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Abstract 

 

Value at Risk (V@R) is one of the most popular risk assessment tools in the world of 

investment and risk management. Conditional value at risk (CV@R) or Expected Shortfall 

(ES) is a technique often used to reduce the probability that a portfolio will incur large losses 

and is performed by assessing the likelihood (at a specific confidence level) that a specific loss 

will exceed the V@R.  

This thesis studies the ES notion and compares its estimation methods. The goal of the 

thesis is to analyze the techniques of V@R and ES estimations and apply the techniques of 1) 

historical and 2) monte Carlo simulation method.   

The empirical study concerns the assessment of alternatives ES methods in a real mixed 

portfolio and the comparison of their results. We used a portfolio with historical data and 

estimated the one-day 99% V@R, one-day 95% V@R such as one-day 99% ES and one-day 

95% ES in order to compare their results.  

Using different ways of estimation for two portfolios, we came to a conclusion in 

which, Historical Simulation is this simulation in which we have the underestimation of V@R 

and ES contrary to Monte Carlo Simulation. 
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CHAPTER 1: V@R and CV@R 
 

The indicative reference of this chapter is Hull C. John (2012) chapter 21 in order to 

define Value at Risk (V@R) and Conditional Value at Risk (CV@R) or Expected Shortfall 

(ES). We will cite the uses of these measures in the Basel III framework, capital market and 

solvency and also highlight the differences between V@R and CV@R. 

 

1.1 Value-at-risk (V@R) and Conditional value-at-risk (CV@R) as a risk 

measures 

 

1.1.1  The V@R measure 
 

V@R has become an industry standard in the world of investment since the 1990s due 

to its ability to combine the risks of such different assets as equities, bonds, commodities, 

currencies, and options. 

Using V@R it is simply like asking: “I am α percent certain that the loss of the portfolio 

will not be higher than V euros in the next N days”. 

The variable V is defined as the V@R of the portfolio. As we said above V@R is a 

risk assessment tool which has two parameters: the time horizon (N days) and the confidence 

level (α%). The probability that the loss level will exceed is (100-α)%. With this information, 

V@R is defined as the loss level that has (100-α)% probability not to be exceeded over the 

next N days. For example, when N=10 and α=95, V@R is the fifth percentile of the distribution 

of the gain in the value of the portfolio over the next 10 days. Usually, the confidence level 

that is used is 99% or 95%. 

V@R is widely applied in finance for quantitative risk management for many types of 

risks due to its simplicity. It is very convenient for investors to compress all the risks for all 

the market variables that exist in every single portfolio into a single number. See Figure 1.1 

for graphical representation.  
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In spite of its problems that will be analyzed below, V@R is the most popular measure 

of risk in the world of investment and risk management. Unlike traditional methods of risk 

measurement, V@R takes into account the leverage, the various correlations and the current 

position of the portfolio. The leverage and the correlations are very important factors for the 

measurement of VaR in portfolios with large positions in financial derivatives. Therefore, the 

V@R is a way to see potential future risks with great precision. In parallel, the VaR 

methodology can be used widely for measuring and other types of risks. There are mainly four 

methods for its estimation that are: Historical and Monte Carlo Simulation, which shall be 

described in the second chapter. 

 

1.1.2  The time horizon 
 

As mentioned above, V@R has two parameters: the time horizon N that is measured 

in days and the confidence level X. In practice, based on Hull C. John (2012) chapter 12, 

analysts set N=1. And this happens because it is difficult to estimate the behavior of market 

variables in periods of more than one day due to the lack of data. Financial firms, typically use 

one day whereas institutional investors and nonfinancial corporations may use longer periods. 

Usual approximation is 

V@R of N-day equals V@R of one day multiplied by √𝑵          (1.1) 

When the changes in the value of portfolio have independent identical normal 

distributions with mean zero, this formula is true.  

 

 

 

Figure 1.1 Calculation of V@R with confidence 
level α%

(100-α)%

V@R loss Gain (loss) over N days
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1.1.3  The CV@R measure or expected shortfall 
 

CV@R is defined as an extension of V@R, which measures the scale of expected 

losses, once the V@R breakpoint has been exceeded. In other words, expected shortfall is the 

expected loss during an N-day period conditional that an outcome in the (100-α)% left tail of 

the distribution occurs. It is calculated by taking a weighted average of the V@R estimate and 

the expected losses beyond V@R. 

In the search for a suitable alternative to V@R, the expected shortfall has been 

characterized as a suitable risk measure to dominate V@R. Specifically, the V@R tells you 

that the loss will not be greater than a certain amount over a certain period with α% probability. 

The expected shortfall tells you what to average loss will be over a certain period given the 

V@R has been breached. A CV@R estimate is always higher than a V@R estimate. 

When V@R asks the question: “How bad can things get?” , CV@R asks: “If things do 

get bad, how much can the company expect to lose?” 

The relationship between V@R and CV@R is illustrated in Figure 1.2. 

 

 

 

 

 

1.2  Usages of V@R 
 

V@R is a risk measure that is used globally at the following sectors according to 

Georgios Ntragas (2007): 

 Financial Institutions: Banks with large portfolios have immediate need of correct 

management of various risks. Institutions, which are daily confronted with multiple 

sources of financial risks and complex financial instruments are now using integrated 

risk management systems. 

Figure 1.2 Calculation of CV@R (Expected Shortfall) with 
confidence level α%

(100-α)%

V@R loss Gain (loss) over N daysCV@R
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 Regulatory authorities: The supervision of financial institutions requires a minimum 

capital as a reserve against the financial risks. The Basel Committee, the Federal 

Central Bank of the United States, the Securities and Exchange Commissions in U.S 

as well as in Greece and the regulatory authorities of the European Union have adopted 

the V@R method as a commonly accepted measure of risk measurement. 

 Non-financial Corporations: An integrated risk management system is useful to any 

enterprise that is exposed to financial risks. Multinational enterprises, for example, 

have inputs and outputs in many currencies, making it vulnerable to opposing changes 

in exchange rates. 

 Asset Managers: With the V@R measure, investors have the ability to measure the 

potential risks at assets. 

 

1.2.1  V@R in the Basel III framework 
 

The current framework contained in Basel II Capital Accord has established V@R as 

the official measure of market risk. As the Basel Committee on Banking Supervision (BCBS) 

has not yet recommended a particular V@R methodology (such as historical or Monte Carlo 

simulation), the adoption of the most appropriate V@R approach becomes a matter of 

importance to be decided. 

The 2007 crisis highlights the weakness in the regulation measure taken by Basel II 

Committee. It was a responsibility to fill these gaps and give some recommendation about risk 

measurement. Published in December 2010, the main goal was to strengthen financial 

institutions in order to secure bank liquidity and decrease the bank leverage. 

According to the Basel III framework, in constructing V@R models estimating 

potential quarterly losses, institutions may use quarterly data or convert shorter horizon period 

data to a quarterly equivalent using an analytically appropriate method supported by empirical 

evidence (Basel Committee on Banng Supervisor 2006).  

The Basel III Committee agreed to replace V@R with the ES for the internal model-

based approach. Also recommends using 97.5% confidence level instead of using 99% level 

of confidence like for the V@R in order to stay consistent. The 10-day returns must be used, 

that is calculated by the approximation we presented above (formula 1.1). In addition, the 

length of the sample period for the calculation must be at least one year. Besides that, the bank 

is still free to choose between models based on variance-covariance, historical simulations or 

Monte Carlo simulations.  

 

1.2.2  V@R in the regulation of capital market 
 

We understand the importance of V@R considering that Hellenic Capital Market 

Commission (which is responsible for the regular operation of the capital market in Greece) 

has imposed specific regulation about V@R. 

The picture below shows a small part of the resolution that was adopted by the Hellenic 

Capital Commission about the calculation of V@R for all corporations in Greece and is 

published on their official page, which is http://www.hcmc.gr/en_US/web/portal/home. 

 

http://www.hcmc.gr/en_US/web/portal/home
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 The regulation about V@R defined as below: 

1. The company calculates V@R on a daily basis and follows the limits for the total risk 

exposure on an ongoing basis. Depending on the investment strategy that followed, if 

it is necessary, the company makes calculations and during the day. 

2. The company selects the appropriate methodology for the calculation of V@R, after 

assessment of the risk profile arising from the investment policy, especially when using 

derivative financial instruments.   

3. For calculating the total risk, the company uses exposure advanced risk measurement 

methodology, such as the method of calculation of V@R, by conducting parallel audits 

stress tests, when: 

a) using complex investment strategies to the extent that they do not constitute a 

negligible portion of the investment policy, 

b) has exposure to non-standardised financial instruments derivatives (exotic 

derivatives) to an extent that can not be regarded as negligible, 

c) the approach on the basis of commitments (Commitment Approach) does not 

sufficiently cover the market risk of the portfolio. 

4. Using any methodology for risk measurement and calculation of V@R does not 

absolve the company from its obligation to adopt risk management limits and 

appropriate measures to follow them. 
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1.2.3  V@R in Solvency 
 

Risk management tools, similar with those that are used in other sectors of finance 

(such as banking), are more and more applied to pension funds. Nowadays, pension funds also 

calculate V@R which originates from the banking industry (Franzen D. 2010). In banking 

regulation, the confidence level is 99% and the horizon is about 10 days. When V@R first 

used in pension funds in 2005, the horizon was extended for them to one year in order to be 

responding to pension funds’ longer-term investment horizon. Also, the confidence level 

applied is usually lower than this of the banking regulation. V@R is also used in a risk 

budgeting approach. Risk budgeting approach was more recently developed for pension funds 

and is used for large funds. 

 

1.3 Comparative analysis of V@R and CV@R 
 

V@R has become a standard measure used in financial risk management due to its 

simplicity and facility in use. However, many authors claim that V@R has several problems. 

To alleviate these problems, the use of CV@R is proposed. 

 

1.3.1  V@R benefits and drawbacks 
 

V@R is a single number measuring risk that is defined by a specific confidence level. 

One of its benefits is that someone can choose between two distributions by comparing their 

V@Rs for the same confidence level. Hence, V@R is superior to the standard deviation. 

Differently from standard deviation, V@R focuses on a specific part of the distribution 

specified by the confidence level and that why V@R has been popular in risk management. 

Also, another benefit of V@R is its stability of estimation procedures. It is not affected by very 

high tail losses, which are usually difficult to measure, considering that it disregards the tail. 

One of the main drawbacks of V@R is that it is a nonconvex and discontinuous 

function for discrete distributions. For example, in the financial sector, V@R is a nonconvex 

and discontinuous function concerning portfolio positions when returns have discrete 

distributions. Furthermore, it provides no information beyond the confidence level. This means 

that V@R may increase dramatically with a small increase in confidence level (α%). So, to 

estimate the risk in a tail, one may calculate a lot of V@Rs with different confidence levels. 

Last but not least, the measure of V@R is not subadditive. Subadditive holds that 

adding, for example, the risk of Asset A and the risk of Asset B will not result in an overall 

risk that is greater than the sum of the two risks together. 

An example of subadditivity is following below: 
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Example of subadditivity 

 

 A bank has two €10 million one-year loans. The probabilities of default are in the 

following table. 

 

Outcome Probability 

Neither loan defaults 95% 

Loan 1 defaults; Loan 2 does not default 2,5% 

Loan 2 defaults; Loan 1 does not default 2,5% 

Both loans default 0% 

 

If the loan does not default, a profit of €0,3 million is made. 

Let’s begin with Loan 1. This loan has 2,5% chance of defaulting. In the event of a 

default, the loss is distributed between zero and €10 million. So, there is a 2,5% chance that a 

loss greater than zero will be incurred, and this means that there is a 1,25% chance that a loss 

greater than €5 million is incurred. We have supposed that there is no chance of a loss greater 

than €10 million. The loss level that has a probability of 1% of being exceeded is €6 million. 

This arises from the fact that if a loss is made, there is a 40% chance that the loss will be 

greater than €6 million. Because the probability of a loss is 2,5%, the probability of a loss 

greater than €6 million is 40% × 2,5% = 1%. The one-year 99% V@R is, therefore, €6 

million. The same applies to Loan 2 and the 99% V@R is €6 million too. 

To continue, we consider a portfolio of the two loans. There is a 5% probability that a 

default will occur. The V@R, in this case, is €7,7 million. This is because, there is a 5% chance 

of one of the loans defaulting and so, there is a 20% chance that the loss on the loan that 

defaults is greater than €8 million. The probability of a loss from a default being greater than 

€8 million is therefore 20% × 5% = 1%. But, in the event that one loan defaults, a profit of 

€0,3 million is made on the other loan, so the one-year 99% V@R is €7,7 million. 

If we consider the two loans separately, we can see that the total V@R is 6 + 6 = €12 

million. The total V@R after they have been combined in the portfolio is €7,7 million which 

is €4,3 million smaller. This shows the condition of subadditivity. 

 

1.3.2  CV@R benefits and drawbacks 
 

Unlike the V@R, CV@R quantifies the ‘tail risk’. Tail risk is the problem of V@R 

that disregards any loss beyond the V@R level. For example, if 𝐿̅ is a loss then the constraint 

CV@R ≤ 𝐿̅ ensures that the average of (1-α)% highest losses does not exceed 𝐿̅. 

Moreover, CV@R has several mathematical properties. It is a convex and continuous 

function of discrete distributions (CV@R also called “coherent risk measure” (Uryasev et al. 

2010)). In financial setting, CV@R of a portfolio is a convex function of portfolio positions.  

The bad news about CV@R is that it is more sensitive than V@R to estimation errors. 

If we don’t have a good model for the tail of the distribution, it is possible that CV@R value 

may be misleading, and this happens because the accuracy of CV@R estimation is strongly 

affected by the accuracy of tail modeling. For instance, historical data often do not provide 
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enough information about tails. Furthermore, Yamai and Yosiba (2005) have shown that 

expected shortfall requires a larger sample size than V@R for the same level of accuracy. 

 

 

1.3.3  Comparison of V@R and CV@R 
 

V@R and CV@R measure different parts of the distribution. Depending on what is 

needed, one may be preferred over the other. A trader using V@R as a potential loss measure 

may prefer V@R over CV@R because V@R is less restrictive, the firm’s owner may prefer 

CV@R because it is more conservative with the same confidence level. (Uryasev et al. 2010). 

If a good model of tail is available, then CV@R can be accurately estimated. As cited above, 

CV@R has superior mathematical properties and can be easily used in statistics. 

When comparing the stability of estimation of V@R and CV@R, we should choose 

appropriate confidence level for them, avoiding comparison of them for the same level of 

confidence level (α%) because V@R and CV@R refer to different parts of the distribution. 

Finally, CV@R can be optimized and constrained with convex and linear programming 

methods, whereas V@R is difficult to optimize since is a nonconvex distribution. 

Considering all above, CV@R is a more accurate risk measure than V@R owning the 

fact that when V@R asks the question: “How bad can things get?” , CV@R asks: “If things 

do get bad, how much do we expect to lose?” 
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CHAPTER 2: Estimation methods of V@R and CV@R 
 

The indicative reference of this chapter is Hull C. John (2012) Chapter 21, in order to 

define the methods of estimations of  V@R and CV@R or Expected Shortfall (ES). These 

methods are 1) Historical and 2) Monte Carlo Simulation as has also mentioned above. 

 

2.1 Historical Simulation 
 

Historical simulation is one popular way of estimating V@R. Suppose that we want to 

calculate V@R for a portfolio using daily data, a 99% confidence level and 501 trading days 

(we use 501 trading days in order to create 500 scenarios as we will see below). 

In applying Historical simulation, four steps are involved: 

I. Identify the market variables (risk factors) affecting the portfolio such as interest rates, 

equity prices, commodity prices. 

II. Select a sample of actual daily risk factor prices or changes over a given period such 

as 501 days. All prices are measured in the domestic currency. 

III. Apply those daily changes to the current value of the risk factors or prices, and revalue 

the portfolio as many times as the number of days in the sample. 

IV. Construct the histogram of the portfolio and identify the V@R that separate the first 

percentile of the distribution in the left tail assuming that we use a 99% confidence 

level. 

Historical simulation has its limitations. One limitation is that it heavily relies on a 

particular set of historical data. Historical data may capture periods of extremely high or 

extremely low volatility and may not accurately represent future outcomes. Another limitation 

is data availability. For example, one year of data corresponds to only 250 trading days on 

average and 250 scenarios. By contrast, Monte Carlo simulations usually involve a large 

number of simulations (as we will see below). Working in small samples of historical data 

may leave gaps in the distributions of the risk factors. 

Let’s describe this process with more details. Data are collected on movements in the 

market variables over the most 501 days as we cited above. This provides us 500 alternative 

scenarios about what will happen between today and tomorrow. The first day that we have 

data is denoted as Day 0, the second day as Day 1, and so on. Scenario 1 is where the 

percentage changes in the values of all variables are the same as they were between Day 0 and 

Day 1, Scenario 2 is where they are the same as between Day 1 and Day 2, and so on. For each 

scenario, we calculate also the euro change in the value of portfolio between today and 

tomorrow. This defines a probability distribution for daily loss in the value of the portfolio. At 

these 500 scenarios, the 99th percentile of the distribution can be estimated as the fifth highest 

loss. The V@R is the loss when we are at this 99th percentile point. In other words, we are 

99% certain that the loss will not be greater than the V@R estimation if the changes in market 

variables in the last 501 days are a representative sample of what will happen between today 

and tomorrow. 
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Algebraically, we define as 𝑢𝑖  the value of a market variable on Day i and suppose that 

today is Day n. The ith scenario in the historical simulation approach assumes that the value 

of the market variable tomorrow will be  

Value under 𝑖𝑡ℎ scenario= 𝑢𝑛  
𝑢𝑖

𝑢𝑖−1
 

 

2.1.1 Example in historical simulation 
  

 Suppose that an investor in Greece owns, on October 6, 2017, a portfolio worth €10 

million consisting of investments in four stock indices: the Dow Jones Industrial Average 

(DJIA) in the US, the FTSE 100 in the UK, the CAC 40 in France, and the Nikkei 225 in Japan. 

Table 2.1 shows the value of the investment in each index on October 6, 2017. 

Table 2.1  Investment portfolio used for V@R calculations 

 

Index Portfolio Value (€000s) 

DJIA €4.000 

FTSE 100 €2.000 

CAC40 €3.000 

Nikkei 225 €1.000 

Total €10.000 

 

 Table 2.2 shows also a part of 501 days of historical data on the closing prices of the 

four indices in their currency. 

Table 2.2  Data on stock indices for historical simulation 

 

Day Date DJIA ($) FTSE-100 (£) CAC-40 (€) Nikkei(¥) 

0 13/10/2015 17.081,890 6.342,280 4.643,380 18.234,740 

1 14/10/2015 16.924,750 6.269,610 4.609,030 17.891,000 

2 15/10/2015 17.141,750 6.338,670 4.675,290 18.096,900 

3 16/10/2015 17.215,970 6.378,040 4.702,790 18.291,800 

. . . . . . 

