
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ

Τμήμα Διδακτικής της Τεχνολογίας και Ψηφιακών Συστημάτων

Αναλυτής αρχείων καταγραφής για τείχη ηλεκτρονικής προστασίας στο

λειτουργικό σύστημα Linux

Μιχαήλ Γ. Λαγός

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Σεπτέμβριος 2006

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 ii

Περίληψη

Ένας αναλυτής αρχείων καταγραφής (log analyzer) έχει ως λειτουργίες να παρακολουθεί

την κυκλοφορία στο δίκτυο, τις επισκέψεις σε ιστοσελίδες, αλλά και την ποσότητα της

πληροφορίας που προσπελάζεται. Με βάση τα δεδομένα που συλλέγει παρέχει

πληροφορίες για την αποτελεσματική διαχείριση του εύρους ζώνης του δικτύου, την

ανακάλυψη διαφόρων ειδών επιθέσεων και υιών, όπως και άλλα στοιχεία που μπορεί να

είναι χρήσιμα σε έναν οργανισμό. Ο αναλυτής που παρουσιάζεται σε αυτή την

διπλωματική εργασία είναι υπεύθυνος για τη συλλογή, ανάλυση και εξαγωγή

πληροφορίας για κάποιο πληρεξούσιο εξυπηρετητή (proxy server), ή για ένα τείχος

ηλεκτρονικής προστασίας (firewall) ή γενικότερα για κάποιο εξυπηρετητή. Η εφαρμογή

τρέχει μέσω ενός τερματικού σε πλατφόρμες που είναι βασισμένες στο λειτουργικό

σύστημα Linux.

Η παρούσα εργασία χωρίζεται σε πέντε ενότητες. Στην πρώτη ενότητα γίνεται μία

εισαγωγή στον τρόπο ανάπτυξης ενός αναλυτή αρχείων καταγραφής αλλά και στη

μεθοδολογία που ακολουθήθηκε για την ανάπτυξη του συγκεκριμένου αναλυτή. Στη

δεύτερη ενότητα, γίνεται μία σύντομη παρουσίαση των τειχών ηλεκτρονικής προστασίας

Διαδικτύου (Internet firewalls) και περιγράφεται ο τρόπος λειτουργίας τους. Επίσης,

περιγράφεται η αρχιτεκτονική του δικτύου που χρησιμοποιήθηκε για τους σκοπούς αυτής

της εργασίας. Πάνω σε αυτή την αρχιτεκτονική στηρίχτηκε τόσο η ανάπτυξη, όσο και η

μορφοποίηση του τείχους ηλεκτρονικής προστασίας και του πληρεξούσιου εξυπηρετητή.

Τέλος, γίνεται μία αναφορά στη σημασία και σπουδαιότητα μίας πολιτικής ασφαλείας

(security policy) για έναν οργανισμό.

Η τρίτη ενότητα ασχολείται κυρίως με θέματα πληρεξούσιων συστημάτων (proxy

systems). Συγκεκριμένα, γίνεται μία ανάλυση των πλεονεκτημάτων και των

μειονεκτημάτων του πληρεξούσιου εξυπηρετητή, περιγράφεται ο τρόπος λειτουργίας του

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 iii

πληρεξούσιου πελάτη και εξυπηρετητή, και παρουσιάζονται οι διάφοροι τύποι των

πληρεξούσιων εξυπηρετητών.

Στην τέταρτη ενότητα παρουσιάζεται ο πληρεξούσιος εξυπηρετητής που

χρησιμοποιήθηκε στην παρούσα εργασία, ο οποίος είναι ο squid. Ο σκοπός αυτής της

ενότητας είναι να καθοδηγήσει τον αναγνώστη σε θέματα εγκατάστασης, μορφοποίησης,

και εκκίνησης του squid στο λειτουργικό σύστημα Linux. Ιδιαίτερη έμφαση δίνεται στο

αρχείο καταγραφής του squid, που αποτελεί και τη βασική πηγή συγκέντρωσης της

πληροφορίας για την ανάπτυξη του αναλυτή αρχείου καταγραφής του πληρεξούσιου

εξυπηρετητή.

