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Abstract

This doctoral dissertation addresses the inefficiencies of the currently applied ‘Fault
Detection and Isolation’ (FDI) techniques, calling for the generation of algorithms
which can handle a wide variety of fault profiles and scenarios more effectively. The
overarching objective of this dissertation was to develop alternative state-of-the-art
methodologies which can be robust, simple to implement, and able to function
reliably, in real-time and on a continual basis. To this effect, three novel algorithms
fulfilling all the above requirements are derived and presented herein. These three
filters are applied to the Guidance Navigation and Control (GNC) designs for
autonomous spacecraft and validated within the Lisa Pathfinder (LPF) context in
a simulation environment provided by the European Space Agency (ESA). The
theoretical basis for their development and application is also amenable to other
spacecraft, since robust FDI is critical for operational autonomy. The presented
FDI techniques, namely the Diagnosis, Euresis and Euphoria Filters, are generated
over two individual phases. Following a comprehensive literature review of the
subject matter, initially, two fundamentally different model-based approaches are
formulated and pursued, reflective of the two main trends of the existing model-
based methods: the geometric approach and the multiple model approach. The
novelty of the Diagnosis Filter (geometric approach) lies in that, in contrast to
conventional methods, it does not only generate structured residuals, but also it
employs directionality rather than residuals’ magnitude as a diagnostic tool for faults
(deterministic approach). This filter exhibits remarkable robustness and performs
exceptionally well, regardless of the thruster’s failure severity. In comparison, the
Euresis Filter (multiple model approach) exhibits similar robustness, albeit for total
failures only. However, it has the advantage of being applicable to non-linear
design models unlike the Diagnosis Filter. During the second phase, directionality is
incorporated in another optimisation-based geometric approach (i.e. Euphoria filter).
In this case, directionality is not designed in at the outset but it is rather recovered
by an adjoint operation on the H2 filter residuals (optimal stochastic approach). The
Euphoria Filter outperforms the other two in most evaluation criteria and it can



xii

be applied in both linear and non-linear FDI scenarios. In summary, this thesis
addresses the weaknesses of the currently applicable FDI techniques, outlines the
objectives of this dissertation, and presents three novel FDI methods, extensively
tested via Monte Carlo simulations and ultimately validated on the LPF model. The
thesis concludes with recommendations for future work, potential developments in
the field and alternative applications of these techniques in other domains such as
IoT and Cyber-Physical systems.



Table of contents

List of figures xv

List of tables xxi

Nomenclature xxv

1 Introduction 1

2 System Characteristics, Design Requirements and Objectives 9
2.1 LPF: System Engineering Characteristics and Requirements . . . . . 11

2.1.1 Multivariable Analysis of the Overall System Characteristics . 11
2.1.2 Specifications and Requirements . . . . . . . . . . . . . . . . . 14
2.1.3 The Singular Values Analysis and State Space Characteristics 16
2.1.4 Singular Value Plots . . . . . . . . . . . . . . . . . . . . . . . . 17
2.1.5 Controllers, Thruster Failures and Stabilization . . . . . . . . 30

2.2 FDI Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Types of Faults Considered . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Evaluation Criteria for the FDI Algorithms . . . . . . . . . . . . . . . 36

3 A Critical Survey of Model-based FDI Methods 39
3.1 The Geometric and Analytical Redundancy Approach . . . . . . . . . 39
3.2 The Multiple Model Approach . . . . . . . . . . . . . . . . . . . . . . 44
3.3 The Optimization Based Approach to FDI Using H∞ . . . . . . . . . . 47
3.4 FDI Method Suitability - Selection Criteria . . . . . . . . . . . . . . . . 48
3.5 Rationale for Specific Architecture(s) Selection . . . . . . . . . . . . . 49

3.5.1 Linear Model Availability . . . . . . . . . . . . . . . . . . . . . 49
3.5.2 Capability for Fault Identification . . . . . . . . . . . . . . . . 50
3.5.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Real-Time Capability . . . . . . . . . . . . . . . . . . . . . . . . 51



xiv Table of contents

3.5.5 Method Genericity- Suitability for Other Space Applications . 51

4 FDI Techniques 55
4.1 Design Method 1: Diagnosis Filter . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . 57
4.1.2 Outline of the Diagnosis-Filter Operation . . . . . . . . . . . . 59

4.2 Design Method 2: The Euresis Filter . . . . . . . . . . . . . . . . . . . 66
4.2.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . 66
4.2.2 Outline of the Euresis Filter Operation . . . . . . . . . . . . . . 68

4.3 Design Method 3: The Euphoria Filter . . . . . . . . . . . . . . . . . . 72
4.3.1 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Outline of the Euphoria-Filter Operation . . . . . . . . . . . . 77

4.4 The Failure Severity Algorithm . . . . . . . . . . . . . . . . . . . . . . 81

5 Evaluation of the FDI Techniques 85
5.1 Validation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Sensitivity versus Robustness . . . . . . . . . . . . . . . . . . . 86

5.2 Design Method 1: Diagnosis Filter . . . . . . . . . . . . . . . . . . . . 91
5.3 Design Method 2: The Euresis Filter . . . . . . . . . . . . . . . . . . . 112
5.4 Design Method 3: Euphoria Filter . . . . . . . . . . . . . . . . . . . . . 125

6 Conclusions and Future Work 163
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

References 173

Appendix A State Space Descriptions of Open Loop Dynamics 181

Appendix B Drag Free and Suspension Loop Dynamics (Combined) for the
Detection Filter - Modified B Matrix 223

Appendix C Diagnosis Filter (The true identification of the Failed Thruster
was missed in 430 Cases, of which 302 with Negative Severity) 229



List of figures

1.1 The Lisa Pathfinder Satellite (taken from ESA [1]) . . . . . . . . . . . 3
1.2 The Thrusters of the Lisa Pathfinder (taken from ESA [1]) . . . . . . . 4

2.1 LPF Design Model (Control Loops) (taken from simulation environ-
ment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 DF, SUS, and ATT Control Principle - adapted from [2] . . . . . . . . 12
2.3 Singular values of the DF open loop (Astrium) . . . . . . . . . . . . . 18
2.4 Singular values of the DF open loop (simulation environment) . . . . 18
2.5 Singular Values of the DF Compensator (Astrium) . . . . . . . . . . . 19
2.6 The DF loop gain (Astrium) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 The DF loop gain (simulation environment) . . . . . . . . . . . . . . . 20
2.8 Singular Values of the SUS open loop (Astrium) . . . . . . . . . . . . 22
2.9 Singular Values of the SUS open loop (simulation environment) . . . 22
2.10 Singular Values of the SUS Loop Compensator (Astrium) . . . . . . . 23
2.11 Singular Values of the SUS Loop Gain (Astrium) . . . . . . . . . . . . 24
2.12 Singular Values of SUS Loop Gain (simulation environment) . . . . . 24
2.13 Singular Values of the ATT Open Loop (Astrium) . . . . . . . . . . . 25
2.14 Singular Values of the ATT Open Loop (simulation environment) . . 26
2.15 Singular Values of the ATT Loop Compensator (Astrium) . . . . . . . 27
2.16 Singular Values of the ATT Loop Gain (Astrium) . . . . . . . . . . . . 27
2.17 Singular Values of the ATT Loop Gain (simulation environment) . . . 28
2.18 Singular Values of the DF and SUS loops . . . . . . . . . . . . . . . . . 29
2.19 Structural Diagram of the LPF’s FDI Generic Concept . . . . . . . . . 32

4.1 The Structure of the Diagnosis Filter . . . . . . . . . . . . . . . . . . . 58
4.2 The Combined Dynamics of DF and SUS loops . . . . . . . . . . . . . 61
4.3 Overall Operation of the Diagnosis Filter Algorithm . . . . . . . . . . 62
4.4 The Structure of the Euresis Filter . . . . . . . . . . . . . . . . . . . . . 67



xvi List of figures

4.5 The generic design framework for H2, H∞ . . . . . . . . . . . . . . . . 72
4.6 Euphoria Filter Design Architecture . . . . . . . . . . . . . . . . . . . 77
4.7 Severity Calculation Flow Diagram . . . . . . . . . . . . . . . . . . . . 84

5.1 Diagnosis Filter - Tuning Methodology . . . . . . . . . . . . . . . . . . 88
5.2 Euresis Filter - Tuning Methodology . . . . . . . . . . . . . . . . . . . 89
5.3 Euphoria Filter - Tuning Methodology . . . . . . . . . . . . . . . . . . 90
5.4 Diagnosis Filter - Thrusters Colour Code . . . . . . . . . . . . . . . . 91
5.5 Diagnosis Filter - Thrusters without Failure . . . . . . . . . . . . . . . 92
5.6 Diagnosis Filter - 1st Thruster Fault (Total Failure) . . . . . . . . . . . 92
5.7 Diagnosis Filter - 2nd Thruster Fault (Total Failure) . . . . . . . . . . . 93
5.8 Diagnosis Filter - 3rd Thruster Fault (Total Failure) . . . . . . . . . . . 93
5.9 Diagnosis Filter - 4th Thruster Fault (Total Failure) . . . . . . . . . . . 94
5.10 Diagnosis Filter - 5th Thruster Fault (Total Failure) . . . . . . . . . . . 94
5.11 Diagnosis Filter - 6th Thruster Fault (Total Failure) . . . . . . . . . . . 95
5.12 Diagnosis Filter - 1st and 2nd Thruster Fault (Total Failure) . . . . . . 97
5.13 Diagnosis Filter - 1st and 5th Thruster Fault (Total Failure) . . . . . . . 97
5.14 Diagnosis Filter - 2nd and 3rd Thruster Fault (Total Failure) . . . . . . 98
5.15 Diagnosis Filter - 2nd and 5th Thruster Fault (Total Failure) . . . . . . 98
5.16 Diagnosis Filter - 2nd and 6th Thruster Fault (Total Failure) . . . . . . 99
5.17 Diagnosis Filter - 3rd and 4th Thruster Fault (Total Failure) . . . . . . 99
5.18 Diagnosis Filter - 3rd and 6th Thruster Fault (Total Failure) . . . . . . 100
5.19 Diagnosis Filter - 4th and 5th Thruster Fault (Total Failure) . . . . . . . 100
5.20 Diagnosis Filter - 2nd, 3rd and 6th Thruster Fault (Total Failure) . . . . 101
5.21 Diagnosis Filter - 1st, 4th and 5th Thruster Fault (Total Failure) . . . . 101
5.22 Diagnosis Filter - Distribution of Failed Thrusters for 4th Monte Carlo

Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.23 Diagnosis Filter - Distribution of Severity Magnitudes for 4th Monte

Carlo Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.24 FDI Detection Timing Profiles (Rounded Off) . . . . . . . . . . . . . . 106
5.25 Diagnosis Filter - Timing Profile showing Instability Inception Point

Beyond which FDI is Jeopardised for 1st case . . . . . . . . . . . . . . 108
5.26 Diagnosis Filter - Zooming in to Detection & Identification Time for

1st case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.27 Diagnosis Filter - Further Zooming in to Detection & Identification

Time Showing the Effects of Noise for 1st case . . . . . . . . . . . . . . 109



List of figures xvii

5.28 Diagnosis Filter - Timing Profile showing Instability Inception Point
Beyond which FDI is Jeopardised for 2nd case . . . . . . . . . . . . . . 110

5.29 Diagnosis Filter - Zooming in to Detection & Identification Time for
2nd case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.30 Diagnosis Filter - Further Zooming in to Detection & Identification
Time Showing the Effects of Noise for 2nd case . . . . . . . . . . . . . 111

5.31 Euresis Filter - Thrusters Without Failure . . . . . . . . . . . . . . . . 113
5.32 Euresis Filter – 1st Thruster (Total Failure) . . . . . . . . . . . . . . . . 114
5.33 Euresis Filter – 2nd Thruster (Total Failure) . . . . . . . . . . . . . . . . 114
5.34 Euresis Filter – 3rd Thruster (Total Failure) - Different Scale to Show

Presence of Disturbances in Residual . . . . . . . . . . . . . . . . . . . 115
5.35 Euresis Filter – 3rd Thruster (Total Failure) . . . . . . . . . . . . . . . . 116
5.36 Euresis Filter – 4th Thruster (Total Failure) . . . . . . . . . . . . . . . . 116
5.37 Euresis Filter – 5th Thruster (Total Failure) . . . . . . . . . . . . . . . . 117
5.38 Euresis Filter – 6th Thruster (Total Failure) . . . . . . . . . . . . . . . . 117
5.39 Euresis Filter – 7th Thruster (Total Failure) . . . . . . . . . . . . . . . . 118
5.40 Euresis Filter – 8th Thruster (Total Failure) . . . . . . . . . . . . . . . . 118
5.41 Euresis Filter – 1st and 2nd Thruster (Total Failure) . . . . . . . . . . . 119
5.42 Euresis Filter – 1st and 8th Thruster (Total Failure) . . . . . . . . . . . 119
5.43 Euresis Filter – 1st , 5th and 8th Thruster (Total Failure) . . . . . . . . . 120
5.44 Euresis Filter - Distribution of Severity Profiles . . . . . . . . . . . . . 122
5.45 Euresis Filter - Distribution of Thrusters’ Failures . . . . . . . . . . . . 123
5.46 Euresis Filter - Distribution of Correctly Identified Failed Thrusters . 123
5.47 Euphoria Filter - Distribution of Failed Thrusters for the 1st case . . . 127
5.48 Euphoria Filter - Distribution of Severity Magnitudes for the 1st case 127
5.49 Euphoria Filter - Distribution of Failed Thrusters for the 2nd case . . . 129
5.50 Euphoria Filter - Distribution of Severity Magnitudes for the 2nd case 129
5.51 Euphoria Filter - Distribution of Failed Thrusters for the 3rd case . . . 130
5.52 Euphoria Filter - Distribution of Severity Magnitudes for the 3rd case 130
5.53 Euphoria Filter - Distribution of Failed Thrusters for the 4th case . . . 132
5.54 Euphoria Filter - Distribution of Severity Magnitudes for the 4th case 132
5.55 Euphoria Filter - Distribution of Failed Thrusters for the 5th case . . . 133
5.56 Euphoria Filter - Distribution of Severity Magnitudes for the 5th case 134
5.57 Euphoria Filter - Distribution of Failed Thrusters for the 6th case . . . 136
5.58 Euphoria Filter - Distribution of Severity Magnitudes for the 6th case 137
5.59 Euphoria Filter - FDI Timing Profile for 2nd Case . . . . . . . . . . . . 138



xviii List of figures

5.60 Euphoria Filter – Thrusters’ Colour Code for Leakage Test Runs . . . 140
5.61 Euphoria Filter - Graph of Leakage for 1st Set . . . . . . . . . . . . . . 141
5.62 Euphoria Filter - Graph of Severity for 1st Set . . . . . . . . . . . . . . 141
5.63 Euphoria Filter - Graph of Residuals for 1st Set . . . . . . . . . . . . . 142
5.64 Euphoria Filter – Thrusters’ Angles for 1st Set . . . . . . . . . . . . . . 142
5.65 Euphoria Filter - Graph of Leakage for 2nd Set . . . . . . . . . . . . . . 143
5.66 Euphoria Filter - Graph of Severity for 2nd Set . . . . . . . . . . . . . . 143
5.67 Euphoria Filter - Graph of Residuals for 2nd Set . . . . . . . . . . . . . 144
5.68 Euphoria Filter – Thrusters’ Angles for 2nd Set . . . . . . . . . . . . . 144
5.69 Euphoria Filter - Graph of Leakage for 3rd Set . . . . . . . . . . . . . . 145
5.70 Euphoria Filter - Graph of Severity for 3rd Set . . . . . . . . . . . . . . 145
5.71 Euphoria Filter - Graph of Residuals for 3rd Set . . . . . . . . . . . . . 146
5.72 Euphoria Filter – Thrusters’ Angles for 3rd Set . . . . . . . . . . . . . . 146
5.73 Euphoria Filter - Graph of Leakage for 4th Set . . . . . . . . . . . . . . 147
5.74 Euphoria Filter - Graph of Severity for 4th Set . . . . . . . . . . . . . . 147
5.75 Euphoria Filter - Graph of Residuals for 4th Set . . . . . . . . . . . . . 148
5.76 Euphoria Filter – Thrusters’ Angles for 4th Set . . . . . . . . . . . . . . 148
5.77 Euphoria Filter - Graph of Leakage for 5th Set . . . . . . . . . . . . . . 149
5.78 Euphoria Filter - Graph of Severity for 5th Set . . . . . . . . . . . . . . 149
5.79 Euphoria Filter - Graph of Residuals for 5th Set . . . . . . . . . . . . . 150
5.80 Euphoria Filter – Thrusters’ Angles for 5th Set . . . . . . . . . . . . . . 150
5.81 Euphoria Filter - Graph of Leakage for 6th Set . . . . . . . . . . . . . . 151
5.82 Euphoria Filter - Graph of Severity for 6th Set . . . . . . . . . . . . . . 151
5.83 Euphoria Filter - Graph of Residuals for 6th Set . . . . . . . . . . . . . 152
5.84 Euphoria Filter – Thrusters’ Angles for 6th Set . . . . . . . . . . . . . . 152
5.85 Euphoria Filter - Graph of Leakage for 7th Set . . . . . . . . . . . . . . 153
5.86 Euphoria Filter - Graph of Severity for 7th Set . . . . . . . . . . . . . . 153
5.87 Euphoria Filter - Graph of Residuals for 7th Set . . . . . . . . . . . . . 154
5.88 Euphoria Filter – Thrusters’ Angles for 7th Set . . . . . . . . . . . . . . 154
5.89 Euphoria Filter - Graph of Leakage for 8th Set . . . . . . . . . . . . . . 155
5.90 Euphoria Filter - Graph of Severity for 8th Set . . . . . . . . . . . . . . 155
5.91 Euphoria Filter - Graph of Residuals for 8th Set . . . . . . . . . . . . . 156
5.92 Euphoria Filter – Thrusters’ Angles for 8th Set . . . . . . . . . . . . . . 156
5.93 Euphoria Filter - Graph of Leakage for 9th Set . . . . . . . . . . . . . . 157
5.94 Euphoria Filter - Graph of Severity for 9th Set . . . . . . . . . . . . . . 157
5.95 Euphoria Filter - Graph of Residuals for 9th Set . . . . . . . . . . . . . 158



List of figures xix

5.96 Euphoria Filter – Thrusters’ Angles for 9th Set . . . . . . . . . . . . . . 158
5.97 Euphoria Filter - Singular Values of GFOL . . . . . . . . . . . . . . . . 161
5.98 Euphoria Filter - Singular Values of GKF . . . . . . . . . . . . . . . . . 161
5.99 Euphoria Filter - H2 matrix . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.1 Components of Modelling Methods (Karagiannis & Kühn [3]) . . . . 169

A.1 Attitude Open Loop - Matrix A of Astrium’s TF . . . . . . . . . . . . 182
A.2 Attitude Open Loop - Matrix B of Astrium’s TF . . . . . . . . . . . . . 183
A.3 Attitude Open Loop - Matrix C of Astrium’s TF . . . . . . . . . . . . 184
A.4 Attitude Open Loop - Matrix D of Astrium’s TF . . . . . . . . . . . . 185
A.5 Attitude Open Loop - Matrix A of Astrium Compensator’s TF . . . . 186
A.6 Attitude Open Loop - Matrix B of Astrium Compensator’s TF . . . . 187
A.7 Attitude Open Loop - Matrix C of Astrium Compensator’s TF . . . . 188
A.8 Attitude Open Loop - Matrix D of Astrium Compensator’s TF . . . . 189
A.9 Attitude Open Loop - Matrix A of Simulation Environment . . . . . . 190
A.10 Attitude Open Loop - Matrix B of Simulation Environment . . . . . . 191
A.11 Attitude Open Loop - Matrix C of Simulation Environment . . . . . . 192
A.12 Attitude Open Loop - Matrix D of Simulation Environment . . . . . . 193
A.13 Drag Free Open Loop - Matrix A of Astrium’s TF . . . . . . . . . . . . 194
A.14 Drag Free Open Loop - Matrix B of Astrium’s TF . . . . . . . . . . . . 195
A.15 Drag Free Open Loop - Matrix C of Astrium’s TF . . . . . . . . . . . . 196
A.16 Drag Free Open Loop - Matrix D of Astrium’s TF . . . . . . . . . . . . 197
A.17 Drag Free Open Loop - Matrix A of Astrium Compensator’s TF . . . 198
A.18 Drag Free Open Loop - Matrix B of Astrium Compensator’s TF . . . 199
A.19 Drag Free Open Loop - Matrix C of Astrium Compensator’s TF . . . 200
A.20 Drag Free Open Loop - Matrix D of Astrium Compensator’s TF . . . 201
A.21 Drag Free Open Loop - Matrix A of Simulation Environment . . . . . 202
A.22 Drag Free Open Loop - Matrix B of Simulation Environment . . . . . 203
A.23 Drag Free Open Loop - Matrix C of Simulation Environment . . . . . 204
A.24 Drag Free Open Loop - Matrix D of Simulation Environment . . . . . 205
A.25 Suspension Open Loop - Matrix A of Astrium’s TF . . . . . . . . . . . 206
A.26 Suspension Open Loop - Matrix B of Astrium’s TF . . . . . . . . . . . 207
A.27 Suspension Open Loop - Matrix C of Astrium’s TF . . . . . . . . . . . 208
A.28 Suspension Open Loop - Matrix D of Astrium’s TF . . . . . . . . . . . 209
A.29 Suspension Open Loop - Matrix A of Astrium Compensator’s TF . . 210
A.30 Suspension Open Loop - Matrix B of Astrium Compensator’s TF . . 211



xx List of figures

A.31 Suspension Open Loop - Matrix C of Astrium Compensator’s TF . . 212
A.32 Suspension Open Loop - Matrix D of Astrium Compensator’s TF . . 213
A.33 Suspension Open Loop - Matrix A of Simulation Environment . . . . 214
A.34 Suspension Open Loop - Matrix B of Simulation Environment . . . . 215
A.35 Suspension Open Loop - Matrix C of Simulation Environment . . . . 216
A.36 Suspension Open Loop - Matrix D of Simulation Environment . . . . 217
A.37 Combination of Drag Free and Suspension Loops - Matrix A of Simu-

lation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
A.38 Combination of Drag Free and Suspension Loops - Matrix B of Simu-

lation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
A.39 Combination of Drag Free and Suspension Loops - Matrix C of Simu-

lation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
A.40 Combination of Drag Free and Suspension Loops - Matrix D of Simu-

lation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

B.1 Combined Drag Free and Suspension Loop - Matrix A of FDI Techniques224
B.2 Combined Drag Free and Suspension Loop - Matrix B of FDI Techniques225
B.3 Combined Drag Free and Suspension Loop - Matrix C of FDI Techniques226
B.4 Combined Drag Free and Suspension Loop - Matrix D of FDI Techniques227



List of tables

2.1 Nature of errors that affect the LPF’s thrusters . . . . . . . . . . . . . 35

3.1 Comparison of Methods based on Selective Criteria . . . . . . . . . . 53

4.1 The Output Separable Failure Directions of DF1 . . . . . . . . . . . . 63
4.2 The Output Separable Failure Directions of DF2 . . . . . . . . . . . . 64

5.1 Diagnosis Filter - Severity Magnitudes and Noise levels of Validation
Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Diagnosis Filter - Leakage Magnitudes and Noise Levels of Validation
Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Diagnosis Filter – Summarized Results of Four Sets of Monte Carlo
Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4 Diagnosis Filter - min Angle Evolution for 1st case . . . . . . . . . . . 108
5.5 Diagnosis Filter - min Angle Evolution for 2nd case . . . . . . . . . . . 110
5.6 Euphoria Filter - Severity Magnitudes and Noise levels of Validation

Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.7 Euphoria Filter - Leakage Magnitudes and Noise Levels of Validation

Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.8 Euphoria Filter - Missed Identification Cases for the 1st case . . . . . 128
5.9 Euphoria Filter - Missed Identification Cases for the 3rd case . . . . . 131
5.10 Euphoria Filter - Missed Identification Cases for the 4th case . . . . . 133
5.11 Euphoria Filter - Missed Identification Cases for the 5th case . . . . . 135
5.12 Euphoria Filter – Summarized Results of Six Sets of Monte Carlo

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
5.13 Euphoria Filter – Leakage Cases - Time to reach Severity . . . . . . . 159

6.1 Comparison of the Three FDI Techniques based on Design Character-
istics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165



xxii List of tables

6.2 Comparison of the Three FDI Techniques based on Evaluation Char-
acteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.3 Comparison of the Three FDI Techniques based on Application Char-
acteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

C.1 Euphoria Filter - Missed Identification Cases for the 6th case . . . . . 230



Nomenclature

Acronyms / Abbreviations

ATT Attitude

CARE Control Algebraic Riccati Equationa

CPS Cyber-Physical Systems

DF Diagnosis Filter

DF Drag-Free

DFACS Drag-Free and Attitude Control System

DRS Disturbance Reduction System

EADS European Aeronautic Defence and Space

EKF Extended Kalman Filter

EO Earth Observation

ESA European Space Agency

ESTEC European Space Research and Technology Centre

FARE Filter Algebraic Riccati Equation

FDI Fault Detection and Isolation

FDIR Fault Detection, Isolation and Recovery

FEEP Field Emission Electric Propulsion

FSO Full State Observers



xxiv Nomenclature

GNC Guidance Navigation and Control

GSF Gaussian Sum Filter

HIMM Hierarchical Interactive Multiple Model

HIMMML Hierarchical Interactive Multiple Model Maximum Likelihood Estima-
tion

IMU Inertial Measurement Unit

IoT Internet of Things

KF Kalman Filter

KFDE Kalman Frequency Domain Equality

LFT Linear Fractional Transformation

LMI Linear Matrix Inequality

LPF Lisa Pathfinder

LPV Linear Parameter Varying

LTI Linear Time Invariant

LTP Lisa Technology Package

MM Multiple Model

MMKF Multiple Model Kalman Filter

NF Noise Factor

RHS Right-Hand Side

SUS Suspension

SVD Singular Value Decomposition

TF Transfer Function

UAV Unmanned Aerial Vehicle

UIO Unknown Input Observer



Nomenclature xxv

UKF Unscented Kalman Filter

ULPE Unknown Linear Parametric Estimators

V&V Verification and Validation





Chapter 1

Introduction

A fault (malfunction) is defined as a deviation from a system’s normal function,
which detrimentally disturbs and impairs its performance, adversely affecting its
overall operation. A fault diagnosis should be achieved as early as possible even if
it could be initially tolerated by the system, to prevent further function deteriora-
tion and serious risks for the mission [4]. A fault diagnosis system comprises the
following tasks as outlined in [5]:

• Fault Detection: detection of the time of fault occurrence in the functional units
of the process, leading to undesired or unacceptable behaviour of the whole
system.

• Fault Isolation: localization (classification) of different faults.

• Fault Analysis or Identification: determination of the exact nature, magnitude
and cause of the fault.

A fault diagnosis system, depending on its performance, is called Fault Detection
and Isolation (FDI) [6]. The Robust Fault Detection and Isolation has become a
critical property for virtually all space missions and applications, since operational
autonomy is of paramount importance. Such systems are required to function reli-
ably and autonomously, to varying degrees, which presupposes their ability to not
only robustly detect and identify failures but to also have the ability to reconfigure
and continue operation in the event of a malfunction in their control systems (sensors
or actuators). The Robust Fault Detection and Isolation can be challenging because
of modelling inaccuracies in the space system design and their operating in noisy
environments with considerable disturbances and uncertainty. This issue is further
exacerbated in the context of smaller, less expensive spacecraft, where hardware
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complexity, cost, and mass are to be kept to a minimum [7–11]. The key critical
features of space missions where autonomy is a prime consideration, can therefore
be identified as scalability, detectability and identifiability, re-configurability and
robustness to failures [12–14].

The main purpose of the FDI function is to maintain the vehicle operational and
safe. FDI requirements are strongly dependent on the mission type. For instance,
Earth Observation (EO) missions ask for simplicity and can tolerate certain outages
while commercial telecommunication satellites have a strong requirement regarding
the outage duration. For science observation missions, the FDI requirements are
very similar to those of the EO missions, while exploration missions put emphasis on
availability during critical phases such as in orbit insertion, in proximity operations,
or in the terminal rendezvous phase [15].

Lisa Pathfinder (LPF), a technology demonstrator spacecraft mission initiated
by the European Space Agency (ESA) (Figure 1.1), falls into this last category, with
stringent requirements for performance reliability and autonomy. The objective
of LPF has been the testing and verification of key technologies and innovative
instruments for the observation of gravitational waves - fluctuations in the fabric of
spacetime - from space. In the core of the Lisa Technology Package (LTP) two test
masses lie, that consist of two identical 2 kg, 46 mm, gold-platinum cubes, 38 cm
apart, each surrounded by a sensor cage. Launched on December 3rd, 2015, LPF has
now exceeded its operational goal of placing the two test masses in the most precise
gravitational free-fall ever (at 500000 by 800000 - km halo orbit around the first Sun -
Earth Lagrange point, at 1.5 million km from Earth).

The test masses were shielded to an unprecedented degree from all internal and
external forces by the spacecraft’s sensing their motion and manoeuvring around
them, while their position and attitude were measured with utmost accuracy by
a laser interferometer. The derived results essentially pave the way for the devel-
opment of large scale, space-borne observatories capable of detecting gravitational
waves. The LPF concluded its first operational phase on the 25th of June 2016,
and has started running the Disturbance Reduction System (DRS), an additional
experiment provided by NASA [1].