. . . . . . 

. . . . . . 

499 5/10/2017 22.775,390 7.507,990 5.379,210 20.690,710 

500 6/10/2017 22.773,670 7.522,870 5.359,900 20.659,635 

  

The values of the FTSE 100, CAC 40, and Nikkei 225 are adjusted for exchange rate 

changes so that they are measured in euros (as we have also supposed an investor in Greece). 
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For example, the FTSE 100 was £7.522,870 on October 6, 2017, when the exchange rate was 

0,89803 EUR per GBP. It was £6.342,280 on October 13, 2015, when the exchange rate was 

0,7466 EUR per GBP. When measuring in EUR, if the index is set to £7.522,870 on October 

6, 2017, it is  

£6.342,280 ×  
0,7466 €/£

0,89803 €/£ 
 = 5.272,815€ 

on October 13, 2015. An extract from the data after exchange rate adjustments have been 

made is shown in Table 2.3. 

 

Table 2.3  Data on stock indices for historical simulation after exchange rate adjustments 

 

Day Date DJIA FTSE-100 CAC-40 Nikkei 

0 13/10/2015 16.582,69 5.272,82 4.643,38 22.074,18 

1 14/10/2015 16.556,10 5.177,49 4.609,03 21.664,02 

2 15/10/2015 16.625,16 5.188,01 4.675,29 21.739,11 

3 16/10/2015 16.657,37 5.220,73 4.702,79 22.016,19 

. . . . . . 

. . . . . . 

. . . . . . 

499 5/10/2017 22.737,72 7.465,94 5.379,21 20.721,66 

500 6/10/2017 22.773,67 7.522,87 5.359,90 20.659,64 
 

 

Table 2.4 shows the values of the market variables on October 7, 2017, for the scenarios 

considered. Scenario 1 (the first row in Table 1.4) shows the values of market variables on 

October 7, 2017, assuming that their percentage changes between October 6 and October 7, 

2017, are the same as they were between October 13 and October 14, 2015; Scenario 2 (the 

second row in Table 1.4) shows the values of market variables on October 7, 2017, assuming 

these percentage changes are the same as those between October 14 and October 15, 2015; 

and so on. In general, Scenario I assumes that the percentage changes in the indices between 

October 6 and October 7 are the same as they were between Day i-1 and Day i for 1 ≤ i ≤ 500. 

The 500 rows in Table 1.4 are the 500 scenarios considered. 
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Table 2.4  Scenarios generated for October 7, 2017, using data in Table 2.3 

 

Scenario 
number DJIA FTSE 100 CAC 40 Nikkei 225 

Portfolio 
Value 
(€000s) 

Loss 
(€000s) 

1 22.737,158 7.661,375 5.399,846 21.050,780 10.071,700 71,700 

2 22.868,665 7.507,622 5.283,937 20.588,272 9.966,660 -33,340 

3 22.817,791 7.475,721 5.328,557 20.399,631 9.965,087 -34,913 

. . . . . . . 

. . . . . . . 

. . . . . . . 

499 22.786,993 7.439,983 5.343,977 20.588,997 9.967,973 -32,027 

500 22.809,675 7.465,937 5.379,210 20.721,660 10.004,998 4,998 

 

Therefore the value of the DJIA under Scenario 1 is  

 

22.773,67€ × 
16.556,099€

16.582,685€
 = 22.737,158€ 

 

Similarly, the values of the FTSE 100, the CAC 40, and the Nikkie 225 are 7.661,375€, 

5.399,846€, and 21.050,780€, respectively. Therefore the value of the portfolio under 

Scenario 1 is (in €000s)  

 

4.000 ×
22.737,158

22.773,670
+ 2.000 ×

7.661,375

7.522,870
 

+3.000 ×
5.399,846

5.359,900
+ 1.000 ×

21.050,780

20.659,635
= €10.071,700 

 

The portfolio, therefore, has a gain of €71.700 under Scenario 1. A similar calculation is made 

for the others scenarios. A histogram of the losses is shown in Figure 2.1. The descriptive 

statistics for the losses of the portfolio are also shown in Table 2.5. 

 

 

 

 

 



-16- 
 

 

Table 2.5  Descriptive statistics of losses for the scenarios considered between October 6 and 

October 7, 2017 

 

Descriptive statistics 

    

Mean 
(€000s) -0,954 

Standard 
Error 2,267 

Median 
(€000s) -3,788 

Standard 
Deviation 50,693 

Sample 
Variance 2.569,806 

Kurtosis 6,270 

Skewness 0,189 

Range 
(€000s) 619,831 

Minimum 
(€000s) -284,958 

Maximum 
(€000s) 334,873 

    

 

 

Figure 2.1  Histogram of losses for the scenarios considered between October 6 and October 

7, 2017 
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The losses that have already arisen from the 500 different scenarios are now ranked. 

An extract of the results of this is shown in Table 2.6. The worst scenario is number 89. The 

one day 99% V@R can be estimated as the fifth worst loss (as we have a 99% confidence level 

and 500 scenarios). This is €125.144 and -1,2514%. The one day 95% V@R can be estimated 

also as the 25th worst loss (as we have a 95% confidence level and 500 scenarios). This is 

€86.335 and -0,8634%. 

 As we have already seen in Chapter 1.1.2 (formula 1.1), the ten-day 99% V@R is 

usually calculated as √10 times the one-day 99% V@R (under circumstances). In this case, 

the ten-day V@R would therefore be 

√10 × 125.144 = €395.740,075 

 

Table 2.6  Losses ranked from highest to lowest for 500 scenarios 

Scenario 
number Loss (€000s) Loss (%) 

176 -334,873 -3,3487% 

63 -162,746 -1,6275% 

25 -137,244 -1,3724% 

243 -127,850 -1,2785% 

89 -125,144 -1,2514% 

229 -116,110 -1,1611% 

182 -112,763 -1,1276% 

177 -111,316 -1,1132% 

70 -109,797 -1,0980% 

46 -108,844 -1,0884% 

392 -108,774 -1,0877% 

72 -104,885 -1,0488% 

8 -104,699 -1,0470% 

296 -103,573 -1,0357% 

84 -100,809 -1,0081% 

181 -98,271 -0,9827% 

251 -97,213 -0,9721% 

496 -95,115 -0,9511% 

190 -94,290 -0,9429% 

275 -93,880 -0,9388% 

45 -93,296 -0,9330% 

87 -89,813 -0,8981% 

127 -89,045 -0,8904% 

184 -87,068 -0,8707% 

156 -86,335 -0,8634% 

297 -85,642 -0,8564% 

131 -84,656 -0,8466% 

47 -84,193 -0,8419% 

99% V@R 

95% V@R 
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356 -81,937 -0,8194% 

76 -80,409 -0,8041% 

. . . 

. . . 

. . . 

 

 

Each day the V@R estimate in our example would be updated using the most recent 

501 days of data. For example, we can wonder about what happens on October 7, 2017 (Day 

501). We should find new values for all market variables and calculate a new value for the 

portfolio. We should go then through the procedure we have summarized to calculate a new 

V@R. Data on the market variables from October 14, 2015, to October 7, 2017 (Day 1 to Day 

501) are used in the calculation. This gives us the required 500 observations on the percentage 

changes in market variables (the October 13, 2015, Day 0, values of the market variables are 

no longer used). Similarly, on the next trading day October 8, 2017 (Day 502), data from 

October 15, 2015, to October 8, 2017 (Day 2 to Date 502) are used to determine V@R, and so 

on. 

 In practice, a real financial’s portfolio is, of course, more complicated than the one we 

analyzed here. It may consist of thousands or more positions. These positions can be in forward 

contracts, options, and other derivatives. The V@R is calculated at the end of each day on the 

speculation that the portfolio will remain the same over the next business day. We can 

understand here that sometimes, should be considered hundreds or even thousands of market 

variables in a V@R calculation. 

 In order to calculate expected shortfall with historical simulation, we should average 

the five observations of the worst losses, as have already ranked above. More exactly, in our 

example, the five worst losses (€000s) are from scenarios 176, 63, 25, 243 and 89 (see Table 

2.6 above). The average for these scenarios is €177.571 and -1,7757% and this is the estimation 

of the expected shortfall for the 99% confidence level. The expected shortfall for a confidence 

level of 95% is also €115.750 and -1,1575%. 

 In this part of the chapter, we will do just the same analysis for the same indices but 

we suppose that the whole portfolio consists of one index each time. So, we will calculate 

V@R and ES for four different portfolios (one portfolio for each index) and then we will 

compare the results of them with the V@R and ES of the initial portfolio that consist of four 

indices. 

 To begin with, Tables 2.7-2.10 show the data of four indices in their currency 

separately, such as their value after exchange rate adjustments (our currency is euros as we are 

in Greece). 
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Table 2.7  Data on DJIA for historical simulation after exchange rate adjustments 

Day Date DJIA 

Exchange 
Rate 

EUR/USD 
Adjusted 

DJIA 

0 13/10/2015 17.081,890 1,13872 16.582,685 

1 14/10/2015 16.924,750 1,14745 16.556,099 

2 15/10/2015 17.141,750 1,13765 16.625,159 

3 16/10/2015 17.215,970 1,13494 16.657,368 

. . . . . 

. . . . . 

. . . . . 

499 5/10/2017 22.775,390 1,17106 22.737,722 

500 6/10/2017 22.773,670 1,17300 22.773,670 

 

 

Table 2.8  Data on FTSE 100 for historical simulation after exchange rate adjustments 

Day Date FTSE-100 

Exchange 
Rate 

EUR/GBP 
Adjusted 
FTSE-500 

0 13/10/2015 6.342,280 0,7466 5.272,815 

1 14/10/2015 6.269,610 0,7416 5.177,492 

2 15/10/2015 6.338,670 0,73501 5.188,007 

3 16/10/2015 6.378,040 0,73508 5.220,727 

. . . . . 

. . . . . 

. . . . . 

499 5/10/2017 7.507,990 0,89300 7.465,937 

500 6/10/2017 7.522,870 0,89803 7.522,870 

 

 

Table 2.9  Data on CAC-40 for historical simulation without exchange rate adjustments (as 

this index values in €). 

Day Date CAC-40 

0 13/10/2015 4.643,380 

1 14/10/2015 4.609,030 

2 15/10/2015 4.675,290 

3 16/10/2015 4.702,790 

. . . 

. . . 

. . . 

499 5/10/2017 5.379,210 

500 6/10/2017 5.359,900 
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Table 2.10  Data on Nikkei for historical simulation after exchange rate adjustments 

Day Date Nikkei 

Exchange 
Rate 

EUR/YEN 
Adjusted 

Nikkei 

0 13/10/2015 18.234,740 136,3625 22.074,178 

1 14/10/2015 17.891,000 136,4 21.664,017 

2 15/10/2015 18.096,900 135,3155 21.739,109 

3 16/10/2015 18.291,800 135,58 22.016,186 

. . . . . 

. . . . . 

. . . . . 

499 5/10/2017 20.690,710 112,81300 20.721,660 

500 6/10/2017 20.659,635 112,64450 20.659,635 

 

Moreover, we calculate the 500 scenarios for each index as we analyze above. An 

extract of these scenarios is shown in Table 2.11. 

 

Table 2.11  Scenarios generated for October 7, 2017, using data in Tables 2.7-2.10 

Scenario 
number DJIA FTSE 100 CAC 40 Nikkei 225 

1 22737,16 7661,375 5399,846 21050,78 

2 22868,67 7507,622 5283,937 20588,272 

3 22817,79 7475,721 5328,557 20399,631 

. . . . . 

. . . . . 

. . . . . 

499 22786,99 7439,983 5343,977 20588,997 

500 22809,67 7465,937 5379,21 20721,66 

  

Then, we calculate the value of each portfolio such as the losses of them. We can see 

the results in the following tables (Tables 2.12-2.15). 

 

Table 2.12  Portfolio’s value and losses of DJIA  

Scenario 
number DJIA 

Portfolio 
Value 

(€000s) 
Losses 
(€000s) 

1 22737,16 3993,587 -6,412957 

2 22868,67 4016,685 16,6851 

3 22817,79 4007,749 7,74945 

. . . . 

. . . . 
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. . . . 

499 22786,99 4002,34 2,34008 

500 22809,67 4006,324 6,32389 

    

 

Table 2.13  Portfolio’s value and losses of  FTSE 100 

Scenario 
number FTSE 100 

Portfolio 
Value 

(€000s) 
Losses 
(€000s) 

1 7661,375 2036,822 36,8223 

2 7507,622 1995,946 -4,053698 

3 7475,721 1987,465 -12,53477 

. . . . 

. . . . 

. . . . 

499 7439,983 1977,964 -22,03612 

500 7465,937 1984,864 -15,13608 

 

Table 2.14  Portfolio’s value and losses of CAC-40 

Scenario 
number CAC-40 

Portfolio 
Value 

(€000s) 
Losses 
(€000s) 

1 5399,846 3022,358 22,3583 

2 5283,937 2957,483 -42,51715 

3 5328,557 2982,457 -17,54278 

. . . . 

. . . . 

. . . . 

499 5343,977 2991,088 -8,912089 

500 5379,21 3010,808 10,808 

 

Table 2.15  Portfolio’s value and losses of Nikkie 

Scenario 
number Nikkie 

Portfolio 
Value 

(€000s) 
Losses 
(€000s) 

1 21050,78 1018,933 18,9328 

2 20588,27 996,5458 -3,454224 

3 20399,63 987,4149 -12,58514 

. . . . 

. . . . 

. . . . 

499 20589 996,5809 -3,419131 

500 20721,66 1003,002 3,00225 
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In conclusion, the losses that have already arisen from the 500 different scenarios for 

each portfolio are now ranked and the V@R has also calculated (as the fifth highest loss of the 

losses of each portfolio). An extract of the results of this is shown in Tables 2.16-2.19. 

 

Table 2.16  Losses ranked from highest to lowest for 500 scenarios for DJIA 

Scenario 
number 

Ranked 
Losses 
(€000s) 

Losses 
(%) 

176 -223,046 -5,5762% 

177 -98,404 -2,4601% 

229 -96,294 -2,4074% 

56 -75,813 -1,8953% 

65 -75,665 -1,8916% 

67 -75,467 -1,8867% 

47 -74,762 -1,8690% 

63 -72,947 -1,8237% 

251 -72,353 -1,8088% 

46 -68,423 -1,7106% 

55 -68,372 -1,7093% 

465 -66,892 -1,6723% 

296 -66,759 -1,6690% 

147 -66,672 -1,6668% 

79 -66,051 -1,6513% 

231 -64,38692 -1,6097% 

76 -63,49187 -1,5873% 

23 -61,27269 -1,5318% 

42 -53,0764 -1,3269% 

83 -52,64498 -1,3161% 
182 -51,82424 -1,2956% 

234 -51,74983 -1,2937% 

58 -49,1392 -1,2285% 

166 -48,4986 -1,2125% 

121 -47,82099 -1,1955% 

93 -47,29101 -1,1823% 

401 -47,21381 -1,1803% 

378 -47,14849 -1,1787% 

16 -46,94483 -1,1736% 

90 -46,3892 -1,1597% 

. . . 

. . . 

. . . 

 

 

99% V@R 

95% V@R 
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Table 2.17  Losses ranked from highest to lowest for 500 scenarios for FTSE 100 

Scenario 
number 

Ranked 
Losses 
(€000s) Losses(%) 

384 -70,756 -3,5378% 

179 -64,268 -3,2134% 

85 -59,737 -2,9868% 

180 -59,402 -2,9701% 

204 -59,360 -2,9680% 

176 -59,264 -2,9632% 

86 -56,018 -2,8009% 

44 -52,227 -2,6113% 

152 -51,135 -2,5568% 

249 -50,364 -2,5182% 

291 -49,620 -2,4810% 

72 -47,052 -2,3526% 

74 -46,818 -2,3409% 

89 -45,426 -2,2713% 

84 -45,286 -2,2643% 

92 -44,87976 -2,2440% 

347 -42,97176 -2,1486% 

178 -42,97012 -2,1485% 

246 -41,83111 -2,0916% 

445 -41,30683 -2,0653% 

78 -41,14139 -2,0571% 

115 -40,42586 -2,0213% 

245 -38,98608 -1,9493% 

50 -36,29476 -1,8147% 

270 -36,17003 -1,8085% 

181 -36,13205 -1,8066% 

400 -35,87238 -1,7936% 

312 -35,58222 -1,7791% 

496 -34,85134 -1,7426% 

66 -34,80375 -1,7402% 

. . . 

. . . 

. . . 

 

 

 

 

 

 

99% V@R 

95% V@R 
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Table 2.18  Losses ranked from highest to lowest for 500 scenarios for CAC-40 

 

Scenario 
number 

Ranked 
Losses 
(€000s) Losses (%) 

392 -119,371 -3,9790% 

175 -101,547 -3,3849% 

127 -96,474 -3,2158% 

106 -95,112 -3,1704% 

45 -91,884 -3,0628% 

71 -90,131 -3,0044% 

87 -87,618 -2,9206% 

89 -87,028 -2,9009% 

25 -80,813 -2,6938% 

496 -76,553 -2,5518% 

181 -76,400 -2,5467% 

182 -76,135 -2,5378% 

8 -74,006 -2,4669% 

86 -73,854 -2,4618% 

156 -72,043 -2,4014% 

51 -68,62508 -2,2875% 

229 -67,69892 -2,2566% 

7 -66,89462 -2,2298% 

243 -66,70111 -2,2234% 

95 -65,74868 -2,1916% 

76 -64,42805 -2,1476% 

356 -61,83441 -2,0611% 

70 -58,09005 -1,9363% 

68 -58,06529 -1,9355% 

178 -57,68378 -1,9228% 

275 -56,3188 -1,8773% 

54 -53,22502 -1,7742% 

92 -52,80201 -1,7601% 

117 -52,48154 -1,7494% 

189 -52,13712 -1,7379% 

. . . 

. . . 

. . . 

 

 

 

 

 

99% V@R 

95% V@R 
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Table 2.19  Losses ranked from highest to lowest for 500 scenarios for Nikkie 

Scenario 
number 

Ranked 
Losses 
(€000s) Losses(%) 

272 -68,139 -6,8139% 

84 -66,261 -6,6261% 

69 -57,546 -5,7546% 

185 -50,086 -5,0086% 

96 -45,647 -4,5647% 

34 -36,288 -3,6288% 

72 -34,781 -3,4781% 

126 -34,648 -3,4648% 

176 -34,373 -3,4373% 

307 -31,977 -3,1977% 

129 -31,407 -3,1407% 

184 -27,150 -2,7150% 

205 -26,461 -2,6461% 

334 -25,471 -2,5471% 

171 -25,431 -2,5431% 

131 -24,7736 -2,4774% 

187 -24,67682 -2,4677% 

485 -24,26018 -2,4260% 

220 -24,1358 -2,4136% 

242 -24,05034 -2,4050% 

125 -23,69108 -2,3691% 

104 -22,88895 -2,2889% 

63 -22,70881 -2,2709% 

274 -22,33421 -2,2334% 

481 -21,73752 -2,1738% 

74 -21,23465 -2,1235% 

390 -20,71012 -2,0710% 

75 -20,68352 -2,0684% 

46 -20,1247 -2,0125% 

388 -19,83009 -1,9830% 

. . . 