Στην πέμπτη ενότητα παρουσιάζεται αναλυτικά η διαδικασία ανάπτυξης του αναλυτή

αρχείου καταγραφής πληρεξούσιου εξυπηρετητή. Γίνεται μία ανάλυση του αλγορίθμου

που αναπτύχθηκε τόσο σε θεωρητικό όσο και σε πρακτικό επίπεδο και παρουσιάζεται η

ανάπτυξη της εφαρμογής σε μορφή ψευδοκώδικα. Η έκτη και τελευταία ενότητα

περιγράφει τον μηχανισμό φιλτραρίσματος πακέτων (packet filtering mechanism) που

ελέγχει την ροή των δεδομένων από και προς το δίκτυό μας. Στην ενότητα αυτή

αναλύεται διεξοδικά το εργαλείο iptables καθώς και το αρχείο καταγραφής του τείχους

ηλεκτρονικής προστασίας το οποίο αποτελεί τη βασική πηγή πληροφόρησης για την

ανάπτυξη του αναλυτή αρχείου καταγραφής του τείχους ηλεκτρονικής προστασίας.

Επίσης, παρουσιάζεται αναλυτικά η διαδικασία ανάπτυξης του δεύτερου αναλυτή, η

οποία είναι παρόμοια με αυτή που ακολουθήθηκε και στην ανάπτυξη του πληρεξούσιου

εξυπηρετητή.

Από την ανάπτυξη του αναλυτή καταγραφής αρχείου για τον πληρεξούσιο εξυπηρετητή

αλλά και για το τείχος ηλεκτρονικής προστασίας προκύπτει ότι με μικρές τροποποιήσεις

είναι εύκολη η ανάπτυξη οποιουδήποτε άλλου αναλυτή αρχείου καταγραφής, όπως για

παράδειγμα ενός αρχείου καταγραφής ηλεκτρονικού ταχυδρομείου. Ο αλγόριθμος που

αναπτύχθηκε είναι αρκετά γενικός, ώστε να καθίσταται δυνατή η γρήγορη προσαρμογή

του σε οποιοδήποτε αρχείο καταγραφής. Αξίζει να σημειωθεί, ότι σύμφωνα με μία

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 iv

έρευνα που έκανα στο Διαδίκτυο, δεν υπάρχει κάποιος αναλυτής καταγραφής αρχείου σε

μορφή ανοιχτού κώδικα (open source) που να παρέχει τη λειτουργία που μας ενδιαφέρει

σε τόσο συγκεντρωτική μορφή. Υπάρχουν μόνο μερικά εμπορικά προϊόντα, όπου η

ανάλυση των αρχείων καταγραφής αποτελεί τμήμα ενός υπερκείμενου ολοκληρωμένου

συστήματος ασφαλείας.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 v

Πίνακας Περιεχομένων

ΠΕΡΙΛΗΨΗ ... II
ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ..V
1. INTRODUCTION .. 1
2. INTERNET FIREWALL... 3

2.1 SECURITY POLICY... 5
2.2 FIREWALL ARCHITECTURES.. 6

3. PROXY SYSTEMS .. 9
3.1 PROXY ADVANTAGES ... 11
3.2 DISADVANTAGES OF PROXY ... 12
3.3 HOW PROXY SERVERS WORKS ... 13
3.4 HOW CLIENT SIDE WORKS ... 15
3.5 TYPES OF PROXY SERVERS ... 17

3.5.1 Application-Level versus Circuit-Level Proxies... 17
3.5.2 Intelligent Proxy Servers.. 18

4. SQUID ... 19
4.1 INTRODUCTION ... 19
4.2 HARDWARE AND OPERATING SYSTEM REQUIREMENTS.. 22
4.3 SETUP CONFIGURATION AND STARTUP... 23

4.3.1 Setup... 24
4.3.2 Server Configuration.. 26
4.3.2.1 Most Basic Settings ... 28
4.3.2.1.1 User IDs... 28
4.3.2.1.2 Port Numbers ... 30
4.3.2.1.3 Access Controls.. 30
4.3.2.1.4 Other Parameters... 33
4.3.3 Startup.. 35