DRS is a NASA generated system of thrusters, advanced avionics, and software.
Although most thrusters serve for spacecraft propulsion, DRS has a distinct purpose
within the context of LPF: to hold it as perfectly still as possible. This enables the
testing of technologies used in the detection of gravitational waves, which requires
extreme steadiness and stability. DRS possesses eight thrusters positioned on either
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side of the LPF spacecraft (Figure 1.2). Each thruster emits microscopic ionised liquid
droplets (colloid electrospray), charged through an electric field and accelerated by a
second one with an opposite charge. The generated force provides the thrust which
stabilises the spacecraft [16].

The entire above highlight the importance of thrusters in a spacecraft, the LPF
in this case, and the requirement for optimal FDI, which in turn will warrant the
operational viability of a mission. Current FDI architectures are hierarchical, i.e.
various FDI solutions are implemented at unit, subsystem, survival, and safety level.
As exhibited in cases of orbit failure, this architecture has some inherent weaknesses,
such as being sensitive to dormant fault, ground-programming errors and requiring
extra hardware to ensure safety after a second failure. Although, standard space
program FDI practices are very efficient to detect faults at unit level - using mostly
model-based techniques [17, 18] - they are rarely used at system level. This is largely
attributed to the following reasons: first, the system model is much more complex
than a single unit model and, secondly, it is rarely required, due to the current
avionics and Guidance, Navigation and Control (GNC) architecture. However,
accumulated experience has revealed the distinct advantages of the model-based
methods. For instance, a model-based system level FDI can be useful for critical
safety applications such as for autonomous rendezvous, where an active robust FDI

Fig. 1.1 The Lisa Pathfinder Satellite (taken from ESA [1])
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in the safeguard function would limit or even eliminate the need for extra hardware
and reduce reliance on the operational software [19].

The different approaches to fault diagnosis (reviewed and compared in [20–22])
can be classified into three main categories:

i. Model-based techniques.

ii. Knowledge-based techniques.

iii. Signal Processing-based techniques.

For space applications, detailed satellite models are usually available; therefore,
model-based techniques appear to be the most appropriate solutions for advancing
the state-of-the-art in FDI for autonomous satellites. In this context, the robust
model-based FDIR (Fault Detection, Isolation and Recovery) hinges on the purity of
the signals used, most often referred to as robust residuals, which are to be devoid of
any noise or disturbance contamination, to the extent possible. Additionally, FDIR
requires sufficient knowledge of the possible faults that could arise, and a good
system model. These are the basic elements for a model-based approach, which

Fig. 1.2 The Thrusters of the Lisa Pathfinder (taken from ESA [1])
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explicitly makes use of the underlying system model in the various fault detection
designs employed. Robust FDI, then, refers to the desired correct fault/failure
detection and isolation/identification in the presence of both unstructured (dynamic)
or structured (parametric) uncertainty and exogenous system disturbances and
sensor noise.

Given the technical specifications of LPF, which is the application of interest to
ESA and the mission’s requirements, it becomes clear that the model-based FDI
is the indicated technology and, therefore, the focus of this thesis. The research
presented here was geared for application to LPF, with the requirement that the
resulting algorithms be real-time, robust, and able to handle a wide variety of
thruster failures. LPF should ideally be able to detect, identify and remedy its
own failed components [6, 23] most frequently found in actuators or sensors – the
thrusters in the case of this study. Software and sensor failures come under an
entirely different framework and are not addressed in this thesis; however, the
presented mathematical model can be also used as the basis for handling such
failures.

Hardware redundancy and associated voting mechanisms have been employed
in the past, and represent a brute force way of failure detection. More recently,
model-based analytical redundancy techniques, based on a well-developed theory
for FDI, represent the way of the future. A high level of hardware redundancy just
for FDI is not only bulky and heavy for space, but also costly [4, 24].

Analytical redundancy methods rely on a spacecraft model whose responses are
compared to those of the plant (spacecraft) under the same inputs. Consequently,
such methods have also become known as model-based. If a failure occurs, in a
sensor or in an actuator, the plant will be affected. Consequently, the plant will
display a different behaviour than that of the model under identical input conditions.
In such a case, the detection of failure comprises the first step; the ensuing failure
isolation and identification are much harder, and not always achievable. However,
currently available theoretical results provide the capability to distinguish between
sensor and actuator failures and to identify the failed component(s). Moreover, it
is also possible to estimate the failure severity. The available FDI theory prescribes
the conditions under which the identification of a failed component can be feasible,
and points to the way of modifying, where possible, the measurement set in order
to achieve this [25].

A model-based FDI method performance is only as good as the model itself. If
the design model is not a perfect replica of the plant, then a difference in response(s)
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is not necessarily due to a failure but could be due to a model mismatch; hence,
failure detection is not feasible without an inherently high degree of a likely error
(e.g. false alarm, missed detection, etc.). Consequently, even though the prime
source of error is modelling inaccuracies, in addition sensor noise, and various
exogenous disturbances in the operating environment, which are not included in
the replica model.

A good FDI scheme has to be robust to such modelling inaccuracies and distur-
bances in order to be able to generate robust residuals resulting from component
failures only, without taking into account modelling inaccuracies or disturbances
acting on the plant. The objective of the thesis is to develop and apply state-of-the-
art FDI techniques that are robust, simple to implement, can function reliably in
real-time, on a continual basis, and which can be applicable to the GNC designs for
autonomous spacecraft, particularly to small satellites and specifically to LPF.

Following a comprehensive literature review of the subject matter, initially two
fundamentally different model-based approaches were formulated and pursued,
reflective of the two main trends of the existing model-based methods: the geometric
approach and the multiple model approach [4, 24]. The three techniques presented
in this dissertation are the following:

• The Diagnosis Filter (Geometric Approach).

• The Euresis Filter (Multiple Model Approach).

• The Euphoria Filter (Geometric Approach - H2 based Filter).

The novelty of the Diagnosis Filter (geometric approach) lies in that, in contrast
to conventional methods, it does not only generate structured residuals, but it also
employs directionality rather than the residuals magnitude as a diagnostic tool
for faults (deterministic approach). It is shown that this filter exhibits remarkable
robustness and performs exceptionally well, regardless of the thruster’s failure
severity. In comparison, the Euresis Filter (multiple model approach) exhibits similar
robustness, albeit for total failures only. However, it has the advantage of being
applicable to non-linear design models unlike the Diagnosis Filter. Subsequently,
directionality is incorporated in another optimisation based geometric approach
(i.e. Euphoria filter). In this case, directionality is not “designed-in” at the outset
but it is rather recovered by an adjoint operation on the H2 filter residuals (optimal
stochastic approach). The Euphoria Filter outperforms the other two in most of the
evaluation criteria and it can be applied in both linear and non-linear FDI scenarios.
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Structure of the Thesis and Contribution

The thesis begins with a brief introduction (Chapter 1), providing the definitions
of the main topics handled, and outlining the problems and challenges for a more
effective fault identification which is the main objective of the research conducted.
The resulting three newly developed algorithms derived by different methodologies,
and the corresponding outcomes in the context of fault identification efficiency are
briefly mentioned.

In Chapter 2, the used model system, i.e. LPF, is presented in more detail,
regarding its technical engineering specifications and requirements. A multivariable
analysis and the presentation of singular values plots for the better comprehension
of the system dynamics are outlined. The thrusters’ failures in their various types are
then discussed, which along with the objectives of the Fault Identification systems are
at the very core of the research of this thesis, setting the framework and the criteria
for the generation of relevant algorithms that address the current inefficiencies.

A critical survey of the two main model-based FDI methods, i.e. the geometric
and analytical approaches, follows in Chapter 3. Particular emphasis is given on
the selection criteria for the particular architecture pursued in this thesis, the model-
based FDI methods, with respect to its linear model availability, its capability for fault
identification, its robustness and real-time function capabilities and its applicability
on other space missions.

In Chapter 4, the three design methods that were ultimately generated, namely
the Diagnosis, the Euresis and the Euphoria filters, are presented in detail with
the theoretical background and implementation steps of each one. The theoretical
foundation of each of the methods is discussed, and a fourth algorithm specific to
failure severity is presented at the end of the chapter.

In Chapter 5, the above-mentioned FDI techniques are evaluated. First, the exact
validation plan is explained in detail, along with the criteria of the performance
evaluation, which is carried out with a special focus on sensitivity and robustness.
After a comprehensive performance evaluation of all three algorithms against the set
criteria, a further analysis of the Euphoria filter in particular with respect to Kalman
Frequency Domain Equality (KFDE) and FDI timing is provided.

Chapter 6, summarises the main observations and conclusions drawn regarding
the three FDI methods’ performance and addresses the challenges and practicalities
of their implementation.
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The thesis concludes with an overview of the main findings of the research con-
ducted, considerations, future directions stemming and applications of the current
research in other fields and scientific contexts.



Chapter 2

System Characteristics, Design
Requirements and Objectives

In this section, only the key system characteristics and requirements that have a direct
impact on the FDI design are considered. The main objective of this dissertation
was to design robust FDI algorithms for thruster failures. There are three main
system loops around, for which, individual controllers with eight thrusters have
been designed, functioning as the actuators of the system under study:

i. the Drag-Free loop (DF).

ii. the Attitude dynamics loop (ATT).

iii. the Suspension loop (SUS).

The drag-free and attitude control loops are strongly coupled, with the former
serving as the inner loop due to its faster dynamics. There is also coupling of these
two to the suspension loop but not vice versa [26, 27]. The controllers have been
designed using the “loop-by-loop” approach, which is based on the assumption that
no coupling between the individual loops occurs. However, this does not apply in all
cases in the present system. As a result, the coupling between the loops compromises
a priori such a controller design, as explicitly stated by Fertin in [27]: “...the controllers
designed by Astrium Gmbh for Drag-Free and Attitude Control System (DFACS) with Field
Emission Electric Propulsion (FEEP) are not suitable for colloidal thrusters: there is too
much rejection of thrusters’ noise and not enough minimization of thrusters’ step”. Indeed,
the thrusters’ step or bias is a low frequency noise, exactly where the thrusters’
characteristic frequencies are located, i.e. in the range [10−10,10−14]ms−2 Hz−1/2.
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On the other hand, the measurement noise(s) based on the LPF’s specifications
from ESA are of high frequency and reproduced with [10−3,10] Hz values. The
corresponding acceleration noises are in much lower frequencies and very close to
the thrusters’ characteristic ones. The system bandwidth appears to be at about 10−3

Hz, right where the measurement noises begin to emerge [27].
There is plenty of evidence that disturbances are not adequately rejected by the

control system [27]. For example, for high frequency disturbance attenuation, the
complementary sensitivities (closed loop transfer functions) should be considerably
below 0 dB right before the frequency 10−3dB, which is not the case. Respectively,
for disturbance rejection, they should be much higher than 0 dB at the low frequency
range.

A number of attempts to tune the controllers and improve upon these charac-
teristics have been reported. However, the nature of the control design makes loop
shaping a very tedious and time consuming and of questionable results process. In
fact, there is no guarantee that even if individual loop constraints are met, the overall
system behaviour will retain these characteristics in its integrated multi-loop func-
tion. Because of these difficulties, “only drag-free and suspension measurements are
selected for FDI because of their low noise characteristics” according to Fertin [27].
On the other hand, a truly multivariable design allows for overall loop shaping
with guaranteed performance and robustness. Most importantly, it can introduce
automatically and by construction the plant (actuator) redundancies [28] and make
the system fault tolerant to multiple actuator failures. Notwithstanding the above
comment, the controller design is now fixed and FDI has to be designed around this.
However, even with the existing design, some disturbances will inevitably occur
both at the low and at the high frequency ends. For this reason, thresholds need
to be accurately set and the simulation environment has to reach, firstly, steady-
state (2 × 104s) condition and then to initialize the Unknown Input Observers (UIO)
(3 × 104s), before the application of the FDI algorithm [29].

A class of alternative model-based solutions that would be more likely to over-
come the shortcomings identified earlier, should realize a separation principle be-
tween robust residual generation and robust failure detection. This robust residual
generation could be (a) the result of appropriate signal processing on the plant
input(s) and output(s) in order to realize exogenously desirable loop shape char-
acteristics before they are employed in an FDI scheme and (b) the utilization of
appropriate filters, which optimally reject plant disturbances.
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2.1 LPF: System Engineering Characteristics and Require-
ments

2.1.1 Multivariable Analysis of the Overall System Characteristics

The overall LPF design model in its current form, is presented in the diagram of Fig-
ure 2.1. The blue rectangles represent on-board functions (controllers and thrusters
dispatching) and the light blue rectangles are the dynamic transfer functions of the
drag-free, suspension and attitude degrees of freedom.

Fig. 2.1 LPF Design Model (Control Loops) (taken from simulation environment)

The LPF design model comprises the drag-free attitude dynamics and the suspen-
sion loops for which corresponding controllers have been separately designed, as-
suming non-interaction between the loop dynamics (Figure 2.2). The eight thrusters
in the drag-free loop serve as actuators. This is the system for which robust FDI
algorithms are to be designed, such that they are non-intrusive and do not interfere
with the rest of the system function. Therefore, FDI has to function independently
as a plug-in on the LPF.
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Fig. 2.2 DF, SUS, and ATT Control Principle - adapted from [2]

As mentioned earlier, the DF and ATT control loops are strongly coupled. Be-
cause of this non-ideality in the controller design, it is possible that the interaction
between the loops can exacerbate the disturbance effects [30]. Any corrections or
modifications to improve each individual loop performance would have an effect
on the others. Even though this effect is observable, it can not be handled directly.

The process of loop-characteristics-improvement is, therefore, a purely trial-and-
error-approach, with no predictable or guaranteed results; this can also be garnered
from the descriptions in Fertin [27] and Valavani [26], where an improvement in a
particular loop characteristic can adversely affect another loop. This shortcoming is
commonly manifested in designs of this type and is not specific to the LPF system.

Previous works on LPF [15, 27, 29] did not include an overall multivariable pic-
ture of the entire plant as there is no mention of multivariable crossover frequencies
(max and min), or overall multivariable system gains (max and min). Therefore, no
matter how accurately the disturbances are known or estimated, it would still be not
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possible to predict their overall impact on the multivariable system, how effectively
its controllers would reject them, and what would remain for threshold setting. This
might be the reason why disturbance identification was proposed in previous works,
which would not have been required in a truly multivariable analysis based on the
Singular Value Decomposition (SVD). The latter was carried out at the very start of
this project [31, 32] in order to accurately establish the controlled system boundaries.

In the absence of an SVD, no conclusion can be drawn on whether and how the
system inputs and outputs need to be further processed to provide information to the
FDI scheme, since there is no accurate description of the multivariable disturbance
rejection properties of the plant. Even if the controller design is carried out loop
by loop, the system still has to function as an integral multivariable entity. These
non-idealities have an impact on the overall system ability to process disturbances
and sensor noise, which, in turn, influences the FDI design framework and places
limitations on the achievable performance. Despite the above, the controller design
is now considered to be fixed and FDI can be developed around this premise.

The singular value analysis we perform on the overall design model, complete
with controllers, and is presented in section 2.1.3, clearly corroborates the obser-
vations previously reported by other researchers [15, 27, 29] in performing FDI on
the LPF system and highlights potential problems. Our findings [31, 32] then make
it possible to rectify the system shortcomings in terms of noise and disturbance
rejection, and to avoid tedious and time consuming procedures of online noise
estimation for threshold setting. Taken together, a sharp loop gain attenuation (i.e.
a roll-off filter) is necessary around ω = 10−3Hz, preferably starting at the middle
of the system bandwidth [10−4,10−3]Hz, in order to avoid sharp effects and fully
exploit the system capabilities. Although the need for such a roll-off could have
been envisaged (based on some of the individual transfer functions between spe-
cific input-output pairs in the two loops), it does not necessarily apply to all such
input-output pairs and, definitely, not for the overall system. The exact nature and
characteristics of the roll-off may differ for different input-output pairs. The fact
that this roll-off emerges for the entire system and is easily quantifiable as a one
design parameter makes it possible to remedy the existing design for FDI purposes.
As a consequence, all the input signals to the FDI methods need to be processed
through a pre-processing filter designed according to the following characteristics:
Gpre_ f ilter − 1

s(s+0.5×10−3)
, which is incorporated in the simulation environment.

However, given the sheer amount of noise that can go through such a loop, even
if the thresholds are accurately set on a magnitude scale, this does not preclude
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the possibility that the entire magnitude of such a threshold is solely due to noise
and not due to a failure. Consequently, the possibility of missed or late detection is
very distinct. Therefore, additional signal processing is imperative for the signals
that will trigger the FDI process. In addition, methods where FDI is predicated
on residuals magnitude rather than on direction, can be particularly sensitive to
the pre-mentioned effects. A notable exception is the following. Since the Diag-
nosis Filter and the Euphoria Filter (H2 based Filter) use residual directions rather
than magnitudes as FDI diagnostics, they are practically immune to such effects
and, therefore, they do not require any additional signal conditioning, simplifying
implementation.

A simple observation of the combined, DF and SUS open loop singular value
analysis reveals eight significant singular values, given that the effective transfer
function Gd f _sus is a (11 × 8) matrix. Two of these are separated from the others at
the −200 dB levels. This suggests a system structure singularity, which also affects
the Diagnosis Filter’s structure. The eight thruster failure directions were identified
through linear independent evaluation, that were in a later step separated into two
output separable-groups (i.e. sets of linearly independent vectors/directions): one
with six of these directions and the other with two [27].

In summary, regardless of the control design methodology, the overall plant
remains a truly multivariable system. It has certain overall characteristics, in terms
of its command-following and disturbance-rejection properties, which need to be
identified, before any FDI scheme is successfully implemented. It should be noted
that the FDI scheme must be totally non-intrusive to the controller design and that the
overall system characteristics (the controllers included) are accurately represented.

2.1.2 Specifications and Requirements

A careful examination of Fertin’s work [27] and the simulation environment model
reveals that the overall system operating bandwidth of interest, lies in the interval
[10−4,10−3] Hz, while the most significant disturbances (process and sensor) begin
to occur at ω = 10−3 Hz and extend further within the high frequency range. It is
also evident, on most individual transfer function plots, that the complementary
sensitivity function continues to have a magnitude close to or larger than one even
beyond this frequency, where the sensor noise is mostly pronounced. An effective
loop shape should have a complementary sensitivity magnitude below one in this
range, to attenuate, instead of amplify, sensor noise. This is not the case in the
present design.
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Fertin [27] shows that the thruster-induced-acceleration noise on the drag-free
coordinates extends in the interval [10−4,100] ms−2 Hz−1/2, with a much larger
magnitude in the frequency range between [10−4,10−3] ms−2 Hz−1/2. Because of
this direct conflict with the system operating bandwidth, the (higher) sensor noise
can be regarded as consisting of two parts. One that is identical in function to
low-frequency-disturbances, requiring a high enough gain in the range [10−4,10−3]

ms−2 Hz−1/2 for good disturbance rejection and a second high frequency part (start-
ing from 10−3), compatible with a sensor noise profile requiring low magnitude of
the closed loop transfer function/complementary sensitivity.

These tight and rather conflicting requirements (for purposes of best noise rejec-
tion) require that the complementary sensitivity’s roll-off is very fast, occurring at
around 10−3, while retaining its high magnitude up to almost that point. According
to the satellite’s specifications, this roll-off does not occur and, even worse, in the
majority of cases the magnitude is retained or increased beyond this frequency. This
shortcoming is bound to impact the robustness of the FDI process, as the signals
used will contain a significant contribution of the non-attenuated noises, which
could confuse FDI, and trigger false alarms. If residual magnitudes are used as the
diagnostic, this can significantly impair the actual FDI performance. Equally, an
online noise-identification process would not necessarily provide the solution, as
this objective is hampered by an inherently noisy signal. The result is a much longer
time to noise estimation, with less accuracy, jeopardizing system performance in
case of a failure, which cannot be promptly detected for effective corrective action.

On the other hand, the individual elements of the transfer function matrix of the
overall multivariable system, show a possible gain inadequacy in the low frequency
region, compromising the system’s ability to reject disturbances and attain good
command, following Fertin [27].

As exemplified in Fertin [27], the characteristics of each individual transfer
function, in each loop separately, do not necessarily apply to the entire system (which
is truly multivariable), despite the fact that the control design is carried out loop
by loop. Consequently, in order to pinpoint the true multivariable characteristics
governing the system behaviour, a SVD analysis was carried out to accurately
capture the actual system characteristics.
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2.1.3 The Singular Values Analysis and State Space Characteris-
tics

In order to calculate the system singular values for various configurations, a state
space description of each is required. This will also be needed for the Model-based
FDI algorithms to be designed for the system.

There are three sub loops, the drag-free loop, where the thrusters are located, and
which is, therefore, a central element, the suspension loop, and the attitude loop.
The corresponding open loop transfer functions are given as GDF, GSUS and GSCc .
Similarly, the controller transfer functions are specified as KDF, KSUS, and KATT, for
each loop respectively.

Firstly, the state space description of each loop without the compensator (open
loop) needs to be defined in order for the frequency domain of the natural open loop
characteristics to be determined. Subsequently, the state space description of the
compensator in each of the three loops is required for the calculation of the loop
gain transfer function/matrix. The loop gain is then derived from the product of
Gi(s) and Ki(s), where Ki(s) is the compensator transfer function and the open loop
plant transfer function Gi(s). These in turn are calculated as follows:

Ki(s) = Cki[sI − Aki]
−1Bki

Gi(s) = Ci[sI − Aki]
−1Bi

(2.1)

where the index i, can signify any of the three loops: drag-free, suspension, atti-
tude, or the combined drag-free and suspension loops and the additional index k the
corresponding compensator quantities. The matrices Ai, Aki, Bi, Bki,Ci,Cki represent
the canonical triplet for the plant and compensator respectively in their sate space
description. The state space descriptions for the open loop dynamics of each of the
loops are derived in two ways:

1. By getting the state space description that corresponds to the transfer functions
GDF, GSUS and GSCc , as given in Fertin [27] and used by provided simulation
model by ESA. These are denoted with the ′AST′ index additionally attached to
the corresponding state space element.

2. Using the Linearize Mode in the simulation environment, which is denoted
with the ′LINMOD′ index attached to the corresponding state space element.
Apparently, the simulation environment derives these linearized models from
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the overall system information, including implementation information, such as
the sampling time. Consequently, the resulting state space descriptions differ
in this regard. For example, while the compensators have been designed based
on continuous plant dynamics, they need to be discretised in the simulation
environment before implementation. Therefore, the compensators directly
derived from the linearization of the model (‘LINMOD’1) differ in order from
their corresponding state space descriptions generated from their transfer
functions.

The transfer function derived representations were used for the loop gain calcu-
lations, as it is always preferable to carry out the design process on a continuous
time basis and then to discretize for implementation. This offers the flexibility of
choosing different sampling times, right before implementation, without the need to
repeat the design process itself, as would have been in the case of a discrete time
design approach applied at the outset.

The state space descriptions for the attitude loop, the drag-free loop, the suspen-
sion loop and the drag-free and suspension loops combined are given in Appendix A.
In each of the three (sub) loops, we first give the state space description for the open
loop and the compensator as derived from the Astrium transfer function and then
the state space description of the open loop dynamics as derived via the simulation
environment ‘LINMOD’. For the drag-free and suspension loops combination, the
state space description is as derived from the simulation environment ‘LINMOD’,
since there is no combined transfer function description given in the input from
Astrium.

2.1.4 Singular Value Plots

The singular values for the DF open loop are shown in Figure 2.3 and Figure 2.4,
first as derived from the Astrium Transfer Function (TF) and then as generated from
the ‘LINMOD’ function of the simulation environment. In the first case, all the six
values coincide, as they are essentially six separate double integrators. However, in
the second case, even though the maximum singular value levels are the same as
before, at 160 dB, there is a split at the lower frequency end of the spectrum, slightly
below 120 dB for the minimum singular value. This can be attributed to round-off
errors due to the discretization at implementation.

1 ‘LINMOD’: the function of the simulation environment used to extract linear models in the form
of the state-space matrices A, B, C, and D.
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Fig. 2.3 Singular values of the DF open loop (Astrium)

Fig. 2.4 Singular values of the DF open loop (simulation environment)
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The open loop has high gains at low frequencies, which is a desirable characteris-
tic; this high gain profile extends to the lower frequencies, 10−3 Hz and above, which
can give rise to problems for measurements that have been corrupted by sensor noise.
Figure 2.5 shows the drag-free compensator singular values while the corresponding
loop gains are presented in Figure 2.6 and Figure 2.7; the values were derived from
the continuous time quantities for open loop and compensator dynamics while the
loop gains were generated from the respective ‘LINMOD’ discretized system.

Fig. 2.5 Singular Values of the DF Compensator (Astrium)
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Fig. 2.6 The DF loop gain (Astrium)

Fig. 2.7 The DF loop gain (simulation environment)
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The similarity between Figure 2.6 and Figure 2.7 in terms of operating loop gain
envelope (i.e. the gain profiles defined by the maximum and minimum singular
values) is striking; the fact that the trajectories of the two different DF loops in
the plots above are slightly different is inconsequential as far as the overall system
characteristics relevant to performance and robustness are concerned. This further
corroborates the fact that the implementation was carried out correctly and the
system functions as it should with a sampling rate of Ts = 1s, which is roughly
two orders of magnitude larger than the system time constants. With this sampling
rate, the discretized system is effectively an alternative continuous rendition of the
original. Additionally, the loop gains remain very high at the higher frequencies
despite the presence of the compensator; this is probably the reason why in the
study by Patton [15]) an additional disturbance estimation was needed for threshold
setting.

Figure 2.8 and Figure 2.9 feature the singular values of the Suspension (SUS)
open loop dynamics from the Astrium TF and ‘LINMOD’. It is interesting to note
that in the TF case, the six singular values split into three in the lower frequencies,
ranging from slightly below 120 dB to just above 100 dB, while in the ‘LINMOD’ case
a similar split occurs between 160 db and about 105 db; probably attributable to the
same reasons as in the DF case. However, in the ‘LINMOD’ case, the split is similar
to the corresponding DF case, which could mean that it is attributable to similar
round off or modelling approximation factors. Even though the lower magnitude
bounds show a good agreement at about slightly above 100 dB, the upper bounds
show a considerable departure from the 160 dB in the first case to just a little below
120 dB in the second. Again, in this range of frequencies, unlike the lower bound,
the upper bound is rather inconsequential for the design.
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Fig. 2.8 Singular Values of the SUS open loop (Astrium)

Fig. 2.9 Singular Values of the SUS open loop (simulation environment)
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The compensator singular values for the SUS loop as well as the two loop gains,
the Astrium TF-based gain and the ‘LINMOD’ gain, are presented in Figure 2.10,
Figure 2.11 and Figure 2.12, respectively.

Fig. 2.10 Singular Values of the SUS Loop Compensator (Astrium)
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Fig. 2.11 Singular Values of the SUS Loop Gain (Astrium)

Fig. 2.12 Singular Values of SUS Loop Gain (simulation environment)
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Marked differences in shape and magnitude are again observed on the upper
bound side, while the lower bound magnitudes show a relatively good agreement,
both at about 25 dB at ω = 10−4 rad/s and at the same levels (about 18 dB) at rad/s.
However, as in the DF loop gain case, even though the open loop profile is improved
(reduced) by almost four orders of magnitude in the higher frequencies, it is still
not adequate for noise rejection, as it remains well above 0 dB, at about 18 dB. The
open loop singular values for the Attitude loop, via TF and ‘LINMOD’ are shown in
Figure 2.13 and Figure 2.14, respectively.

Fig. 2.13 Singular Values of the ATT Open Loop (Astrium)
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Fig. 2.14 Singular Values of the ATT Open Loop (simulation environment)

It is striking that both sets of the (three) singular values are identical possibly
due to the fact that the ATT loop may be less prone to computational round-offs
and modelling approximations. Figure 2.15, Figure 2.16 and Figure 2.17 present the
singular values of the compensator and the attitude loop gains of the Astrium and
‘LINMOD’ environments, respectively.
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Fig. 2.15 Singular Values of the ATT Loop Compensator (Astrium)

Fig. 2.16 Singular Values of the ATT Loop Gain (Astrium)
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Fig. 2.17 Singular Values of the ATT Loop Gain (simulation environment)

The loop gains are identical in both the TF and ‘LINMOD’ case. However, they
also show control loop inadequacy: they are extremely low (well below 20 dB) at the
low frequencies, where they should be high for adequate disturbance rejection.

In addition, they are still high (as high as the SUS loop gains at about 20 dB) at the
higher frequencies, where they should be low for measurement noise attenuation.
This is the reason why the ATT loop measurements were previously discarded as
too noisy [29], and only the DF and suspension measurements were retained.

Indeed, the ATT measurements carry a considerable amount of the low frequency
disturbances, which can not be rejected by the control loop. Again, the ATT open loop
singular values all coincide at 160 dB in a double integrator profile (−40 dB/decade),
while for the other two, only the maximum singular value retains this profile in the
‘LINMOD’ case. The double integrator profile in the open loop is as expected from
the modelling details in [27].

