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Preface

The last decade Internet has been flooded with information. Information
that no one can filter to find what he needs, raw data, videos, music or
products. Large retail sites like Amazon developed recommenders systems
in order to offer products to their users. The need although is not limited
only in the retail area.

Web sites like Youtube or Vimeo need to recommend to each user of their,
videos that may like to watch next. Facebook is another example of an
application utilizing lots of data and offering recommendations on what you
may want to read or who may be a friend of yours. Most of the times, a
recommender system is not the core functionality of an application. It is
through a very useful feature that gives a clear advantage in any business
area needed.

This thesis aims to destiguise metrics on recommender systems that can
be proved useful to compare them. Also, this thesis, performs a comparison
between two algorithms of the collaborative filtering family. The content
based with focus on items and the machine learning oriented alternating
least square (als).



Πρόλογος

Την τελευταία δεκαετία το διαδίκτυο έχει πλημμυρίσει από πληροφορία. Πληρο-
φορία την οποία δεν μπορεί κάποιος να διαχειριστεί. Αυτή η πληροφορία μπορεί
να περιέχει από απλά δεδομένα μέχρι βίντεο, μουσική ή προϊόντα. Μεγάλα
καταστήματα όπως το Amazon ανέπτυξαν συστήματα προτάσεων για να προ-
τείνουν προϊόντα στους πελάτες τους πιο αποτελεσματικά. Βέβαια η ανάγκη για
συστήματα προτάσεων δεν περιορίζεται μόνο στον χώρο των πωλήσεων.

Ιστότοποι όπως το Youtube ή το Vimeo χρειάζονται να προτείνουν στους
χρήστες τους βίντεο που μπορεί να τους αρέσει να παρακολουθήσουν στη

συνέχεια. Η πλατφόρμα Facebook είναι ένα άλλο παράδειγμα εφαρμογής που
χρησιμοποιεί μεγάλο όγκο δεδομένων έτσι ώστε να είναι σε θέση να προτείνει

τί μπορεί να θέλεις να διαβάσεις στη συνέχεια ή ποιός μπορεί να είναι φίλος

σου. Τις περισσότερες φορές ένα σύστημα προτάσεων δεν είναι η κύρια λει-
τουργικότητα μίας εφαρμογής, είναι όμως ένα χαρακτηριστικό που μπορεί να
δώσει ένα καθαρό προβάδισμα στην επιχειρησιακή περιοχή που χρειάζεται.

Η διπλωματική αυτή εργασία στοχεύει στην ανάδειξη μετρικών, πάνω σε
συστήματα προτάσεων που μπορούν να φανούν χρήσιμες κατά την σύγκριση

τους. Επίσης, το παρών έγγραφο, παρέχει μια σύγκριση μεταξύ δύο αλγο-
ρίθμων της οικογένειας collaborative filtering. Οι αλγόριθμοι αυτοί είναι, ο
content based με έμφαση στα αντικείμενα (items) και ο προσανατολισμένος
στο machine learning, alternating least square (als).
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Chapter 1

Introduction

In the late 40s, a man called Alan Turing was investigating the case of
a programmable computing machine. Of course, there were similar tries
before. Babbage, for example, was famous for creating a computation ma-
chine. What made Turing’s machine to differ? This machine was the first
programmable one. I don’t know how easily programmable you would call
a machine in binary code, but at its time was the one. Turing prophetically
enough said that we might need plenty of mathematicians of ability in order
to program those machines.

The years passed by, and lots of those machines appeared. The time was
approaching for a general purpose, commonly supportive program that would
take care of the trivial tasks. Tasks like standard input and output, and
common program execution management. That kind of programs is called
operating systems.

Based on the previous advance the services provided by companies be-
come more sophisticated. Services provided through software or provided
using the software. To give an example, let us assume that we have a com-
pany A. This company specializes in delivering high-quality cars. After the
operating systems introduction, this company has no need to make an op-
erating system in order host an application that handles orders. This gave
them the opportunity to low the cost of developing and maintaining a large
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part of their information system. Now, let’s assume that we have a company
B, this company specializes in consulting other companies on how to handle
their orders. Either it does it through a software delivered to its customers
or via a software for helping the company itself, an operating system truly
changed their competitive advantage.

The user provides data and actions. The application enhances the raw
data provided by the user and persist them in a structured way, this could
be for example a database, relational or not. If we take into account the
above process, this means that the system has information about each user,
his actions and the data he provided. This information is structured. Of
course, the structure was made to serve the business cases of the application.

The year is 1989, a British engineer working at CERN named Tim Berners-
Lee invented the World Wide Web (W3). Of course, the first web site was on
the world wide web which is somehow self-referential. W3 was mainly used
by scientists in universities and institutes in order to share their work.

About a decade later, the RFC 1945: Hypertext Transfer Protocol - HTTP/1.0
[8], co-authored by Berners-Lee, was published, and W3 started to follow a
more structured format.

The last decade Internet has been flooded with information. Information
that no one can manage to find what he needs. This information contains
from raw data to videos, music or products. Large retail sites like Amazon
developed recommenders systems in order to offer products to their users.
The need although is not limited only in the retail area.

Web sites like Youtube or Vimeo need to recommend to each user of their,
videos that may like to watch next. Facebook is another example of an
application utilizing lots of data and offering recommendations on what you
may want to read or who may be a friend of yours. Most of the times, a
recommender system is not the core functionality of an application. It is

4



through a very useful feature that gives a clear advantage in any business
area needed.

The way a recommender system has been built is very dependent on the
business case which will be served. Even a specific case of recommendation,
similar to one already existing, might need a different recommender system.

So far recommender systems have been a very interesting area of study.
Netflix in 2009 declared a challenge, which can be found here 1. Its reward
was one million dollars for the task of improving the accuracy of predictions.
The prize was granted to BellKor’s Pragmatic Chaos team for their algorithm.
You can come across this challenge on lots of papers published every year.

