC_Operation* operation,
 uint32_t* returnOrigin)

	

	 38	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	

8. TEEC_InvokeCommand		
This	function	invokes	a	Command	within	the	specified	Session.	The	set	of	
commands	depend	on	the	TA.		

commandID	is	an	identifier	that	is	used	to	indicate	which	of	the	exposed	
Trusted	Application	functions	should	be	invoked		
	

9. TEEC_RequestCancellation		
This	 function	 requests	 the	 cancellation	 of	 a	 pending	 open	 Session	
operation	or	a	Command	invocation	operation.	Also,	in	error	events	that	
the	client	dies,	it	MUST	seem	as	a	cancelation	event	to	the	TA.	
As	 this	 is	a	 synchronous	API,	 this	 function	must	be	called	 from	a	 thread	
other	 than	 the	 one	 executing	 the	 TEEC_OpenSession	 or	
TEEC_InvokeCommand	function.		
It	 is	 unsure	 whether	 the	 operation	 will	 be	 cancelled	 by	 the	 time	 the	
function	returns	while	at	the	same	time	the	TA	MAY	ignore	the	cancellation	
request	

	
	
	
The	
consecutive	functions	come	in	pairs:	

• TEEC_InitializeContext	/	TEEC_FinalizeContext		
• TEEC_OpenSession	/	TEEC_CloseSession	 	
• TEEC_RegisterSharedMemory	/	TEEC_ReleaseSharedMemory	 	
• TEEC_AllocateSharedMemory	/	TEEC_ReleaseSharedMemory	 	

TEEC_Result TEEC_InvokeCommand(
 TEEC_Session* session,
 uint32_t commandID,
 TEEC_Operation* operation,
 uint32_t* returnOrigin)

void TEEC_RequestCancellation(
 TEEC_Operation* operation)

void TEEC_CloseSession (
 TEEC_Session* session)

	

	 39	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	

	
figure	15	ReCRED_D3.3_Description_of_DCA_protocols_and_technology_support	

	

3.2	Trusted	User	Interface	API	(TUI)	
The	Trusted	User	 Interface	(TUI)	API	permits	the	display	of	screens	to	the	user	and	
achieves	three	objectives:		

• Secure	 Display:	 Information	 displayed	 to	 the	 user	 cannot	 be	 accessed,	
modified,	or	obscured	by	any	software	within	the	REE	or	by	an	unauthorized	
application	in	the	TEE.	 	

• Secure	Input:	Information	entered	by	the	user	cannot	be	derived	or	modified	
by	any	software	within	the	REE	or	by	an	unauthorized	application	in	the	TEE.		

• Secure	 Indicator:	 The	 user	 can	 be	 confident	 that	 the	 screen	 displayed	 is	
actually	a	screen	displayed	by	a	TA.	 	

TUI	 can	 be	 used	 in	 authentication	 transactions	 (ex.	 PIN	 entry	 or	 username	 and	
password)	or	message	functionalities	(ex.	Transaction	confirmation).	
The	 peripherals	 that	 are	 related	 to	 the	 User	 Interface	 (such	 as	 touchscreen	 or	
keyboard)	must	be	wired	to	the	device.	When	the	TA	reserves	the	resources	for	the	
TUI,	the	peripherals	must	not	be	accessible	by	the	REE.	TUI	screens	must	be	displayed	
in	the	foreground,	that	is	the	reason	why	it	is	recommended	to	be	close	to	full	screen	
size.		
There	is	a	security	indicator	which	indicates	when	TEE	is	used	so	that	the	is	informed	
of	the	level	of	trust.	
TUI	also	supports	as	input	images	in	Portable	Network	Graphics	(PNG)	format	or	text,	
characters	of	the	ASCII	table	Characters	in	the	interval	[Unicode	(U+0020)	-	Unicode	
(U+007D)].		
TUI	sessions	must	be	terminated	in	events	related	to	power	management	(ex.	Device	
turn	off	or	reset).	

	

	 40	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

3.3	TEE	Internal	Core	API		
TEE	Client	API	defines	a	set	of	C	functions	and	structures	which	enable	the	developers	
to	 perform	 the	 required	 steps	 for	 establishing	 a	 connection	 and	 exchanging	 data	
between	CA	and	TA.	The	following	ones	are	used	perform	a	typical	operation	inside	
TEE:	
	

1. TA_CreateEntryPoint	
This	is	the	Trusted	Application	constructor.	It	is	called	once	and	only	once	
in	the	life-time	of	the	Trusted	Application	instance.	If	this	function	fails,	the	
instance	is	not	created	

	

2. TA_DestroyEntryPoint	
This	 is	 the	Trusted	Application	destructor.	 The	Trusted	Core	Framework	
calls	 this	 function	 just	 before	 the	 Trusted	 Application	 instance	 is	
terminated.	The	Framework	MUST	guarantee	 that	no	 sessions	are	open	
when	this	function	is	called.	