However, the minimum singular value shapes of the DF and SUS loops in
‘LINMOD’ are indicative not just of round-off errors, but also of modelling approxi-
mations. These may be precisely the cross coupling, on the one hand, between the
DF and ATT loop dynamics and on the other hand, of both of them with the SUS
loop. Either of the two (DF and SUS loop) does not affect the ATT loop. Despite their
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shortcomings in performance and robustness, the compensators should stabilize
all three loops, which are inherently unstable. This is particularly important in the
design of the FDI process.

Lastly, the combined DF-SUS loop singular values are presented. Measurements
from these two loops are used during detection since the effective transfer function
Gd f _sus is a (11 × 8) matrix; eight significant singular values exist as shown in Figure
2.18. Two of the eight values are separated from the others at −200 dB levels. This
suggests a system structure singularity which also affects the FDI structure, as
discussed in the following section.

It is indicative that the eight thruster failure directions are separated into two
output-separable groups (i.e. sets of linearly independent vectors/directions): one
with six of these directions and the other with two.

Fig. 2.18 Singular Values of the DF and SUS loops
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2.1.5 Controllers, Thruster Failures and Stabilization

As a final step in the pre-design analysis, the compensator and corresponding closed
loop eigenvalues for each subsystem were considered. All compensators show
some marginally stable to slightly unstable eigenvalues; the same holds true for the
corresponding closed loop subsystems. This means, that the compensators do not
stabilize each loop separately. The eigenvalues of the three loops together, complete
with compensators (hence the overall closed loop system), also show marginal
instabilities. This is not surprising. In fact, even if each compensator alone stabilized
its corresponding loop, this does not imply that all three together will stabilize the
overall system. This can be explained by the fact that the loop-by-loop design is
based on the assumption of loop independence, which is only an approximation for
the purposes of this particular design method, and this assumption does not actually
hold true for the real system as, at best, small cross feeds and cross correlations
between loops tend to be ignored. These approximations, however, may compromise
the stability of the nominal design as well as the overall system robustness.

Marginal instabilities may not necessarily be detrimental to the system func-
tion, even though the performance itself may be compromised. As a trade-off, the
instability does provide enhanced agility and leverage for the system to respond
faster to a command, a property which is useful in cases of frequent manoeuvres
and set point changes. On the other hand, extra caution is required to monitor
and set the (marginally unstable) controller initial conditions very accurately for a
smooth system function, as one cannot count on a fast convergence to the values
of the controller state that are compatible with the system state at any particular
time, when the control kicks in. However, the FDI process is not affected, as the gain
matrix D in the Diagnosis Filter case and the Kalman Filter gain matrix H in the
Euresis Filter stabilize the residual dynamics.

Another interesting fact is that any thruster failure can destabilize an otherwise
stable closed loop. The loop-by-loop closure is much more prone to this, as each
loop has to rely on its own control system, and it cannot use any leverage from the
others that might have enough slack to compensate for the particular failure. This is
precisely where a truly multivariable control design has a distinct advantage as it can
leverage the overall system capabilities and make use of any actuation redundancies
to compensate for functional impairments. In fact, the simulation environment
model behaviour [29] corroborates this fact: as soon as a (thruster) failure occurs
(or is injected for experimental purposes), the rest of the (thrusters) control inputs
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max out to almost reach saturation levels, with the FDI process functioning properly,
nonetheless.

2.2 FDI Objectives

The primary objective of this thesis is to design robust failure detection algorithms for
the thruster (actuator) failures using model-based schemes, which employ a dynamic
detection model. If an actuator fails, then its effect can be observed by an anomaly
in the vehicle dynamics, which in turn are observed via sensor measurements.

If one allows both sensor and actuator failures, the task of failure identification
and isolation becomes increasingly more complex. However, the advanced detection
theory, as described in Chapter 3 and in the theoretical foundation of the FDI
techniques of Chapter 4, can handle both these eventualities at the expense of
additional computation. For the purpose of this thesis, it is assumed that only
actuator failures occur, while the sensors’ function remains normal at all times.

In the LPF reference application; there are eight thrusters, in the typical configu-
ration of two separate branches of four thrusters each. The thrusters are arranged to
control the high-level disturbing torque of the main engine; only four thrusters are
used in a nominal situation.
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The structural diagram of the LPF FDI generic concept is shown in Figure 2.19.

Fig. 2.19 Structural Diagram of the LPF’s FDI Generic Concept

In this dissertation, the three selected FDI approaches and their corresponding
algorithms are tailored in such a way so that they can detect and isolate thruster
failures on-line and in real-time for different trimming points during the system
operation. The algorithms are designed for linear system models, but Euresis and
Euphoria Filters are modifiable to also handle nonlinear dynamics. Since the overall
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nonlinear system is always around an operating/trimming point, depending on
the mission scenario, there is always a respective linear(ized) model which can
be readily derived automatically using appropriate simulation procedures. The
design procedure(s) for all these three methods can be set to automatically create the
appropriate FDI schemes in different cases of fault and severity. The definition of
key parameters in the new design methods can be set to be carried out on-line with
the created code and to operate as plug-ins without interfering with the rest of the
system operation.

The LPF reference application focuses on actuator (thruster) faults only. It does
not consider the possibility of sensor (gyro, accelerometer) faults. The underlying
assumption in the current thesis is that the sensors operate perfectly. However,
this premise may be proved too limiting and unrealistic, as the sensors quite often
malfunction. This malfunction, in turn, confuses not only the FDI per se, but also
the control system, compromising its performance; for this reason, in some scenarios
there are additional tests which include two or more actuator failure simultaneously.
The robustness of an FDI system can be considerably enhanced if designed to detect
sensor and actuator failures simultaneously, without presuppositions of partial
integrity of one set versus the other.

The developed Diagnosis Filter, which is a geometrical/analytical redundancy
approach, encompasses not only both kinds of failure but also uncertainties (para-
metric) in the dynamics, without necessarily an increase in dimensionality, i.e. the
need for construction of additional Diagnosis Filters; this depends on the specific
system topology, which may allow for all faults to be detected by one filter only. The
same also applies for the Euphoria Filter, the so-called H2 based Filter. The Euresis
Filter accommodates sensor failures as well, at the expense of the incorporation of
additional models to reflect the sensor failures.

In the Diagnosis and Euphoria filters, even if the measurement based constraints
indicate more than one filter to cover all the failures, the requisite number will still
be considerably lower than if one detection filter corresponded to exactly one failure
alone [15, 29]. This would alleviate on-board computational requirements and make
the design implementable real-time.

The FDI objectives for this study are the following:

• Identify a failed thruster in any thruster configuration.

• Pin-point thruster failure severity.
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• Identify two or possibly more simultaneous thruster failures in any configura-
tion.

Such a capability to identify, on-line and in real-time, any of the eight thruster
failures, occurring at any point during system operation, with any degree of severity
and covering a wide range of fault profiles, has not been possible using the currently
available methods [15, 29], which usually require a disturbance identification stage.
This clearly distinguishes the work presented in this thesis from previous studies and
defines its contribution in the field, specifically within the context of the proposed
FDI techniques.

2.3 Types of Faults Considered

The thrusters can be functioning perfectly (open) or have a failure (closed). Thus,
the model of a thruster fault in the LPF simulator is:

ur = δuT (2.2)

where ur is the real thrust and uT the commanded thrust. δ ∈ [0,1] represents the
thruster effectiveness, and its complement, γ = (1 − δ) the percentage of failure, or
failure severity. Thus,

• δ = 0 represents the non-faulty case.

• δ = 1 represents the case of complete loss of thrust.

• δ < 1 represents intermediate degrees of thruster effectiveness (or complemen-
tarily, failure severity).

• δ = intermittent step functions of varying magnitudes, captures intermittent
failures of different severities.

Identifying the thruster effectiveness factor δ, or its complement γ, which represents
the failure severity, is fully addressed in Section 4.4. If δ is constant, then its comple-
ment represents a fixed percentage degradation in thruster function. However, the
parameter δ need not be constant or intermittently constant. Another type of faults
are the leakages that can also be described by appropriate functional representations
of the parameter as, for example:

δ =
1

1 + αt
(2.3)
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where α signifies the leakage rate, which can be set to a very low value. For example,
for α = 0.001, the thruster effectiveness is almost 100% at the beginning and is
reduced to 99% at t =100 s. This would signify the presence of a slow leakage in
the thruster. Other functional representations corresponding to different modes of
failure, such as a linear degradation of a thruster function, are also possible. In all
the three design methods (Diagnosis, Euresis or Euphoria Filters) once a thruster
failure has been isolated, the failure severity can then be identified via a simple
procedure as described in Section 4.4. This is possible with either a constant or a
time varying δ. Table 2.1 summarizes the nature of the modelling errors.

Table 2.1 Nature of errors that affect the LPF’s thrusters

Actuator uncertainties

Thrusters
Bias (leakage), noise, high frequency dynamics
Position and rotation misalignment
Maximum thrust command step, quantization

Dynamics uncertainties

Parametric uncertainties

Inertia matrix
Mapping of spacecraft acceleration into drag-free acceleration
Mapping of spacecraft acceleration into suspension acceleration
Suspension stiffness
Drag-Free stiffness and matrix of influence of thrusters on
spacecraft acceleration centre of mass

Dynamics uncertainties Coupling between axes, high frequency uncertainties

Sensor uncertainties

Suspension sensors
Noise, high frequency dynamical uncertainties

Drag-Free sensors

External disturbances

Suspension actuator disturbances
Bias, magnitude (leakage)Thrusters disturbances

Drag-Free disturbances
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2.4 Evaluation Criteria for the FDI Algorithms

In terms of evaluation criteria, it is clear that the FDI algorithms should achieve
fault sensitivity maximization, with a consequent minimization of false alarms and
missed detection rates. The true identification of a specific faulty thruster and an
accurate severity identification are also required.

More specifically, the performance characteristics for each FDI scheme can be
quantified in terms of applying the following evaluation criteria:

1. False Alarm Rate r f a

2. Missed Detection rmd

These important indices capture the accuracy of the FDI process. It is important
that both are kept at an absolute minimum. The false alarms rate r f a is the ratio
between the false detections when there is no fault over the total number of actual
failures; the missed detection rate rmd is the ratio of the missed failures over the
total number of actual failures. These have been quantified from the totality of the
simulation experiments on the simulation environment. The true detection rate rtd

can then be computed as the difference (1 − r f a − rmd). The criterion rtd is the true
measure of FDI accuracy; ideally, it should remain close to one.

3. Correct Isolation Rate ric

4. Wrong Isolation Rate riw

These indices can be computed as the ratio between the numbers of correctly
and incorrectly identified failures over the total number of failures, again as an
average over a set of experiments, respectively. The true isolation rate rti is then the
difference between ric and riw. It should be noted that the sum of ric and riw is not
necessarily equal to one, as inconclusive isolation instances may occur. If we allow
those to be classified as wrong isolations, then the two indices are complementary.

5. Time to Detection td

6. Time to achieve Isolation ti

The above indices constitute the main criterion for the algorithm effectiveness.
These have also been quantified for each method from simulation runs on the sim-
ulation environment, for various thruster faults and under different scenarios. As
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each run may vary in the time it takes to detect and isolate a failure, the correspond-
ing average detection time tda and average isolation time tia from the collection
of experiments on the simulation environment, has been computed and will be
considered.

Of the above indices, 1-4 address the accuracy of the FDI scheme, while 5 and 6
its efficiency. They should all be minimized except from criterion 3, while the two
derivative indices, rtd and rti should be maximized, as well as the correct isolation
rate ric. These definitions are generic and method independent; however, the values
they assume depend on the specific used FDI algorithm whose performance they
characterize. These indices have been computed as a result of extensive Monte Carlo
runs on the complete FDI system.





Chapter 3

A Critical Survey of Model-based FDI
Methods

3.1 The Geometric and Analytical Redundancy Approach

Model-based FDI has been of interest in aerospace and other safety critical fields since
the late 1970s. Some of the earliest work on FDI [33–35] focused on sensor failures
and utilized the so called ‘analytic redundancy’ - essentially employing an analytic
model of the sensor(s) for generating the necessary ‘parity relations’/residuals, for
fault detection and isolation. These were the first Model-based FDI techniques,
which, by making use of analytical models for redundancy, enabled FDI on systems
of critical importance without the need for additional hardware.

By the early 1980s, the first Detection Filter was designed [36], which employed a
model of the system and made use of its structural/geometrical properties, in order
to generate residuals in specific directions corresponding to actuator and sensor
failures. Later, in 1986, a complete and very elegant (geometric) mathematical theory
for Detection Filters, was presented by Massoumnia [37]. This became the catalyst
for subsequent work on Model-based FDI using the geometric approach [38–48].

The Detection Filter is very similar in structure to the Kalman Filter or even
to the Luenberger Observer [49]. It assumes a linear plant and it can provide
information for more than one fault simultaneously. However, it differs from the
above mentioned observers in the manner of its gain matrix design: in the Kalman
Filter the gain matrix is chosen such that the effect of process and measurement
noise is minimized in the state estimate, while in the Detection Filter the gain matrix
is chosen such that the failure(s) are related to the residuals in a very specific way,
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that allows not only fault detection, but also - where the system topology allows - to
identify it; in fact, it can simultaneously identify more than one faults.

This chapter presents some of the basic background principles of analytic redun-
dancy and detection filter structure. In the context of failure detection, a residual is a
function of time, which is nominally zero, or close to zero when no failure is present,
but it is distinguishably different from zero when a component of the system fails.
For example, the difference between the outputs of two identical sensors measuring
the same quantity is the simplest form of a residual. The process of generating
the residuals from relationships among instantaneous outputs of sensors is usually
called direct redundancy. However, it is also possible to generate the residuals using
temporal redundancy, which is the process of exploiting the relationship among
the sensor outputs and actuator inputs. This requires a hypothesized model of the
dynamics of the system to correlate sensor outputs and actuator inputs at different
instants of time.

A simple typical first order discrete system serves as an illustrative example.
Consider the following system:

x(t + 1) = αx(t) + bu(t)

y(t) = cx(t)
(3.1)

If the system is functioning properly and no failure is present, then a simple compu-
tation shows that:

y(t)− αy(t − 1)− cbu(t − 1) = 0 (3.2)

Relations like the above are known as generalized parity relations. A parity relation
by itself is used to generate a residual r(t). In the above example, simply take:

r(t) = y(t)− αy(t − 1)− cbu(t − 1) (3.3)
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Assuming that the actuator is perfect and no measurement noise is present, a
nonzero r(t) indicates a sensor failure.

Full State Observers (FSO) are another class of processors, which use temporal
redundancy to generate the residuals. Consider, for example, the following Linear
Time Invariant (LTI) system with two actuator inputs:

ẋ(t) = Ax(t) + Bu(t) + B1m1(t) + B2m2(t)

y(t) = Cx(t)
(3.4)

The term B1m1(t) characterizes a failure of the first actuator, while B2m2(t) of the
second. The functions mi(t) are assumed to be completely unknown, with mi(t) = 0
when there is no failure present.

Next, we design a full order observer:

ˆ̇x(t) = (A + DC)x̂(t)− Dy(t) + Bu(t)

z(t) = Cx̂(t)
(3.5)

When a failure is present, the innovation z(t)− y(t) will start to grow and, by
placing a threshold on its magnitude, the presence of a failure in the system can be
detected.

Next, through an appropriate choice of the gain matrix D, in conjunction with
linear transformations on the innovation/residuals, the latter can be constrained
to have a fixed direction in the output space, and, in fact, to lie in independent
subspaces for different actuator failures. In particular, defining two linear transfor-
mations on the innovation r1(t), r2(t), as follows:

r1(t) = H1[z(t)− y(t)]

r2(t) = H2[z(t)− y(t)]
(3.6)

matrices D, H1, H2 can be found such that the failure of the first actuator shows up
in r1(t) but has no effect on r2(t), and similarly for the failure of the second actuator.
Clearly, if the innovation growth is constrained to independent subspaces, then H1

and H2 can simply be taken as the projection matrices onto these subspaces.

From elementary system theory, for a nonzero m2(t) not to affect r1(t), the image
of B2 should be in the unobservable subspace of the system (H1C, A + DC). In addi-
tion, for a nonzero m1(t) to show up in r2(t), the image of B1 should not intersect the
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unobservable subspace of (H1C, A + DC). Similarly, for the unobservable subspace
of (H2C, A + DC).

By a proper choice of the matrices D, H1, H2, the observability properties of the
system relating the failure events to the residuals can be modified. The unobservable
subspace of (H1C, A + DC) is simply the subspace spanned by those eigenvectors
of (A + DC) which are in the null space of H1C. In addition, the column vector
B2 should be a linear combination of those eigenvectors, since the second actuator
failure should not show up in the first residual. The problem, therefore, is to use the
freedom in assigning the eigenvectors of A + DC to satisfy the failure detection and
identification requirements.

The work of Massoumnia [37] contains an elegant, complete, and thorough
development of all the necessary mathematical apparatus for designing different
classes of detection filters. The pertinent details for the design of a detection filter for
thruster faults will be given in the presentation of the preferred architecture(s) for
FDI, in the next chapter. However, the purpose of presenting this simple example
here is to elucidate some of the terminology used interchangeably in the open
literature, as well as its associated concepts. In addition, some of the characteristic
properties and limitations of the detection filters can also be as following:

1. Detection filters require linear plants as there is no mathematical theory for
Detection Filter design in nonlinear systems.

2. Detection filters are special type observers, which can also be termed Unknown
Input Observers or even Unknown Linear Parametric Estimators (ULPE),
since observers can also be set up as parameter estimators. This model-based
observer does not need to have any knowledge of the input to the system in
order to perfectly estimate the system state. Even if the actuator fails and its
behaviour, i.e. the terms m1(t) and m2(t) in equation (3.2), is unknown, the
observer perfectly identifies the system state, but also retains the (nonzero)
residual information that corresponds to the failure(s).

3. Subspace Projections and the Eigen Structure assignment are an inextrica-
ble part of the FDI design framework in this context and cannot be viewed
separately. They are essentially, synonymous and an alternative statement
pertaining to the crux of the design per se.

4. Depending on the specific system topology, there are limitations as to how
many faults can be identified simultaneously with one detection filter. In such
cases, more than one filters become necessary [36, 37].
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5. By construction, the detection filters are not designed to simultaneously handle
(stochastic) disturbances and measurement noise, or modelling uncertainty
(structured or unstructured). Hence, the issue of robust residual generation,
devoid of any noise, disturbance, and uncertainty contamination, is key to
robust FDI. This is precisely the challenge to the designer, which needs to be
addressed separately as well as in parallel and simultaneously.

The fifth characteristic can be a serious limitation to a high performance robust
FDI. In this setting, the only way a designer can address the issue is to:

i. either carefully set (fixed) thresholds [27, 50, 51], that are accurate measures
of the expected disturbance and uncertainty contributions to the residuals;
anything above the threshold would then be interpreted as a failure. However,
this carries the risk of either being overly conservative, in which case missed
detections would occur, or, in the opposite case, the rate of false alarms would
increase. We also note here that fixed thresholds may not always work, as
the disturbance magnitudes vary with the operating conditions. Using spec-
tral content information to more accurately set the thresholds, on the other
hand, would be computationally intensive and not useful for the real-time
implementation of the FDI algorithms

ii. or do appropriate loop shaping through the control design, so as to ensure
maximal disturbance rejection, and avoid threshold setting

iii. or do appropriate signal (pre)processing of the inputs to the FDI algorithms
(of the plant input(s) and output(s))

In European Aeronautic Defence and Space (EADS) [52], an intelligent scheme is
devised. It uses UIOs, with the unknown input provided by the failure(s), which is
tantamount to a typical [37] Detection Filter structure, in order to identify failures.
In this work, which follows closely the work by Uppal [51] and Patton [15]), only
drag-free and suspension measurements are used for FDI because they have low
noise. The algorithm performance is very good, even though a closer inspection of
the results suggests that there is room for improvement, in terms of more accurate
setting error thresholds using ideas in (iii) above, since, for the current system, the
controllers are already set, so that we cannot exploit a truly multivariable controller
structure, which could have appreciable built-in robustness and disturbance rejec-
tion properties, given the strong coupling from drag-free and attitude loop to the
suspension loop [51].
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In Patton [15], a combination of disturbance identification algorithm for threshold
selection is run in parallel to a Detection Filter scheme, assuming linearity, with
good performance. However, the problem of identifying disturbances in parallel
to the FDI scheme can result in inaccuracies and loss of robustness; as a result, the
thresholds will have the shortcomings mentioned above. Although the algorithms
are not presented in sufficient detail, it seems, in light of the preceding discussion
almost certain that further improvements can be achieved.

Remark: None of the works cited in the references [8, 11, 17, 18, 20–22, 33–48], or even
in the open literature some of which is additionally cited in Uppal [51], address the issue of
FDI in conjunction with a good control design where multivariable loop-shaping can offer
tremendous advantages. Moreover, given that, most systems have built-in redundancies
(especially in control effectors); a good control design can greatly alleviate the FDIR process,
by automatically remedying the problem by exploiting the system redundancy.

3.2 The Multiple Model Approach

The Multiple Model (MM) FDI methods started to develop with a few years delay
from the geometric and generalized parity methods of the mid-1980s, and are a
natural extension of the Multiple Model Kalman Filters (MMKF) of the 1970s. Here,
however, instead of each filter in the bank of Kalman Filters (KF) representing
a specific parameter value within its associated uncertainty interval, each of the
filters corresponds to the particular failure that it models. The relative probabilities
are updated in a completely analogous manner to those in the MMKF case, until
convergence occurs to the most probable member in the set, which corresponds to
the actual failure.

The Multiple Model concept is attractive, as it directly models each fault in a
corresponding KF model in the bank of filters for all failure modes. If the faults
are not exactly known, both in direction and in magnitude, convergence to the
correct fault mode becomes a challenging issue. This convergence depends also
on the nature of the underlying process, which may exacerbate the problem. This
is completely analogous to the convergence problems encountered in the Multiple
Model (Adaptive) Kalman Filters of the 1970s, when none of the filters chosen exactly
matched the actual (unknown) parameter value of the estimated plant. However, in
the FDI setup, given that directionality is a dominant dynamic feature, even if the
actual failure level is not known, fault detection - but not fault severity - can still be
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achieved reliably, provided that at least the directionality is accurately reflected in
the bank of the chosen KF models.

This alternative FDI design philosophy, using the KFs as optimal state estimators,
allows for the optimal (stochastic) disturbance rejection from the residuals and, if
the topology is right, it can ensure a robust fault detection; thus, minimizing false
alarms or missed detections that would be attributable to the (stochastic) disturbance
factors in a standard Detection Filter setting, which, by construction, is deterministic.
In addition, this alternative FDI architecture can handle nonlinear plants, by simply
substituting the Kalman Filters with various nonlinear state estimators, such as the
Extended Kalman Filter (EKF), the Gaussian Sum Filter (GSF) and the Unscented
Kalman Filter (UKF) [53–55]. The UKF filter proposed in Valavani [56] has excellent
performance and avoids the divergence problems of other nonlinear estimators [57].

The FDI architecture(s) implemented in the LPF simulation model are fundamen-
tal Detection Filter implementations which use many non interacting models - one
for each of the eight thrusters whose failures they are supposed to be monitored.
In previous studies [17, 18, 58, 59] the Interactive Multiple Model (IMM) approach
is employed, making use of banks of UKFs that reflect all the failure modes. A
probabilistic approach is then used to lead to the correct model, which represents
a particular failure which would thus be identified. More specifically, they utilize
a standard multiple model structure as in (Adaptive) Multiple Model Kalman Fil-
tering, where the individual models have been selected to conform to prescribed
failures. Each model, then, realizes a UKF, by combining the FDI structure with
signal filtering at the same time. The individual model probabilities are then up-
dated, in order to determine the most probable model, which would correspond
to the specific failure mode for which it was designed. The reference application is
reaction wheels in a satellite Attitude Control System [17, 18] and sensor failures in
Unmanned Aerial Vehicles (UAV) [58]. In Cork [58], the theoretical development
allows for model switching, which has never been tried in simulation. The IMM-
UKF algorithm performed adequately for some (milder) sensor faults - only single
sensor faults were considered - with the results not indicating the accuracy of the
mode estimation. The authors also point out that faults such as drift, bias, or ramp
would cause UKF to diverge. According to their own admission, to avoid divergence
requires knowledge of the true mode of the system. In Tudoroiu [17, 18], the authors
also emphasize the importance of designing correctly the set of modes that represent
the possible system behaviours, an exercise that can be unwieldy in a nonlinear
setting.
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In concept, this approach seems attractive but in reality, it can be impractical and
ineffective due to a variety of reasons. In addition to the computational requirements,
there are issues of convergence and robustness, as well as of possible UKF filter
divergence, which can be exacerbated by the nature of failures themselves, without
even considering all the other sources of uncertainty. This however, is a nonlinear
scenario; the divergence of nonlinear estimators has been well documented in the
literature [57] even in the absence of failures. If on such a sensitive structure one
superimposes the requirement that a failure occurs, especially if this is a mild one at
its onset, this failure information might be cloaked/overlooked and misinterpreted
in the setup as there is no provision for signal content separation in the overall
scheme.

Ru and Li [59] employed various schemes: MM, IMM, Hierarchical Interactive
Multiple Model (HIMM) and Hierarchical Interactive Multiple Model Maximum
Likelihood Estimation (HIMMML), in which the underlying model is linearized. It is
claimed that HIMMML has the best performance; there is not enough detail to have
any further insights, though most of the comments made above would also apply
here as well. In Li [60]), an attempt to remedy some of the inherent shortcomings
is made, by using Expected Mode Augmentation algorithms, which focus on the
best choice of the true models to be implemented on an IMM structure. Briefly, the
proposed technique starts with a specific number of models that form a grid, within
which a new model set choice is evolved based on the probabilistic synthesis of the
results in the previous model set. Thus, the scheme has the capability of evolving
to new model sets based on current information, without requiring an excessive
enhancement of the number of models; hence the characterization ‘Variable Structure’
and ‘Expected Mode Augmentation’. This approach depends on the requirement of
the mode space being continuous, which would make it unsuitable for failures that
violate this in general, which is a rather large class of failures. There does not appear
to be a significant performance or robustness improvement and the issues pertaining
to computational complexity, convergence, and performance robustness still remain.
However, as in the case of LPF the failures seem to be of limited number and well
defined, the usage of an IMM approach may be actually promising, as it provides a
more direct way of failure identification, since each of the individual models chosen
in an IMM structure would directly correspond to a specific failure mode. This
will be further discussed in the next section, where we suggest our preferred FDI
architectures for the LPF thrusters’ faults.
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3.3 The Optimization Based Approach to FDI Using
H∞

The optimization based methods to robust filtering and FDI employed in this disser-
tation are based on the seminal paper by Doyle [61] in which the authors provided,
for the first time, state space solutions for the control problem. They used modified
Riccati equations with off-diagonal matrix blocks, which essentially forced a joint
and simultaneous solution of the Filter Riccati and Control Riccati equations. In
addition, they were able to prescribe a desired error norm bound γ, which the H∞

solution was designed to satisfy, and which could be improved via iteration under
appropriate conditions.

These control solutions ushered in the dual solutions to the robust filtering
problem, which optimized the H∞ norm, and were followed by considerable activity
in the late 1980s to mid-1990s [62–67]. There was a great deal of expectation regarding
the new design method, especially since it was now possible to include in the design
framework, for optimization, various types of disturbances and constraints by
plant augmentation and to assign appropriate weights to the corresponding blocks.
Parametric uncertainty was also included in this manner. However, in 1991 it was
established that the two methods, i.e. H2 and H∞, were essentially equivalent as
far as the control design was concerned [28]; they provided stability robustness to
the unstructured uncertainty that could maintain the prescribed performance under
one actuator failure, and with some degradation, two and even three simultaneous
failures. This was possible since the control design automatically made use of
the system’s built-in redundancy. However, they were both extremely sensitive to
parametric uncertainty, and conservative with respect to attainable performance,
because all the directionality information was lost in the solution, given the spherical
nature of the norm expressions. Some slight improvement in performance for both
filtering and control was achievable by µ− synthesis, and later by near Linear Matrix
Inequality (LMI) and Linear Parameter Varying (LPV) designs. However, in the
latter two, the guaranteed robustness was compromised.

These optimization methods may be excellent for robust control and filtering
under unstructured uncertainty and (non-parametric) disturbances and for the
minimization of fault effects because they can be included in the design from the
start as additional plant augmentation blocks. They are not however appropriate for
FDI, if used alone, as they tend to confuse the directionality information, which is
key to the detection and isolation of faults.
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Previous work [68, 69], confirms to some extent the above remark. The Robust
FDI is attempted for the thruster faults of the MICROSCOPE1, using H∞ estimators.
In the study by Valavani and Voulgaris [28], the authors state that the proposed FDI
scheme fails to isolate the faults successfully. In addition, in [68], the authors note
that this solution has been tested but it has revealed worse FDI performance than a
bank of twelve filters, one for each FEEP thruster fault, with some additional post
filtering of the residuals. It is not made clear in the paper whether the 12 FDI filters,
which should rather be termed robust residual generating filters for FDI, interact
and how a fault determination is made amongst them. Additionally, as discussed
earlier, the assumption of insufficiently defined system parameters and nonlinearity
can seriously hamper such a design, which would have to be quite complex given
its dimensionality, from including fault and parameter considerations in the design
model.