With such a wide study of recommender systems, it is reasonable to start
wondering "How are we going to compare recommender systems?". As we
will discuss below, there are several papers suggesting ways of comparison.
The majority of those papers are using the dataset given in the challenge
above.

In this thesis, the first system to compare is a content-based recommen-
dation system that provides predictions based on movies genre attributes.
The second system is the based on the Alternating Least Squares (ALS)
implementation of Apache Spark’s MLlib.

The comparison metrics used are the Mean Absolute Error (MAE), the
Root Mean Squared Error and the ratio between them (MAE/RMSE). Last
but not least is the execution of time metric, measuring the training and
estimation time.

1http://www.netflixprize.com/
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Chapter 2

Related Work

In this thesis’s chapter, we will list numerous different approaches made in
order to compare recommender systems.

2.1 RecBench: Benchmarks for Evaluating Per-

formance of Recommender System Archi-

tectures [1]

The University of Minnesota, published in 2011 a paper stating a com-
parison between a recommender framework and a DBMS-based one. In that
paper, they used the Movie Lens dataset 100k, from the Netflix Challenge.
The benchmark had five areas of comparison. Those areas were initialization,
pure recommendation, filtered recommendation, blended recommendation,
item recommendation and item update.

The initialization task was about the preparation needed for the system to
go live. The next area was the pure recommendation. By pure recommenda-
tion, the author means the home page recommendation, meaning the items
that are going to be on the homepage. Moving forward, we find the filtered
recommendation. This recommendation is constrained by variables specific
to the item, like movie genre etc. Another area of this evaluation contains
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the blended recommendation. Those recommendations are based on free text
provided by the user in order to search. Item prediction is another area of
the evaluation, in this prediction the user is navigated to the items page and
the system is trying to predict the user’s rating on the item. Last but not
least, the paper examines the case of a new item being added to the system
and how this is going to be incorporated into it.

As a result, of those experiments, the paper concludes that "hand-build
recommenders exhibit superior performance in model building and pure rec-
ommendation tasks, while DBMS-based recommenders are superior to more
complex recommendations such as providing filtered recommendations and
blending text-search with recommendation prediction issues.

2.2 Recommender Systems Evaluation: A 3D

Benchmark [2]

In this paper, the authors recognize the need for a common benchmark
formula for recommender systems. This need leads them to propose one.
They named it the 3D recommendation evaluation because they evaluate a
system in three axes. These axes are business models, user requirements, and
technical constraints. In business model axis they state that a recommender
system must be evaluated on how well it serves the business case it is used
for. In their paper, they give the example of a video on demand service and
evaluate it versus the pay per view business model and pay per subscription.

In the user requirements axis, the evaluate the system based on what
needs it covers for the users. Is it, for example, going to reduce search time
or decision-making time.

Last but not least is the technical constraints axis. In this axis, the system
is being evaluated based on data or hardware constraints, scalability, and
robustness.

8



2.3 RiVal: A New Benchmarking Toolkit for

Recommender Systems [3]

RiVal, is an open source toolkit implemented in Java programming lan-
guage. Rival is available via Maven repositories. It is used in order to
measure the evaluate recommender systems. Its evaluation is based on three
points. Those points are data spitting, item recommendation, candidate item
generation and performance measurement.

9
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Chapter 3

Machine Learning and
Collaborative filtering

3.1 Machine Learning

Learning is the complex process that contains among other knowledge acqui-
sition and organization.

Moving forward lets examine the objectives and processes of machine learn-
ing [9]. The objectives of machine learning can be summarized in three major
categories as shown below.

• Task Oriented Studies Those studies emphasize on creating and ana-
lyzing a predefined set of tasks in order to improve their performance.
They are also called engineering approach.

• Cognitive Simulation In this area, the computer program tries to imi-
tate the learning process of a human being.

• Theoretical Analisis is the last but not least of the machine learning
objectives. Here is where scientists try to investigate, domain agnostic
learning processes and algorithms.
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It is stated that there are two types of learning. Those types are knowledge
acquisition and skill refinement. To make things more clear let us give some
examples. Let us assume that you are studying about a new dog breed. This
type of learning will be based on the acquisition of the knowledge. What
color usually this breed is, what is its sizes and so on. Now let us assume
that is the second time you are riding a bike, you have the knowledge of what
goes where but your skill is not refined. As you will continue to ride the bike
you will follow the second type of learning which is the skill refinement.

Numerous processes of learning is known, from processes that someone
may call naive, to very efficient and complex ones. Below is listed roughly
some of those processes.

• Rote learning and direct implanting of knowledge process requires
no knowledge transformation by the learner. The learner deterministi-
cally responding the knowledge we put in. When a computer program-
mer, instructs its machine through the code he provided, and that code
contains an if statement. This is a knowledge that has been directly
implanted to it.

• Learning by instruction , for example, we provide a set of rules to a
program in a given language. The receiving system or the learner if
you prefer, will have to transform this knowledge in order to utilize it.

• Learning by analogy is the process that allows the learner to project an
existing knowledge to the new one in order to understand it.

For example, let us imagine ourselves in an auditorium, and we having
a class about lions. In order to help the example, let us assume that the
only knowledge we have about the animal kingdom is dogs and cats.
The professor knows or at least suspecting the specific knowledge we
have. Then he says, a lion has the body structure of a cat and its size
is twice as much the dog. We projected the new knowledge on a given
one.

12



• Learning by example. In this area we give to the learner a set of ex-
amples which are notated as true or false. The learner will have to
make assumptions and create patterns between the examples in order
to answer a request that is not notated.

• Learning from observation and discovery is the last process we are
going to investigate. This process is also called unsupervised learning.
In this type of learning the learner tries to classify the observations
without the help of a supervisor. Unsupervised learning has two main
aspects. The first aspect is the passive observation. In this aspect, the
learner classifies the observations made to the environment he exists.
The second and more interesting part of is the active experimentation.
This is where the learner tries to perturb its environment and observe
the results of it.