	

3. TA_OpenSessionEntryPoint	
This	function	is	called	whenever	a	client	attempts	to	connect	to	the	Trusted	
Application	 instance	 to	 open	 a	 new	 session.	 If	 this	 function	 returns	 an	
error,	the	connection	is	rejected	and	no	new	session	is	opened.	

	

4. TA_CloseSessionEntryPoint	
This	 function	 is	 called	when	 the	 client	 closes	 a	 session	 and	 disconnects	
from	 the	 Trusted	 Application	 instance.	 The	 Implementation	 guarantees	
that	there	are	no	active	commands	in	the	session	being	closed.	The	session	
context	 reference	 is	 given	 back	 to	 the	 Trusted	 Application	 by	 the	
Framework.	

	
	

5. TA_InvokeCommand	
This	 function	 is	 called	 whenever	 a	 client	 invokes	 a	 Trusted	 Application	
command.	The	Framework	gives	back	the	session	context	reference	to	the	
Trusted	Application	in	this	function	call.	

	
	
	
	

TEE_Result TA_EXPORT TA_CreateEntryPoint (void);

void TA_EXPORT TA_DestroyEntryPoint (void);

void TA_EXPORT TA_CloseSessionEntryPoint (
 [ctx] void* sessionContext);

TEE_Result TA_EXPORT TA_OpenSessionEntryPoint (
uint32_t paramTypes,
[inout] TEE_Param params[4],
[out][ctx] void** sessionContext);

TEE_Result TA_EXPORT TA_InvokeCommandEntryPoint (
 [ctx] void* sessionContext,
 uint32_t commandID,
 uint32_t paramTypes,
 [inout] TEE_PARAM params[4]);

	

	 41	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

§ Other	Functions	Used	for	the	implementation:	

Operation	
1. TEE_AllocateOperation	

The	 TEE_AllocateOperation	 function	 allocates	 a	 handle	 for	 a	 new	
cryptographic	 operation	 and	 sets	 the	 mode	 and	 algorithm	 type.	 If	 this	
function	does	not	return	with	TEE_SUCCESS	then	there	is	no	valid	handle	
value	

	

2. TEE_SetOperationKey	
The	TEE_SetOperationKey	function	programs	the	key	of	an	operation;	that	
is,	 it	associates	an	operation	with	a	key.	The	key	material	 is	copied	from	
the	key	object	handle	into	the	operation.	After	the	key	has	been	set,	there	
is	no	longer	any	link	between	the	operation	and	the	key	object.	The	object	
handle	can	be	closed	or	reset	and	this	will	not	affect	the	operation.	This	
copied	material	exists	until	the	operation	is	freed	using	TEE_FreeOperation	
or	another	key	is	set	into	the	operation.	

3. TEE_AsymmetricSignDigest	
The	TEE_AsymmetricSignDigest	function	signs	a	message	digest	within	an	
asymmetric	operation.	Note	that	only	an	already	hashed	message	can	be	
signed.	
This	 function	 can	 be	 called	 only	 with	 an	 operation	 of	 the	 following	 EC	
algorithms:	

• TEE_ALG_ECDSA_SHA1	(if	supported)	
• TEE_ALG_ECDSA_SHA224	(if	supported)	
• TEE_ALG_ECDSA_SHA256	(if	supported)	
• TEE_ALG_ECDSA_SHA384	(if	supported)		
• TEE_ALG_ECDSA_SHA512	(if	supported)	

	

4. TEE_FreeOperation	

TEE_Result TEE_AllocateOperation (
 TEE_OperationHandle* operation,
 uint32_t algorithm,
 uint32_t mode,
 uint32_t maxKeySize);

TEE_Result TEE_AsymmetricSignDigest(
TEE_OperationHandle operation

[in] TEE_Attribute* params,
uint32_t paramCount,

[inbuf] void* digest,
size_t digestLen,

[outbuf]void* signature,
size_t* signatureLen);

TEE_Result TEE_SetOperationKey (
 TEE_OperationHandle operation,
 TEE_ObjectHandle key);

	

	 42	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

The	TEE_Free	Operation	function	deallocates	all	resources	associated	with	
an	operation	handle.	After	this	function	is	called,	the	operation	handle	is	
no	longer	valid.	All	cryptographic	material	in	the	operation	is	destroyed.	

	
	
Object	

1. TEE_AllocateTransientObject	
The	 TEE_AllocateTransientObject	 function	 allocates	 an	 uninitialized	
transient	object,	i.e.	a	container	for	attributes.	Transient	objects	are	used	
to	hold	a	cryptographic	object	(key	or	key-pair).	The	object	type	and	the	
maximum	key	size	MUST	be	specified	so	that	all	the	container	resources	
can	be	pre-allocated.	As	allocated,	the	container	is	uninitialized.	It	can	be	
initialized	 by	 subsequently	 importing	 the	 object	material,	 generating	 an	
object,	deriving	an	object,	or	loading	an	object	from	the	Trusted	Storage.	