3.4 FDI Method Suitability - Selection Criteria

The following generic factors determine the suitability of an FDI method for a
particular application/mission [15, 51]:

• Simple and Systematic Design Procedure.

• Suitability for detecting and isolating sensor/actuator failures.

• Simple implementation requirements; low complexity (also weight, bulk con-
siderations).

• Observability and information processing requirements.

• Capability to function in real-time reliably and continually.

• Capability to handle multiple faults (whether simultaneous or successive).

• Capability for fault isolation (structured/robust residuals).

• Suitability for detecting and isolating sensor/actuator failures.

1The Micro-Satellite à traînée Compensée pour l’Observation du Principe d’Equivalence (MICRO-
SCOPE) is a 300-kilogram (660 lb) class minisatellite operated by CNES to test the universality of free
fall (the equivalence principle) with a precision to the order of 10-15, 100 times more precise than
can be achieved on Earth. It was launched on 25 April 2016 alongside Sentinel-1B and other small
satellites.
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• Capability for easy tuning of the FDI (due to parameter and trimming point
changes).

• Reproducibility and consistency in fault isolation.

• Capability to handle non-linearity.

• Robustness to modelling errors and disturbances, yet sensitive to faults.

• Transparency for easy troubleshooting for safety and reliability.

• Capability for (analytical) validation.

• Non-intrusive to existing system; plug in capability to operating system.

• Adaptation and learning not a requirement; detection being distinct from
identification.

In terms of more specific FDI performance, the objectives of a good FDI procedure
should include:

• Fast detection time/low detection delay.

• Minimal false alarms rate.

• Minimal missed detection rate.

• Fault identifiability and isolation.

• Robustness to parameter variations, uncertainty and noise.

The two sets of criteria above, consisting of both generic factors and evalu-
ation/performance criteria, comprise the basic prerequisites to achieve a space
mission objective. While all are important for the purposes of this dissertation, the
most important weight criterion is the robustness and fault isolation capability, and
the FDI performance requirements as described above.

3.5 Rationale for Specific Architecture(s) Selection

3.5.1 Linear Model Availability

The overall system with the three sub-loops (the DF, SUS and ATT Loops), and
the corresponding controllers is very well represented by linear (transfer function)
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models in the LPF simulation environment. From those, state space descriptions are
extracted for further analysis and FDI algorithm synthesis. The linear model descrip-
tions also include a thorough disturbance profile to capture the effects of modelling
inaccuracies and nonlinearities, as well as sensor noise profiles, compatible with
linear model descriptions.

The Diagnosis and Euphoria Filters are based on the linearity of the plant dynam-
ics, while the Euresis Filter not only ensures optimal performance for linear plants
but it can also handle non-linear ones. In the latter case, the MMKFs would have
to be substituted with UKFs which are explicitly designed to handle non-linearity.
Therefore, the Euresis Filter is also applicable to a non-linear plant description, if
available in a simulation environment.

3.5.2 Capability for Fault Identification

Diagnosis and Euphoria Filters are developed to generate structured residuals which
correspond to specific (thruster) failure directions. As a result, they directly identify
which thruster has failed based on the corresponding residual direction as generated
during system operation.

The Euresis Filter although it does not explicitly generating structured residuals,
it does encompass specific models corresponding to each thruster failure. By con-
struction, the method converges to the right model corresponding to the specific
failure mode.

In fact, all of them can be valid for any operating condition around which a
linear model is obtained, depending on the specific mission requirements. Their FDI
architectures are readily adaptable within a simulation environment as long as the
failure directions are well defined. In addition, they represent a plug-in capability
for FDI without interfering with the rest of the system functions and work in parallel,
utilizing the available signals and measurements from the operating system.

3.5.3 Robustness

Robustness to modelling inaccuracies, parametric uncertainty, disturbances and
noisy measurements is key in a robust residual generation process, in order to
ensure correct fault detection and identification, without any false alarms and missed
detection.

All three designed FDI techniques can incorporate additional robustness char-
acteristics to eliminate/minimise the effects of the above-mentioned error sources.



3.5 Rationale for Specific Architecture(s) Selection 51

These characteristics can be incorporated following a truly multi-variable Singular
Value Decomposition (SVD) analysis of the entire system to reveal the vulnerabili-
ties in certain frequency ranges of interest, which can be then mitigated by adding
appropriate filters to the FDI signals before they are fed into the FDI blocks. More
details are given in Chapter 4, where the systematic design is described in detail.

3.5.4 Real-Time Capability

All the filters are designed to run in real time, and with the simplest possible compu-
tation, as they are realized on existing system models in a simulation environment.
There are no delays in identifying disturbances and setting thresholds, as was the
case in work previously carried out by others. The current designs have built-in
capabilities to reject all sources of error that are irrelevant to the FDI process during
system operation.

3.5.5 Method Genericity- Suitability for Other Space Applications

Since all the proposed techniques are model-based, they are applicable to any other
space application where a model is available.

The comparison criteria, as listed below, include some of the generic FDI suitabil-
ity factors [15, 40]:

1. Design synthesis complexity.

2. Suitability for detecting and isolating sensor/actuator failures.

3. Implementation requirements, complexity.

4. Observability and information processing requirements.

5. Real-time performance and software validation.

6. Capability to handle multiple faults.

7. Fault diagnosis efficiency, accuracy and reliability.

8. Robustness to modelling errors, parametric uncertainty, noise and disturbances,
yet sensitive to faults.

9. Transparency of scheme for easy troubleshooting for safety and reliability.
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10. Compliance with system engineering requirements.

11. Suitability for other space applications.

12. Algorithm dependence on subsystem/unit characteristics.

13. Applicability to the LPF thrusters FDI.

Table 3.1 summarizes the above mentioned characteristics of the three model-
based FDI approaches.
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Chapter 4

FDI Techniques

In terms of the overall design philosophy, the majority of FDI methods fall into one
of two major categories:

i. Geometric/Analytical Redundancy methods, which include the Diagnosis and
Euphoria Filters.

ii. Multiple Model/Randomized and Optimization Based (H2, H∞) Methods
(within a Multiple Model Framework), which include the Euresis Filter.

The majority of methods in either category are Model-based and they all seek
to generate robust residuals to support their specific diagnostic criteria for FDI.
Robustness is widely accepted here to mean minimal sensitivity with respect to
plant disturbances, sensor noise, and parametric uncertainty but not necessarily to
failure directions, which is the main FDI objective. In this respect, the structured
residuals are key factors along with their associated diagnostic criteria, which are
primarily generated by the methods in category (i). More specifically, these methods
configure their observer gains to minimize/maximize residuals in specific failure
directions or to generate residuals whose transformed directions via the observer
dynamics, uniquely correspond to specific failure directions. In the first case, such
residual magnitude optimization is achieved via orthogonal projection type methods
onto observer range/spans [15, 29] or via adjoint directionality recovery methods on
otherwise optimized residuals (H2 based Filter). In the methods of category (i), the
structured residuals generated, preserve the directionality invariance with respect
to the corresponding failure directions regardless of their magnitude. The available
literature on these methods is limited. Almost invariably, the residuals generated by
each algorithm are used to detect and identify a failure in both categories. While the
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residuals magnitudes are used in the detection diagnosis criterion, in the Diagnosis
and the Euphoria Filters, which are classified in category (i), residuals directions are
used instead.

The residuals direction, rather than the magnitude, offers a much more robust
diagnosis criterion, since direction is considerably less sensitive to (small) parametric
uncertainty and cannot be easily affected by random noise, which is not typically
contained in any specific direction and, therefore, is not expected to exclusively
disturb any one direction alone. In contrast, the residuals magnitude is directly
affected by noise and modelling inaccuracies, and although it is much more easier
to handle analytically. Even though residual magnitude measurement is more
conservative, it is less robust to both structured and unstructured uncertainties. This
is why disturbance estimation and accurate threshold setting are needed in most
of the available algorithms in order to minimize false alarms, while a directionality
diagnostic criterion has no such requirements. Indeed, the direction captures phase
information and is a more accurate and robust measure to be used. Therefore, a
method that employs a residual direction diagnostic criterion for FDI is preferable to
methods that use a residual magnitude criterion. Invariably, state of the art control
design techniques use control error magnitudes according to specified norms, which
they seek to minimize in the design process via an appropriate controller synthesis.
Such designs, which result from the minimization of a particular error norm, are
known to be extremely sensitive to parametric variation. In addition, they also
tend to be conservative, as the directionality information cannot be reflected in
a norm magnitude; for example, the error magnitude alone does not specify the
error sign, which encapsulates direction. To date, the issue of how to include
directionality information to enhance the performance, robustify, and desensitize
the design has not been satisfactorily addressed in a systematic manner in the
control area. Fortunately, the FDI problem framework does allow for the direct
incorporation of directionality information in the category of geometric approaches,
which, if appropriately handled in the theoretical development, can retain all the
pertinent information for a robust diagnosis. The advantage here is that the FDI
framework requires fault detection only, and not fault magnitude minimization.
However, a good diagnosis procedure should also provide reliable information for
accurate fault magnitude identification (fault severity).
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4.1 Design Method 1: Diagnosis Filter

4.1.1 Theoretical Foundation

The Diagnosis Filter relies on system fault controllability. It assumes that the com-
ponent failure - actuator or sensor, and thrusters in the case of LPF - affects the
system response (state) and is reflected in the system response measurements (out-
put observability). Thus, its development depends on appropriately tracing and
transforming such fault controllability and observability subspaces by designing
the Diagnosis Filter gain such that each fault direction has in the end a unique and
invariant reflection in the residual direction.

The Diagnosis Filter is very different from the Kalman Filter concept, which is an
optimal stochastic state observer in the sense of minimizing stochastic disturbances.
Also, it is an observer, albeit a very specialized one, set in a deterministic framework.
It assumes a linear time invariant plant, which can sustain a sensor or actuator failure,
or even a parametric failure/jump. This filter also provides an estimate of the plant
state along with the detection of a failure; the specific failed sensor or actuator should
be readily identified from the residual direction itself. This is achieved by designing
the residuals in such a way as to correspond to pre-specified failure directions. This
is realized by the choice of the gain matrix with which the residuals are entered in the
filter, such that a failure in a specific component is reflected in the Diagnosis Filter
residual along a pre-specified direction. Thus, the Diagnosis Filter is not only able to
detect a failure, but also to identify it automatically, as its resulting residual assumes
a pre-specified failure direction which has been appropriately transformed in the
course of the design process, based on the system observability and controllability
characteristics. In fact, the Diagnosis Filter can simultaneously identify more than
one failures.

In some cases, if the model structure allows it, only one Diagnosis Filter can be
employed to detect all possible failures. Even if the design model topology for the
plant does not always support this scenario (only one Diagnosis Filter), a second
diagnosis filter usually completes the set of all the failures that can be identified. All
such filters have an identical structure; however, each one possesses a different gain
matrix that satisfies the structured residual directionality conditions that correspond
to the failure directions it is designed for.

The overall Diagnosis Filter structure is outlined in the block diagram in Fig-
ure 4.1, where Diagnosis Filter 1 (DF1) and Diagnosis Filter 2 (DF2) represent the
Detection Filters specifically designed for the plant, and whose dynamics are identi-
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cal to those of the plant where the failures occur. The design includes one additional
filter (DF1), since two Diagnosis Filters are required in this particular instance: one
that can handle six thruster failures, and a second for the remaining two, as derived
from the SVD analysis and the output separability analysis carried out in Section
2. In Figure 4.1, u(t) is the input to the plant, at the controller output (closed loop
control input) and y(t) its measured output; u f (t) and y f (t) are their corresponding
filtered versions (through pre-filter 1 and pre-filter 2); r1 and r2 are the structured
residuals – the difference between the real plant output or its pre-filtered version and
the detection filter(s) output(s). Pre-filter 1 and pre-filter 2 can be identical; in fact,
in the specific application they are chosen to be so. As discussed in Chapter 2, the
pre-filter plays the role of a roll-off filter before crossover to further reject/attenuate
disturbances and sensor noise for robust residual generation.

A pre-filter can be viewed as an enhancement of the robustness properties of the
plant controller, if these have not been adequately designed for in the first place.

Our choice of a pre-filter is a second order filter of the form: 1
s×(s+0.0005) based

on the discussion in Chapter 2. Adding this pre-filter to the FDI process, that is,
filtering the plant inputs and outputs through it, before they are entered into the FDI
block, does not affect the existing plant design or its compensators. These signals
are just extracted as the plant operates, they are additionally processed through the
pre-filters, and then they are injected into the FDI mechanism for fault detection.

Fig. 4.1 The Structure of the Diagnosis Filter
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In this sense, the FDI process functions as a plug-in, or a parallel process that
runs on its own, autonomously and non-intrusively. It utilizes only the plant inputs
and outputs as they evolve, in order to trigger the detection mechanism, and achieve
thruster fault identification.

The architecture shown above, corresponds to the augmented/robustified ver-
sion, based on a truly multivariable overall system analysis, applying singular values
for the overall system, complete with controller design. This designing method
functions similarly to an UIO, with the specific property of structuring its residuals
along (pre-specified) failure directions helps to identify the specific failure. The basic
principles of the theoretical development of the Diagnosis Filter, which are residual
generation, analytic redundancy, and directionality relations, have been described
in Chapter 3.

4.1.2 Outline of the Diagnosis-Filter Operation

This dissertation focuses on the actuator failures1. There are eight actuators in total,
in the LPF spacecraft, corresponding to each of the first eight columns of the B
matrix associated with a respective failure direction in the case of actuator failure.
The Diagnosis Filter objective is to design the gain matrix D in such a way that the
system residuals, defined as the difference between the plant and the filter outputs,
are stationary with respect to the failure directions. In this way, each failure direction,
processed through the filter, maps the residual into a unique direction in the output
space, which is directly associated with the said failure. These failure signatures of
the residual are distinct, because of the way the D matrix is designed. This section
presents the sequence of the steps of the Diagnosis Filter design method.

Considering for example the Input Failure Model, which addresses actuator
failures and dynamic changes, the model representation is :

ẋ(t) = Ax(t) + Bu(t) + f n(t)

y(t) = Cx(t)
(4.1)

where, f represents the failure direction (known) and n(t) its magnitude (unknown).
Since the failure magnitude is unknown, the detection filters, which are designed to
have the same classical observer structure, have been referred to in the literature as
UIOs.

1please see Chapter 2



60 FDI Techniques

The Diagnosis Filter is then a plant replica (classical observer structure) with an
additional term (measurement update), as seen in the equation 4.2:

˙̂x(t) = Ax̂(t) + Bu(t) + D[y(t)− ŷ(t)]

ŷ(t) = Cx̂(t)
(4.2)

The gain matrix D is chosen so that the residuals are constrained to have a fixed
direction in the output space and to lie in independent subspaces for different
actuator failures. Thus, a residual in a particular direction signifies a specific failure
that is immediately identifiable.

Within this framework, the theory allows more than one failure to be identified
simultaneously. Their associated directions will be persistently present in the resid-
ual, and will be readily identified by simple operations (e.g. by taking the inner
product between residual and failure directions to check for coincidence).

Furthermore, if one failure occurs, the filter residual inner product with the
pre-specified directions will then contain a result aligned with one of the failures
(minimum dot product angle). If more than one failure occurs, the residual inner
product with the corresponding failure directions will yield as many alignments as
the number of failures (minimal dot product angles). By associating these with the
specific failure directions in the inner product, the failures are readily identifiable2.
In addition, depending on the specific problem, it is possible to safely identify
more than one failure simultaneously, but probably not all, according to theory
predictions.

For our purposes, like in Dinh and Polle [29], we use the combination of DF and
SUS loops dynamics, as shown in Figure 4.2. The necessary input information for
the Detection Filter is contained in the signals that are the (controlled) plant input
taken right after the thrusters and the plant output.

2This specific problem requires two Diagnosis Filters: one that can handle six actuator failures,
and the second for the remaining two.
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Fig. 4.2 The Combined Dynamics of DF and SUS loops

More specifically, these signals are the following:

u(t) =
[
uT

T uT
DF uT

SUS

]
and y(t) =

[
qT

DF qT
SUS

]
where

qT
DF =

[
x1 y1 z1 y2 z2 θ1

]
and qT

SUS =
[

x2 η1 ϕ1 θ2 η2 ϕ2

]
The first vector is actually taken at the thrusters output, while the second is the

set of the DF and SUS measurements. These are schematically and symbolically
represented as one input vector to the Diagnosis Filter, as shown in the upper left
hand corner of Figure 2.1. However, in the actual filter implementation, u(t) is
a separate input, which enters the filter through matrix B (corresponding to the
thrusters structure), while y(t) forms the residual which enters the filter through a
different input matrix, namely the filter gain matrix D. The state space representation
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used for the Diagnosis Filter corresponds to the DF and SUS loops combined, as in
Figure 4.2 and is given in Appendix B.

Note: As is also explained in [29], due to the rates’ usage of qT
DF, qT

SUS for the state,
the system model has an uncontrollable mode due to x1 − x2. A fully controllable model
can be attained by omitting either x1 or x2 in the state x1 − x2. Because x1 has a larger
measurement noise, it is the one which is omitted. This reduces the model to eleven states
and, hence, matrix A becomes (22 × 22) in dimension. The controllability of [A, B] is very
important since the actuator failures can ultimately be ‘detected’ only if their effect impacts
the system state.

If we define r(t) = y(t) − ŷ(t) then residual dynamics are governed by the
following equation, which is obtained by subtracting equation 4.2 from equation 4.1:

ṙ(t) = [A − DC]r(t) + f n(t) (4.3)

At this stage it should be noted that the residual dynamics are always stable for
[A,C] to be observable, even if A is an unstable matrix. The design steps of matrix
D (outlined in Figure 4.3) are as follows:

Fig. 4.3 Overall Operation of the Diagnosis Filter Algorithm

The Detection Filter theory makes it possible to find a matrix D, for any f , such
that r(t) assumes a fixed direction in response to f n(t), regardless of the specific
magnitude of n(t).

- Step 1: Once the linear model is established, the first task is to find an event
(failure direction) vector for each component to be monitored. Suppose f is such an
event vector; if C f = 0, then multiply by A until CAµ f ̸= 0. Then CAµ f becomes
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the failure direction for the specific component or system. In our system, the event
vectors are the columns of the B matrix: Cbi = 0 (i = 1,2, . . . 8).

This essentially comprises the raw failure directions as represented by the
columns of the B matrix, unobservable in the output: CAbi ̸= 0. In fact, the op-
eration above yields eight vectors that define the failure directions fi of the actuators
in the output space.

Table 4.1 and Table 4.2 illustrate the output separable failure directions used for
the design of the Diagnosis Filters DF1 and DF2.

Table 4.1 The Output Separable Failure Directions of DF1

Six Output Separable Failure Directions used for the Design of DF1

0.002641 −0.00118 −0.00038 0.002521 −0.00108 −0.00038
0.00093 0.000866 −0.0015 −0.00156 0.000507 0.000602
0.000822 0.001061 −0.00192 −0.0015 −0.00063 −0.00125
0.001053 0.000399 0.000867 0.001294 −0.00266 0.001211
0.000523 0.000586 −0.00093 −0.00087 0.000946 0.000851

−0.00108 −0.00074 0.001497 0.001824 0.001166 0.000663
0.004222 −0.00419 −0.00332 0.003264 0.004207 −0.00424

−0.00039 0.001857 0.001907 0.00023 0.000402 −0.00187
0.000822 0.001061 −0.00192 −0.0015 −0.00063 −0.00125

−0.00108 −0.00074 0.001497 0.001824 0.001166 0.000663
0.004222 −0.00419 −0.00332 0.003264 0.004207 −0.00424
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Table 4.2 The Output Separable Failure Directions of DF2

Two Output Separable Failure Directions used for the Design of DF2

−0.000830 −0.0013
−0.000920 −0.00088

0.001769 0.00165
0.000389 −0.00255

−0.001510 −0.00155
−0.001560 −0.00176
−0.003250 0.003311
−0.001920 −0.00022

0.001769 0.00165
−0.001560 −0.00176
−0.003250 0.003311

- Step 2: Conventional linear independence tests would seem to yield a linear
independence of all the eight-failure directions; however, a more careful inspection
using singular values has concluded that only six of them are truly linearly inde-
pendent. The remaining two are also linearly independent, but require a separate
Diagnosis Filter (DF2). These two sets of vectors (failure directions) were shown
in Step 1. Here, the interference of modelling inaccuracies and round-off errors
influence the outcome values of the combination of the loops A and C. Matrix D
should be chosen such that each Bi will yield a residual solely along its projection
CBi (or, in this case, CABi) in the event space F. When one of these vectors is given
an unidirectional residual, it is referred as output stationary. There will be vi freely
assignable eigenvalues of [A − DC] associated with Bi and F. The event space F
comprises of all such ‘projected’ failure directions in output space.

- Step 3: Determine the event order v of each f , and compute basis vectors for
each event space. If an event space is one-dimensional (which may frequently be the
case) the only basis vector is the event vector itself. The event order for each of these
failure directions is checked to be equal to one. Thus, each failure direction fi is a
basis vector for its own event space.

- Step 4: Any set of output separable vectors that leaves all the eigenvalues freely
assignable is non-restrictive. If the number of the output separable vectors equals the
rank of C (the number of independent actuators), then the number of nonassignable
eigenvalues equals to the difference between the dimension of the model and the
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sum of the event orders, i.e. the difference n −
S

∑
i−1

vi. If there is no difference, all

the eigenvalues are assignable. If the number of independent measurements is the
maximum possible and equal to the number of state variables of the model, all the
possible sets of output separable vectors are non-restrictive (i.e. all eigenvalues are
assignable). This is a fully measured system.

- Step 5: The equations that D must satisfy are derived from the set { f1, . . . ft}.
These equations are based on the sets of basis vectors assembled in Step 3 and
contain as parameters the assignable eigenvalues of [A − DC]. The event space is
defined by f = f0 + f1, C f0 and A f0 = f1. The set of basis vectors used for computing
D is {g, Ag, . . . Av−1g}. For g, the event generator of f , we have:

Cg = 0,CAg = 0, . . . CAv−1g = C f

which can be written in terms of the basis vectors as:

f = α1g + α2Ag + · · ·+ αv Av−1g

i.e. where f is in its own event space. Most often, αv = 1 and v = 1, or at most,
2 or 3. This happens because the reference model is constructed with as few state
variables as possible and with as many measurements as possible, which in turn
minimizes the order of the event space. Since, each fi is a basis vector (Step 3), then
fi = gi. The operations listed there ultimately aim at expressing each fi in terms of a
set of basis-vectors in the event space.

- Step 6: The calculation of D is very simple for our specific application, as D
satisfies an eigenvalue equation where the eigenvectors are the fi and the eigenvalues
can be set by the designer. Choosing all eigenvalues λi to be consistent with the
overall system time constant characteristics and taking into account that the filter
has to function at a faster time constant (one order of magnitude): λi = −0.005
(i = 1,2, . . . 8) for DF1 and DF2 for relevant actuators, where: D1 fi = −0.005 fi where
(i = 1,2, . . . 6) and D2 fi = −0.005 fi where (i = 1,2), respectively.
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4.2 Design Method 2: The Euresis Filter

4.2.1 Theoretical Foundation

The idea behind the Euresis Filter (Multiple Model FDI) is simple. One constructs as
many replica models of the plant as there are failures, each reflecting, at the right
place, the specific failure. These models are almost identical, except for the place
where the specific failure is represented, as if it were the true plant. In our specific
application, there are eight possible failures, regardless of severity, corresponding to
each thruster. There is also the possibility of no failure, which is also represented by
one (unfailed) model, for a total of, originally, nine models. These models can be
designed as, H2 or H∞ based optimal observers.

In the first case, the models mentioned above, get the form of Kalman Filters,
which can optimally handle stochastic disturbances and measurement noise. In the
second case, the H∞ observers can optimally handle certain types of structured and
unstructured uncertainty. In this dissertation, Kalman Filters are selected for the
Euresis Filter design method.

A bank of models for FDI is created with the rationale that the residual will be
minimal for the specific model whose failed representation matches the specific
plant failure at least in direction, as represented by the failed B column in the case
of a thruster failure. Therefore, if model #2 in the bank has a failed B1 column and
the plant happens to have a failed thruster #1 regardless of actual severity, then the
residual between their two outputs should be minimal, as compared to the residuals
formed between the plant output and the rest of the models in the bank, since there
is a model match.
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Figure 4.4 is a schematic representation of this concept.

Fig. 4.4 The Structure of the Euresis Filter

Each filter in Figure 4.4 computes its own conditional probability density func-
tion (weight), and the one with the maximum probabilistic weight p(ti/z∗k), where
i = 1, . . . 9 and z∗k are the measurements, is precisely the one that corresponds to
the particular plant mode with or without a failed thruster and j = 1, . . . 8 are the
corresponding Kalman Filter models of each thruster. Thus, a failure is identified
by convergence to the most probable member in the set, which corresponds to the
actual failure.

The probability weight for each KF (possible failure eventuality) is computed
according to the formula:

p(ti/z∗k) =
p(z∗k /ti)p(ti)

8

∑
j=1

p(z∗k /tj)p(tj)

where i = 1, . . . 9 (4.4)

with

p(z∗k /ti) =
1

(2π)
k
2 |C(i)|

1
2

exp

[
− 1

2
(

z∗k C(i)−1z∗k
)] (4.5)



68 FDI Techniques

where C(i) is each filter’s running covariance.
The Multiple Model concept is attractive as it directly assigns each fault to a

corresponding KF model from the bank of filters for all the possible failure modes.
However, if the faults are not precisely known, in terms of both direction and mag-
nitude, convergence to the correct fault model becomes challenging, and it depends
on the nature of the underlying process, which may exacerbate the problem. This
is completely analogous to the convergence problems encountered in the Multiple
Model (Adaptive) Kalman Filters of the 1970s, in cases where none of the chosen
filters exactly matched the actual (unknown) parameter value of the estimated plant.
A remedy to this can be a dramatic increase in the number of models used to capture
all possible eventualities and fine gradations fault magnitudes. This could be a very
costly and computationally intensive alternative. Unfortunately, after extensive test-
ing, even this did not yield any improvement on the algorithm’s ability to identify
partial failures.

4.2.2 Outline of the Euresis Filter Operation

In Figure 4.4, each Kalman Filter of the Euresis technique has been designed with
precisely, one thruster fault and its corresponding matrix reflects this failure. The
conditional probabilities p(ti/z∗i ) correspond to the probability that thruster ti has
failed given the current measurement z∗i . Eventually, the scheme will converge to
the model that represents the true plant failure, as its corresponding conditional
probability will have attained the highest value of all eight, (i.e. it will converge to
the most probable model). In classical Multiple Model (Adaptive) Kalman Filtering,
the estimate is synthesized as the weighed sum of the individual estimates in the
bank of KFs where the conditional probabilities serve as the weights. Using this
architecture for FDI and keeping track of how the conditional probabilities evolve,
constitutes our primary concern, as this will be the indicator of which model matches
the failed plant.

The outline of the necessary steps for calculating these conditional probabilities,
which are continually updated with each new measurement, is presented in section
4.2.2. All the steps are initialized at the same value (1/8), or we can reflect any
available prior in setting these initial conditions. From classical theory, the optimal
estimate x̂k, at instant k, is the conditional mean, calculated as:

x̂k =
∫

xp(x/z∗k)dx (4.6)
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Using marginal probability density functions, we derive that:

x̂k =
∫

x
∫

p(x, t/z∗k)dtdx (4.7)

where t stands for failed thruster and denotes the time instants when measurements
are taken. Using Bayes rule:

p(x, t/z∗k) = p(x/t,z∗k)p(t/z∗k) (4.8)

substituting equation (4.8) into equation (4.7), while taking sums, since the probabil-
ity density functions are discrete:

x̂k =
8

∑
i=1

x̂k(ti)p(ti/z∗k) (4.9)

Equation (4.9) suggests a bank of Kalman Filters, parameterized by t, the thrusters’
faults, as presented in Figure 4.4. Therefore:

p(ti/z∗k) =
p(z∗k /ti)p(ti)

p(z∗k)
(4.10)

but:

p(z∗k) =
8

∑
j=1

p(z∗k , tj) =
8

∑
j=1

p(z∗k /tj)p(tj) (4.11)

and, therefore, equation (4.11) can be modified to:

p(ti/z∗k) =
p(z∗k /ti)p(ti)

8

∑
j=1

p(z∗k /tj)p(tj)

, i = 1, . . . 8 (4.12)

p(tj) is presumed as known and all the other processes to be Gaussian, in which
case:

p(z∗k /ti) =
1

(2π)
k
2 |C(i)|

1
2

exp

[
− 1

2

(
z∗k C(i)−1z∗k

)]
(4.13)

where C(i) is the covariance matrix of z∗ki, conditioned on ti and z∗k = zk − ẑk, includ-
ing all measurements up to time k. Next, C(i) is expressed in terms of quantities nor-
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mally computed on-line in the Euresis Filter architecture by the individual Kalman
Filters.

The term p(z∗k /ti) is initially expressed as the product of the conditional density
functions; for simplicity, ti is temporarily omitted.

p(z∗k) = p(zk,zk−1, . . . z1)

= p(zk,zk−1, . . . /z1)p(z1)

= p(zk,zk−1, . . . /z1,z2)p(z2/z1)p(z1)

...