Let’s give an example of active experimentation. Assuming we have
a smart virtual machine hypervisor. The hypervisor follows the un-
supervised active experimentation learning paradigm. This hypervisor
hosts a virtual machine of 5 cores and 2GB of memory. The hypervisor
has information about the number of processors used, the amount of
memory available to the system and the traffic network.

The hypervisor decides to experiment on the virtual machine and re-
duces the amount of available memory to 128MB. Instantly the hy-
pervisor observes a dramatic reduction in the network traffic and the
memory usage to be 100%. On the other hand, the 5 cores are under-
utilized. Those metrics makes the learner classify this situation as a
nonregular and returns the resources to the virtual machine.

3.1.1 Latest advancements in machine learning

Nowadays, deep neural networks can win games using strategies that a
player could not expect. Like a biological brain, it consists of layers of neu-
rons, but this time is figments of memory. Lower level neurons analyze pixels
of a picture then they send data to higher level neurons which are trained on
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higher level concepts like a dog or a cat. Deep neural networks have shown
that they can recognize items on a picture as accurately as humans do.

In a conference in Berlin has presented evidence in support of a new theory
on how deep learning works by a computer scientist and neuroscientist from
the Hebrew University of Jerusalem. This man called Naftaly Tishby argues
that deep neural networks learn by a process called information bottle neck
[10]. The theory states that the network gets rid of the noise in order to
pass information to higher level neurons. A Google researcher, Alexander
A. Alemi, states that this theory could serve "not only as a theoretical tool
for understanding why our neural networks work as well as the way they do
currently, but also as a tool for constructing new objects and architectures".

3.2 Collaborative filtering

In order to better understand the term, collaborative filtering lets take a
look in a dictionary.

collaborative: adjective, characterized or accomplished by collaboration
[11].

filter: noun, something that works like a filter, as by removing, blocking,
or separating out certain elements [11].

As we can see by the given definitions, collaborative filtering is the tech-
nique that allows us to select an object from a given set based on the set
itself.

The need of having recommender systems lies between the need of obtain-
ing recommendations from trustworthy sources and the availability of a large
amount of user data.
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Like on any demand and supply system, on the one hand, lies the demand
of accurate and trustworthy recommendations. On the other hand are the
tons of user data that can serve this demand.

Over the years have been developed techniques that can utilize those data,
in order to provide good recommendations. Those techniques are highly
dependent on the volume of data they use.

The more the data the more accurate the recommendation. But its sys-
tem’s training phase is largely impacted by the volume mentioned before.
Thus, any algorithm or system is will provide good recommendations as long
as it is trained with the right dataset.

Those algorithms were initially based only on statistical models that were
available at the time. Whereas the data were growing rapidly, and the sample
started to approach the population.

3.2.1 Content based

Content-based, it seems a very attractive term but let us take a look at
the very definition of those words.

content: noun, something that is contained [11].

base: noun, a fundamental principle or groundwork; foundation; basis [11].

Content based collaborative filtering is the technique that allows us to
select objects from a given set based on the actual values of its items.

This could be a rote or information implant learning processes.

15



The most common and easy to interpret the way of recommendation is
content-based collaborative filtering. In this area of algorithms, you are
trying to utilize data from other users in order to come to a recommendation.
Those data might be attributes that characterize the item of interest.

In the case of users, those attributes may be their age or occupation,
whereas for a product might be its color, prize or weight in kilograms. In
order to put this to a mathematical expression, we could write the following.

w = R−1MT (3.1)

Raw data though are not always clear or normalized. Due to this fact, we
would consider to normalizing the approach we used above. If we were about
to add a normalization factor to that expression we will end up with the one
below.

w = (λI +RTR)−1RTM (3.2)

That kind of algorithms is easier to interpret. They also can handle well
a cold-start problem. But they are computational heavy, meaning that the
scaling of them is limited.

3.2.2 Latent Factors

Finally let’s take a look at the terms latent and factor in the dictionary.

latent: adjective present but not visible, apparent, or actualized; existing
as potential [11].

factor: noun one of the elements contributing to a particular result or
situation [11].

16



Based on the definitions above we can assume that the latent factor collab-
orative filtering, allows us to select objects from a given set based on factors
that are not clearly depicted in the actual values of each item.

This type of learning is learning by example.

The group of latent factors algorithms does not take into consideration the
meta-data we have for any user or item.

In that area, we are trying to determine relationships between a user and
an item based only on the rating. Those relationships may not be the age or
the color.

Figure 3.1: LatentFactors

Alternating least squares (ALS) algorithm belongs to the group above. In
this case, we assign initially random values of rating between user and items.
Then it takes the error between the actual value and the one assigned to it.
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Then the algorithm runs again using as input the errors and tries to min-
imize them. Below we can see a how this algorithm is defined.

Algorithm 1 ALS for Matrix Completion
1: Initialize X,Y
2: repeat
3: for u=1...n do
4: xu = (

∑
rui
yiy

T
i + λIk)

−1
∑

rui
ruiyi,∈ ru∗

5: for i=1...m do
6: yi = (

∑
rui
xux

T
u + λIk)

−1
∑

rui
ruixu,∈ r∗i

7: until convergence

As we can see above, this algorithm has a λ parameter used for normal-
ization during the process. We can see the difference below where we have
both the expression with and without normalization factor.

ALS is a very efficient recommender algorithm. Due to its nature, it can be
easily parallelized reducing the execution time needed [12]. It also requires
no meta-data about any user or item. Although, ALS suffers from the cold
start problem.

min
X,Y

∑
ruiobserved

(rui − xTuyi)2 (3.3)

min
X,Y

∑
ruiobserved

(rui − xTuyi)2 + λ(
∑
u

||xu||2 +
∑
i

||yi||2) (3.4)

Moving forward this thesis, we are going to discuss how those two algo-
rithms were implemented and validate the results they gave.

