
University of Piraeus
School of Information Technology and Communications

Department of Digital Systems
Postgraduate Programme: Digital System Security

Master Thesis Title:

Internet anonymity using anonymous
credentials

Author:
Aristeidis E. Farao

Student ID no:
MTE1634

Supervisor:
Associated Professor, Christos Xenakis

Submitted to the Department of Digital Systems
in partial fulfillment of the requirements for the degree of

Masters of Digital System Security
at the

University of Piraeus

c©University of Piraeus 2018. All rights reserved.

Piraeus, February, 2018

Contents

1 Abstract 7

2 Introduction 8

3 Background 11
3.1 Zero-Knowledge-Proof . 11
3.2 Pseudonym System . 13
3.3 Related Work . 16
3.4 Implementations . 18

3.4.1 Identity Mixer (IdeMix) 18
3.4.2 U-Prove . 19
3.4.3 I Reveal My Attributes (IRMA) 20
3.4.4 ABC4Trust . 21

3.5 Limitation . 21

4 Anonymous Credential 22
4.1 Communication Model . 23
4.2 Anonymous Credential Protocols 25

4.2.1 Protocol 1.1: The Generation of a Pseudonym 28
4.2.2 Protocol 1.2: The Generation of a Credential 30
4.2.3 Protocol 2.1: The Showing a Credential 32
4.2.4 Protocol 2.2: The Showing a Credential with Respect

to a Pseudonym . 33

5 ReCRED 36
5.1 Architectural Overview . 36
5.2 ReCRED-Anonymous Credential Implementation 38

5.2.1 ReCRED and IdeMix 39

1

5.2.2 ReCRED and U-Prove 40
5.2.3 ReCRED and IRMA 40
5.2.4 ReCRED and FIWARE 41
5.2.5 ReCRED and ABC4Trust 41

5.3 ReCRED - Anonymous Credential: Implementation Guide . . 41
5.3.1 ReCRED - Device Wallet 42
5.3.2 U-ProveAAR . 46
5.3.3 ReCRED Mobile Application 47

6 Use Cases 50
6.1 User’s Registration . 51
6.2 SP’s Registration . 51
6.3 Use Cases . 52

6.3.1 First Use Case . 52
6.3.2 Second Use Case . 54

6.3.2.1 Architecture 55

2

List of Figures

3.1 Structure of zero-knowledge-proof 14
3.2 Pseudonym creation and use 16

4.1 Anonymous Credential Communication Scheme 26
4.2 Actions of protocol 1.1 . 31
4.3 Actions of Protocol 1.2 . 33
4.4 Actions of Protocol 2.1 . 34
4.5 Actions of Protocol 2.2 . 35

5.1 First-Screen of ReCRED Device Wallet 42
5.2 Scan a QR-code . 43
5.3 Issue or not the credential . 44
5.4 Device Wallet from the Credential 45
5.5 U-ProveAAR . 48
5.6 ReCRED Application . 49

6.1 End-user registration . 51
6.2 Website Registration . 52
6.3 Age verification . 53

3

List of Tables

4.1 Notation and Definition Table 28

4

Acknowledgments

First and foremost, I would like to thank my supervisor, Christos Xenakis,
for his mentorship and guidance over the course of this research. His ideas
were key to the completion of this research and thesis. Our conversations
helped me not only formulate, solve and explore the problems presented here,
but also develop a more sophisticated understanding of Internet Security and
Anonymous Credentials. His contribution to this research, including his gen-
erous expenditure of time in meetings and in the writing and revision of this
thesis, are greatly and appreciated by the author.

I would also like to thank all the group members in the Security Systems
Laboratory on the Department of Digital Systems for their support and help
during various point of this work and for the fruitful, enjoyable conversations
about both research and other topics.

Finally, I would like to thank my parents. Without them, regardless of
everything else, none of the work in this thesis would have been possible.

Aristeidis Farao
Piraeus, February 2018

5

6

Chapter 1

Abstract

The everyday use of electronic services has increased significantly. For the
enforcement of these transactions customers have to manage many different
accounts in different service providers. The consequence of this action, is
the customer’s personal data exposure which is inevitable. Taking this into
account, we find out how important the protection of our privacy is, because
with this trend our privacy is lost.

There is a solution to this big issue and is called Anonymous Credential.
Anonymous Credential Systems promise that they can change this situation
and provide privacy and strong authentication. Nevertheless, the biggest dis-
advantage of the Anonymous Credentials is that these are still under research
and they are very complex and not so understandable to the readers who are
not researchers or experts in the domain of cryptography and mathematics.
In this master thesis, our key goal is to provide a way so that the Anonymous
Credential become more understandable to more people than before. Also,
we demonstrate a new project which has as key goal the support of Anony-
mous Credential to their customers for their online and other transactions.
Furthermore, we represent two use cases which will explain in detail how the
Anonymous Credential will be used in real-life.

Keywords:Anonymous Credential, Anonymous Credential Systems, Creden-
tial, Zero-Knowledge-Proof, Pseudonyms,Privacy, Anonymity, User, Issuer,
Verifier, Service Provider, IdeMix, U-Prove, IRMA, ABC4Trust, ReCRED.

7

Chapter 2

Introduction

Internet is a part of our everyday life, the online-transactions are the re-
sult of the modernization of the existing internet technology in such a way
that customers can do whatever they want from their smart devices which
are connected to the internet. However, the biggest disadvantage into this
revolutionary idea which improves our daily life is the anonymity issue.

Nowadays everyone understands how important anonymity is. Everyone
wants to use services which have got some limitations and every user must
provide some personal data to become available to her. However, users fill
in forms which ask for more information than necessary. For example, if
a service has got as limitation only the user’s birthday year for her access,
then the provided form will ask information which is about the name, the
surname, the sex and the birthday year of the user. These are useless in-
formation for the Service Provider (SP) and have not to be asked and be
collected.

SP is everyone who provides an online-service or an offline-service with
an access policy and customers must meet the access policy’s requirements.
These needed requirements from the user’s side are called access policy, based
on this policy a user will be accepted or rejected. From these illegal actions
each SP can create a profile for these users and probably have profits from
this action. This is something which a user does not desire because she may
be exploited.

Traditionally, the access control has been based on the user’s identity

8

which is revealed to the SP and then he will choose if the user is able to use
this service. This identity based access control system is not an anonymous
way because the user must disclose much more than the necessary informa-
tion to gain access into a service.

Nevertheless, there is a solution which is named Anonymous Credential
(AC), this can provide help to the users to escape from this unwanted situ-
ation. AC is a credential which contains owner’s information but discloses
just what is needed to convince a SP that the credential’s owner meets the
service’s requirements and is able to use the service. The ACs provide access
control based on attributes which are called Attribute Based Access Control
(ABAC) and is based on user’s attributes and on service’s access policy. The
definition of ABAC is an access control method where the requests to perform
operations on objects are granted or denied based on assigned attributes of
the object, environmental conditions, and a set of policies that are specified
in terms of those attributes and conditions.

AC can provide users with some special credentials which contain user’s
information and is able to provide privacy and strong authentication to the
users, based on [1], [2] and [3]. This solution contains three (3) partici-
pants who are the user, the Issuing Organization (IO) and the SP. The AC
is issued by an IO and is delivered to a SP. Also, this type of credential
contains pseudonymous identity of the user. The real user’s information is
cryptographically stored and will never be revealed in their real way but
only under a process which shall provide only the proof on some question.
Moreover, the user can use the AC more than one-time without any chance
of linking the user’s actions.

Furthermore, the big advantage of the AC is that the SP cannot get the
full credential with the data being revealed and cannot reuse it to imperson-
ate the real user in one other SP. ACs provide anonymity, which means that
someone else can see the user’s actions but is not able to recognize who this
user is. This is very important because in our life it is necessary to have free-
dom i.e. the anonymity can promote the free speech which is a legal human
right.

Most of our daily transactions take place through Internet applications
which are capable of controlling and tracing the actions without anonymity.

9

Based on the above facts we understand that the ACs can solve all the above
problems and lead us to an anonymous community. So, there is a need for a
thesis which will analyze how the AC works, why someone should prefer to
use ACs and how these will be used in real life.

There are papers which demonstrate how the AC protocols work but
these are basically for people who are experts in the cryptography and in
mathematics. If this technology remains in the same situation never will
it become approachable for other people who are not expert in these two
scientific domains, but they have got insight into other different domains of
computer science. If more people learn and understand the ACs then more
applications will be created so the people will find at last what they want
through these new applications which will provide anonymity.

In this thesis, we will present the importance of anonymity on the in-
ternet, solutions to achieve privacy. Also we will provide the meanings of
Zero-Knowledge-Proof (ZKP), of pseudonyms and AC which are the base of
the Anonymous Credential System (ACS). In the next chapters we will try
to analyze in detail the AC, their components and their protocols. Also, we
will demonstrate the current implementations and provide a use case based
on the newest implementation.

The remaining parts of this Master Thesis are organized as follows. Chap-
ter 3 demonstrates and explains the required theory-knowledge which the
reader should obtain to understand the theory of AC. Chapter 4 presents
the protocols of AC which are explained in detail. Chapter 5 introduces
the ReCRED project and pays attention to AC’s implementations. At last,
the Chapter 6 displays two different use cases which will help the reader
understand how the AC will be used in our real-life.

10

Chapter 3

Background

In this section we introduce the definitions of Zero-Knowledge-Proof, of
Pseudonym System and we also provide the related work, the limitation and
the current implementations of the ACS.

