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Abstract

Sentiment analysis has emerged as a �eld that has attracted a signi�cant amount of attention since
it has a wide variety of applications that could bene�t from its results, such as news analytics,
marketing, question answering, knowledge management and so on. This area, however, is still early
in its development where urgent improvements are required on many issues, particularly on the
performance of sentiment classi�cation. Document-level sentiment classi�cation aims to automate
the task of classifying a textual review, which is given on a single topic, as expressing a positive or
negative sentiment. In general, supervised methods consist of two stages: (i) extraction/selection
of informative features and (ii) classi�cation of reviews by using learning models like Support
Vector Machines (SVM) and Naive Bayes (NB). SVM have been extensively and successfully used
as a sentiment learning approach while Deep learning neural networks have been applied only
recently , and were not included in comparative studies in the sentiment analysis literature. In
this thesis, we survey and implement several deep learning and deep-learning-inspired approaches
and we present an empirical comparison between convenient machine learning techniques and
Deep learning methods regarding document-level sentiment analysis. We discuss requirements,
resulting models and contexts in which both approaches achieve better levels of classi�cation
accuracy. Our experiments indicated that SVM outperform the sophisticated DL methods on the
benchmark dataset of Movies reviews. Our results have also con�rmed some potential limitations
of both models, which have been rarely discussed in the sentiment classi�cation literature, like the
computational cost of SVM at the running time and DL at the training time.
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Chapter 1

Introduction

Every day, hundreds of user generated posts are released on the web from newspaper articles to
products reviews. However, an important question is how do we make sense of all this abundant
information? One of the most exciting applications that motivate us for this research is a more
e�ective processing of the increasing amounts of user-generated content on the web. Under the
assumption that the sentiment expressed online represents the general public view, all the abundant
information can be computationally used in order an idea from public trends to be conceived. And
if the information is analyzed over a period of time, the change in public sentiment on a particular
topic through time can be captured.

Sentiment Analysis, or Opinion Mining arose from this need. Sentiment Analysis, is nothing
but the computational analysis of people's opinions, sentiment, attitudes and emotions towards a
target entity and it attributes [68]. Sentiment analysis encapsulates the following tasks: Feature
based Sentiment classi�cation, Sentiment classi�cation and opinion. Main research study �elds, in
the realm of Sentiment Analysis and opinion mining are: sentiment classi�cation, feature based
Sentiment classi�cation and opinion summarization. Sentiment classi�cation bestows with classi-
fying entire documents or text or review in conformity with the opinions towards certain objects.
Sentiment classi�cation, can be conducted on di�erent levels of granularity: document, sentence, or
aspect levels [30]. In literature exists three di�erent methods that tackles the problem of sentiment
analysis: machine learning methods lexical based methods and linguistic analysis.

In this thesis, we address the problem of sentiment classi�cation on IMDB reviews. The objec-
tive of this work is to draft a procedure that assigns either a positive (1) or a negative (0) sentiment
to a given IMDb movie review. A lot of work has already been done on sentiment analysis for
movie reviews using either machine learning methods or linguistics approaching in this thesis we
consider only machine learning methods.

Learning good representations for text, such as words, sentences and documents, is essential
for natural language processing (NLP) tasks like text classi�cation and sentiment analysis, which
has attracted considerable attention from both academic and industrial communities [10]. It is
common to use bag-of-words or bag-of-ngram to represent text [23] and train the models based
on such representation. However, each word or n-gram is a unique feature and their interactions
and the whole word order in the text are not preserved in the text representation, which limits
the functionality of the learning models based on such representation. In recent years, the word
embedding and neural network models have brought new solutions to learn better representations
for NLP tasks. The simplest one is Bag of- Word-Vectors (BOW vector) model. But Landauer
[62] estimates that 20% of the meaning of a text comes from the word order.

Therefore, these models are still oversimpli�ed because of the loss of order information. Neural
language model [7] was then proposed to leverage word embedding representation to infer the
next-word distribution, but it still fails to fully utilize the sequence of the context words.

More recent work has focused on creating vector representations for both words and documents,
with the idea of retaining as much information as possible. In Word2Vec [? ], vector representations
are computed for each word, with the result being that words whose meanings are related are
generally closer in terms of Euclidean distance than between unrelated words. On document level,
the authors proposed, as an extension, to assign to each text a unique paragraph vectors. They
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proposed an unsupervised learning framework that learns continuous vector representation for
each document where the document vector representation is trained to be useful for learning word
vectors.

Recurrent Neural Networks take words order into account, but later words are more in�uential
on the �nal text representation than the former words. Generally, in sentiment analysis task the
important words are scatter in the document. However, in the movie reviews domain it is believed
that the last words in the review are strong indicator of the over polarity expressed in the review.

On the other hand, Convolutional Neural Networks (CNN) are naturally capable of solving this
problem due to the use of the max-pooling layer which is responsible for equal treatment of the
words [35]. Note, that RNN is more suitable for processing sequentially the information and getting
�xed length output whereas the CNNs are using sliding windows with di�erent width and �lters in
order to perform feature mapping and then polling is used to get �xed length output. Additionally,
the simplicity and their e�ciency made the CNNs more appealing for text classi�cation tasks, where
achieved remarkable results [57]. However, CNNs are far from perfect, especially when it comes to
determine the windows width and the too many �lters parameters.

All in all, in this thesis we compared as many of the state-of-the art machine learning algorithms
exist in literature. We also compare the BoW model with the state of the art features extraction
methods, and for our surprise, we found that BOW outperforms more sophisticated methods.

1.1 Research Goal

Based on the observation above we arrived at the following primary research questions.

RQ 1. Which machine learning algorithms perform better in Sentiment analysis?

We evaluate the performance of our models on the Stanford Large Movie Review Dataset
(IMDB) dataset [70] that allow us to evaluate and compare performance against existing publica-
tions on binary classi�cation task.

RQ 2. Which natural language representation is suitable for Sentiment analysis?

Natural Language representation in vector spaces has been successfully used in many NLP
tasks. Previous research has employed vector representations to present the syntactic and semantic
information in textual contents. In this thesis, we investigate the e�ectiveness of vector space
representations.

1.2 Thesis Outline

Thesis consists of 7 main chapters starting with an introduction. Section 2,3,4 covers the theory
part of the work including feature extraction and classi�cation. Section 5 review of prior research
in sentiment analysis. Section 6 covers the implementation part, where the chosen methods are
explained and demonstrated . In the �nal chapter we presented ours research �ndings.

A comparative study of sentiment analysis techniques on movie reviews domain 2



Chapter 2

Feature extraction

This section describes the theoretical principles and methodologies of the implemented sentiment
analysis classi�cation. The main objective of the three theory sections, is to point out the most
relevant factors of machine learning techniques in respect of sentiment analysis. Loosely speaking,
machine learning aims to recognize complex patters in order to produced intelligent decisions based
on a given data set. In terms of text classi�cation this involves three tasks: feature extraction,
feature selection and classi�cation.

Feature extraction is the procedure of transforming arbitrary data, intro numerical feature rep-
resentations usable for machine learning approaches. Feature extraction, is reducing the dimensions
of the initial set of data by deriving values about features that are considered informative and non-
redundant the so-called feature vectors. This process is known as vectorization. Extracted features
contain the relevant information from the input data and will be used for further means instead of
the complete initial data.

Feature extraction is the key of the success of the classi�cation results. However, some problems
need to be addressed while one performing feature extraction. To begin with, when the training
set contains a large number of variables, vectorization techniques requires large amount of memory
and computation power. An important pre-step is the preprocessing of the data. Before we begin
to describe feature extraction methods used in this thesis, we �rst analyze the pre-processing
techniques are usually performed in Sentiment analysis.

2.1 Text preprocessing

Text Preprocessing is the procedure of cleaning and preparing text data for the vectorization
process. The necessity of this steps lies in the fact that online texts contain usually noise and
uninformative parts such as HTML tags, scripts, and advertisements. Since each word in the
text is treated as one-dimension noise and uninformative words are increasing the dimensionality
without having any impact on general orientation of the text. Thus the classi�cation process is
becoming more di�cult. The di�culty is not only manifested in the robustness of the classi�cation
results but also leads in the increase of computational complexity of the process. The preprocessing
consists of many steps; depends on which dataset in used or which approach the researcher will
follow. Some of the most known steps are online text cleaning, white space removal, stemming, stop
words removal, negation handling most of the which are used in this thesis but without improving
signi�cantly the classi�cation accuracy.

2.1.1 Online text cleaning

As we mentioned above, Web pages contain along with the main texts and other irrelevant infor-
mation such as HTML tags (for example < p > or < b >). To avoid low classi�cation accuracy
problem, the text should be cleaned in order to retain only information of interest. Many ways
of text cleaning have been proposed such as �HTML Cleanup� or document object model. In this
thesis, we used a python library named Beautiful Soup which parses the HTML features from them
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and put them in an tree structure based object in order to be separated from each other. In this
way only the core interest text is extracted.

2.1.2 White space and stopword removal

It is not unusual text containing two or more white spaces especially when the HTML tags are
removed. Whitespace removal helps to tackle this problem by keeping only one. Stopwords are a
fundamental aspect of the natural language. They are considered to be without any discriminant
value in the text in terms of sentiment analysis. But this is not the case in this thesis, the Stopwords
removal leads to lower accuracy results in all methods used. A discrimination of Stopwords is
proposed in [71] in which authors considers either as general or domain speci�c. One can remove
stopwords with many di�erent methods. In this thesis, we use a list of standard Stopwords the
so-called stop list. We used Rijsbergen stoplist [102] which is the most commonly used stoplist in
natural language processing and it is also provided by python's NLTK library. One other approach
we tried, were the words with high frequency to be treat as stopwords and to be removed. However,
that approach led to signi�cant decrease of classi�ers accuracy.

2.1.3 Stemming

In stemming process, the su�x of the word is stripped and its transformed in its basic or root
form. For example, If a text contains words like ��shing, "�shed", and "�sher" should not be
treated di�erently in the terms of sentiment analysis as they have the same meaning and don't add
di�erent polarity. Stemming them will reduce them to the word `�sh' and the word frequency will
be set to 3 instead of three words with frequency one. As all text transformations aims to reduce
dimensionality stemming does it on a larger scale. For instance, the support vector machine
classi�er which is used in this thesis , each word is considered to be a vector of its dimension.
Hence stemming does not only reduces the dimensionality but also allows a more expressive weight
distribution of word weights through their frequencies.

The most known algorithm ,which was introduced in 1979 , and is used widely in literature is
the Porter algorithm or the so-called su�x stripping algorithm. Porter used his algorithm in an
information retrieval project [122] and proved that accuracy is signi�cantly increased. Although
the vocabulary was reduce 40% percent when we applied porter's algorithm the accuracy dropped
10%.

2.1.4 Handling negation

Handling negation is of high importance task not only for sentiment analysis but also and for the
natural language processing �eld. This is due to the fact that one negative word could change
the polarity of the whole sentence. Negations can be expressed in many types. In sentences can
be found a direct negation where the negation and negated word create a bigram or the negation
can be expressed in long distance from the words that negates and thus to be modeled is almost
impossible. However, some time the negation words does not inverse the polarity instead increases
its density. Thus, negation handling can be seen as of great importance task in text preprocessing
but the exhaustive presentation of methods is used to tackle this problem is beyond the scope of
this thesis. In the next paragraph, we describe the method we used to handle negation.

In [84] the author devised and algorithm for handling negation through states variables and
bootstrapping. The state variable stores the negation state and then the word followed by a �not�
or n't is transformed into �not_� + word. The state variable is reset when a puncation mark is
encountered or when there is a double negation. The pseudo code derived from [84] is as follows

2.2 Symbolic feature representations

Symbolic models dominated the �eld of Natural Language Processing (NLP) in the past. N-gram
language modelling, part of speech tagging and parsing are some of the success stories of symbolic
models but they are in�exible in the sense that they are unable to capture the fact that the language
is constantly growing and changing and that the meaning of language depends on things such as
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Figure 2.1: Negation Handling pseudocode [84]

the context in which it is used and the topic of conversation. In the following sections we describe
Bag- of - Words model and TF-IDF weigthing scheme based on [72].

2.2.1 Bag of words or bag of N-grams

In natural language processing, the most widely used symbolic representation of features, but also
quite e�ective, is the Bag of Words [41]. The main idea behind this method is to simply create a
feature for each word that appears in the training texts. That feature for a text vector will then
be valued 0 if the word does not appear in the corresponding text.

In the Bag of Word �rst a string tokenization is performed that assigns an integer identi�ca-
tion for each token. For every word in the vocabulary, there is exactly one position in vector,
and if a word occurs n times in a text, this component will be n in the vector. The vector in-
cluding all of the token frequencies for a given document is considered a multivariate sample.
For instance, if we tokenize and count word occurrences of text documents [�this is my �rst sen-
tence�, �this is my second sentence�, �is this my second sentence�] Each term found by the analyzer
during the �t is assigned a unique integer index corresponding to a column in the resulting ma-
trix[`�rst','is','my','one','second','this','sentence'].

The bag-of-words model comes with many variations and extensions the most popular of which
is by including word n-grams. Word n-grams are sequenced of n words that can be found in the text.
For example, the bigram of �this is a sentence� �this is �, �is a�, �a sentence�. The reasoning here is
that is believed that sequences of words carry their own meaning and therefore classi�cation might
be improved. Whether higher-order n-grams are useful features appears to be a matter of some
debate. N-grams can also be used for sequences of characters in a similar way but this approach
is beyond the scope of this thesis so only word n-grams. Other ways to extend the feature vector
can be to include parts of speech, word positions in the text (text at the end of the text could be
of more or less importance) and degree modi�ers (�too,� �enough�) [65].

Once the indexing of document is performed and initial word frequencies are calculated vari-
ous transformation can be performed to summarize or aggregate the extracted information. The
Frequencies of words or terms are indicators of how important or not a word in each document
is. Therefore, words that occur with great frequency, but not too frequently, considered to be of
great importance descriptors of the meaning of the speci�c document. However, the words count
themselves should not be assumed proportional to importance as descriptors of the documents.
Thus a transformation should be performed. In this thesis we use the binary bag of word model
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that is de�ned by:

fi(X) =
{

1 if di containt word wi

0 else
(2.1)

The document-term matrix contains only zero's and one's which indicates presence or absence
of words.

Another issue to consider more carefully and re�ect in the indices used in further analyses is
the relative document frequencies (df) of di�erent words. A common and useful transformation
that re�ects both the speci�city of words (document frequencies) and the overall frequencies of
their occurrences (word frequencies) is inverse document frequency (for the i'th word and j'th
document):

fi(X) =
{

(1 + log(wfij))log N
dfi

if wfij≥1
0 else if wfij = 0

(2.2)

In above formula N is the total number of documents; dfi is the document frequency for the
i'th word.

2.2.2 Term frequency & inverse document frequency

Term frequency (TF) indicates the relative importance of a term in a document, which means that
the more times a word appears in a document, the more important it is to that document, while
TF/IDF weighting scheme denotes how a word is important to a document in a certain type of
collection or corpus. For each word in a document, TF/IDF calculates values as the product of the
frequency of the term in the document times the inverse document frequency. Words which have
higher TF/IDF numbers imply a strong relationship with the document in which they appear.
The weight that the model calculates is an indicator of how important a word is to a document
in a corpus. The importance is strong correlated with the number of times a word is found to
a document but is counterbalanced by its frequency in the corpus. That means that if a words
frequency is high in a document but it occurs in less number of documents in the corpus then is
clearly a strong indicator for the document meaning. Conversely, if the frequency of a word in a
document is high but also can be found in many documents in the corpus that means that word is
a common word or a domain Stopword thus the contribution of this word is of minor importance
to the classi�cation models. For instance, in our dataset, the word movie or actors is in almost all
the documents thus is ignored. Thus to measure the importance of a term ti within a particular
document is given by:

tfi,j = ni.j∑
k nk,j

(2.3)

Where ni.j denotes the number of occurrences of the term under examination in document dj

the denominator is the number of all terms in a document dj

Raw frequencies as described above su�ers from a critical problem: considered equally impor-
tant when it comes to assessing relevancy on a document. But certain terms hold little or no
discriminating power in a document. For instance, in movies domain, the word movie is almost in
every document. To this end, the inverse document frequency is to scale down the term weights
of terms with high collection frequency, de�ned to be the total number of occurrences of a term in
the collection. It is a logarithmically scaled fraction of all documents in corpus that contain the
word and is calculated by dividing the total number of documents by the number of documents
containing the term and taking the logarithm of that calculation:

idfi = log
N

dfi
(2.4)

In above Equation 2.4, N is the total number of documents in the corpus, denominator is the
number of documents where the term t appears. In order to division-by-zero when a term is not
in the corpus we adjust the denominator to 1+denominator. As can be seen the idf of a rare term
is high, whereas the idf of a frequent term is likely to be low.
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Hereby, a combination of term frequency and inverse document frequency is made in order
to produce a composite weight for each term in each document the so-called TF/IDF weighting
scheme. It is given by:

f − idf = tfi,d) x Idft (2.5)

The rough idea is that tf − idft,d)assigns to term t a weight in document d that is :

� highest when t occurs many times within a small number of documents (thus lending high
discriminating power to those documents)

� lower when the term occurs fewer times in a document, or occurs in many documents;

� lowest when the term occurs in virtually all documents

Thus, a document can be seen as a vector with one component corresponding to each term in the
dictionary, together with a weight for each component [72].

Finally, the aforementioned methods although they appeal from their simplicity su�er from
major drawbacks. To begin with, the dimensionality of vector space is equal to the vocabulary size
which leads to an extremely high dimensional space. Moreover, sparsity is a major problem due to
the fact that a text block only contains a small fraction of all words in the vocabulary. Last but not
least, all three representations do not capture the semantics of words. For example, the projection
of words �fast� and �quick� in vector space is as far as they are from color even though that are
semantic similar. Thus the need for convex base approaches, as we mentioned in the introduction
of this sections arise. In this thesis we examine the neural distributed representations.

2.3 Neural distributed features representations

Distributional models or VSMs or Semantic Space Models try to overcome some of the in�exibility
of the symbolic models by moving away from �xed discrete representations to �exible continuous
vector representations of language, where the meaning of a word is derived using its distributional
statistics in a text corpus or in more simpler terms, the meaning of a word is derived from its use
in the text corpus. In the following paragraphs, a formulation of the the problem of modeling the
natural language is given, all the state-of- art methods, to our best knowledge are latter described.

2.3.1 Natural language modeling

In every natural language processing project, the �rst problem need to be addressed is which model
will be used for modeling the language. Below we formally de�ne the language modelling problem.

In language modelling problem a probability distribution p over the sentences, in the language,
is to be found in order the following equation to be ful�lled:∑

s∈V � p(s) = 1

p(s)≥0∀s∈V � (2.6)

Where V is the vocabulary which contains words in the under consideration language, V † is a
collection of all possible token in the language. Thus the probability function can be formulated
as:

p(s) = p(w1, ..., wn) (2.7)

Whereas the product rule is given by:

p(w1, ..., wn) =
n∏

i=1
p(w1|w1, ..., wn) (2.8)
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Figure 2.2: Neural probabilistic language mode [7]

Making the assumption that a words depends on previous n words the above equation can be
simpli�ed as:

p(w1, ..., wn) =
n∏

i=1
p(w1|wi−1), ..., wi−n+1)) (2.9)

Thus, in order to build a model that predicts the conditional probability of a word given the
previous n words Bengio [7] introduced a neural network as shown in �gure 2.2

2.3.2 Neural probabilistic language model (NPLM)

The Neural probabilistic language model that introduced by Bengio has as objective to create a
probability function over the distributed word vectors in order to construct a statistical language
model. The probability of a word sequence is the product of conditional probabilities of the next
word considering the previous ones:

P (wT
1) =

T∏
t=1

P (wt wT −1
1 ) (2.10)

The NPLM tries to estimate the probability wi of the tth word in the sequence. The neural
network responsible for calculating the probability , is a single layer neural network counting only
the hidden layer as shown in Figure 2.2

For each input sequence, the neural network outputs a vector y ∈ R|V |where yi denotes the
unnormalized log-probability wi. The y is given by:

y = b + Wx + Utanh(d + Hx) (2.11)

Where the hyperbolic tangent is applied to produce non-linearity in the network and
x = (C(wt−1), . . . , C(wt−n=1)) are the concatenated vectors of the index vectors of the previous

n words to the word wt. The output of neural network is given by the Softmax function which
converts y log probabilities to positive probabilities summing to 1 as follows:

p(wt x) = eẙ∑ν
i=1 eyi

(2.12)
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The learning procedure is based, as we described in section 3, on gradient descent:

θ�θ + e
∂log(wt|x)

∂θ
(2.13)

Where θ = W, U, C are the free parameter of the model which we want to optimize in the
parameters space by taking small steps of size ε. Thus the optimum word representations are
found (C ∈ θ)

The above network tries to solve the problem of natural language modelling so the word rep-
resentation is a by-product result. Thus this approach is an indirect method of forming word
representations. One major drawback of these techniques is that they are computationally expen-
sive, and thus slow to train and test.