18
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Chapter 4

Experiment

4.1 Infrastructure

As the experiment’s infrastructure, we will describe the frameworks used
during the implementation. The framework that has been used to imple-
ment the item-based algorithm was Apache Spark. The ALS algorithm was
used from the Apache Spark’s MLLib library. The framework is common to
infrastructure because Apache Spark can orchestrate the work on multiple
machines as well as in one. So the framework is as close as we can get to the
infrastructure.

Apache Spark

The last decade, analyzing big data is at its peak. Lots of data are pro-
duced on daily basis. This means that the need of extracting information
from them is raised. Lots of frameworks have been used in order to manage
and analyze this amount of data. One of the analysis reasons is the need for
accurate item recommendations to users. Those items could be movies (e.g.
Netflix), music (e.g. Spotify) or products in general(e.g. Amazon). One of
the most popular frameworks that could enable this in a distributed way was
Apache’s Hadoop MapReduce.
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Apache Hadoop has discrete jobs of processing data. The most common
jobs are the map and reduce but it has two more jobs, combine and partition.
Hadoop has a master node and N worker nodes. The first is responsible to
distribute the work, and the second for the work to be done. Each worker
usually is called after the job is executing. Hence we have the mapper, the
reducer, the partitioner and the combiner. In order to put this to a schema,
you can see the figure 4.1 below.

Figure 4.1: Hadoop Jobs Order

Hadoop map reduce, is a distributed map-reduce system, this means that
it has a mechanism to distribute work on nodes and a common interface for
handling data. In Hadoop’s case, this was able to happen due to Apache
Hadoop Yarn and the Hadoop Distributed File System or as commonly used
HDFS. When a job was scheduled, data were loaded by the HDFS to a worker,
then the worker was done, he was putting the result back to the HDFS.

As mentioned in [13], "The term MapReduce actually refers to two sepa-
rate and distinct tasks that Hadoop programs perform. The first is the map
job, which takes a set of data and converts it into another set of data, where
individual elements are broken down into tuples (key/value pairs). The re-
duce job takes the output from a map as input and combines those data
tuples into a smaller set of tuples. As the sequence of the name MapReduce
implies, the reduce job is always performed after the map job."

So Hadoop has two basic processes, Map which is responsible for turning
the data into key-value pairs, and Reduce which takes those pairs and turns
them into valuable data.
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If we would like to see where in the DIKW (Data Information Knowledge
Wisdom) stack. The Map process would start with data while the reduce
one will end up with information. Of course, this is not always the case, lots
of algorithms require lots of cycles in order to complete.

Figure 4.2: Data Information Knowledge Wisdom Pyramid [4]

But let’s take a step back and take a look at Hadoop’s architecture. As it
is described on its official website [14], and shown in the figure 4.3 Hadoop
uses Hadoop yarn in order to coordinate which process will run on which
machine. Also, it uses its file system, the HDFS in order to have a common
reference for the files over the network. Last but not least, Hadoop ecosystem
is supported by the Hadoop Commons library.

Figure 4.3: Hadoup Software Stack

In 2009, University of California, Berkley, proposed a new framework for
cluster computing in their paper, Spark: Cluster Computing with Working
Sets [15]. They wanted to tackle two major Hadoop issues.
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The first was the iterative jobs. Each Hadoop job reads from the disk to
load data. This means that having iterative jobs, on any given algorithm,
you were going to get a large time penalty on reading and of course writing
to the disk.

The second issue was the interactive analytics. Each Hadoop SQL interface
was running as a separate job, and as we mentioned previously we have a big
impact on execution time.

In order to break the acyclic nature of Hadoop, they introduced the Spark’s
major abstraction, the RDDs. The name RDD stands for Resilient Dis-
tributed Datasets. Those datasets are a read-only collection of objects dis-
tributed across machines. If a machine fails, the lost part of the RDD can
be recalculated. This notion is called lineage.

Spark is implemented in Scala. Scala is a high-level statically typed pro-
gramming language. At the time that paper was published, it was believed
that Spark was the only system available in a general-purpose programming
language to make clusters process a large amount of data. As it was men-
tioned in [15] "We believe that Spark is the first system to allow an efficient,
general-purpose programming language to be used interactively to process
large datasets on clusters"

Back to RDDs, an RDD can be created with four different operations as
it is described in [15].

• The first operation is loading data from any shared file system.

That file system could be HDFS or even an Amazon S3.

• The second way to create an RDD is by parallelizing any Scala collection.

Spark will slice the collection into pieces and distribute it among the
nodes.
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• The third way is via transforming an RDD to another one.

Because RDDs are immutable, any transformation operation on an
RDD, filter, map, flatmap, will generate a new RDD. The last but not
least method is by changing an RDDs persistence using save or cache
operations.

Spark also give us the power to do a lot of different distributed operations.
Some of them were mentioned before, but we also have operations that would
return data to the driver program like collect or reduce.

Another important feature of Sparks spine are the shared variables. Spark
at its first appearance introduced two of them.

• The first, shared variable is the broadcasted variables.

Those variable, RDDs or not, are variables that are commonly used in
an algorithm, like a look-up table. By broadcasting a variable, each
node gets a copy of the variable in order to access it quickly.

• The second shared variable that was introduced in that paper was the
Accumulators.

Those variable live on the spark context, but they can only be increased
by any worker and be read from the driver program only. That paper
concludes that Spark can outperform Hadoop in some machine learning
algorithms and more specific on logistic regression.

Coming back to today, Spark’s current architecture is depicted below in
fig. 4.5. Spark nowadays has an SQL interface in order to search in RDDs
within a query language. Also, Spark support a streaming API to make
available real-time analytics. Most of the core machine learning algorithms
like ALS, which I used in order to complete this thesis, are the Spark’s MLlib
component. Finally, the Spark has the component GraphX that is used for
handling graphs and graph computation.
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Figure 4.4: Logistic regression, Hadoop vs Spark [5]

Apache Spark was by design meant to work within Hadoop ecosystem, and
most importantly with the HDFS. Apache Spark does not have a file system
by itself. You can load data from almost any database, cloud-based or not,
even from a local file system. But most will agree that Hadoop and Spark
work together just perfect.