3.1 Zero-Knowledge-Proof

Zero-Knowledge-Proof (ZKP) was proposed by Goldwasser et al., [4] in
February 1989 and it is a way to restrict the quantity of disclosed information
which is transferred from a customer to a SP using a protocol. AC uses the
ZKP to ensure the knowledge of a secret between the participants. Usually,
when someone wants to convince and prove the possession of the knowledge of
a piece of information, she must disclose the whole information. This action
however, is quite risky, the verifier or a possible eavesdropper may use the
disclosed information to carry masquerade or impersonation attacks. ZKP
protocol belongs to interactive protocols, this means that the participants
exchange a number of messages which are based on random numbers and
anytime one of the participants can terminate the protocol. ZKP protocols
are used for authentication and identification.

The idea behind ZKP is to prove the knowledge of a statement, without
revealing any information about it. A statement is a requirement which the
user meets or not, but must prove it to the verifier, i.e. a statement is that
the user is over eighteen (18) years old. This secret information which is used

11

is all legitimate and available only for a specific period, so every other period
these information are totally useless. This secret is known only to the person
who is asked to authenticate herself. This is achieved by the employed ZKP
protocols of ZKP that allow such actions to be materialized. These are cryp-
tographic protocols that do not disclose any secret information during their
operation, (i.e., the secret information is never transferred to other parties),
while the owner (i.e., the user) is able to prove that she knows these secrets,
which are used for identification and/or authentication.

The prover tries to prove the knowledge of a secret (i.e., without reveal-
ing it) to a verifier, who asks questions about the secret information. From
this question, the verifier can discover if the prover really knows the “secret”
or tries to cheat on him. Only if the user knows the secret can she answer
correctly to the provided questions and if she follows the rules. They set how
the information will be transmitted and given by the system for the protec-
tion of the communication’s members from an evil person who can be a third
party or one of the conversation’s members. The question is only one and is
repeated to increase the level of confidence that the user really possesses the
secret information and she does not try to cheat on the verifier.

A ZKP protocol should satisfy three main properties:

• completeness which means that if a statement is true, then the verifier
will have been convinced of this fact by an honest prover

• soundness which means that if a statement is false, then an honest
prover can convince the honest verifier that it is true. A very small
probability of a failure exists regardless of the used implementation,
the failure can be minimized if the repeated timed increased. Failure
means that the prover managed to cheat on the verifier

• zero-knowledge which means that if a statement is true, an honest
verifier learns nothing about the secret values of the statement but only
the fact that the statements is true. The verifier can realize that the
prover does not possess or know the required secret with a very high
probability

Currently, there are many ZKP implementations, the most famous im-
plementations are Fiat and Shamir [5], Uriel Feige, et al. [6], Jeans-Jacques

12

Quisquaterm et al. [7], Manuel Blum et al. [8], Schnorr [9], etc., which
mainly follow the generic structure described below and depicted in Figure
3.1. The security of the most famous ZKP protocols depends on the discrete
logarithm or in the factorization of a complex logarithm. A ZKP is executed
between the prover and the verifier in four steps, which are enumerated below:

Step 1: At this step the protocol is initialized, and the prover sticks to
some secret random integer numbers which will be used for the next message
creation. Then the prover sends to the verifier a calculated value from the
committed numbers.

Step 2: After receiving the committed message from step 1, the verifier
randomly chooses a challenge, the value of challenge depends on the ZKP
protocol which is used because each protocol uses a different way for the
challenge’s calculation, and sends it to the prover. The prover does not know
in advance the verifier’s challenge.

Step 3: At the third step the prover receives the verifier’s challenge and
calculates in polynomial time the response based on the verifier’s challenge,
which varies from the ZKP protocols which is used, and sends it back to him.

Step 4: The verifier checks the correctness of the response, with calcula-
tion which contains the values which come from the prover at the step 1 and
step 3. This calculation depends on the ZKP protocol which is used because
each protocol uses different values and information. These steps can occur
as many times as needed to convince the verifier that the prover really knows
the secret and does not try to cheat on him.

3.2 Pseudonym System

Each user who participates in an ACS owns one or more pseudonyms, that
enable her to access anonymously to online services hiding her real identity
from the SP or anyone else who monitors the Internet’s traffic. For the gen-
eration of a pseudonym, the user generates a pair of keys that contain a
master secret and a master public key which derives from the user’s unique
corresponding master secret key and these values come from a probabilis-

13

Figure 3.1: Structure of zero-knowledge-proof

tic polynomial-time procedure, based on [1], [10]. Many pseudonyms can
be generated by the same master secret key and its value is not chosen by
the user, but this calculation is based on an interactive protocol which oc-
curs between the user and the IO who will issue the user’s pseudonym. The
pseudonym is just a master public key which represents the user who owns it
in every service. Nobody can understand if two pseudonyms come from the
same secret master key. Furthermore, the user must keep it in a safe place
and never disclose this master secret key because it is the locker that is able
to reveal the user’s real identity and deanonymize all its pseudonyms.

Moreover, a pseudonym can be used either once to access an online ser-
vice or it can be used as many times its owner wishes to access different
services, considering the privacy policy as well as usability issues (i.e., some-

14

times it is practical to use the same pseudonym for one specific service, so the
user will not need to fix her options each time she uses the specific service).
Each pseudonym is unique and cannot be re-generated again. This fact also
safeguards both users and SPs from credential sharing or borrowing. For ex-
ample, if Alice has got a pseudonym for a specific video club and her friend
Bob wants to see a movie from this club but he does not own a credential for
this club, then Alice cannot just share her pseudonym with Bob. She should
share with him her secret master key which means that she will disclose to
Bob all her ACs (i.e., all her pseudonymous) that will lead to very important
consequences i.e. impersonation.

Furthermore, the pseudonyms are unlinkable, so two SPs cannot blend
their data to create a folder for a specific user. A pseudonym can be used
for the issuance of another pseudonym, so the user who will use the second
pseudonym will not reveal the first pseudonym. In addition, the pseudonym
model [10] consists of five (5) procedures that are executed between the user
and the Issuing Organization (IO) who issues the ACs (i.e. the IO) and the
SP as depicted in Figure 3.2. The steps for the pseudonym’s creation are the
following:

Step 1: Initially, all the participants, the user, the IO and the SP gen-
erate their master key pair, so they own a master secret key and a master
public key.

Step 2: Then, the process “Registration with the Certification Author-
ity” takes place in user’s and IO’s side where the user sends to the IO her
master public key. With the master public key, the IO learns the user and
it also ensures that the user is a valid user and then issues the credential for
the specific user.

Step 3: Thirdly, the process which is called “Registration with an Or-
ganization” takes place between the IO and the user, where the IO and the
user together will generate the user’s pseudonym.

Step 4: Fourthly, the process which is called “Issue of Credential” takes
place between the user and the IO, where the IO and the user will issue the
credential based on a specific pseudonym based on an interactive protocol to
issue the AC.

15

Step 5: At last, the process which is called “Transfer of Credential”
takes place between the user and a SP, where the user who already owns a
credential proves that she really owns a legal credential to any SP without
revealing any extra information about herself. With the previous steps the
user will become able to use the SP’s service.

Figure 3.2: Pseudonym creation and use

3.3 Related Work

Starting from the past ’83 where D. Chaum in [11] proposed a way to
achieve untraceable payments. This implementation could be used during an

16

anonymous vote system and in payments. Moreover, in ’85, when Sha Gold-
wasser, Silvio Micali and Charles Rackoff invented the ZKP in [4]. This was
a revolutionary idea which would not reveal the attributes but only proofs
about the user. We can easily understand that this is the basic and the most
important skill of the ACS. Some years later, this technology went further
by Uriel Feige, et al. in ’87 where they proposed a ZKP protocol based on
the factorization of a complex logarithm [6] and from the Schnorr’s proto-
col which proposed another protocol based on the discrete logarithm, [9] in
’89. Both two ideas were used in AC. However, Schnorr’s protocol is used in
IdeMix. With the ZKP the prover succeeds in convincing the verifier that
the prover really knows the secret information.

ACs were invented by David Chaum in [11] in ’83. Also, the pseudonym
system was introduced by David Chaum in ’85, [12] to interact anonymously
with many organizations. In ’99 Anna Lysyanskaya, et al. in [10] demon-
strated the pseudonyms system, how important these are and how these will
improve people’s transactions in their life. In 2001 Jan Camenisch and Anna
Lysyanskaya created their implementation which was the first implementa-
tion of the ACs [13]. In their paper, in “An Efficient for non-transferable
Anonymous Credentials with optional Anonymity Revocation” in 2001, [13]
they described the way that this idea could work with the protocols and how
this is established. Furthermore, in this paper they described the participants
and the role which each participant should follow to make this work perfectly.
In addition, in the paper of Jan Camenisch and Els Van Herreweghen, in De-
sign and Implementation of the IdeMix anonymous credential system in 2002,
in [14], they described how the Identity Mixer works and gave an example
scenario on how should be used in real life. In 2003 in [15] J. Camenisch and
A. Lysyanskaya proposed a practical signature scheme and the corresponding
protocols.