In 2013, Mikolov [78] introduced a recurrent neural network language model (RNNLM) which
overcomes the limitation of the above described model. This is due to the fact that, as an RNN
architecture it inherits the short term memory of a typical RNN which leads to the modeling of
more complex structures than a shallow neural network can also. But it also inherits and the
main disadvantage of the RNNs the prohibitively large computational cost. However, the authors
succeed to reduce computational complexity by incorporating approximate functions. The result of
this are two new models, summarized under the name Word2vec: continuous bag-of-words models
(CBOW) and continuous skip-gram models (skip-gram).

However, in 2014 Mikolov [63] extended his previous work by using a paragraph vector. This
new type of vector can be seen as a memory to learn word vector from arbitrary block of text
by learning and sharing a common vector. The CBOW model that is extended by the paragraph
vector (PV) is called PV-DBOW, while the extended Skip-gram model is called Distributed Mem-
ory Model of Paragraph Vectors (PV-DM). This two model can be summarized under the name
Doc2Vec or Paragraph2Vec.

A modi�cation of skip-gram model was proposed in [35] where the authors used a negative
sampling technique along with skip-gram model. In other words, they suggest that Mikolov method
factorizing a word-content matrix implicitly whereas they implement this factorization directly. In
[93], the authors proposed the so called Global Vector model (Glove.) Their model incorporates
a combination of matrix factorization methods and local context window methods. In the next
section we describe both Word2Vec and Doc2Vec models. Glove model was not used in this thesis.

2.4 Word2Vec

Like the neural language model, the word2vec models learn vectors known as embeddings by
training a network to predict neighboring words. However, the prediction task is not the main
task as in NPLM. Words that are semantically similar often occur near each other in text, and so
embeddings that are good at predicting neighboring words are also good at representing similarity.
The advantage of the word2vec methods is that they are fast.

The massively reduce of computational complexity the Mikolov's models achieved, without
sacri�cing the quality of the word vectors, is due to the fact that are simple log-linear models as
opposed to non-linear NPLM. In fact, the neural network architecture used in this models does
not contain a non-linear layer and does not use matrix weighting of the input vectors which are
the costliest operation in NPLM. The description of the following models is based on [54].

2.4.1 Skip gram model

The skip gram model as shown in �gure 2.3 learns two separate word vector for each word w: the
word vector ν and the content vector c. These two vectors are represented by two matrices W and
C respectively. Each row i of the word matrix W is the 1 × d vector embedding vi for word i in
the vocabulary while C is the �ipped version of W .

Let's consider the prediction task. We are given a corpus of length T and examine the t-th
word wt whose vocabulary index is j. The skip gram model predicts each neighboring word in a
context window of 2L words from the target word. So for the word wt+1) whose vocabulary index
is k(1 < k < |V |). Hence the task is again to calculate the p(wk|wj). The core computation that
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Figure 2.3: Skip gram model for learning vector representations of words [78]

has to be done in order the probability p(wk|wj) to be calculated is the dot product between the
context vector for wk and the target vector for wj . We'll represent this dot product as ck · νj ,
where ck is the context vector of word k and νj is the target vector for word j. Of course dot
product is not probability thus we can use the Softmax function to normalize the dot product
into probabilities. Computing this denominator requires computing the dot product between each
other word w in the vocabulary with the target word wi.

p(wk|wj) = exp(ck·νj)∑
i∈|V | exp(ci·νj) (2.14)

In summary, the skip-gram computes the probability p(wk|wj) by taking the dot product be-
tween the word vector for j(vj) and the context vector for k (ck), and turning this dot product
ck · νj into a probability by passing it through a Softmax function.

2.4.2 Continuous bag of words (CBOW)

The CBOW model is roughly the mirror image of the skip-gram model. Thus, is a predictive model
but the objective this time is to predict the current word wt from the context window of 2L words
for L = 2 the context is[w(t−2), w(t−1), w(t+1), w(t+2)] as also shown in the �gure 2.4 .

As we mentioned, the objective of CBOW is to predict the word in the middle of c previously
encountered words and c following words:

maximizewp(wt|wt−c, wt−(c−1), ..., wt+1, wt+(c−1), wt+c) (2.15)

So, the CBOW, like the Skip-gram model, tries to maximize the average log probability as
follows:

maximizew
1
T

T∑
t=1

∑
−c≤j≥j¬0

Logp(wt|wt+j) (2.16)

2.4.3 Skip gram with negative sampling

In the previous sections, we have already mentioned the objectives of learning word and context
vectors matrices.The rough idea described is to make the vector of a word more similar to the
vectors of neighboring words rather than the vector of other words.

The prediction algorithm we described before, predicting the probability of a word by normal-
izing the dot-product between a word and each word in the content by the dot product. Therefore,
in order the denominator to be calculated a lot computations need to be performed. Thus, this
version of prediction algorithm is computationally expensive.
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Figure 2.4: Continuous Bag of Words model for learning vector representations of words [78]

In order this problem to be addressed, a new version of the algorithms proposed, that uses
negative sampling where they approximate this denominator. In the following few paragraphs we
o�er a brief sketch of how skip gram model with negative sampling works.

In the original form of the skip gram model, the algorithm scans the corpus, and for each target
words choosing the surrounding words. However, when negative sampling is used, the algorithm
scans the corpus and for each target word chooses the surrounding context words as positive samples
and the non-neighbor words are labelled as negative samples. In other words, this algorithm tries
to move the word vector toward the neighbor words without take into account the �nite number of
noise words. In fact, the objective is to learn a word vector whose dot product which each context
word is high and the noise words do product to be low. More formally the objective is as follows:

logσ(c ∗ w) +
k∑

i=1
Ewi p(w)[logσ(−wi ∗ w)] (2.17)

Where σ is a sigmoid function of the dot product σ(χ)1/(1 + ex) . The noise words wiare
extracted from the vocabulary V according their weighted probability.

The algorithm starts with randomly initialized word vectors and then the documents are pro-
cessed, adjusting the word vectors so as to maximize the above equation. As in the common neural
network, the weights are learned using an algorithm like stochastic gradient descent using error
backpropagation in order the gradient to be propagated back through the network.

Nonetheless, although negative sampling is a di�erent objective than the probability objective,
and so the resulting dot products will not produce optimal predictions it is shown to produce good
vectors.

2.4.4 The skip-gram model as a network

In order for the model to make use of error backpropagation, we should see the procedure of
selecting two vectors from W and C matrices as a network in which we can propagate backwards
across. In �gure 2.5 a simpli�ed visualization of the model is given whereas a single context word
is to be predicted in order the use of Softmax function to be shown over the entire vocabulary
rather than over the k noise words.

But how the network is computing the same probability as the doc product version? To begin
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Figure 2.5: The skip-gram model viewed as a network [60]

Figure 2.6: An example of binary tree for the hierarchical Softmax mode

with, the input vector x is one hot vector for the current word wj . As we mentioned above, the
one hot vector representation is just a vector where all it elements are zeros except a one which
indicates the vocabulary index of the word. In fact, in a one-hot representation for the word
wjxj = 1 and xi = 0∀i ̸= j

The prediction of the probability of each of the 2C output words is a 3 steps procedure:

� In the �rst step, the input vector x is multiplied by the input matrix W to give the projection
layer. Note that, each column of the W is just an embedding for word wt and the input is a
one hot representation for wj consequently the projection layer for the input x will be h = vj

� In the second step, the dot product between the projection vector h and the context matrixC
is computed for each word of the 2C context words. The result of this calculation is an output
vector that weights each of the vocabulary words |V |

� In the last step, the dot product is interpreted into probabilities by using the Softmax function
as we saw earlier

2.4.5 Computational optimizations

As we have point out, CBOW and Skip-gram models are computationally ine�cient. Thus we
described the skip-gram model using negative sampling as one way to optimize its performance.
However, in literature are proposed more methods in order the performance to be improved.

In 2005 Morin [82] proposed hierarchical Softmax to speed up the training. This method
constructs a Hu�man tree (Figure 2.6) to represent all words in the vocabulary. The words are the
leaf units of the tree. Thus for each unit of the tree there exists an optimal path from the root to
unit that is used to compute the probability of the word represented by that leaf .
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The probability of a word to be an output word is de�ned as:

p(w = wo) =
L(w)−1∏

j=1
σ(Jn(w, j + 1) = ch(n(w, j))K ∗ v

′

n(w,j)T h) (2.18)

Where ch(n) is the left child of leaf n and ν ΄n(w,j) is the output vector of the inner unit n(w,j)

Moreover, JxK

{
−1 if x is false

1 otherwise.
(2.19)

2.5 Doc2Vec

Although the semantic word spaces we described in the previous paragraphs are essential in natural
language processing their ability to capture the compositionality of human language is limited. This
is due to the fact that the word vectors learned cannot be directly used to represent as in our case
documents.

Progress towards learning representations of document level that capture semantic composi-
tionality has been made; but most models are using a simple weighted average of words vector to
capture the compositionality of longer texts. One of the �rst projects towards a more sophisti-
cated approach was proposed in [110]] where the author is using a recursive tensor neural network
where the dependency parse tree of the sentence is used to learn word vectors in a bottom-up ap-
proach. The major drawback of this approach is that considers syntactic dependencies but cannot
go beyond short sentences as it relies on parsing.

Another more sophisticated approach proposed by Mikolov [63] as an extension of word2vec
that builds embeddings able to capture syntactic and semantic information from a complete text
fragment (phrase, sentence, paragraph, text, ...) the Paragraph vector (PV) models or Doc2vec.
Under the umbrella of doc2vec are two algorithms the Distributed Memory (PV-DM) and the
Distributed Bag-of-Words (PV-DBOW). The extension is quite simple: insert one arti�cial word
at the beginning of each text/fragment and apply the CBOW or Skip-gram techniques in the
same way as before but considering the entire text/fragment as the context for the arti�cial word.
In particular, a weight matrix containing the word embeddings W is used and share across all
documents along with a paragraph embedding matrix D which learns the paragraph vector.

Before we proceed in the explanation of the models lets clarify what paragraph vector means.
A � paragraph� is a text block with arbitrary length such as a section an actual paragraph or long
sentence. In this section the word� paragraph� describes such text block of arbitrary length and
the paragraph vector is like a word vector like as we mentioned above.

2.5.1 Distributed memory (PV-DM)

Distributed memory model is similar to CBOW but in paragraph vector framework, every para-
graph Is mapped to a unique vector, represented by a Column in matrix D and every word is also
mapped to a unique vector represented by a column in matrix W . So the fundamental di�erence
is that, in this model a new matrix D is to learn and store the paragraph vectors. The paragraph
vector, can be seen as another word but it acts as s memory that remembers what is missing from
the current context.

The contents are �xed length and are chosen from a sliding window over the paragraph. How-
ever, the paragraph vector is not shared across all paragraphs but it is shared across all contexts
generated from the same paragraph. On the contrary, the word vectors matrix W is shared across
paragraph due to the assumption that the words have the same meaning for all paragraphs.

As in word2vec models, the paragraph vectors and words vectors are trained via stochastic
gradient descent and the gradient is obtained via back prorogation. Thus in every step of stochastic
gradient descent, a �xed length context is sampled randomly and the network computes the error
gradient and then this gradient is used to update the parameters in the model as can been seen in
the following �gure 2.7
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Figure 2.7: Distributed Memory model [63]

2.5.2 Distributed bag of words (PVDBOW)

All in all, a major advantage of paragraph vector is that can be learned from unlabeled data and
thus can be useful in many tasks that not have enough labeled data. Additionally, paragraph
vectors can obtain semantics of the words and preserve word order and thus deal e�ciently with
the key weaknesses of bag of words models.

The distributed memory model preserves the word order by concatenating the paragraph vector
with the word vectors to predict the word in a text window. However, the authors, proposed an
another algorithm that ignores the context word in the input but the model is forced to predict
words randomly sampled from the paragraph in the output. Practically, that means in each
iteration of stochastic gradient descent one random word is sampled from the text window and
form a classi�cation task given the paragraph vector as shown in �gure2.8

Figure 2.8: Distributed bag of words model [63]
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Chapter 3

Feature learning

Feature engineering is important but labor intensive. It is therefore desirable to discover explana-
tory factors from the data and make the learning algorithms less dependent on extensive feature
engineering. With the rapid growing of deep learning (representation learning[46]), many recent
studies focus on learning the low-dimensional, dense, and real-valued vector as text features for
sentiment analysis without any feature engineering. Existing deep learning methods for sentiment
classi�cation typically include two stages. In the �rst stage, they learn word embeddings from
text corpus. In the second stage, word embeddings are applied to producing the representations
of sentences/documents with semantic composition. Existing composition learning approaches are
typically based on the principle of compositionality,which states that the meaning of a longer ex-
pression (e.g., a sentence or a document) comes from the meanings of its constituents and the rules
used to combine them. Deep learning methods are combining feature extraction methods with
classi�cation. In the following paragraphs we describe basic principles of Neural networks and the
reason of the quite recent success.

3.1 Neural networks

Neural networks are a machine learning technique incorporating principles that have been observed
in the biological nervous system. A biological neuron is a cell consisting of a body, multiple smaller
protrusions called dendrites and a single long protrusion called an axon. On top of the dendrites are
found numerous spots, known as synapses, where axons of other neuros are creating a connection
with the neuron. Often, axons are producing an electric pulse which a�ects the permeability
of cell's surfuce which leads to the slight increase of the voltage inside the neuron body. The
more activations come from other neurons, the higher the voltage grows.Given a certain threshold,
if the voltage is below that threshold nothing particular happens. When this voltage exceeds
these particular threshold the neuron produces an action potential meaning that a signal starts
propagating through the axon. This axon can be attached to the dendrites of one or more other
neurons, where the process is repeated in an analogous way.

This simpli�ed function of biological neurons is stimulated by the arti�cial neuron networks
meaning that the arti�cial neurons are units which contain one or more inputs and produce a
single output. The activation of an arti�cial neuron depends on how much of non-zero inputs the
neuron receives. It can remain either inactive and produce a zero output or it can produce an
action potential which is represented by a non zero output. Multiple neurons are connected to one
another, producing an (arti�cial) neural network.

Arti�cial neural networks (ANNs), also known as neural networks (NNs) are data-driven ma-
chine learning algorithms that process information by their dynamic state response to external
inputs. [12]. Its origins are dated back to 1943, to a study of mathematical representations of
information processing in biological systems by McCulloch and Pitts [113] In its most simple form
a NN is a network of interconnected nodes and simple processing units known as neurons, the
neurons are joined with weighted connections and calibrate the strength of the transmitted signals
in a similar manner like synapses in human brain. Its resemblance with the brain is denoted by

A comparative study of sentiment analysis techniques on movie reviews domain 15



Master thesis Nikolaos Panagiaris- MPPL12046

two aspects; that the knowledge is acquired through the learning process and that it is stored in
connections between neurons. [44]

Neural networks have been used in a wide range of machine learning tasks such as pattern
classi�cation or regression. The principal components of neural networks are neurons, layers, and
activation functions despite the variety of the architectures that have been introduced over the
years.

3.2 Perceptron

The fundamental unit of most neural networks is called a perceptron or simply neuron. Like its
biological counterpart, a neuron can be seen as a sort of a �black box� which takes a �xed number
of inputs and produces a single output. To each input, a weight is assigned indicating the extent
to which this particular connection a�ecting the resulting output. The rough idea described above
can be formalized as follows:

Let X = (x1, . . . , xn) represent the vector of input data and w = (w1, . . . , wn) be the vector of
corresponding weights. In order the output to be calculated, we �rst need to compute the inner
potential of neurons which is given as follows :

ξ = wX =
n∑

i=1
wixi (3.1)

The activation functions are task at hand depended. In case of classi�cation, as in our case,
threshold activation functions are used. A threshold activation function in its primitive form can
be given:

σ(ξ) =
{

1 ξ≥h

0 ξ < h
(3.2)

Where h is a �xed arbitrary real-valued parameter (threshold). Another form of arti�cial neuron
is a neuron with bias. The bias neuron has an extra input x0 and a corresponding weight w0 are
considered in order the weighted to be computed. If the w0 = −h then the activation function
takes the following form:

σ(ξ) =
{

1 ξ≥0
0 ξ < 0

(3.3)

Where ξ now starts from zero instead of one. This approach is the dominant approach in neural
network literature henceforth any mention of term �neuron� is only to been as a neuron with bias.

3.3 Activation

The output of each node is calculated by the node's activation function that takes weighted inputs
of the node as parameters transformed from a transfer function. The transfer function aims to
create a linear combination of weighted inputs in order to provide them to the activation function.
In the sections that follow brie�y, we discuss activation function that we are going to use later in
this thesis

3.3.1 Logistic or Sigmoid function

A sigmoid function is a monotonically increasing function, which reached an asymptote at some
�nite value as ±∞ is reached. In terms of neural networks, the most widely used sigmoid function
is the standard logistic de�ned as:

σ(χ) = 1
1 + e−x) (3.4)
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Figure 3.1: The role of the activation function in the neural network model

Figure 3.2: Standard Sigmoid function

The logistic or sigmoid function is a smoother approximation of the step function that was used
in the early versions of neural networks. The output values are in range [0, 1] hence it is suitable
for output neurons that perform classi�cation task. However, an important problem arises, when
the weights of the network are initialized with small values almost zero. The initial activations for
the standard logistic function will be then set 0.5 on average. Thus, sigmoid that are symmetric
about the origin are preferred to be used because tackle this problem by producing always positive
outputs and help gradient-based optimization. From optimization point of view, another problem
occurs. The problem is that the derivatives for sigmoid are vanishing near saturation points, Thus,
this makes it harder for a neuron to propagate the error signal and move out from the saturation
points.

3.3.2 Hyperbolic tangent (tanh)

The Hyperbolic tangent is a non-linear S-shaped function like the sigmoid mentioned before but
its lower horizontal asymptote is at −1 instead of 0. The fundamental di�erence between those
two is that the tanh is zero-centered with a steeper rise which leads the classi�cation models to
reduce the number of misclassi�ed samples. The tanh functions are di�erentiable and is given:

tanh(x) = eχ − e−x

eχ + e−x
(3.5)

Figure 3.3: Standard hyperbolic tangent function
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Figure 3.4: An example MLP network with two hidden layers

3.3.3 Recti�ed linear unit (ReLu)

The recti�er activation function has been shown that can improve the discriminative performance
of convolutional networks[33]. The recti�er nonlinearity is de�ned as follows:

ReLU(x) = max(0, x) (3.6)

It has been shown that ReLu gives true sparsity to the model due to zero constrain, which
means that only a small set of values are nonzero. Moreover, it does not present vanishing gradient
problem because the function is becoming linear when x > 0 Additionally, sparse representation
is biologically plausible which means that for a given set of neurons, most of them are inactive
and just a few are activated by some input. The main reason that makes sparsity desirable to
machine learning algorithms is that sparse features are e�ectively lower the number of dimensions
and su�ciently tackles the so called curse of dimensionality. Thus, sparse representations are more
robust in small changes to the inputs compared to dense representations. It has been proven that
the discontinuity at zero can a�ect optimization techniques. However, when smoother versions of
recti�er were applied the performance was worse due to the fact that that exact sparsity was lost.

3.3.4 Softmax

The Softmax activation function is widely used in the last layer of the networks, it aims to inter-
preter an arbitrary real value to the posterior probability of the class in range (0, 1):

p(ck x) = eak∑m
i=1 eai

(3.7)

Where m is the number of output neurons (classes) ak is the activation value of the k−th node:

ai =
d∑

j=0
wijhj(x) (3.8)

Where wij is the i − th node's weights and the hj(x) is the output of the previous layer.

3.4 Multi-Layer perceptron

In case we have only one neuron unit, the output value is used as the �nal indicator of the assigned
class to the input vector. Someone, could feed this output to another neuron instead. Hence, in that
way it is possible a network consisted of interconnected neuros to be created. Numerous di�erent
topologies have been proposed from di�erent perspectives and di�erent purposes. However, the
most widely used topology of neural networks are the multi-layer feedforward networks. Since
these have been shown state of the art results in sentiment analysis are of particular importance
of this thesis.
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Having explained some baseline information about neural networks now we are about to intro-
duce formally the simplest version of neural network, the multi-layer perceptron (MLP) ([103],[127]
). The network consists of a certain number of neurons that are then split into several disjoint
sets, the so called layers. The layers in MLP architecture are ordered sequentially and each layer
receives input from the preceding layer. The input layer is not considered as a �true� layer because
no computation is performed in it. It receives problem-speci�c inputs from the outside world. An
MLP contains one or more hidden layers, which receive inputs from preceding layers (input or
hidden layers) and their outputs connect to the next layers (output or hidden layers). Each neuron
in a hidden layer employs a nonlinear activation function that is di�erentiable. The output layer
presents the �nal result of the computation performed by the network to the outside world. For a
given input layer x, the network computes the hidden activation vector h and the output vector y
as follows:

h = f(W xhx + bh) (3.9)

y = G(W xyh + by) (3.10)

Where W are the weight matrices of two connected layers, Wxh is the matrix that contains the
weights of input layer, Why is the matrix that contains weights of hidden layer , b are the bias
vectors and F and G are the activation functions.