Figure 4.5: Apache spark stack [6]

To conclude, Spark has dominated the big data field the last years, Amazon
and other cloud providers give you the option to deploy an Apache Spark
cluster on their infrastructure. Also, large companies like Google and Intel
are actively contributing to projects like Apache Spark On Kubernetes which
can be found at its Github repository 1

1https://github.com/apache-spark-on-k8s/spark
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4.2 Dataset

Selecting a clear and reliable data set is very important for every exper-
iment in the field. Due to that need several papers, like [1], are using the
Movie lens data set. This dataset contains users, movies, and ratings. Each
user may rate more than a movie and each movie can be rated by more than
one user. The dataset split to multiple subsets of 80000 training sets and
respective 20000 test set. It also provides scripts that can be used to create
more sets.

In order to better visualize the above dataset, we created an entity rela-
tionship(ER) diagram below.

Figure 4.6: MovieLens ER diagram [7]

4.3 Implementation and assumptions

During the implementation, I had to make some assumptions and choices.
The first of choices was the framework and the programming language that
the implementation would take place. The framework that has been chosen,
as you may have already figured out, is apache spark due to its trend and
the high scalability it offers. The language of choice was scala, due to its
functional nature and its compatibility with apache spark.
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Chapter 5

Results

In this chapter, we will examine the results taken from the experiment
described in the previous chapter. In order to measure the performance of
each recommender system, we used three different metrics. Those metrics
are the Mean Absolute Error (MAE), the Root Mean Square Error (RMSE),
and the execution time of each system.

The Mean Absolute Error is defined as the sum of each error’s absolute
value divided by the number of them. Let’s take a look at error’s definition.
It is common in statistics to symbolize the error with ei. The i index shows
which measurement’s error is. An error can be calculated using the following
formula ei = ŷi − yi, referring to ŷi as the estimated value for the i-th item
whereas to yi as the actual value of the i-th item. For example if we estimated
that the ŷi = 5 and its actual value is yi = 5.2 and its error could be the
following.

ei = ŷi − yi => ei = 5− 5.2 => ei = −0.2 (5.1)

Mean absolute error is easier to interpret than other statistical metrics like
RMSE. We will examine RMSE later in this chapter. If we want to express
mathematically the MAE we could write the following.

MAE =

∑n
i=1 |ei|
n

=

∑n
i=1 |ŷi − yi|

n
=

∑n
i=1

√
(ŷi − yi)2

n
(5.2)
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During the experiment we took the MAE metric for each system. The two
following tables can show the results in detail.

Table 5.1: Content Based Algorithm Results vs Mean Absolute Er-
ror

Training Dataset | Testing Dataset Mean Absolute Error
u1.base | u1.test 1.6467431428
u2.base | u2.test 1.6055222167
u3.base | u3.test 1.6089259075
u4.base | u4.test 1.6259192043
u5.base | u5.test 1.6284658627
ua.base | ua.test 1.642536458
ub.base | ub.test 1.6357196576

Table 5.2: Latent Factors Algorithm Results vs Mean Absolute Er-
ror

Training Dataset | Testing Dataset Mean Absolute Error
u1.base | u1.test 1.1818684937
u2.base | u2.test 1.1800652808
u3.base | u3.test 1.1783366748
u4.base | u4.test 1.1730543877
u5.base | u5.test 1.1686585292
ua.base | ua.test 1.2008035301
ub.base | ub.test 1.2134460078

As we can see, comparing the two systems on this metric we realize that
the latent factors system outperformed the content based one. That is clearly
depicted on the graph below.
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Figure 5.1: Latent Factors vs Content Based on Mean Absolute Er-
ror

In bibliography the most common statistical metric for recommender sys-
tems is the root mean square error(RMSE). This metric is considered to
give a greater estimation of error magnitude due to the fact that it uses the
squared value of each error. In order to better understand this metric, we
can have a look at its mathematical type below.

RMSE =

√∑n
i=1 e

2
i

n
=

√∑n
i=1 (ŷi − yi)2

n
(5.3)

Each error is measured as before but now due to the structure of that
metric the larger the error it is, the greatest the impact it has on RMSE.
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The results we got during the experiment on that metric was that latent
factors system outperformed the content base again. You can see the details
of the result on the two following tables.

Table 5.3: Content Based Algorithm Results vs Root Mean Square
Error
Training Dataset | Testing Dataset Root Mean Square Error

u1.base | u1.test 2.1040777758
u2.base | u2.test 2.0594484822
u3.base | u3.test 2.0914574229
u4.base | u4.test 2.0862531343
u5.base | u5.test 2.0990150946
ua.base | ua.test 2.1224499666
ub.base | ub.test 2.0994553018

Table 5.4: Latent Factors Algorithm Results vs Root Mean Square
Error
Training Dataset | Testing Dataset Root Mean Square Error

u1.base | u1.test 1.3793448223
u2.base | u2.test 1.3784149025
u3.base | u3.test 1.3754645935
u4.base | u4.test 1.3706400993
u5.base | u5.test 1.3668078009
ua.base | ua.test 1.3968580906
ub.base | ub.test 1.4119780481

The results above can be shown clearly on the graph following, depicting
the performance of latent factors and content based systems, on each dataset,
on RMSE metric.
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Figure 5.2: Latent Factors vs Content Based on Root Mean Squeare
Error

Even if RMSE is considered a better metric when large errors are undesired,
it is useful to check those systems on the MAE