There are some implementations of ACSs. One of the most famous imple-
mentation is the implementation of IdeMix from IBM Research Zurich which,
based on [13], [16] and [7], is an identity management system based on ACs
and ZKP. IdeMix will be explained in detail in the following chapters. Also,
there is the implementation of U-Prove in [30]. The implementation of U-
Prove from Microsoft is based on public key cryptography, elliptic curves and
hash functions. The U-Prove uses the U-Prove token which contains the at-
tributes and cryptographically protects them against tampering. Moreover,

17

there is the implementation of IRMA from Radboud university of Nijmegen,
in [17]. IRMA is based on non-trivial cryptography for attribute-based cre-
dentials which are data that contain a provable claim, to achieve this IRMA
uses both IdeMix and U-Prove. Furthermore, there is one other implemen-
tation which is called ReCRED. ReCRED binds the above technologies of
IdeMix and U-Prove and some other technologies. ReCRED provides an au-
thentication system, management of online user accounts and the issuance of
ACs. Moreover, there is another implementation which is called ABC4Trust.
The goal of ABC4Trust is to provide an implementation of attribute based
credential systems where accredited members of communities will provide
AC service to their members. To achieve this goal, ABC4Trust uses both
IdeMix and U-Prove technologies.

3.4 Implementations

In this section we will represent the currently available implementations of
AC. These implementations are the Identity Mixer, the U-Prove, the IRMA
and the ABC4Trust, these will be analyzed in the following subsections.

3.4.1 Identity Mixer (IdeMix)

Identity Mixer is one of the most successful implementations of an ACS.
This system was implemented by Jan Camenisch et. al., [20]. In this im-
plementation there are three participants and two (2) protocols with some
sub-protocols. The participants are the user, the issuer and the verifier. The
user is everyone who will use this application and wants to be a part of this
anonymous system, the issuer could be an organization or a bank which the
user trusts and can issue the ACs and the verifier is each organization who
provides a user with a service and wants some specific credentials to let the
user to use the service. The two basic protocols which are used are:

• Protocol 1: “The Issuing Protocol” which takes place between the
user and the IO where the user becomes a Recipient because she waits
to issue a credential for her and

• Protocol 2: “The Show Protocol” which takes place between the user
and the SP, where the user becomes a Prover because she will prove

18

that she owns the right to use the Service.

We understand that the trust between the participants is a very impor-
tant element for anonymity. Also, we can see that the trust between the user
and the IO is necessary for their good cooperation. We can understand that
the user must be sure that the IO will not reveal his personal data to anyone
under any circumstances, because in opposite situation the anonymity will
be lost and the system of ACs will be destroyed because after the reveal of
these data the link between actions and the real people will be a very easy
job. On the other hand, we have the IO and the SP who are very important
participants. These roles sometimes can be played by different participants
but also there are times when the SP and IO will be the same person. In
case, these two are different there should be trust between them.

However, the trust between them is off-line because they are not bound
by any protocol. The SP wants to be sure that the Credentials which it
receives from each user are formed correctly and contain real user’s informa-
tion. The IdeMix implementation cannot only be used through the end user
devices such as computers and mobile devices, but also in Java Cards based
in [18] which is a very friendly way.

3.4.2 U-Prove

The implementation of U-Prove comes from Microsoft and is based on
public key cryptography, elliptic curves and hash functions. There are three
participants, the user, the issuer and the verifier. There are two protocols:

• Protocol 1: “The Issuance protocol” which takes place between the
user and the issuer and then a cryptographic token is issued and

• Protocol 2: “The presentation protocol” takes place after the issuance
protocol and is between the user and the verifier, where the issued
cryptographic token interacts with these participants.

The cryptographic token contains the attributes and cryptographically
protects them against tampering, has got a public key and a corresponding
private key which are generated during the Issuance Protocol. The token
contains the Token Information section which contains metadata and are re-
vealed during the Presentation Protocol and the Prover Information section

19

and is disclosed for the issuer during the Issuance Protocol. The U-Prove
provides unlinkability and untraceability because the issuer executed a blind
signature over the token and the user demonstrates the possession of undis-
closed attributes by executing a zero-knowledge protocol, but the multiple
uses of the same U-Prove token are linkable. Also, the revocation system is
available because each token has a unique number which is used for tracking
revoked tokens. each user may have more than one U-Prove token.

3.4.3 I Reveal My Attributes (IRMA)

Moreover, there is the implementation of IRMA from Radboud Univer-
sity of Nijmegen, in [17]. IRMA is based on non-trivial cryptography for
attribute-based credentials which are data that contain a provable claim. To
achieve this goal, IRMA uses both the technologies of IdeMix and U-Prove,
so there are the same protocols and the same participants as there are into
the IdeMix and in the U-Prove systems. IRMA is an attribute based identity
system and just reveals user’s attributes to complete online or offline trans-
actions, these are attributes which are non-identified.

The user’s attributes are stored on a personal smart card which is called
IRMA card, it contains the picture and the attributes of the user. Also a
PIN is required for its use. This IRMA card is issued by an issuer and a
user must be authenticated to that issuer and then the issuer will issue this
IRMA card for the known user’s attributes. After this event, the user can
demonstrate this card to a SP, who will check the expected attributes and
the user will agree to disclose these attributes to the SP. However, the user
must prove that she really owns that IRMA card, so she must enter the PIN
code to activate the card for the attributes’ disclosure. The security of IRMA
is based on the protection of each user’s private key, this private key must be
safe under the exclusive user’s control. These goals can be totally achieved
by smart cards which are created in a special way to protect the private key
and this will never leak from the card or from other channels.

20

3.4.4 ABC4Trust

Furthermore, there is another implementation which is called ABC4Trust.
The goal of ABC4Trust is to provide an implementation of attribute based
credential systems where accredited members of communities will provide
their members with AC service. To achieve this goal, ABC4Trust uses both
IdeMix and U-Prove technologies. ABC4Trust provides strong authentica-
tion as well as security based on [19]. Users based on their attributes obtain
cryptographic token which contains these attributes and is unlinkable. The
token reveals the needed information with the user’s permission.

3.5 Limitation

Reading all the above information we can understand exactly how the
Identity Mixer works. Being more specific, the paper of Jan Camenisch and
Anna Lysyanskaya in [13], is very technical and very mathematical. Also,
the recent paper under the name Specication of the Identity Mixer Crypto-
graphic Library Version 2.3.0* in [20] it is also very technical but gives some
more help with the given pseudo-code. The limitation to these evolutionary
papers is that they are not comprehensible for people who are not expert in
security, mathematics and the cryptographic sector. We believe that an ap-
proach which is more understandable to people who own knowledge of more
scientific domains and not only of these three scientific sectors can attract
many more people to this interesting scientific domain. So, in our Master
Thesis we want to rewrite and explain all these important meanings to the
people who want to learn and gain an experience about the AC.

21

Chapter 4

Anonymous Credential

ACs are the way to move into total anonymity and into ABAC systems.
In the following sub-chapters, we will explain how an AC can be generated
and also we will provide each protocol which is needed to produce and use
such an AC.

Based on [10], [21] and [22] the ACs have four (4) basic indispensable
properties:

• The first one is that the user should be able to choose what information
will be disclosed and can be achieved as it is proposed by David Chaum
in [23].

• The second one is that the AC must be hard to forge, so nobody is able
to copy an AC or issue an AC without the IO’s permission. The secu-
rity against this threat comes from the digital signature cryptographic
technique based on [12].

• The third one is that the transactions must be unlinkable. To achieve
this the user must obtain several signatures from the IO, based on [13],
[10] and [24].

• The last one is that the AC has to be revocable. To achieve this goal
an anonymity revocation manager can be added who will be trusted to
locate the user’s pseudonym and user’s identity. The revocation of AC
is decided if there is an important reason because the user’s anonymity
will be lost after the revocation.

22

In addition, there are some extra properties which are more theoretical,
namely the user should not share her pseudonyms and credentials with other
people and the ACs should be one-show credentials.

Nevertheless, there are vulnerabilities in the ACS, based on [22], which
are:

• Initially, the most important vulnerability is the revocation because the
user is anonymous until the Revocation Authority reveals her identity.

• Secondly, the issuer has to be sure about the attributes that signs at
the end of the issuing protocol that these are true and

• Thirdly, the user does not try to cheat on the issuer

4.1 Communication Model

To implement an ACS two fundamental protocols are required:

• The issue protocol is the first protocol. This protocol is executed
between the user and the IO, where the user gives her personal data
to the issuer, who checks if these data are true or not and then the
issuer returns to the user her AC based on the issuer’s public key cor-
responding to issuer’s unique secret key. Each AC is valid under the
IO’s public key.

• The second protocol is the show protocol. The show protocol, on the
other hand takes place between the user and the SP, where the first
one acts as a prover and the latter as a verifier, i.e. the user proves
to the SP with the issued AC that she can use the provided service
because she meets the system’s requirements. Each SP sets a group
of requirements which each user has to satisfy to be able to use the
desirable service.

After the AC’s issuance, the user will send it to the SP, so she will be
checked if she is able to use or not the desirable service. This AC contains the
user’s information as we said above, and these are cryptographically stored,
so the information which is needed from the SP’s access policy will not be
disclosed as a plaintext. These proofs come from a legit IO who checked

23

the user’s information and based on these issued the user’s AC. From this
protocol, no information is leaked but only the truth of the statements.

For example, if an application allows only users who are over eighteen
(18) years old and the user is twenty-one (21) years old, this credential will
not reveal the real age but will just ensure that the user is over eighteen
years old. So, the user will gain access to the application without revealing
his real age and other personal data. This system cannot only be used into
computers, but also in smart devices i.e. smartphones and smartcards.