. . . 

. . . 

 

As a result, the 99% V@R and 99% ES of four indices (at four different portfolios) are 

shown in Table 2.20. 

 

 

 

99% V@R 

95% V@R 
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Table 2.20  99% V@R and 99% ES for four indices. 

 

Index 
Value-at-

Risk Losses (%) 
Expected 
Shortfall Losses (%) 

DJIA -75,66536 -1,8916% -113,8444 -2,8461% 

FTSE 100 -59,35967 -2,9680% -62,70453 -3,1352% 

CAC-40 -91,8841 -3,0628% -100,8778 -3,3626% 

Nikkie -45,64665 -4,5647% -57,53569 -5,7536% 

 

Now, we want to check the benefits of diversification. In the example above we have 

just considered: 

I. The 99% V@R for the portfolio of DJIA is €75.665 and ES is €113.844. 

II. The 99% V@R for the portfolio of FTSE 100 is €59.359 and ES is €62.704. 

III. The 99% V@R for the portfolio of CAC-40 is €91.884 and ES is €100.877. 

IV. The 99% V@R for the portfolio of Nikkie is €45.646 and ES is €57.535.  

For the first measure (V@R) we can see that the amount (€75.665 +€59.359 +€91.884 

+ €45.646) = €272.554, is bigger than the amount of V@R that have already calculated above 

for the portfolio of all four indices together which is €125.144. This represents, the benefits of 

diversification, even though that the measure of V@R is not subadditive (as we have also 

mentioned above). 

For the second measure (ES) we can see that the amount (€113.844 +€62.704 

+€100.877 +€57.535)= €334.960 is also bigger than the amount of ES that has already 

calculated above for the portfolio of all four indices together which is €177.571 and it is 

expected, as the measure of ES is subadditive. 

Respectively, the 95%V@R and 95% ES of four indices (at four different portfolios) 

are shown in Table 2.21. 

 

Table 2.21  95% V@R and 95% ES for four indices. 

 

Index 
Value-at-

Risk 
Losses 

(%) 
Expected 
Shortfall Losses (%) 

DJIA -47,82099 -1,1955% -72,47301 -1,8118% 

FTSE 100 -36,17003 -1,8085% -48,94846 -2,4474% 

CAC-40 -57,68378 -1,9228% -77,38960 -2,5797% 

Nikkie -21,73752 -2,1738% -33,23686 -3,3237% 
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We will check again the benefits of diversification. In the example above we have 

just considered: 

I. The 95% V@R for the portfolio of DJIA is €47.821 and ES is €72.473 

II. The 95% V@R for the portfolio of FTSE 100 is €36.170 and ES is €48.948. 

III. The 95% V@R for the portfolio of CAC-40 is €57.683 and ES is €77.389. 

IV. The 95% V@R for the portfolio of Nikkie is €21.737 and ES is €33.236. 

As we can see again, the first measure (V@R) has a total amount of (€47.821 +€36.170 

+€57.683 + €21.737) = €163.411, and it is bigger than the amount of V@R that have already 

calculated above for the portfolio of all four indices together which is €86.335 This represents 

also, the benefits of diversification, even though that the measure of V@R is not subadditive 

(as we have also mentioned above). 

For the second measure (ES) we can see that the amount (€72.473 +€48.948 +€77.389 

+€33.236)= €232.046 is also bigger than the amount of ES that has already calculated above 

for the portfolio of all four indices together which is €115.750 and it is again expected, as the 

measure of ES is subadditive. 

 

2.2  Monte Carlo Simulation 
 

 Monte Carlo is a mathematical technique that generates random variables for modeling 

uncertain situations (The Economic Times). This technique was introduced during World War 

II. Today, it is used in a large variety of fields such as biology, physical science, artificial 

intelligence, statistics and quantitive finance. 

 Monte Carlo is based on probability theory in order to construct the simulation process. 

It contains repeated trials of the values of uncertain inputs based on a known probability 

distribution and a known process in order to construct a probability distribution for the output. 

In detail, each uncertain input in the problem is supposed to be a random variable with a known 

probability distribution. The output of the model, after a large number of iterations, is also a 

probability distribution. 

 We can think the Monte Carlo simulation like scenario analysis that we have described 

above. Instead of having 500 scenarios (as we used above), the simulation process generates 

thousands or ten of thousands of scenarios. The more scenarios we have, the better we 

understand the nature of the problem. 

 Rather than defining the probability distribution of the risk factor (in this case, the risk 

factor is the return of an index), the Monte Carlo simulation method exports the distribution 

of the indices returns using a stochastic process. We assume that indices prices follow a special 

type of stochastic process known as Geometric Brownian Motion that is described by the 

following equation: 

 

𝑺𝒕+𝜟𝒕 = 𝑺𝒕 𝒆 (𝒌𝜟𝒕+𝝈𝜺𝒕 √𝜟𝒕)     (2.1) 
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where 𝑆𝑡 is the index price at the time t, e is the natural log, 𝛥𝑡 is the time increase (that is 

expressed as portion of a year in term of trading days, for example one trading day will yields 

𝛥𝑡 = 1/252 of a trading year), 𝑘 = 𝜇 − (
𝜎2

2
) is the expected return (which equals annualised 

mean return 𝜇 minus half of the annualised variance of return 𝜎2, and 𝜀𝑡 is the randomness at 

time t that is introduced to randomise the change in index. In detail, the variable 𝜀𝑡 is a random 

number, generated from a standard normal probability distribution, which has a mean of zero 

and a standard deviation of one. We can rearrange equation (2.1) with equation (2.2) as 

follows: 

 

𝑹𝒕+𝜟𝒕
= 𝐥𝐧 (

𝑺𝒕+𝜟𝒕

𝑺𝒕
) = 𝒌𝜟𝒕 + 𝝈𝜺𝒕√𝜟𝒕     (2.2) 

 

So, the main key in Monte Carlo simulation is to generate the future returns according 

to equation (2.2). The number of runs is defined by us, normally we used upwards of 10.000. 

So, in each simulation we have the following four steps in order to calculate V@R and ES: 

 Step one calculates the parameters in the Geometric Brownian Motion process 

 Step two generates normally distributed random numbers 

 Step three applies the normally distributed random numbers into the 

Geometric Brownian Motion process in order to yield the simulated asset 

returns 

 And the final step is to calculate V@R which is again the observation of the 

1% (for 99% V@R) or 5% (for 95% V@R) of the worst scenarios, such as we 

have also described in the historical simulation. For the calculation of ES, we 

average again the 1%(for 99% V@R) or 5% (for 95% V@R) of the worst 

scenarios, that has also explained in historical simulation above. 

 

2.2.1  Example in Monte Carlo simulation 
 

 We will use the same data with the example in historical simulation in order to compare 

the results. So we have again an investor in Greece, who owns, on October 6, 2017, a portfolio 

worth €10 million consisting of investments in four stock indices: the Dow Jones Industrial 

Average (DJIA) in the US, the FTSE 100 in the UK, the CAC 40 in France, and the Nikkei 

225 in Japan. We have also a part of 501 days of historical data on the closing prices of the 

four indices in their currency. The values of the FTSE 100, CAC 40, and Nikkei 225 are 

adjusted for exchange rate changes so that they are measured in euros (as we have also 

supposed an investor in Greece) just as we calculated them in historical simulation above. 

Now, we calculate the returns of the four indices. The total return of an index is the following 

as described in equation 2.3: 
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𝑹𝒆𝒕𝒖𝒓𝒏 =
𝑷𝒓𝒊𝒄𝒆𝒕+𝟏− 𝑷𝒓𝒊𝒄𝒆𝒕

𝑷𝒓𝒊𝒄𝒆𝒕
       (2.3) 

  

An extract of the returns of the four indices is shown in the Table 2.22 below. 

Table 2.22  Historical returns of the four indices 

 

HISTORICAL RETURNS 

Day  DJIA FTSE 500 CAC 40 Nikkei 

1 -0,160% -1,808% -0,740% -1,858% 

2 0,417% 0,203% 1,438% 0,347% 

3 0,194% 0,631% 0,588% 1,275% 

4 -0,100% -0,750% 0,027% -1,035% 

5 0,137% 0,229% -0,643% 0,904% 

6 -0,384% 0,128% 0,456% 1,881% 

7 -0,237% -1,473% 2,281% -2,059% 

8 0,091% 0,785% 2,529% 1,914% 

9 0,248% -0,282% -0,538% 0,712% 

10 -0,441% -0,764% -1,022% -1,584% 

. . . . . 

. . . . . 

. . . . . 

498 0,258% 0,089% -0,078% -0,041% 

499 0,059% 1,114% 0,298% 0,343% 

500 0,158% 0,763% -0,359% -0,299% 

 

 The first step for the Monte Carlo simulation, as mentioned above, is to calculate the 

parameters in the Geometric Brownian Motion for all indices. The results of the calculation 

of these parameters are shown in the Table 2.23 below. We should remind there the equation 

of the Geometric Brownian Motion (equation 2.1) as was presented above: 

 

𝑺𝒕+𝜟𝒕 = 𝑺𝒕 𝒆 (𝒌𝜟𝒕+𝝈𝜺𝒕 √𝜟𝒕) 
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Table 2.23  Parameters of Geometric Brownian Motion 

 

Geometric Brownian Motion 

  DJIA FTSE 500 CAC 40 Nikkei 

Number of 
observations 

500 500 500 500 

Min daily 
return 

-5,5762% -3,9109% -8,0425% -14,5408% 

Max daily 
return 

2,7174% 3,6675% 4,1439% 7,3121% 

Share price 
now (S0) 

22.773,670 7.522,870 5.359,900 20.659,635 

Number of 
trading days 

per year 
252 252 252 252 

Time 
increment 

(Δt) for one 
day 

0,00396825 0,0039683 0,0039683 0,00396825 

Average 
daily return 

0,0667% 0,0763% 0,0351% 0,0003% 

Daily 
standard 
deviation 

0,8056% 1,0212% 1,1253% 1,6311% 

Annualized 
mean return 
for one year 

(μ) 

16,8147% 19,2293% 8,8363% 0,0778% 

Annualized 
standard 

deviation (σ) 
12,7888% 16,2109% 17,8640% 25,8933% 

Expected 
return (k) 

15,9969% 17,9153% 7,2407% -3,2745% 

 

 The next step is to generate normally distributed random numbers. We have also 

generated 100.000 of these numbers, as we decided to have 100.000 simulations in order to 

have better results. Because, the more simulations, the better results with respect to accuracy. 

An extract of these numbers is presented also in Table 2.24 below: 
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Table 2.24  Normally distributed random numbers 

 

Normally Distributed Random Numbers 

  DJIA FTSE 500 CAC 40 Nikkie 

1 -2,95462 -2,95462 -2,95462 -2,95462 

2 -0,50279 -0,50279 -0,50279 -0,50279 

3 -1,16968 -1,16968 -1,16968 -1,16968 

4 0,612893 0,612893 0,612893 0,612893 

5 0,134376 0,134376 0,134376 0,134376 

. . . . . 

. . . . . 

. . . . . 

99.996 -1,27338 -1,27338 -1,27338 -1,27338 

99.997 1,462139 1,462139 1,462139 1,462139 

99.998 -0,27676 -0,27676 -0,27676 -0,27676 

99.999 -0,80006 -0,80006 -0,80006 -0,80006 

100.000 -0,35434 -0,35434 -0,35434 -0,35434 

 

 Then, we use these numbers to the equation of the Geometric Brownian Motion 

(equation 2.1) in order to refund us the indices returns for 100.000 simulations. After all this 

process, we follow the same way to calculate V@R and ES. More exactly, we take into 

consideration the weights of each index in our portfolio and calculate the value of this in each 

simulation. An extract of the returns and the weighted yield of the portfolio, after the use of 

the Geometric Brownian Motion, that consists of the four indices, is shown in Table 2.25 

below: 

 

2.25  Returns of indices and final yield of the portfolio 

 

SIMULATED RETURNS 

  DJIA FTSE 500 CAC 40 Nikkei 
Weighted 
average 

Number of 
simulations 

40% 20% 30% 10%   

1 -2,3168% -2,9461% -3,2962% -4,8323% -2,9880% 

2 -0,3416% -0,4423% -0,5371% -0,8331% -0,4695% 

3 -0,8788% -1,1234% -1,2875% -1,9209% -1,1546% 

4 0,5572% 0,6970% 0,7184% 0,9867% 0,6765% 

5 0,1717% 0,2083% 0,1800% 0,2062% 0,1850% 

. . . . . . 

. . . . . . 
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. . . . . . 

99.996 -0,9624% -1,2293% -1,4042% -2,0900% -1,2611% 

99.997 1,2414% 1,5642% 1,6741% 2,3719% 1,5488% 

99.998 -0,1595% -0,2115% -0,2827% -0,4644% -0,2374% 

99.999 -0,5811% -0,7459% -0,8716% -1,3180% -0,7749% 

100.000 -0,2220% -0,2908% -0,3700% -0,5910% -0,3170% 

 

 

All things considered, the weighted yields of the portfolio are now ranked from 

smallest to highest. An extract of the results of this is shown in Table 2.26. The worst yield is 

at the 8.573rd simulation. The one day 99% V@R can be estimated as the 1000th  worst yield 

(as we have a 99% confidence level and 100.000 simulations). This is -2,3369%. The one day 

95% V@R can be estimated also as the 5000th worst yield (as we have a 95% confidence level 

and 100.000 simulations). This is -1,6446%. 

 

Table 2.26  Yields ranked from lowest to highest for 100.000 simulations for the portfolio 

 

Number 
of 
simulation 

Ranked 
Average 

8.573 -4,3922% 

62.275 -4,1619% 

81.706 -4,0148% 

12.335 -3,9513% 

78.457 -3,9350% 

. . 

. . 

. . 

85.989 -2,3369% 

. . 

. . 

. . 

6.364 -1,6446% 

. . 

. . 

. . 

52.440 4,1723% 

41.905 4,2368% 

80.130 4,3616% 

55.461 4,4079% 

1.311 4,4101% 

 

99% V@R 

95% V@R 
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In order to calculate the 99% expected shortfall with Monte Carlo simulation, we 

should average the 1000 worst yields, as have already ranked above. More exactly, the average 

for these yields is -2,6724% and this is the estimation of the expected shortfall for the 99% 

confidence level. The expected shortfall for a confidence level of  95% is also -2,0655%. 

In all this process in which we calculate V@R and ES with the Monte Carlo simulation, 

we have assumed that the random variables are uncorrelated. So, it is necessary to repeat all 

the process, taking into account the correlation of the random variables. 

There is a matrix-based methodology that can be used to a large number of correlated 

normal samples (as we have four indices). Individual measures of dependency are collected 

into the correlation matrix as shown in Table 2.27. A correlation matrix summarizes the 

dependency between all the four variables. The diagonal part of this matrix is always 1, as 

each variable is always perfect correlated with itself. The calculation of correlation is presented 

below in equation 2.4: 

𝝆𝒙,𝒚 =
𝝈𝒙,𝒚

𝝈𝒙𝝈𝒚
                                                       (2.4) 

Where ρx,y is the correlation between variables x and y, 𝜎𝑥,𝑦 is the covariance between x 

and y and 𝜎𝑥𝜎𝑦 is the standar deviation of x and y correspondingly. Also the covariance of 

of two variables is calculated as it is shown in equation 2.5 below: 

𝝈𝒙,𝒚 =
∑ (𝒙𝒊−𝒙̅)(𝒚𝒊−𝒚̅)𝑵

𝒊=𝟏

𝑵
                                         (2.5) 

Where 𝑥𝑖 is the i-th observation of the first variable, 𝑥̅ is the expected value of the variable x 

and for 𝑦𝑖 and 𝑦̅ the same for variable y. 

 

Table 2.27  Correlation Matrix of four indices 

 

Correlation Matrix 

  DJIA FTSE 500 CAC 40 Nikkei 

DJIA 1 0,26542 0,01366 0,00874 

FTSE 500 0,26542 1 -0,01672 0,10268 

CAC 40 0,01366 -0,01672 1 0,00918 

Nikkei 0,00874 0,10268 0,00918 1 

 

Also, the Variance-Covariance matrix that includes the covariance of the variables is also 

presented below as the Table 2.28. The name of this matrix is Variance-Covariance and not 
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only covariance because the diagonal part of the matrix which presents the covariance of its 

variable with itself, always represents the variance as we can see in equation 2.6 

𝝈𝒙,𝒙 = 𝝈𝒙                                    (2.6) 

 

Table  2.28  Variance-Covariance matrix of four indices 

 

Variance-Covariance Matrix 

  DJIA FTSE 500 CAC 40 Nikkei 

DJIA 0,0000649024 0,0000218356 0,0000012382 -0,0000019211 

FTSE 500 0,0000218356 0,0001042828 -0,0000019211 0,0000171030 

CAC 40 0,0000012382 -0,0000019211 0,0001266365 0,0000016844 

Nikkei 0,0000011484 0,0000171030 0,0000016844 0,0002660566 

 

The next step in order to find correlated random variables is to perform the Cholesky 

decomposition. It is an operation on the correlation matrix that essentially takes the square 

root of the matrix. This is shown algebraically in equation 2.7. The problem in the case of 

matrix, Σ, is to find a matrix Μ, which, when multiplied by itself, produces Σ. 