The network is highly connected thus all the neurons in one layer are connected to all neurons
in the following layer. Hence, multi-layer perceptron is a feed-forward NN which means that the
information inside the network moves from input neurons through hidden layers' neuros to the
output neurons.

The MLP's expressive power is given by the universal approximation theorem [34]. The theorem
states that a single hidden layer MLP and su�cient number of nonlinear units are su�cient to
approximate any smooth function and a compact input domain with arbitrage precision. However,
the number of hidden units that are required is unknown and sometimes can be so large and thus
inapplicable. The use of hidden layers helps the partition of input space into exponentially more
linear regions than a shallow network, with same number neurons does. That ability allows them
to represent easily highly structured and complex functions. MLPs have exhibited excellent results
in pattern recognition and more speci�cally in natural language processing and sentiment analysis.

3.5 Training

3.5.1 Loss function

The optimization objective for supervised neural network training is based on a loss function that
measures how well the network performs on the training data. As the name implies, the output
of the loss function needs to be minimized to receive the best-performing model (as opposed to
maximization of the likelihood of the data under the model as it is common for MaxEnt). There
are multiple loss functions which are common in the literature, and which are usually preferably
used with speci�c output activation functions. We will brie�y introduce the two most common
functions. In the following, let ŷ be the target value and y the predicted output.N denotes the
number of examples, D the output dimensionality, i.e., the number of units.

Mean squared error (MSE) The MSE function assumes that the errors are normally distributed.
It is de�ned as:

MSE(y, y) = 1
N

N∑
n=1

(yi − yi)2 (3.11)

MSE assumes that the errors are normally distributed. It is frequently used in combination
with the tanh and linear activation functions.

Cross-entropy error (CEE) The CEE function measures the cross-entropy of the output and the
target values. As a consequence, it is only applicable if the predictions and targets are probabilities.
It is a natural choice for sigmoid and Softmax activation functions. When used in combination with
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one of these functions, the computation of the derivatives in backpropagation can be simpli�ed
signi�cantly. The CEE function for the multiclass case, i.e., when using Softmax activation, is
de�ned as follows:

CEE(Y , Y ) =
N∑

n=1

D∑
d=1

ˆyndln ynd (3.12)

3.5.2 Backpropagation

The concept of backpropagation algorithm was �rst introduced by Paul Werbos in his 1974 PhD
thesis. Backpropagation is a neural network training strategy. In supervised learning. Target
classes are essential the baseline for error calculation. Then errors are backpropagated to each
node in previous layers. Error e is obtained as gradient of the loss function L with respect to each
layer's weights wkj given input of the node x and an activation function.

aj = ϕ(
n∑

k=1
wkjxk) (3.13)

e = ∂L

∂wkj
= ∂L

∂wkj

∂aj

∂wkj
(3.14)

Gradient computation demands application of the chain rule in order to compute partial deriva-
tive of the loss function L with respect to particular weight wkj . Using the error, weights are
updated by an optimization algorithm such as stochastic gradient descent. Basic stochastic gra-
dient it usually leads to slow convergence of the network. Thus, several techniques have been
proposed in literature for optimization algorithms such as Adagrad [28], Adatadelta [134], RM-
Sprop, and Adam [58] all of the which can improve greatly the speed convergence. Here we brie�y
describe RMSprop and Adam which will be used in the subsequent sections of this work.

3.5.3 Optimization algorithms

RMSprop RMSprop is an optimizer having per-parameters adaptive learning rate. Incorporates
a moving average of the magnitude of recent gradients in order to normalize the current gradients.
The normalization is performed over the root mean soared gradients. The learning rate or the step
rate and the running average term r(τ) is added to the weight update equation:

r(τ) = γr(τ − 1) + (1 − γ)( ∂E

∂wi
)2 (3.15)

∆w(τ + 1) = −η√
r(τ)

∗ ∂E

∂wi
(3.16)

Where γ is the decay value which calibrates the contribution of new gradients for the running
average r(τ) One key aspect is to initialize weights W and biases b to positive and negative values
close to zero, in order the sigmoidal activation functions to operate on the central region which leads
to larger propagated gradients [32]. Usually, the values are drawn in a random and independent
order from uniform or Gaussian distributions. The inputs features, for the reason we mentioned
above, are normalized so as to have zero mean and unit variance in each dimension.

Adaptive Moment Estimation (Adam) Adam [58] is the second method that we examine. This
method computes the adaptive learning rates for each parameter. But in contrast of RMSprop,
Adam is not only keeps an exponentially decay average of the past squared gradients ut but it
keeps also an exponentially decaying average of the past gradients mt :

mt = β1m(t − 1) + (1 − β1)gt (3.17)

ut = b2u(t − 1) + (1 − β2)(gt)2 (3.18)
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mt, utare the estimates gradients of �rst and second moment respectively.
The Adam update rule is given as follows:

θτ+) = θτ − h√
ût + ε

m̂t (3.19)

Usually the default values are 0.9 for β1 10-8 for ε and 0.999 for β2

3.6 Deep learning

As we mentioned above, despite the fact that neural networks exist for almost six decays their
great successes are quite recent [39, 60]. This great success is due to two factors; technological
and theoretical. On the technological point of view, faster computers, and the use of graphical
processing unit (GPU) instead of till now used CPU made possible to train large networks with
millions of parameters in reasonable time. Secondly, from the theoretical point of view, the break-
through was the discovery that the use of multiple hidden layers leads to exponentially grow of the
expressiveness of the models ( [42],[8],[80] ). Moreover, the use of ReLu, dropout layers and proper
random initialization techniques can be seen as signi�cant improvements in theoretical point of
view.

The typical approach in classic machine learning is to engineer features by hand and then to
feed them in a general purpose classi�er such as support vector machine (SVM) [106]. Although
this method was widely used in early stages of machine learning for complex task such as natural
language processing does not holds because it is hard to engineer features that are su�ciently
expressive. Additionally, when the number of features and thus dimensions grows exponentially,
known as the curse of dimensionality, the data are becoming sparse. Without the use of distributed
representations, it is not trivial to generalize to regions of the space that have no training instances
which leads to poor classi�ers generalization. ([9],[5])

Deep learning arises from this need. A deep model is usually comprised of several hidden
layers of computations that are used to automatically discover more complex features and allow
their composition. By learning and combining multiple levels of representations, the number of
distinguishable regions in a deep architecture grows almost exponentially with the number of
parameters, with the potential to generalize to non-local regions unseen in training. [8] Deep
learning models are undoubtedly powerful models that take advantage of the learning process as
described above. Deep learning models use backpropagation to compute the gradients in order to
be trained and updating the weights so as to minimize the cost function on the training set. It
is not guaranteed that the global minimum will be achieved, but has been argued that in high
dimensional spaces the majority of local minimum errors approximate the global minim error and
that sable points are responsible for the learning stalls.( [91],[16] )

3.6.1 Feedforward neural networks

A common type of neural networks is the feed-forward type of networks. As the name hints, in
feed-forward neural networks the information �ows only forward through them. This architecture
is among the simplest possible networks and one of the �rst that was used . They are comprised
of layers of neurons, where neurons in one layer are connected to some or all in the next. The �rst
layer is called the input layer, the last is the output layer and the layers in between are the hidden
layers. The simplest form of feed forward network is a fully connected one, where each neuron in
one layer is connected to all neurons in the next one.

Similar to general neural network information �ows between neurons by weighted sums of the
connected neurons followed by an activation function. n. Given a weight matrix W lwhere W.(i, k)is
the weight from neuron k in layerl − 1 to neuron i in layer l, the biases bl(i) and a layer of hidden
neurons hl, the value for the i'th neuron hl(i) in layer l is calculated as shown in equation. Note
that we use the logistic function as the activation function.

hl(i) = σ(b(i) +
∑

k

W l(i, k) ∗ hl−1(k)) (3.20)
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Figure 3.5: A Simple CNN Topology

Taking all neurons of a layer into account, the neurons in the next layer hl is calculated with
the matrix multiplication in equation 3.20. Recall that hlis a vector of neurons, thus σv(.) will be
applied element-wise on its argument

hl = σ(W lh(l−1) + bl) (3.21)

The input layer has no connection to it, instead its values are set manually each time the
network is run. Likewise, the output layer has no connections from it, since its values are taken
as the result of the network's computations.In literature, are many from of feedforward neural
networks, two of the most notorious in classi�cation task are the multi-layer perceptron (MLP)
and the convolutional neural networks (CNNS).

3.6.2 Convolutional neural network

Convolutional Neural Network are feedforward neural networks that are composed of one or more
convolutional neural layers (often with a subsampling step) followed by one or more fully connected
layers as in a standard multilayer neural network. The result of the convolution is then passed
through a non-linear activation function, typically a ReLU. Other hidden layers often can be seen
in a CNN structure are the pooling layers. Pooling layers are responsible for downsampling the
output of the convolution layers using the rule of the mean or maxim value of the region. This
leads to the reduction of over�tting and provides some translation invariance. The output of the
CNN is a vector whose values are interpreted as the conditional probabilities of each class input.
A depiction of a CNN is presented in Figure 3.5

Originally the convolutional neural networks were invented for computer vision but have shown
to be e�ective in numerous other �elds such as natural language processing. The convolution
process is responsible for the generation of a feature map can formally de�ned as follows:

o[n] = f [n] ∗ g [n] =
∞∑

u=−∞
f [u] g[n − u] (3.22)

=
∞∑

u=−∞
f [n − u]g[u] (3.23)

In 2- Dimensional Space:

o[m, n] = f [m, n] ∗ g[m, n] =
∞∑

u=−∞

∞∑
u=−∞

f [u, υ]g[m − u, n − υ] (3.24)

=
∑∞

u=−∞
∑∞

u=−∞ f [m − u, n − υ]g[u, υ]

where o is the output function; f and g are the input functions. In subsampling process the
dimensionality of feature maps is reduced. As we mentioned there are several types of layers of
which a CNN can be comprised:
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Convolution Layer: A convolutional layer consist of K �lters. Loosely putted, its input has one
or more feature maps. The output of the layer is K feature maps, each of whom is computed as
the convolution of the input and a �lter k, plus its bias:

hijk = ϕ((Wk ∗ x)ij + bk) (3.25)

Where i and j are the row and column index respectively, φ is layer's activation function and
x its input. Thus the output of a convolutional layers is the same dimension as the input and its
depth is de�ned by the number of �lters.

Pooling layer: A pooling layer is usually placed between two successive convolutional layers in a
CNN. It aims to downsamples the input matrix, thus its reducing the space representation and
the number of feature parameters. Although the depth dimension it remains unchanged. Usually
a pooling layer divides the input into nor-overlapping rectangle regions the size of whom is de�ned
by the pool shape. Then, it produces the output values for each region by using max sum or
average operator. Thus if a pooling layer uses the max operator, it is called a max pooling layer.
The pool size is normally set as (2; 2) as larger sizes may lost too much information.

Fully-connected layer The reason of the existence of fully connected layers placed at the end
of a CCN is to re�ne features learned from the convolution layers or to return class scores in the
classi�cation task which is our case.

3.6.3 Recurrent neural network

Feedback connections in a neural network can produce past context information. This network
architecture is known as recurrent neural network (RNN). Many versions of recurrent neural net-
works have been developed or adapted in order to achieve excellent results in di�erent machine
learning domains.

For a sequence of input vectors x1 . . . , xT a basic RNN computes the sequence of hidden acti-
vations h1, . . . , hT and the output vectors as y1, . . . , yT as:

ht = f(W hx
t + W hhht−1 + bh) (3.26)

yt = G(W hyht + by) (3.27)

For all times steps t = 1, . . . , T where W are the weights matrices of two connected layers
, and B denotes the bias terms as F and G are the activation function used. For a deep RNN
with several stacked hidden layers, each hidden layer receives the output of the previous hidden
layer. Despite this minor modi�cation, the e�ects are profound: In a RNN information obtained
from previous time steps can loosely speaking circulate inde�nitely inside the network through the
directed cycles, where hidden layer can play the role of memory. These hidden activations are
making an internal state where can be represented as ht vector given a certain time step for each
hidden layer. The output of the network at time t is a function of all received inputs vectors till
that time. This RNN as the we one we described is also known as a vanilla RNN.

From the scope of memory, RNNs are more computationally expensive than FNNs. As we
stated above, a feed forward neural network can approximate any non-linear function on a compact
domain with arbitrage precision. The equivalent to MLPs approximation theorem in RNNs is that
with su�cient number of hidden units any dynamical system can be approximated. Potentially a
RNN is computationally as expressive as any Turing machine [17],[40]

In order the RNN to be trained a straightforward extension of the backpropagation algorithm is
applied known as backpropagation through time (BPTT) [109]. The basic idea behind this training
strategy is to unfold the network through time and then to use the standard backpropagation
algorithm as it were a classic MLP. This unfolded presentation denotes that a RNN can be else
seen as a very deep FNN but with a layer for time step and share weights across time.

The above vanilla structure is not commonly used because of a problem known as vanishing
gradient problem and a subsequent problem called exploding gradient problem [8, 47]. Several
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Figure 3.6: Basic LSTM memory block

techniques have been presented to overcome the di�culties of training RNNs, such as training
with second order optimization methods (e.g. Hessian-free [74]), initialization of the recurrent
weights with scaled identity matrix (IRNN) [64], unsupervised pre-training using restricted Boltz-
mann machines (RBMs) [11], linear autoencoder network initialization [90], and more complex
architectures such as the long short-term memory.

3.6.4 Long short-term memory

The RNN owes its memory to the fact that it feeds its stated forward in time, in practice the
network easily forget after a couple of steps. It has been shown that to train a standard RNN to
�nd patterns that occurs after a large number of steps is a trivial task[6]. In order this problem to
be addressed an extension of standard RNN was proposed, the so-called Long Short-Term Memory
(LSTM).

An LSTM network architecture is built upon LSTM memory blocks just as a RNN is based
on McCulloch-Pitts neurons. LSTM as almost all feedforward neural networks is comprised of
multiple layers with many cells in each layer. Figure 3.6 shows a basic LSTM memory block. This
is a single cell k in layer l at time step t. As we can see the output is a single entry in the input
vector to the next layer and next time step. There have been several proposed architectures, we
choose to describe here the model as presented in its �rst form in 1997 [48] .

The rough idea behind the LSTM cell is the use of the so called gates to control which infor-
mation the cell will remember, forget and produce. These gates allow cell information longer that
the neuron of an RNN. In time step t the output of l is de�ned as ht

l. Similarly, for the LSTM
memory cells ct

l de�nes the memory states for layer l at time step t. Formally the calculation of
new memory state is as follows:

ct
l = ft

l⊙c(t−1)
l + it

l⊙gt
l (3.28)

Where ⊙ denotes element-wise multiplication. Furthermore, the previous memory state is
element-wise multiplied by ft, the forget mechanism. The forget mechanism is responsibly to
choose which properties of cl

t−1) and is given as follows:

ft
l = σ

[
Τ(m+n,n)

(
hl−1

t

hl
t−1

)
+ bf

]
(3.29)

The size of layer l − 1 and l is m and n respectively, thus the transformation T is done on a
vector of size m + n into a vector of size n. The use of element wise logistic function secures that
the values are between 0 and 1 where zero denotes that the cell must completely forget and 1 to
remember what in time t is stored in the memory state. The additional bias term is used so as the
model to store information easily during the �rst steps of training [? ].
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When the information from input and the previous output it
l ⊙ gt

l is added to the memory
gate then the gate decides which features gl

t of each input should be added. The values of il
t, gl

t are
given from the following Equations:

it
l = σ

[
Tm+n,n

(
hl−1

t

hl
t−1

)]
(3.30)

gl
t = tanh

[
Tm+n,n

(
hl−1

t

hl
t−1

)]
(3.31)

Note that g l t use the tanh function instead of the logistic function. This allows the input
values to the LSTM to take on values between =1 and 1.

After the memory state is updated, it needs to be decided what the cell should output. This
is done with the last gate ot, which regulates what properties of our memory state we will use in
the output and is described in the following equation:

ol
t = σ

[
Tm+n,n

(
hl−1

t

hl
t−1

)]
(3.32)

The output for the current layer hl
t is sent to the next layer and time step. The tanh function

is �rst applied to the memory state to normalize it to the interval [−1, 1] and the result is then
scaled with the output gate.

ht
l = ot

l ∗ tanh(ct
l) (3.33)

In equation 3.34, lstm(.) is denoted as a function calculating the next output of an LSTM-cell
according to equations 3.28 , 3.33 (The internal memory state is implicitly updated).

ht
l = lstml

t(h
(l−1)
1 , h(t−1)

l) (3.34)

3.6.5 Bidirectional RNN and LSTM

In many tasks involving classi�cation over temporally or spatially sequential inputs, we might be
interested in looking also at future samples before outputting a label for the current timestep. For
example, when classifying a handwritten letter inside a word it is bene�cial to know the following
letters as well as the preceding ones. Using a time-window to incorporate future samples, poses
strong limitations due, for example, to the �xed length of lookahead. Delaying the output by n
timesteps would still impose a �xed lookahead and it would force the network to remember the
original input� appeared n steps before�and the previous context throughout the delay. [36]

Bidirectional recurrent neural networks (BRNNs), introduced in [107], are a clever solution to
the problem. In a BRNN each hidden layer is split into two separate layers, one reads the training
sequences forwards (x1, ..., xT ) and the other one backwards (xT , ..., x1). The sequence is fully read
and the hidden activations are stored for all timesteps in each of the two distinct layers. Finally,
the computed activations are fed to the next layer, giving the network full and symmetrical context
for both past and future samples of the input sequence. By substituting simple recurrent neurons
in a BRNN with LSTM units we obtain a bidirectional long short term memory (BLSTM) network
as shown in �gure 3.7.
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Figure 3.7: A bidirectional long short term memory (BLSTM) network

The violation of causality is not a concern in tasks where at test time the input sequence is
completely available. This is the case of spatially sequential inputs (such as images), or temporally
sequential inputs when the data was fully acquired before. Even data from a short amount of time
ahead is su�cient in many tasks that need the output at the end of an input portion, such as in
automatic speech recognition, where outputs are only required at the end of a word.

RNNs using LSTM and BLSTM units have advanced state-of-the-art results in many challeng-
ing tasks such as speech recognition [39], machine translation [114], unconstrained handwriting
transcription [38]and generation [37], image captioning [123], language modeling [133].
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Chapter 4

Classi�cation

Classi�cation can be expressed as a categorization process where objects are recognized, di�eren-
tiated and understood. A data object represents an entity, typically described by attributes. Data
objects become data tuples when stored in a database, where rows correspond to the attributes.
Classi�cation process �nds a model that describes (discrete, unordered) data class labels. This
model is made of on the analysis of a set of training data. Purpose of this model is to predict
the class label of objects for which the class label is unknown. Classi�cation is usually referred in
machine learning to supervised learning. There are also unsupervised, semi-supervised and active
learning methods available to perform classi�cation. Many classi�cation methods have been pro-
posed by researchers in machine learning, pattern recognition, and statics. A brief description of
machine learning is given followed by the presentation of the classi�ers used in this thesis.

4.1 Machine learning

Machine Learning (ML) is a sub-�eld of Arti�cial Intelligence whose objective is to develop, under-
stand and evaluate algorithms and techniques that allow a computer to learn. Machine learning
incorporates techniques from statistics, human psychology, and brain modeling. Human psychol-
ogy and neural models obtained from brain modeling help in understanding the workings of the
human brain, and especially its learning process, which can be used in the formulation of ML
algorithms.

The machine learning algorithms are mainly based on statistics, and both of them sharing many
concepts with the same functionality but come with a di�erent name. For instance, inference in
statistics is the task that going from particular observations to general descriptions whereas in
machine learning estimations is the learning process and discriminants is the classi�cation task.

During the �rst steps of machine learning, it was believed that there is a need of a new type
of thinking or new models to be introduced in order machine learning algorithms to be highly
accurate. However, the recent success of machine learning algorithms pointed out that we actually
need huge amount of learning data in order the algorithms to produce remarkable results. Machine
learning algorithms found use in extremely wide variety of tasks from sentiment analysis to stock
price prediction.