= p(zk,zk−1, . . . z1)p(zk−1/zk−2, . . . /z1)p(z2/z1)p(z1)

(4.14)

Note that each factor above is the probability density of a measurement given all
the previous measurements; each must be normal. In addition, the measurement
equation has the form:

zj = cjxj + θj (4.15)

Therefore, the covariance matrix associated with the product form is:

C′(i) =


[CkΣk/k−1CT

k +Θk]i
[Ck−1Σk−1/k−2CT

k−1+Θk−1]i
. . .

[C1Σ1/0CT
1 +Θ1]i

 (4.16)

The above diagonal terms are used in the gain computations of the Kalman filters.
Each KF keeps updating its own product of terms [CkΣk/k−1CT

k + Θk] in each step of
the process. These terms will be different for each Kalman Filter, due to the ti and
they are pre-computable. When considering the term z∗T

k C(i)−1z∗k , where C(i)−1 is
diagonal, each variate is a biased Gaussian random variable with the bias being the
α priori estimate of the random variable:

z∗T
k C(i)−1z∗k =

(zk−ẑk)
2

CkΣk/k−1CT
k +Θk

+
(zk−1−ẑk−1)

2

Ck−1Σk−1/k−2CT
k−1+Θk−1

+ · · ·+ (z1−ẑ1)
2

C1Σ1/0CT
1 +Θ1

(4.17)

The numerators above are measurement residuals of the KFs weighted by CΣCT +Θ.
Based on the previous analysis, the steps leading to the computation of each filter’s
probability density function, p(ti/z∗k) which is the quantity of interest in an FDI
setting are listed below:
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- Step 1:
Each filter computes its own p(z∗k /ti) using the running product of CΣCT + Θ.
- Step 2:

Get: p(z∗k /ti)p(ti) (4.18)

Form:
8

∑
j=1

p(z∗k /tj)p(tj) (4.19)

- Step 3:

Form:
p(z∗k /ti)p(ti)

8

∑
j=1

p(z∗k /tj)p(tj)

(4.20)

which is the desired quantity for the fault isolation.
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4.3 Design Method 3: The Euphoria Filter

4.3.1 Theoretical Foundation

The Euphoria-Filter design methodology involves the selection of an appropriate
open loop representation [A, B,C, D] of the plant. The subsystems under consider-
ation include the DF and SUS loops as those used in the FDI process [15, 29]. The
columns of matrix B provide sufficient vectors for all the actuators to be monitored.
The generic design framework, for both H2 and H∞ designs for filtering as well as
control, for a plant with output feedback is outlined in Figure 4.5

Fig. 4.5 The generic design framework for H2, H∞

where G(s) is the plant, K(s) a (dynamic) filter or compensator, depending on
whether we are interested in filtering or control, while G and K are assumed to be
real, rational and strictly proper. For both the H2 and H∞ problems, K must provide
internal stability for the overall system; this is by the mathematical construction
of the solution. Such a K is considered admissible and is synthesized from the
corresponding solutions of the filtering or control algebraic Riccati equations, as
the case may be, respectively. There, u is the input to the plant, y its measured
output, and z represents the performance variables of interest, usually a subset of
or the entire plant state, or linear combinations of those. In our case, z represents
the best estimate of y and w denotes the plant disturbances and noise. Thus, we
are interested in minimizing ∥Tzw2∥ and ∥Tzw∞∥ respectively, depending on the
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problem specifications. Other transfer functions of interest are ∥Tyu∥ and ∥Tzu∥,
which are more relevant to the control problem, rather than filtering, and are not
considered here.

The indices 1, 2 are used for denoting the four resulting TFs, i.e.:

G22(s) = Gyu(s) = C2(sI − A)−1B2 (4.21)

In light of the above, the transfer function G (in a Linear Fractional Transformation
(LFT) setting) is assumed to be of the form:

G(s) =

 A B1 B2

C1 0 D12

C2 D21 0

 (4.22)

which is the standard representation of the overall system TF in this mathematical
framework. In the above, the following must hold true:

(A, B1) stabilizable and (C1, A) detectable (4.23)

(A, B2) stabilizable and (C2, A) detectable (4.24)

DT
12 [C1 D12] = [0 I] (4.25)

[
B1

D21

]
DT

21 =

[
0
I

]
(4.26)

Assumption (4.23) is required because if the (C1, A) is detectable then the fact that
H2 ∈ dom(Ric) is guaranteed, meaning that the corresponding Riccati equation has a
semi definite stabilizing solution (i.e. which stabilizes the filter dynamics in our case).
The fact that (A, B1) is stabilizable will produce J2 ∈ dom(Ric). The same applies
by analogy for assumption (4.24). Assumption (4.25) implies that C1x and D12u are
orthogonal which, in terms of the control, suggests that there is no cross term xTu in
the performance index. Assumption (4.26), which is the dual of assumption (4.25),
implies that the plant disturbance and sensor noise are orthogonal, i.e. uncorrelated.
Here, the subscript 2 in H2 and J2 signifies that these are the appropriate matrices
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under the 2 − norm formulation. These are Hamiltonian matrices and are defined as
follows:

H2 =

(
A B2BT

2
−CT

1 C1 −AT

)
J2 =

(
AT −C2CT

2
−B1BT

1 −A

)
(4.27)

where the first Hamiltonian, H2, corresponds to the Control Algebraic Riccati Equa-
tion (CARE) and the second, J2, to the Filter Algebraic Riccati Equation (FARE). We
also note that J2 is the dual of H2. In terms of the above notation, the plant and filter
equations become:

Plant

ẋ(t) = Ax(t) + B1w + B2u(t) + bini(t)

y(t) = C2x(t) + D21w
(4.28)

Filter

˙̂x(t) = Ax̂(t) + B2u(t) + G[z(t)− y(t)]

z(t) = Cx̂(t)
(4.29)

where:

G = Y2CT
2 (4.30)

Y2 is the solution to the following equation:

AY2 + Y2AT + B1BT
1 − Y2C2CT

2 Y (FARE) (4.31)

and, in LFT form, the transfer function matrix of interest, G f (s), whose 2-norm is
minimized, is:

G(s) =

(
A + GC2 B1 + GD21

−BT
2 0

)
(4.32)
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Definition 1: The 2-norm of a transfer matrix Gjω is defined as (and calculated
from) the following:

∥G(jω)∥2
2 =

1
2π

∫ ∞

∞
tr (G)(jω)× G(jω)dω =

= tr (CLcCT) =

= tr (BT L0B)

(4.33)

where Lc is the controllability Grammian of (A, B) and Lo the observability Gram-
mian of (C, A), A is stable and G is strictly proper. Lc and Lo are the solutions to the
Lyapunov equations:

ALc + Lc AT = BBT

AT Lo + Lo A = CTC
(4.34)

Specifically, the 2-norm of G f (s) is also computed from:

∥G f (jω)∥2
2 = tr (BT

2 Y2B2) (4.35)

Definition 2: The infinity norm of a transfer matrix G(jω) is defined as:

∥G(jω)∥∞ = sup
ω

[σmaxG(jω)] (4.36)

where

σmax =
√

λmax[G(jω)G(jω)] (4.37)

Remark: In the interest of completeness, and in order to highlight the similarity in
structure of the H2 and H∞ problems, we give below the corresponding Hamiltonians for
CARE and FARE, and the Filter Algebraic Riccati Equation only, since our main focus is on
Filtering.

Then,

H∞ =

(
A γ−2B1BT

1 B2BT
2

−CT
1 C1 −AT

)

J∞ =

(
AT γ−2CT

1 C1C2CT
2

−B1BT
1 −A

) (4.38)
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and the corresponding FARE is:

AY∞ + Y∞ AT + B1BT
1 + γ−2Y∞CT

1 C1Y∞ − Y∞C2CT
2 Y∞ = 0 (4.39)

Fact 1: The H2 Filter is indeed the steady state Kalman Filter.

Fact 2: The steady state Kalman Filter satisfies the KFDE given below:

[I + GKF(s)] [I + GKF(s)]
H = I +

1
µ

[
GFOL(s)GFOL(s)H

]
(4.40)

where GKF(s) is the KF transfer function matrix and GFOL(s) is the plant transfer
function matrix, from disturbances to output, as given below:

GKF(s) = C(sI − A)−1G

GFOL(s) = C(sI − A)−1L
(4.41)

with C, A, L, G corresponding to the matrices of the open loop dynamics, and µ the
sensor noise intensity, according to Θ = µI. For the purposes of using KFDE as
a design framework/tool, both L and µ can be treated as design parameters. For
example, in the limit as µ → 0:

GKF(s) ≈
1
√

µ
GFOL(s) (4.42)

As seen in the limit of equation ( 4.42) the designer can further influence the filter
convergence time. This is achieved by shaping the singular values of the Right-Hand
Side (RHS) of equation ( 4.39) by the simultaneous choice of an appropriate value
for the parameter µ and a structure for L, so that the RHS of equation ( 4.39) have
the desired crossover, which directly translates into filter convergence time.

The synthesis of the filter gain G is then affected through the specific value of
µ and L in the steady state Kalman Filter Riccati equation for the covariance given
below:

AΣ + ΣAT + LΞLT − ΣCTΘ−1CΣ = 0 (4.43)

where A,C, L correspond to the matrices in equation ( 4.22) and Ξ and Θ are the
corresponding noise intensities in equation ( 4.22). For design purposes, as implied
from equations ( 4.40) and ( 4.42), the algebraic Riccati equation ( 4.43) can be written
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as:

AΣ + ΣAT + LΞLT − ΣCT 1
µ

CΣ = 0 (4.44)

Equations ( 4.43) and ( 4.44) are much more transparent and flexible to use in order
to influence the design parameters of the H2 Filter given its equivalence with the
steady state KF. These design parameters are ‘cloaked’ in the Linear Fractional
Transformation (LFT) representations in equations ( 4.31) and ( 4.32).

4.3.2 Outline of the Euphoria-Filter Operation

The following FDI architecture was developed with the key feature of separating
geometry and dynamics: involving an H2 Filter in conjunction with a residuals
failure direction recovery and a subsequent projection algorithm onto the specific
thruster failure directions (Figure 4.6). The residuals direction recovery process
here is the key and a unique feature of the present algorithm (indicated in the
box Residuals Direction Recover in Figure 4.6), which allows for the residuals
direction but not the magnitude, to be used for fault diagnosis. The new design
synthesis combines the desirable FDI robustness features of the Diagnosis Filter
along with those that naturally arise in an H2 design framework: the stability of the
overall residual dynamics and the optimal disturbance and sensor noise rejection
are inherent in the design. This latter feature allows for a considerable simplification
of the verification and validation (V&V) process.

Fig. 4.6 Euphoria Filter Design Architecture

The plant dynamics are described by:

ẋ(t) = Ax(t) + Bu(t) + bini(t) + Lξ(t)

y(t) = Cx(t) + θ(t)
(4.45)
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where bi are the thruster failure directions, corresponding to the columns of matrix
B, and ni(t) their magnitudes, which are unknown. It should be noted here that,
unlike in the case of the Diagnosis Filter, the plant dynamics include the presence of
(stochastic) disturbances ξ(t), while the output contains a measurement noise θ(t).
These are explicitly considered in the filter design, and this constitutes a fundamental
difference in the design procedure from the Diagnosis Filter, which was carried out
in a deterministic setting.

Next, a UIO type observer, or filter, is set up, of the following form:

˙̂x(t) = Ax̂(t) + Bu(t) + G [ŷ(t)− y(t)]

ŷ(t) = Cx̂(t)
(4.46)

Note that the filter is designed according to the unfailed plant model dynamics.

Given the above mathematical descriptions, the residual dynamics are governed
by the following equations, obtained by subtracting equation ( 4.46) from equation
( 4.45):

˙̃x(t) = [A − CG] x̃(t) + bini(t) + Lξ(t) + Gθ(t)

r(t) = y(t)− ŷ(t) = Cx̃(t)
(4.47)

where x̃(t) = x(t)− x̂(t) is the estimation error.

The residual dynamics have essentially the same structure as in the case of the Di-
agnosis Filter, except from the two additional terms, Lξ(t) + Gθ(t) for disturbances
and sensor noise. Also, the mathematical derivation of G is different, according to
the H2 norm. Directionality information of the residuals is recovered by an adjoint
observability operation and a projection onto the controllable subspaces of the failure
directions, in order for FDI to be achieved. Thus, this new method, uses the direction
rather than the magnitude of the appropriately transformed residuals as an FDI
diagnostic. It must be emphasised that the inner product/angle criterion is much
less sensitive to non-idealities, including parametric uncertainty, disturbances, and
sensor noise, even though the H2 filter, by construction, optimally rejects sensor
noise and disturbances. However, because of optimality, it may be sensitive to
off-design/off-nominal levels of noise. The direction/angle remains close to invari-
ant in these circumstances and, at any rate, still provides an infallible comparison,
because of the dominance of the failure direction both in the plant dynamics and
in the residual. This is not the case with the magnitude, which directly reflects
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substantively the effect of all such factors and is, therefore, much more vulnerable to
them.

The principles of the H2 filter design were outlined in the previous section.

Fact 1: If [A,C] is observable, then [A − GC] is always stable, resulting in asymp-
totically stable residual dynamics.

Proof : It follows directly from the optimality-based derivation of the solution for
G.

Fact 2: The residual r(t) consists of the transformed failure direction(s) via the
output transition matrix:

Proof : From equation ( 4.47), the parameter r(t) is written, in terms of the solution
for (t) as:

r(t) = Cx̃(t)

= C exp{A − CG)(t − t0)} x̃(t0) +
∫ t

t0

exp{A − CG)(t − T)}bi(T)n(T)dT

(4.48)

and applying the Cayley-Hamilton theorem, the equation ( 4.48) can be rewritten as:

r(t) = Cx̃(t) = C
{

exp{(A − CG)(t − t0)} x̃(t0)

+
∫ t

t0

[
I + Ā(t − T) +

1
2!

Ā2(t − T)2 + · · ·+ 1
k!

Āk(t − T)k
]

bi(T)n(T)dT
}

(4.49)

where Ā = A − GC and k ∈ N.

In the above equation, the first term on the RHS converges quickly to zero,
because of the guaranteed asymptotic stability of the matrix. As for the second term,
if we consider n(T) to be an impulse at the instant q when the failure occurs, the
integral above reduces to:

C
[

I + (A − GC) +
1
2!
(A − GC)2 + · · ·+ 1

k!
(A − GC)k

]
bi(q)n(q) (4.50)

Equation ( 4.50) is recognized as the output (impulse response) transition matrix of
the pair [A − CG,C]. It is evident that the residual is dominantly the transformed
failure direction bi via the transition matrix (observable impulse response). Hence,
in order to recover the original failure direction contained in the residual, it needs to
be processed by the inverse of the output transition matrix, an adjoint operation that
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reverts the residual to the failure onset. Consequently, the steps for realising the H2

based FDI design are the following:

- Step 1: Design the H2 Filter according to equation (FARE) repeated here for
convenience:

AY2 + Y2AT + B1BT
1 − Y2C2CT

2 Y2 = 0 (4.51)

where A is the combined DF and SUS open loop matrix, B1 is the diagonal matrix of
disturbance intensities entering the system, and C2 = CΘ−1, where C is the output
matrix (as given in Appendix B), and Θ is the diagonal matrix of the sensor noise
intensities. Y2 corresponds to the filter covariance matrix. Thus, G = Y2CT

2 with
Y2,C2 as defined above.

- Step 2: Calculate and form the observability Grammian M0 of [Ā,C], according
to M0 =

[
C,CĀ,CĀ2, . . . CĀk] where k = 1,2, . . . where r is the number that allows

for as many independent rows as the number of failure directions (in this case 8).
The variable r is a small number, usually 2-3, for a strongly observable system, such
as the present one.

- Step 3: Transform the residuals via the observability Grammian adjoint to
recover the failure direction contained in the system. From Fact 2, since, r(t)∼ M0bi

it follows that bi ∼ adj(M0)r, or, simply, in this case:

bi ∼
(

M0MT
0

)−1
MT

0 ∼
(

MT
0 M0

)−1
M0r ≜ rs(t) (4.52)

Equation ( 4.52) is the defining equation of the structured residual rs(t), via essen-
tially an appropriately calculated pseudo inverse of M0. This operation recovers the
failure directions bi in the filter residuals.

- Step 4: Calculate the angles θi subtended by the transformed residuals with fail-
ure directions (projection /inner product type operation focusing on direction/angle
and not magnitude).

θi = arccos

(
biT (MT

0 M0
)−1 M0r

∥bi∥∥
(

MT
0 M0

)−1 M0r∥

)
where i = 1,2, . . . 8 (4.53)

- Step 5: Identify the failed thruster as the one whose associated direction sub-
tends the minimum of the angle with the transformed (structured) residual. The
failed thruster direction is θk = mini(θi)⇒ bk that corresponds to thruster k, where
i = 1,2,3, . . . 8 and k = 1,2,3, . . . 8.
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4.4 The Failure Severity Algorithm

Once a failure has been identified, the severity identification γ, represents an ad-
ditional step in the FDI algorithm. Right at that point, a parallel identification
algorithm runs with the objective of identifying the value of parameter δ as de-
scribed in Section 2.3. The parameter γ in the interval [0,1], represents the entire
range of a thruster’s failure. Equivalently, parameter δ, representing the thruster
effectiveness, is complementary to the severity parameter γ; thus, for δ = 1, γ is
equal to zero, in the absence of failure. Values of δ < 1 represent reduced thruster
effectiveness, indicating some level of failure; similarly, a value of γ equal to one
indicates total failure and zero thruster effectiveness, according to the defining
equation below:

1 − δ = γ, where δ,γ ∈ [0,1]

γ = % failure or failure severity

As a result, any level of failure severity can be represented with the above model,
thus covering a wide range of thruster failure possibilities and profiles. As an
example, based on the mathematical model in equation ( 4.55), for δ = 0.3 which
means a 30% thruster effectiveness, the failure severity is 70%. If δ = 0, there is total
thruster loss and, according to equation ( 4.55), the ith thruster is indeed absent from
the system dynamics. The parameters γ or δ need to be non constant. Leakages can
also be represented by appropriate functional representations of the parameters in
the form:

δ =
1

1 + αt
(4.54)

where α signifies the leakage rate, which can be set to a very low value. For example,
for α = 0.0001 the thruster effectiveness is almost 100% at the start, and is reduced
to 99% at t = 100s, suggesting the presence of a very slow leakage in the thruster.
Other functional representations are also possible, such as intermittent failures.

The specific functional representation of γ and δ does not affect the theoretical
developments for severity identification. As the algorithm works extremely fast, it
is able to keep track of the specific values of the parameter, as it evolves. At any rate,
FDI and severity identification occur well below the 100th second, which means that,
for the particular choice of α above, the value of δ in the first 100s is approximately
0.99. Thus, the algorithm can identify an extremely low and slow leakage failure.
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For the theoretical development of the process, the plant with an actuator degra-
dation/failure is described by the equations:

ẋ(t) = Ax(t) + Bu(t)− γbiui(t)⇒
ẋ(t) = Ax(t) + Bu(t)− (1 − δ)biui(t)

y(t) = Cx(t)

(4.55)

where the exact column bi has been identified by the FDI techniques; however, the
failure severity and δ remain unknown. In the simulation environment, an adaptive
identifier is therefore set, in exactly, the same form as the plant:

˙̂x(t) = Ax̂(t) + Bu(t)− γ̂(t)biui(t)

ŷ(t) = Cx̂(t)
(4.56)

The value of the parameter γ̂(t) is unknown but it can be adaptively adjusted.
Objective for γ̂(t) is to converge to the true value γ, representing the failure severity.
Let the error between plant and (adaptive) observer state to be defined as:

e(t) = x̂(t)− x(t) (4.57)

Then, from equations ( 4.55) and ( 4.56), the error dynamics are:

ė(t) = Ae(t) + [γ̂(t)− γ]biui(t)

= Ae(t) + ϕ(t)biui(t)
(4.58)

where ϕ(t) is the actuator effectiveness parameter error [γ̂(t)− γ]. Thus,

r(t) = Ce(t) (4.59)

Setting up a Lyapunov function of the form:

V (e,ϕ) =
1
2

(
eTPe + ϕ2

)
(4.60)
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for any: P = PT > 0, then:

V̇ =
1
2

eT
(

ATP + PA
)

e + ui(bi)TPϕe + ϕ̇ϕ

where Q = QT > 0 for A stable

V̇ = −1
2

eTQe + ui(bi)Teϕ + ϕ̇ϕ

(4.61)

Since ϕ is unknown, but adjustable, it can be adjusted according to:

ϕ̇ = −eTPbiui(t)

hence, ˙̂γ(t) = −eTPbiui(t)
(4.62)

Then, the sign indefinite terms in V̇ disappear and

V̇ = −1
2

eTQe ≤ 0 (4.63)

This means that the adaptation law, under strong signal conditions, will lead to
parameter error convergence to zero, in this case requiring nonzero u and e. Indeed,
for persistent u(t), e(t) will converge to zero only when ϕ converges to zero, thereby
identifying the severity parameter value.

Since the signals e(t) and u(t) are available, the above parameter identification
algorithm is very simple to implement from existing information on the FDI filter.
Employing this additional procedure on the existing FDI designs as a simple plug-in
does not interfere with the main FDI process whose main focus is to identify any
failed actuator. The severity calculation flow diagram is illustrated in Figure 4.7.
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Fig. 4.7 Severity Calculation Flow Diagram



Chapter 5

Evaluation of the FDI Techniques

5.1 Validation Plan

The validation plan for the three design methods described earlier consists of two
major parts:

• The performance evaluation of the designed algorithms on the true plant in a
simulation environment.

• The performance evaluation of Sensitivity versus Robustness of both designs
on the true plant in a simulation environment.

5.1.1 Performance Evaluation

This part of the validation plan mainly involves evaluating and checking the two
proposed methods, under representative but also extreme conditions, in terms of
noises, disturbances, and severity and parameter values, against the evaluation
criteria described in section 2.4 and listed again below:

• False Alarm Rate r f α

• Missed Detection Rate rmd

• True Detection Rate rtd

• True Isolation Rate rti

• Wrong Isolation Rate riw

• Average detection Time tda
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• Average Isolation Time tia

All the above are being evaluated via extensive Monte Carlo simulations. The
types of faults and their analytical models are as described in Sections 2.3 and 4.4,
and include:

• Abrupt (total) thruster faults of varying constant magnitudes.

• Gradual degradation of thruster efficiency/leakage.

Both methods consider all the eight thruster faults. The primary focus is for one
thruster fault at a time to be introduced at different time intervals during system
operation. However, some tests will also be run on multiple thruster faults (two or
three), occurring simultaneously or at different time intervals. Intermittent thruster
faults are also considered. In both these cases, the testing serves more as a means of
checking the robustness of the FDI schemes, rather than comprising a main thruster
fault event. This means that some of the above evaluation criteria may not be fully
explored in these cases.

5.1.2 Sensitivity versus Robustness

A good FDI scheme has to be adequately/efficiently sensitive to faults, yet insensi-
tive/robust to uncertainty, whether this arises from parametric/model inaccuracies
or from disturbances affecting the process, and ubiquitous measurement noises.

For example, a system parameter drift should not confuse the process of fault
detection and identification and at the same time it should not be interpreted by
the FDI scheme as a component failure (false alarm). All proposed designs are
extensively tested for sensitivity/robustness to varying disturbance characteristics
and noise statistics in simulation, as well as analytically, where possibly.

For LTI systems, a wealth of parameter sensitivity methods exists [30] that readily
yield the system state sensitivity with respect to a particular parameter, in real time,
as a signal obtained at specific points from a replica sensitivity model. Another
important sensitivity test will also concern the parameters in the individual failure
directions.

In addition to simulation or analytical sensitivity methods, the individual failure
directions can also be addressed using a variety of machinery from linear algebra, in-
cluding SVD decomposition. Based on the previous findings, the proposed designs
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are fine-tuned to ensure a maximum robustness to uncertainty, while maintain-
ing maximum sensitivity to parametric variation and maximal accuracy of fault
detection, fault identification, and severity magnitude identification.

Figure 5.1, Figure 5.2, and Figure 5.3 schematically represent the fine-tuning
approach employed in each method.
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Fig. 5.1 Diagnosis Filter - Tuning Methodology
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Fig. 5.2 Euresis Filter - Tuning Methodology
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Fig. 5.3 Euphoria Filter - Tuning Methodology



5.2 Design Method 1: Diagnosis Filter 91

5.2 Design Method 1: Diagnosis Filter

Individual trial runs of the Diagnosis Filter in the simulation environment, complete
with all the disturbances present in the LPF simulator, are presented in this section.

All these runs are evaluated for a specific trimming point, assuming that a linear
model is available, as described in the state space descriptions in Appendices A
and B. Once the plant has reached its steady state (trimming) as implemented in the
simulation environment, a total failure is introduced after 10s, for each individual
thruster, one at a time. The results and the colour designated for each thruster plot,
are as follows:

Fig. 5.4 Diagnosis Filter - Thrusters Colour Code

The results for each failure occurrence are illustrated by the plots of the time
evolution and of the angles the residual makes with each pre-specified failure
direction, as represented by the six output separable vectors in Section 4.1.2.

It should be noted that although the faults are identified correctly, the angles
between the Diagnosis Filter residual and the corresponding fault direction are
not zero. This is attributable to the presence of disturbances and measurement
noise, as well as due to plant modelling inaccuracies (cross couplings that have been
neglected, implementation induced delays, discretization effects, etc.). However,
the distance of the angle corresponding to the failed directions from the others is
safely/adequately large, which is very important from a robustness perspective.
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Fig. 5.5 Diagnosis Filter - Thrusters without Failure

Fig. 5.6 Diagnosis Filter - 1st Thruster Fault (Total Failure)
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Fig. 5.7 Diagnosis Filter - 2nd Thruster Fault (Total Failure)

Fig. 5.8 Diagnosis Filter - 3rd Thruster Fault (Total Failure)
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Fig. 5.9 Diagnosis Filter - 4th Thruster Fault (Total Failure)

Fig. 5.10 Diagnosis Filter - 5th Thruster Fault (Total Failure)
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Fig. 5.11 Diagnosis Filter - 6th Thruster Fault (Total Failure)

In all the preceding runs only one thruster total failure at a time was considered.
The failure detection and fault identification time was significantly fast, around 10s
after fault inception.

In the following runs, two thrusters failed simultaneously at 1s past the system
reaching its proper trimming point. Again, the detection occurs very fast, at about
10s. Although a two thruster simultaneous failure is very rare, it was nevertheless
included in our testing of the method as a preliminary indicator of the filter’s
robustness, before the actual validation process. A three simultaneous thruster
failures scenario was also considered.

Although the performance outcome was good for the dual and triple simultane-
ous thruster failures tested, these are not all exhaustive. The combinations that are
not shown did not perform well, suggesting that some robustness issues may emerge
during the validation of robustness and sensitivity to various types of uncertainty.
This warrants the further fine-tuning of our existing designs.

It should also be noted here that only the nominal results for the first six failure
directions relative to thrusters # 1, 2, 3, 6, 7, 8 are presented, as these nominal runs
were carried out before the incorporation of the second Diagnosis Filter. However,
the validity and completeness of the presented results is in no way compromised,
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as the behaviour observed in subsequent runs with the complete design was of the
same nature. The complete design (all eight thrusters’ failure detection capability)
was run extensively to establish performance bounds.

The strength of the Diagnosis Filter methodology lies in the fact that the station-
arity of the failure’s directionality is preserved by the specific construction of the
detection filter. The filter is not expected to be sensitive to disturbances, as their
directionality is not stationary, especially when they are stochastic. Nor can it be
expected that these disturbances will coincide with a specific event vector; such a
scenario would be extremely unlikely in any case. In fact, as subsequent extensive
sensitivity and robustness tests established, the Diagnosis Filter was remarkably
robust to parametric variation. Although an analytical proof is very difficult to
obtain when it comes to directionality issues (as has been the case with all modern
control design methods where directionality could not be analytically incorporated
in the design methods), further investigation of the results obtained in the Monte
Carlo runs showed precisely this.

For a 10% random variation in each element of the thruster vector directions, the
angle between the nominal and the perturbed direction ranged from 1 to 5 degrees
for all columns in matrix B. However, the most impressive findings concern the
angles between the columns of the Diagnosis Filter matrix and their corresponding
columns of matrix B, whether nominal or perturbed, all were very close to 90 degrees,
with minimal deviations, further corroborating the inherent robustness of the specific
design.

In conclusion, the filter ability to robustly identify failures is attributable to
its strong preservation of the directionality of the failure, which cannot be easily
confused by disturbances or parametric variation. As a consequence, no thresholds
need to be accurately defined, other than boosting the overall FDI system disturbance
rejection via additional filtering (if necessary). This additional filter decision is not
based on the magnitude of a residual, which can be very sensitive to contamination
but, rather, to its directionality, which is a much more robust property.
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Fig. 5.12 Diagnosis Filter - 1st and 2nd Thruster Fault (Total Failure)

Fig. 5.13 Diagnosis Filter - 1st and 5th Thruster Fault (Total Failure)
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Fig. 5.14 Diagnosis Filter - 2nd and 3rd Thruster Fault (Total Failure)

Fig. 5.15 Diagnosis Filter - 2nd and 5th Thruster Fault (Total Failure)
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Fig. 5.16 Diagnosis Filter - 2nd and 6th Thruster Fault (Total Failure)

Fig. 5.17 Diagnosis Filter - 3rd and 4th Thruster Fault (Total Failure)
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Fig. 5.18 Diagnosis Filter - 3rd and 6th Thruster Fault (Total Failure)

Fig. 5.19 Diagnosis Filter - 4th and 5th Thruster Fault (Total Failure)
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Fig. 5.20 Diagnosis Filter - 2nd, 3rd and 6th Thruster Fault (Total Failure)

Fig. 5.21 Diagnosis Filter - 1st, 4th and 5th Thruster Fault (Total Failure)
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Establishing Algorithm Performance Limits in Off-Nominal
Conditions

The complete Diagnosis Filter algorithm was run extensively to first establish max-
imum total noise levels and minimum severity magnitudes that can be correctly
identified. The results are shown in Table 5.1.