RMSE
metric too. It is easily proven

that MAE ≤ RMSE. Those two are equal when the magnitude of all errors
is the same. Examining this ratio we can see if the magnitude of the errors
has close values.
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Table 5.5: Content Based Algorithm Results vs MAE over RMSE
Training Dataset | Testing Dataset MAE \ RMSE

u1.base | u1.test 0.7826436654
u2.base | u2.test 0.7795884338
u3.base | u3.test 0.769284562
u4.base | u4.test 0.779348957
u5.base | u5.test 0.775823798
ua.base | ua.test 0.7738870097
ub.base | ub.test 0.7791162099

Table 5.6: Latent Factors Algorithm Results vs MAE over RMSE
Training Dataset | Testing Dataset MAE \ RMSE

u1.base | u1.test 0.8568332404
u2.base | u2.test 0.856103107
u3.base | u3.test 0.8566826659
u4.base | u4.test 0.8558442062
u5.base | u5.test 0.8550276992
ua.base | ua.test 0.8596460429
ub.base | ub.test 0.8593943861

As it was expected and this area of examination, latent factors system has
ten percent (10%) fewer error spikes than the content based on every dataset.
The graph below depicts the results.
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Figure 5.3: Latent Factors vs Content Based on MAE over RMSE

The last metric we took in order to compare those two systems was the
execution time. On execution time metric we included the time need to
train the system against a data set and the time needed to calculate the
metrics. We extracted the methods used on metrics calculation in order to
be commonly used and impact each execution time result on the same level.
The results can be found in the tables below and on the graph that visualizes
them, also below.
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Table 5.7: Content Based Algorithm Results vs Execution Time
Training Dataset | Testing Dataset Execution Time (ms)

u1.base | u1.test 30514
u2.base | u2.test 27714
u3.base | u3.test 27164
u4.base | u4.test 26687
u5.base | u5.test 27124
ua.base | ua.test 26640
ub.base | ub.test 26861

Table 5.8: Latent Factors Algorithm Results vs Execution Time
Training Dataset | Testing Dataset Execution time (ms)

u1.base | u1.test 10195
u2.base | u2.test 6517
u3.base | u3.test 5377
u4.base | u4.test 5433
u5.base | u5.test 5217
ua.base | ua.test 5214
ub.base | ub.test 5083
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Figure 5.4: Latent Factors vs Content Based on Execution Time

Comparing those systems in the execution time metric we can also see
that latent factors system outperformed the content base again by taking
one-third of the time in its worst case.
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Chapter 6

Conclusion

Recommender systems have a short but intense history. It started from
simple statistical models and nowadays it is a great field of study. Recom-
mender systems are now used widely in the online market. Every day you
are using them without even noticing it. While you are browsing videos
or the web, getting a message from a friend or even listening to music a
recommender system might serve you at the time.

In this last chapter of this thesis, we will summarize the experiment and
the result we got. This thesis is the attempt of the author to compare two
recommender algorithms. Those algorithms were the classic content based
and the alternative least squares. The first one is in the area of collaborative
filtering while the other is in the latent factors area.

Those two algorithms were implemented or used in Apache Spark. The
first, the content based algorithm was implemented, the second one the al-
ternating least squares was used via Apache Spark’s MLlib library.

Then those systems were put to test. As metrics were used the mean
absolute error(MAE), the root mean square error (RMSE), the ratio between
them (MAE/RMSE) and the execution time. Execution time is composed of
two parts, the training time and the time taken to make the metrics. Because
the metrics are common, on the same platform and they were using the same
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code, we can assume that the execution time difference has the training part
and the prediction part for every rate in the test dataset.

During the results examination, as it was shown in the previous chapter, we
found that the ALS system outperformed the content based on every metric
we used. It showed low error metrics, MAE and RMSE, while execution time
was low. The ratio MAE/RMSE was high. The last showed us that ALS has
fewer data spikes comparing to the content based.

Recommender systems will be around for quite a long time, it is important
to know how to compare them. Even more important is to identify which
recommender algorithm to use for each business case.

This thesis was a very important milestone for the author. This milestone
couldn’t be true without the help of those mentioned in the acknowledgment
page.

Vasileios Simeonidis,
August 15, 2017
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Appendix A

Code used

In this part, you will find the code used for this master thesis. Below is the
code used in order to produce the results. It has been written for Apache
Spark [6] using scala. The library breeze has been used for matrix processing.
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A.1 Item Based Collaborative Filtering

import java.util

import breeze.linalg.{Axis, DenseMatrix, pinv}

import breeze.optimize.linear.PowerMethod.BDM

import org.apache.spark.SparkContext

import org.apache.spark.mllib.linalg.Matrix

import org.apache.spark.mllib.linalg.distributed.{

↪→ CoordinateMatrix, MatrixEntry}

import org.apache.spark.mllib.recommendation.Rating

import org.apache.spark.rdd.RDD

object ContentBased {

val sparkContext: SparkContext = Infrastructure.sparkContext

def main(args: Array[String]) {

val bestNormalizationFactor = Infrastructure.

↪→ normalizationFactorsList.map { v =>

val sum = Infrastructure.dataSetList.map(dataSet =>

↪→ getMetricsForDataset(v, dataSet._1, dataSet._2)).

↪→ map(u => u._5).sum

val mean = sum/Infrastructure.dataSetList.size

(v, mean)

}.maxBy(v=> v._2)

Infrastructure.dataSetList
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.map(dataSet => getMetricsForDataset(

↪→ bestNormalizationFactor._2, dataSet._1, dataSet._2)

↪→ )

.foreach(metric => println(metric))

println("training␣set", "testing␣set", "MSE", "RMSE", "MAE"

↪→ , "Execution␣Time")

}

private def getMetricsForDataset(normalizationFactor: Double,

↪→ trainingSet: String, testingSet: String) = {

val startingTime = System.currentTimeMillis()

val itemsMatrixEntries: RDD[MatrixEntry] =

↪→ generateItemMatrixEntries

val itemMatrix: Matrix = new CoordinateMatrix(

↪→ itemsMatrixEntries).toBlockMatrix().toLocalMatrix()

val itemMatrixBreeze = toBreeze(itemMatrix).copy

val ratings = sparkContext.textFile(trainingSet)

.map(_.split("\t") match {

case Array(user, item, rate, timestamp) => Rating(user.