4.4 LOG FILES... 39
4.3.1 access.log... 41
4.3.2 Configuration Directives that Affect access.log... 43

5. PROXY LOG ANALYZER IMPLEMENTATION.. 46
5.1 PSEUDOCODE.. 56
5.2 LOG FILE ANALYZER INSTALLATION.. 62

5.2.1 For the Impatiens... 64
6. PACKET FILTERING .. 66

6.1 WHY PACKET FILTERING? .. 69
6.2 PACKET FILTERING UNDER LINUX ... 71

6.2.1 Netfilter/iptables .. 71
6.2.1.1 Setup iptables .. 77
6.2.1.2 iptables Startup ... 78
6.2.1.3 Netfilter/iptables Configuration .. 79
6.2.1.3.1 Kernel Setup... 80
6.2.1.3.2 Userland Setup... 84
6.2.1.3.3 State Engine ... 92

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 vi

6.2.1.3.4 Specifying an Interface... 92
6.2.1.4 Network Address Translation (NAT)... 93
6.2.1.5 iptables Logging.. 97
6.2.1.5.1 Netfilter Log Format (firewall.log) .. 99

6.3 FIREWALL LOGGING IMPLEMENTATION.. 105
6.3.1 Pseudocode .. 107

6.2 FIREWALL LOG ANALYZER INSTALLATION .. 112
6.2.1 For the Impatiens... 113

APPENDIXES .. 116
A. TCP/IP EXAMPLE IN A REAL PARADIGM ... 116
B. PROXY LOG ANALYZER CODE ... 121
C. FIREWALL LOG ANALYZER CODE.. 122

REFERENCES ... 123

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 1

1. Introduction

This log analyzer is a log analysis tool that collects analyses and reports information on

enterprise-wide firewalls, proxy servers, and radius servers. It will help you to audit

traffic, monitor web site visits, control the amount of information (per-byte) accessed and

manage your network bandwidth efficiently, and also help you to ensure appropriate

usage of networks by employees (legal issues, information exchange with competitors,

etc). The program runs in a Linux-based system via a terminal.

To begin with, I looked into some general issues concerning firewall, proxy and security,

in order to enhanced my knowledge in the field that I was about to get into. After a first

examination of some basic issues about file I/O in C (I was not very comfortable on this

issue), I moved on to the second part of the actual implementation. Firstly, I tried to find

the best way to parse the access log file of squid proxy server (and the other log files such

as firewall log and mail log). I started with the log file of the proxy server because it is

the most complicated of all the others. By implementing the access log file, it is much

easier to implement all other log files (mail.log, firewall.log, etc). However, the main

problem is the performance. Initially, I attempted to parse the file by using arrays. I made

data structures for each column in the access.log. This technique seems to be very slow,

because the log file is a number of Gigabytes in most cases (especially when we refer to

an enterprise-wide applications). After an extended investigation on the above issues, I

found that the best way to deal with the above is a combination of linked lists and hash

tables.

LLiinnkkeedd lliissttss consist of a number of elements grouped, or linked, together in a specific

order. They are useful in maintaining collections of data, similar to the way that arrays

are often used. However, linked lists offer important advantages over arrays in many

cases. Specifically, linked lists are considerably more efficient in performing insertions

and deletions. Linked lists also make use of dynamically allocated storage, which is

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 2

storage allocated at runtime. Since in many applications the size of the data is not known

at compile time, this can be a nice attribute as well (Parlante, 2001).

On the other hand, hhaasshh ttaabblleess support one of the most efficient types of searching:

hashing. Fundamentally, a hash table consists of an array in which data is accessed via a

special index called a key. The primary idea behind a hash table is to establish a mapping

between the set of all possible keys and positions in the array using a hash function. A

hash function accepts a key and returns its hash coding, or hash value.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 3

2. Internet Firewall

A ffiirreewwaallll is the most effective way to connect a network to the Internet and still protect

that network. In building construction, a firewall is designed to keep a fire from spreading

from one part of the building to another. In theory, an Internet firewall serves a similar

purpose: it prevents the dangers of the Internet from spreading to your internal network.