Table 5.1 Diagnosis Filter - Severity Magnitudes and Noise levels of Validation Plan

Min Constant Failure Max Noise Factor

1(total failure) 10000
0.1 1000
0.01 100
0.001 10
0.0001 1

Combinations of minimum leakage (slope) versus maximum noise were also
extensively tested. In out leakage model the parameter α ranged from 0.0001 and
up, with 0.0001 representing a leakage of 0.01 after 100s. The results are shown in
Table 5.2.

Table 5.2 Diagnosis Filter - Leakage Magnitudes and Noise Levels of Validation Plan

Min Leakage Rate Max Noise Factor

0.001 1
0.01 10
0.1 100

In Tables 5.1 and 5.2, the max noise factor (NF) is simply a scaling factor from
the nominal value of one (Astrium level) and upwards and includes noise from
all sources, i.e. both from disturbances and sensor noise. It is also worth noting
that given that FDI occurs under reasonable noise factor conditions (NF=10), in
less than 50s, the Diagnosis Filter is able to identify a very slow leakage, reaching
a magnitude of less than 0.005 at the time of identification. Intermittent failures
of very small magnitude were also tested with equal success. This is attributable
to the fact that FDI is achieved within just a few seconds, a time interval which is
normally much shorter than the timing cycle of intermittent failures. Indeed, as the
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extensive simulations show, the Diagnosis Filter exhibits excellent performance and
robustness to dramatically enhanced noise and minimal severity and leakage rate
magnitudes.

Sensitivity and Robustness Results – Monte Carlo Sim-
ulations

As also reported in [50], the most important contributors to enhanced sensitivity
and reduced robustness are:

• the thrusters’ misalignment that is directly translated into the influence matrix
of the thrusters on the spacecraft acceleration.

• the center of mass of the spacecraft.

• the suspension and drag-free stiffness.

The Monte Carlo Simulation Framework

The Monte Carlo Simulation framework was essentially the entire simulation envi-
ronment realization of the FDI algorithms, complete with the severity identification
module, where the parameters were chosen to change randomly and simultaneously,
and where the noise factors were varied. For the errors listed above, four sets of
10000 Monte Carlo simulations were executed:

i. random up to ±10% misalignment, which corresponds to up to 3.6 degrees, and
±10% variation in centre of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 10.

ii. random up to ±10% misalignment, which corresponds to up to 3.6 degrees, and
±10% variation in centre of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 100.

iii. random up to ±20% misalignment, which corresponds to up to 7.2 degrees, and
±20% variation in centre of mass (nominal value d∗ = 0.376) and suspension
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and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 100.

iv. random up to ±20% misalignment, which corresponds to up to 7.2 degrees, and
±20% variation in center of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 1000.

Severity also varied randomly from 0.01 to 1, which corresponds to failures from
1% - 100%. All the eight thrusters were included.

Monte Carlo Results

i. In this case, which nonetheless represents a significant departure from nom-
inal conditions, the results were perfect; absolutely 100% true detection and
identification as well as accurate severity identification.

ii. In this case, 99.85% fault detection was achieved, with a 0.15% missed fault
rate, 99.85% true severity identification and zero false alarms.

iii. In this case, there was 99.89% true detection and true identification, with 0.11%
missed fault rate, 99.89% true severity identification and zero false alarms.

iv. This case, with 1000 noise factor and 20% parameter variation , there was
95.64% true detection rate, 4.31% missed fault rate and zero false alarms. The
true isolation rate was at 95.35% and true severity magnitude identification at
95.35%, to within 0.1 difference in magnitude of severity.
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Indicative corresponding graphs for failed thruster frequency and severity pro-
files for the 4th case are given below.

Fig. 5.22 Diagnosis Filter - Distribution of Failed Thrusters for 4th Monte Carlo Set

Fig. 5.23 Diagnosis Filter - Distribution of Severity Magnitudes for 4th Monte Carlo
Set
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Time to Detection and Identification

Detection and identification occurred almost simultaneously, with severity identi-
fication following immediately after. Therefore, there is no real insight or value to
consider them separately. The histogram (Figure 5.24) is typical of the timing profiles
encountered in all Monte Carlo sets; in fact, it may be slanted toward higher values,
as this was the set for 20% variation and NF=1000. The significant majority of cases
lie in the region below 47s, with 122 at 0.5s. The cases that took longer time are
invariably those with very low severity and highest levels of parametric variation,
as expected. In fact, with such high noise values the min angle subtended between
residual and actual failed direction is in the vicinity of 27 degrees; this represents
the upper bound on the min angle encountered in the extensive FDI runs. Under
reasonable circumstances, represented by a 10% parameter variation and NF=10, the
min angles range around 4 to 5 degrees, while under nominal circumstances, NF=1
and nominal parameter values, they are well below 1 degree.

Fig. 5.24 FDI Detection Timing Profiles (Rounded Off)

The timing to FDI is very similar for all four runs; this was indeed the finding
throughout the entire Monte Carlo simulation testing. Table 5.3 summarizes the
results obtained for all four sets of the metrics considered.
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Table 5.3 Diagnosis Filter – Summarized Results of Four Sets of Monte Carlo Analysis

Evaluation Criteria 1st SET 2nd SET 3rd SET 4th SET

False Alarm Rate r f a 0% 0% 0% 0%
Missed Detection Rate rmd 0% 0.15% 0.11% 4.36%
True Detection Rate rtd 100% 99.85% 99.89% 95.64%
True Isolation Rate rti 100% 99.85% 99.89% 95.35%
Wrong Isolation Rate riw 0% 0.15% 0.11% 4.65%
Average Detection Time tda < 10s < 10s < 10s < 10s
Average Isolation Time tia < 10s < 10s < 10s < 10s

Plant Instability and FDI

As observed during the tests, after FDI had occurred, with minimum angle sub-
tended by the residual in a specific failure direction corresponding to a failed thruster
identified, the angle started increasing after a period of time during which it lingered
around its minimum. Beyond a certain time point, one could no longer trace the
thruster that had been identified as failed. This is not surprising, as the underlying
system contains instabilities, which after becoming pronounced, obstruct the FDI
process. Although, at first glance, this might appear as a problem, or a ‘tug-of-war’
between FDI and plant instability, it is of no concern since FDI occurs extremely fast
even for extreme cases, well before the onset of instability.

The min angle evolution for two representative and challenging cases is given
below:

i. 10% misalignment, -20% d variation and NF= 100.

ii. 20% misalignment, -20% d variation and NF= 100.

There are three figures for each case: Figure 5.25 and Figure 5.28 entail the entire
time interval run, while Figure 5.26 and Figure 5.29 focus around the min angle
region. Figure 5.27 and Figure 5.30 depict an even smaller time scale, to show the
signal characteristics. The effect of noise is evident in both cases. The horizontal axis
represents the simulation time intervals, which have their correspondence in real
seconds; these are recorded in the actual data files.
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i. Up to 10% misalignment, -20% d variation, NF=100.

Table 5.4 Diagnosis Filter - min Angle Evolution for 1st case

below 10 degrees in within 1 degree of minimum angle in min angle attained in

4.3s 7.9s 34.4s

Fig. 5.25 Diagnosis Filter - Timing Profile showing Instability Inception Point Beyond
which FDI is Jeopardised for 1st case
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Fig. 5.26 Diagnosis Filter - Zooming in to Detection & Identification Time for 1st case

Fig. 5.27 Diagnosis Filter - Further Zooming in to Detection & Identification Time
Showing the Effects of Noise for 1st case
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ii. Up to 20% Misalignment, -20% d variation, NF=100.

Table 5.5 Diagnosis Filter - min Angle Evolution for 2nd case

below 30 degrees in within 1 degree of minimum angle in min angle attained in

6.4s 10.3s 29.8s

Fig. 5.28 Diagnosis Filter - Timing Profile showing Instability Inception Point Beyond
which FDI is Jeopardised for 2nd case
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Fig. 5.29 Diagnosis Filter - Zooming in to Detection & Identification Time for 2nd case

Fig. 5.30 Diagnosis Filter - Further Zooming in to Detection & Identification Time
Showing the Effects of Noise for 2nd case
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5.3 Design Method 2: The Euresis Filter

The following figures were obtained on a simulation environment with full distur-
bance and measurement noise presence as pertains to the LPF environment. In the
particular scenario of interest for the LPF application, where only actuator (thruster)
failures are considered, the Euresis Filter performs very well, though not as fast
as the Detection Filter, and is very easy to implement. The fact that the uncertain
parameters (failures) entered only in matrix B, results in a significantly better (more
robust) and faster convergence, relative to this scheme’s inherent convergence ca-
pabilities, than if the uncertainty was in the system matrix A. The Euresis Filter
uses a higher number of models - nine vs two in the case of the other two filters for
this specific application. However, its convergence properties and accuracy are very
good.

Figure 5.31 shows the eight KFs residuals under no failure; they are all in the
order of 10−6. Subsequently, one thruster was totally failed at a time, after 10s of
trim. FDI was considerably slower than in the case of the other two filters, occurring
in about 70s. The residual magnitude corresponding to the failed thruster’s KF is
consistently an order of magnitude smaller in comparison with the other thrusters,
in the order of 103 as compared to 104 for the other thrusters, in all cases. When a
failure is injected for a specific thruster, the simulation environment mechanization
is such that the rest of the thruster magnitude signals reach the pre-specified upper
bounds, as a way of compensating for the failed thruster in the plant closed loop;
this does not occur, and is not a requirement, in the MMKFs employed in the FDI
process. This explains the discrepancy in residual magnitudes between the unfailed
and failure cases.

In the Euresis Filter, all the eight thrusters’ failures could be identified with one
bank of filters, consisting of nine models in total (one model represents a thruster
without failure). Similarly, the same bank can identify two and three simultaneous
thruster failures in any combination. In this respect, this approach seems promising
for some degree of robustness.

However, since the MMKF FDI decision-making process is predicated on mag-
nitude rather than direction, the overall robustness may not be so certain, when it
comes to sensitivity to parameters, including those of the stochastic disturbances.
On the other hand, the fact that directionality is imposed by the construction of each
model, could serve as a mitigating factor. The sensitivity of the method is, of course,
within the scope of the validation process.
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Note: Because there is an order of magnitude difference between the level of noises and
residuals, in the plots drawn on the residuals magnitude scale the noises are not discernible.
Therefore, the plots (Figure 5.34) for the 3rd thruster failure were created in two scales, one
at the noise level and the other at the residual level, to better show the noise effects on the
actual residuals.

Fig. 5.31 Euresis Filter - Thrusters Without Failure



114 Evaluation of the FDI Techniques

Fig. 5.32 Euresis Filter – 1st Thruster (Total Failure)

Fig. 5.33 Euresis Filter – 2nd Thruster (Total Failure)
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Fig. 5.35 Euresis Filter – 3rd Thruster (Total Failure)

Fig. 5.36 Euresis Filter – 4th Thruster (Total Failure)
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Fig. 5.37 Euresis Filter – 5th Thruster (Total Failure)

Fig. 5.38 Euresis Filter – 6th Thruster (Total Failure)
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Fig. 5.39 Euresis Filter – 7th Thruster (Total Failure)

Fig. 5.40 Euresis Filter – 8th Thruster (Total Failure)
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Fig. 5.41 Euresis Filter – 1st and 2nd Thruster (Total Failure)

Fig. 5.42 Euresis Filter – 1st and 8th Thruster (Total Failure)
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Fig. 5.43 Euresis Filter – 1st , 5th and 8th Thruster (Total Failure)

Testing under off-Nominal Conditions: Noise, Sensitiv-
ity to Parameter Change, Robustness

The Euresis Filter design method exhibited a remarkable performance under en-
hanced noise conditions, higher than the other two filters, and several orders of
magnitude higher than the nominal values on a simulation environment. In fact,
this design was tested on the full simulator as it was directly designed in the simula-
tion environment. However, the Euresis Filter was not able to accurately detect or
identify anything other than total failures, nor did it exhibit the striking robustness
characteristics of the other two filters. The marked difference between the three
design methods could be attributed to the specific directionality of the residual,
which the other methods hinge on, a quantity that remains invariant under scaling
modifications such as severity. The Euresis Filter method, on the other hand, is
based on relative residual magnitudes, which are directly influenced by scaling
modifications and whose FDI performance, can be seriously degraded. Moreover,
the Euresis Filter takes longer to FDI even under total failure, lets alone a partial
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one, in which case the inherent plant instability may kick-in, affecting the residual
magnitudes more significantly than the fault itself, particularly if it is small, thus
confusing the FDI process. On the other hand, the impressive performance under
severe disturbance and measurement noise conditions can be easily understood,
since each of the (fault) models in this Euresis Filter is a KF, which optimally rejects
noise.

A New Approach to MMKF

During the extensive testing of the Euresis Filter, we observed that it could not
detector identify severity for any less than a total (100%) failure (not even a 99%
failure) with the existing set of eight plus one models. For this reason, the Euresis
Filter was enhanced with the necessary set of models to exactly reflect the failure
severity magnitudes, taken in increments of 0.05, with an ultimate number of 160
plus one models, for the entire range of severity in the range of [0,1], for all eight
thrusters. The first test was executed in a small scale with a limited subset of the
entire set of models. The results were at best confusing, concluding that even though
this method performs extremely well, exhibiting an almost infinite tolerance to noise
(NF=100000), albeit for total failures only, it breaks down as soon as the failure
severity is anything less than 99% to 100%. On the other hand, the method was
robust to up to 20% parameter variations, in the scenario of total failure and under
extreme noise factor conditions.

The performance of this method is very puzzling and at odds with the theoretical
basis. Two of the cases observed in the testing, which are indicative of the problems
encountered, are presented below.

In the first case, there was a total failure in one thruster in the plant, and a
corresponding model in the Euresis Filter setup with a 50% failure, i.e. a severity
of 0.5. This case was detected and simultaneously de facto identified, even though
the model did not exactly match the true plant. In the second case, there was a 0.5
failure severity in one thruster in the plant and a model reflecting a total failure in
the corresponding thruster in the Euresis Filter setup. This case was not detected
nor identified.

An alternative explanation that can be given is that the plant is coupled, so that,
if a thruster is partially absent, this information is cloaked in the output magnitude
alone, without any additional directionality or spectral information, due to the
coupling. Additionally, some of the effects of the partially failed thruster may



122 Evaluation of the FDI Techniques

be compensated for in the coupled plant. The models do not entirely reflect this
coupling, as is the case in the designs of previous studies [15, 29]. In other words,
not entirely including the overall system cross coupling in the models may be a
severe handicap for the method, as it relies on exact model matching. Thus, it seems
that choosing the number of models in the bank of MMKFs solely based on failure
severities of the thrusters does not adequately represent the entire model set for this
method.

An extremely large and complex set of models would appear to be required
rendering the method cumbersome, costly and, ultimately, inefficient. Its running
time would also be dramatically increased, which makes it unsuitable for real time
implementation.

A Monte Carlo set of 1000 simulations was also run with varying severity levels,
as shown below:

Fig. 5.44 Euresis Filter - Distribution of Severity Profiles

The frequency of failed thrusters is represented by the pie chart on Figure 5.45.
Out of the 1000 runs, only 288 failed thrusters were correctly detected and identified,
with the corresponding severity profiles as shown in figure 5.46
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Fig. 5.45 Euresis Filter - Distribution of Thrusters’ Failures

Fig. 5.46 Euresis Filter - Distribution of Correctly Identified Failed Thrusters
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In Figure 5.46, the value zero corresponds to total failure, 0.1 to 90% failure, and
so on. Except for the few cases (11) with only 20% failure for the 5th thruster and
6 cases of 40% failure for 7th thruster, all other failed thrusters with their failure
severities values (that could be identified correctly) ranging from 50% and higher,
with most of them in the range of 90% to 100% failure. Despite its poor performance,
this setup provides an excellent estimate of the plant state, even under extreme noise
conditions. However, one might not need to resort to such a costly apparatus; a
well-tuned Kalman Filter alone could be sufficient.
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5.4 Design Method 3: Euphoria Filter

The Euphoria Filter was first run extensively to establish maximum total noise levels
and minimum severity magnitudes that can be correctly identified. The results are
shown in Table 5.6.

Table 5.6 Euphoria Filter - Severity Magnitudes and Noise levels of Validation Plan

Min Constant Failure Max Noise Factor

1(total failure) 1000
0.1 1000
0.01 1000

Note: Here the term noise factor refers to a scaling factor, from nominal, simultaneously,
for all disturbances and sensor noise(s) in the system; e.g. a noise factor of 10 means that all
the various nominal noise levels in the system are amplified by a factor of 10.

The filter was tested extensively for combinations of minimum leakage (slope)
versus the maximum noise that could be identified. In fact, the parameter α in our
leakage model ranged from 0.0001 and up, with the value of 0.0001 representing a
leakage of 0,01 after 100s. The results are shown in 5.7.

Table 5.7 Euphoria Filter - Leakage Magnitudes and Noise Levels of Validation Plan

Min Leakage Rate Max Noise Factor

0.001 100
0.01 100
0.1 100

It is also worth noting that given that FDI occurs under reasonable noise factor
conditions (NF=10) in less than 6s (based on the results and the findings). This means
that, indeed, the Euphoria Filter is able to identify a very slow leakage, reaching a
magnitude of less than 0.005 at the time of identification. Intermittent failures of
very small magnitude were also tested with the same success. This is attributable
to the fact that FDI is achieved within just a few seconds, a time interval which
is much shorter normally than the timing cycle of intermittent failures. Indeed,
as the extensive simulations have shown, the Euphoria Filter exhibits excellent
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performance and robustness to dramatically enhanced noise and minimal severity
and leakage rate magnitudes. The Monte Carlo analysis of this filter was based on
the same framework as for the Diagnosis Filter (section 5.2).

Six sets of 10000 Monte Carlo simulations were executed:

i. nominal parameter settings, to establish a baseline performance with -10%
variation in centre of mass (nominal value d∗ = 0.376) and noise factor of 100.

ii. random up to ±10% misalignment, which corresponds to up to 3.6 degrees,
-10% variation in centre of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 10.

iii. random up to ±10% misalignment, which corresponds to up to 3.6 degrees,
-10% variation in centre of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 100.

iv. random up to ±20% misalignment, which corresponds to up to 7.2 degrees,
+20% variation in center of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 10.

v. random up to ±20% misalignment, which corresponds to up to 3.6 degrees,
+20% variation in center of mass (nominal value d∗ = 0.376) and suspension
and drag-free stiffness (for each stiffness and on each axis) with a noise factor
of 100.

vi. nominal parameter settings, to establish a performance perimeter bounds with
-10% variation in centre of mass (nominal value d∗ = 0.376) and noise factor of
1000.

Severity also varied randomly from 0.01 to 1, which corresponds to failures from
1% - 100%. All the eight thrusters were included.

Monte Carlo Results

i. In this case, which has nominal parameter values (except for d) but which
nonetheless represents a significant departure from nominal conditions, be-
cause of the dramatically enhanced noise factor and the 10% variation in d, the
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results were as follows: absolutely 100% true detection with 17 cases of missed
identification, which makes the true identification percentage equal to 99.83%.
True severity identification was also achieved at 99.83%. The figures below,
give a succinct picture of the results obtained in this case. In addition, there
were no false alarms and no missed detection.

Fig. 5.47 Euphoria Filter - Distribution of Failed Thrusters for the 1st case

Fig. 5.48 Euphoria Filter - Distribution of Severity Magnitudes for the 1st case
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Table 5.8 Euphoria Filter - Missed Identification Cases for the 1st case

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

1 0.01 6 -0.008815061 -0.01
1 0.01 6 -0.008339247 -0.01
1 0.01 6 -0.008014028 -0.01
1 0.01 6 -0.007846304 -0.01
6 0.01 1 -0.009638742 -0.01
1 0.01 6 -0.007824139 -0.01
6 0.01 1 -0.009537004 -0.01
1 0.01 6 -0.008144948 -0.01
6 0.01 1 -0.010671032 -0.01
6 0.01 1 -0.009537004 -0.01
1 0.01 6 -0.008838032 -0.01
6 0.01 1 -0.010075855 -0.01
6 0.01 1 -0.009638742 -0.01
6 0.01 1 -0.00999651 -0.01
1 0.01 6 -0.008144948 -0.01
6 0.01 1 -0.009756842 -0.01
6 0.01 1 -0.009979775 -0.01

As derived from Table 5.8, there are 17 missed identification cases in the
10000 runs, all of them associated with a severity magnitude of 0.01. It is re-
markable that the algorithm consistently identified correctly the absolute value
of the severity magnitude. The negative sign in this case can be considered
as flagging a wrong identification. The fact that the 1st and 6th thrusters were
consistently mistakenly identified can probably be attributed to the fact that
their directions appear close in the presence of the dramatically increased noise
factor. The filter, by design, optimally rejects disturbances and sensor noise, at
the levels included in this design.

However, the optimal designs are sensitive to variations of the optimization
parameters; here an increase by two orders of magnitude of the noise above
the levels used in the filter design is probably the cause of this sensitivity.
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ii. In this case, there was a 100% true detection, 100% true identification and a
100% true severity identification; no false alarms; no missed detection. The
results of this set are shown below.

Fig. 5.49 Euphoria Filter - Distribution of Failed Thrusters for the 2nd case

Fig. 5.50 Euphoria Filter - Distribution of Severity Magnitudes for the 2nd case
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iii. In this case, there was a 100% true detection and 99.83% true identification;
true severity identification was also 99.83%. As the Table 5.9 shows, there
were 17 cases of missed identification, all of which with severity 0.01. Again,
the absolute value of severity was correctly identified, with negative severity
flagging missed identification. There were no false alarms and no missed
detection. The results are given below.

Fig. 5.51 Euphoria Filter - Distribution of Failed Thrusters for the 3rd case

Fig. 5.52 Euphoria Filter - Distribution of Severity Magnitudes for the 3rd case
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Table 5.9 Euphoria Filter - Missed Identification Cases for the 3rd case

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.01 1 -0.009676715 -0.01
2 0.01 1 -0.008158162 -0.01
1 0.01 2 -0.008104851 -0.01
1 0.01 2 -0.009513478 -0.01
1 0.01 6 -0.006638354 -0.01
2 0.01 1 -0.008020664 -0.01
1 0.01 2 -0.006523245 -0.01
1 0.01 6 -0.005691955 -0.01
1 0.01 6 -0.008245931 -0.01
2 0.01 1 -0.008653869 -0.01
6 0.01 1 -0.009638742 -0.01
1 0.01 6 -0.00734796 -0.01
6 0.01 1 -0.009555384 -0.01
2 0.01 1 -0.010141942 -0.01
6 0.01 1 -0.009700117 -0.01
6 0.01 1 -0.009638742 -0.01
6 0.01 1 -0.008794409 -0.01

iv. In this case, there was a 100% true detection and a 99.99% true identification
and true severity magnitude identification. No false alarms; no missed detec-
tion. There was only one case of missed identification, as shown in Table 5.10,
with the negative severity flagging it.
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Fig. 5.53 Euphoria Filter - Distribution of Failed Thrusters for the 4th case

Fig. 5.54 Euphoria Filter - Distribution of Severity Magnitudes for the 4th case
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Table 5.10 Euphoria Filter - Missed Identification Cases for the 4th case

Random Failed
Thruster

Min Angle FDI Identified
Severity

Round-Off
Severity

4 27.73904386 2 -0.787899938 -0.79

v. In this case, there was a 100% true detection and a 99.81% true identification
and true severity magnitude identification. No false alarms; no missed detec-
tion. The 19 cases of missed identification were again with severity magnitude
of 0.01, identified with negative severity. The absolute value of the severity
magnitude was correctly identified in all cases. Another interpretation of this
would be to say that we have 19 cases of missed identification of a failed
thruster, failing with a severity magnitude of 0.01.

Fig. 5.55 Euphoria Filter - Distribution of Failed Thrusters for the 5th case
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Fig. 5.56 Euphoria Filter - Distribution of Severity Magnitudes for the 5th case
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Table 5.11 Euphoria Filter - Missed Identification Cases for the 5th case

Random Failed
Thruster

Min Angle FDI Identified
Severity

Round-Off
Severity

6 0.01 1 -0.007798946 -0.01
2 0.01 1 -0.00857866 -0.01
1 0.01 2 -0.012109786 -0.01
1 0.01 6 -0.009328639 -0.01
1 0.01 6 -0.0076964 -0.01
6 0.01 1 -0.009113337 -0.01
1 0.01 6 -0.005702571 -0.01
6 0.01 1 -0.00972061 -0.01
1 0.01 6 -0.00695489 -0.01
1 0.01 6 -0.010594522 -0.01
1 0.01 2 -0.008028652 -0.01
6 0.01 1 -0.011257563 -0.01
2 0.01 1 -0.008185142 -0.01
2 0.01 1 -0.009771367 -0.01
6 0.01 1 -0.009325342 -0.01
6 0.01 1 -0.009373204 -0.01
4 0.01 2 -0.008892797 -0.01
6 0.01 1 -0.00972061 -0.01
6 0.01 1 -0.009113337 -0.01
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vi. In this final set of runs, a 100% fault detection was achieved; also true identifi-
cation of the failed thruster was missed in 430 cases (Appendix C), of which
302 with negative severity. However, both the negative severity as well as
the positive severity were associated with missed identification; there was no
particular flagging significance to negative severity. Here, the percentage of
missed identification is 4.3%, which is also the percentage of missed severity
identification. Therefore, in this case, we have a 95.7% true identification and a
95.7% correct severity magnitude identification. All these missed cases were
associated with very low severity magnitudes, considering the level of noise
factor. Severity was in the range 0.01 to 0.09, with only one case of 0.11. Here,
the algorithm was unable to identify even the absolute magnitude of the sever-
ity correctly. This is not surprising, given the dramatic increase of noise factor.
The algorithm sensitivity to (very significant) deviation of optimization param-
eters from design values is particularly pronounced here. Furthermore, even
under these exacerbated circumstances, the FDI gives a 100% true detection
and no false alarms or missed detection.

Fig. 5.57 Euphoria Filter - Distribution of Failed Thrusters for the 6th case
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Fig. 5.58 Euphoria Filter - Distribution of Severity Magnitudes for the 6th case

The 1st and 6th sets of the Monte Carlo runs, which are close to nominal except
for d and the noise factor, clearly delineate the algorithm performance bounds
with respect to noise increase from nominal, which cannot exceed two orders of
magnitude, if true detection alone is not the only objective. If, however, there are
such circumstances of dramatically increased disturbances and sensor noise, the
algorithm still detects 100% of any thruster failure. The timing to FDI is very similar
for all six runs; this was indeed the finding throughout the entire Monte Carlo
simulation testing. Table 5.12 summarizes the results obtained for all six sets, both
in terms of percentages as well as numerical values of the metrics considered.
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Table 5.12 Euphoria Filter – Summarized Results of Six Sets of Monte Carlo Analysis

Evaluation Criteria 1st SET 2nd SET 3rd SET 4th SET 5th SET 6th SET

False Alarm Rate r f a 0% 0% 0% 0% 0% 0%
Missed Detection Rate rmd 0% 0% 0% 0% 0% 4,3%
True Detection Rate rtd 100% 100% 100% 100% 100% 95.7%
True Isolation Rate rti 99.83% 100% 99.83% 99.99% 99.81% 95.7%
Wrong Isolation Rate riw 0.17% 0% 0.17% 0.01% 0.19% 4.3%
Average Detection Time tda < 2s < 2s < 2s < 2s < 2s < 2s
Average Isolation Time tia < 2s < 2s < 2s < 2s < 2s < 2s

Figure 5.59 illustrates the FDI timing profile graphs for the case with 10% param-
eter variation and noise factor 10 (2nd set).

Fig. 5.59 Euphoria Filter - FDI Timing Profile for 2nd Case

The same FDI timing was also observed in the more difficult cases, with an FDI
convergence time less than 6s. For comparison, the case with the 20% parameter
variation and noise factor 100 in the Diagnosis Filter had an FDI convergence time
of less than 23s.
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Indicative Test Runs – Leakage

In this subsection, individual runs are presented, where the thruster’s failure appears
as leakage of various rates. The parameter in the leakage model ranged from 0.0001
(very slow) (with a failure severity of 0.01 reached after 100s of leakage), up to 0.01
(fast), with a failure severity of 0.1 reached after 10s of leakage, and with parametric
variations up to 20%, and noise factor up to 100. More specifically, the following test
cases are shown individually:

i. Nominal, NF=1000, d = d∗ − 10%, α = 0,0001.

ii. 10% parameter variation, NF=10, d = d∗ − 10%, α = 0.001.

iii. 10% parameter variation, NF=10, d = d∗ − 10%, α = 0.01.

iv. 10% parameter variation, NF=100, d = d∗ − 10%, α = 0.001.

v. 10% parameter variation, NF=100, d = d∗ − 10%, α = 0.01.

vi. 20% parameter variation, NF=10, d = d∗ + 20%, α = 0.001.

vii. 20% parameter variation, NF=10, d = d∗ + 20%, α = 0.01.

viii. 20% parameter variation, NF=100, d = d∗ + 20%, α = 0.001.

ix. 20% parameter variation, NF=100, d = d∗ + 20%, α = 0.01.