↪→ toInt, item.toInt, rate.toDouble)

}).cache()

val usersRatings = ratings.groupBy(r => r.user)

.map(v => (v._1, generateUserMatrix(v._2)))

val refinedMatrices = usersRatings

.map(v => (v._1, getRefinedMatrices(v._2,

↪→ itemMatrixBreeze)))
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val userWeights = refinedMatrices.map(v => Pair(v._1,

↪→ generateWeight(v, normalizationFactor)))

val testRatings = sparkContext.textFile(testingSet)

.map(_.split("\t") match {

case Array(user, item, rate, timestamp) => Rating(user.

↪→ toInt, item.toInt, rate.toDouble)

}).cache()

// remove rating from dataset

val usersProducts = testRatings.map {

case Rating(user, product, rate) => (user, product)

}

// predict

val b = sparkContext.broadcast(userWeights.collect())

val predictions = usersProducts.map(v =>

((v._1, v._2),

predict(

b.value.apply(v._1 - 1)._2,

getRow(itemMatrixBreeze, v._2 - 1))

))

val ratesAndPredictions = testRatings.map {

case Rating(user, product, rate) => ((user, product),

↪→ rate)

}.join(predictions)

///// Metrics ////

// calculate MSE (Mean Square Error)

val MSE = Metrics.getMSE(ratesAndPredictions)
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// calculate RMSE (Root Mean Square Error)

val RMSE = Math.sqrt(MSE)

// calculate MAE (Mean Absolute Error)

val MAE = Metrics.getMAE(ratesAndPredictions)

val endingTime = System.currentTimeMillis()

val executionTime = endingTime - startingTime

(trainingSet, testingSet, MSE, RMSE, MAE, executionTime,

↪→ normalizationFactor)

}

private def predict(weight: DenseMatrix[Double], item:

↪→ DenseMatrix[Double]): Double = {

val result = item.t * weight

if (result.data.length > 1) {

println("something␣went␣wrong␣on␣prediction")

0

}

else result.data.apply(0)

}

private def generateWeight(v: (Int, (DenseMatrix[Double],

↪→ DenseMatrix[Double])), normalizationFactor: Double):

↪→ DenseMatrix[Double] = {

calculateWeightsWithNormalizationFactor(v._2._2, v._2._1,

↪→ normalizationFactor)

}
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private def calculateWeightsWithNormalizationFactor(

↪→ ratingMatrix :DenseMatrix[Double], itemMatrix:

↪→ DenseMatrix[Double], normalizationFactor: Double):

↪→ DenseMatrix[Double] = {

val lambdaIdentity = DenseMatrix.eye[Double](ratingMatrix.

↪→ cols) :* normalizationFactor

pinv(

lambdaIdentity

+

(ratingMatrix.t * ratingMatrix)

) * (ratingMatrix.t * itemMatrix)

}

private def calculateWeightsWithoutNormalizationFactor(

↪→ ratingMatrix :DenseMatrix[Double], itemsMatrix:

↪→ DenseMatrix[Double]): DenseMatrix[Double] = {

pinv(ratingMatrix) * itemsMatrix

}

def getRefinedMatrices(userMatrix: DenseMatrix[Double],

↪→ itemMatrix:DenseMatrix[Double]): (DenseMatrix[Double],

↪→ DenseMatrix[Double]) = {

var sequence = Seq[Int]()

userMatrix.foreachKey { v =>

if (userMatrix(v._1,v._2) == 0) {

sequence = sequence :+ v._1

}

}

val localItemMatrix = itemMatrix.delete(sequence, Axis._0)

val localUserMatrix = userMatrix.delete(sequence, Axis._0)

(localUserMatrix, localItemMatrix)

}
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def getRow(matrix: DenseMatrix[Double], row: Int):

↪→ DenseMatrix[Double] = {

val numberOfColumns = matrix.cols

val array = new Array[Double](numberOfColumns)

for (i <- 0 until numberOfColumns){

array(i)=matrix(row,i)

}

new DenseMatrix(numberOfColumns ,1, array)

}

def generateUserMatrix(userRatings: Iterable[Rating]):

↪→ DenseMatrix[Double] = {

val numberOfItems = Infrastructure.items.count().toInt

val array = new Array[Double](numberOfItems)

util.Arrays.fill(array, 0)

userRatings.foreach(r => array(r.product - 1) = r.rating)

new DenseMatrix(numberOfItems ,1, array)

}

private def toBreeze(matrix: Matrix): DenseMatrix[Double] = {

val breezeMatrix = new BDM(matrix.numRows, matrix.numCols,

↪→ matrix.toArray)

if (!matrix.isTransposed) {

breezeMatrix

} else {

breezeMatrix.t

}

}

private def generateItemMatrixEntries: RDD[MatrixEntry] = {
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Infrastructure.items.flatMap(a => Array(

MatrixEntry(a(0).toLong - 1, 0, a(4).toInt),

MatrixEntry(a(0).toLong - 1, 1, a(5).toInt),

MatrixEntry(a(0).toLong - 1, 2, a(6).toInt),

MatrixEntry(a(0).toLong - 1, 3, a(7).toInt),

MatrixEntry(a(0).toLong - 1, 4, a(8).toInt),

MatrixEntry(a(0).toLong - 1, 5, a(9).toInt),

MatrixEntry(a(0).toLong - 1, 6, a(10).toInt),

MatrixEntry(a(0).toLong - 1, 7, a(11).toInt),

MatrixEntry(a(0).toLong - 1, 8, a(12).toInt),

MatrixEntry(a(0).toLong - 1, 9, a(13).toInt),

MatrixEntry(a(0).toLong - 1, 10, a(14).toInt),

MatrixEntry(a(0).toLong - 1, 11, a(15).toInt),

MatrixEntry(a(0).toLong - 1, 12, a(16).toInt),

MatrixEntry(a(0).toLong - 1, 13, a(17).toInt),

MatrixEntry(a(0).toLong - 1, 14, a(18).toInt),

MatrixEntry(a(0).toLong - 1, 15, a(19).toInt),

MatrixEntry(a(0).toLong - 1, 16, a(20).toInt),

MatrixEntry(a(0).toLong - 1, 17, a(21).toInt),

MatrixEntry(a(0).toLong - 1, 18, a(22).toInt))