	

2. TEE_GenerateKey	
The	TEE_GenerateKey	function	generates	a	random	key	or	a	key-pair	and	
populates	a	transient	key	object	with	the	generated	key	material.	The	size	
of	the	desired	key	 is	passed	 in	the	keySize	parameter	and	MUST	be	 less	
than	or	equal	to	the	maximum	key	size	specified	when	the	transient	object	
was	created.	

	
	
	

3. TEE_GetObjectBufferAttribute	
The	TEE_GetObjectBufferAttribute	 function	extracts	one	buffer	attribute	
from	an	object.	The	attribute	is	identified	by	the	argument	attributeID	

	
	

4. TEE_FreeTransientObject	
The	 TEE_FreeTransientObject	 function	 deallocates	 a	 transient	 object	
previously	allocated	with	TEE_AllocateTransientObject.	After	this	function	
has	 been	 called,	 the	 object	 handle	 is	 no	 longer	 valid	 and	 all	 resources	
associated	with	the	transient	object	MUST	have	been	reclaimed	

	

void TEE_FreeOperation (TEE_OperationHandle operation);

TEE_Result TEE_AllocateTransientObject(
 uint32_t objectType,
 uint32_t maxObjectSize,
[out] TEE_ObjectHandle* object);

TEE_Result TEE_GenerateKey(
 TEE_ObjectHandle object,
 uint32_t keySize,
[in] TEE_Attribute* params,

uint32_t paramCount);

TEE_Result TEE_GetObjectBufferAttribute(
 TEE_ObjectHandle object
 uint32_t attributeID,
[outbuf] void* buffer,
 size_t* size);

void TEE_FreeTransientObject(TEE_ObjectHandle object);

	

	 43	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

3.4	TEE	Implementations	
The	implementations	available	refer	to	the	processor	used:	Intel,	AMD	and	ARM.	

• Intel		

Intel’s	SGX	TEE	implementation	for	its	processors.	

• ARM	
TrustZone	specifications	are	analysing	the	set	of	codes	for	ARM	processors	

which	are	found	in	most	mobile	devices	due	to	the	improved	power	

consumption.	

• AMD	

Platform	Security	Processor	(PSP)	

	

Other	implementations:		

• OpenTEE	(the	one	used	at	the	present	project	as	a	testing	environment)	

An	open	source	implementation	and	research	project	from	the	University	of	

Helsinki	and	sponsored	by	Intel.	Provided	under	an	Apache	license.	

• OP-TEE	
An	open	source	implementation	under	BSD	license,	originally	
from	STMicroelectronics,	now	owned	and	maintained	by	Linaro.	

	

	

	

	

	

	

	

	

	

	

	 	

	

	 44	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

CHAPTER	4:	TEE-FIDO	IMPLEMENTATION	
The	implementation	designed	contains	3	parts:	

• A	local	socket	server	which	for	the	FIDO	protocol	represents	the	Relying	Party	

• The	Client’s	Application	

• The	Client’s	Trusted	Application	within	the	TEE	

Open-TEE	project	was	used	to	run	and	debug	the	TEE	part.		
The	scheme	presented	below	describes	all	the	steps	of	this	implementation:	

	

figure	16:	FIDO	in	TEE	implementation	scheme	

The	server	sends	a	challenge	to	the	Client	Application	which	will	forward	oti	to	the	
Trusted	Application	to	be	signed	with	ECDSA	NIST	P256	curve.	The	Trusted	Application	
will	send	back	the	signed	challenge	and	the	public	keys	X,	Y.	
The	results	of	the	implementation	are	depicted	in	the	images	below:		

	
figure	17:	CA	implementation	result	

	

	 45	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

	
figure	18:	TA	Implementation	result	

The	 code	 can	 be	 found	 in	 the	 repository:	
https://github.com/AnnaAnge/ECDSA_OpenTEE		
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	 46	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

CHAPTER	5:	OTHER	FIDO	IMPLEMENTATIONS	
• eBay	

• ReCred	

5.1	eBay	
eBay’s	implementation	in	Java	has	defined	every	dictionary	presented	in	the	
protocol	specifications	and	the	register,	authentication	and	deregistration	operation.	
It	has	3	main	files:	the	server,	the	core	part	of	the	protocol	and	the	client	which	is	an	
android	app	performing	the	operations	from	the	user’s	device.		
The	guidelines	in	BuildingAndRunningUAFServerUsingMaven	(CLIonly)	explain	
thoroughly	all	steps	needed	to	run	the	server.	
	