Formally, the objective of machine learning is to �nd a function f : X ⇒ Y which interpreters
the data (X) to prediction (Y). The function belongs to a certain function class, which consists of
di�erent learning algorithms. The elements of X and Y are applications-speci�c. The rough idea
behind the learning process can be seen as in Fig.4.1 .

The input data or the train set consists of observations, memory storages and factual basis for
further reasoning. In the abstraction phase the data are translated into general representations and
give them a meaning. Abstracted connections are a basis of knowledge representation. In knowledge
representation, the data inputs are summarized into a model, that is explicit description of the
structured patterns among data. The process, where a suitable model is shaped, is called training
[3]. The model, does not aim to replicate train data but to predict new unseen samples. The
ability of a model to predict new instances is call generalization. Generalization uses abstracted
data to perform action and makes the model useful for applications. While every possible model
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Figure 4.1: Machine learning process

could be examined, it is not feasible. Thus, learners use heuristics to reduce the possible models.
With heuristics, there comes also a bias towards certain solutions. The learning process is a trivial
task due a number of factors.

There several issues to be addressed concerning the learning processes itself. To begin with, in
learning the problems are called ill-posed. An ill posed problem, has no unique solution and the
solutions are not optimal. Therefore, di�erent solutions with di�erent training data in the same
problem could presented. Thus with more training data available a problem becomes less ill-posed.

Moreover, in order a problem to have a unique solution, additional assumptions should take
place the so-called inductive bias. For example, choosing an optimizing criterion (an error to be
minimized) is an inductive bias. An inductive bias for the data, which the learning algorithms
often use, is independent and identically distributed samples. These kind of samples are all drawn
from the same joint distribution.

However, the independent and identically distributed assumption might not hold because usu-
ally the distributions are not identical. In order this problem to be addressed, machine learning
uses the covariate shift assumption. In other words, in machine learning is assumed that the train-
ing set and the test set follow di�erent probability distributions but the distributions of the output
predictions in respect of input values are unchanged.

A fundamental problem, that one should address in machine learning is when the model un-
der�ts or over�t. A model we say that is under�ts when the complexity of the model is less than
the complexity of the function that generates the data. In other words, �tting a linear model to
the data produced by a general polynomial function will lead to model under�tting. On the other
hand, when the model exhibits perfect results on training set but fails to generalize the model then
we say that is over�tting.

Last but not least, a major issue in machine learning is the huge number of dimensions. The
so called curse of dimensionality a�ects the time and space complexities leading in slower and
computationally expensive algorithms. In order this problem to be addressed several dimensionality
reduction techniques have been proposed in literature.

The dimensionality reduction techniques fall into two categories: feature selection and feature
extraction. In feature selection the k most informative features are picked while the other features
are being discarded. In feature extraction, a new set of k dimensions are found, that are combi-
nations of the original dimensions. A widely used method for feature extraction is called principal
component analysis which was used in this thesis.

4.2 Machine learning techniques classi�cation

A common categorization of machine learning methods splits them into supervised, unsupervised
and reinforcement learning algorithms and can be found in many books of the �eld.

4.2.1 Supervised learning

Supervised learning is the machine learning task of inferring a function from supervised training
data. The training data consist of a set of training examples. In supervised learning, each example
is a pair consisting of an input object (typically a vector) and a desired output value (also called
the supervisory signal). A supervised learning algorithm analyzes the training data and produces
an inferred function, which is called a classi�er (if the output is discrete, see classi�cation) or
a regression function (if the output is continuous, see regression). The inferred function should
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predict the correct output value for any valid input object. This requires the learning algorithm
to generalize from the training data to unseen situations in a "reasonable" way.

The �rst step is to use pairs of the training set to teach the algorithm some correct mappings of
the problem space. This is where the �supervision� comes from, the learner is told what the right
outcome for the function is for an example and is therefore supervised. Afterwards the algorithm
can be confronted with unseen inputs/samples for which it determines the outputs/target, solely
based on its experience with the training set. The algorithm is said to generalize over the problem
space.

Besides the classi�cation of inputs, another typical ML task is regression. Regression comes
very close to interpolation, which is the task of �nding a function that is exactly correct in the
points given by the training set. Regression adds the assumption that the samples of the training
set are a�ected by noise. Thus, the task is to �nd an approximation for the function, from
which the training set was sampled. It turns out that the tasks of classi�cation and regression
basically solve the same problem and the solution of one can also be used for the other using an
appropriate transformation. Most of the widely known ML techniques belong to this category,
such as Arti�cial Neural Networks (ANNs), Support Vector Machines (SVMs), Bayesian Statistics,
Kernel Estimators and Decision Trees.

Text Classi�cation problem
Classi�cation is about deciding which class a certain data item belongs to. A machine learning

system that does the classi�cation is called a classi�er. The classi�er learns a discriminant, which
is a function that separates the data items to di�erent classes. Thus, the classi�er can predict in
which class a new data item belongs to by using the discriminant

Loosely speaking, the problem of text classi�cation can be formulated as follows: in Given a
description d∈X where X is the document space, and a �xed set of categories, which in our case
is two C= {positive, negative} and a labeled train set consist of documents (d, c)∈X ∗ C using a
machine learning algorithm Γ so as to train a classi�er or classi�cation function Γ(D) = γ in order
to map the document to classes: γ : Χ�C

4.2.2 Unsupervised Learning

In unsupervised learning the machine simply receives inputs x1, x2 but obtains neither supervised
target outputs, nor rewards from its environment. It may seem somewhat mysterious to imagine
what the machine could possibly learn given that it doesn't get any feedback from its environment.
However, it is possible to develop of formal framework for unsupervised learning based on the
notion that the machine's goal is to build representations of the input that can be used for decision
making, predicting future inputs, e�ciently communicating the inputs to another machine, etc. In
a sense, unsupervised learning can be thought of as �nding patterns in the data above and beyond
what would be considered pure unstructured noise [31].

A typical example application would be the recommendation system of an online shop. It
analyzes which products should be advertised to a customer based on information about products
he bought before and products bought by other customers purchasing the same articles beforehand.
It is closely related to density estimation in the �eld of statistics. Typical approaches are clustering
such as with the k-Nearest Neighbor Algorithm, Hidden Markov Models (HMMs) or the self-
organization of ANNs.

4.2.3 Reinforcement learning

In reinforcement learning, the machine interacts with its environment by producing actions (a1, a2...)
These actions a�ect the state of the environment, which in turn results in the machine receiving
some scalar rewards (or punishments) r1, r2, .... The goal of the machine is to learn to act in a
way that maximizes the future rewards it receives (or minimizes the punishments) over its lifetime
[31]. Reinforcement learning is closely related to the �elds of decision theory (in statistics and
management science), and control theory (in engineering).The fundamental problems studied in
these �elds are often formally equivalent, and the solutions are the same, although di�erent aspects
of problem and solution are usually emphasized.
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4.3 Machine learning methods

In the following paragraphs , we present the Machine learning classi�ers we are going later to apply
in order to tackle the problem of sentiment Analysis.

4.3.1 Naïve Bayes

In [125] a distinguish of two naive Bayes models are presented [20] the multinomial and the
Bernoulli. In the multinomial naïve Bayes model, a term is generated from the vocabulary in
each position of the document. On the other hand, the Bernoulli model generates an indicator for
each term of the dataset. If the values are 1 that indicates that the term is present and 0 is used to
indicate absence. This is similar to unigram model that we discussed in section 2. Moreover, the
Bernoulli model does not take into account multiple occurrence as multinomial naïve Bayes does.
In this thesis multinomial Naïve Bayes is considered. The Bayes theorem 4.1. is used widely in
machine learning techniques, but in its simplest form can be found in naïve Bayes classi�er. The
Bayes theorem states that given two random variables X and Y:

P (Y X) = P (X|Y )P (Y )
P (X) (4.1)

The theorem provides a strict mathematical rule explaining how you should change your existing
beliefs based of new evidence. In fact, it allows to calculate unknown conditional probabilities
from a known conditional probability along with the prior probabilities. The theorem is based on
the assumption that the variables are in depended from each other within each class. In other
words, the presence of a feature is not correlated with the presence of any other feature. This is
formalized in equation 4.1. Although the conditional independence assumption does not hold the
model surprisingly performs quite well. Equation 4.3. states the model, where C denotes the class
label,F1, . . . , Fn are the features . Since the denominator of equation 4.1 does not depend on C,
that makes it a constant scaling factor 1

z for equation 4.3. In a more mathematical expression it
would be: the posterior probability is computed by multiplying the evidence scaling factor with the
prior probability, multiplied by the product of the independent likelihoods. The main advantage
of the use of Naïve Bayes Model is that can be trained in a small training set because independent
variables are assumed only the variables for each class. Additionally, the performance is quite good
and in this thesis the model is used as a baseline for other models.

P (Xi Y, Xj) = P (Xi Y ), for i ̸=j (4.2)

P (Y |F1, . . . , Fn) ∝ 1
z

P (Y )
n∏

i=1
P (Fi|C) (4.3)

4.3.2 Multinomial Naïve Bayes

The multinomial Naïve Bayes is a pure probabilistic method [18]. The probability of each document
d of being in class c is given:

P (c d) ∝ P (c)
∏

1≤k≤nd

P (tk c) (4.4)

Where P (tk c) is the conditional probability of tk occurring in a document of class c. P (c) is a
prior probability of a document occurring in class c. If the conditional probability of a term does
not implicitly be categorized in one class, the category with higher probability is then chosen.

The utter goal of the classi�cation is obviously to �nd the best class for each document. The
best class for Naïve Bayes classi�cation algorithm is the most likely or maximum a posterior class
cmap

cmap = argmaxc∈C P̂ (c)
∏

1≤k≤nd

P̂ (tk|c) (4.5)
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Figure 4.2: SVM Margin

In Equation 4.5 P̂ are true values of the parameters P (c) and P (tk c) are the unknown but
they can be calculated from the training set. As can be seen many conditionals probabilities are
multiplied which leads to a �oating point under�ow. In order this problem to be addressed sum-
ming logarithms of probabilities were proposed. The class with the highest log probability is still
considered to be the best class. The logarithm function is monotonic and hence the maximization
of such a function is performed in most Naïve Bayes variations is:

cmap = argmaxc∈C P̂ (c)
∑

1≤k≤nd

logP (tk|c) (4.6)

The conditional parameter P (tk c) is used as weight in order the indicator tk to be evaluated if
is representative or not for the class c. Similarly, the logP (c) is a weight that indicates the relative
frequency of class c. Therefore, the sum of log prior and the term weights indicates which class is
suitable for each document.

4.3.3 Support vector machine

Support vector machines were �rst introduced in 1995 by Cortes and Vapnik [22]. The main
objective of SVMs is to project the datapoints, belongs to a two class train set, in a higher
dimensional space where a maximum margin separating hyperplane between the datapoints of two
classes need to be found.

The input of SVMs are vectors of real-valued numbers whereas are projected to higher dimension
space with the help of a function that satis�es the Mercer's condition, the so-called kernel function
[115]. Let the training set consists of vectors x1, . . . ., xn that belong in the feature space X ⊆
R yi = ±1 are the corresponding labels. Let Φ be the function that projects the datapoints to
the higher dimensional feature space H. The kernel function is fundamental component of SVM
due to the fact that in order a SVM to be trained one does not need to consider the feature space
in its explicit form but needs to consider the inner product between the support vectors and the
vectors of the feature space. Therefore, the problem that arises from the high dimensional feature
space is alleviated, because it allows the computations to take place in the original feature space
of the problem. The use of the kernel functions is usually referred to as the� kernel trick� and it
was introduced by [69].

After the datapoints are projected to higher dimension space, SVM tries to �nd the optimal
hyperplane that separates the two classes perfectly. As expected, there can be many more than one
separating hyperplane for a speci�c projection of a dataset Fig. 4.2b . However, the optimal is the
one that separates the data with the maximal margin Fig.4.2a. SVMs identify the datapoints near
the optimal separating hyperplane which are called support vectors. The distance of the support
from the separating hyperplane is called the margin of the SVM classi�er.

During the Testing phase, the distance of the unseen samples from the hyperplane is calculated.
Depending on a threshold of the value of this distance, a sample is classi�ed to positive class or
negative class accordingly. In other words, during this phase only the support vectors are to be
identi�ed. More formally, given a set of support vectors x1, . . . , xl and their corresponding labels
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y1, . . . , yl the decision function for a novel datapoint x is de�ned as:

f(x, a) = sign(
∑

i

yiai
0K(x, xi) + b (4.7)

Where ai
0 is a set of parameters need to be optimized in the training set. It should be noted

that the non-linear decision function |Equation 4.7 in the input space X is equivalent to the
following linear decision function Equation 2.3 in the higher dimensional space H, because of
Mercer's condition :

f(x, a) = sign(
∑

i

∑
i
yiai

0 < Φ(xi) ∗ Φ(xj) > +b (4.8)

The result of the equation is the prediction value of the classi�er for the datapoint x and it is
the distance of the datapoint from the separating hyperplane. In order one to �nd the optimal
parameters ai the following function need to be maximized:

W (a) =
i∑

i=1
ai − 1

2

l∑
i,j

ajyiyjK(xi, xj) (4.9)

Whereas is subject to constraints:∑
ii
i=1aiyi = 0 ai≥0, i = 1, 2, . . . ., l

Usually, the training data are not perfectly separable even when they are projected in higher
dimensional space. Thus, a cost parameter C is used that represents the penalty for datapoints to
being on the wrong side of the hyperplane. The value of C is strongly dependent on the dataset
so its value can vary signi�cantly, therefore in order to de�ne its optimal value cross-validation is
performed on the training dataset. In this case of non-linearly separable data, the constraints for
the ai parameters become: ∑

ii
i=1aiyi = 0 ai≥C, i = 1, 2, . . . ., l (4.10)

The most widely used kernel function are the polynomial kernel:

K(xi, xj) = (xi ∗ xj + 1)p) (4.11)

The radial basis function kernel:

(K(xi, xj) = e(�xi∗xj�2/2σ2) (4.12)

However, the most widely used kernel function is the linear kernel which is a polynomial kernel
of degree 1.Linear SVMs can be optimized to run in signi�cantly smaller times than those using
the general polynomial kernel.

Discovering the optimal hyperplane poses a quadratic programming problem which is superliner
in the size of dataset. Apart from the kernel trick many methods have been proposed in order the
training time to be reduced but the time required still remains a problem.

Apart from improving the training time, one more important consequence of the kernel function
is that it de�nes the shape of the separating hyperplane to be discovered by SVMs. In fact, the
hyperplane belongs to the high dimensional feature space H whose geometry is strongly related to
the kernel function and for nonlinear choices of the kernel is no longer �at. Therefore, the choice
of kernel and its parameters a�ects the prediction ability of the classi�er signi�cantly. It is proven
that more powerful the kernel is the better the results are.

In Figure 4.3 we see that the linear SVM cannot �nd a separating hyperplane whereas the
polynomial SVM can since the latter can identify more complicated boundaries. In �gure 4.4
where a more complicate dataset is used , we observe that the radial basis function succeeds in
separating the dataset whereas the polynomial kernel fails. It worths pointing that very di�erent
separating boundaries are discovered by the two kernels. Thus it is important to choose the kernel
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Figure 4.3: Linear SVMs on the left, polynomial SVMs on the right.

Figure 4.4: Polynomial SVMs on the left, radial basis function SVMs on the right

based of the task at hand. However, the discovery of more complex hyperplanes comes at expense
of training time, because more complex kernels results in more computations.

It should also be clari�ed that the decision values produced using the decision function 4.7
during testing should not be related to probabilities. They can take values in R, unlike the
probabilities that lie inside [=1,1]. The absence of probabilistic output from SVMs could be
an obstacle in using them in certain applications.

The decision value though is a measure of the con�dence an SVM classi�er has in its decision
for a datapoint. The larger the absolute value, the more con�dent the classi�er is in the decision,
because the decision value represents the distance of the datapoint from the optimal hyperplane.
However, it must be said that the decision values produced by SVMs with di�erent kernels and/or
datasets are not comparable.

Support Vector Machines have signi�cant theoretical advantages over other machine learning
methods. They don't require any independence assumptions, unlike Naive Bayes. SVMs are capa-
ble of discovering non-linear separating boundaries between classes, while Maximum Entropy can
discover only linear ones. Finally, even though SVMs accept only numerical features, categorical
features can be used too, by mapping them to numerical features using one out-of-m encoding.
In practice, this means that one can use both numerical and categorical features to describe the
instances of the problem, which cannot be done easily with Maximum Entropy or Naive Bayes.

4.3.4 Logistic regression

Logistic regression in essence aims to identify the relationship between a binary response and
one or more predictor attributes. In logistic regression the response variable is binary, and that
distinguishes logistic regression from ordinary linear regression. Unlike the linear model that tries
to predict the mean response, logistic regression aims to predict the logit (log-odds) of the response
having one particular value versus the other value. If response value only takes values 0 and 1 then
the logit of the response with value 1 would be (P (Y =1))

[1−P (Y =1)] . Taking the logarithm of this ratio
results in a response that varies between (−∞, +∞). This in turns results in the following model:

logit[P (Y = 1|X)] = β0 + β1Χ1 + · · · + βκΧκ (4.13)

Where Y is a random variable denoting the response, vector ΧΤ = (Χ1, . . . ,Χκ)denote a col-
lection of k independent predictor variables, and where the βι are the parameters to be estimated.

A comparative study of sentiment analysis techniques on movie reviews domain 33



Master thesis Nikolaos Panagiaris- MPPL12046

Figure 4.5: The logistic function

The logit transform can be de�ned as:

logit(x) = ln( x

1 − x
) (4.14)

By substituting the equation 4.14 in equation 4.13 the probability P (Y = 1 X) will be:

P (Y = 1 X) = e(β0+β1Χ1+· · · +βκΧκ)

1 + e(β0+β1Χ1+· · · +βκΧκ) (4.15)

The equation 4.15 is called the logistic regression model, and a maximum likelihood estimation
method can be used to identify the parameters in the model. Assume a simpli�ed version of this
equation as follows:

f(z) = ez

(1 + ez) (4.16)

This logistic function is depicted in the Figure 4.5. By assuming that the value 0 denotes the
normal slides and value 1 denotes abnormal slides, the function f(z) represents the estimate for a
given value of z.

This idea can be used to utilize a �tted logistic regression model as a classi�er. In fact, for
any given observation of xi, in the equation 4.15, the �tted logistic regression will end up with
an estimated probability (see equation 4.16) that shows the likelihood of being 1. This estimated
probability can be used for binary classi�cation purposes. For this purpose, it is necessary to
de�ne a cut = point value and compare the estimated probabilities with this value. Observations
having the estimated values of higher than the cut = point, belong to the abnormal class and vice
versa. The optimal decisions in the logistic regression are based on the posterior class probabilities
p(y|x), and for a binary classi�cation problem such as Pap smear classi�cation these decisions can
be written as:y

y =
{

1, if ln = P (y=1 x)
P (y=0|x ≻ 0 0, otherwise (4.17)

Generally, the probabilities P (y|x) are not known but the possible decisions can be parametrized
according to:

ln
P (y = 1 x)
P (y = 0|x) = f(x, w) = w0 + XT w1 = 0 (4.18)

The parameters can be calculated using a maximum likelihood estimation method. Figure 4.6
shows a possible linear decision boundary for classi�cation of a two-class data.

4.3.5 Maximum entropy

Maximum Entropy is considered to be one the most popular models in natural language processing
because it deals su�ciently with feature extraction problems that NLP tasks are su�ering from.
The basic problem is that many methods are producing features that are statistically depended.
For instance, the extraction for both unigrams and bigrams leads to dependent features as the
occurrence of a words in unigram is by de�nition part of a bigram. The reason behind the statistical
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Figure 4.6: Logistic regression linear decision for binary classi�cation

dependency of words is that the words in a text are considered with speci�c semantic in mind
therefore, word-based features in principle will be correlated. It is important that property to be
taken into consideration in the formation of a statistical model. As we mention in section 4.3.1 the
Naive Bayes makes the assumption that the features are statistical independent. The maximum
entropy models on the other hand, are based on the principle that one should use the model which
is closet to a uniform distribution unless contrary information shows otherwise. This causes the
so-called explaining away e�ect [126] which means that features which explain the train data best
are given high weights.