)

}

}
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A.2 Latent Factors

import org.apache.spark.SparkContext

import org.apache.spark.mllib.recommendation.{ALS, Rating}

import org.apache.spark.rdd.RDD

object LatentFactors {

val sparkContext: SparkContext = Infrastructure.sparkContext

def main(args: Array[String]) {

val bestNormalizationFactor = Infrastructure.

↪→ normalizationFactorsList.map { v =>

val sum = Infrastructure.dataSetList.map(dataSet =>

↪→ getMetricsForDataset(dataSet._1, dataSet._2, v)).

↪→ map(u => u._5).sum

val mean = sum/Infrastructure.dataSetList.size

(v, mean)

}.maxBy(v=> v._2)

Infrastructure.dataSetList

.map(dataSet => getMetricsForDataset(dataSet._1, dataSet.

↪→ _2, bestNormalizationFactor._2))

.foreach(metric => println(metric))

println("training␣set", "testing␣set", "MSE", "RMSE", "MAE"

↪→ , "Execution␣Time")

}

private def getMetricsForDataset(trainingSet:String,

↪→ testingSet:String, normalizationFactor: Double) = {
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val startingTime = System.currentTimeMillis()

val ratings = sparkContext.textFile(trainingSet).map(_.

↪→ split("\t") match { case Array(user, item, rate,

↪→ timestamp) =>

Rating(user.toInt, item.toInt, rate.toDouble)

}).cache()

//// Build the recommendation model using ALS

val rank = 15 // 10 - 20

val numIterations = 75 // 50 - 100

val model = ALS.train(ratings, rank, numIterations,

↪→ normalizationFactor)

//import test dataset

val testRatings = sparkContext.textFile(testingSet).map(_.

↪→ split("\t") match { case Array(user, item, rate,

↪→ timestamp) =>

Rating(user.toInt, item.toInt, rate.toDouble)

}).cache()

// remove rating from dataset

val usersProducts = testRatings.map {

case Rating(user, product, rate) => (user, product)

}

// predict the rating

val predictions = model.predict(usersProducts).map {

case Rating(user, product, rate) => ((user, product),

↪→ rate)

}

// join rdd to get the rating and the prediction value for
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↪→ each combination

val ratesAndPredictions: RDD[((Int, Int), (Double, Double))

↪→ ] = testRatings.map {

case Rating(user, product, rate) => ((user, product),

↪→ rate)

}.join(predictions)

///// Metrics ////

// calculate MSE (Mean Square Error)

val MSE = Metrics.getMSE(ratesAndPredictions)

// calculate RMSE (Root Mean Square Error)

val RMSE = Math.sqrt(MSE)

// calculate MAE (Mean Absolute Error)

val MAE = Metrics.getMAE(ratesAndPredictions)

val endingTime = System.currentTimeMillis()

val executionTime = endingTime - startingTime

(trainingSet, testingSet, MSE, RMSE, MAE, executionTime)

}

}
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A.3 Infrastructure code

import org.apache.spark.{SparkConf, SparkContext}

import org.apache.spark.rdd.RDD

import scala.collection.immutable

object Infrastructure {

val sparkConfiguration: SparkConf = new SparkConf()

.setMaster("local[*]")

.setAppName("RecommenderSystemsComparison")

val sparkContext: SparkContext = {

val sc = new SparkContext(sparkConfiguration)

sc.setCheckpointDir("checkpoint/") // set checkpoint dir to

↪→ avoid stack overflow

sc

}

//import data to rdds

val users: RDD[Array[String]] = sparkContext.textFile("ml-100

↪→ k/u.user").map(u => u.trim.split("\\|")).cache()

val genres: RDD[Array[String]] = sparkContext.textFile("ml

↪→ -100k/u.genre").map(u => u.trim.split("\\|")).cache()

val items: RDD[Array[String]] = sparkContext.textFile("ml-100

↪→ k/u.item").map(u => u.trim.replace("||", "|").split("

↪→ \\|")).cache()

val occupations: RDD[String] = sparkContext.textFile("ml-100k

↪→ /u.occupation").cache()

val dataSetList = List(

("ml-100k/u1.base", "ml-100k/u1.test"),

("ml-100k/u2.base", "ml-100k/u2.test"),

("ml-100k/u3.base", "ml-100k/u3.test"),
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("ml-100k/u4.base", "ml-100k/u4.test"),

("ml-100k/u5.base", "ml-100k/u5.test"),

("ml-100k/ua.base", "ml-100k/ua.test"),

("ml-100k/ub.base", "ml-100k/ub.test")

)

val normalizationFactorsList: immutable.Seq[Double] = List

↪→ (0.01,0.03,0.06,0.09,0.12,0.15,0.18,1)

}

import org.apache.spark.rdd.RDD

object Metrics {

def getMSE (ratesAndPredictions: RDD[((Int, Int), (Double,

↪→ Double))] ): Double = {

ratesAndPredictions.map { case ((user, product), (r1, r2))

↪→ =>

val err = r1 - r2

err * err

}.mean()

}

def getMAE (ratesAndPredictions: RDD[((Int, Int), (Double,

↪→ Double))] ): Double = {

ratesAndPredictions.map { case ((user, product), (r1, r2))

↪→ =>

val err = r1 - r2

Math.abs(err)

}.mean()

}

}
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