These individual test figures provide a bit more of an insight into the nature of
the FDI process and its time profile. The time to FDI is longer for the slow leakages,
but still very fast considering how subtle the failure remains for a long time. To put
it differently, FDI catches up with the failure long before the failure reaches a level
of 0.01 severity, which is the smallest constant severity tried in all our experiments.

The leakage of the faulty thruster (in each set of graphs the corresponded number

of the failed thruster is inside the parenthesis) is according to the model δ =
1

1 + αt
,

where t is time and α is the leakage parameter.
The following sets of graphs corresponding to each of the cases above are shown

in the order listed below:

• Leakage δ.

• Severity γ = (1 − δ).
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• Residuals.

• Angle evolution.

The following colour code pertains to all angle evolution graphs.

Fig. 5.60 Euphoria Filter – Thrusters’ Colour Code for Leakage Test Runs
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i. Nominal, NF=1000, d = d∗ − 10%, α = 0.0001 (Thruster No 1).

Fig. 5.61 Euphoria Filter - Graph of Leakage for 1st Set

Fig. 5.62 Euphoria Filter - Graph of Severity for 1st Set
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Fig. 5.63 Euphoria Filter - Graph of Residuals for 1st Set

Fig. 5.64 Euphoria Filter – Thrusters’ Angles for 1st Set
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ii. 10% parameter variation, NF=10, d = d∗ − 10%, α = 0.001 (Thruster No 3).

Fig. 5.65 Euphoria Filter - Graph of Leakage for 2nd Set

Fig. 5.66 Euphoria Filter - Graph of Severity for 2nd Set
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Fig. 5.67 Euphoria Filter - Graph of Residuals for 2nd Set

Fig. 5.68 Euphoria Filter – Thrusters’ Angles for 2nd Set
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iii. 10% parameter variation, NF=10, d = d∗ − 10%, α = 0.01 (Thruster No 6).

Fig. 5.69 Euphoria Filter - Graph of Leakage for 3rd Set

Fig. 5.70 Euphoria Filter - Graph of Severity for 3rd Set
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Fig. 5.71 Euphoria Filter - Graph of Residuals for 3rd Set

Fig. 5.72 Euphoria Filter – Thrusters’ Angles for 3rd Set
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iv. 10% parameter variation, NF=100, d = d∗ − 10%, α = 0.001 (Thruster No 5).

Fig. 5.73 Euphoria Filter - Graph of Leakage for 4th Set

Fig. 5.74 Euphoria Filter - Graph of Severity for 4th Set
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Fig. 5.75 Euphoria Filter - Graph of Residuals for 4th Set

Fig. 5.76 Euphoria Filter – Thrusters’ Angles for 4th Set
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v. 10% parameter variation, NF=100, d = d∗ − 10%, α = 0.01 (Thruster No 4).

Fig. 5.77 Euphoria Filter - Graph of Leakage for 5th Set

Fig. 5.78 Euphoria Filter - Graph of Severity for 5th Set
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Fig. 5.79 Euphoria Filter - Graph of Residuals for 5th Set

Fig. 5.80 Euphoria Filter – Thrusters’ Angles for 5th Set
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vi. 20% parameter variation, NF=10, d = d∗ + 20%, α = 0.001 (Thruster No 2).

Fig. 5.81 Euphoria Filter - Graph of Leakage for 6th Set

Fig. 5.82 Euphoria Filter - Graph of Severity for 6th Set
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Fig. 5.83 Euphoria Filter - Graph of Residuals for 6th Set

Fig. 5.84 Euphoria Filter – Thrusters’ Angles for 6th Set
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vii. 20% parameter variation, NF=10, d = d∗ + 20%, α = 0.01 (Thruster No 4).

Fig. 5.85 Euphoria Filter - Graph of Leakage for 7th Set

Fig. 5.86 Euphoria Filter - Graph of Severity for 7th Set
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Fig. 5.87 Euphoria Filter - Graph of Residuals for 7th Set

Fig. 5.88 Euphoria Filter – Thrusters’ Angles for 7th Set
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viii. 20% parameter variation, NF=100, d = d∗ + 20%, α = 0.001 (Thruster No 5).

Fig. 5.89 Euphoria Filter - Graph of Leakage for 8th Set

Fig. 5.90 Euphoria Filter - Graph of Severity for 8th Set
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Fig. 5.91 Euphoria Filter - Graph of Residuals for 8th Set

Fig. 5.92 Euphoria Filter – Thrusters’ Angles for 8th Set
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ix. 20% parameter variation, NF=100, d = d∗ + 20%, α = 0.01 (Thruster No 3).

Fig. 5.93 Euphoria Filter - Graph of Leakage for 9th Set

Fig. 5.94 Euphoria Filter - Graph of Severity for 9th Set
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Fig. 5.95 Euphoria Filter - Graph of Residuals for 9th Set

Fig. 5.96 Euphoria Filter – Thrusters’ Angles for 9th Set

Table 5.13 summarizes the findings from Monte Carlo analysis based on the
detection td, for the pre-mentioned scenarios.
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Table 5.13 Euphoria Filter – Leakage Cases - Time to reach Severity

Case Number td Time to reach Severity 0.01 Time to reach Severity 0.1

1 < 8s 100s 1000s
2 < 6s 10s 100s
3 < 3s 0s 10s
4 < 25s 10s 100s
5 < 8s 0s 10s
6 < 8s 10s 100s
7 < 4s 0s 10s
8 < 28s 10s 100s
9 < 6s 0s 10s

Based on the above time profiles, it is evident that leakage is detected and
identified very fast; in cases #2 and #8, for example, the failure was identified well
before its severity had reached 0.01, with a NF=10. Even with a NF=100, it only took
18 seconds to identify the failure, after reaching a severity of 0.01.

Further Analysis for the Euphoria Filter, the KFDE and
FDI Timing

The Euphoria Filter has, by construction, a significant advantage, in that it satisfies
a frequency domain condition known as KFDE. This condition is a relationship
between the plant open loop dynamics, from disturbances to output and the H2

Filter open loop dynamics, from residuals input to output. Specifically:

KDFE : [I + GKF(s)] [I + GKF(s)]
H = I +

1
µ

[
GFOL(s)GFOL(s)H

]
(5.1)

where:

GKF(s) = C (sI − A)−1 G (5.2)
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with A,C the plant dynamics and output matrix respectively, and G the filter gain
matrix-residuals input matrix:

GFOL(s) = C (sI − A)−1 L (5.3)

with A,C the plant dynamics and output matrix respectively, and L the disturbance
input matrix to the plant and µ is the measurement noise intensity according to:
Θ = µI, with all sensor noises considered equal for the KFDE design option. In the
limit, as µ → 0, where there is no virtually sensor noise,the KFDE yields:

GKF(s) ∼ GFOL(s) (5.4)

i.e. the filter loop characteristics are approximately equal to those of the open loop.
This approximate relationship also holds for the singular values of the above transfer
function matrices and, of course, the corresponding frequency crossovers as well.

The above result gives the designer some freedom to shape the filter crossover,
and thus affect its convergence time, according to some pre-specified desired crite-
rion, which is reflected in the judicious choice of matrix L, which serves as the design
parameter. Thus, once the open loop desirable characteristics have been set, then
by gradually reducing the sensor noise level µ, the filter assumes the pre-specified
characteristics.

Furthermore, the filter noise and disturbance rejection capabilities are not signifi-
cantly compromised. As seen in the preceding section of Monte Carlo runs, even
this optimal design has considerable tolerance/robustness to an increase of noise
factor up to 100. In addition, designating L as a parameter to be chosen by the
designer is allowable, since, it cannot be argued that the way disturbances enter the
system is accurately modelled or known; besides, the design has tolerance to a two
orders of magnitude NF increase. In the specific context of the Euphoria Filter, the
diagrams of Figure 5.97 and Figure 5.98 show the singular values of GFOL(s) and
GKF(s), respectively.
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Fig. 5.97 Euphoria Filter - Singular Values of GFOL

Fig. 5.98 Euphoria Filter - Singular Values of GKF
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with H2 Filter gain matrix:

Fig. 5.99 Euphoria Filter - H2 matrix

The two singular value plots show that crossover occurs for both at approximately
1rad / s, which translates to a time constant of 6s. This was achieved by no decrease
in the µ parameter as it was shown in the plots above. Since our FDI timing was
excellent, significantly improving that of the Diagnosis Filter, there seems to exist no
reason for a further reduction of µ. Making the FDI timing much faster than that
might not allow the filter to properly process the measurement information, and
could result in a compromised performance.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

Many space exploration missions require a critical autonomous proximity operation.
Mission safety is normally guaranteed through a hierarchical implementation of the
fault diagnosis and fault tolerance with several levels of faults containments ranging
from the local components up to the global system through various instruments (e.g.
sensors like Inertial Measurement Unit (IMU), thrusters, etc.), redundancy paths
and ground intervention. The main purpose of the FDI function is to maintain the
plant operational or safe as required by the mission. The typical FDI hierarchical
implementation approach, does not always sufficiently address dynamics deviations
in critical aerospace operations. This is especially the case for thruster faults during
rendezvous and docking/capture proximity operations, which could lead to mission
loss. The robustness of an on-board FDI afforded by the three methods outlined in
this dissertation could therefore be crucial for the safety of future missions, but it
can also have implications extending in other domains such as Internet of Things
(IoT), Cyber-Physical systems, and Bioengineering.

The three proposed techniques described here have been extensively tested with
reference to all the thrusters under considerable parametric and noise variations,
applying the ESA’s LPF simulation model.

Comprehensive Monte Carlo tests have shown remarkable robustness and per-
formance of the Diagnosis Filter. It can handle both fixed and leakage types of
failures of minimal severity of 0.01, with remarkable accuracy and speed in terms of
both fault detection and fault identification as well as the corresponding severity
magnitude identification. Therefore, the Diagnosis Filter comprises a very promising
design according to the defined FDI metrics for reliable mission performance.
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The Euresis Filter also exhibited robustness to the same type of parametric
uncertainty as the Diagnosis Filter, and with a noise factor of at least two orders of
magnitude greater, albeit for total failures only. Further research is required into this
method development in order to gain a better understanding of some of its puzzling
outcomes regarding its total failure identification under extreme noise.

The Euphoria Filter (H2 Based FDI method) proved to be an optimal state estima-
tor while possessed some superior characteristics such as guaranteed convergence
and control over time to FDI. Some of the most promising non-linear estimation
techniques use the 2-norm in their development, which can have a significant impact
on practically all the FDI scenarios, linear or non-linear. We have extensively studied
the linear case for the LPF model. It will be very instructive and useful to investigate
whether the process performance and robustness characteristics remain invariant
for all types of plant dynamic structures, and to apply the method in the non-linear
scenario.

The extensive tests performed substantiate the undeniable suitability of all the
presented techniques for the LPF thruster failure FDI and, given the generic nature
of their theoretical development, render them applicable to other spacecraft mission
applications. Table 6.1, Table 6.2 and Table 6.3 summarize the design, evaluation,
and application characteristics of the three proposed methods.

6.2 Future Work

Despite this work’s direct applicability within the framework of LPF as established
by the use of the ESA supplied simulation model, the theoretical basis of the pre-
sented algorithms can also be translated in other research fields. The reason for
this is that a robust FDI is essential not only for spacecrafts’ and UAVs’ autonomy
but also for any type of cyber-physical systems or machines (e.g. IoT, wearable
exoskeletons and robots), incorporating controllers, sensors and actuators [70, 71].

Based on the findings presented in this thesis, the following issues should be
further investigated for a complete FDI technique for small satellites and other
spacecraft for autonomous missions:

• Develop a hybrid filter to simultaneously identify sensor and actuator fail-
ures. Although the detection of sensor failures is handled via hardware tests,
accurate gyro isolation remains an open issue.
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• Explore post FDI reconfiguration issues within the present controller frame-
work for the LPF.

• Take steps toward an overall multivariable controller design and the corre-
sponding FDI development for the LPF.

Conceptual Modelling of FDI Techniques

Modelling plays an important role in managing the complexity of modern systems
that consist of various types of actuators, sensors and transducers. The next challenge
is the adaptation of FDI techniques in human’s daily life. Examples which signify the
importance of FDI techniques in our daily life activities are smartphones, smart band,
smart IoT devices, etc. or even implantable medical devices [72, 73], where the early
and accurate identification of a fault is of paramount importance for the survival of
a human being. Another example is the various Cyber-Physical Systems (CPS) such
as autonomous vehicle systems, robotics, automatic pilot avionics, smart grids, etc.,
where a fault in a sensor is able to cause tragic accidents [74]. Based on the previous
examples, it is clear that model-based techniques may advance the operations of
smart systems. The next challenge is how the complexity of these systems could
be reduced. This could be achieved with conceptual modelling techniques. Models
not only facilitate coping with the increasing complexity of CPS and IoT-enabled
technologies by providing structuring, analysis and further processing qualities
for human beings (i.e., conceptual modelling [75] but they can also be used for the
development and management of software systems or CPS. Modelling methods
guide the creation of valid models. A modelling method referring to the definition
by Karagiannis and Kühn [3] is composed of three building blocks (Figure 6.1):

• A modelling language defines the elements of the modelling method and
the rules for combining them (syntax). A comprehensive specification of a
modelling language is built up of three parts: notation, syntax, and semantics.
For every element of the modelling language’s syntax, the semantics defining
the meaning and the notation defining the visual representation need to be
specified.

• The modelling procedure then uses the modelling language and defines the
steps a modeler should perform while applying the modelling language in
order to create valid models. The combination of modelling language and
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modelling procedure is referred to as the modelling technique of a modelling
method.

• Mechanisms and algorithms provide the functionality used by the modelling
procedure to process the models, e.g. simulation algorithms, model transfor-
mation algorithms, model queries, and model validation.

Fig. 6.1 Components of Modelling Methods (Karagiannis & Kühn [3])

The third building block could initiate the modelling of FDI mechanisms in
a less complex method but with the same strong mathematical background. We
can examine different ways to define semantically the information of the sensors,
actuators, and controllers of the system and how the noise that influences the sensors,
actuators and the real system from the useful data can be separated semantically.
Another issue that could be answered through the creation of a new modelling
method is how the systems’ failures can be modelled with time dimension and FDI
techniques in discrete and continuous systems. A successful modelling method
which will describe dynamic systems with FDI mechanisms has to take into account
the implication of time in the model and how time influences the stability and the
interoperability of the system.

Another aspect that has to be realised during the creation of the modelling lan-
guage is the different constituents (a dynamic model consists of different sub-models
that participate actively in; such as sensors, controllers, actuators etc.). In parallel,



170 Conclusions and Future Work

a modelling method has to serve multiple purposes depending on the various de-
signers’ and users’ perspectives [76, 77]. Also, the importance of the formalization
aspect which will enable intersubjective understanding and interoperability machine
processing [78] has to be considered. One of the ulterior targets of this modelling
method through the FDI mechanisms would be the prediction of faults, and the
identification and the isolation of the system’s incongruent behaviour.

A real example that encloses the pre-mentioned challenges is the Smart City [79].
A Smart City integrates information from different assets such as transportation
systems, hospitals, power plants, water supply networks, waste management, etc.
The IoT devices and Cyber-Physical systems have a significant role for the seamless
and efficient operation of various Smart City services. The operational complexity
of a Smart City could raise questions such as what happens if a component fails and
how can we manage the disturbance noise more efficiently or what actions have to
be taken if a fault occurs in an actuator of a smart water supply system. An example
of how sensors could influence the services of a Smart City can be found in [80].

In the conclusion, it would be novel but at the same time challenging (according
to all of the above mentioned reasons) to create a modelling language which will
be oriented to model dynamical linear or non-linear systems in a more abstract and
more comprehensive way.



6.2 Future Work 171

List of Publications

[1]. N. Tantouris, D. Polemi and K. Dellios, "Euresis-Filter: A robust multiple-
model FDI technique for small satellites thruster faults," forthcoming in Int. J.
Model. Identif. Control, 2017.

[2]. N. Tantouris, D. Polemi and K. Dellios, "Diagnosis-Filter: A Guaranteed Robust
FDI Technique for Lisa-Pathfinder Thruster Failures," Control Engineering
Practice, A Journal of IFAC, International Federation of Automatic Control
(under review) 2016.

[3]. N. Tantouris, D. Polemi and K. Dellios, "On the path to Cyber-Peace: A Robust
‘diagnosis-filter’ for safeguarding future systems and machines," presented
at the 2nd International Conference on Internet of Things, Data and Cloud
Computing, Cambridge, United Kingdom, 22-23 March, 2017.

[4]. N. Tantouris and K. Dellios, "Euphoria-filter: a robust H2/H∞ technique
amenable to the Lisa-Pathfinder thruster faults," Int. J. Sp. Sci. Eng., vol.
4, no. 1, pp. 45–63, 2016.

[5]. L. Valavani and N. Tantouris, "Guaranteed robust fault detection and isolation
techniques for small satellites," in Progress in Flight Dynamics, Guidance,
Navigation, Control, Fault Detection, and Avionics, C. Vallet, D. Choukroun,
C. Philippe, G. Balas, A. Nebylov, and O. Yanova, Eds., vol. 6. Les Ulis, France:
EDP Sciences, December 2013, pp. 407–422.

[6]. L. Valavani and N. Tantouris, "Model Based FDI for the LPF," Poster for the
GNC 2011, 8th International ESA Conference on Guidance and Navigation
Control Systems, Carlsbad, Czech Republic, 5-10 June, 2011.

[7]. D. Bork, HG. Fill, D. Karagiannis, ET. Miron, N. Tantouris and M. Walch,
"Conceptual Modelling for Smart Cities: A Teaching Case". Interaction Design
& Architecture(s) Journal (IxD&A), Special Issue on Smart City Learning:
Opportunities and Challenges, No. 27, pp. 10-27, 2015.

[8]. D. Bork, R. Buchmann, I. Hawryszkiewycz, D. Karagiannis, N. Tantouris and
M. Walch, "Using Conceptual Modeling to Support Innovation Challenges
in Smart Cities," 2016 IEEE 18th International Conference on High Perfor-
mance Computing and Communications; IEEE 14th International Conference



172 Conclusions and Future Work

on Smart City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Sydney, NSW, 2016, pp. 1317-1324.



References

[1] ESA. (2016) A perfectly still laboratory in space. [Online]. Available: http:
//sci.esa.int/lisa-pathfinder/57559-a-perfectly-still-laboratory-in-space/

[2] W. Fichter, A. Schleicher, and N. Brandt, “Control Tasks and Functional
Architecture of the LISA Pathfinder Drag-Free System,” in Guidance, Navigation
and Control Systems, vol. 606, 2006.

[3] D. Karagiannis and H. Kühn, “Metamodelling Platforms,” Proceedings of the
Third International Conference EC-Web, vol. 2455, p. 182, 2002.

[4] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniques-part I: Fault diagnosis with model-based and
signal-based approaches,” IEEE Transactions on Industrial Electronics, vol. 62,
no. 6, pp. 3757–3767, June 2015.

[5] P. Frank, S. Ding, and T. Marcu, “Model-based fault diagnosis in technical
processes,” Transactions of the Institute of Measurement and Control, vol. 22, no. 1,
pp. 57–101, March 2000.

[6] A. Falcoz, F. Boquet, M. Dinh, B. Polle, G. G. Flandin, and E. Bornschlegl,
“Robust fault diagnosis strategies for spacecraft application to LISA Pathfinder
experiment,” in IFAC Proceedings Volumes, vol. 43, no. 15, 2010, pp. 404–409.

[7] J. Borde, F. Teston, S. Santandrea, and S. Boulade, “Feasibility of the PROBA 3
formation flying demonstration mission as a pair of microsats in GTO,” in
Small Satellites, Systems and Services, vol. 571, 2004, pp. 103–114.

[8] R. Chen, J. Speyer, and L. Guntur, “Periodic Fault Detection Filters with
Application to Satellite Systems,” AIAA Guidance, Navigation, and Control
Conference and Exhibit, p. 5734, 2003.

[9] S. Nolet, E. Kong, and D. W. Miller, “Design of an algorithm for autonomous
docking with a freely tumbling target,” Modeling, Simulation, and Verification of
Space-based Systems II, vol. 5799, pp. 123–134, 2005.

[10] A. M. Salkham, “Fault Detection, Isolation and Recovery (FDIR) in On-Board
Software,” Doctoral dissertation, Chalmers University of Technology, 2005.

[11] E. Wilson, D. Sutter, and R. Mah, “Motion-Based Thruster Fault Detection and
Isolation,” in Infotech@Aerospace, 2005, p. 7182.

http://sci.esa.int/lisa-pathfinder/57559-a-perfectly-still-laboratory-in-space/
http://sci.esa.int/lisa-pathfinder/57559-a-perfectly-still-laboratory-in-space/


174 References

[12] F. H. Bauer, K. Hartman, J. P. How, J. Bristow, D. Weidow, and F. D. Busse,
“Enabling Spacecraft Formation Flying through Spaceborne GPS and Enhanced
Automation Technologies,” in ION-GPS Conference, vol. 1, 1999, pp. 369–384.

[13] F. D. Busse, “Precise Formation-state Estimation in Low Earth Orbit Using
Carrier Differential GPS,” Doctoral dissertation, Stanford University, 2003.

[14] C.-W. Park, “Precise Relative Navigation Using Using Augmented CDGPS,”
Doctoral dissertation, Stanford University, 2001.

[15] R. J. Patton, F. J. Uppal, S. Simani, and B. Polle, “Robust FDI applied to thruster
faults of a satellite system,” Control Engineering Practice, vol. 18, no. 9, pp.
1093–1109, 2010.

[16] V. Hruby, M. Gamero-Castano, D. Spence, C. Gasdaska, N. Demmons,
R. McCormick, P. Falkos, J. Young, and W. Connolly, “Colloid thrusters for
the new millennium, ST7 DRS mission,” in Aerospace Conference, vol. 1. IEEE,
2004, pp. 202–213.

[17] N. Tudoroiu, E. Sobhani-Tehrani, and K. Khorasani, “Interactive bank of
unscented Kalman filters for fault detection and isolation in reaction wheel
actuators of satellite attitude control system,” in IECON 2006 - 32nd Annual
Conference on IEEE Industrial Electronics. Παρισ: IEEE, 2006, pp. 244–269.

[18] N. Tudoroiu and K. Khorasani, “Fault detection and diagnosis for satellite’s
attitude control system (ACS) using an interactive multiple model (IMM)
approach,” in Proceedings of 2005 IEEE Conference on Control Applications, 2005.
CCA 2005. Toronto: IEEE, 2005, pp. 1287–1292.

[19] S. Jayaram and Sanjay, “Fault tolerant autonomous rendezvous and docking
architecture for spacecraft in presence of control actuator failures,” International
Journal of Intelligent Unmanned Systems, vol. 1, no. 1, pp. 5–20, February 2013.

[20] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review
of process fault detection and diagnosis part I: Quantitative model-based
methods,” Computers and Chemical Engineering, vol. 27, no. 3, pp. 293–311, 2003.

[21] V. Venkatasubramanian, R. Rengaswamy, S. N. Ka, S. N. Kavuri, and S. N. Ka,
“A review of process fault detection and diagnosis Part II : Qualitative models
and search strategies,” Computers & Chemical Engineering, vol. 27, no. 3, pp.
313–326, 2003.

[22] V. Venkatasubramanian, R. Rengaswamy, S. N. Kavuri, and K. Yin, “A
review of process fault detection and diagnosis part III: Process history based
methods,” Computers and Chemical Engineering, vol. 27, no. 3, pp. 327–346, 2003.

[23] L. Valavani and N. Tantouris, “Guaranteed robust fault detection and isolation
techniques for small satellites,” in Progress in Flight Dynamics, Guidance,
Navigation, Control, Fault Detection, and Avionics, C. Vallet, D. Choukroun,
C. Philippe, G. Balas, A. Nebylov, and O. Yanova, Eds., vol. 6. Les Ulis,
France: EDP Sciences, December 2013, pp. 407–422.



References 175

[24] Z. Gao, “Fault Estimation and Fault Tolerant Control for Discrete-Time
Dynamic Systems,” Industrial Electronics, IEEE Transactions on, vol. 62, no. 6, pp.
3874–3884, 2015.

[25] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation,
and reconfiguration methods,” IEEE Transactions on Control Systems Technology,
vol. 18, no. 3, pp. 636–653, May 2010.

[26] L. Valavani, “Model Based FDI Techniques: Literature Review, Most Promising
Concepts, Architecture and Algorithms,” EUropean Space Agency, Athens,
Tech. Rep., July 2009.

[27] D. Fertin, “Feasibility analysis of DFACS with US colloidal thrusters,” S2-
ESTTN, Tech. Rep., 2007.

[28] L. Valavani and P. Voulgaris, “High performance linear-quadratic and H∞
designs for a’supermaneuverable’aircraft,” Journal of Guidance, Control, and
Dynamics, vol. 14, no. 1, pp. 157–165, 1991.

[29] M. Dinh and B. Polle, “Application of Method II to LPF Thruster Failure Detec-
tion - GNC T.TCN.712587.ASTR. Iss. 2.” European Space Agency (E.S.A), Tech.
Rep., June 2007.

[30] L. Valavani, “Adaptive control,” Boston, 1994.

[31] L. Valavani and N. Tantouris, “Candidate Model Based FDI Concepts: Design
Synthesis Procedures-Step Wise Design, Analysis and Validation Approach -
HSS TN3-2,” European Space Agency (E.S.A), Tech. Rep., June 2010.

[32] L. Valavani, “Candidate Model Based FDI Concepts: Detailed Design, Algo-
rithm Specifications and Tuning Methodology - HSS TNP2-2,” European Space
Agency (E.S.A), Tech. Rep., August 2010.

[33] J. Deckert and J. Deyst, “Reliable dual-redundant sensor failure detection and
identification for the NASA F-8 DFBW aircraft,” Draper (Charles Stark) Lab.,
Inc.; Cambridge, MA, United States, Tech. Rep., 1978.

[34] M. N. Desai, J. C. Deckert, and J. J. Deyst Jr, “Dual-Sensor Failure Identification
Using Analytic Redundancy,” Journal of Guidance, Control, and Dynamics, vol. 2,
no. 3, pp. 213–220, 1979.

[35] E. Y. Chow and A. S. Willsky, “Analytical Redundancy and the Design
of Robust Failure Detection Systems,” Ieee Transactions on Automatic Control,
vol. 29, no. 7, pp. 603–614, 1984.

[36] J. S. Meserole, “Detection Filters for Fault-tolerant Control of Turbofan Engines,”
Doctoral dissertation, Massachusetts Institute of Technology (M.I.T), 1981.

[37] M. A. Massoumnia, “A geometric approach to failure detection and
identification in linear systems,” Massachusetts Institute of Technology (M.I.T),
Tech. Rep., 1986.



176 References

[38] M. Basseville, “Detecting Changes in Signals and Systems - A Survey,”
Automatica, vol. 24, no. 3, pp. 309–326, 1988.

[39] R. J. Patton, S. W. Willcox, and J. Winter, “Parameter-insensitive technique for
aircraft sensor fault analysis,” Journal of Guidance, Control, and Dynamics, vol. 10,
no. 4, pp. 359–367, 1987.

[40] R. J. Patton, P. M. Frank, and R. N. Clarke, Fault diagnosis in dynamic systems:
theory and applications. Prentice-Hall, Inc., 1989.

[41] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy: A survey and some new results,” Automatica,
vol. 26, no. 3, pp. 459–474, 1990.

[42] M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and
Application. Prentice Hall, 1993.

[43] R. J. Patton and J. Chen, “Review of parity space approaches to fault diagnosis
for aerospace systems,” Journal of Guidance, Control, and Dynamics, vol. 17, no. 2,
pp. 278–285, 1994.

[44] J. Chen, R. J. Patton, and H.-Y. Zhang, “Design of unknown input observers
and robust fault detection filters,” International Journal of Control, vol. 63, no. 1,
pp. 85–105, 1996.

[45] P. P. Frank and X. Ding, “Survey of robust residual generation and evaluation
methods in observer-based fault detection systems,” pp. 403–424, 1997.

[46] R. Isermann and P. Ballé, “Trends in the application of model based fault
detection and diagnosis of technical processes,” Control Engineering Practice,
vol. 5, no. 5, pp. 709–719, 1997.

[47] M. Nyberg and L. Nielsen, “Parity Functions as Universal Residual Glenerators
and Tool for Fault Detectability Analysis,” in Decision and Control, 1997.,
Proceedings of the 36th IEEE Conference, vol. 5, no. December. San Diego, CA:
IEEE, 1997, pp. 4483–4489.

[48] Space Systems Finland Ltd., “Aurora FDIR - Final Report, ETP-SSF-RP-002,”
European Space Agency (E.S.A), Finland, Tech. Rep., 2002.

[49] D. G. Luenberger and Y. Yinyu, Linear and Nonlinear Programming. Springer,
2008.