Formally, the maximum Entropy models aims to maximize the entropy H(p) of the distribution
p(c|x) :

H(p) = −
∑
c∈C

∑
x∈X

p(c x) logp (c x) (4.19)

The constraints are that p(c|x) needs to be maximal for the correct label and p needs to be a
probability distribution. Formulating the Lagrangian and �nding an optimum we are getting the
model described from the following Equation:

p(c x) =
exp(

∑
i∈F w

(c)
f ϕi(x))∑

c∈C exp((
∑

i∈F w
(c)
f ϕi(x))

(4.20)

This exponential model function is called Softmax in the perspective of neural networks as we
will see later in this thesis. The feature weights can be calculated by maximizing the model's
log-likelihood LL(w|D) :

LLw(D) = log
∏
x,y

For the data on a set of training examples through numerical optimization applying gradient-
based methods etc. The log-likelihood function is related to the cross-entropy function which is
used for neural network training. The Maximum Entropy model can itself be interpreted as a
neural network

4.3.6 K-nearest neighbor

Nearest neighbor algorithms are well known and widely used methods. The nearest neighbor
classi�cation is straightforward and intuitive. Given a set of labelled training samples each new
unlabeled target sample is assigned to the same label as its nearest neighbor which is de�ned using a
similarity measure. However, the most common nearest neighbor classi�er is the so called K-nearest
neighbor where k nearest neighbors are used to determine the class of the given target example. In
order the classi�er to determine the similarity between the given target and its neighbors distance
measures are used. The most widely used distances are the absolute distance and the Euclidian
distance given from the following equation:

d(A, B) = (
n∑

i=1
[ai − bi]r) 1

r (4.22)
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Figure 4.7: Cosine similarity of two document vectors

Where the absolute distance is given whenr = 1 and Euclidian when r = 2 However, in text
classi�cation cosine similarity is commonly used in order to measure the similarity of two documents
vectors base on the cosine of the angle between two vectors.

As shown in �gure 4.7, the similarity between the document di and the target document q is
given by the cosine of the angle θi. Mathematically, the cosine similarity of two document is given
as follows:

CosSim(di, dk) =
−→
d j ∗

−→
dk

|
−→
dj | ∗

−→
dk

=
∑t

i=1(wijwik)√∑t
i=1wj2 ∗

∑t
i=1 w2

ik

(4.23)

Once the k neighbor closest to the target example are found a voting scheme is used to decide the
class prediction of the target example. In most implementations of the K-nearest neighbor classi�er
the majority voting is used. However, in this voting scheme, the k neighbors are considered to
be equal indicators of the prediction for the given target. For instance, in a sparse space some
neighbors of the target may be far away and to have little or no e�ect on the target example. In
order this problem to be addressed the weighted K Nearest Neighbor was proposed where neighbors
close to the target are getting higher weight that the far ones.

The main computation performed by the K-NN algorithm is the sorting of training examples
so as the k nearest neighbors of the target example to be founded. This task is computationally
expensive so many algorithms have been proposed in order to reduce the computational complexity
of this classi�er. Usually, the K-NN classi�er is used as a baseline due its simplicity and �exibility
to be used over di�erent data types.

4.4 Evaluation of machine learning methods

The objective of evaluation of di�erent machine learning methods is to calculate an error for a
method in order to compare the methods results with other methods in a given task. The general
idea behind the evaluation is to split the data into training, validation, and test set. The method
is taught using the training set, validated against a validation set to get the expected error, and
�nally use test set to see how the method would perform in a real situation. The existence of
validation set is crucial due to the fact that comparing classi�ers in general is useless because the
performance of machine learning algorithms relies heavily on the data used. However, there are
di�erent indicators of performance other than error rates due to the fact that each task has its own
objective. Therefore, training time, test time, space complexity and computational complexity can
be used also as measures.

Cross-validation is used to evaluate how erroneous the methods are in a classi�cation problem.
The training data are split into K parts and then again are split into a training set and a validation
set that are going to be used in order a method to be trained and validated. Additionally, k fold
cross validation splits the training data into K equally sized sets. One set is used as a validation
set, while others are used as a training set (size K-1). This is then repeated so that each split
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Figure 4.8: The confusion matrix

is being a validation set once, thus giving K amount of repetitions. The errors are gathered and
averaged. The errors in cross-validation techniques are slightly dependent as the data will overlap
with itself.

In classi�cation the most known tool for measuring the classi�cation performance is the con-
fusion matrix as shown in the �gure. Basically, the confusion matrix is a table that shows the
numbers of the correctly and incorrectly labeled examples. The size of the matrix is the number
of classes times the number of classes. However, the practical case in to compare one class over all
others so the size will be two times two.

A confusion matrix consists for the following parts:

� True Positive (TP): correctly predicted as a positive example

� True Negative (TN): correctly predicted as a negative example

� False positive (FP): incorrectly predicted as a positive example

� False negative (FN): incorrectly predicted as a negative example

Moreover, from the confusion matrix are derived many metrics that used to evaluate the perfor-
mance of a classi�er. The most common of all is the accuracy. Accuracy indicates the proportion
of the correctly predicted samples. So, the accuracy is given as follows:

accuracy = TP + TN

TP + FP + TN + FN
(4.24)

In most applications, only the accuracy is the strongest indicators of the performance and the
only used metric as in this thesis. However, there tasks that accuracy fails to indicate the perfor-
mance of the classi�er thus more performance measurements are needed. In sentiment analysis,
precision and recall are broadly used. The precision means, how well the model is to be trusted.
The precision tells the proportion of the positive examples that are truly positive.

The precision is given as follows:

precision = (TP )
(TP + FP ) (4.25)

On the other hand, the recall indicates how large the proportion of the correctly labeled exam-
ples is from the total positive examples:

recall = TP

TP + FN
(4.26)

Another, metric used in this thesis is the F measure that is a harmonic mean of the recall and
the precision and it de�ned as:

F − measure = 2 ∗ precision ∗ recall

precision + recall
(4.27)

A common visualization tool for the performance evaluation is the receiver operating character-
istic curve, or the ROC curve. The ROC curve indicates the tradeo� between the detection. Most
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classi�ers fall between the perfect classi�er and the classi�er with no predictive value. Usually,
a measure called area under the ROC, or AUC, is calculated to see how close a classi�er is to a
perfect classi�er. of true positives and the false positives.
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Chapter 5

Sentiment Analysis

In this chapter, we will introduce the general principles and methods of Sentiment Analysis and
familiarize the reader with concepts used later in this Thesis. Before we discuss sentiment analysis
in depth, is crucial to present some de�nitions of opinions. Liu [68] de�nes opinions as �subjective
expressions that describe people's sentiment, appraisals or feelings towards entities, events, and
their properties�. Moreover, he is proposing a discrimination between a direct opinion, that gives
a positive or negative opinion about an entity and a comparative opinion, in which a positive or
negative opinion is implied by comparing two entities.

Another de�nition of opinions came from Kim and Hovy where the opinion is de�ned as a
combination of four factors: topic, holder, claim and sentiment where Liu de�nes �ve factor of a
direct opinion: object, features, orientation, holder and time. In case of Kim and Hovy [56],the
opinion holder expresses a claim about a certain topic and associates this claim with a certain
sentiment. On the other hand, in case of Liu , the opinion holder distinguishes some features of a
certain entity and associates a certain sentiment orientation to them in a speci�c time.

5.1 De�nition

According to Merriam-Webster dictionary [76] the word sentiment has three layers of meanings:

� Predilection or opinion.

� Emotion or re�ned feeling.

� Idea colored by emotion.

A sentiment can be described as an opinion or attitude stated by an individual, the so-called
opinion holder for an entity, the target. In [96] the authors distinguishes attitudes from emotions.
Attitudes are de�ned as � �relatively enduring, a�ectively colored beliefs, preferences towards objects
or persons� while emotions are �brief episodes of synchronized responses� as a reaction to an
external event [96]. Therefore, what distinguishes sentiment analysis from emotion analysis, is
that in emotion analysis the internal state of the writer is of interest and not his/her claim for a
speci�c target. The degree and the direction of the expressed sentiment are called polarity.

Sentiment analysis is the �eld of study that analyses peoples opinions, sentiments, eval-
uations, appraisals, attitudes, and emotions towards entities such as products, services,
organisations, individuals, issues, events, topics, and their attributes[68]

Sentiment analysis in the scope of computational linguistics, is tackled as a classi�cation problem;
text is classi�ed into two classes; positive and negative. But there are plenty of research done in
which the classi�cation process appears as multi-categorization task instead of a binary where a
multi points scale is proposed to rank text [88]. Sentiment classi�cation key components can be
summarized to the following categories: tasks, features, techniques and applications [1]. There are
four main tasks that are tackled in present day sentiment analysis research: subjectivity analysis,
sentiment classi�cation, opinion summarisation, and opinion extraction and mining. Sentiment
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analysis can be carried out at a number of levels: words, phrases, sentences and (sets of) documents.
The features can be syntactic, semantic, link based and stylistic. Techniques can be either machine
learning based, link analysis or similarity scores of bases.

Research concerning the emotional orientation of linguistic expressions has a long history in
linguistics. An important related concept that has been introduced early is connotation, the
additional emotional or cultural meaning of an expression . The connotation is a strong indicator
of expressing sentiment. However, the computational approaches to sentiment appeared in the early
90s. The term Sentiment Analysis appeared for the �rst time in [27] there was some earlier work on
the interpretation of metaphors, sentiment adjectives, subjectivity, viewpoints, and a�ects [26, 88].
The breakthrough of statistical models for large-scale sentiment analysis was introduced by [89]
who showed that user-supplied polarity ratings of product reviews can be predicted automatically
with high accuracy through supervised classi�cation. Since then, numerous sentiment analysis
approaches on a broad range of linguistic levels have been proposed. These range from low-
level units like words and phrases [120] to sentences [87] to �ne-grained document analysis [50].
Moreover, apart from statistic methods, sentiment analysis is supported by vocabulary lexical
resources such as polarity lexicons [131].

An important subject that is examined in sentiment analysis is subjectivity analysis, where
the objective is to recognize if a statement is re�ecting an individual's private state or it express
objective judgment.The main di�culty of classifying text as positive or negative depends whether
it expresses a fact or an opinion. The classi�cation of opinionated text is much harder than factual
one because opinionate text usually is expressed in a more informal way such as sarcasm, subjective
language, emoticons and so on. In [68] the author claims that much of research in textual sentiment
analysis was conducted on factual text because in the past researchers, were not able to obtain
huge amount of user-generated content as we can now. Now, is almost impossible for companies
or humans to retrieve and summarise the state of general opinion due to the tremendous size of
media data and their diversity. Sentiment analysis emerged from this need. Sentiment analysis
studies till today have been applied in numerous di�erent types of texts and domains. The choice
of domain, is based on the practical applicability of sentiment analysis. For instance, customer
reviews are of interest of companies who would like to have feedback about what the customers
beliefs about their product or their marketing strategy. Social media (blogs, internet forums, social
networking websites and others) are a hot topic in many marketing and media studies as they are
not only a valuable source of opinion-related information but also a medium where opinions are
forged.

5.2 Concepts in Sentiment Analysis

Di�erent authors have dealt with the problem of sentiment classi�cation in di�erent ways. Senti-
ment classi�cation can be formulated either as two separate classi�cation problems or as a three-
class classi�cation problem [68]. When formulated as a two separate classi�cation problems, the
�rst problem is to determine if a piece of text (e.g. a document) is subjective or objective, that
is, if it expresses an opinion or not. This type of problem is called subjectivity classi�cation
[43, 129, 131]. The second classi�cation problem is to classify the subjective sentences into positive
or negative. This binary classi�cation task of labelling a document as expressing either an overall
positive or an overall negative opinion is called (sentiment) polarity classi�cation [88] .

5.2.1 Polarity

The sentiment determination is probably the most studied in sentiment analysis literature. It
consists of identifying polarity or orientation. In its simplest form, it corresponds to the binary
orientation (positive or negative) of a subjective statement without taking into consideration the
external context of a sentence or document. Several types of scales have been used in sentiment
analysis research, going from continuous scales [4] to discrete ones [116]. Generally, it is not
proven how many points are needed on the scale, but the scale has to ensure that a �ne-grained
categorization of subjective words is with respect to human judgments.

Usually, polarity is mapped to the [-1,1] interval where -1 denotes the most negative polarity
possible and 1 the most positive. However, there is some ambiguity regarding the interpretation
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of the center of the scale. It can be seen as neutral polarity or denotes a more balanced mix of
positive and negative content. It has been proven that even for humans are di�cult to assess
whereas a statement is neutral or not, which is why in most cases this category is omitted in order
to simplify the problem.

However, in 2011 Socher [110] introduced a more complex polarity problem whereas he proposed
the use of the scheme from the experience project which collects user-submitted stories. In this
case, users can vote for one of six tags:you rock, tehee, I understand, sorry, hugs, and wow, just
wow, which scienti�cally bordering emotion analysis spectrum. In this thesis, we are concerned
with binary polarity prediction problems, thus focusing only on the two extreme points (positive
and negative) of the polarity scale.

Sentiment bearing words may be ambiguous, leading to di�erent polarities in di�erent contexts.
Therefore, exists two main trends in polarity: the prior polarity when the determination of the
polarity value of a word does not take into account the context and the contextual polarity where
the context is taken into account [131]. Contextual in�uences of a words polarity may arise for
many reasons. First, the perception of the meaning of a word could be di�erent across domains. For
instance, the word scary can express a positive sentiment when is used for a movie but negative
when is used for a hotel review. Second, in most of the cases same word might have di�erent
meanings across cultures thus the world knowledge of a sentiment analysis system is of great
importance.

5.2.2 Subjectivity

In terms of philosophy, it has been pointed out that there is a clear distinction between subjective
impressions of individual and objective reality. One can notice this distinction manifest itself
in human communication leading to subjective or objective language. Whether a statement is
subjective or objective depends on their veri�ability. On the other hand, the term subjectivity
in computation linguistics comes with di�erent senses and mainly is a strong indicator for both
sentiment and polarity. Usually in computational linguistic the subjectivity is strongly related to
the point of view. In our presentation of subjectivity, we will focus on the distinction between
objective and subjective statements. Wiebe and colleagues have devoted considerable e�ort to
�nding indicators of subjectivity in sentences [128, 129, 131]. In order to identify the subjectivity,
they proposed a set of subjectivity indicators either lexical or syntactic. The set of lexical indicators
consists of psychological verbs or verbs of judgment and adjectives that have been previously
annotated for polarity. The syntactic clues are learned from manually annotated data [128, 129]

Liu points out that a subjective sentence may not express any sentiment and in objective
sentences opinions or sentiment can be implied due to desirable and undesirable facts [135]. Ad-
ditionally, subjective or objective texts are hardly ever stated explicitly thus this complicates the
automatic processing of those texts. Another challenging aspect of subjectivity analysis is, that
not always the entire texts are either objective or subjective. Even a single sentence may contain
factual information and some subjective evaluation of it.

However, a number of studies demonstrate reasonable success in subjectivity analysis. The
subjectivity task has been used as a criterion to denote the importance of an expression regarding
the sentiment analysis. Pang and Lee [87]for example propose subjectivity-based selection for
summarizing reviews. Subjectivity analysis is used by many researchers as a pre-processing step
to �lter the data for sentiment classi�cation. [45, 67]

All in all, the de�nition of subjectivity given above is not universally accepted. While in this
thesis, the classical de�nition is considered many related concepts are presented under the umbrella
of subjectivity. For instance, the approach by Pang and Lee [87] uses proxy data in place of any
formal de�nition of subjectivity, showing that practical concerns are often of higher importance
than formal correctness.

5.3 Types of sentiment analysis

Sentiment analysis is concerned with predicting the sentiment orientation of unseen data. Since,
this term covers a broad range of problems thus many approaches have been proposed. In the
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Figure 5.1: Types of Sentiment Analysis

following paragraphs, we are going to discuss three general types of sentiment analysis problems.
There is a highly diverse set of methods tackling these problems which cannot easily be summa-
rized brie�y. In general, they can be divided into two major classes: rule-based and statistical
approaches. In this thesis, we focus mainly on statistical approaches.

In today's research many di�erent views on sentiment analysis exist, leading to di�erent tasks.
The most widely used method to categorize those methods is the granularity of the analysis.
Sentiment analysis can be performed on multiple linguistic levels �gure.5.1

� At the document level, the task is to classify if a whole opinionates document conveys positive
or negative sentiment

� At the sentence level, the task is to classify if an individual sentence conveys positive or
negative sentiment.

� At the aspect level (the entity level), the task is to classify the sentiment of individual
sentences or phrases intended towards certain entities or aspects

In this section, we will introduce these levels based on the overview by [68].

5.3.1 Document level

Document level sentiment analysis aims to predict the overall polarity expressed in a document.
Typically, the documents on which this type of analysis is performed are those in which authors
criticize a single entity, such as review of products, hotels and movies. Usually, in addition to the
review text users also supplies a rating on a prede�ned polarity scale. It is worth pointing that in
the review domain movies reviews is much longer than others thus the average document length
may vary between domains.

The task of prediction document-level sentiment polarity can be performed as standard text
classi�cation problem. Therefore, well-established techniques can be used, such as maximum en-
tropy classi�cation [89]. Two major assumptions involved in the text classi�cation approach. To
begin with, it is assumed that the whole text contains a single target, the product that is the
subject of the review. The authors are assumed to be the opinion holders. However, these as-
sumptions might not hold in all domains. For instance, in the news domain opinions by di�erent
holders about many targets can be presented by the news reporters. However, in movies reviews
those assumptions hold.

Additionally, documents are long enough thus a violation of the aforementioned assumptions
maybe disregarded as noise. Therefore, the document classi�cation problem relies on the su�cient
availability of clear indicators of sentiment.

A commonly used strategy in document-level sentiment analysis is to use rating provided by
users for supervision. As we mentioned above, many ratings schemes exist so is essential this rating
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to be translated in a common simpli�ed scale. The use of users rating as labels, is an appealing
idea since its eliminates manual annotation but is far from perfect. It has been shown that when
used manually annotated reviews better recommendations are produced.

In literature, many causes for this e�ect has been pointed out. First, users don't follow any
standards concerning the rating procedure. Moreover, many online reviewing schemes correlate
star rating with verbal assessments but usually, there are no detailed guidelines that give speci�c
instructions for the rating process. Second, some readers see the review text as complementary
to the rating, and thus, the rating may be inconsistent with the views expressed in the text.
These results and observations show that although sentiment classi�cation is often described as
supervised, caution must be taken with viewing star ratings as a gold standard. Overall, the
document-level approach has been found to be too coarse for many practical applications. Thus,
�ner-grained analysis levels have been proposed, which we review next.

5.3.2 Sentence/Clause Level

Documents usually convey a clear overall polarity. However, smaller linguistic units such as sen-
tences or clauses are signi�cantly harder to be analyzed. Again, the problem of polarity orientation
of a sentence can be treated as a text classi�cation task where the text is represented as word-based
features and then those features are fed to a statistical model. To this point, the most prominent
sentence level approach is using a combination of naïve Bayes and support vector machine [125].
Sentence level sentiment analysis relies heavily on sentiment polarity bearing words. Therefore,
taking into consideration that a sentence is scienti�cally shorter than documents it should be ex-
pected that not every sentence contains actually a sentiment bearing word. Moreover, sentences
may also be ambiguous when read out of context, or may contain expressions of mixed sentiment.
An early formal model for coping with complex polarity structure was introduced by Polanyi and
Zaenen [94]. In their model, polarity-bearing words are modi�ed by the so-called polarity shifters.

In recent literature, has been shown that sentence sentiment analysis, follows a hierarchical
compositional structure formalized through constituency or dependency trees. Each node of the
tree is representing the polarity; the overall sentence polarity is given at the root node. On-terminal
polarities are the result of shifter like operations recursively carried out at each node.

5.3.3 Entity/Aspect Level

Liu [68]de�nes an entity as any object about which sentiment is expressed. An entity constitutes
a type of target which was introduced previously. An aspect is any property or part of the target.
We discuss the notions of entities and aspects brie�y as they are beyond of the scope of this
thesis. The fundamental di�erence in this approach is that it does not focus on linguistic units
for analysis. It mainly focuses on collecting information concerning a speci�c entity in order a
prediction to be made. This task has been introduced as �ne-grained sentiment analysis [132]
because relations between sentiments, targets or opinion holders have to be extracted. Therefore,
this type of analysis is deeper than the previous methods because knowledge about the target is
to be found in order ambiguities to be resolved and not linguistic units. Therefore, entity-level
sentiment analysis requires signi�cantly more complicated machine learning tasks.

5.4 Sentiment analysis approaches overview

In literature exists three di�erent methods that tackle the problem of sentiment analysis: machine
learning methods,lexical based methods and linguistic analysis [119].

Lexicon based approach is based on the construction of a lexicon which is a structure that
keeps track of words and possible information about them. The words are usually referred as
lexical items [13]. After the construction of the lexicon, the overall polarity of the text is then
calculated by a possible weighted count from lexical items exist in text [55]. Dictionaries for
lexicon-based approaches can be created manually or automatically using seed words in order to
expand the list of words [43, 120, 121] .The main disadvantage of this approach is that strongly
depends on the goodness of the lexical resource that relies on.
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In linguistic approach, syntactic characteristics of words, phrases, negations and the structure
of the text are considered to estimate the text orientation. In literature, this approach usually
incorporates and a lexicon-based method as can been seen in [118�120]. The most known linguistic
approach is the parts of speech tagging (PoS). With PoS syntactic patterns or categories of words
are de�ned [13]. Numerous patterns can be extracted and be used as phrases. Usually those
patterns are indicators of either a sentiment or a topic. Those patterns are represented as n-grams.
N-gram can be considered as a sequence of n words from a given sequence of speech.