The communication model of an ACS among the three participants (i.e.,
IO, user and SP) is depicted in Figure 4.1. Initially, the IO owns only his
key pair which consists of a public key (pK) and a secret key (sK), the user
owns only her attributes and the SP owns only his pK.

The issue protocol is composed of a two-round interaction:

Step 1: At the start, the user sends her attributes to the issuer and

Step 2: secondly the IO checks the attribute’s validity to generate and
send the user’s AC to the user.

Also, the Show Protocol consists of two steps:

Step 1: where at first the user sends her AC to the SP and

Step 2: secondly the SP checks the statements to let her use the service
or reject her.

The issued ACs are valid only under the issuer’s public key and only the
issuer knows its counterpart secret key [21], [1], [2]. This happens because the
verifier who will receive the credential will check that the credential comes
from a legal IO who “signed” it with his specific secret key. The IO signs
the credentials with his secret key so each verifier can be assured that the
credential is issued from an IO and the user didn’t cheat, as we said above
the credential must not be forged. This can be checked with the use of IO’s
public key.

24

Furthermore, the AC does not transmit the credential itself but transmits
only proofs to convince the verifier that the user is able to use the service.
This action happens without leaking anything about the credential other
than the shown properties. This fact leads to the advantage that the SP
cannot reuse the AC and the user’s information to pretend the user. ACs
also have one more advantage, that the user can choose the subset of the dis-
closed attributes. Also, the Show Protocol allows to prove statements from
multiple ACs at once from the same user.

From the above description, we understand that trusted parties are needed
from both user, IO and SP part. This happens because all the participants
want to ensure that the system will work fine and no evil or liars will be
hidden into this system. Also, they want to be sure that the other part
follows the instructions, so the trust between the participants is important.
We should mention the if the SP does not follow the ACS’s rules then the
user can ignore him and choose another provider, but if the SP wants to
be a legit part of this system then she must follow the rules and not try to
cheat. Furthermore, trust between the IO and the SP is required. However,
this kind of trust cannot be gained with an online protocol or a method but
only with the reputation which an IO can gain through the quality of service
which he provides. There is the situation where the IO and the SP is the
same organization, then the same terms apply. They must not try to blend
their knowledge which they have acquired from the common customers who
the own to find out customer’s information because this leads to the sys-
tem’s infringement and then the user will lose her trust to the system and
the anonymity will collapse. The following figure, Figure 4.1 demonstrates
fully the communication model and also contains the trust ties which bind
the participants, whether the tie is achieved with online or with offline trans-
action.

4.2 Anonymous Credential Protocols

The two basic protocols which are used are:

• The issuing protocol which takes place between the user and the
IO where the user becomes a recipient and waits for the IO to issue a

25

Figure 4.1: Anonymous Credential Communication Scheme

credential for her. The first protocol (i.e., issuing protocol) has two (2)
sub-protocols which are:

– The generation of a pseudonym, which takes place between
the user and the IO and its scope is to create a pseudonym for the
user and

– The generation of a credential, which takes place between the
user and the IO and intends to create a credential based on a
specific pseudonym, i.e. based on the pseudonym created in the
previous step.

• The show protocol which takes place between the user and the SP,
where the user becomes a prover to prove that she owns the right to use

26

the service as it is mentioned above. The second protocol (i.e., show
protocol) also consists of two (2) other sub-protocols which are called:

– The showing a single credential, which takes place between
the user and the SP where the user wants to prove to the veri-
fier that she owns a unique credential which is generated from a
specific IO and

– The showing a credential respect to a pseudonym, which
takes place between the user and the SP where the user wants to
prove to the verifier that she owns a unique credential which is
generated from an specific IO based on a unique pseudonym and
these are based on the same master secret key.

In the following table, Table 4.1, are defined the notations that are used
for the proposals analysis.

27

Notation Definition
O=Oi IO
Oj Verifier/Service Provider
PKO Organization’s public key
nO Strong RSA modulus
QRnO

: (aO, bO, dO, gO, hO) Quadratic Residue modulo nO(QRnO
). This

means that a number q is (QRnO
) if there

is a number x such that x2=q(modnO), oth-
erwise the q is called quadratic non-residue
modulo nO. The values aO, bO, dO, gO, hO are
quadratic residue.

U User
XU User’s masters key
N(U,O) Pseudonym between a user and an organiza-

tion

P(U,O)=aXO · b
S(U,O)

O Pseudonym’s validating tag
S(U,O) Random string whose parts are generated

both from the user and from the IO. The
final value is known only to the user.

Credential Tuple of (e(U,O),c(U,O))
e(U,O) Long prime

c
e(U,O)

(U,O) ≡ P(U,O) · dO
ln The length of all RSA moduli
Γ=−2lΓ , 2lΓ Integer Interval
∆=−2l∆ , 2l∆ , l∆=e(lΛ + ln)+1, e > 1 Integer Interval
Λ=2lΛ , 2lΛ+lΣ , lΛ > lΣ + l∆ + 4 Integer Interval

Table 4.1: Notation and Definition Table

4.2.1 Protocol 1.1: The Generation of a Pseudonym

This protocol, as it is proposed by [13], is the first interaction between
a user and an IO generating a pseudonym that will be used in the future
communications of the user with SPs. Pseudonyms are unique, and one
pseudonym will be used by only one user. Moreover, a user may have a lot
of pseudonyms (user’s public keys), where each one can be used more than
one times. This protocol takes place between the user and the IO, where

28

the user establishes a pseudonym N(U,O)and its validating tag P(U,O), where
the IO checks if the pseudonym’s validating tag is in the right form. This
happens because IO needs to check if the validating tag is alright. This is
important because this value shall play a significant role in the future steps
for the pseudonym’s and protocol’s creation. A wrong form of this value has
notable impact because the protocol must restart which is a time-consuming
procedure, also each IO may have a different form for the validating tag, so
a validating tag from one another IO cannot be used twice or more times.
One validating tag is valid for only one session. This operation is completed
in seven (7) steps as depicted in Figure 4.2.

Step 1: This step takes place on the user’s side. We have to mention
that the pseudonym consists of two parts which will be randomly chosen by
the user and the IO respectively. Initially, the user chooses randomly the
first part of the pseudonym, n1, which is element of the {0, 1}k which is an
integer with the length of k. Also, she randomly chooses the value of r1 which
is an element of the ∆ integer interval and the values of r2, r3 which are real
integers of {0, 1}2ln with length of 2ln. Subsequently, the user computes the
values of C1=gr1

O · hr2
O and C2=gXU

O · hr3
O using the random values of r1, r2, r3

and some parts of IO’s public key. At last, user sends to the IO the values
of N1,C1 and C2.

Step 2: This step happens in both sides because the user must prove to
the IO that the values of C1 and C2 are correctly formed, to be accepted. To
prove that C1 and C2 are correctly formed, the user uses the theory of ZKP
and creates some secret values, which are known only to herself. User’s goal
is to prove that the values of C1 and C2 are equal to modulus which contain
both the secret values and part of IO’s public key. Only if this proof is real,
will the protocol continue from the issuer Organization’s side.

Step 3: This step will occur only if the above proof was successfully
completed and takes place on IO’s side. The IO chooses the random value of
r which is an element of the integer interval. Moreover, the IO chooses the
value of N2 which is an element of the {0, 1}k, is an integer with the length
of k and is the second part of the pseudonym. Then, the IO sends these two
values to the user.

Step 4: The fourth step is executed on the user’s side. User knows N1

29

and N2, so she is ready to create the pseudonym. To create the pseudonym,
N(U,O), user just concatenates these two values, so N(U,O) := N1||N2. Fur-
thermore, the user based on the value of r1 from the rst step and the re-
ceived value of r from the step 3 and creates the secret value of s(U,O) =
(r1 + rmod(2l∆+1 − 1)) − 2l∆ + 1. Also, the user computes the value of the
validating tag, P(U,O) := aXU

O · b
s(U,O)

O , based on the user’s private key,XU , the
secret value of s(U,O)and some parts of IO’s public key,aO and bO. After this
computation the user sends the validating tag,P(U,O)to the IO.

Step 5: This step happens in both sides because the user must prove
to the IO that the pseudonym’s validating tag is correctly formed. So, at
first, the user randomly chooses the value of r4 which is an element of the
{0, 1}2lnand computes the value of C3 based on the secret value of s(U,O), the
r4 and some parts of IO’s public key. After this computation, the user sends
the value of C3 to the IO. Also, the user proves to the IO that the validating
tag is correctly formed. To prove it, the user uses the theory of ZKP and
creates some secret values which are known only to herself. The user’s goal
is to prove that the value of P(U,O) is equal to modulus which contains both
the secret values and some of IO’s public key, and that the values of C1,C2

and C3 are equal to modulus which contains both the secret values and some
of IO’s public key. Only if this proof is real, does the protocol continue to
the IO’s side and user’s side otherwise the protocol will be canceled.

Step 6: The IO stores the values of pseudonym, N(U,O), of validating tag,
P(U,O) and of squared validating tag, P 2

(U,O).

Step 7: The user stores the values of pseudonym, N(U,O), of validating
tag, P(U,O), of squared validating tag, P 2

(U,O) and the secret value of s(U,O).