5.2	ReCRED	
The	overall	architecture	of	the	project	is	descriped	in	the	following	scheme:	
	

	
figure	19:	ReCRED	code	overview	

i. UAFsvc	 differs	 from	ebay’s	UAF	 server.	 The	 code	 has	 is	written	 in	MVC	
pattern	(model-view-controller).	

ii. Client	is	a	demo	app.	
iii. Core	resembles	ebay’s	project.	

• In	core-crypto	every	cryptographic	operation	is	defined	

• In	core-msg	all	FIDO	UAF	dictionaries	are	defined	according	to	
the	specifications.	

• In	core-tlv	consist	of	more	details	of	the	protocol	that	were	not	
previously	defined	in	crypto	or	msg.	

The	project	is	build	using	Spring	(Java)	framework.		
For	the	server	mariadb	is	used.		

fido

uafsvc
(server)

client test_lib_nicos

core

core-crypto

core-msg

core-tlv

	

	 47	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

Recred	documentation	
The	 ReCRED	 projects	 supports	 Registration,	 Authentication	 and	 Deregistration	
according	to	FIDO	UAF	v1.1	protocol	specification.	A	great	deal	of	this	project	is	based	
on	eBay’s	implementation.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	 	

	

	 48	Author:	Anna	Angelogianni	(annaaggelogianni@ssl-unipi.gr)		|	UNIVERSITY	OF	PIRAEUS	6.7.2018	

REFERENCES	
1. FIDO	Specifications	UAF	v1.1:	https://fidoalliance.org/specs/fido-uaf-v1.1-ps-

20170202/FIDO-UAF-COMPLETE-v1.1-ps-20170202.pdf	

2. FIDO	Specifications	UAF	v1.2:	https://fidoalliance.org/specs/fido-uaf-v1.2-rd-

20171128/FIDO-UAF-COMPLETE-v1.2-rd-20171128.pdf		

3. FIDO	Specifications	U2F	v1.2:	https://fidoalliance.org/specs/fido-u2f-v1.2-ps-

20170411/FIDO-U2F-COMPLETE-v1.2-ps-20170411.pdf		

4. FIDO2	Specifications:	

a. 	https://fidoalliance.org/specs/fido-v2.0-rd-20170927/fido-overview-v2.0-rd-

20170927.html	

b. https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-web-api-v2.0-ps-

20150904.html	

c. https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-key-attestation-v2.0-ps-

20150904.html	

d. https://fidoalliance.org/specs/fido-v2.0-ps-20150904/fido-signature-format-v2.0-ps-

20150904.html	

e. https://fidoalliance.org/specs/fido-v2.0-id-20180227/fido-client-to-authenticator-

protocol-v2.0-id-20180227.html	

5. W3C	Specifications:	https://www.w3.org/TR/webauthn/		

6. TEE	Specifications:	https://globalplatform.org/specs-library/?filter-committee=tee		

7. Open	TEE:	https://ieeexplore.ieee.org/document/7345308/	

8. Open	TEE	Project:	https://open-tee.github.io		

9. eBay	UAF	implementation:	https://github.com/eBay/UAF		

10. https://github.com/MicrosoftDocs/edge-developer/blob/master/microsoft-edge/dev-

guide/device/web-authentication.md		

11. Christoforos	Panos,	Stefanos	Malliaros,	Christoforos	Ntantogian,	Angeliki	Panou,	Christos	

Xenakis,	“A	Security	Evaluation	of	FIDO’s	UAF	Protocol	in	Mobile	and	Embedded	Devices”,	

International	Tyrrhenian	Workshop	on	Digital	Communication	(TIWC	2017),	Palermo,	Italy,	

September	2017	

12. Christos	Xenakis,	Christoforos	Ntantogian,	Ioannis	Stavrakakis,	“A	Network-Assisted	Mobile	

VPN	deployment	for	securing	users	data	in	UMTS",	Computer	Communications,	Elsevier,	vol.	

31,	No.	14,	pp.	3315-3327	September	2008.	
13. Eleni	Darra,	Christoforos	Ntantogian,	Christos	Xenakis,	Sokratis	Katsikas,	"A	Mobility	and	

Energy-aware	Hierarchical	Intrusion	Detection	System	for	Mobile	ad	hoc	Networks,"	In	Proc.	

8th	International	Conference	on	Trust,	Privacy	&	Security	in	Digital	Business	(TrustBus	2011),	

Toulouse	France,	August	2011	

14. Christoforos	Panos,	Christoforos	Ntantogian,	Stefanos	Malliaros,	Christos	Xenakis,	

"Quantifying,	Analyzing	and	Evaluating	Blackhole	Attacks	in	Infrastructure-less	Networks",	

Computer	Networks,	Elsevier,	Vol.	113,	February	2017,	pp:	94-110	