Last but not least, are the machine learning techniques. The machine learning techniques are
using the principles and classi�ers we mentioned in the previous chapters. Although, the majority
of research is conducted using Machine learning methods this does not mean that the machine
learning has no weaknesses. The several algorithms vary in their ability to generalize over large
set of patterns, and sometimes occur patterns that the algorithm has not seen before and is more
likely to be ignored. But in language, frequently occurring patterns are rare, and rarely occurring
patterns are predominant.

The aforementioned approaches can be used separately or combined. Machine learning ap-
proaches can incorporate linguistics approaches so that the selected features for machine learning
algorithm can be only features of one Pos kind. In many studies have been shown that adjectives
usually are strong indicators of sentiment and is not rare lexicon to be built from adjectives. Of
course, this does not imply to ignore the importance of other parts of speech (verbs or nouns)

In this thesis, machine learning classi�cation methods are considered. Since these methods
accomplished state-of -the arts results in the movie reviews domain. The approaches described
above such as linguistic Lexicon base approach is beyond the scope of this thesis.

5.4.1 Sentiment Analysis using machine learning techniques

With the increasing need of information organization and knowledge discovery from text data,
many supervised learning algorithms have been used for text document classi�cation. Among these
methods, naive Bayes and Support Vector Machines (SVM) are always in the comparison list. Naive
Bayes � a generative classi�er � is considered a simple but e�ective classi�cation algorithm [79].
SVM � a discriminative classi�er � is considered the best text classi�cation method to date. The
key point of using machine learning for sentiment analysis lies in engineering a representative set
of features (see Chapter 2). The �rst, pioneering in this direction, was [89] were conducted polarity
classi�cation of reviews using feature engineering methods. The techniques which they explored are
support vector machines(SVMs), naïve Bayes (NB) and maximum entropy (ME) classi�ers. They
experiment by using di�erent feature sets such as unigrams, bigrams, binary and term frequency
feature weights and others. The outcome of their observation was that sentiment classi�cation
is not that easy than standard topic-based classi�cation they also concluded that using an SVM
classi�er with binary unigram-based features produces the best results. In their later work, they
introduced a twofold sentiment classi�cation process; First, they detect and remove objective parts
of the document and then they apply a polarity classi�er on the remain parts [87]. This exploited
text coherence with adjacent text spans which were assumed to belong to the same subjectivity or
objectivity class. They used graph representation of documents where the sentences were the nodes
and association scores between them as edges. Two additional nodes represented the subjective
and objective poles. The weights between the nodes were calculated using three di�erent, heuristic
decaying functions. Finding a partition that minimized a cost function separated the objective
from the subjective sentences. They reported a statistically signi�cant improvement over a NB
baseline using the whole text but only slight increase compared to using a SVM classi�er on the
entire document [88].

Turney[120]introduced an unsupervised learning algorithm for classifying a review as �recom-
mended� (thump up) or �not recommended� (thump down). First, they extracted phrases con-
taining adjectives or adverbs. Secondly, they calculated the semantic orientation using Pointwise
Mutual Information (PMI). Finally, they classi�ed the reviews based on the average semantic orien-
tation of the phrase. Turney and Littman [121] also introduced a method for inferring the semantic
orientation from associations. The relation between a word and a set of positive or negative words
was measured using two di�erent statistical measures: PMI and Latent Semantic Analysis (LSA).

Mullen and Collier [83] worked on the same dataset used by [89]. They calculated the average
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rating for the whole collection. Then, the reviews under the average rating were classi�ed as
negatives and those above the average rating were classi�ed as positives. They investigated various
features including Combination of Turney value, the three text-wide Osgood values, word unigrams
or lemmatized unigrams. In addition, they accomplished experiments over a movie reviews corpus
downloaded from the Pitchfork Media. In this case, they extracted the same features and extra
features based on the movie domain. The machine learning algorithm used was the SVM. They
concluded that the combination of unigrams and lemmatized unigrams outperforms the models
which do not use this kind of information.

Prabowo and Thelwall [95] applied SVM with combined methods to classify reviews from dif-
ferent corpora. One of these datasets was downloaded from Pang and Lee (2004) and it includes
1,000 positive and 1,000 negative samples. Several classi�ers were used: General Inquirer Based
Classi�er (GIBC), Rule-Based Classi- �er (RBC), Statistics Based Classi�er (SBC) and SVM.
They accomplished a hybrid classi�cation, where if one classi�er fails to classify a document, the
classi�er passes the document onto the next classi�er until the document is correctly classi�ed or
no other classi�er remains. The results indicated that SBC and SVM improve their e�ectiveness
in the hybrid classi�cation.

Zhang [136] classi�ed sentiment using machine learning (NB and SVM) for restaurant reviews
written in Cantonese. They studied the e�ects of feature representations and feature size on
the classi�cation performance. Experiments were performed on 1500 +ve and 1500 -ve reviews.
They experimented with di�erent feature representations like unigram, unigram_freq, bigram,
bigram_freq, trigram, and trigram_freq and varying number of features in the range of 50 to 1,600
features.They �nd that accuracy is in�uenced by interaction between the classi�cation models and
the feature options. The naive Bayes classi�er achieves as well as or better accuracy than SVM.
Character-based bigrams are proved better features than unigrams and trigrams in capturing
Cantonese sentiment orientation. The highest accuracy reported was 95.67% using NB for 900�1100
features. Future work can be integration of automatic review mining technologies to search engines.
Read [98] studied the dependence of naive Bayes and SVM classi�cation models on domain and
time. SVM did not beat naive Bayes in sentiment classi�cation as in topic classi�cation. However,
Engstrom [29] showed that the bag-of-features approach is topic-dependent. A classi�er trained
on movie reviews is unlikely to perform as well on (for example) reviews of automobiles. Turney
[120] noted that the unigram unpredictable might have a positive sentiment in a movie review
(e.g. unpredictable plot), but could be negative in the review of an automobile (e.g. unpredictable
steering).

Saleh [104] carried out twenty seven sentiment classi�cation experiments using SVM with var-
ious feature selection methods. Experiments were performed on three well benchmarked datasets.
Using 10-FCV, the best classi�cation accuracy reported were 85.35%, 73.25%, and 91.51% for pang
corpus using binary occurrences and trigrams, Taboada corpus using term frequency-inverse doc-
ument frequency (TF-IDF) and trigrams, SINAI corpus using TFIDF and bigrams respectively.
Further experiments can be performed to observe the results a�ected by rating reviews

Moraes [81] compared popular machine learning approaches (SVM and NB) with an ANN-
based method in the context of document-level sentiment classi�cation [68]. In comparison with
the sentiment classi�cation literature, the main contributions of thid work are: (i) a compari-
son of a dominant and a computationally e�cient approach (SVM and NB, respectively) with
an ANN-based approach under the same context; (ii) a comparison involving realistic contexts in
which the ratio of positive and negative reviews is unbalanced.Four datasets were chosen for this
purpose benchmark movies review dataset [87] and reviews on three distinct product domains:
GPS, Books, and Cameras. For unbalanced dataset, performances of both classi�ers ANN and
SVM were a�ected. Information gain as feature selection method did not help yield good accuracy
for more than 1,000 features. Therefore, these classi�ers should be tested on given dataset using
di�erent feature selection methods. Wang [124]compared the performance of three popular en-
semble methods viz. bagging, boosting, and random subspace based on �ve base learners namely
NB, ME, Decision Tree, KNN, and SVM for sentiment classi�cation. They experimented with ten
di�erent datasets and reported better accuracy over base learners at the cost of computational
time. Ensemble method can be further validated on large dataset, and feature construction based
on linguistic method can also be considered

Dave [27] describes a tool for sifting through and synthesizing product reviews, automating the
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sort of work done by aggregation sites or clipping services. They begin by using structured reviews
for testing and training, identifying appropriate features and scoring methods from information
retrieval for determining whether reviews are positive or negative. These results perform as well
as traditional machine learning methods. Then they used the classi�er to identify and classify
review sentences from the web, where classi�cation is more di�cult. However, a simple technique
for identifying the relevant attributes of a product produces a subjectively useful summary. Unlike
Pang's research, they obtained the best accuracy rate with word bigram-based classi�er on their
dataset. This result indicates that the unigram-based model does not always perform the best
and that the best settings of the classi�er is dependent on the data.[25]classi�ed sentiments using
SVM by using di�erent feature selection methods. Experiments were performed on two corpora
on digital camera and multi-domain dataset. SVM was trained on three collections of features
set based on domain free, domain dependent, and sentiment features. Information Gain (IG)
was applied to reduce the number of features for di�erent combination of features. The reduced
features set performed better on multi-domain dataset than digital camera dataset, and yielded
an accuracy of 84.15% for kitchen appliance. The proposed feature selection methods should be
tested on bigger dataset and compared with other statistical based feature selection method

In [125], authors showed that the inclusion of word bigram features gives consistent gains on sen-
timent analysis tasks,for short snippet sentiment tasks, NB actually does better than SVMs (while
for longer documents the opposite result holds). Based on these observations, they identi�ed simple
NB and SVM variants which outperform most published results on sentiment analysis datasets,
sometimes providing a new state-of-the-art performance level [70] 91.4%. The authors showed the
usefulness of bigram features in bag of features sentiment classi�cation has been underappreciated,
perhaps because their usefulness is more of a mixed bag for topical text classi�cation tasks. Then
they performed a distinction between short snippet sentiment tasks and longer reviews, showing
that for the former, NB outperforms SVMs. Contrary to claims in the literature, they proved
that bag of features models are still strong performers on snippet sentiment classi�cation tasks,
with NB models generally outperforming the sophisticated, structure-sensitive models explored in
recent work. Furthermore, by combining generative and discriminative classi�ers, they presented a
simple model variant where an SVM is built over NB log-count ratios as feature values, and show
that it is a strong and robust performer over all the presented tasks. Finally, they con�rmed the
wellknown result that MNB is normally better and more stable than multivariate Bernoulli NB,
and the increasingly known result that binarized MNB is better than standard MNB. In line with
Wang's and Manning's work is [77]where they achieved new state-of-the art results on the Stanford
Large movie dataset [70]. Authors compared several di�erent approaches and proved that model
combination performs better than any individual technique. The ensemble best bene�ts from mod-
els that are complementary, thus having diverse set of techniques is desirable. The vast majority
of models proposed in the literature are discriminative in nature, as their parameters are tuned
for the classi�cation task directly. In this work, they boosted the performance of the ensemble
by considering a generative language model. To this end, two language models were trained, one
on the positive reviews and one on the negative ones, and use the likelihood ratio of these two
models evaluated on the test data as an additional feature. Authors assumed that a positive review
will have higher likelihood to be generated by a model that was trained on a large set of positive
reviews, and lower likelihood given the negative model.

Xia et al. [54] ensembled feature sets and machine learning for sentiment classi�cation. Two
types of feature sets namely "POS based features" and "the world-relation based feature sets" have
been designed. These feature selection methods were ensembled with NB, ME, and SVM using 3
techniques viz. �xed combination, weighted combination and meta-classi�er combination. Word
relation based weighted classi�er yielded accuracy of 87.7% and average 85.15% on Pang and Lee
[89]dataset.

In [75], authors investigated a structured model for jointly classifying the sentiment of text at
varying levels of granularity. Inference in the model is based on standard sequence classi�cation
techniques using constrained Viterbi to ensure consistent solutions. The primary advantage of such
a model is that it allows classi�cation decisions from one level in the text to in�uence decisions at
another. Experiments show that this method can signi�cantly reduce classi�cation error relative to
models trained in isolation. Structured models have previously been used for sentiment analysis.
Choi [14] use CRFs to learn a global sequence model to classify and assign sources to opinions.
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Mao [73]) used a sequential CRF regression model to measure polarity on the sentence level in
order to determine the sentiment �ow of authors in reviews.

5.4.2 Sentiment analysis using neural networks

Feature engineering is important but labor intensive. It is therefore desirable to discover explana-
tory factors from the data and make the learning algorithms less dependent on extensive feature
engineering. With the rapid growing of deep learning ( representation learning [46]), many recent
studies focus on learning the low-dimensional, dense, and real-valued vector as text features for
sentiment analysis without any feature engineering. Existing deep learning methods for sentiment
classi�cation typically include two stages. In the �rst stage, they learn word embeddings from
text corpus. In the second stage, word embeddings are applied to producing the representations
of sentences/documents with semantic composition. Existing composition learning approaches are
typically based on the principle of compositionality,which states that the meaning of a longer ex-
pression (e.g., a sentence or a document) comes from the meanings of its constituents and the rules
used to combine them.

Neural embeddings were �rst proposed by [7], in the form of a feed-forward neural network
language model. Modern methods use a simpler and more e�cient neural architecture to learn word
vectors (word2vec: [78], GloVe: [93]), based on objective functions that are designed speci�cally
to produce high-quality vectors. Neural embeddings learnt by these methods have been applied
in a myriad of NLP applications, including initialising neural network models for objective visual
recognition as well as directly modelling word-to-word relationships [78, 105, 137].

Word2vec was proposed as an e�cient neural approach to learning high-quality embeddings
for words. Negative sampling was subsequently introduced as an alternative to the more complex
hierarchical softmax step at the output layer, with the authors �nding that not only is it more
e�cient, but actually produces better word vectors on average. The objective function of word2vec
is to maximise the log probability of context word (wO) given its input word (wI ), i.e. log
P (wO|wI). With negative sampling, the objective is to maximise the dot product of the wI and
wO while minimising the dot product of wI and randomly sampled �negative� words. There are
two approaches within word2vec: skip-gram (�sg�) and cbow. In skip-gram, the input is a word
and the output is a context word. For each input word, the number of left or right context words
to predict is de�ned by the window size hyperparameter. cbow is di�erent to skip-gram in one
aspect: the input consists of multiple words that are combined via vector addition to predict the
context word

Paragraph vectors, or doc2vec, were proposed by [63] as a simple extension to word2vec to
extend the learning of embeddings from words to word sequences. doc2vec is agnostic to the
granularity of the word sequence it can equally be a word n-gram, sentence, paragraph or document.
In this thesis, we use the term �document embedding� to refer to the embedding of a word sequence,
irrespective of its granularity. There are two approaches within doc2vec: dbow and dmpv.

Dbow works in the same way as skip-gram, except that the input is replaced by a special token
representing the document (i.e. vwI is a vector representing the document). In this architecture, the
order of words in the document is ignored; hence the name distributed bag of words. dmpv works
in a similar way to cbow. For the input, dmpv introduces an additional document token in addition
to multiple target words. Unlike cbow, however, these vectors are not summed but concatenated
(i.e. vwI

is a concatenated vector containing the document token and several target words). The
objective is again to predict a context word given the concatenated document and word vectors.
Although Mikolov found that as a standalone method dmpv is a better model, others have reported
contradictory results. doc2vec has also been reported to produce sub-par performance compared
to vector averaging methods based on informal experiments. Additionally, authors reported state-
of-theart results over a sentiment analysis task using doc2vec, others (including the second author
of the original paper in follow-up work) have struggled to replicate this result.

Socher [100] present Sentiment Treebank. It includes �ne grained sentiment labels for 215,154
phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compo-
sitionality. In order to adress those challenges , authors proposedthe Recursive Neural Tensor
Network. Trained on on the new treebank ,this model outperforms all previous methods on sev-
eral metrics. It pushes the state of the art in single sentence positive/negative classi�cation from
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80% up to 85.4%. The accuracy of predicting �ne-grained sentiment labels for all phrases reaches
80.7%, an improvement of 9.7% over bag of features baselines. Lastly, it is the only model that
can accurately capture the e�ects of negation and its scope at various tree levels for both positive
and negative phrases. However, the RecursiveNN captures the semantics of a sentence via a tree
structure. Its performance heavily depends on the performance of the textual tree construction.
Moreover, constructing such a textual tree exhibits a time complexity of at least O(n)2, where n is
the length of the text. This would be too time-consuming when the model meets a long sentence
or a document. Furthermore, the relationship between two sentences can hardly be represented by
a tree structure. Therefore, RecursiveNN is unsuitable for modeling long sentences or documents.

More recently, [59] proposed skip-thought as a means of learning document embeddings. Skip-
thought vectors are inspired by abstracting the distributional hypothesis from the word level to the
sentence level. Using an encoder-decoder neural network architecture, the encoder learns a dense
vector presentation of a sentence, and the decoder takes this encoding and decodes it by predicting
words of its next (or previous) sentence. Both the encoder and decoder use a gated recurrent
neural network language model. Evaluating over a range of 8 tasks,semantic relatedness, para-
phrase detection, image-sentence ranking, question-type classi�cation and 4 benchmark sentiment
and subjectivity datasets, the authors found that skip-thought vectors perform very well against
state-of-the-art task-optimized methods. [130] proposed a more direct way of learning document
embedding's, based on a large-scale training set of paraphrase pairs from the Paraphrase Database
(PPDB:[108]). Given a paraphrase pair, word embeddings and a method to compose the word
embeddings for a sentence embedding, the objective function of the neural network model is to
optimize the word embeddings such that the cosine similarity of the sentence embeddings for the
pair is maximized. The authors explore several methods of combining word embeddings, and found
that simple averaging produces the best performance.In fact , they compared six compositional
architectures, evaluating them on annotated textual similarity datasets drawn both from the same
distribution as the training data and from a wide range of other domains.They found that the
most complex architectures, such as long short-term memory (LSTM) recurrent neural networks,
perform best on the in-domain data. However, in out-of-domain scenarios, simple architectures
such as word averaging vastly outperform LSTMs. Addionionally, in order to understan how these
architecures are compared they used them on three supervised NLP tasks namely : sentence sim-
ilarity, entailment, and sentiment classi�cation. They proven that averaging models perform well
for sentence similarity and entailment, outperforming LSTMs. However , in terms of sentimetnt
classi�cation on the Standord Sentiment Tree bank the LSTM exceed the previous state-of-the art
results.

In [117] authors indrodused a tree-LSTM , a generalization of LSTMs to tree-structured network
topologies.Tree-LSTM, composes its state from an input vector and the hidden states of arbitrarily
many child units. The standard LSTM can then be considered a special case of the Tree-LSTM
where each internal node has exactly one child They proved that Tree-LSTM outperform all existing
systems and strong LSTM baselines on two tasks : predicting the semantic relatedness of two
sentences (SemEval 2014, Task 1) and sentiment classi�cation Stanford Sentiment Treebank). A
variation of LSTM is proposed in [86] where the authors used a recurrent neural networks (RNN)
with Long Short-Term Memory (LSTM) cells. The proposed LSTM-RNN model sequentially
takes each word in a sentence, extracts its information, and embeds it into a semantic vector.
The LSTM-RNN is trained in a weakly supervised manner on user click-through data logged by
a commercial web search engine. Visualization and analysis are performed to understand how the
embedding process works. The model is found to automatically attenuate the unimportant words
and detect the salient keywords in the sentence. Furthermore, these detected keywords are found to
automatically activate di�erent cells of the LSTM-RNN, where words belonging to a similar topic
activate the same cell. As a semantic representation of the sentence, the embedding vector can be
used in many di�erent applications.A comparison with a well known general sentence embedding
method, the Paragraph Vector, performed. The results show that the proposed method signi�cantly
outperforms Paragraph Vector method for web document retrieval task.Similar to the recurrent
models mentioned in [86], The DSSM [51] and CLSM [108] models, developed for information
retrieval, can also be interpreted as sentence embedding methods. However, DSSM treats the
input sentence as a bag-of-words and does not model word dependencies explicitly. CLSM treats
a sentence as a bag of n-grams, where n is de�ned by a window, and can capture local word
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dependencies. Then a Max-pooling layer is used to form a global feature vector. Methods in [21]
are also convolutional based networks for Natural Language Processing (NLP). These models, by
design, cannot capture long distance dependencies, i.e., dependencies among words belonging to
non-overlapping ngrams.

Authors in [24] presented two approaches to use unlabeled data to improve Sequence Learning
with recurrent networks. The �rst approach is to predict what comes next in a sequence, which is
a language model in NLP. The second approach is to use a sequence autoencoder, which reads the
input sequence into a vector and predicts the input sequence again. These two algorithms can be
used as a �pretraining� algorithm for a later supervised sequence learning algorithm. In other words,
the parameters obtained from the pretraining step can then be used as a starting point for other
supervised training models. In their experiments, found that long short term memory recurrent
networks after pretrained with the two approaches become more stable to train and generalize
better. With pretraining, they were able to achieve strong performance in many classi�cation
tasks, such as text classi�cation with IMDB, DBpedia or image recognition in CIFAR-10.