4.2.2 Protocol 1.2: The Generation of a Credential

The second Protocol called “Generation of a Credential”, takes place be-
tween the user and the IO and its basic goal is to issue a credential for the
user. Being more specific, the IO uses the values of the pseudonym and the
validating tag which are created in the previous Protocol 1.1 and are sent
by the user to create the credential. The pseudonym binds on the AC. The
credential’s generation is the most important part of ACS because the user

30

Figure 4.2: Actions of protocol 1.1

will give it to the SPs to use their service. This credential contains informa-
tion which come from the user but also come from the IO. This protocol is
completed in three (3) steps which will be analyzed below and depicted in
Figure 4.3.

Step 1: During the first step, which takes place on the user’s side, the
user sends to the IO his pseudonym and the validating tag from the previous
protocol. Also, the user proves that these elements belong to herself. To
achieve it, the user whereby the theory of ZKP creates some secret values
which are known only to herself. The user’s goal is to prove that the squared
value of P(U,O) is equal to modulus which contains both the secret values and
some elements of IO’s public key. Only if this proof is real, does the protocol
continue on the IO’s side.

31

Step 2: In the second step, which is executed on the IO’s side, the IO
creates the user’s credential. So, at first, the IO checks that the received val-
idating tag and pseudonym are stored in his database. If this check is true,
then the protocol will continue its execution. The IO randomly chooses a
big prime,e(U,O),and computes the credential, c(U,O) based on some elements
of his public key, the validating tag and the prime e(U,O). Also, the IO stores
the outcome of this computation in its database for this specific pseudonym.
At last, the IO sends the credential, c(U,O), to the user.

Step 3: In this step which happens on the user’s side, the user stores
the received credential, c(U,O), into her database. Before it starts, the user
will check if the power of c(U,O) and e(U,O) is equal to P(U,O) · dO(mod, nO),
if it’s true then the user stores the tuple of (c(U,O), e(U,O)) for this specific
IO. Furthermore, the credential record consists of the pseudonym P(U,O), the
credential c(U,O) and the big prime e(U,O).

4.2.3 Protocol 2.1: The Showing a Credential

The third protocol is called, “Showing a Single Credential” and takes
place between the user and the SP where the user needs to prove to the SP
that she owns a credential which is issued by an IO. Being more specific the
user has to prove based on the protocol 1.1 and protocol 1.2 again to the SP.
This protocol is completed in just two (2) steps, which we will analyze below.

Step 1: At this step, the user chooses two random numbers r1 and r2

and computes the value of A = c(U,O)
r1
hO

and the value of B = hr1
O · gr2

O . After

the computations the user sends these values, A and B, to the verifier.

Step 2: This step takes place in both sides and the user proves to the
verifier that she owns a credential which is issued by the IO and is registered
on some pseudonym with the same IO. To achieve this goal, the user uses
the theory of ZKP and creates some secret values which are known only to
herself. In these comparisons only, the secret values of ZKP take place, the
values which are sent and public key elements of IO. If these comparisons are
successfully completed, then the verifier will accept the user.

32

Figure 4.3: Actions of Protocol 1.2

We can also see the successful flow of Protocol 2.1 in steps from the Fig-
ure 4.4 which demonstrates the actions which are taken by both participants.

4.2.4 Protocol 2.2: The Showing a Credential with Re-
spect to a Pseudonym

The fourth Protocol is called, “Showing a Credential with respect to a
pseudonym” and takes place between the user and the SP. That protocol
looks like the third protocol. Being clearer, the user at this time must prove
to the SP,Oi, that she owns a credential established by an IO,Oj, with whom
the user has established a pseudonym, but also the user must prove that the

33

Figure 4.4: Actions of Protocol 2.1

pseudonym and the credential come from the same secret key. This protocol
is completed in just two (2) steps, which we will analyze below.

Step 1: This step takes place on the user’s side, where the user chooses
the random numbers r1,r2,r3 and computes the value of A = c(U,Oj)

r1
hOj

and

the value of B = hr1
Oj
·gr2

Oj
. After the above computations the user sends these

values, A, B, and the pseudonym,N(U,Oj),to the verifier, Oi.

Step 2: This step is executed in both sides, because the user must prove
to the SP that the credential and the pseudonym come from the same mas-
ter secret key. To achieve this, the user whereby the theory of ZKP creates
some secret values which are known only to herself. During the comparisons
only, the secret values of ZKP take place, values which are sent and public
key elements of IO and of SP. The computations/comparisons which take
place in this step are similar to the second step of the Protocol 2.1, the only
difference is a new comparison which will prove the use of the same master

34

secret key.

We can also see the successful flow of Protocol 2.2 in steps from the Fig-
ure 4.5 which demonstrate the actions which are taken by both participants.

Figure 4.5: Actions of Protocol 2.2

35

Chapter 5

ReCRED

The purpose of the ReCRED project (From Real-world Identities to
Privacy-preserving and Attribute-based CREDentials for Device-centric Ac-
cess Control),[25], is to forward the user’s personal mobile device to the role
of a unified authentication and authorization proxy towards the digital world.
Also, ReCRED faces daily common security and private issues such as the
loss and theft of a mobile device. To achieve these goals, ReCRED uses user-
to-device authentication and device-to-service authentication mechanisms,
multi-factor authentication mechanisms based on behavioral, physiological
user signatures and privacy awareness tools.

5.1 Architectural Overview

There are five (5) participants in ReCRED, who are the User Device
(UD), the Identity Consolidator (IDC), the Service Providers (SP), the Be-
havioral Authentication Authorities (BAA) and the Identity Provider (IDP).
We will explain their role below.

UD is the central and the most important component of the ReCRED
project’s architecture given the fact that the ReCRED intends to provide
device-centric authentication. For an authentication between the user and
the SP, the user at first must authenticate to her device using bio-metrics.
Moreover, ReCRED deploys anonymous cryptographic credential methods,
which are the IdeMix and the U-Prove, on the device to enable Privacy-

36

preserving Attribute Based Access Control (PABAC). Using these methods
the users are able to request from IDCs and IDPs the issuance of crypto-
graphic credential based on these methods. Furthermore, these methods will
disclose the ACs to the IDPs during the authentication. The credentials
which come from these methods will be stored into the Cryptographic Cre-
dential Storage (CCS) which is a UD’s part. The credentials which are stored
into the CCS must not be exported even if the UD is compromised. In ad-
dition, to enable the second factor authentication the UD contains a module
which monitors the user’s behavior from many sensors available in the device.

IDC is another major participant of the ReCRED architecture and par-
ticipates in the most use cases of the ReCRED platform. The IDC collects
identity attributes from the IDPs upon user’s request and these are securely
stored in an ID repository. Also, IDC provides fail-over authentication mech-
anism in cases where the user loses access to her device. IDC encapsulates
the FIDO (Fast IDentity Online) protocol, which allows the IDC to act as an
OpenID Connect (OIDC) provider. This protocol allows to exchange veri-
fied identity attributes with the IDP. The users of ReCRED through the IDC
can manage their IDC account. IDC is responsible to “control” the users’
account and lock them if there is a compromise on these accounts. IDC runs
IdeMix and U-Prove therefore it enables the ReCRED to contain PABAC
in the architecture. The issued credentials can be backed-up in the IDC for
failure recovery purposes. In addition, the IDC allows users to exchange their
attributes between different IDPs through the OIDC.

IDP contains a ReCRED daemon that provides him with the ability to
store user’s identity attributes in identity repositories. Furthermore, IDPs
contain cryptographic credential methods, i.e. IdeMix, to issue ACs to the
users based on the user’s identity attributed which are stored into its idenity
repository. The credentials issued by the IDPs are also transferred to the
IDC to store them so that they are backed up and accessible if the IDC fails.
Furthermore, the UP or the IDC communicates with the IDPs using feder-
ated log-in protocols, i.e. OIDC.

SP is the verifier who provides users with some services. To achieve this,
they have installed a ReCRED daemon to their system. The RecRED uses
the OIDC protocol, so in this case the SP is the Relying Party in order to
communicate with other entities in the architecture. Moreover, the SPs are

37

able to support FIDO and PABAC without the IDP’s interference during the
authentication process. After the FIDO authentication,[27], the UD trans-
fers the FIDO credentials to the verifier using public key cryptography. Also,
the verifier can ask for a second factor authentication from the user. If this
happens, then the SP redirects the user’s device to the IDC and the IDC will
notify the SP which authentication authority should contact for each second
factor authentication.

BAA are autonomous entities and are responsible for capturing and
maintaining the behavior of the users on their devices. Also, they are re-
sponsible for performing both on-demand and continuous behavioral second-
factor authentication. The BAAs to achieve this the “monitor” the user’s
behavior. Furthermore, they can store on their behavioral profile database,
the behavior of the user. Using the behavioral information, they can deter-
mine whether a device currently behaves as it usually does. Depending on
the result, they can verify to the verifier whether he believes the device is
held by its legitimate user. The results of the BAA’s opinion is released to
the IDCs or SPs using the OIDC protocol.

The ReCRED supports and provides ABAC system that lets the system
handle ACs and it is based on the technologies of IdeMix and U-Prove. How-
ever, these are the core of PABAC system, but have different requirements
for the interfaces. To provide a common interface between the technolo-
gies of IdeMix and U-Prove the ReCRED used the FIWARE project, which
will let the ReCRED provide support for both IdeMix and U-Prove creden-
tials support and pair together the results of FIWARE and IRMA projects.
Furthermore, the ReCRED project will use the FIWARE project for the ver-
ification and issuance of credentials between the user device and the API
Server.