𝑴𝑴𝑻 = 𝜮                                                  (2.7) 

 Excel does not include a function to calculate a new matrix, so we used a code in 

Matlab in order to produce this matrix. The code is presented below: 

Matlab code for Cholesky decomposition 

 

>>M=[1 0.265416459 0.013657809 0.008739396;0.265416459 1 -0.01671701 

0.102678642;0.013657809 -0.01671701 1 0.009176615;0.008739396 0.102678642 0.009176615 1] 

>>M = 

    1.0000    0.2654    0.0137    0.0087 

    0.2654    1.0000   -0.0167    0.1027 

    0.0137   -0.0167    1.0000    0.0092 

    0.0087    0.1027    0.0092    1.0000 

 

>> n=length(M); 

>> L=zeros(n,n); 
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>> for i=1:n 

L(i,i)=sqrt(M(i,i)-L(i,:)*L(i,:)'); 

for j=(i+1):n 

L(j,i)=(M(j,i)-L(i,:)*L(j,:)')/L(i,i); 

end 

end 

>> format long 

>> L 

L = 

   1.000000000000000     0                                         0                                       0 

   0.265416459000000     0.964133861707959      0                                       0 

   0.013657809000000    -0.021098747912912     0.999684103649661     0 

   0.008739396000000     0.104092456914744     0.011257030561607     0.994465516060734 

 

So, the matrix of the Cholesky decomposition is the Table 2.29 below: 

 

Table 2.29  Matrix of the Cholesky decomposition 

 

Cholesky 

  DJIA FTSE 500 CAC 40 Nikkei 

DJIA 1 0 0 0 

FTSE 500 0,2654164590 0,9641338617 0 0 

CAC 40 0,013657809 -0,021098748 0,999684104 0 

Nikkei 0,008739396 0,104092457 0,011257031 0,994465516 

 

 Now, we generate the random variables as we have also do it in the process that the 

random variables are not correlated. We multiply the Cholesky decomposition by these 

random variables. We can see this process algebraically in equation 2.8. 

𝝋 = 𝜧𝜺                                                                 (2.8) 

Where ε is the uncorrelated normally distributed random variables, M is the matrix of the 

Cholesky decomposition and φ is the correlated normally distributed random variables. 
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 After this process, we use these correlated random variables to the equation of the 

Geometric Brownian Motion (equation 2.1) in order to refund us the indices returns for 

100.000 simulations. Then, we follow the same way to calculate V@R and ES. More exactly, 

we take into consideration the weights of each index in our portfolio and calculate the value 

of this in each simulation. An extract of the returns and the weighted yield of the portfolio, 

after the use of the Geometric Brownian Motion, that consists of the four indices, is shown in 

Table 2.30 below: 

 

Table 2.30  Returns of indices and final yield of the portfolio (with correlated random 

variables) 

 

SIMULATED RETURNS (with correlated random variables) 

  DJIA FTSE 500 CAC 40 Nikkei 
Weighted 
average 

Number of 
simulations 

40% 20% 30% 10%   

1 -3,0019% -3,8145% -4,2531% -6,2194% -3,8616% 

2 -0,4582% -0,5901% -0,6999% -1,0691% -0,6182% 

3 -1,1501% -1,4672% -1,6664% -2,4700% -1,5004% 

4 0,6993% 0,8771% 0,9169% 1,2744% 0,8577% 

5 0,2029% 0,2478% 0,2235% 0,2693% 0,2247% 

. . . . . . 

. . . . . . 

. . . . . . 

99.996 -1,2576% -1,6035% -1,8167% -2,6878% -1,6375% 

99.997 1,5804% 1,9940% 2,1477% 3,0584% 1,9811% 

99.998 -0,2237% -0,2929% -0,3724% -0,5944% -0,3192% 

99.999 -0,7666% -0,9811% -1,1307% -1,6936% -1,0114% 

100.000 -0,3041% -0,3949% -0,4848% -0,7573% -0,4218% 

 

 

All things considered, the weighted yields of the portfolio are now ranked from 

smallest to highest. An extract of the results of this is shown in Table 2.31. The worst yield is 

the 8.573rd simulation. The one day 99% V@R can be estimated as the 1000th  worst yield (as 

we have a 99% confidence level and 100.000 simulations). This is -3,0230%. The one day 

95% V@R can be estimated also as the 5000th worst yield (as we have a 95% confidence level 

and 100.000 simulations). This is -2,1315%. 
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Table 2.31  Yields ranked from lowest to highest for 100.000 simulations for the portfolio 

 

Number of 
simulation 

Ranked 
Average 

8.573 -5,6698% 

62.275 -5,3732% 

81.706 -5,1838% 

12.335 -5,1020% 

78.457 -5,0810% 

. . 

. . 

. . 

85.989 -3,0230% 

. . 

. . 

. . 

6.364 -2,1315% 

. . 

. . 

. . 

52.440 5,3596% 

41.905 5,4427% 

80.130 5,6034% 

55.461 5,6630% 

1.311 5,6658% 

 

 

In order to calculate the 99% expected shortfall with Monte Carlo simulation, we 

should average the 1000 worst yields, as have already ranked above. More exactly, the average 

for these yields is -3,4550% and this is the estimation of the expected shortfall for the 99% 

confidence level. The expected shortfall for a confidence level of  95% is also -2,6735%. 

 

 

 

 

 

 

 

 

99% V@R 

95% V@R 



-38- 
 

 

2.3   Indicative references 

 

 As we have also seen above (Chapter 1), V@R has several drawbacks. We can see 

some papers that reinforce this aspect. Artzner et al. (1997,1999) have shown that Value at 

risk ignores any loss beyond the value at risk level, such as it is not subadditive, that is the 

violation of one of the axioms of coherence. Furthermore, Yamai and Yoshiba (2002) have 

shown two more disadvantages. The first one is that rational investors hoping to maximize 

expected utility may be fooled by the information offered by Value at risk. The second one is 

that Value at risk is not easy to be used when investors want to optimize their portfolios. That’s 

why Artznet et al. (1999) introduced a new measure of risk named Expected Shortfall. 

 Both V@R and ES have a relationship each other. The Expected shortfall has also its 

disadvantages. For example, Expected shortfall needs a larger sample than Value at risk for 

the same level of accuracy, as shown in Yamai and Yoshiba (2002). 

 Nevertheless, the Expected shortfall has been extensively applied in a lot of fields. 

Some applications include: operational risk in Taiwanese commercial banks (Lee and Fang 

2010); reward-risk stock selection criteria (Rachev et al. 2007); extreme daily changes in US 

Dollar London inter-bank offer rates (Krehbiel and Adkins 2008); Shanghai stock exchange 

(Li and Li 2006, Fan et al. 2008a); exchange rate risk of CNY (Wang and Wu 2008); cash flow 

risk measurement for Chinese non-life insurance industry (Teng and Zhang 2009); financial 

risk associated with US movie box office earnings (Bi and Giles 2007, Bi,G. and Giles 2009); 

and extreme dependence between European electricity markets (Lindstrom and Relang 2012). 

 Furthermore, there are some applications where Expected shortfall has been shown to 

be better than Value at risk. Kerkhof and Melenberg (2004) provide “evidence that tests for 

expected shortfall with acceptable low levels have a better performance than tests for Value 

at risk in realistic financial sample sizes”; Yamai and Yoshiba (2005) show “how the tail risk 

of Value at risk can cause serious problems in certain cases, cases in which Expected shortfall 

can serve more aptly in its place”. In one more application, Oh and Moon (2006) show that 

“Expected shortfall values are much bigger than Value at risk values, which means that Value 

at risk measure can underestimate tail-related risks as well”. Acerbi and Tasche (2002) show 

that Expected shortfall has advantages relative to Value at risk. Liang and Park (2007) also 

prove that Expected shortfall is superior to Value at risk as a downside risk measure. 

 A remarkable use of expected shortfall has also shown by Inui and Kijima (2005). This 

paper proves that any coherent risk measure is given by a combination of expected shortfalls 

and an expected shortfall gives the minimum value among coherent risk measures. As for the 

minimum value, Tasche (2002) also points that expected shortfall has been characterized as 

the smallest coherent and law invariant risk measure to prevail Value at risk. 

 In respect of the advantages of expected shortfall, Rockafellar and Uryasev (2002) have 

shown that “expected shortfall provides optimization short-cuts which, through linear 

programming techniques, make practical many large-scale calculations that could otherwise 

be out of reach”. This paper also shows the numerical efficiency and stability of the 

calculations of the expected shortfall with an example of index tracking. Expected shortfall 

and its minimization formula were first developed by Rockafella and Uryasev (2000). In this 

paper, has been demonstrated the numerical effectiveness, through several case studies that 
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include portfolio optimization and options hedging. In one more application, Peracchi and 

Tanase (2008) have extended the concept of the expected shortfall to the case when auxiliary 

information about the outcome is available in the form of a set of predictors. In this study have 

been used a set of Monte Carlo experiments in order to secure the accuracy of the estimators. 

 Moreover, in the most recent years M.B. Righi, P.S. Ceretta (2015) investigate whether 

there is a pattern in terms of the model advantage of ES estimation taking into consideration 

the asset classes, the estimation windows, and the significance level. They use 17 different 

estimation models of three classes: the unconditional, conditional, and quantile/expectile 

regressions. Regarding empirical results, they found that there are distinctions between asset 

classes. 

 Inglesias M. (2015) has also used Value at Risk and Expected Shortfall in order to 

analyze extreme movements of the main stocks traded in the Eurozone in the 2000-2012 

period. The results are helpful for a future risk-averse investor who want to invest in the 

Eurozone. The main results of this analysis are two. The first one is that they can classify firms 

by economic sector according to their difference at the V@R estimation values in five of the 

seven countries that have been analyzed. This means that there are sectors in general where 

companies have very high or very low estimated V@R values. The second one is that they 

find differences according to the geographical situation of where the stocks are traded in two 

countries: 1) all Irish firms have a high estimation of V@R values in all sectors, 2) in Spain 

all firms have a very low estimation of V@R values in all sectors too. All these results are also 

supported by the study of ES of all firms. 

 Then Du Z., Escanciano J. C. (2015), proposed some simple tools for evaluation of ES 

forecasts. They propose “backtests for ES based on cumulative violations, which are the 

natural analog of the commonly used backtests for V@R. They establish the asymptotic 

properties of the tests, and investigate their finite sample performance through some Monte 

Carlo simulations.” An empirical application to three major stock indices shows that V@R is 

unresponsive to extreme events such as those experienced during the recent financial crisis, 

while ES provides a more accurate description of the risk involved. 

 To sum up, a last one paper that has been taking into account is this of Frey and McNeil 

(2002) in which has been summarised how all standard models may be remade as Bernoulli 

mixture models. It has been shown that “the tail of the portfolio loss distribution is driven 

essentially by the mixing distribution in the Bernoulli mixture representation, and that Vale at 

risk and Expected shortfall may be estimated in large portfolios by calculating quantiles and 

conditional tail expectations for this mixture distribution and scaling them appropriately”. 
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CHAPTER 3: V@R and ES analysis of a multi-asset portfolio 
 

 The aim of this chapter is to estimate V@R and ES with historical and Monte Carlo 

simulation at a multi-asset portfolio. The portfolio of our analysis is the following in Table 

3.1: 

 

Table 3.1  The portfolio for the analysis (the amounts in €) 

 

 

 

 

But let’s see the meaning of a multi-asset portfolio and why an investor would prefer 

this and not a single asset portfolio. 

 

 

 

SPDR S&P 500 ETF
26%

iShares EURO 
STOXX 50 UCITS 

ETF
8%

NOVARTIS-REG SHS
1%

NESTLE SA-R
1%

iShares Core FTSE 
100 UCITS ETF

5%

Bloomberg Greek 
Government Bond 

Index
18%

iShares Core € Govt 
Bond UCITS ETF

26%

iShares Core € Corp 
Bond UCITS ETF

15%

PORTFOLIO Portfolio’s structure 

Bonds in euros 41% 

Shares in euros 57% 

Shares in other currency 2% 
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3.1   Multi-asset portfolios 

 

 A multi-asset portfolio contains a blend of investments for different assets classes and 

offers to investors the opportunity to reach income with the potential for capital growth. 

Investing in different assets also diversifies risk across these investments and this strategy may 

appear attractive to more careful investors. However, this is not mean that the value of 

investments and the income from them couldn’t go down as well as up.  

 The three main assets classes in which investors typically invest are fixed income, 

equities, and real estate: 

 Fixed income 

A bond can provide a fixed level of income. More exactly, government bonds usually 

carrying the lowest level of underlying risk and offer the lowest yields in general, this means 

that investors may not meet their income needs. 

Higher yields require investment in bonds that have greater credit risk, this means that 

these bonds may increase the income of investors but also they increase the risk of losing part 

of the investment. 

Extra income can also be achieved with bonds that take longer to mature. These bonds 

offer generally higher yields. 

 Equities 

Equities are popular to investors who want to take a greater risk. Stocks that offer 

high dividend yields are concentrated in a small number of industries. 

 Real estate 

Real estate has offered higher yields than global equities or bonds over the past 

decade (UBS 2011). 

 Investing in a single asset portfolio has the potential to gain income, but for many 

investors, exposure to several multi-asset classes may be safer and better. A multi-asset 

portfolio gives us the opportunity to invest in assets that perform well and diversify the 

portfolio. It gives the opportunity also to investors to benefit from manager’s skill at selecting 

the best asset class and this asset class that is responding to given market conditions. 

 However, when a manager makes a change there is no guarantee that it is the right 

change at the right time and this will prove beneficial. 

 Investors are also reminded that the past performance is not a guide to future 

performance (UBS 2011). 

 To sum up, a skilled manager should choose a multi-asset portfolio that would generate 

the required level of income without taking more risk than it is necessary and think about what 

the right mix of assets is to prevailing market conditions. 

 An example of one real multi-asset portfolio as presented in the official site of Alpha 

Asset Management A.E.D.A.K  (www.alphamutual.gr) is the following: 

file:///C:/Users/Tzina/Downloads/www.alphamutual.gr
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 Cash 0,9% 

 Government Bonds 50,1% 

 Equities 43,0% 

 Equity ETF 0,5% 

 Treasury Bills 5,6% 

 

3.2   Exchange-Traded Funds (ETFs) 
 

 As we have also presented above, our portfolio for analysis consists of a large number 

of ETFs. In this part, we will introduce the concept of ETFs. 

 Exchange-traded funds are some of the most popular and innovative new securities to 

hit the market since the introduction of the mutual fund (www.investinganswers.com). The 

first ETF was the Standard and Poor’s Deposit Receipt (SPDR) which was first on the market 

in 1993.  

 ETFs are securities that resemble index funds but can be bought and sold during the 

day just like common stocks. More simply, ETFs are funds that track indices like the 

NASDAQ-100 Index, S&P 500, Dow Jones, etc. So, when you buy shares on an ETF, you buy 

shares of a portfolio that has the yield and return of its native index. 

 ETFs shares trade exactly like stocks. Unlike index mutual funds, which are priced 

after market closing, ETFs are priced continuously any time the market is open. For example, 

you can buy shares in the morning and sell them in the afternoon. 

 They have created a series of benefits that make them a better choice that traditional 

mutual funds for many reasons such as lower costs, better tax efficiency, liquidity and more. 

Let’s see the advantages of ETFs in more details: 

Single transactions:  Everyone can purchase an ETF with one easy, single transaction. 

Basically, you are purchasing a mini portfolio, not a basket of stocks, like you do with an 

index. 

Low cost:  Since there is only one transaction per trade as referred above, commissions are 

usually lower on an ETF as opposed to that of an index, which requires a basket of stocks and 

multiple trades. ETFs have no back-end loans like traditional mutual and index funds. 

Furthermore, ETFs have minimal expanse ratios which make them more affordable for the 

investors. They are also more accessible for small investors as they can purchase as little as 

one share of the ETF of their choice, whereas most mutual funds have minimum investment 

requirements. 

Tax-Advantages:  Taxes are lower for ETFs than for traditional mutual funds due to the 

structure of each trade. When a gain is realized in a mutual fund trade, capital gain taxes are 

incurred immediately. In ETFs, the individual capital gains are not realized until the assets are 

sold with the entire fund. Therefore ETFs are an investment that can be characterized as “tax 

friendly” investment. 

http://www.investinganswers.com/
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Derivatives:  Many ETFs consist of options, swaps, and future contracts. So when the investor 

wants to hedge his ETFs with call and puts, some funds have this flexibility. 

Immediate Dividends:  With most ETFs, dividends are immediately reinvested back into the 

fund. In the case of traditional funds, the time frames may vary. 

 

 

3.3  Analysis of the portfolio 

 

 In this part, we use the portfolio that has also presented at the beginning of chapter 3 

(Table 3.1) in order to calculate Value at risk and Conditional value at risk or Expected 

shortfall and compare their results. The ways of estimation as have also analyzed in chapter 2 

is 1) Historical simulation and 2) Monte Carlo simulation. 

 

3.3.1   Historical simulation of portfolio 
  

To begin with, Table 3.2 shows a part of 501 days of historical data on the closing 

prices of the assets in their currency. 

 

Table 3.2  Data of assets of the portfolio for historical simulation 

 

Day Date 

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 

UCITS ETF 

iShares 
Core 
FTSE 
100 

UCITS 
ETF 

iShares 
Core € 
Govt 
Bond 

UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP 
S&P ETF 

(SPY) 

NESTLE 
SA-R 
(CHF) 

NOVARTIS-
REG SHS 

(CHF) 

0 14/12/2015 162,740 126,2477 5,7981 121,2340 31,7406 202,900 71,55 82,20 

1 15/12/2015 161,910 125,9475 5,9399 120,6620 32,7743 205,030 73,10 84,40 

2 16/12/2015 167,360 125,9228 5,9827 120,6367 32,8272 208,030 73,20 84,50 

3 17/12/2015 168,160 126,2234 6,0244 121,1266 33,4306 204,860 73,55 85,20 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

499 3/1/2018 257,860 130,8327 7,5424 122,3749 35,6215 270,470 83,38 83,50 

500 4/1/2018 261,000 130,8972 7,5673 122,5527 36,2193 271,610 83,30 83,06 

 

The values of the Bloomberg Greek government bond, iShares-Core € Corp Bond 

UCITS ETF, iShares Core FTSE 100 UCITS ETF, iShares Core € Govt Bond UCITS ETF, 

iShares EURO STOXX 50 UCITS ETF, SPDP S&P ETF (SPY), NESTLE SA-R (CHF), 
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NOVARTIS-REG SHS (CHF) are now adjusted for exchange rate changes so that they are 

measured in euros (as we have also supposed an investor in Greece). The only assets that are 

not in euros are the two shares of Nestle and Novartis. So, an extract from the data after 

exchange rate adjustments have been made is shown in Table 3.3. 