Authors in [57], conducted a series of experiments with convolitional neural networks trained
on top of pre-trained word vectors for document classi�cation tasks. They proved, that a simple
CNN with little hyperparameter tuning and static vectors achieves excellent results on multiple
benchmarks, suggesting that the pre-trained vectors are `universal' feature extractors that can be
utilized for various classi�cation tasks. Learning task-speci�c vectors through �ne-tuning results in
further improvements. The vectors used were trained by [78] on 100 billion words of Google News,
and are publicly available. Initially they keept the word vectors static and learn only the other
parameters of the model. Additionally they proposed a simple modi�cation to the architecture
to allow for the use of both task-speci�c and static vectors. The CNN models discussed herein
improve upon the state of the art on 4 out of 7 tasks, which include sentiment analysis and
question classi�cation. This work, is philosophically similar to [97], which showed that for image
classi�cation, feature extractors obtained from a pretrained deep learning model perform well on a
variety of tasks�including tasks that are very di�erent from the original task for which the feature
extractors were trained. With the pre-trained word embeddings, neural networks demonstrate their
great performance in many NLP tasks. Socher [111] used semi-supervised recursive autoencoders
to predict the sentiment of a sentence. Their method learns vector space representations for
multi-word phrases. In sentiment prediction tasks these representations outperform other state-
of-the-art approaches on commonly used datasets, such as movie reviews, without using any pre-
de�ned sentiment lexica or polarity shifting rules. they also evaluate the model's ability to predict
sentiment distributions on a new dataset based on confessions from the experience project. The
dataset consists of personal user stories annotated with multiple labels which, when aggregated,
form a multinomial distribution that captures emotional reactions. Addiotionally, [101] introduced
a method for paraphrase detection based on recursive autoencoders (RAE). Their unsupervised
RAEs are based on a novel unfolding objective and learn feature vectors for phrases in syntactic
trees. These features are used to measure the word- and phrase-wise similarity between two
sentences. Since sentences may be of arbitrary length, the resulting matrix of similarity measures
is of variable size. A novel dynamic pooling layer was indroduced which computes a �xed-sized
representation from the variable-sized matrices. The pooled representation is then used as input to
a classi�er. The method outperforms other state-of-the-art approaches on the challenging MSRP
paraphrase corpus.

5.5 Challenges

As we mentioned above sentiment analysis approaches aim to extract positive and negative sen-
timent bearing words from a text then classify the text as positive or negative or objective if no
sentiment bearing words are appeared in the text. However, positive or a negative sentiment words
may have opposite orientations in di�erent domains. Moreover, a sentence containing sentiment
words does not mean necessarily that express any sentiment. This can be seen frequently in ques-
tions or conditional sentences. Additionally, for successful analysis of sentiment, the opinion words
should integrate with implicit data. The implicit data determine the actual behavior of sentiment
words.
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Ambiguity and vagueness have been considered as major issues since user reviews are often
written using a loose style than standard texts, and often express sarcasm (mock or convey or
irony), rhetoric or metaphor. Political discussion and extreme often include irony and sarcastic
words; detection of such expression is a challenging task in opinion mining area. The fuzzy approach
is quite useful to represent such feelings and expressions. Li and Tsai [66] framed a classi�cation
framework on the basis of fuzzy formal concept analysis (FFCA). For feature representation and
dimensionality reduction, TF-IDF, Inverted Conformity Frequency (ICF) and Uniformity (Uni),
and the relation between documents and terms have been considered using context matrices. The
attribute lattice set was represented using terms of the document. The TF-IDF value represented
the degree of signi�cance of each term in the lattice object set, which were given to the classi�er

Note that, not all languages have the same expressive power regarding sentiments. Quite
recently, an important research part is working towards this issue. Although, high accuracies
are not yet able to be produced, shedding light in unexplored corners of several approaches can
de�nitely in�uence in the future re accuracy. Similarly, cross-domain sentiment analysis became a
hot research problem to work upon. Cross-domain requires at least two domains: source domain
on which a classi�er is to be trained on, and target domain on which testing is to be performed.
Work carried out in this area can be classi�ed into two groups; the �rst group requires initial
training set from source domain as well as from target domain. The learners in the second group
of study are trained on source domain and tested on target domain.

Another signi�cant problem is that companies are hiring fake reviewers to write fake reviews.
Opinion spam detection and review usefulness measurement in general draw extremely attention
recently. Most of the opinion spam detection techniques depends on three types of features related
to a fake review, which includes content of review, meta-data of review, and real-life knowledge
about the product. To begin with, the text can be analyzed using NLP and ML models in order
to uncover whether a lie or deception is hidden in the text. Secondly, metadata of a review is
worth checking. As metadata can be seen information as user-id, IP- address, geo-location etc.
Last but not least, the world knowledge of the system plays important role in order a fake review
to be recognized. For instance, a particular brand has very good reputation and an inferior brand
has been shown as superior to that in some reviews posted during speci�c period, in such cases a
review can be suspected as a fake review.

Thwarted expectations are a problem that is commonly faced in sentiment analysis and yet no
e�ective methods have been generated to be dealt with. It is common for author to deliberately
set up context only to refute it at the end.

All in all, since sentiment analysis is a sub-�eld of natural language processing it inhertis
the challenges such as ambiguity, co-reference, Implicitness, inference etc. created hindrance in
sentiment analysis too
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Chapter 6

Experiments

6.1 Framework

Several tools exist for performing di�erent machine learning tasks, such as classi�cation, regression,
and clustering. The tool used in this thesis was the Scikit Learn framework [92]. This is a Python
framework built on NumPy [85], SciPy [53], and matplotlib [52]. Scikit Learn supports several
classi�cation methods, SVM, NB, MaxEnt, nearest neighbours, and random forest, to name a few.
The main reason for choosing to use this framework for the task was the wide range of di�erent
classi�cation methods, as well as a well-written and complementary framework documentation.The
python library Keras [15] is the framework used for modelling some of the deep learning models used
in this thesis. Keras is meant to be a minimalistic library with a focus on fast experimentation. It
can be run on top of either TensorFlow or Theano, both enables running computations on GPU's.
In this thesis the combination of Keras and Theano [2] is used. The python package Gensim [99]
is used for handling the word vector models used. Keras, Theano and Gensim are currently only
available as beta versions. The used versions are the developer versions 0.2.0 of Keras and 0.8.0 of
Theano and the general beta version 0.12.1 of Gensim (these developer versions are updated from
day to day without changing version number as they are bleeding edge). This implies algorithms
could be changed and that the toolbox currently available is not written in stone.

6.2 IMDB dataset

The Stanford Large Movie Review (IMDB) Dataset [70] consists of 50,000� highly polar�, binary
labeled reviews from IMDB. These reviews are split 50:50 into training and testing sets. The
distribution of labels within each subset of data is balanced. The dataset also includes a further
50,000 unlabeled reviews which may be used for unsupervised training. We found that reviews
averaged 267.9 tokens in length with a standard deviation of 198.8 tokens; the precise distribution
of review lengths is shown in Figure 6.1
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Figure 6.1: Distribution of review lengths in the IMDB dataset

6.3 Experiments with symbolic features representations

The reviews of IMDB dataset are processed in order noisy features to be removed. Then the
textual data are transformed using vectorization techniques. In the �nal step, the vectors are fed
to machine learning algorithms in order the sentiment classi�cation to be performed. The step of
the approach is shown in the following �gure: 6.2

Figure 6.2: Diagrammatic view of the proposed approach

Step 1: In this step, we implement what we mentioned in section 4.1. Usually, the text of
reviews sometimes consists of absurd data, that need to remove in order classi�cation process
not to be a�ected. We removed special and numeric characters and we convert all reviews into
lowercase. Stop words are not removed.

Step 2: After the preprocessing of text reviews, they need to be converted to a matrix of numeric
vectors. The following methodologies are considered for conversion of text to numeric vectors:

� Bag of word model

� TF/IDF model

Step 3: After the conversion of raw text into numeric vectors those vectors are fed to the following
classi�ers in order the determination of sentiment classi�cation to be performed:

� Multinomial Naïve Bayes

� Support Vector Machine

� Logistic Regression
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6.3.1 Bag of words features

Hyperparameter search is known to be a key challenge in applied machine learning. There are
known procedures, such as grid search, but in practice, this problem is more di�cult than it is in
theory. The climax of this challenge is the explosive count of combinations of hyperparameters,
where each combination could potentially outperform a very distant other combination, making it
a non-convex problem.

Exhaustive optimization searches were done for the classi�cation tasks, where several variations
upon the input parameters were experimented with. This was done in order to attempt �nding
the optimal parameter setting for the classi�cation algorithms. The optimal parameters for a
classi�cation task depends on the classi�er used and the contextual aspects of the datasets on
which it is used. Finding the optimal parameters for a task can greatly impact the performance of
said task. All the parameter combinations used for optimization can be seen in table 6.2

Name Range

N-gram range 1-1-1-2-1-3-1-4-2-2-2-3-3-3

Max DF 0.5 - 0.7 - 0.9 - 1.0

Min DF 0.2-0.3-0.4-0.5 -0.7 - 0.9 - 1.0

Alpha(NB-speci�c) 0.1 - 0.3 - 0.5 - 0.7 - 0.8 - 1.0

C(SVM-speci�c) 0.1 - 0.3 - 0.5 - 0.7 - 0.8 - 1.0

C(MaxEnt-speci�c) Penalty(MaxEnt-speci�c) l1 - l2

Table 6.1: Parameter Combination For Optimization (BoW)

Name Range

N-gram range 1-1 ,1-2 ,1-3 ,1,4, 2-2, 2-3, 3-3

Max DF 0.5 - 0.7 - 0.9 - 1.0

Min DF 0.2-0.3-0.4-0.5 - 0.7 - 0.9 - 1.0

Use IDF True - False

Smooth IDF True - False

Sublinear TF True - False

Alpha(NB-speci�c) 0.1 - 0.3 - 0.5 - 0.7 - 0.8 - 1.0

C(SVM-speci�c) 0.1 - 0.3 - 0.5 - 0.7 - 0.8 - 1.0

C(MaxEnt-speci�c) 0.1 - 0.3 - 0.5 - 0.7 - 0.8 - 1.0

Penalty(MaxEnt-speci�c) l1 - l2

Table 6.2: Parameter Combination For Optimization (TF/IDF)

The Parameters used for text vectorization with bow model are the range of N grams used
as features, and the Max , Min document frequency for using the grams as features. More three
parameters were used for TF-IDF vectoring; Use IDF, Smooth IDF, and Sublinear TF, all three
of them Boolean values. Finally, 4 algorithm speci�c parameters were used. The Alpha parameter
of the NB classi�er, which is the Laplace/Lidstone smoothing weight. The C Parameter in the
SVM, which in�uences the margin of the SVM hyperplane. And there is lastly two MaxEnt-speci�c
parameters; the C and the penalty parameters

� Application of Multinomial Naïve Bayes classi�er

A comparative study of sentiment analysis techniques on movie reviews domain 53



Master thesis Nikolaos Panagiaris- MPPL12046

Naïve Bayes was a certain choice to be involved in the project as a classi�er, because it has been
one of the popular machine learning methods for many years. The framework in Naïve Bays is
attractive since its simplicity in various tasks and it o�ers reasonable performance, obtained in the
tasks even though the learning is based on an unrealistic independence assumption.

Method Confusion Matrix Evaluation Parameter Accuracy

Unigram

Corect labels
Precision Recall F-Measure

81.53%Positive Negative

Positive 11008 1492 0.86 0.75 0.80

Negative 3126 9374 0.78 0.88 0.83

Bigram

Corect labels
Precision Recall F-Measure

86.99%Positive Negative

Positive 11209 1291 0.89 0.84 0.87

Negative 1962 10538 0.85 0.90 0.87

Trigram

Corect labels
Precision Recall F-Measure

87.28%Positive Negative

Positive 10986 1514 0.87 0.88 0.87

Negative 1665 10835 0.88 0.87 0.87

Unigram+Bigram

Corect labels
Precision Recall F-Measure

85.72%Positive Negative

Positive 11193 1307 0.89 0.82 0.85

Negative 2262 10238 0.83 0.90 0.86

Bigram+Trigram

Corect labels
Precision Recall F-Measure

88.15%Positive Negative

Positive 11200 1300 0.89 0.87 0.88

Negative 1663 10837 0.87 0.90 0.88

Unigram+Bigram+Trigram
Precision Recall F-Measure

87.25%Positive Negative

Positive 11204 1296 0.86 0.90 0.88

Negative 1892 10608 0.89 0.85 0.87

Table 6.3: Various evaluation metrics for Multinomial Bayes Classi�er for various n-gram range

As shown in the Table 6.3, the higher accuracy achieved is when the classi�er is fed with trigram
features. Note that, multinomial naïve Bayes is probabilistic methods where exist no dependency
among features. In fact, when the analysis is carried out on higher level of n-grams features, it is
shown that the classi�er achieved better results because of the repetition of words that a�ects the
probability distribution of the document. However, when the range of n-gram exceeds the trigram
the accuracy is decreasing. For instance for n-gram range of (1, 5) accuracy is 87.90

� Application of Logistic Regression Classi�er

In Table 6.4 we observed that the accuracy of bigrams is higher than unigram and trigrams.
However, the unigram and trigram methods when combined with bigram and between themselves,
the accuracy values of various combinations are observed to be signi�cantly higher. One can say
that , when the sentiment bearing words appearing more than once leads to better classi�cation
results due to the probabilistic nature of logistic regression.
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Method Confusion Matrix Evaluation Parameter Accuracy

Unigram

Corect labels
Precision Recall F-Measure

85.34%Positive Negative

Positive 10828 1672 0.86 0.75 0.80

Negative 1992 10508 0.78 0.88 0.83

Bigram

Corect labels
Precision Recall F-Measure

87.73%Positive Negative

Positive 10891 1609 0.87 0.88 0.88

Negative 1459 11041 0.88 0.87 0.88

Trigram

Corect labels
Precision Recall F-Measure

84.16%Positive Negative

Positive 10348 2152 0.83 0.86 0.84

Negative 1807 10693 0.85 0.83 0.84

Unigram+Bigram

Corect labels
Precision Recall F-Measure

89.28%Positive Negative

Positive 11156 1344 0.89 0.89 0.89

Negative 1337 11163 0.89 0.89 0.89

Bigram+Trigram

Corect labels
Precision Recall F-Measure

88.16%Positive Negative

Positive 0.88 0.89 0.88

Negative 0.89 0.87 0.88

Unigram+Bigram+Trigram
Precision Recall F-Measure

89.56%Positive Negative

Positive 11178 1322 0.89 0.90 0.90

Negative 1289 11211 0.90 0.89 0.90

Table 6.4: Various evaluation metrics for Logistic Regression Classi�er for various n-gram range

� Linear Support Vector Machine

Comparing the Linear SVMs results with those of logistic regression one can �nd some interesting
observations. In linear SVM when unigrams are considered better results are yield whereas in
logistic regression are the worst. As SVM method is a non-probabilistic linear classi�er and trains
model to �nd hyperplane in order to separate the dataset, the unigram model which analyzes
single words for analysis gives better result. In bigram and trigram, there exists multiple word
combinations, which, when plotted in a particular hyperplane, confuses the classi�er and thus, it
provides a less accurate result in comparison with the value obtained using unigram. In fact, when
trigrams and bigrams are combined with unigrams remarkable results are produced while bigrams
and trigrams combination produces lower results than the unigrams alone.
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Method Confusion Matrix Evaluation Parameter Accuracy

Unigram

Corect labels
Precision Recall F-Measure

88.38%Positive Negative

Positive 11021 1479 0.88 0.89 0.88

Negative 1425 11075 0.89 0.88 0.88

Bigram

Corect labels
Precision Recall F-Measure

86.78%Positive Negative

Positive 10665 1835 0.86 0.88 0.87

Negative 1469 11031 0.88 0.85 0.87

Trigram

Corect labels
Precision Recall F-Measure

83.86%Positive Negative

Positive 0.83 0.85 0.84

Negative 0.85 0.82 0.84

Unigram+Bigram

Corect labels
Precision Recall F-Measure

89.60%Positive Negative

Positive 11138 1362 0.90 0.89 0.90

Negative 1238 11262 0.89 0.90 0.90

Bigram+Trigram

Corect labels
Precision Recall F-Measure

87.23%Positive Negative

Positive 0.86 0.89 0.87

Negative 0.88 0.86 0.87

Unigram+Bigram+Trigram
Precision Recall F-Measure

89.64%Positive Negative

Positive 0.89 0.90 0.90

Negative 0.90 0.88 0.90

Table 6.5: Various evaluation metrics for Linear Support Vector Machine for various n-gram range

6.3.2 Term frequency & inverse document frequency

In the folowing Section we present the results for our three classi�ers using TF-IDF features

� Application of Multinomial Naïve Bayes classi�er
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Method Confusion Matrix Evaluation Parameter Accuracy

Unigram

Corect labels
Precision Recall F-Measure

83.55%Positive Negative

Positive 11113 1387 0.88 0.78 0.83

Negative 2726 9774 0.80 0.89 0.84

Bigram

Corect labels
Precision Recall F-Measure

88.17%Positive Negative

Positive 11347 1153 0.90 0.86 0.88

Negative 1805 10695 0.86 0.91 0.88

Trigram

Corect labels
Precision Recall F-Measure

86.98%Positive Negative

Positive 10968 1532 0.88 0.86 0.87

Negative 1723 10777 0.86 0.88 0.87

Unigram+Bigram

Corect labels
Precision Recall F-Measure

87.30%Positive Negative

Positive 10782 1718 0.87 0.89

0.88 1352 11148 0.89 0.86 0.88

Bigram+Trigram

Corect labels
Precision Recall F-Measure

88.78%Positive Negative

Positive 11308 1192 0.90 0.87 0.88

Negative 1666 10834 0.87 0.90 0.89

Unigram+Bigram+Trigram

Precision Recall F-Measure

88.17%Positive Negative

Positive 11331 1169 0.90 0.86 0.88

Negative 1789 10711 0.86 0.91 0.88

Table 6.6: Various evaluation metrics for Multinomial Bayes Classi�er for various n-gram
ranges(TF-IDF)

Again , the Multinomial Naïve Bayes results are very competitive compared to the states of
the art classi�ers. The maximum accuracy achieved is 88.78%

� Application of Linear Support Vector Machine
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Method Confusion Matrix Evaluation Parameter Accuracy

Unigram

Corect labels
Precision Recall F-Measure

88.98%Positive Negative

Positive 11109 1391 0.89 0.89 0.89

Negative 1364 11136 0.89 0.89 0.89

Bigram

Corect labels
Precision Recall F-Measure

87.88%Positive Negative

Positive 10802 1698 0.87 0.89 0.88

Negative 1331 11169 0.89 0.86 0.88

Trigram

Corect labels
Precision Recall F-Measure

84.85%Positive Negative

Positive 10332 2168 0.83 0.87 0.85

Negative 1619 10881 0.86 0.83 0.85

Unigram+Bigram

Corect labels
Precision Recall F-Measure

89.74%Positive Negative

Positive 11158 1342 0.89 0.90 0.90

0.88 1223 11277 0.90 0.89 0.90

Bigram+Trigram

Corect labels
Precision Recall F-Measure

89.96Positive Negative

Positive 11163 1337 0.89 0.89 0.90

Negative 1172 11328 0.90 0.91 0.90

Unigram+Bigram+Trigram

Precision Recall F-Measure

90.53%Positive Negative

Positive 11334 1166 0.91 0.90 0.90

Negative 1207 11293 0.90 0.91 0.91

Table 6.7: Various evaluation metrics for for Linear Support Vector Machine for various n-gram
ranges(TF-IDF)

As it was expected the Support Vector machine classi�er 6.7 performed exceptional and in this
method. The Logistic Regression classi�er produced slightly worse results compared to SVM where
achieved maxim accuracy of 89.68% almost 1% lower than SVMs.