5.2 ReCRED-Anonymous Credential Imple-

mentation

One of the most important goals of the entire ReCRED project is to pro-
vide full protection of the privacy of the individuals who use the services.

38

In order to achieve this key goal, the ReCRED uses a private credential ap-
proach to let users prove their identity attributes safely from their device to
the online or physical relying service. Actually, in most real-world scenarios,
users do not need to disclose their full identity as the SPs require knowing
only an aspect of their identity (i.e. their age, their home address, their
profession, whether they are students).

However, users are compelled to disclose their full identity to the SPs. By
using ABAC, our solution becomes privacy-preserving by design thanks to the
integration of ACS, like IdeMix and U-Prove. Also, the ReCRED also uses
the technology of IRMA, ABC4Trust and FIWARE. The final ReCRED’s
target is to integrate all the above technologies to provide an integrated sys-
tem.

5.2.1 ReCRED and IdeMix

IdeMix,[26], is a very important function of ReCRED project because it
will enable the ReCRED framework to support anonymous, unlinkable and
untraceable credential issuing and proving without disclosing any personal
data, [20]. IdeMix code can be downloaded for free from [28]. Also, IdeMix
prototype is provided which is the basic implementation of the IdeMix in-
stances which will be used at the UD, authorities, IDC and online services
components. Moreover, ReCRED project has already created services with
an API, which allows the IdeMix transactions. In this implementation the
user is operated as an HTTP client, while the issuer and the verifier as java-
based web services.Furthermore, ReCRED provides an alternative implemen-
tation of IdeMix which is developed in Python, which is called Pydemix. This
implementation is available on GitHub [29]. Also, this implementation differs
from the other JVM implementations, because this can run in both sides of
the user and SP. The Pydemix’s cryptographic functions following strictly
the IdeMix specification, allowing easy readability and investigation of the
correctness of the source code. Likewise, ReCRED provides an IdeMix API
Server which communicates with the IRMA API Server to produce the de-
sired token to be provided to the user device and at last the user device
receives the IdeMix credential from the IRMA API Server.

39

5.2.2 ReCRED and U-Prove

U-Prove, [30], is another innovative cryptographic technology which is
used by ReCRED. U-Prove allows users to minimally disclose certified in-
formation about themselves when interacting with online SPs. Moreover,
U-Prove provides features of Public Key Infrastructure (PKI) and strong
privacy protections by offering user control and preventing unwanted user
tracking. ReCRED also provides a U-Prove API Server. The U-Prove API
Server contains a U-Prove engine which performs all the cryptographic oper-
ations during the issuance protocol. For the communication between client
and server the U-Prove objects are serialized using the JSON format. The
output of the issuance process is a U-Prove token. Regarding the U-Prove
implementation, it is an open-sourced C# and JavaScript implementation,
while having a legacy Java version. To preserve the compatibility with the
other ReCRED technologies the U-Prove implementation will be exposed as
a web-service. The U-Prove technology permits the usage of a trusted de-
vice (smart card, mobile phone or even a trusted third-party server) on the
prover’s side, when issuing a token. The device acts as a U-Prove token ex-
tension, having a private key.

5.2.3 ReCRED and IRMA

The IRMA project,[31], which is used by the ReCRED aims at providing
an open sourced, secure, decentralized and easy way to use implementa-
tion of PABAC with minimal disclosure of attributes for online and offline
transactions. Also, IRMA project [32] provides an open source IdeMix in-
tending to use the implementation targeted at mobile devices. Moreover,
IRMA provides its use through smartcards. ReCRED intends to use the
IRMA card emulator as a cryptographic credential storage as an alternative
to the Trusted Execution Environment. Furthermore, the ReCRED provides
an IRMA API Server. This is a server which sits between the user device
and the service or the IDPs on the other side. Also, it is responsible for the
IdeMix credential issuance. It handles all specific cryptographic details of
issuing credentials and verifying disclosure proofs on behalf of the service or
IDP.

40

5.2.4 ReCRED and FIWARE

Furthermore, FIWARE, [33], is used by ReCRED project. FIWARE is an
open platform that aims to provide a novel service infrastructure to an eas-
ier development of Internet applications. The ReCRED’s goal through the
FIWARE interface is to enable the seamless use of the IdeMix and U-Prove.
FIWARE security specifications are based on the ABC4Trust specifications
[34] which propose a cryptographic agnostic attribute credential protocol,
thus supporting both IdeMix and U-Prove.

5.2.5 ReCRED and ABC4Trust

At last, the ABC4Trust project is used by ReCRED. ABC4Trust offers
an implementation of a privacy-preserving attributed based credential engine
which is protocol agnostic: the p2abc project. The FIWARE project built
an additional layer on top of the p2abc project offering a privacy FIWARE
GE (Generic Enabler): the p2abc-zhaw project, which is available in [35].
The latter project uses the Microsoft C# based on U-Prove implementation.
Moreover, there is the ABC4Trust prototype which the p2abcengine source
code, which is available for free in [36], and provides a set of core components
useful to set up an attribute based authentication ecosystem. The available
components can be deployed in two ways: running independent web services
that already expose RESTful interfaces, or integrating the code directly into
a Java code-base. Both ABC4Trust and FIWARE can be used as web services
and the implementation is Java based (the deployment environment could
be Tomcat or another servlet engine).

5.3 ReCRED - Anonymous Credential: Im-

plementation Guide

In this section we will discuss the currently available implementations
about the AC which are provided by the ReCRED project. ReCRED project
produced AC implementations which are about the device application which
is called ReCRED device wallet and the U-Prove implementation in android
environment. In the following paragraph we will analyze the importance of
these implementations, how these can be set up and how these can be used

41

in real life. Also, in the next chapter we provide two use cases which will
explain how the whole ReCRED can be used in everyday life.

5.3.1 ReCRED - Device Wallet

At first, we will analyze the ReCRED Device Wallet. The ReCRED De-
vice Wallet is designed to manage the user’s credentials and support the user
during the issuance and verification. Furthermore, all the issued credentials
will be available through this application. The first screen when we open
the application is demonstrated in the Figure 5.1. We can see that there is

Figure 5.1: First-Screen of ReCRED Device Wallet

an option for the device to scan a QR-code. This QR-code will provide the
credential into the application. When the user presses the button “Tap to
scan QR” then the device will search for QR-code and then it will execute

42

the issuance protocol. Subsequently, the user will be asked to provide her
consent to provide her credentials and to receive the credential based on these
attributes, the Figure 5.3 demonstrates this event. The user is able to accept
or decline this question, if the user accepts the offer then the credential will
be stored into the device, if not, then the procedure will be stopped. When
the credential’s issuance is completed then the application looks like the Fig-
ure 5.4. The Figure 5.2 demonstrates how the application tries to scan a
QR-code.

Figure 5.2: Scan a QR-code

To set up the ReCRED Device Wallet we used a linux environment which
is Ubuntu 16.04 LTS which is available for free in [37]. The Android studio
which is available for free in ,[38]. It’s necessary to install the late version of
java, gradle and maven. To install java you should follow the next steps:

43

Figure 5.3: Issue or not the credential

Step 1: sudo apt-get install default-jre

Step 2: sudo apt-get install default-jdk

Step 3: sudo apt-get install python-software-properties

Step 4: sudo add-apt-repository ppa:webupd8team/java

Step 5: sudo apt-get update

Step 6: sudo apt-get install oracle-java8-installer

44

Figure 5.4: Device Wallet from the Credential

To install the Android Studio you should follow extracted the zipped file
with name android-studio-ide-171.4443003-linux.zip , the name varies
based on the IDE’s version, into your desirable directory, then execute the
command cd android-studio-ide-171.4443003-linux/android-studio/
bin and then execute the command ./studio.sh , after this command you
must follow the provided instructions from the interface which will emerge.
After these installations the user is able to set up, experiment the provided
applications. The android studio is ideal for these actions because it provides
solutions to fix the“problems” automatically.

Firstly, we will analyze how a developer can set up the ReCRED Device
Wallet application. The folder, under the name ABAC-Idemix contains a
folder which is called recred device wallet , this is the folder which we

45

will deal with. The most important phase is the apk’s creation, because
this phase will produce the apk which will be imported to the user’s device.
To produce the apk the following command has to be executed, ./gradlew
assemble, in the current folder, recred device wallet. After this apk is
produced then you should import it to an android device. The android device
could be a physical device or a virtual device. We will use a virtual device,
in this device we will import all the apks which we will produce and there
is no conflict between them. To execute the apk you should use the android
studio which provides the functionality, from the option in the first screen
which called Profile or debug APK and then choose the apk with the name
recred device wallet-debug.apk . Furthermore, you should press the
Run button and then the application will be executed into the device. After
this, we will see the first screen which is demonstrated in the Figure 5.1. If
we touch the button“Tap to scan QR” then we will see the Figure 5.2. This
happens because we use a virtual device and because these is no QR-code
to scan. A QR-code which could provide us with a credential could lead us
to the Figure 5.3 and if the user accepts the question for the credential’s
issuance this would lead to the Figure 5.4.