 

Table 3.3  Data on assets for historical simulation after exchange rate adjustments 

 

Day Date 

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 
UCITS 

ETF 

iShares 
Core 
FTSE 
100 

UCITS 
ETF 

iShares 
Core € 
Govt 
Bond 
UCITS 

ETF 

iShares 
EURO 
STOXX 

50 
UCITS 

ETF 

SPDP 
S&P 
ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS 

0 14/12/2015 162,740 126,2477 5,7981 121,2340 31,7406 202,900 65,77206 75,56203 

1 15/12/2015 161,910 125,9475 5,9399 120,6620 32,7743 205,030 67,01667 77,37629 

2 16/12/2015 167,360 125,9228 5,9827 120,6367 32,8272 208,030 67,1768 77,54699 

3 17/12/2015 168,160 126,2234 6,0244 121,1266 33,4306 204,860 67,39483 78,06988 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

499 3/1/2018 257,860 130,8327 7,5424 122,3749 35,6215 270,470 83,45514 83,57525 

500 4/1/2018 261,000 130,8972 7,5673 122,5527 36,2193 271,610 83,30000 83,0600 

 

 

Table 3.4 shows the values of the market variables on January 5, 2018, for the scenarios 

considered. Scenario 1 (the first row in Table 3.4) shows the values of market variables on 

January 5, 2018, assuming that their percentage changes between January 4 and January 5, 

2018, are the same as they were between December 14 and December 15, 2015; Scenario 2 

(the second row in Table 3.4) shows the values of market variables on January 5, 2018, 

assuming these percentage changes are the same as those between December 15 and December 

16, 2015; and so on. In general, Scenario I assumes that the percentage changes in the indices 

between January 4 and January 5 are the same as they were between Day i-1 and Day i for 1 

≤ i ≤ 500. The 500 rows in Table 3.4 are the 500 scenarios considered as we have also described 

in Chapter 2.1.1. 
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Table 3.4  Scenarios generated for January 5, 2018, using data in Table 3.3 

 

Scenario 
number 

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 

UCITS ETF 

iShares 
Core FTSE 
100 UCITS 

ETF 

iShares 
Core € 
Govt 
Bond 

UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP S&P 
ETF (SPY) 

NESTLE 
SA-R 

NOVARTIS-
REG SHS 

1 259,668858 130,58594 7,7524395 121,97454 37,398807 274,4613 84,8763 85,05429 

2 269,785436 130,87157 7,6217944 122,52696 36,277782 275,5842 83,49904 83,24324 

3 262,24761 131,20975 7,6200562 123,05039 36,885175 267,47116 83,57036 83,62006 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

499 262,752635 130,99193 7,5508177 122,38735 36,279691 275,28426 83,47024 84,76567 

500 264,178236 130,96183 7,5922491 122,73078 36,827159 272,7548 83,14515 82,54793 

 

Then, we calculate the value of the portfolio such as its losses with the way that we 

have also analyzed in Chapter 2.1.1. We can see the results in the following tables (Table 3.5). 

 

Table 3.5  Portfolio’s value and losses 

 

Scenario 
number Portfolio's Value Gain/Loss (in €) 

1 11.649.676,89 51.392,95 

2 11.717.909,52 119.625,58 

3 11.601.753,54 3.469,60 

4 11.522.182,38 -76.101,56 

. . . 

. . . 

. . . 

498 11.577.721,54 -20.562,40 

499 11.653.570,06 55.286,12 

500 11.657.790,62 59.506,68 

 

 

The losses that have already arisen from the 500 different scenarios are now ranked. 

An extract of the results of this is shown in Table 3.6. The worst scenario is number 128. The 

one day 99% V@R can be estimated as the fifth worst loss (as we have a 99% confidence level 

and 500 scenarios). This is €137.149,83 and -1,1638%. The one day 95% V@R can be 
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estimated also as the 25th worst loss (as we have a 95% confidence level and 500 scenarios). 

This is €66.917,92 and -0,5678%. 

 

Table 3.6  Losses ranked from highest to lowest for 500 scenarios for portfolio 

Scenario 
number Loss (in €) Loss (%) 

128 -   316.182,49    -2,6830% 

22 -   217.807,19    -1,8482% 

35 -   182.397,14    -1,5477% 

14 -   144.642,72    -1,2274% 

38 -   137.149,83    -1,1638% 

20 -   125.848,71    -1,0679% 

119 -   117.209,98    -0,9946% 

179 -   116.552,44    -0,9890% 

36 -   113.834,24    -0,9659% 

275 -   108.913,74    -0,9242% 

11 -   105.536,55    -0,8955% 

31 -   100.635,71    -0,8539% 

34 -     91.211,42    -0,7740% 

120 -     88.935,97    -0,7547% 

153 -     85.125,85    -0,7223% 

73 -     83.849,76    -0,7115% 

118 -     81.381,89    -0,6906% 

25 -     78.524,46    -0,6663% 

4 -     76.101,56    -0,6458% 

373 -     75.791,87    -0,6431% 

402 -     75.540,22    -0,6410% 

129 -     73.014,45    -0,6196% 

246 -     72.184,56    -0,6125% 

18 -     68.479,73    -0,5811% 

379 -     66.917,92    -0,5678% 

181 -     64.816,93    -0,5500% 

13 -     64.704,08    -0,5490% 

375 -     64.434,40    -0,5468% 

347 -     62.797,76    -0,5329% 

407 -     62.301,49    -0,5287% 

. . . 

. . . 

. . . 

 

 

In order to calculate expected shortfall with historical simulation, we should average 

the five observations of the worst losses, as have already ranked above. More exactly, in our 

99% V@R 

95% V@R 

99% ES with equal weights=           

-1,69401% 

99% ES with unequal weights=      

-2,16840% 

95% ES with equal weights=            

-0,95165% 

95% ES with unequal 

weights=        -2,14201% 
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example, the five worst losses are from scenarios 128, 22, 35, 14 and 38 (see Table 3.6 above). 

The average for these scenarios is €199.635,876 and -1,69401% and this is the estimation of 

the expected shortfall for the 99% confidence level. The expected shortfall for a confidence 

level of 95% is also €112.150,816 and -0,95165%. 

Another way to calculate ES is the following. Unlike the simple average of the losses 

as we have also used in our analysis, we prefer to choose weights for each loss in order to 

make a weighted average. But these weights aren’t random. We prefer, the smallest 

observation of the five worst losses (for 99% V@R) to have the highest weight, the next 

observation a smaller weight and so on. So Expected shortfall will be calculated as follows: 

 

𝐸𝑆 = ∑ 𝑤𝑖𝑟𝑖
𝑛
𝑖=1                                              (3.1) 

Where     ∑ 𝑤𝑖
𝑛
𝑖=1 = 1    

              𝑤𝑖 = 𝑥𝑖       𝑥 ∈ (0,1) 

 

So,                                                   ∑ 𝑤𝑖
𝑛
𝑖=1 = ∑ 𝑥𝑖𝑛

𝑖=1 = 1                                    (3.2) 

 

But, equation 3.2 is a geometric progression, so: 

 

∑ 𝑥𝑖𝑛
𝑖=1 =

𝑥(1−𝑥𝑛)

1−𝑥
= 1                                       (3.3) 

 

In this way, we find the suitable x and finally find the suitable weight for each loss. Then, use 

the equation 3.1 in order to find the Expected Shortfall. 

 The 99% ES that we calculate in this way is -2,16840% and the 95% ES is                 -

2,14201% and it is a better estimation than this of equal weights. 

 In this part of the chapter, we will do just the same analysis for the same assets but we 

suppose that the whole portfolio consists of one asset each time. So, we will calculate V@R 

and ES for eight different portfolios (one portfolio for each asset) and then we will compare 

the results of them with the V@R and ES of the initial portfolio that consist of all assets. 

 To begin with, Tables 3.7-3.14 show the data of all assets in their currency separately, 

such as their value after exchange rate adjustments (our currency is euros as we are in Greece). 
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Table 3.7  Data on Bloomberg greek government bond for historical simulation  

Day Date 

Bloomberg 
greek 

government 
bond 

0 14/12/2015 162,740 

1 15/12/2015 161,910 

2 16/12/2015 167,360 

3 17/12/2015 168,160 

. . . 

. . . 

. . . 

499 3/1/2018 257,860 

500 4/1/2018 261,000 

 

Table 3.8  Data on iShares-Core € Corp Bond UCITS ETF for historical simulation 

Day Date 

iShares-Core € 
Corp Bond 
UCITS ETF 

0 14/12/2015 126,2477 

1 15/12/2015 125,9475 

2 16/12/2015 125,9228 

3 17/12/2015 126,2234 

. . . 

. . . 

. . . 

499 3/1/2018 130,8327 

500 4/1/2018 130,8972 

 

Table 3.9  Data on iShares-Core € Corp Bond UCITS ETF for historical simulation 

Day Date 

iShares Core 
FTSE 100 
UCITS ETF 

0 14/12/2015 5,798084 

1 15/12/2015 5,939947 

2 16/12/2015 5,982731 

3 17/12/2015 6,024449 

. . . 

. . . 

. . . 

499 3/1/2018 7,542411 

500 4/1/2018 7,567289 
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Table 3.10  Data on iShares Core € Govt Bond UCITS ETF ETF for historical simulation 

Day Date 

iShares Core € 
Govt Bond 
UCITS ETF 

0 14/12/2015 121,2340 

1 15/12/2015 120,6620 

2 16/12/2015 120,6367 

3 17/12/2015 121,1266 

. . . 

. . . 

. . . 

499 3/1/2018 122,3749 

500 4/1/2018 122,5527 

 

Table 3.11  Data on iShares EURO STOXX 50 UCITS ETF for historical simulation 

Day Date 

iShares EURO 
STOXX 50 
UCITS ETF 

0 14/12/2015 31,7406 

1 15/12/2015 32,7743 

2 16/12/2015 32,8272 

3 17/12/2015 33,4306 

. . . 

. . . 

. . . 

499 3/1/2018 35,6215 

500 4/1/2018 36,2193 

 

Table 3.12  Data on iShares SPDP S&P ETF (SPY) for historical simulation 

Day Date 
SPDP S&P ETF 

(SPY) 

0 14/12/2015 202,900 

1 15/12/2015 205,030 

2 16/12/2015 208,030 

3 17/12/2015 204,860 

. . . 

. . . 

. . . 

499 3/1/2018 270,470 

500 4/1/2018 271,610 
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Table 3.13  Data on NESTLE SA-R (CHF) for historical simulation after exchange rate 

adjustments 

 

Day Date 

NESTLE 
SA-R 
(CHF) 

Exchange 
rate 

(EUR/CHF) 
Adjusted 

price 

0 14/12/2015 71,55 1,08130 65,772059 

1 15/12/2015 73,10 1,07840 67,016671 

2 16/12/2015 73,20 1,07950 67,176802 

3 17/12/2015 73,55 1,07785 67,394832 

. . . . . 

. . . . . 

. . . . . 

499 3/1/2018 83,38 1,17735 83,455137 

500 4/1/2018 83,30 1,17629 83,3 

 

Table 3.14  Data on NOVARTIS-REG SHS (CHF) for historical simulation after exchange 

rate adjustments 

 

Day Date 

NOVARTIS-
REG SHS 

(CHF) 

Exchange 
rate 

(EUR/CHF) 
Adjusted 

price 

0 14/12/2015 82,2 1,08130 75,56203 

1 15/12/2015 84,4 1,07840 77,37629 

2 16/12/2015 84,5 1,07950 77,54699 

3 17/12/2015 85,2 1,07785 78,06988 

. . . . . 

. . . . . 

. . . . . 

499 3/1/2018 83,5 1,17735 83,57525 

500 4/1/2018 83,06 1,17629 83,06 

 

 

Then, we calculate the 500 scenarios for each asset as we analyzed in Chapter 2.1.1. 

An extract of these scenarios is shown in Table 3.15 below. 
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Table 3.15  Scenarios generated for January 5, 2018, using data in Tables 3.7-3.14 

 

Scenario 
number 

Bloomberg 
greek 

government 
bond 

iShares-
Core € 

Corp Bond 
UCITS ETF 

iShares 
Core 

FTSE 100 
UCITS 

ETF 

iShares 
Core € 

Govt Bond 
UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS 

1 259,6688583 130,585939 7,752440 121,9745 37,39881 274,4613 84,8763 85,054292 

2 269,7854364 130,871569 7,621794 122,527 36,27778 275,5842 83,49904 83,243236 

3 262,2476099 131,209747 7,620056 123,0504 36,88518 267,4712 83,57036 83,620063 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

499 262,7526353 130,991934 7,550818 122,3873 36,27969 275,2843 83,47024 84,765666 

500 264,1782363 130,961832 7,592249 122,7308 36,82716 272,7548 83,14515 82,547931 

 

Then, we calculate the value of each portfolio such as the losses of them and we 

ranked these losses from biggest to smallest. We can see an extract of the results in the 

following tables (Table 3.16-3.24). 

 

Table 3.16  The value of each portfolio 

 

Scenario 
number 

Bloomberg 
greek 

government 
bond 

iShares-
Core € 

Corp Bond 
UCITS ETF 

iShares 
Core 

FTSE 100 
UCITS 

ETF 

iShares 
Core € 

Govt Bond 
UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS 

ETF 
SPDP S&P 
ETF (SPY) 

NESTLE 
SA-R 

NOVARTIS-
REG SHS 

1 2.106.909,4 1.771.083,1 535.510,8 2.974.762,3 952.972,0 2.994.123,3 164.692,2 149.623,7 
2 2.188.993,7 1.774.957,0 526.486,3 2.988.235,1 924.406,8 3.006.373,1 162.019,7 146.437,8 
3 2.127.833,0 1.779.543,6 526.366,3 3.001.000,8 939.884,0 2.917.867,1 162.158,1 147.100,7 
. . . . . . . . . 
. . . . . . . . . 
. . . . . . . . . 

499 2.131.930,7 1.776.589,5 521.583,5 2.984.830,2 924.455,4 3.003.101,0 161.963,9 149.116,0 
500 2.143.497,8 1.776.181,2 524.445,4 2.993.205,9 938.405,6 2.975.506,9 161.333,1 145.214,7 
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Table 3.17  Losses ranked from highest to lowest for 500 scenarios for Bloomberg greek 

government bond 

 

Scenario 
number Ranked Losses 

Losses 
(%) 

22 -125.882,626 -5,9443% 

128 -117.176,295 -5,5332% 

35 -89.548,413 -4,2285% 

36 -79.304,780 -3,7448% 

275 -67.770,244 3,2002% 

21 -58.171,585 -2,7469% 

246 -56.912,652 -2,6875% 

119 -52.447,099 -2,4766% 

120 -50.351,315 -2,3776% 

72 -48.713,374 -2,3003% 

89 -48.277,587 -2,2797% 

12 -43.741,875 -2,0655% 

38 -41.030,917 -1,9375% 

352 -40.016,833 -1,8896% 

274 -39.938,465 -1,8859% 

83 -37.191,458 -1,7562% 

79 -34.043,012 -1,6075% 

37 -33.820,191 -1,5970% 

240 -33.703,050 -1,5915% 

26 -31.778,778 -1,5006% 

20 -31.133,217 -1,4701% 

25 -30.906,532 -1,4594% 

73 -30.792,280 -1,4540% 

286 -28.582,590 -1,3497% 

61 -27.926,405 -1,3187% 

247 -27.639,129 -1,3051% 

14 -25.601,820 -1,2089% 

33 -25.577,835 -1,2078% 

64 -24.653,788 -1,1642% 

125 -24.583,699 -1,1609% 

. . . 

. . . 

. . . 

 

 

 

 

 

95% V@R 

95% ES with equal weights=           

-2,41612% 

95% ES with unequal weights=      

-5,30061% 

 

99% ES with equal weights=           

-4,5302% 

99% ES with unequal weights=      

-5,3714% 

 

99% V@R 
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Table 3.18  Losses ranked from highest to lowest for 500 scenarios for iShares Core € Corp 

Bond UCITS ETF 

 

Scenario 
number 

Ranked 
Losses Losses (%) 

19 -19.741,972 -1,1120% 

141 -14.068,748 -0,7925% 

384 -13.707,663 -0,7721% 

264 -12.585,138 -0,7089% 

373 -7.040,756 -0,3966% 

223 -6.127,082 -0,3451% 

295 -5.929,986 -0,3340% 

379 -5.763,234 -0,3246% 

375 -5.684,057 -0,3202% 

302 -5.547,993 -0,3125% 

179 -5.156,125 -0,2904% 

153 -5.124,061 -0,2886% 

213 -5.053,708 -0,2847% 

365 -5.026,151 -0,2831% 

60 -4.927,121 -0,2775% 

225 -4.768,490 -0,2686% 

331 -4.756,090 -0,2679% 

300 -4.734,120 -0,2667% 

197 -4.733,446 -0,2666% 

212 -4.696,030 -0,2645% 

465 -4.581,121 -0,2580% 

39 -4.445,164 -0,2504% 

492 -4.394,835 -0,2476% 

56 -4.384,248 -0,2470% 

21 -4.320,160 -0,2433% 

1 -4.222,068 -0,2378% 

14 -4.220,192 -0,2377% 

36 -4.032,951 -0,2272% 

392 -3.990,548 -0,2248% 

272 -3.950,265 -0,2225% 

. . . 

. . . 

. . . 

 

 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=           

-0,7564% 

99% ES with unequal weights=      

-0,9333% 

 

95% ES with equal weights=           

-0,3769% 

95% ES with unequal weights=      

-0,91783% 
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Table 3.19  Losses ranked from highest to lowest for 500 scenarios for iShares Core FTSE 

100 UCITS ETF 

Scenario 
number Ranked Losses Losses (%) 

22 -18.080,184 -3,4589% 

128 -16.396,687 -3,1368% 

11 -15.025,971 -2,8746% 

35 -14.186,039 -2,7139% 

129 -13.282,021 -2,5409% 

57 -12.900,234 -2,4679% 

327 -12.835,523 -2,4555% 

425 -12.458,311 -2,3834% 

38 -11.987,174 -2,2932% 

31 -11.912,842 -2,2790% 

120 -10.495,725 -2,0079% 

365 -10.263,439 -1,9635% 

14 -10.195,181 -1,9504% 

20 -10.095,597 -1,9314% 

118 -9.717,286 -1,8590% 

122 -9.045,681 -1,7305% 

266 -8.366,546 -1,6006% 

46 -8.336,407 -1,5948% 

103 -8.166,040 -1,5622% 

67 -7.522,399 -1,4391% 

219 -7.494,716 -1,4338% 

224 -7.491,464 -1,4332% 

32 -7.485,627 -1,4320% 

489 -7.050,536 -1,3488% 

190 -6.915,035 -1,3229% 

91 -6.624,587 -1,2673% 

135 -6.531,413 -1,2495% 

45 -6.503,190 -1,2441% 

93 -6.237,400 -1,1933% 

179 -6.233,935 -1,1926% 

. . . 

. . . 

. . . 