[50] Dinh M., B. Polle, J. Morand, and G. Griseri, “LPF FDI Benchmark Case Defini-
tion - TN4 Robust estimation for failure detection,” EADS Astrium, Tech. Rep.,
2006.

[51] F. Uppal, S. Simani, and R. Patton, “Selection of Robust Estimation Methods for
Failure Detection,” European Space Agency (E.S.A), Tech. Rep., 2004.

[52] EADS Astrium, “Robust Estimation for Failure Detection - ESA contract 17945
CCNI,” European Space Agency (E.S.A), Tech. Rep., 2007.



References 177

[53] S. J. Julier and J. K. Uhlmann, “New extension of the Kalman filter to
nonlinear systems,” in Signal Processing, Sensor Fusion, and Target Recognition.
International Society for Optics and Photonics, 1997, pp. 182–193.

[54] J. Uhlmann, S. Julier, and H. F. Durrant-Whyte, “A new method for the nonlin-
ear transformation of means and covariances in filters and estimators,” IEEE
Transactions on automatic control, vol. 45, no. 3, pp. 477–482, 2000.

[55] S. Julier and J. Uhlmann, “Unscented Filtering and Non Linear Estimation,” in
Proceedings of the IEEE, vol. 92, no. 3. IEEE, 2004, pp. 401–422.

[56] D. G. Valavani, L., Anastassiou, G., “An Improved Nonlinear Filter for Robust
Distributed Estimation,” ESA/ESTEC, Tech. Rep., 2007.

[57] L. Perea, J. How, L. Breger, and P. Elosegui, “Nonlinearity in Sensor Fusion:
Divergence Issues in EKF, modified truncated SOF, and UKF,” in AIAA
Guidance, Navigation, and Control Conference and Exhibit. American Institute of
Aeronautics and Astronautics, 2007, p. 6514.

[58] L. Cork and R. Walker, “Sensor Fault Detection for UAVs using a Nonlinear
Dynamic Model and the IMM-UKF Algorithm,” in Information, Decision and
Control. Adelaide, Qld: IEEE, 2007, pp. 230–235.

[59] J. Ru and X. R. Li, “Variable-Structure Multiple-Model Approach to Fault
Detection, Identification, and Estimation,” IEEE Transactions on Control Systems
Technology, vol. 16, no. 5, pp. 1029–1038, 2008.

[60] X. R. Li, V. P. Jilkov, J. Ru, and A. Bashi, “Expected-mode augmentation
algorithms for variable-structure multiple-model estimation,” in IFAC
Proceedings Volumes, vol. 35, no. 1, 2002, pp. 175–180.

[61] J. Doyle, K. Glover, P. Khargonekar, and B. Francis, “State-space solutions to
standard H2 and H∞ control problems,” IEEE Transactions on Automatic Control,
vol. 34, no. 8, pp. 831–847, 1989.

[62] P. P. Khargonekar and K. M. Nagpal, “Filtering and smoothing in an H∞
setting,” in IEEE Transactions on Automatic Control, vol. 36, no. 2. IEEE, 1991,
pp. 152–166.

[63] B. D. Appleby, “Robust Estimator Design using the H∞ Norm and µ Synthesis,”
Doctoral dissertation, Massachusetts Institute of Technology (M.I.T), 1991.

[64] B. D. Appleby, J. R. Dowdle, and W. V. Velde, “Robust estimator design using
µ synthesis,” in Proceedings of the 30th IEEE Conference on Decision and Control.
Brighton: IEEE, 1991, pp. 640–645.

[65] L. Xie, C. E. De Souza, and M. Fu, “H∞ estimation for discrete-time linear
uncertain systems,” International Journal of Robust and Nonlinear Control, vol. 1,
no. 2, pp. 111–123, 1991.



178 References

[66] R. Mangoubi, B. D. Appleby, and J. R. Farrell, “Robust estimation in fault
detection,” in Proceedings of the 31st IEEE Conference on Decision and Control.
ucson, AZ: IEEE, 1992, pp. 2317–2322.

[67] P. Voulgaris, “On optimal ℓ∞ to ℓ∞ filtering,” Automatica, vol. 31, no. 3, pp.
489–495, 1995.

[68] S. Grenaille, D. Henry, and A. Zolghadri, “Fault diagnosis in satellites
using H∞ estimators,” in 2004 IEEE International Conference on Systems, Man and
Cybernetics (IEEE Cat. No.04CH37583), vol. 6. The Hague, Netherlands: IEEE,
2004, pp. 5195–5200.

[69] D. Henry, “Robust fault diagnosis of the microscope satellite micro-thrusters,”
in IFAC Proceedings Volumes, vol. 39, no. 13, 2006, pp. 342–347.

[70] M. Carpenter and K. Duda, “A new spin on space suits,” IEEE Spectrum, vol. 52,
no. 10, pp. 30–35, October 2015.

[71] R. R. Murphy and D. D. Woods, “Beyond Asimov : The Three Laws of
Responsible Robotics,” IEEE Intelligent Systems, vol. 24, no. 4, pp. 14–20, 2009.

[72] Zhihao Jiang, M. Pajic, and R. Mangharam, “Cyber–Physical Modeling of
Implantable Cardiac Medical Devices,” Proceedings of the IEEE, vol. 100, no. 1,
pp. 122–137, January 2012.

[73] G.-Z. Yang and M. Yacoub, Body Sensor Networks, G.-Z. Yang, Ed. London:
Springer London, 2006.

[74] B. d’Enquêtes et d’Analyses pour la sécurité de l’aviation Civile, “Final report
on the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP
operated by Air France Flight AF447 Rio de Janeiro – Paris,” BEA, Paris, Tech.
Rep., 2012.

[75] J. Mylopoulos, Conceptual modelling and Telos. New York: Wiley, 1992.

[76] D. Bork, E. J. Sinz, and D. Karagiannis, “A Development Method for the Con-
ceptual Design of Multi-View Modeling Tools with an Emphasis on Consistency
Requirements,” Doctoral dissertation, University of Bamberg, 2015.

[77] D. Karagiannis, R. Buchmann, and D. Bork, “Managing Consistency in Multi-
View Enterprise Models: An Approach based on Semantic Queries,” in Twenty-
Fourth European Conference on Information Systems (ECIS 2016), June 2016.

[78] D. Bork and H.-G. Fill, “Formal Aspects of Enterprise Modeling Methods: A
Comparison Framework,” in 2014 47th Hawaii International Conference on System
Sciences. Waikoloa, HI: IEEE, 2014, pp. 3400–3409.

[79] D. Bork, R. Buchmann, and D. Karagiannis, “Preserving Multi-view Consistency
in Diagrammatic Knowledge Representation,” in Knowledge Science, Engineering
and Management, Z. S., W. M., and Z. Z., Eds. Lecture Notes in Computer
Science, vol 9403. Springer, Cham, 2015, pp. 177–182.



References 179

[80] D. Bork, R. Buchmann, I. Hawryszkiewycz, D. Karagiannis, N. Tantouris, and
M. Walch, “Using Conceptual Modeling to Support Innovation Challenges in
Smart Cities,” in 2016 IEEE 18th International Conference on High Performance Com-
puting and Communications; IEEE 14th International Conference on Smart City; IEEE
2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS),
Sydney, NSW, 2016, pp. 1317–1324.





Appendix A

State Space Descriptions of Open
Loop Dynamics



182 State Space Descriptions of Open Loop Dynamics

Fig.A
.1

A
ttitude

O
pen

Loop
-M

atrix
A

ofA
strium

’s
TF



183

Fi
g.

A
.2

A
tt

it
ud

e
O

pe
n

Lo
op

-M
at

ri
x

B
of

A
st

ri
um

’s
T

F



184 State Space Descriptions of Open Loop Dynamics

Fig.A
.3

A
ttitude

O
pen

Loop
-M

atrix
C

ofA
strium

’s
TF



185

Fi
g.

A
.4

A
tt

it
ud

e
O

pe
n

Lo
op

-M
at

ri
x

D
of

A
st

ri
um

’s
T

F



186 State Space Descriptions of Open Loop Dynamics
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194 State Space Descriptions of Open Loop Dynamics

Fig.A
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Fig.A
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Fig.A
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206 State Space Descriptions of Open Loop Dynamics

Fig.A
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Fig.A
.27
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Fig.A
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Fig.A
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214 State Space Descriptions of Open Loop Dynamics

Fig.A
.33
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Fig.A
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Fig.A
.37
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220 State Space Descriptions of Open Loop Dynamics

Fig.A
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Appendix B

Drag Free and Suspension Loop
Dynamics (Combined) for the
Detection Filter - Modified B Matrix
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Drag Free and Suspension Loop Dynamics (Combined) for the Detection Filter -

Modified B Matrix
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Drag Free and Suspension Loop Dynamics (Combined) for the Detection Filter -

Modified B Matrix

Fig.B.3
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Appendix C

Diagnosis Filter (The true
identification of the Failed Thruster
was missed in 430 Cases, of which 302
with Negative Severity)
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Table C.1 Euphoria Filter - Missed Identification Cases for the 6th case

Begin of Table

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.05 1 −0.061310591 −0.06
6 0.05 1 −0.054844044 −0.05
1 0.07 2 −0.054136608 −0.05
4 0.05 2 −0.046701643 −0.05
4 0.03 5 0.028336245 0.03
6 0.09 1 −0.08889456 −0.09
2 0.03 1 −0.04118333 −0.04
1 0.05 5 0.042491209 0.04
2 0.01 1 −0.02884842 −0.03
4 0.03 5 0.029565063 0.03
2 0.05 1 −0.05409358 −0.05
1 0.07 2 −0.055479359 −0.06
2 0.09 1 −0.084154537 −0.08
1 0.05 5 0.043112787 0.04
4 0.05 2 −0.04090668 −0.04
1 0.05 5 0.03872375 0.04
7 0.01 8 0.010528629 0.01
2 0.05 1 −0.052619075 −0.05
1 0.03 5 0.029920285 0.03
1 0.09 6 −0.072529175 −0.07
4 0.03 5 0.025596409 0.03
2 0.01 1 −0.026704585 −0.03
2 0.01 1 −0.026384788 −0.03
3 0.05 1 −0.057779853 −0.06
4 0.01 5 0.015891293 0.02
2 0.03 1 −0.040769215 −0.04
3 0.03 1 −0.044024093 −0.04
2 0.05 1 −0.055252829 −0.06
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.03 1 −0.041526168 −0.04
1 0.07 6 −0.051370871 −0.05
3 0.05 1 −0.06061371 −0.06
1 0.01 5 0.017637747 0.02
2 0.09 1 −0.080967507 −0.08
7 0.01 8 0.010284915 0.01
2 0.03 1 −0.040411548 −0.04
6 0.07 1 −0.073568186 −0.07
3 0.03 1 −0.042953722 −0.04
6 0.01 1 −0.028316978 −0.03
6 0.03 1 −0.042955118 −0.04
1 0.09 6 −0.07923341 −0.08
2 0.05 1 −0.057902014 −0.06
2 0.01 1 −0.027161431 −0.03
1 0.09 6 −0.077375676 −0.08
2 0.01 1 −0.027899539 −0.03
6 0.03 1 −0.044327536 −0.04
2 0.09 1 −0.093004768 −0.09
1 0.07 2 −0.055525058 −0.06
6 0.07 1 −0.073568186 −0.07
4 0.03 5 0.026974204 0.03
2 0.01 1 −0.026367131 −0.03
3 0.01 1 −0.027911007 −0.03
1 0.09 6 −0.070795714 −0.07
4 0.01 5 0.018084546 0.02
2 0.01 1 −0.025142098 −0.03
1 0.09 6 −0.073584194 −0.07
2 0.09 1 −0.085326283 −0.09
3 0.03 1 −0.045014193 −0.05
6 0.03 1 −0.042010821 −0.04
1 0.01 5 0.018963634 0.02
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

3 0.03 1 −0.042313308 −0.04
2 0.03 1 −0.042313867 −0.04
6 0.07 1 −0.074028675 −0.07
4 0.03 5 0.027656552 0.03
7 0.01 8 0.010119408 0.01
2 0.07 1 −0.072678687 −0.07
2 0.07 1 −0.075145125 −0.08
4 0.01 5 0.016965479 0.02
6 0.07 1 −0.076827088 −0.08
3 0.01 1 −0.028434088 −0.03
6 0.09 1 −0.085874299 −0.09
3 0.03 1 −0.045622145 −0.05
1 0.07 2 −0.059205841 −0.06
3 0.05 1 −0.058203482 −0.06
6 0.01 1 −0.028200683 −0.03
7 0.01 8 0.010245393 0.01
6 0.07 1 −0.071468364 −0.07
3 0.03 1 −0.042757311 −0.04
1 0.09 2 −0.073496841 −0.07
6 0.07 1 −0.073568186 −0.07
6 0.03 1 −0.044327536 −0.04
2 0.01 1 −0.029371296 −0.03
4 0.01 5 0.017681018 0.02
2 0.03 1 −0.04098656 −0.04
6 0.07 1 −0.073568186 −0.07
1 0.01 5 0.018494714 0.02
4 0.03 5 0.02860585 0.03
2 0.05 1 −0.055526663 −0.06
6 0.01 1 −0.027336849 −0.03
1 0.05 5 0.043319006 0.04
3 0.01 1 −0.027808595 −0.03
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

1 0.09 6 −0.073432541 −0.07
1 0.01 5 0.017688687 0.02
6 0.03 1 −0.043002984 −0.04
1 0.01 5 0.017688687 0.02
3 0.05 1 −0.058562449 −0.06
2 0.03 1 −0.041925418 −0.04
4 0.03 5 0.02961401 0.03
6 0.09 1 −0.085907219 −0.09
4 0.01 5 0.017681605 0.02
2 0.01 1 −0.028420772 −0.03
6 0.05 1 −0.060972165 −0.06
4 0.03 5 0.02939649 0.03
4 0.01 5 0.017207353 0.02
4 0.01 5 0.016226604 0.02
3 0.03 1 −0.045910283 −0.05
2 0.05 1 −0.055074609 −0.06
6 0.07 1 −0.073264607 −0.07
3 0.03 1 −0.042953722 −0.04
4 0.03 5 0.028741007 0.03
3 0.01 1 −0.027388524 −0.03
2 0.01 1 −0.028132479 −0.03
2 0.03 1 −0.043062696 −0.04
3 0.03 1 −0.044602309 −0.04
6 0.07 1 −0.071380605 −0.07
2 0.03 1 −0.04118333 −0.04
7 0.01 8 0.008537949 0.01
6 0.09 1 −0.08707992 −0.09
2 0.03 1 −0.04154244 −0.04
4 0.01 5 0.018078374 0.02
2 0.03 1 −0.044362707 −0.04
4 0.03 5 0.02437181 0.02
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

1 0.05 5 0.0405775 0.04
6 0.03 1 −0.047692369 −0.05
1 0.03 5 0.028879555 0.03
6 0.01 1 −0.02814415 −0.03
2 0.07 1 −0.067765369 −0.07
6 0.07 1 −0.072549278 −0.07
6 0.09 1 −0.090679576 −0.09
3 0.01 1 −0.031636472 −0.03
4 0.03 5 0.027128264 0.03
4 0.03 5 0.025118212 0.03
6 0.03 1 −0.04316405 −0.04
1 0.07 2 −0.056198792 −0.06
1 0.09 6 −0.071909122 −0.07
2 0.05 1 −0.055481311 −0.06
1 0.07 2 −0.057317906 −0.06
3 0.01 1 −0.027854746 −0.03
6 0.09 1 −0.082448219 −0.08
6 0.03 1 −0.039989628 −0.04
2 0.05 1 −0.055252829 −0.06
7 0.01 8 0.011147497 0.01
6 0.03 1 −0.041506473 −0.04
3 0.05 1 −0.058239533 −0.06
3 0.03 1 −0.041727245 −0.04
4 0.01 5 0.016868027 0.02
1 0.01 5 0.016838688 0.02
3 0.01 1 −0.02825094 −0.03
2 0.01 1 −0.027594489 −0.03
6 0.07 1 −0.0715637 −0.07
1 0.03 5 0.028879555 0.03
4 0.01 5 0.018505206 0.02
2 0.01 1 −0.025924722 −0.03
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

4 0.01 1 −0.01391228 −0.01
1 0.01 5 0.018874851 0.02
1 0.03 5 0.03063809 0.03
6 0.03 1 −0.046143774 −0.05
1 0.07 2 −0.051884012 −0.05
4 0.01 5 0.015939219 0.02
6 0.09 1 −0.092572313 −0.09
1 0.09 6 −0.083771175 −0.08
2 0.07 1 −0.069490063 −0.07
6 0.09 1 −0.089354056 −0.09
6 0.03 1 −0.041263008 −0.04
6 0.03 1 −0.042955118 −0.04
3 0.05 1 −0.058349533 −0.06
6 0.09 1 −0.089005168 −0.09
2 0.05 1 −0.057747797 −0.06
2 0.09 1 −0.084648312 −0.08
3 0.03 1 −0.041337687 −0.04
4 0.03 5 0.029395571 0.03
1 0.09 6 −0.07519877 −0.08
3 0.01 1 −0.02703127 −0.03
4 0.03 5 0.02772244 0.03
2 0.05 1 −0.055440672 −0.06
2 0.07 1 −0.067294626 −0.07
1 0.09 6 −0.069819619 −0.07
7 0.01 8 0.009097634 0.01
4 0.03 5 0.02998005 0.03
1 0.09 6 −0.070255427 −0.07
2 0.01 1 −0.026845808 −0.03
4 0.05 2 −0.043977312 −0.04
2 0.05 1 −0.060078902 −0.06
6 0.07 1 −0.074320872 −0.07
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

1 0.05 5 0.038434158 0.04
1 0.09 6 −0.07361438 −0.07
3 0.05 1 −0.06332375 −0.06
1 0.03 5 0.030668913 0.03
2 0.05 1 −0.055252829 −0.06
1 0.03 5 0.02908108 0.03
2 0.03 1 −0.041603393 −0.04
4 0.03 5 0.026590662 0.03
6 0.01 1 −0.027720383 −0.03
7 0.01 8 0.009836185 0.01
2 0.05 1 −0.053206599 −0.05
2 0.05 1 −0.05492879 −0.05
1 0.01 5 0.016326392 0.02
2 0.09 1 −0.083391827 −0.08
3 0.03 1 −0.04458742 −0.04
6 0.07 1 −0.068560513 −0.07
1 0.01 5 0.015368935 0.02
1 0.03 5 0.025331479 0.03
1 0.05 5 0.040232276 0.04
3 0.05 1 −0.058726645 −0.06
6 0.01 1 −0.02850147 −0.03
4 0.03 5 0.029381965 0.03
3 0.03 1 −0.04326762 −0.04
3 0.03 1 −0.042797773 −0.04
3 0.03 1 −0.041828495 −0.04
2 0.09 1 −0.083391827 −0.08
7 0.01 8 0.007447366 0.01
3 0.01 1 −0.027775755 −0.03
6 0.07 1 −0.07377282 −0.07
4 0.03 5 0.028336245 0.03
6 0.03 1 −0.041336877 −0.04
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.07 1 −0.070406136 −0.07
6 0.07 1 −0.076662226 −0.08
3 0.03 1 −0.04326762 −0.04
4 0.01 5 0.018034714 0.02
3 0.01 1 −0.027560243 −0.03
7 0.01 8 0.008537949 0.01
6 0.05 1 −0.063645975 −0.06
2 0.03 1 −0.04475937 −0.04
1 0.11 6 −0.089711088 −0.09
7 0.01 8 0.010666416 0.01
2 0.09 1 −0.084709243 −0.08
6 0.07 1 −0.071380605 −0.07
3 0.05 1 −0.057724453 −0.06
6 0.05 1 −0.06102715 −0.06
1 0.07 2 −0.059869503 −0.06
4 0.01 5 0.015819147 0.02
4 0.03 5 0.027846423 0.03
6 0.09 1 −0.094530473 −0.09
4 0.01 5 0.01917824 0.02
1 0.01 5 0.015265724 0.02
2 0.05 1 −0.054924879 −0.05
4 0.03 5 0.028674042 0.03
1 0.01 5 0.017913697 0.02
2 0.03 1 −0.042406462 −0.04
2 0.09 1 −0.083235695 −0.08
7 0.01 8 0.010119408 0.01
2 0.09 1 −0.08514362 −0.09
6 0.07 1 −0.075656387 −0.08
6 0.05 1 −0.057730854 −0.06
6 0.03 1 −0.040849877 −0.04
6 0.07 1 −0.076274953 −0.08
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.05 1 −0.058431752 −0.06
2 0.03 1 −0.04111772 −0.04
6 0.05 1 −0.058359576 −0.06
1 0.05 5 0.043636127 0.04
2 0.09 1 −0.076427553 −0.08
7 0.01 8 0.011548816 0.01
1 0.01 5 0.016803528 0.02
3 0.01 1 −0.026988767 −0.03
2 0.01 1 −0.027161431 −0.03
3 0.05 1 −0.062940238 −0.06
6 0.01 1 −0.030720909 −0.03
6 0.07 1 −0.073568186 −0.07
4 0.01 5 0.017873983 0.02
2 0.09 1 −0.087707145 −0.09
6 0.03 1 −0.047624261 −0.05
4 0.03 5 0.028334484 0.03
4 0.03 5 0.02959249 0.03
1 0.09 6 −0.071950992 −0.07
6 0.07 1 −0.076662226 −0.08
3 0.03 1 −0.042128824 −0.04
7 0.01 8 0.008773694 0.01
4 0.01 5 0.016518662 0.02
2 0.03 1 −0.043440014 −0.04
2 0.01 1 −0.027593311 −0.03
2 0.05 1 −0.055806166 −0.06
1 0.01 5 0.017095678 0.02
2 0.07 1 −0.068500382 −0.07
7 0.01 8 0.010609975 0.01
1 0.07 2 −0.056198792 −0.06
2 0.07 1 −0.067436746 −0.07
2 0.07 1 −0.069095276 −0.07
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

3 0.05 1 −0.058562449 −0.06
6 0.05 1 −0.060353099 −0.06
1 0.09 6 −0.073584194 −0.07
2 0.05 1 −0.053905985 −0.05
6 0.01 1 −0.028117936 −0.03
2 0.01 1 −0.028406443 −0.03
3 0.05 1 −0.05838351 −0.06
2 0.09 1 −0.08514362 −0.09
1 0.09 6 −0.071577302 −0.07
7 0.01 8 0.008773694 0.01
3 0.03 1 −0.043013218 −0.04
1 0.05 5 0.040496131 0.04
2 0.01 1 −0.026057776 −0.03
1 0.07 6 −0.056368186 −0.06
1 0.07 2 −0.055532566 −0.06
4 0.01 5 0.017681605 0.02
1 0.09 6 −0.073862054 −0.07
4 0.01 1 −0.014073114 −0.01
6 0.01 1 −0.027057481 −0.03
6 0.01 1 −0.02850147 −0.03
1 0.03 5 0.02924173 0.03
1 0.03 5 0.029398668 0.03
2 0.01 1 −0.026373226 −0.03
7 0.01 8 0.008923648 0.01
4 0.01 1 −0.014744989 −0.01
1 0.05 5 0.04076159 0.04
1 0.05 5 0.039606572 0.04
4 0.03 5 0.028597338 0.03
6 0.01 1 −0.025931512 −0.03
2 0.03 1 −0.039996889 −0.04
7 0.01 8 0.010088324 0.01
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

1 0.01 5 0.016769182 0.02
2 0.09 1 −0.083391827 −0.08
2 0.09 1 −0.08183401 −0.08
1 0.01 5 0.018455154 0.02
3 0.03 1 −0.044087055 −0.04
4 0.01 5 0.017681605 0.02
2 0.05 1 −0.050358718 −0.05
1 0.05 5 0.040232276 0.04
3 0.01 1 −0.029096284 −0.03
6 0.01 1 −0.028157496 −0.03
2 0.03 1 −0.041725527 −0.04
6 0.01 1 −0.027720383 −0.03
2 0.09 1 −0.090636404 −0.09
2 0.01 1 −0.028970771 −0.03
4 0.03 5 0.027446144 0.03
2 0.07 1 −0.074008555 −0.07
1 0.07 2 −0.053675556 −0.05
2 0.01 1 −0.02800502 −0.03
3 0.03 1 −0.044024093 −0.04
2 0.07 1 −0.067126186 −0.07
2 0.03 1 −0.04118333 −0.04
3 0.01 1 −0.028186596 −0.03
3 0.05 1 −0.055126484 −0.06
6 0.09 1 −0.089134674 −0.09
3 0.03 1 −0.041239543 −0.04
2 0.07 1 −0.069567954 −0.07
3 0.03 1 −0.044693026 −0.04
2 0.09 1 −0.080437103 −0.08
1 0.07 2 −0.056198792 −0.06
2 0.03 1 −0.04118333 −0.04
4 0.01 5 0.019078911 0.02
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

2 0.03 1 −0.042945499 −0.04
4 0.01 5 0.018524348 0.02
1 0.03 5 0.027645073 0.03
1 0.07 2 −0.056198792 −0.06
6 0.05 1 −0.056006966 −0.06
6 0.05 1 −0.063354208 −0.06
6 0.01 1 −0.029592044 −0.03
2 0.05 1 −0.05423303 −0.05
6 0.05 1 −0.058205809 −0.06
2 0.01 1 −0.028102419 −0.03
6 0.05 1 −0.058205809 −0.06
3 0.05 1 −0.057355295 −0.06
2 0.07 1 −0.067410459 −0.07
1 0.05 5 0.039890134 0.04
1 0.03 5 0.029465782 0.03
7 0.01 8 0.008818845 0.01
1 0.03 5 0.026645169 0.03
6 0.09 1 −0.085393709 −0.09
2 0.07 1 −0.067716868 −0.07
1 0.05 5 0.039966721 0.04
1 0.01 5 0.0191124 0.02
1 0.07 2 −0.059869503 −0.06
2 0.03 1 −0.042021474 −0.04
1 0.07 2 −0.053254796 −0.05
1 0.11 6 −0.095714044 −0.1
1 0.09 6 −0.073584194 −0.07
2 0.09 1 −0.085628634 −0.09
1 0.03 5 0.028797845 0.03
3 0.01 1 −0.029818931 −0.03
7 0.01 8 0.010264852 0.01
2 0.09 1 −0.085394877 −0.09
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Diagnosis Filter (The true identification of the Failed Thruster was missed in 430

Cases, of which 302 with Negative Severity)

Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.07 1 −0.072728905 −0.07
4 0.03 5 0.028868192 0.03
4 0.03 5 0.02576499 0.03
1 0.07 6 −0.056128466 −0.06
2 0.03 1 −0.041154847 −0.04
6 0.05 1 −0.059230856 −0.06
2 0.05 1 −0.053337883 −0.05
1 0.01 5 0.018094653 0.02
4 0.03 5 0.026380147 0.03
1 0.05 5 0.038374471 0.04
3 0.05 1 −0.06031712 −0.06
2 0.01 1 −0.027001919 −0.03
6 0.05 1 −0.055957842 −0.06
6 0.03 1 −0.044607809 −0.04
6 0.01 1 −0.028237376 −0.03
2 0.05 1 −0.055252829 −0.06
2 0.05 1 −0.053206599 −0.05
4 0.03 5 0.0278583 0.03
6 0.07 1 −0.073665867 −0.07
6 0.01 1 −0.02606291 −0.03
6 0.05 1 −0.05630525 −0.06
3 0.01 1 −0.027560243 −0.03
1 0.09 6 −0.07324416 −0.07
4 0.01 5 0.018124099 0.02
6 0.07 1 −0.074460599 −0.07
3 0.01 1 −0.029086448 −0.03
1 0.05 5 0.037133117 0.04
6 0.03 1 −0.046725414 −0.05
1 0.09 6 −0.069646406 −0.07
2 0.05 1 −0.054563978 −0.05
6 0.03 1 −0.04399869 −0.04
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Continuation of Table C.1

Random Failed
Thruster

Actual Random
Severity

FDI Identified
Severity

Round-Off
Severity

6 0.01 1 −0.028454089 −0.03
6 0.05 1 −0.058597533 −0.06
1 0.03 5 0.031472233 0.03
6 0.03 1 −0.042101724 −0.04
3 0.05 1 −0.055803097 −0.06
1 0.07 2 −0.056618066 −0.06
3 0.03 1 −0.04326762 −0.04
1 0.05 5 0.038074169 0.04
4 0.03 5 0.028786952 0.03
1 0.09 6 −0.073432541 −0.07
7 0.01 8 0.008965189 0.01
6 0.05 1 −0.058285585 −0.06
2 0.09 1 −0.082801516 −0.08
2 0.09 1 −0.081266226 −0.08
1 0.01 5 0.016724229 0.02
1 0.01 5 0.017929883 0.02
4 0.03 5 0.025886268 0.03
1 0.07 2 −0.054136608 −0.05
4 0.03 5 0.029622378 0.03
2 0.01 1 −0.027113831 −0.03
1 0.03 5 0.029991387 0.03
1 0.05 5 0.037790238 0.04
6 0.03 1 −0.040358491 −0.04
1 0.01 5 0.017868975 0.02
1 0.03 5 0.027685445 0.03
6 0.07 1 −0.07377282 −0.07
4 0.03 5 0.02775212 0.03
3 0.03 1 −0.040982218 −0.04
2 0.05 1 −0.054441604 −0.05
2 0.03 1 −0.04118333 −0.04

End of Table
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