5.3.2 U-ProveAAR

At this section we will analyze U-PropveAAR. The U-ProveAAR is
the U-Prove implementation for the android device only. This component
is more complex than the previous one. At this phase, we need to install
maven in our environment, to do this we shall execute the command sudo
apt-get install maven. After this we should move to the folder ABAC-
Uprove/eu.recred.uprove. In this folder we will see that there is a pom
file, this file is important because this will produce our war and files file
which are important for the application’s execution. Moreover, we should
execute the command mvn install which will create the jar and war file in
the folders which are contained into the eu.recred.uprove folder. However,
at this time we will use only the jar file which is located into a sub-folder
into the uprove engine folder. To find it we should execute the command
cd eu.recred.uprove/uprove engine/target and then we will find a
file with the name uprove engine-0.0.1-SNAPSHOT.jar and this file
we should copy it to the ABAC-Uprove/UProveAAR/app/libs , if you
don’t have a folder with name libs into the app folder then you should create
one with that specific name, libs.

46

Moreover, after these actions we should install and set up two (2) Tom-
cat servers which will listen to two different ports, one will listen to the
8000 and the other one to the 8001. To install the tomcat, you should
download it from [39]. After this, you should move to the folder ReCRED-
daemons/fiware-api where there is a pom file, also you should execute
the command mvn install and then one war file with name fiwarepriva-
cyrestapi.war will be created, which is located into the target folder. At this
time, we have created the two necessary war files. Furthermore, you should
move the fiwareprivacyrestapi.war into the webapps folder of the one
tomcat who listens to the port 8081 and the file uprove-web-service-0.0.1-
SNAPSHOT.war, which is located into the ABAC-Uprove/eu.recred.
uprove/uprove-web-service/target, into the webapps folder to the other
tomcat in port 8080. Furthermore, the last instruction is about some changes
which should be done in the source code of the application and being more
specific these changes are about the IP address which is used. The used IP
addresses should be changed into your local IP address and this should be
applied to all of the demonstrated IP addresses.

After the above changes you will be ready to build the application and
create the apk. If there is any maven packet which is not downloaded from
the build, then you can manually add it to the code because it is important
for the right apk’s creation to find it from the following link [40]. To build
the program you should just press the build button in the task bar. To create
the apk file you should follow the instruction Build → Build apk, after the
apk’s creation you should import it to a device as we saw above. After this
you should import it into a device, physical or virtual, as we demonstrated
above. The result which you should receive is demonstrated into the following
figure, Figure 5.5.

5.3.3 ReCRED Mobile Application

The integration of the above applications construct the ReCRED Appli-
cation. With this mobile application the user is able to use the ReCRED
from his phone. At this subsection we will analyze the application’s archi-
tecture.

There are three participants in this architecture:

47

Figure 5.5: U-ProveAAR

• The user device

• The Credential manager

• The Consolidator

At first the user logs into the CM module application front end and the
application retrieves the user’s information from the Storage API Server. Af-
ter this, the user is able to choose the credential that she desires to be issued.
Once she selects the “Issue” button for a specific credential, the CM Module
Application contacts the ReCRED API Server to obtain the session token
for the issuance of the chosen credential. When the CM Module Application
receives the session token from the API Server, then it provides the user with
a QR-code. The QR-code enables the user to receive the information about
the opened session with the API Server in order to execute the Issuance pro-
tocol directly to the API Server. The credential which will be issued will be
stored into the user’s device.

48

The Credential Manger Module front end is a web application that can
be used by the user to issue her credential by the IDC. The application is
linked to the Storage API, in order to retrieve the attributes to be used in
the credential generation. Also, there is a link to the ReCRED API Server,
fo the actual credential issuance.

The ReCRED API Server is the server which will run the cryptographic
functionalities for the IdeMix and the U-prove protocol. The ReCRED API
Server contains two API Servers, the IdeMix API Server and the U-Prove
API Server. The user can choose her wanted issuing protocol, depending
on the choice of the user, the corresponding API Server will be used. The
below figure, Figure 5.6, demonstrated the successful communication which
we proposed above.

Figure 5.6: ReCRED Application

49

Chapter 6

Use Cases

The best way to understand how the ACS will be used in real life, is to
create and demonstrate a use case. So, we will describe and demonstrate a
use case for the age verification. To do this we will use the ReCRED system
and its components to set up this example and we will explain exactly the
steps needed from the user’s side and from the SP’s side to use and support
this function which is called Age Gate and is a ReCRED’s component.

In our life it is known that there are many reasons for the age verification
because there are many websites and real life areas where there is an age
restriction, for example there are websites where people who are not over
eighteen (18) years old are not allowed to enter or in real life there are shops
which sell alcohol and tobacco but the customers of these products have to
be over eighteen (18) years old, but the administrators of these systems do
not want to see the whole identity of the customers, they just want to be sure
that they are legal users. For these real-life examples, the current verification
system reveals more personal data than the expected user’s age which is the
only required information. But, the ReCRED which implemented ACS based
on the IdeMix provides a very different verification way which will only be
applied if the user meets the requirements. In the following paragraphs we
will analyze the use case exactly.

50

6.1 User’s Registration

At first the user, who wants to have access to the age restricted web-
sites, must register with an IDP supported by ReCRED and then verify her
age. So, the user registers with the ReCRED, through the Authentication
Management Module which also provides her fingerprint to the FIDO Server.
After that the user can use the Credential Management module to issue the
cryptographic credential which will prove her age to the SPs and can securely
store it in her mobile device. The following figure, Figure 6.1, demonstrates
exactly how a user will register to the system, where the continued arrows
are the actions and the figures are the participants of each actions.

Figure 6.1: End-user registration

6.2 SP’s Registration

Moreover, the SP must register to the Age Gate of ReCRED to be able to
provide this functionality. At first the SP registers with the Age gate module,
by filling in a simple form. Then the SP can register the wanted websites and
for each website she must define the website’s title, a short description, the
URL and the age restriction policy i.e. the user has to be over 18 years old.
After this submission form the side of SP, an Age Gate operator will review
each request and will approve them. Also, after the approval a script will be
sent to the SP, an OIDC Client, [41], who will add it to the website. When
the SP adds the new script to the website then the new visitors will be able

51

to use the Age Gate solution to verify their age to the website. The following
figure, Figure 6.2, demonstrates exactly how a SP will register to the system
of the Age Gate module, where the continued arrows are the actions and the
figures are the participants of each actions. The shortcut of AGP means Age
Gate Platform.

Figure 6.2: Website Registration

6.3 Use Cases

Furthermore, the proof of age can be done in two ways, through an age
cryptographic credential which is stored into the user’s mobile device or
through the OIDC. In the below subsections we will analyze the two use
cases.

6.3.1 First Use Case

The user tries to visit the age-restricted website using his computer. Then
the website asks from the Age Gate Server to verify the user’s age. The
Age Gate Server returns a QR-code, which is displayed in the age-restricted
website and the user can use her Age Gate Mobile Application to scan the
QR-code and prove her age. However this action is not required if the user

52

tries to connect to the website through her mobile device. The Age Gate mo-
bile application will search for cryptographic credential stored in the mobile
device which will prove the user’s age and will send it to the Age Gate Server.
After this action, the Age Gate Server will be able to verify the user’s age and
if the user’s age meets the requirements of the website’s age restriction policy
then the user will be able to use the website. The following figure, Figure 6.3,
demonstrates exactly how a user will reach an age restricted website, where
the continued arrows are the actions and the figures are the participants of
each actions.

Figure 6.3: Age verification

53

6.3.2 Second Use Case

In this paragraph we will, explain the Age Verification through the OIDC,
[41]. Initially, the user tries to visit the age-restricted website using his com-
puter. Then the website asks from the Age Gate Server (AGS) to verify
the user’s age. The AGS returns a QR-code, which is displayed in the age-
restricted website and the user can use her Age Gate Mobile Application
(AGMA) to scan the QR-code and prove her age, however this action is not
required if the user tries to connect to the website through her mobile de-
vice. The AGMA will display all the supported IDPs and then the user will
choose to prove her age through the ReCRED IDC, where the IDC is the
default IDP for this use case. The AGMA enters the FIDO UAF server sit-
ting on the IDC and then the user will provide her fingerprint to the FIDO
UAF Client. The FIDO UAF strong authentication framework provides high
security features of end user devices for strong authentication and reduces
problems associated with the creation and reminds of the online credentials.

If the authentication is successful, then the mobile application will return
an authentication token which will be sent to the AGS and then the AGS
will send it to the IDC’s OpenAM and request the user’s age. Where the
OpenAM is a web-based open-source solution that provides authentication,
authorization, entitlement, and federation Services. OpenAM provides many
authentication methods and offers the flexibility to create custom authenti-
cation modules based on the JAAS (Java Authentication and Authorization
Service) open standard. In addition to that, OpenAM’s federation Services
allow federated members to securely share identity information with each
other. The OpenAM will return the user’s age to the AGS if the user gives
her consent. Then the AGS will evaluate the age policy against the user’s
age and return the results.

Also, the AGMA provides a list with all the age restricted websites where
the user has been granted access. The user can see detailed report with ac-
cess attempts, including specific time-stamps and attempts’ results and the
user can revoke access to a certain age-restricted website.