 

 

 

 

 

 

99% V@R 

95% V@R 

95% ES with equal weights=           

-2,0486% 

95% ES with unequal weights=      

-3,19765% 

 

99% ES with equal weights=           

-2,9450% 

99% ES with unequal weights=      

-3,2175% 
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Table 3.20  Losses ranked from highest to lowest for 500 scenarios for iShares Core € Govt 

Bond UCITS ETF 

 

Scenario 
number Ranked Losses Losses (%) 

223 -31.009,945 -1,0375% 

379 -20.377,360 -0,6818% 

375 -19.970,225 -0,6682% 

141 -19.868,728 -0,6648% 

179 -19.785,910 -0,6620% 

373 -19.631,636 -0,6568% 

197 -19.603,963 -0,6559% 

19 -18.416,798 -0,6162% 

213 -17.663,144 -0,5910% 

257 -17.086,599 -0,5717% 

178 -15.934,871 -0,5331% 

242 -15.658,528 -0,5239% 

212 -15.521,550 -0,5193% 

384 -15.229,428 -0,5095% 

224 -15.169,332 -0,5075% 

272 -14.794,962 -0,4950% 

492 -14.296,046 -0,4783% 

1 -14.100,396 -0,4718% 

465 -14.077,644 -0,4710% 

300 -14.057,040 -0,4703% 

153 -13.944,974 -0,4666% 

85 -13.494,841 -0,4515% 

232 -13.200,192 -0,4416% 

392 -13.037,970 -0,4362% 

237 -12.721,330 -0,4256% 

51 -12.385,615 -0,4144% 

302 -12.342,267 -0,4129% 

225 -11.926,758 -0,3990% 

273 -11.902,915 -0,3982% 

295 -11.750,389 -0,3931% 

. . . 

. . . 

. . . 

 

 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=           

-0,7428% 

99% ES with unequal weights=      

-0,8591% 

 

95% ES with equal weights=           

-0,5603% 

95% ES with unequal weights=      

-0,85498% 
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Table 3.21  Losses ranked from highest to lowest for 500 scenarios for iShares EURO 

STOXX 50 UCITS ETF 

 

Scenario 
number Ranked Losses 

Losses 
(%) 

128    - 79.606,012    -8,6255% 

38     -39.287,054    -4,2568% 

11     -34.634,989    -3,7528% 

22     -30.322,868    -3,2855% 

35     -30.222,943    -3,2747% 

91     -27.779,055    -3,0099% 

129     -26.168,596    -2,8354% 

153     -25.868,485    -2,8029% 

402     -24.315,843    -2,6347% 

118     -24.052,196    -2,6061% 

73     -22.042,475    -2,3883% 

20    -21.846,650    -2,3671% 

134     -21.840,069    -2,3664% 

46     -21.477,977    -2,3272% 

31     -21.133,304    -2,2898% 

28     -19.423,013    -2,1045% 

120     -18.267,798    -1,9794% 

119     -18.226,023    -1,9748% 

32     -17.266,714    -1,8709% 

67     -16.895,138    -1,8306% 

375     -16.793,480    -1,8196% 

135     -16.656,510    -1,8048% 

36     -16.119,231    -1,7466% 

14     -16.071,497    -1,7414% 

71     -15.875,413    -1,7201% 

15     -15.323,998    -1,6604% 

19     -14.711,418    -1,5940% 

45     -14.642,128    -1,5865% 

347     -14.344,878    -1,5543% 

92     -14.204,786    -1,5391% 

. . . 

. . . 

. . . 

 

 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=           

-4,6391% 

99% ES with unequal weights=      

-6,3142% 

 

95% ES with equal weights=           

-2,6966% 

95% ES with unequal weights=      

-6,24385% 
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Table 3.22  Losses ranked from highest to lowest for 500 scenarios for SPDP S&P ETF 

(SPY) 

 

Scenario 
number Ranked Losses Losses (%) 

128     -106.399,352    -3,5909% 

18        -73.899,503    -2,4941% 

14        -71.087,399    -2,3992% 

179        -70.919,340    -2,3935% 

11        -70.647,400    -2,3843% 

4        -70.003,944    -2,3626% 

20        -63.604,621    -2,1466% 

34        -56.445,805    -1,9050% 

31        -53.400,121    -1,8022% 

129        -53.067,241    -1,7910% 

347        -52.576,047    -1,7744% 

407        -46.195,918    -1,5591% 

3        -45.151,024    -1,5238% 

25        -44.790,533    -1,5117% 

181        -42.594,927    -1,4376% 

402        -41.823,795    -1,4115% 

35        -39.885,267    -1,3461% 

38        -38.543,066    -1,3008% 

309        -38.043,566    -1,2839% 

22        -37.971,253    -1,2815% 

45        -37.421,833    -1,2630% 

201        -37.421,538    -1,2630% 

13        -37.376,173    -1,2614% 

75        -35.455,164    -1,1966% 

15        -32.523,724    -1,0977% 

55        -32.349,617    -1,0918% 

27        -32.247,359    -1,0883% 

73        -29.594,266    -0,9988% 

118        -28.082,169    -0,9478% 

98        -27.718,328    -0,9355% 

. . . 

. . . 

. . . 

 

 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=           

-2,6524% 

99% ES with unequal weights=      

-3,0290% 

 

95% ES with equal weights=           

-1,7513% 

95% ES with unequal weights=      

-3,01097% 
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Table 3.23  Losses ranked from highest to lowest for 500 scenarios for NESTLE SA-R 

 

Scenario 
number 

Ranked 
Losses Losses (%) 

42 -6.527,245 -4,0383% 

77 -5.361,596 -3,3171% 

38 -4.886,342 -3,0231% 

14 -4.109,980 -2,5428% 

223 -3.989,941 -2,4685% 

360 -3.647,778 -2,2568% 

375 -3.475,787 -2,1504% 

119 -3.325,562 -2,0575% 

22 -3.265,798 -2,0205% 

454 -3.025,123 -1,8716% 

19 -2.916,025 -1,8041% 

266 -2.880,478 -1,7821% 

45 -2.865,432 -1,7728% 

36 -2.834,176 -1,7535% 

237 -2.813,453 -1,7406% 

151 -2.796,999 -1,7305% 

215 -2.771,781 -1,7149% 

189 -2.756,104 -1,7052% 

20 -2.749,389 -1,7010% 

34 -2.654,713 -1,6424% 

33 -2.587,162 -1,6006% 

369 -2.542,264 -1,5729% 

11 -2.542,248 -1,5728% 

323 -2.433,231 -1,5054% 

35 -2.393,131 -1,4806% 

118 -2.308,398 -1,4282% 

401 -2.290,470 -1,4171% 

373 -2.259,882 -1,3982% 

91 -2.214,913 -1,3703% 

480 -2.205,723 -1,3646% 

. . . 

. . . 

. . . 

 

 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=           

-3,0780% 

99% ES with unequal weights=      

-3,5645% 

 

95% ES with equal weights=           

-2,0330% 

95% ES with unequal weights=      

-3,53000% 
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Table 3.24  Losses ranked from highest to lowest for 500 scenarios for NOVARTIS-REG 

SHS 

 

Scenario 
number 

Ranked 
Losses Losses (%) 

35     -5.392,164    -3,6903% 

27     -5.338,592    -3,6537% 

28     -5.210,718    -3,5662% 

38     -5.179,306    -3,5447% 

296     -5.048,838    -3,4554% 

231     -4.585,162    -3,1380% 

33     -4.406,834    -3,0160% 

454     -4.066,743    -2,7832% 

20     -4.006,125    -2,7418% 

151     -3.874,704    -2,6518% 

453     -3.732,826    -2,5547% 

211     -3.713,106    -2,5412% 

266     -3.648,529    -2,4970% 

15     -3.571,262    -2,4441% 

264     -3.378,024    -2,3119% 

22     -3.320,771    -2,2727% 

118     -3.194,196    -2,1861% 

14     -3.122,982    -2,1373% 

91     -3.112,444    -2,1301% 

237     -3.104,682    -2,1248% 

36     -3.003,939    -2,0559% 

375     -2.910,093    -1,9916% 

299     -2.886,206    -1,9753% 

401     -2.884,639    -1,9742% 

120     -2.883,211    -1,9732% 

309     -2.882,844    -1,9730% 

119     -2.880,035    -1,9711% 

174     -2.820,802    -1,9305% 

493     -2.726,179    -1,8658% 

212     -2.659,370    -1,8200% 

. . . 

. . . 

. . . 

 

As a result, the 99% V@R and 99% ES (calculated with the equal weights) of all assets 

are shown in Table 3.25. 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=           

-3,5820% 

99% ES with unequal weights=      

-3,6468% 

 

95% ES with equal weights=           

-2,6165% 

95% ES with unequal weights=      

-3,62776% 
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Table 3.25  99% V@R and 99% ES for eight portfolios 

 

Portfolios 
 99% Value-

at-risk 
99% Expected 

Shortfall 

Bloomberg greek 
government bond -3,2002% 

 
 

-4,5302% 

iShares-Core € Corp 
Bond UCITS ETF -0,3966% 

 
 

-0,7564% 

iShares Core FTSE 
100 UCITS ETF -2,5409% 

 
 

-2,9450% 

iShares Core € Govt 
Bond UCITS ETF -0,6620% 

 
-0,7428% 

iShares EURO STOXX 
50 UCITS ETF -3,2747% 

 
-4,6391% 

SPDP S&P ETF (SPY) -2,3843% 
 

-2,6524% 

NESTLE SA-R -2,4685% 
 

-3,0780% 

NOVARTIS-REG SHS -3,4554% 
 

-3,5820% 

 

 

In this part, we want to check the benefits of diversification. In the example above we 

can observe that for 99% V@R, the amount €217.788,05, is bigger than the amount of V@R 

that we have already calculated above for the portfolio of all assets together, which is 

€137.149,834. This represents, the benefits of diversification, even though that the measure of 

V@R is not subadditive. 

 Also, for ES, we can observe that the amount of 278.576,26€ is also bigger than the 

amount of ES that we have also calculated above for the portfolio of all assets together which 

is €199.635,876. And this is expected as the measure of ES is always subadditive. 

 Moreover, this analysis should be done again for 95% V@R and 95% ES in order to 

check again the benefits of diversification. 
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Table 3.26  95% V@R and 95% ES for eight portfolios 

 

Portfolios 
95% Value-

at-risk 

95% 
Expected 
Shortfall 

Bloomberg greek 
government bond 

-1,3187% -2,4161% 

iShares-Core € Corp 
Bond UCITS ETF 

-0,2433% -0,3769% 

iShares Core FTSE 
100 UCITS ETF 

-1,3229% -2,0486% 

iShares Core € Govt 
Bond UCITS ETF 

-0,4256% -0,5603% 

iShares EURO STOXX 
50 UCITS ETF 

-1,7201% -2,6966% 

SPDP S&P ETF (SPY) -1,0977% -1,7513% 

NESTLE SA-R -1,4806% -2,0330% 

NOVARTIS-REG SHS 
-1,9732% -2,6165% 

 

 

In this part, we want to check the benefits of diversification. In the example above we 

can observe that for 95% V@R, the amount 105.558,41€, is bigger than the amount of V@R 

that we have already calculated above for the portfolio of all assets together, which is 

66.917,916€. This represents, the benefits of diversification, even though that the measure of 

V@R is not subadditive. 

 Also, for ES, we can observe that the amount of 169.199,55 € is also bigger than the 

amount of ES that we have also calculated above for the portfolio of all assets together which 

is 112.150,816€. And this is expected as the measure of ES is always subadditive. 
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3.3.2   Monte Carlo simulation of portfolio 
 

 We will use the same portfolio with this in historical simulation in order to compare 

the results. So we have again an investor in Greece, who owns, on January 5, 2018, a portfolio 

worth €11.598.283,94 consisting of investments in eight different assets. We have also a part 

of 501 days of historical data on the closing prices of these assets in their currency. Their 

values are adjusted for exchange rate changes so that they are measured in euros (as we have 

also supposed an investor in Greece) just as we calculated them in historical simulation above. 

Now, we calculate the returns of them. An extract of the returns of the assets of the portfolio 

is shown in the Table 3.26 below. 

Table 3.26  Historical returns of all assets of the portfolio 

 

Day 

Bloomberg 
greek 

government 
bond 

iShares-
Core € 

Corp Bond 
UCITS ETF 

iShares 
Core 
FTSE 
100 

UCITS 
ETF 

iShares 
Core € 

Govt Bond 
UCITS ETF 

iShares 
EURO 
STOXX 

50 
UCITS 

ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE SA-

R 
NOVARTIS-

REG SHS 

1 -0,510% -0,238% 2,447% -0,472% 3,256% 1,050% 1,892% 2,401% 

2 3,366% -0,020% 0,720% -0,021% 0,161% 1,463% 0,239% 0,221% 

3 0,478% 0,239% 0,697% 0,406% 1,838% -1,524% 0,325% 0,674% 

4 0,059% 0,141% -0,824% 0,300% -1,385% -2,363% -0,634% -0,482% 

5 -0,553% 0,012% -0,292% -0,093% -1,385% 0,825% -0,540% -0,398% 

6 0,114% -0,188% 0,796% -0,322% 0,045% 0,907% -1,353% -1,012% 

7 -0,710% -0,089% 2,596% -0,236% 2,247% 1,238% 2,626% 2,068% 

8 0,259% 0,007% 0,245% 0,007% -0,068% -0,393% 0,573% 1,115% 

9 0,150% 0,010% 0,956% 0,015% 0,903% 1,067% 1,913% 1,788% 

10 0,443% 0,051% -0,640% 0,127% -0,793% -0,709% -0,331% -0,332% 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

498 0,004% -0,018% 0,851% -0,238% -0,576% -0,377% -0,263% -0,507% 

499 0,672% 0,072% -0,218% -0,135% 0,167% 1,353% 0,204% 2,054% 

500 1,218% 0,049% 0,330% 0,145% 1,678% 0,421% -0,186% -0,617% 

 

 

The first step for the Monte Carlo simulation, as mentioned above, is to calculate the 

parameters in the Geometric Brownian Motion for all assets. The results of the calculation of 

these parameters are shown in the Table 3.27 below. We should remind there the equation of 

the Geometric Brownian Motion (equation 2.2) as was presented above in Chapter 2. 
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𝑹𝒕+𝜟𝒕
= 𝐥𝐧 (

𝑺𝒕+𝜟𝒕

𝑺𝒕
) = 𝒌𝜟𝒕 + 𝝈𝜺𝒕√𝜟𝒕     (2.2) 

 

Table 3.27  Parameters of Geometric Brownian Motion 

 

Geometric Brownian Motion 

  

Bloombe
rg greek 
governm
ent bond 

iShares-
Core € 
Corp 
Bond 

UCITS ETF 

iShares 
Core FTSE 
100 UCITS 

ETF 

iShares 
Core € 
Govt 
Bond 

UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP S&P 
ETF (SPY) 

NESTLE 
SA-R 

NOVARTI
S-REG 
SHS 

Number of 
observations 500 500 500 500 500 500 500 500 

Min daily 
return -5,9443% -1,1120% -3,4589% -1,0375% -8,6255% -3,5909% -4,0383% -3,6903% 

Max daily 
return 5,5009% 0,7477% 3,5765% 0,6956% 4,0188% 2,4377% 4,6864% 4,9681% 

Number of 
trading days 

per year 252 252 252 252 252 252 252 252 

Time 
increment 

(Δt) for one 
day 

0,003968
254 

0,003968
254 

0,003968
254 

0,003968
254 

0,003968
254 

0,003968
254 

0,003968
254 

0,003968
254 

Average daily 
return 0,1000% 0,0074% 0,0572% 0,0024% 0,0327% 0,0607% 0,0525% 0,0258% 

Daily 
standard 
deviation 1,0513% 0,1537% 0,8811% 0,2361% 1,1180% 0,6853% 1,0223% 1,1720% 

Annualised 
mean return 
for one year 

(μ) 
25,2095

% 1,8527% 14,4031% 0,6155% 8,2399% 15,2965% 13,2227% 6,4991% 

Annualised 
standard 

deviation (σ) 
16,6895

% 2,4406% 13,9871% 3,7472% 17,7484% 10,8781% 16,2278% 18,6054% 

Expected 
return (k) 

23,8168
% 1,8229% 13,4249% 0,5453% 6,6649% 14,7049% 11,9060% 4,7683% 

Number of 
iteration of 

trials 100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 
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 The next step is to generate normally distributed random numbers. We have also 

generated 100.000 of these numbers, as we decided to have 100.000 simulations in order to 

have better results. An extract of these numbers is presented also in Table 3.28 below: 

Table 3.28  Normally distributed random numbers 

 

  Random Standard Normal 

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 

Corp Bond 
UCITS ETF 

iShares 
Core FTSE 
100 UCITS 

ETF 

iShares 
Core € 
Govt 
Bond 
UCITS 

ETF 

iShares 
EURO 
STOXX 

50 
UCITS 

ETF 
SPDP S&P 
ETF (SPY) 

NESTLE 
SA-R 

NOVARTIS-
REG SHS 

1 -2,95462 -2,95462 -2,95462 -2,95462 -2,95462 -2,95462 -2,95462 -2,95462 

2 -0,50279 -0,50279 -0,50279 -0,50279 -0,50279 -0,50279 -0,50279 -0,50279 

3 -1,16968 -1,16968 -1,16968 -1,16968 -1,16968 -1,16968 -1,16968 -1,16968 

4 0,61289 0,61289 0,61289 0,61289 0,61289 0,61289 0,61289 0,61289 

5 0,13438 0,13438 0,13438 0,13438 0,13438 0,13438 0,13438 0,13438 

. . . . . . . . . 

. . . . . . . . . 

. . . . . . . . . 

99.996 -1,27338 -1,27338 -1,27338 -1,27338 -1,27338 -1,27338 -1,27338 -1,27338 

99.997 1,46214 1,46214 1,46214 1,46214 1,46214 1,46214 1,46214 1,46214 

99.998 -0,27676 -0,27676 -0,27676 -0,27676 -0,27676 -0,27676 -0,27676 -0,27676 

99.999 -0,80006 -0,80006 -0,80006 -0,80006 -0,80006 -0,80006 -0,80006 -0,80006 

100.000 -0,35434 -0,35434 -0,35434 -0,35434 -0,35434 -0,35434 -0,35434 -0,35434 

 

 

Then, we use these numbers to the equation of the Geometric Brownian Motion 

(equation 2.2) in order to refund us the indices returns for 100.000 simulations. After all this 

process, we follow the same way to calculate V@R and ES. More exactly, we take into 

consideration the weights of each asset in our portfolio and calculate the value of this in each 

simulation. An extract of the returns and the weighted yield of the portfolio, after the use of 

the Geometric Brownian Motion, that consists of eight assets, is shown in Table 3.29 below: 
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Table 3.29  Returns on assets and final yield of the portfolio 

 

SIMULATED RETURNS   

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 
UCITS 

ETF 

iShares 
Core 

FTSE 100 
UCITS 

ETF 

iShares 
Core € 
Govt 
Bond 
UCITS 

ETF 

iShares 
EURO 
STOXX 

50 UCITS 
ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS   

Number of 
simulation 

18,259% 15,307% 4,507% 25,770% 7,957% 25,547% 1,394% 1,260% Weighted 
Average 

1 -3,0118% -0,4470% -2,5501% -0,6953% -3,2770% -1,9663% -2,9731% -3,4440% -1,7604% 

2 -0,4341% -0,0701% -0,3897% -0,1165% -0,5357% -0,2862% -0,4667% -0,5704% -0,2670% 

3 -1,1352% -0,1726% -0,9773% -0,2739% -1,2813% -0,7432% -1,1485% -1,3520% -0,6732% 

4 0,7389% 0,1015% 0,5933% 0,1468% 0,7117% 0,4783% 0,6738% 0,7373% 0,4125% 

5 0,2358% 0,0279% 0,1717% 0,0339% 0,1767% 0,1504% 0,1846% 0,1764% 0,1211% 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

99.996 -1,2442% -0,1885% -1,0687% -0,2984% -1,3972% -0,8142% -1,2545% -1,4735% -0,7364% 

99.997 1,6317% 0,2320% 1,3416% 0,3473% 1,6612% 1,0603% 1,5419% 1,7326% 0,9298% 

99.998 -0,1965% -0,0353% -0,1906% -0,0632% -0,2830% -0,1313% -0,2357% -0,3055% -0,1293% 

99.999 -0,7466% -0,1158% -0,6517% -0,1867% -0,8681% -0,4899% -0,7706% -0,9188% -0,4481% 

100.000 -0,2780% -0,0472% -0,2589% -0,0815% -0,3697% -0,1845% -0,3150% -0,3964% -0,1766% 
 

 

All things considered, the weighted yields of the portfolio are now ranked from 

smallest to highest. An extract of the results of this is shown in Table 3.30. The worst yield is 

the 8.573rd simulation. The one day 99% V@R can be estimated as the 1000th  worst yield (as 

we have a 99% confidence level and 100.000 simulations). This is -1,3742%. The one day 

95% V@R can be estimated also as the 5000th worst yield (as we have a 95% confidence level 

and 100.000 simulations). This is -0,9638%. 