6.3.3 Discussion

We used three state-of-the-art classi�ers namely Naive Bayes(NB), Logistic Regression (LR) and
Support Vector Machines(SVM) together with two feature selection methods. The results of ma-
chine learning-based classi�ers incorporating N-Gram Bag of-Words features with N ranging from
1(unigram) to 3 are summarized in Tables 6.3 , 6.4 and 6.5. Generally, machine learning classi�ers
achieved very inspiring results in evaluation. All of four measurements are very high compared to
the state-of-results of IMDB database (91.2%). Naive Bayes is one of the simplest classi�er yet
it archived at least 0.8153 − 0.8815 in average accuracy. The logistic regression achieved almost
1.5 better accuracy than the naïve Bayes as it was expected. In general, that classi�er achieved
remarkable results were achieved at least 0.8416−0.8956 in average accuracy. Furthermore, Linear
SVM it was excepted to perform slightly better in terms of accuracy compared to linear Regres-
sion. The best accuracy SVM achieved was only 0.07 better of logistic Regression but the lowest
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Parameters NB SVM LR
Accuracy 88.15% 89.64% 89.56%

N-gram range 2-3 1-3 1-3
Min DF 0.3 0.3 0.3
Max DF 0.9 0.9 0.9
Alpha 1.0 1.0 1.0
C(SVM) 1.0 1.0 1.0

C(MaxEnt) 1.0 1.0 1.0
Penalty - L2 L2

Table 6.8: Parameter values with best performance in Sentiment Classi�cation (BoW)

Parameters NB SVM LR
Accuracy 88.78% 90.74% 89.68%

N-gram range 2-3 1-3 2-
3

Min DF 0.3 0.3 0.3
Max DF 0.9 0.9 0.9
Use IDF True True True

Smooth IDF True True True
Sublinear TF True True True

Alpha 0.3 0.3 0.3
C(SVM) 10 10 10

C(MaxEnt) 1.0 1.0
Penalty - L2 L2

Table 6.9: Parameter values with best performance in Sentiment Classi�cation (TF-IDF)

accuracy was 1 lower than the Logistic Regression. Based on our observations ,classi�ers achieved
better results when n-grams units where combined together due to the fact that single units of n-
grams a�ects the classi�cation process due to the nature of classi�ers. For instance, SVM achieved
its lowest accuracy when trigrams were used because in trigrams exist multiply combinations thus
the right hyperplane cannot be found easily as when unigrams are used. In terms of average
performance , combination of Unigram+Bigram+Trigram de�nitely dominated all other n-grams
features and their combinations.

The overall performance of all three classi�ers when TF-IDF features were used was signif-
icantly better than the simple bag-of-words as shown in Tables 6.6 , 6.6. The lowest accuracy
achieved was 2 higher and the best accuracy achieved was 1% higher than the simple BoW. Taking
into consideration the limitations of those approaches and their simplicity the remarkable 90.53%
achieved was not expected. In tables 6.8 , 6.9 best parameters and best results are shown.

6.4 Word Embeddings

6.4.1 Word2Vec method work �ow

The following �gure summarizes the step we follow to produce the results that are presented in
the following subsections

In the next section we describe in depth the above steps.

6.4.2 Word2Vec hyperparameter optimization

We trained the Word2Vec by counting the co-occurrence of words in the same sentence and then
we created a vector representation for each word then the matrix is fed to a classi�er in order our
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Figure 6.3: Work�ow Summary of Document Classi�cation using Word2Vec features

Name Range Best choice

Minimum word count [5,100] 40

Epochs [5,50] 25

Word Vector Dimensionality [100,5000] 500

Window size [5,100] 45

Negative Sampling [5,25] 25

Frequent Word Downsampling [10-10, 0.1] 0.001

Hierarchical Softmax [True, False] False

Table 6.10: The value ranges for the most important hyperparameters of Word2Vec model

prediction models to be trained. During the training phase a lot of parameters should be taken in
account in order better results to be produced:

� Architecture: Architecture options are skip-gram (default) or continuous bag of words. We
found that Cbow performs better and is much faster than Skip-gram

� Training algorithm: Hierarchical Softmax (default) or negative sampling. For us, the default
worked well. Downsampling of frequent words: The Google documentation recommends
values between .00001 and .001. For us, values closer 0.001 seemed to improve the accuracy
of the �nal mode.

� Word vector dimensionality: More features result in longer runtimes, and often, but not
always, result in better models. Reasonable values can be in the tens to hundreds;300 ,500
worked best for us where we did a complete search for the rest hyperparameters.

� Context / window size: How many words of context should the training algorithm take into
account? We used a wide range from 4 to 100 45 worked well for us

� Minimum word count: This helps limit the size of the vocabulary to meaningful words. Any
word that does not occur at least this many times across all documents is ignored. Reasonable
values could be between 10 and 100. In this case, since each movie occurs 30 times, we set
the minimum word count to 40, to avoid attaching too much importance to individual movie
titles.

Note that an advantage of word2vec is that we can train the model without having labeled data,
which enhances our training set to 50,000 reviews. To make predictions on the test data, we
experiment multiple ways of coming up with a vector representation of a review:
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� A naïve but e�ective way of doing so is to represent each review as the average of the word
vectors representing it

� Another way to so was by �rst clustering the words from the word2vec model using K-Means
and then assigning each cluster an index. In our experiments this method led to 3-12% lower
results thus is not furthermore considered.

6.4.3 From words to paragraphs: vector averaging

Method Confusion Matrix Evaluation Parameter Accuracy

100

Corect labels
Precision Recall F-Measure

86.41%Positive Negative

Positive 0.86 0.87 0.86

Negative 0.87 0.86 0.86

200

Corect labels
Precision Recall F-Measure

86.39%Positive Negative

Positive 10761 1739 0.86 0.87 0.86

Negative 1680 10820 0.86 0.86 0.86

300

Corect labels
Precision Recall F-Measure

88.51%Positive Negative

Positive 11049 1451 0.88 0.88 0.88

Negative 1513 10987 0.88 0.88 0.88

400

Corect labels
Precision Recall F-Measure

87.48%Positive Negative

Positive 10924 1576 0.87 0.88 0.87

0.88 1554 10946 0.88 0.87 0.87

500

Corect labels
Precision Recall F-Measure

88.73%Positive Negative

Positive 11091 1409 0.89 0.88 0.89

Negative 1442 11058 0.88 0.89 0.89

600
Precision Recall F-Measure

87.78%Positive Negative

Positive 10967 1533 0.88 0.88 0.88

Negative 1522 10978 0.88 0.88 0.88

Table 6.11: Document features Word2Vec and Logistic Regression

One challenge with the IMDB dataset is the variable-length reviews. We need to �nd a way to take
individual word vectors and transform them into a feature set that is the same length for every
review.

Since each word is a vector in N-dimensional space, we can use vector operations to combine
the words in each review. One method we tried was to simply average the word vectors in a given
review (for this purpose, we removed stop words, which would just add noise). The results for
di�erent dimensions are given in Table 6.11.
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Figure 6.4: Accuracy Vs Minimum Word Count (window size=10, size=300)

Figure 6.5: Accuracy Vs Window Size (size=300,min_count=40)

In �gure 6.4 we examine how minimum word count and window size a�ects the overall accuracy
of the classi�cation task.

Remove the words that are less frequent than min word count can a�ect the accuracy as the
�gure shows 6.4 . In fact, the maximum accuracy is achieved when the minimum counts have value
of 60 and then the accuracy drops signi�cantly.

6.4.4 Doc2Vec hyperparameter optimization

Here, we implement the Paragraph Vectors model as described in [63]. This model is similar to
the word2vec model, but with the di�erence that each sentence (or paragraph) also has a vector
representation (in addition to the words in the sentence). When it comes to training and prediction,
it treats each sentence as one vector by concatenating the paragraph vector with the word vectors
(Dm_concat) or averaging those vectors (Dm_mean) and also there is PV-DBOW model which is
equivalent to skip-gram model (cbow=0). The parameters of doc2vec mirrored those from word2vec
and we used Logistic Regression as achieved best results compared to Linear SVM.

We wasn't able to reproduce the results presented in Mikolov's paper however the maximum
accuracy we achieved was 1.1 % less than the state of the art results. In table 6.13 we present the
results using the three models mentioned above and the combination of those models. We used
again Logistic Regression as a classi�er. In �gure 6.6 it is shown the di�erence in performance of
the three models and the combinations of those. It is clear that, the PV-DBOW perform better
compared to the other two PV-DMmodels. It is remarkable that DM with concatenate word vectors
reached 86.70% and then dropped to 65% when the size of vectors was increased. Although number
of epochs increases the overall quality of the vectors is up to 25 where after that the accuracy drops
signi�cantly. Note that, for larger size of vectors (1000) the time needed for 25 training epochs is
about 18 hours where for 100 dimensions is about 2 hours. All in all, we weren't able to outperform
the results obtained from TF-IDF. For Word2Vec we produced maximum accuracy of 88.73%. On
the other hand, Doc2Vec produced results almost 1% higher than word2vec. In fact, it produced
high accuracy value on low dimensions where the word2vec produced its maximum performance on
500 dimensions. We highly tuned the models but we weren't able to come close to results reported
in [63].
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Name Range Best choice

Minimum word count [1,100] 2

Epochs [5,50] 25

Word Vector Dimensionality [100,5000] 100

Window size [1,100] 10

Negative Sampling [5,25] 5

Frequent Word Downsampling [10-10, 0.0] -

Hierarchical Softmax [True, False] False

DBOW [True, False] True

Dm_mean [0,1] 0

Dm_concat [0,1] 0

Table 6.12: The value ranges for the most important hyperparameters of Doc2Vec model

Figure 6.6: Accuracy vs Dimensions

Figure 6.7: Accuracy Vs Epochs
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Dimensions
Models Accuracy

DBOW DM-A DM-C DBOW+DM-A DBOW+DM-C

100 89,59% 86,66% 81,68% 89,71% 89,60%

200 89,46% 86,70% 86,70% 89,16% 89,33%

300 89,44% 86,76% 67,20% 89,36% 89,21%

400 89,16% 86,84% 65,31% 89,16% 88,97%

500 89,55% 87,03% 65,33% 89,22% 88,76%

600 89,36% 87,08% 65,64% 88,92% 88,76%

Table 6.13: Classi�cation Accuracy using Do2Vec Features and Logistic Regression

6.4.5 Discussion

After our experiments is apparent that Doc2vec outperforms Word2vec averaging method. How-
ever, the di�erence is less than 1% in terms of accuracy. We experiment with both variants of
doc2vec (dbow and dmpv) and word2vec (skip-gram and cbow). Cbow produced the best results
and was faster compared to the skip-gram model. The runtime of cbow was the half of skip-gram
model. Additionally, for doc2vec models we found that cbow outperforms the Dm model. While
training the doc2vec models we noticed that the model over �ts easily. In order one to address this
problem, should shu�e the train data in each training epoch. Although, doc2vec produces better
results the training phase is very slow and challenging due to the fact that the model over�ts on
the paragraph labels. For both models, the hyper-parameters that a�ect the overall performance
the most, is the dimension of the vectors, the minimum word count and the window size.We have
proven that, while the values of those parameters are increased the accuracy is increased also
but up to a point. However, when the dimensions are increased the training time of the models
is sometimes ine�cient. For instance, vectors of 5000 size needed 23 hours to be trained with
word2vec and 36 for doc2vec. A parameter that one should be carefull is the subsampling param-
eters. We performed exaustive reseach and we found that whatever value it takes a�ects negative
the accuracy of doc2vec model so we exclude this parameter while we were training the model.
Additionally, we have focused on quantitative evaluation of doc2vec and word2vec. The qualitative
di�erence between doc2vec and word2vec document embeddings, however, remains unclear.

6.5 Deeply learned distributed representations of features

6.5.1 Convolution neural networks

We experimented with CNN on sentiment classi�cation task. The network consists of embedding
layer followed by a convolution layer connected to a max pooling layer. Additionally, we added
a hidden layer between the max pooling layer and the output layer. We used ReLU activation
function and minimized square loss with L2 regularization by the use of Adam optimizer. We only
used the 5000 words that appeared most frequently in the training set; Out-of-vocabulary words
were represented by a zero vector.

While neural networks have a large capacity to learn complex decision functions they tend to
easily over�t especially on small and medium sized datasets. To mitigate the over�tting issue, we
augment the cost function with l2-norm regularization terms for the parameters of the network. We
also use another popular and e�ective technique to improve regularization of the neural networks
� dropout [112]. Dropout prevents feature co-adaptation by setting to zero (dropping out) a
portion of hidden units during the forward phase when computing the activations at the sigmoid
output layer.

The results was better than word2vec and doc2vec. The maximum accuracy achieved was
90.17%. Table 6.15 summarize the results. In �gures 6.8a , 6.8 the learning curve ingredients are
shown. Although we used dropout layer, it was inevitable the model to over�t as the epochs were
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Name Range Best Choice

Maximum number of features [1000,100000] 5000

Review Length [100,800] 200

Word Vector Size [30,500] 50

Batch size [32,512] 32

Window size [3-21]] 6

Epochs [1,10] 7

Table 6.14: Hyperparameters for CNN Model

Batch Size Accuracy

32 90.17%

64 89.70%

96 88.60%

128 88.45%

Table 6.15: Classi�cation Accuracy for Di�eernt values of batch size

increased leading to increase of loss and decrease of accuracy while the train accuracy reached 97%
. The results achieved were competitive with the results published in literature. However, a new
trend in convolution neural networks concerning sentiment analysis is to omit embedding layer by
using pretrained vector produced by Word2vec and Doc2vec methods. We tried, di�erent setups
but we werent able to achieved compatitive results.

6.5.2 Long short term memory

Since the documents are long, one might expect that it is di�cult for recurrent networks to learn.
We however �nd that with tuning, it is possible to train LSTM recurrent networks to �t the training
set. Our one-layer LSTM with random initialized word vectors ,performed best with word vector
and hidden dimensions of 200. However, we tested dimensions ranging from 50 to 250; overall, the
LSTM easily attains high accuracy on the training set while failing to generalize to the test set.
Optimal performance was obtained after 10-15 training epochs. The results are shown in Table
6.16

(a) CNN train and validation accuracy

Figure 6.8: CNN model loss function
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Dimensions Accuracy

50 88.09%

100 88.44%

150 88.83%

200 89.90%

250 88.66%

Table 6.16: Acurracy of LSTM network for di�erent embedding size

For our best results we used an LSTM 1 layer deep, with word and hidden vector dimensions
of 200, and dropout regularization with a drop rate of 0.5. Updates were applied using Adam with
an initial learning rate of 1, decay of 0.99 and epsilon of 1e-8.

6.5.3 Bidirectional long short term memory

A huge drawback of the standard RNN is that post-word context is not considered su�ciently as
the document is observed only in one direction. However, in order to determine sentiment, the
direction should matter and therefore, a bidirectional long short term memory is implemented:
Accumulating in two directions rather than one doubles the number of parameters and allows for
more �exibility. Here, the model runs through the sequence in reverse order with a di�erent set of
parameters that have to be updated. Note that, to specify the backward channel, we just need to
invert the sequence of words and perform the same LSTM as we did before, on the other direction.
Table 6.17 summarises the results.

Dimensions Accuracy
50 87.12%
100 87.78%
150 87.88%
200 87.68%
250 86.64%

Table 6.17: Acurracy of Bi-LSTM network for di�erent embedding size

For our best results using Bi-LSTM we used an LSTM 1 layer deep, with word and hidden vector
dimensions of 150, and dropout regularization with a drop rate of 0.5. Updates were applied using
Adam with an initial learning rate of 1, decay of 0.99 and epsilon of 1e-8.

6.5.4 Combination of CNN and LSTM

Convolutional neural network (CNN) and recurrent neural network (RNN) are two mainstream
architectures for sentiment analysis which adopt totally di�erent ways of understanding natural
languages. In this section, we combine the strengths of both architectures for natural language
representation and document classi�cation. C-LSTM utilizes CNN to extract a sequence of higher-
level phrase representations, and are fed into a long short-term memory recurrent neural network
(LSTM) to obtain the document representation. C-LSTM is able to capture both local features of
phrases as well as global and temporal sentence semantics. The experimental results show that the
C-LSTM does not produce better results than the combined architectures. This might be caused
because of the long length of the reviews are examined. In shorter texts, it has been shown that
this architecture produces remarkable results.We found that the model is higly sensitive to the
input lenght , lenght of pullin �lter. Additionally , the model achieves high accuracy on train set
after only 2 epochs. We trained the model in epoch range (2,5). The results are shown in Table
6.18.
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Dimensions Accuracy

50 87.12%

100 87.19%

150 87.36%

200 86.41%

250 87.22%

Table 6.18: CNN-LSTM accuracy results

6.5.5 Discussion

In the previous sections we compared with CNN, RNN models. Empirical experiments show that
CNN models usually yield better performance than RNNs which include LSTM and Bi-LSTM. It
may be caused by RNN based models, especially the LSTMs, are hard to be trained, these models
are really sensitive to the hyper parameters and latter words make more in�uence on the �nal text
representation than former words in RNN models. CNN models usually perform remarkably well
on many NLP and IR tasks ([49, 57, 61]). CNN based models use a �xed window of words as
contextual information and the performance of a CNN is in�uenced by the window size. A small
window may result in a loss of some long-distance patterns, whereas large windows will lead to data
sparsity ( [19, 61] ). However, CNNs outperform the RNN and the CNN-LSTM model, we know
that convolution structure can capture local context information, and recurrent can capture global
information. We consider that in CNN-LSTM model, it does not make sense to use convolution
layer and max-pooling layer before recurrent layer. Such architecture means using local information
features extracted from CNN as RNN's input, but local information features do not have sequence
relationship.
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Chapter 7

Conclusion and future work

In this thesis, we studied a wide range of NLP classi�cation models. Our investigations consisted of
two main parts. In the �rst part, we used the Large movie dataset provided by [70] and applied the
bag of words, TF/IDF, word2vec, doc2vec models to represent words numerically. We then used
several classi�ers, including logistic regression, support vector machine, and Multinomial naïve bays
to perform the binary classi�cation task. When we use these classi�ers, one of the challenges is to
aggregate word vectors into a single feature vector for each review. We tried vector averaging and
clustering to produce the aggregated feature vectors. As the Table 7.1 shows, the traditional feature
extraction methods despite their simplicity still performs remarkably, where BOW-SVM achieved
maximum accuracy of 89.64% and SVM-TF-IDF 90.53%. The deep learning inspired methods,
doc2vev and word2vec produced similar or outperformed the simple bag of words model. However,
while Le and Mikolov [63] report state-of-the art results over sentiment analysis task in large movie
reviews dataset using doc2vec, others (including the second author of the original paper in follow-
up work) have struggled to replicate this result. Given this background of uncertainty regarding the
true e�ectiveness of doc2vec and confusion about performance di�erences between dbow and dmpv,
we tried to shed light on a number of empirical questions: which is better out of dmpv and dbow?
is it possible to improve doc2vec through careful hyper-parameter optimization? To this end, we
present a formal and rigorous evaluation of doc2vec. Our �ndings reveal that dbow, despite being
the simpler model, is superior to dmpv. When trained over large external corpora, hyper-parameter
tuning, we �nd that doc2vec performs very strongly compared to both a word embedding averaging
(word2vec) and to our BOW baseline. Doc2vec outperforms word2vec embeddings with signi�cant
di�erence, almost 1%. Additionally , we performed numerous experiments and for word2vec model.
We found that Cbow outperforms Skip-gram model in terms of accuracy. Training skip-gram model
is by far more time consuming task compared to the training time of Cbow.

However, the above described models, except doc2vec, are su�ering from losing the order of
words in documents. This motivated the second part of our work, where we implemented the
recurrent and convolutional neural networks to train a binary sentiment analyzer. When we com-
pare neural network approaches (RNN, CNN) to our simple baseline model (i.e BOW-SVM) the
experimental results show that the neural network approaches outperform the traditional methods.
It proves that neural network based approach can e�ective compose the semantic representation
of texts. Neural networks can capture more contextual information of features compared with tra-
ditional methods based on Bow model, and may su�er from the data sparsity problem less. When
comparing CNNs to RNNs, we can see that the convolution-based approaches achieve better re-
sults. This illustrates that the convolution-based framework is more suitable for constructing the
semantic representation of texts compared with previous neural networks. We believe the main
reason is that CNN can select more discriminative features through the max-pooling layer and
capture contextual information through convolutional layer.

We also compare RNN variations, such as LSTM and Bi- LSTM to the CNN and �nd that
the CNN outperforms the RNN in all cases. We believe that the window-based structure of CNNs
captures contextual information better than recurrent structure in RNNs. However, when we
combined those models , the results was lower that the worst RNN model. We consider that in
CNN-LSTM model, it does not make sense to use convolution layer and max-pooling layer before

A comparative study of sentiment analysis techniques on movie reviews domain 69



Master thesis Nikolaos Panagiaris- MPPL12046

Method Accuracy

SVM-BOW 89.64%

SVM-TF/IDF 90.53%

SVM-WORD2VEC 88.73%

lR-DOC2VEC 89.71%

CNN 90.17%

LSTM 89.90%

Bi-LSTM 87.88%

CNN+LSTM 87.22%

state-of-the-art [125] 91.22%

Figure 7.1: Comparative result of values on �Accuracy� result obtained of the experiments con-
ducted in this Thesis

recurrent layer. Such architecture means using local information features extracted from CNN as
RNN's input, but local information features do not have sequence relationship.

All in all , despite the loss of semantic information, bag-of-ngram based methods still achieve
state-of-the-art results for tasks such as sentiment classi�cation of long movie reviews. Many
document embeddings methods have been proposed to capture semantics, but they still can't
outperform bag-of-n gram based methods on this task.
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