54

6.3.2.1 Architecture

At this subsection we will analyze the special architecture which is used
in this use case because of the OIDC’s usage. OIDC contains three partic-
ipants, the Idenity Provider, the Relying Party and the user. However, the
participant that we will analyze is the IDC who acts as an OIDC provider.
The IDC acts as a trusted OIDC provider and holds the verified age of the
end-user. Also, it provides mechanisms to end-users in order to regisred and
prove their age. Furthermore, IDC includes FIDO server, in order to be
able to perform FIDO UAF authentication. It also includes an attributes
database that maps the user’s idenity with confirmed identity attributes,
so the IDC can verify the user’s age. IDC contains the gateSAFE module
which provides single-sign-on implementation. With this feature the IDC
acts as OIDC provider and provides authentication to the AGS. The other
participants contain the requisite daemons to be compatible with the OIDC
protocol

55

Bibliography

[1] Identity Mixer, https://idemix.wordpress.com/2009/08/18/

quick-intro-to-credentials/

[2] Gregory Neven, A Quick Introduction to Anonymous Credentials, IBM
Zrich Research Laboratory, August 2008.

[3] Foteini Baldimtsi and Anna Lysyanskaya, Anonymous credentials light.
In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (CCS ’13). ACM, New York, NY, USA, 1087-
1098.

[4] S. Goldwasser, S. Micali, and C. Rackoff The knowledge complexity of
interactive proof systems. SIAM J. Comput. 18, 1 (February 1989), 186-
208p.

[5]] Fiat A., Shamir A. , How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In: Odlyzko A.M. (eds) Advances
in Cryptology CRYPTO’ 86. CRYPTO 1986. Lecture Notes in Computer
Science, vol 263. Springer, Berlin, Heidelberg.

[6] U. Feige, A. Fiat, and A. Shamir, . Zero knowledge proofs of identity.
In Proceedings of the nineteenth annual ACM symposium on Theory of
computing (STOC ’87), Alfred V. Aho (Ed.). ACM, New York, NY, USA,
210-217p.

[7] Jean-Jacques Quisquater, Louis Guillou, Marie Annick, and Tom Berson,
How to explain zero-knowledge protocols to your children. In Proceed-
ings on Advances in cryptology (CRYPTO ’89), Gilles Brassard (Ed.).
Springer-Verlag New York, Inc., New York, NY, USA, 628-631p.

56

https://idemix.wordpress.com/2009/08/18/quick-intro-to-credentials/
https://idemix.wordpress.com/2009/08/18/quick-intro-to-credentials/

[8] Manuel Blum, Paul Feldman, and Silvio Micali, Non-interactive zero-
knowledge and its applications. In Proceedings of the twentieth annual
ACM symposium on Theory of computing (STOC ’88). ACM, New York,
NY, USA, 103-112.

[9] Claus-Peter Schnorr,Efficient Identification and Signatures for Smart
Cards. In: Brassard G. (eds) Advances in Cryptology CRYPTO’ 89 Pro-
ceedings. CRYPTO 1989. Lecture Notes in Computer Science, vol 435.
Springer, New York, N.

[10] Anna Lysyanskaya, Ronald L. Rivest, Amit Sahai, Stefan Wolf,
Pseudonym Systems . in the Sixth Annual Workshop on Selected Areas
in Cryptography (SAC ’99). 1999: Springer-Verlag LNCS.

[11] David Chaum, Blind Signatures for Untraceable Payments. In: Chaum
D., Rivest R.L., Sherman A.T. (eds) Advances in Cryptology. Springer,
Boston, MA.

[12] David Chaum, Security without identification: transaction systems to
make big brother obsolete. Commun. ACM 28, 10 (October 1985), 1030-
1044p.

[13] Camenisch Jan, Lysyanskaya Anna, An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Revoca-
tion. In: Pfitzmann B. (eds) Advances in Cryptology EUROCRYPT
2001. EUROCRYPT 2001. Lecture Notes in Computer Science, vol 2045.
Springer, Berlin, Heidelberg.

[14] Jan Camenisch, Els Van Herreweghen, Design and implementation of
the idemix anonymous credential system. In Proceedings of the 9th ACM
conference on Computer and communications security (CCS ’02), Vijay
Atluri (Ed.). ACM, New York, NY, USA, 21-30p.

[15]] Jan Camenisch, Anna Lysyanskaya, A Signature Scheme with Efficient
Protocols. In: Cimato S., Persiano G., Galdi C. (eds) Security in Com-
munication Networks. SCN 2002. Lecture Notes in Computer Science, vol
2576. Springer, Berlin, Heidelberg.

[16]] Jan Camenisch and Els Van Herreweghen, Design and implementation
of the idemix anonymous credential system. In Proceedings of the 9th

57

ACM conference on Computer and communications security (CCS ’02),
Vijay Atluri (Ed.). ACM, New York, NY, USA, 21-30p.

[17] IRMA, https://www.irmacard.org/irma/

[18] Patrik Bichsel, Jan Camenisch, Thomas Gro, and Victor Shoup, Anony-
mous credentials on a standard java card. In Proceedings of the 16th ACM
conference on Computer and communications security (CCS ’09). ACM,
New York, NY, USA, 600-610.

[19] Sabouri A., Krontiris I., Rannenberg K.,Attribute-Based Credentials for
Trust (ABC4Trust). In: Fischer-Hbner S., Katsikas S., Quirchmayr G.
(eds) Trust, Privacy and Security in Digital Business. TrustBus 2012.
Lecture Notes in Computer Science, vol 7449. Springer, Berlin, Heidel-
berg.

[20] IBM Research - Zurich,Specification of the Identity Mixer Cryptographic
Library Version 2.3.0*

[21] R. Bhaskar, K. Chandrasekaran, S.V. Lokam, P.L. Montgomery, R.
Venkatesan, Y. Yacobi, Vulnerabilities in Anonymous Credential Systems,
In Electronic Notes in Theoretical Computer Science, Volume 197, Issue
2, 2008, Pages 141-148, ISSN 1571-0661.

[22] A. Damodaram, H. Jayasri, Authentication without Identification Using
Anonymous Credential System, IJCSIS, 2009.

[23] Chaum D., Evertse JH, A Secure and Privacy-Protecting Protocol for
Transmitting Personal Information Between Organizations. In: Odlyzko
A.M. (eds) Advances in Cryptology CRYPTO’ 86. CRYPTO 1986. Lec-
ture Notes in Computer Science, vol 263. Springer, Berlin, Heidelberg.

[24] Chen L.,Access with pseudonyms. In: Dawson E., Goli J. (eds) Cryp-
tography: Policy and Algorithms. Lecture Notes in Computer Science, vol
1029. Springer, Berlin, Heidelberg.

[25] ReCRED:https://www.recred.eu

[26] Identity Mixer Overview: http://www.research.ibm.com/labs/

zurich/idemix

58

https://www.irmacard.org/irma/
https://www.recred.eu
http://www.research.ibm.com/labs/zurich/idemix
http://www.research.ibm.com/labs/zurich/idemix

[27] FIDO:https://fidoalliance.org

[28] Identity Mixer Download:https://abc4trust.eu/index.php?option=
com_content&view=article&id=187

[29] Pydemix Implementation:https://github.com/netgroup/pydemix

[30] Christian Paquin, Greg Zaverucha ,U-Prove Cryptographic Specification
V1.1 Revision 3.

[31] IRMA(I Reveal My Attributes) Project:https://www.irmacard.org/

[32] IRMA:IdeMix implementation targeted on mobile devices:https://
github.com/credentials/credentials_idemix

[33] FIWARE:https://www.fiware.org/

[34] ABC4trust:https://abc4trust.eu/

[35] GitHub ZHAW’s Privacy Geri in FIWARE: https://github.com/

Fiware/security.P2abcengine

[36] p2abcengine:https://github.com/p2abcengine/p2abcengine

[37] Ubuntu Download:https://www.ubuntu.com/download/desktop

[38] Android Studio Download:https://developer.android.com/studio/
index.html

[39] Tomcat Download:http://tomcat.apache.org/

[40] Maven Download:https://mvnrepository.com/

[41] Open ID Connect:https://openid.net/connect/

59

https://fidoalliance.org
https://abc4trust.eu/index.php?option=com_content&view=article&id=187
https://abc4trust.eu/index.php?option=com_content&view=article&id=187
https://github.com/netgroup/pydemix
https://www.irmacard.org/
https://github.com/credentials/credentials_idemix
https://github.com/credentials/credentials_idemix
https://www.fiware.org/
https://abc4trust.eu/
https://github.com/Fiware/security.P2abcengine
https://github.com/Fiware/security.P2abcengine
https://github.com/p2abcengine/p2abcengine
https://www.ubuntu.com/download/desktop
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
http://tomcat.apache.org/
https://mvnrepository.com/
https://openid.net/connect/

	Abstract
	Introduction
	Background
	Zero-Knowledge-Proof
	Pseudonym System
	Related Work
	Implementations
	Identity Mixer (IdeMix)
	U-Prove
	I Reveal My Attributes (IRMA)
	ABC4Trust

	Limitation

	Anonymous Credential
	Communication Model
	Anonymous Credential Protocols
	Protocol 1.1: The Generation of a Pseudonym
	Protocol 1.2: The Generation of a Credential
	Protocol 2.1: The Showing a Credential
	Protocol 2.2: The Showing a Credential with Respect to a Pseudonym

	ReCRED
	Architectural Overview
	ReCRED-Anonymous Credential Implementation
	ReCRED and IdeMix
	ReCRED and U-Prove
	ReCRED and IRMA
	ReCRED and FIWARE
	ReCRED and ABC4Trust

	ReCRED - Anonymous Credential: Implementation Guide
	ReCRED - Device Wallet
	U-ProveAAR
	ReCRED Mobile Application

	Use Cases
	User's Registration
	SP's Registration
	Use Cases
	First Use Case
	Second Use Case
	Architecture