 

 

 

 

 

 

 



-66- 
 

 

Table 3.30  Yields ranked from lowest to highest for 100.000 simulations for the portfolio 

 

Number 
of 

simulation 

Ranked 
Average 

8.573 -2,5929% 

62.275 -2,4564% 

81.706 -2,3692% 

12.335 -2,3315% 

78.457 -2,3218% 

. . 

. . 

. . 

85.989 -1,3742% 

. . 

. . 

. . 

6.364 -0,9638% 

. . 

. . 

. . 

80.130 2,5976% 

55.461 2,6251% 

1.311 2,6263% 

 

In order to calculate the 99% expected shortfall with Monte Carlo simulation, we 

should average the 1000 worst yields, as have already ranked above. More exactly, the average 

for these yields is -1,5732% and the average for unequal weights is -2,457706 and this is the 

estimation of the expected shortfall for the 99% confidence level. The expected shortfall for a 

confidence level of  95% is also -1,2133% with equal weights for the losses and -2,4577061 

for unequal weights of losses. 

In all this process in which we calculate V@R and ES with the Monte Carlo simulation, 

we have assumed that the random variables are uncorrelated. So, it is necessary to repeat all 

the process, taking into account the correlation of the random variables. 

As we have also presented above we need the correlation matrix in order to make the 

Cholesky decomposition to make the correlated random variables. The correlation matrix is 

shown below (Table 3.31). 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=                  

-1,5732% 

99% ES with unequal weights=             

-2,4577060088% 

 

95% ES with equal weights=                

-1,2133% 

95% ES with unequal weights=           

-2,457706124% 
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Table 3.31  Correlation Matrix for all assets 

 

Correlation Matrix 

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 
UCITS 

ETF 

iShares 
Core 

FTSE 100 
UCITS 

ETF 

iShares 
Core € 

Govt Bond 
UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP S&P 
ETF (SPY) 

NESTLE 
SA-R 

NOVARTIS-
REG SHS 

Bloomberg greek 
government bond 1 0,082520 0,295204 -0,027742 0,335774 0,255700 0,123808 0,173268 

iShares-Core € 
Corp Bond UCITS 

ETF 0,082520 1 0,119207 0,760226 0,063303 0,015542 0,124310 0,083610 

iShares Core FTSE 
100 UCITS ETF 0,295204 0,119207 1 0,048927 0,797511 0,573464 0,542223 0,493962 

iShares Core € Govt 
Bond UCITS ETF -0,027742 0,760226 0,048927 1 -0,016025 -0,025455 0,120109 0,017240 

iShares EURO 
STOXX 50 UCITS 

ETF 0,335774 0,063303 0,797511 -0,016025 1 0,632149 0,527026 0,536501 

SPDP S&P ETF (SPY) 0,255700 0,015542 0,573464 -0,025455 0,632149 1 0,387065 0,395316 

NESTLE SA-R 0,123808 0,124310 0,542223 0,120109 0,527026 0,387065 1 0,541899 

NOVARTIS-REG SHS 0,173268 0,083610 0,493962 0,017240 0,536501 0,395316 0,541899 1 

 

  

Now, we use this matrix in order to make the Cholesky decomposition as we have also 

mentioned in Chapter 2.2.1. The Matlab code which makes the Cholesky matrix is the 

following: 

 

Matlab code for Cholesky decomposition 

 

>> M=[1 0.082519688 0.295203791 -0.027741676 0.335773517 0.255700236 0.123807529 

0.173267556;0.082519688 1 0.119207016 0.760225735 0.633029 0.015541683 0.12431025 

0.83609624;0.295203791 0.119207016 1 0.048927089 0.797511151 0.573464145 0.542223069 

0.493961544;-0.27741676 0.760225735 0.048927089 1 -0.016024849 -0.025454617 0.120108674 

0.017239817;0.335773517 0.0633029 0.797511151 -0.016024849 1 0.63214853 0.527026488 

0.536501215;0.255700236 0.015541683 0.573464145 -0.025454617 0.63214853 1 0.387064954 

0.39531599;0.123807529 0.12431025 0.542223069 0.120108674 0.527026488 0.387064954 1 
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0.541898612;0.173267556 0.083609624 0.493961544 0.017239817 0.536501215 0.39531599 

0.541898612 1]  

 

M = 

 

    1.0000    0.0825    0.2952   -0.0277    0.3358    0.2557    0.1238    0.1733 

    0.0825    1.0000    0.1192    0.7602    0.6330    0.0155    0.1243    0.8361 

    0.2952    0.1192    1.0000    0.0489    0.7975    0.5735    0.5422    0.4940 

   -0.2774    0.7602    0.0489    1.0000   -0.0160   -0.0255    0.1201    0.0172 

    0.3358    0.0633    0.7975   -0.0160    1.0000    0.6321    0.5270    0.5365 

    0.2557    0.0155    0.5735   -0.0255    0.6321    1.0000    0.3871    0.3953 

    0.1238    0.1243    0.5422    0.1201    0.5270    0.3871    1.0000    0.5419 

    0.1733    0.0836    0.4940    0.0172    0.5365    0.3953    0.5419    1.0000 

 

>> n=length(M); 

L=zeros(n,n); 

for i=1:n 

L(i,i)=sqrt(M(i,i)-L(i,:)*L(i,:)'); 

for j=(i+1):n 

L(j,i)=(M(j,i)-L(i,:)*L(j,:)')/L(i,i); 

end 

end 

format long 

>> L 

 

L = 

 

  Columns 1 through 6 

 

   1.000000000000000   0                                      0                                        0                   0                   0 

   0.082519688000000   0.996589434567908   0                                         0                   0                   0 
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   0.295203791000000   0.095171479829490   0.950682444986912      0                   0                   0 

  -0.277416760000000   0.785798095301610   0.058942921432255   0.549624441509377                              

0                   0 

   0.335773517000000   0.035716788582984   0.731043599158461   0.010858909942224     

0.592821892729241                   0 

   0.255700236000000  -0.005577643614751   0.524372045785326   0.034488632607106   

0.274580010236183   0.763568326346603 

   0.123807529000000   0.114484147009181   0.520446121631907   0.061527318448216   

0.169071466784833   0.045304204628740 

   0.173267556000000   0.069548840208615   0.458821177216985  -0.029817570926935   

0.237413631984083   0.061089076741798 

 

  Columns 7 through 8 

 

                   0                                     0 

                   0                                      0 

                   0                                      0 

                   0                                      0 

                   0                                      0 

                   0                                      0 

                   0.816258333845086   0 

                  0.284983276363352     0.782574454546551 

 

So, the matrix of the Cholesky decomposition is the Table 3.32 below: 
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Table 3.32  Matrix of the Cholesky decomposition 

 

Cholesky 

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 

Corp Bond 
UCITS ETF 

iShares 
Core FTSE 
100 UCITS 

ETF 

iShares 
Core € 
Govt 
Bond 

UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS 

Bloomberg 
greek 

government 
bond 1 0 0 0 0 0 0 0 

iShares-Core € 
Corp Bond 
UCITS ETF 0,082520 0,996589 0 0 0 0 0 0 

iShares Core 
FTSE 100 
UCITS ETF 0,295204 0,095171 0,950682 0 0 0 0 0 

iShares Core € 
Govt Bond 
UCITS ETF -0,277417 0,785798 0,058943 0,549624 0 0 0 0 

iShares EURO 
STOXX 50 
UCITS ETF 0,335774 0,035717 0,731044 0,010859 0,592822 0 0 0 

SPDP S&P ETF 
(SPY) 0,255700 -0,005578 0,524372 0,034489 0,274580 0,763568 0 0 

NESTLE SA-R 0,123808 0,114484 0,520446 0,061527 0,169071 0,045304 0,816258 0 

NOVARTIS-REG 
SHS 0,173268 0,069549 0,458821 -0,029818 0,237414 0,061089 0,284983 0,782574 

 

 

Then, we generate the random variables as we have also do it in the process that the 

random variables are not correlated. We multiply the Cholesky decomposition by these 

random variables. We can see this process algebraically in equation 2.8 (Chapter 2.2.1). 

After this process, we use these correlated random variables to the equation of the 

Geometric Brownian Motion (equation 2.1) in order to refund us the returns of each asset for 

100.000 simulations. Then, we follow the same way to calculate V@R and ES. More exactly, 

we take into consideration the weights of each asset in our portfolio and calculate the value of 

this in each simulation. An extract of the returns and the weighted yield of the portfolio, after 

the use of the Geometric Brownian Motion, that consists of eight assets, is shown in Table 

3.33 below: 
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Table 3.33  Returns on assets and final yield of the portfolio (with correlated random variables) 

 

 

SIMULATED RETURNS (with correlated random variables)   

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 

UCITS ETF 

iShares 
Core FTSE 

100 
UCITS ETF 

iShares 
Core € 
Govt 
Bond 
UCITS 

ETF 

iShares 
EURO 
STOXX 

50 
UCITS 

ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS   

Number of 
simulation 

 
18,259% 

 
15,307% 

 
4,507% 

 
25,770% 

 
7,957% 

 
25,547% 

 
1,394% 

 
1,260% Weighted 

Average 

1 -6,0835% -0,8962% -5,1244% -1,3850% -6,5435% -3,9684% -5,9598% -6,8683% -3,5399% 

2 -0,9568% -0,1465% -0,8278% -0,2339% -1,0916% -0,6269% -0,9750% -1,1531% -0,5698% 

3 -2,3513% -0,3504% -1,9965% -0,5470% -2,5745% -1,5358% -2,3308% -2,7076% -1,3777% 

4 1,3760% 0,1946% 1,1273% 0,2899% 1,3893% 0,8936% 1,2933% 1,4476% 0,7817% 

5 0,3755% 0,0483% 0,2888% 0,0653% 0,3253% 0,2415% 0,3204% 0,3322% 0,2020% 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

99.996 -2,5681% -0,3821% -2,1782% -0,5957% -2,8051% -1,6771% -2,5417% -2,9493% -1,5033% 

99.997 3,1518% 0,4543% 2,6155% 0,6886% 3,2777% 2,0511% 3,0199% 3,4272% 1,8104% 

99.998 -0,4842% -0,0774% -0,4317% -0,1278% -0,5890% -0,3188% -0,5154% -0,6262% -0,2960% 

99.999 -1,5784% -0,2374% -1,3487% -0,3734% -1,7526% -1,0320% -1,5794% -1,8460% -0,9299% 

100.000 -0,6464% -0,1011% -0,5677% -0,1642% -0,7615% -0,4246% -0,6732% -0,8070% -0,3900% 

 

 

All things considered, the weighted yields of the portfolio are now ranked from 

smallest to highest. An extract of the results of this is shown in Table 3.34. The worst yield is 

the 8.573rd simulation. The one day 99% V@R can be estimated as the 1000th  worst yield (as 

we have a 99% confidence level and 100.000 simulations). This is -2,7720%. The one day 

95% V@R can be estimated also as the 5000th worst yield (as we have a 95% confidence level 

and 100.000 simulations). This is -1,9556%. 
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Table 3.34  Yields ranked from lowest to highest for 100.000 simulations for the portfolio 

 

Number 
of 

simulation 
Ranked 
Average 

8573 -5,1958% 

62275 -4,9242% 

81706 -4,7507% 

12335 -4,6758% 

78457 -4,6566% 

. . 

. . 

. . 

85989 -2,7720% 

. . 

. . 

. . 

6364 -1,9556% 

. . 

. . 

. . 

52440 4,9042% 

41905 4,9803% 

80130 5,1275% 

55461 5,1821% 

1311 5,1846% 

 

In order to calculate the 99% expected shortfall with Monte Carlo simulation, we 

should average the 1000 worst yields, as have already ranked above. More exactly, the average 

for these yields is -3,1676% with equal weights and -4,9262021% with unequal weights and 

this is the estimation of the expected shortfall for the 99% confidence level. The expected 

shortfall for a confidence level of  95% is also -2,4520% for equal and -4,9262023% with 

unequal weights. 

 

 

 

 

 

 

95% V@R 

99% ES with equal weights=                  

-3,1676% 

99% ES with unequal weights=            

-4,9262021% 

 

95% ES with equal weights=                  

-2,4520% 

95% ES with unequal weights=          

-4,9262023% 

 

99% V@R 
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3.3.3  Monte Carlo simulation with different parameters 
 

 In this part of the analysis, we will calculate again V@R and ES with the same way for 

the same data, but we will change some of the parameters in order to detect the differences. 

 

3.3.3.1  Monte Carlo simulation changing parameter of μ 

 

 We collect again the same data with the same portion of our portfolio. So, the returns 

are the same. The change is about the calculation of parameter μ of the Brownian motion. In 

our analysis above, we observe μ as the annualized mean return of the 500 returns of our assets. 

Now, we choose to have as μ the annualized return of the 50 first returns of the assets in our 

portfolio. So, our new table of parameters of Brownian Motion is formed as follows: 

 

Table 3.35  Parameters of Geometric Brownian Motion  

 

Geometric Brownian Motion 

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € Corp 
Bond UCITS 

ETF 

iShares 
Core FTSE 
100 UCITS 

ETF 

iShares 
Core € 

Govt Bond 
UCITS ETF 

iShares 
EURO 

STOXX 50 
UCITS ETF 

SPDP S&P 
ETF (SPY) 

NESTLE 
SA-R 

NOVARTIS-
REG SHS 

Number of 
observations 

500 500 500 500 500 500 500 500 

Min daily 
return 

-5,9443% -1,1120% -3,4589% -1,0375% -8,6255% -3,5909% -4,0383% -3,6903% 

Max daily 
return 

5,5009% 0,7477% 3,5765% 0,6956% 4,0188% 2,4377% 4,6864% 4,9681% 

Number of 
trading days 

per year 

252 252 252 252 252 252 252 252 

Time 
increment 

(Δt) for one 
day 

0,003968254 0,00396825 0,0039683 0,0039683 0,0039683 0,0039683 0,0039683 0,0039683 

Average 
daily return 

0,1000% 0,0074% 0,0572% 0,0024% 0,0327% 0,0607% 0,0525% 0,0258% 

Daily 
standard 
deviation 

1,0513% 0,1537% 0,8811% 0,2361% 1,1180% 0,6853% 1,0223% 1,1720% 
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Annualised 
mean return 
for one year 

(μ) 

-0,1171% 0,0017% 0,1198% 0,0366% -0,0772% -0,0383% 0,0158% -0,2371% 

Annualised 
standard 

deviation (σ) 

16,6895% 2,4406% 13,9871% 3,7472% 17,7484% 10,8781% 16,2278% 18,6054% 

Expected 
return (k) 

-1,5098% -0,0281% -0,8584% -0,0337% -1,6522% -0,6300% -1,3009% -1,9679% 

Number of 
iteration of 

trials 

100.000 100.000 100.000 100.000 100.000 100.000 100.000 100.000 

 

 We use the same random numbers, first the uncorrelated random variables, so the new 

returns of assets and the yield of the portfolio are calculated again with only change, the 

parameter of μ in the Geometric Brownian Motion. An extract of these returns and yields is 

shown in Table 3.36. 

 

Table 3.36  Returns on assets and final yield of the portfolio (with uncorrelated random 

variables and different μ) 

 

  SIMULATED RETURNS 

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 
UCITS 

ETF 

iShares 
Core 
FTSE 
100 

UCITS 
ETF 

iShares 
Core € 
Govt 
Bond 
UCITS 

ETF 

iShares 
EURO 
STOXX 

50 
UCITS 

ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS 
Weighted 
Average 

Number of 
simulation 

 
18,259% 

 
15,307% 

 
4,507% 

 
25,770% 

 
7,957% 

 
25,547% 

 
1,394% 

 
1,260% 

  

1 -3,1123% -0,4544% -2,6067% -0,6976% -3,3100% -2,0272% -3,0255% -3,4707% -1,8022% 

2 -0,5346% -0,0774% -0,4464% -0,1188% -0,5687% -0,3470% -0,5191% -0,5971% -0,3089% 

3 -1,2357% -0,1799% -1,0340% -0,2762% -1,3143% -0,8040% -1,2009% -1,3787% -0,7151% 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

99.998 -0,2970% -0,0427% -0,2473% -0,0655% -0,3160% -0,1922% -0,2881% -0,3322% -0,001712 

99.999 -0,8471% -0,1231% -0,7083% -0,1890% -0,9011% -0,5507% -0,8230% -0,9455% -0,4899% 

100.000 -0,3785% -0,0546% -0,3156% -0,0838% -0,4027% -0,2453% -0,3674% -0,4231% -0,2185% 
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So, with the same process, as we have analyzed in details at chapter 2.2, we find the 

ranked table of portfolio’s worst yields as shown in Table 3.37 below, in order to calculate 

V@R and ES. 

Table 3.37  Yields ranked from lowest to highest for 100.000 simulations for the portfolio 

 

Number 
of 

simulation 
Ranked 
Average 

8573 -2,6348% 

62275 -2,4982% 

81706 -2,4110% 

12335 -2,3734% 

78457 -2,3637% 

. . 

. . 

. . 

85.989 -1,4161% 

. . 

. . 

. . 

6.364 -1,0056% 

. . 

. . 

. . 

80.130 2,5558% 

55.461 2,5832% 

1.311 2,5845% 

 

 

And then, we run just the same, taking into consideration the correlation of the random 

variables. An extract of the returns and yields of the portfolio calculated with the correlated 

random variables is shown in Table 3.38. 

 

 

 

 

 

 

 

99% V@R 

95% V@R 

99% ES with equal weights=               

-1,6150% 

99% ES with unequal weights=           

-2,4989041919%         

 

95% ES with equal weights=                 

-1,2552% 

95% ES with unequal weights=             

-2,498904309%    
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Table 3.38  Returns on assets and final yield of the portfolio (with correlated random variables 

and different μ) 

 

  SIMULATED RETURNS (Correlated) 

  

Bloomberg 
greek 

government 
bond 

iShares-
Core € 
Corp 
Bond 
UCITS 

ETF 

iShares 
Core 
FTSE 
100 

UCITS 
ETF 

iShares 
Core € 
Govt 
Bond 
UCITS 

ETF 

iShares 
EURO 
STOXX 

50 
UCITS 

ETF 

SPDP 
S&P ETF 

(SPY) 
NESTLE 

SA-R 
NOVARTIS-

REG SHS 
Weighted 
Average 

Number of 
simulation 

 
18,259% 

 
15,307% 

 
4,507% 

 
25,770% 

 
7,957% 

 
25,547% 

 
1,394% 

 
1,260% 

  

1 -6,1840% -0,9035% -5,1810% -1,3873% -6,5765% -4,0293% -6,0122% -6,8950% -3,5818% 

2 -1,0573% -0,1538% -0,8845% -0,2362% -1,1246% -0,6877% -1,0274% -1,1798% -0,6117% 

3 -2,4518% -0,3578% -2,0531% -0,5493% -2,6075% -1,5966% -2,3833% -2,7343% -1,4195% 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

99.998 -0,5847% -0,0847% -0,4884% -0,1301% -0,6220% -0,3797% -0,5679% -0,6529% -0,3379% 

99.999 -1,6789% -0,2447% -1,4054% -0,3757% -1,7856% -1,0929% -1,6318% -1,8727% -0,9718% 

100.000 -0,7469% -0,1085% -0,6244% -0,1665% -0,7945% -0,4854% -0,7256% -0,8338% -0,4319% 

 

 

So, with the same process, as we have analyzed in details at chapter 2.2, we find again 

the ranked table of portfolio’s worst yields as shown in Table 3.39 below, in order to calculate 

V@R and ES. 
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Table 3.39  Yields ranked from lowest to highest for 100.000 simulations for the portfolio 

 

Number 
of 

simulation 

Ranked 
Average 

8573 -5,2377% 

62275 -4,9661% 

81706 -4,7926% 

12335 -4,7177% 

78457 -4,6985% 

. . 

. . 

. . 

85.989 -2,8138% 

. . 

. . 

. . 

6.364 -1,9975% 

. . 

. . 

. . 

80.130 5,0856% 

55.461 5,1402% 

1.311 5,1428% 

 

 

 

 

 

 

 

 

 

 

 

 

 

95% V@R 

99% ES with equal weights=               

-3,2095% 

99% ES with unequal weights=          

-4,9674003495% 

       

 

95% ES with equal weights=                 

-2,4938% 

95% ES with unequal weights=            

-4,967400581%          

 

99% V@R 
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3.4   Comparison of estimations for V@R and ES 

 

 In this part of chapter 3, we will compare all the ways of estimation for V@R and ES. 

The portfolios that have observed are 14. These are:  

1) portfolio consists of DJIA, FTSE 100, CAC 40, Nikkie 

2) portfolio of DJIA 

3) portfolio of FTSE 100 

4) portfolio of CAC 40 

5) portfolio of Nikkie 

6) portfolio consists of Bloomberg Greek government bond, iShares-Core € Corp Bond 

UCITS ETF, iShares Core FTSE 100 UCITS ETF, iShares Core € Govt Bond UCITS 

ETF, iShares EURO STOXX 50 UCITS ETF, SPDP S&P ETF (SPY), NESTLE SA-

R (CHF), NOVARTIS-REG SHS (CHF) 

7) portfolio of Bloomberg greek government bond 

8) portfolio of iShares-Core € Corp Bond UCITS ETF 

9) portfolio of iShares Core € Govt Bond UCITS ETF 

10) portfolio of iShares Core FTSE 100 UCITS ETF 

11) portfolio of iShares Core € Govt Bond UCITS ETF 

12) portfolio of iShares EURO STOXX 50 UCITS ETF 

13) portfolio of SPDP S&P ETF (SPY) 

14) portfolio of NESTLE SA-R (CHF) 

15) portfolio of NOVARTIS-REG SHS (CHF) 

 

Then, the ways of estimation that have also presented above are: 

1) Historical Simulation 

2) Monte Carlo Simulation with uncorrelated random variables 

3) Monte Carlo Simulation with correlated random variables 

4) Monte Carlo Simulation with different μ with uncorrelated random variables 

5) Monte Carlo Simulation with different μ with correlated random variables. 

 

First, let’s see the comparison of estimation for the calculation of 99% Value at Risk 

in Figure 3.1 below: 
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Figure 3.1  Comparison of estimations for 99% V@R 

 

 

 

  

As we can see at Figure 3.1 above, in this case, the change of μ does not affect a lot the 

estimation of 99%V@R as the two bars are almost at the same level for all assets, with this 

one of the different μ overestimating V@R. Moreover, in the two multi-assets portfolios we 

can observe that the correlation of random variables gives us the overestimation of 99% V@R. 

On the grounds that Monte Carlo estimation underestimates the 99% V@R in the most of the 

cases, we can say that this estimation has the better results. The difference of the estimation 

for two methods is observed because of the heavier tail of the normal distribution that we have 

assumed for the Monte Carlo simulation. However, in multi-assets portfolios, we observe that 

Historical simulation is this simulation which underestimates the 99% V@R, so historical 

simulation is the simulation that gives us the underestimation we need and this may happens 

because of the benefit of diversification that we have already analyzed above. 

 Then, we will do just the same process for 95% V@R. Figure 3.2 shows the comparison 

of estimations for 95% V@R. 
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Figure 3.2  Comparison of estimations for 95% V@R 

 

 

 

 

As we can see again at Figure 3.2 above, the change of μ does not affect a lot the 

estimation of 95% V@R as the two bars are almost at the same level for all assets with this 

one of the different μ overestimating again V@R. Moreover, in the two multi-assets portfolios 

we can observe that the correlation of random variables gives us the overestimation of 95% 

V@R. But, οn the contrary from the estimation of 99% V@R, in this case, Historical 

simulation is this simulation which underestimates 95% V@R in the majority of the portfolios 

and not only in the multi-asset portfolios as we observed above in Figure 3.1. 

Now we want to compare the estimations for calculation of 99% Expected Shortfall 

and 95% Expected Shortfall. To begin with, Figure 3.3 gives us the opportunity to compare 

the ways of estimations about 99% ES. 
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Figure 3.3  Comparison of estimations for 99% ES 

 

 

 

 

As we can see again at Figure 3.3 above, the change of μ does not affect a lot the 

estimation of 99% ES as the two bars are almost at the same level for all assets with this one 

of the different μ overestimating again ES. Moreover, in the two multi-assets portfolios we 

can observe that the correlation of random variables gives us the overestimation of 99% ES. 

On the grounds that Monte Carlo estimation underestimates the 99% ES in the most of the 

cases, we can say that this estimation has the better results. However, in multi-assets portfolios, 

we observe that Historical simulation is this simulation which underestimates the 99% ES 

against Monte Carlo simulation with correlated random variables and this may happens 

because of the benefit of diversification that we have already analyzed above. The difference 

of the estimation for two methods is observed because of the heavier tail of the normal 

distribution that we have assumed for the Monte Carlo simulation.  

We also check the kurtosis for losses in these two portfolios at Historical Simulation 

in order to check that Monte Carlo Simulation has heavier tail than Historical Simulation. We 

observed that for the first portfolio (portfolio with four assets) the kurtosis is 6,27 and it is 

bigger than 3, which is the kurtosis for the normal distibution, and for the second portfolio 
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(portfolio with eight assets) the kurtosis is 7,84, also bigger than 3. This means that Historical 

simulation gives us leptokurtic distributions. 

 Then, we will do just the same for the estimation of 95% ES in Figure 3.4 below. 

 

Figure 3.4  Comparison of estimations for 95% ES 

 

 

  

 

We can observe again at Figure 3.4 above that, the change of μ does not affect a lot the 
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On the grounds that Monte Carlo estimation underestimates the 95% ES in the most of the 

cases, we can say that this estimation has the better results. So, with the above analysis, we 

prefer Monte Carlo simulation against Historical Simulation. However, in multi-assets 
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To conclude, with the above analysis, we observe that in the most cases the best 

solution to estimate such V@R such as ES is the Monte Carlo simulation. This is an expected 

outcome because as we have also mentioned in the analysis of the previous chapters Monte 

Carlo simulation gives better results as for accuracy. And this is happening because we can 

think the Monte Carlo simulation like scenario analysis in which instead of having fo example 

500 scenarios, the simulation process generates thousands or ten of thousands of scenarios. 

However, if we want to focus only in portfolios, Historical Simulation is this simulation 

wich underestimates V@R and ES. 
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Conclusion 
 

Value at Risk (V@R) is one of the most popular risk assessment tools in the world of 

investment and risk management. Conditional value at risk (CV@R) or Expected Shortfall 

(ES) is a technique often used to reduce the probability that a portfolio will incur large losses 

and is performed by assessing the likelihood (at a specific confidence level) that a specific loss 

will exceed the V@R. This thesis studies the ES notion and compares its estimation methods.  

In the first part, we define V@R and ES and give examples to show their applicability 

in practical issues. Also, we analyze the usage of these measures and cite examples in the Basel 

III framework, capital market, and solvency. Moreover, these two concepts are compared in 

order to understand their differences such as their benefits and drawbacks. The main benefit 

of ES that makes it to outweight from V@R is its subadditivity. 

The second part analyses the alternative techniques of V@R and ES estimation. The 

techniques applied in this study are 1) Historical and 2) Monte Carlo simulation method.   

The empirical study concerns the assessment of alternatives ES methods in a real mixed 

portfolio and the comparison of their results. Mixed portfolios are usually portfolios consisted 

of shares and bonds and these portfolios will be presented extensively in this part. An example 

of a portfolio like this is the portfolio that we have also used in our analysis which consists of: 

18,259% Bloomberg Greek government bond, 15,307% iShares-Core € Corp Bond UCITS 

ETF, 4,507% iShares Core FTSE 100 UCITS ETF, 25,770% iShares Core € Govt Bond UCITS 

ETF, 7,957% iShares EURO STOXX 50 UCITS ETF, 25,547% SPDP S&P ETF (SPY), 

1,394% NESTLE SA-R (CHF), 1,260% NOVARTIS-REG SHS (CHF). We used this portfolio 

with historical data and estimated the one-day 99% V@R, one-day 95% V@R such as one-

day 99% ES and one-day 95% ES in order to compare their results. 

 We estimated V@R and ES of the portfolio with Historical Simulation, Monte Carlo 

Simulation with uncorrelated and correlated random variables and Monte Carlo Simulation 

with different μ, again with uncorrelated and correlated random variables. We came to a 

conclusion that the best simulation which underestimates V@R and ES is the Monte Carlo 

Simulation in single asset portfolios and Historical Simulation in multi-asset portfolios. 

 

 

 

 

 

 



-85- 
 

 

References 

 

Acerbi, C. and Tasche, D., On the coherence of expected shortfall. J. Banking Finan., 2002, 

26, 1487-1503 

Artzner, P., Delbaen, F., Eber, J.M. and Heath, D., Thinking coherently. Risk, 1997, 10, 68-71 

Artzner, P., Delbaen, F.,Eber,J.M.andHeath, D., Coherent measures of risk. Math. Finan., 

1999, 9, 203–228 

Alexander J. G., Baptista M. A., A comparison of VaR and CVaR Constraints on Portfolio 

Selection with the Mean-Variance Model, Management Science, Vol 50, No 9, 2004,  pp. 

1261-1273. 

Barrailler M. & Dufour T., Value at Risk and Expected Shortfall, Polutech Nice-Sophia, 2015. 

Bi, G. and Giles, D.E. An application of extreme value analysis to US movie box office returns. 

Proceedings of the, International Congress on Modelling and Simulation: Land, Water and 

Environmental Management: Integrated Systems for Sustainability, pp. 2652–2658, 2007. 

Bi, G. and Giles, D.E., Modelling the financial risk associated with US movie box office 

earnings. Math. Comput. Simul., 2009, 79, 2759–2766 

Cheung, Yun Hsing and Powell, Robert J., Anybody can do Value at Risk: A Teaching Study 

using Parametric Computation and Monte Carlo simulation, Australasian Accounting, 

Business and Finance Journal, 6(5), 2012, 101-118. 

Christopher L., Culp, Ron Mensink, and Andrea M.P. Neves, Value at risk for asset managers, 

Derivatives Quarterly, 1998. 

Fan, G., Wong, W.K. and Zeng, Y., Backtesting industrial market risks using expected 

shortfall: The case of Shanghai stock exchange. Proceedings of the Second International 

Conference on Management Science and Engineering Management, pp.413–422, 2008a. 

Franzen D., Managing Investment Risk in Defined Benefit Pension Funds, OECD Working 

Papers on Insurance and Private Pensions, No 38, OECD Publishing, 2010. 

Hull C. John Options, Futures and Other Derivatives, Eight Edition, Pearson, 2002 

Hull C. John Risk Management and Financial Institutions, Fourth Edition, Wiley, 2015 

Iglesias E. M., Value at Risk and Expected Shortfall of firms in the European Union stock 

market indexes: A detailed analysis by economic sectors and geographical situation, 

Economic Modeling 50, 2015, 1-8. 

Kerkhof, J. and Melenberg, B., Backtesting for risk-based regulatory capital. J. Banking 

Finan., 2004, 28, 1845–1865. 

Kidd Deborah, Value at Risk and Conditional Value at risk: A comparison, Investment risk 

and performance, CFA Institute, 2012. 



-86- 
 

 

Koji Inui , Masaaki Kijima, On the significance of expected shortfall as a coherent risk 

measure, Journal of Banking & Finance 29, 853-864, 2005. 

Krehbiel, T. and Adkins, L.C., Extreme daily changes in US Dollar London inter-bank offer 

rates. Int. Rev. Econom. Finan., 2008, 17, 397–411. 

Krokhmal P., Palmquist J., and Uryasev S., Portfolio Optimization with Conditional Value at 

Risk objective and constraints, Journal of Risk, 2001 

Lee,W.C.andFang,C.J.,The measurement of capital for operational risk in Taiwanese 

commercial banks. J. Oper. Risk, 2010, 5, 79– 102. 

Li, X.M. and Li, F.C. Extreme value theory: An empirical analysis of equity risk for Shanghai 

stock market. Proceedings of the 2006 International Conference on Service Systems and, 

Service Management, pp. 1073–1077, 2006. 

Liang, B. and Park, H., Risk measures for hedge funds: A cross-sectional approach. Eur. 

Finan. Manage., 2007, 13, 333–370 

Lindstrom, E. and Regland, F., Modeling extreme dependence between European electricity 

markets. Energy Econom., 2012, 34, 899–904. 

Linsmeier Thomas J. and Neil D. Pearson, Value at Risk, Financial Analyst Journal, 2000 

Micocci M., Gregoriou G. N., Batista Masala G., Pension fund risk management – Financial 

and Actuarial Modeling, Chapman & Hall/CRC Series, 2010. 

Nadarajah S., Zhang B. & Chan S., Estimation methods for expected shortfall , Quantitive 

Finance Vol.14, 2014, No. 2, 271-291. 

Neftci Salih N., Value at risk calculations, extreme events, and tail estimation, The Journal of 

Derivatives, 2000. 

Peracchi F. , Andrei V. Tanase, On estimating the conditional expected shortfall , Faculty of 

Economics, University of Rome “Tor Vergata”, 2008. 

Rachev, S., Jasic, T., Stoyanov, S. and Fabozzi, F.J., Momentum strategies based on reward-

risk stock selection criteria. J. Banking Finan., 2007, 31, 2325–2346. 

Righi M.B. , Ceretta P. S., A comparison of Expected Shortfall estimation models, Journal of 

Economics and Business 78, 2015, 14-47. 

Rockafellar R. T. and Stanislav Uryasev Conditional Value at Risk for general loss 

distributions, Research Report, University of Florida, 2001. 

Rüdiger Frey , Alexander J. McNeil VaR and expected shortfall in portfolios of dependent 

credit risks: Conceptual and practical insights , Journal of Banking & Finance 26, 1317-1334, 

2002. 

Salih N. Neftci Value at Risk Calculations, Extreme Events, and Tail Estimation, The Journal 

of Derivatives, 2000. 

Sarykalin S., Serraino G., and Uryasev S., Value at risk vs Conditional Value at risk in risk 

management and optimization, Informs, 2010. 



-87- 
 

 

Stuart McCrary, Implementing A Monte Carlo Simulation: Correlation, Skew, and Kurtosis, 

Berkley Research Group (BRG), 2015. 

Tasche D., Expected shortfall and beyond , Journal of Banking & Finance 26, 1519-1533, 

2002. 

Teng, F. and Zhang, Q. W. Cash flow risk measurement for Chinese non-life insurance 

industry based on estimation of ES and NRR. Proceedings of the 2009 International Forum on 

Information Technology and Applications, vol. 2, pp. 628–631, 2009. 

Wang, Z.R. and Wu, W.T. Empirical study for exchange rate risk of CNY: Using VaR and ES 

based on extreme value theory. Proceedings of the 2008 IEEE International Conference on 

ManagementofInnovationandTechnology,pp.1193–1198,2008 

Yamai, Y. and Yoshiba, T. Comparative analyses of expected shortfall and value-at-risk: 

Their estimation error, decomposition, and optimization. Monetary Econom. Stud., 2002, 87–

122. 

Yamai, Y. and Yoshiba, T. Value-at-risk versus expected shortfall: A practical perspective, 

Journal of Banking & Finance 29, 997-1015, 2005 

 

Internet sources: 

www.economictimes.indiatimes.com 

www.etf.com 

www.finance.yahoo.com 

www.investopedia.com 

www.ishares.com/us 

www.taxheaven.gr/laws/circular/view/id/16642 

www.thebalance.com 

 

http://www.economictimes.indiatimes.com/
http://www.etf.com/
http://www.finance.yahoo.com/
http://www.investopedia.com/
http://www.ishares.com/us
http://www.taxheaven.gr/laws/circular/view/id/16642
http://www.thebalance.com/