An Internet firewall is most often installed at the point where your protected internal

network connects to the Internet (see ffiigguurree 22--11). All traffic coming from the Internet or

going out from your internal network passes through the firewall. Because the traffic

passes through it, the firewall has the opportunity to make sure that this traffic is

acceptable or not (Zwicky, 2000). When designing your firewall, keep this in mind. You

can't stop everything, but you can keep the risks within your range of acceptance.

FFiigguurree 22--11..Internet firewall.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 4

Logically, a ffiirreewwaallll iiss aa sseeppaarraattoorr,, aa rreessttrriicctteerr,, aann aannaallyyzzeerr. The physical

implementation of the firewall varies from site to site. Most often, a firewall is a set of

hardware components - a router, a host computer, or some combination of routers,

computers, and networks with appropriate software. There are various ways to configure

this equipment; the configuration will depend upon a site's particular security policy,

budget, and overall operations.

A firewall is the traffic cop of the insecure Internet services. It enforces the site's security

policy allowing only the “approved” services to pass through and those only within the

rules setup for them. Because a firewall is like a choke point, all traffic in and out must

pass through this single, narrow choke point. So, it gives you an enormous amount of

leverage for network security because it lets you concentrate your security measures on

this choke point. Moreover, the firewall provides a good place to collect information

about system and network use-and misuse. As a single point of access, the firewall can

record what occurs between the protected network and the external network. Also, it is

able to limit your exposure (limits the damage that a network security problem can to the

overall network).

Firewalls offer excellent protection against network threats, but they aren't a complete

security solution. Certain threats are outside the control of the firewall. It can't protect

you against malicious insiders, connections that don't go through it, new threats and

viruses. You need to figure out other ways to protect against these threats by

iinnccoorrppoorraattiinngg pphhyyssiiccaall sseeccuurriittyy,, hhoosstt sseeccuurriittyy,, aanndd uusseerr eedduuccaattiioonn iinnttoo yyoouurr oovveerraallll

sseeccuurriittyy ppllaann (Zwicky, 2000).

Nevertheless, the above issues have no meaning if you don't have a security policy at

your site. Your starting point must be the security policy. You can't just do without a

policy because a firewall is an enforcement device; if you didn't have a policy before, you

do once you have a firewall in place, and it may not be a policy that meets your needs.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 5

2.1 Security Policy

Implementing a successful security policy in an organization, however, is not a

straightforward task and depends on many factors. It is known that many organizations

are failing to consistently provide the high quality information resources that their

managers require, because of unacceptably high levels of security breaches experienced.

For example, in the UK, it has recently been found that ‘the number of security incidents

continues to rise ’, with 74% of businesses reporting a security breach in 2004, as

compared with only 44% in 2000. In a similar vein, in the United States security breaches

affect 90% of all businesses every year, and cost some $17 billion (Doherty, 2005). One

important mechanism for protecting corporate information, in an attempt to detect,

prevent and respond to security breaches is through the formulation and application of an

information security policy.

There is a growing consensus both within the academic and practitioner communities that

the information security policy is the basis for the dissemination and enforcement of

sound security practices, within the organizational context. It is well known, at least

among true security professionals, that formal policy is a prerequisite of security. The

primary reason that the information security policy has become the “prerequisite” or

“foundation” of effective security practices is the following: without a policy, security

practices will be developed without clear demarcation of objectives and responsibilities

(Doherty, 2005).

The security policy needs to describe what you're trying to protect and why; it doesn't

necessarily need to describe the details of how. It's much more useful to have a 1-page

document that describes what and why in terms that everyone in your organization can

understand than a 100-page document that describes how, but that nobody except your

most senior technical staff can understand.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 6

2.2 Firewall Architectures

Isolation or compartmentalization is the cornerstone of security and what firewalls are

really good at implementing. The principle is simple – secure an asset so that it cannot be

used to break into another asset regardless of how compromised that asset might have

become. An example of this would be two servers, one on either side of a firewall, that

have no means of communicating with each other through the firewall. In that sense,

those servers are isolated and compartmentalized from one another, so if one is broken

into, it cannot be used to break into the other. Another use of compartmentalization is

through the use of internal network firewalls, isolating elements of an organization's

networks from one another. An example would be firewalling off the accounting

department from the rest of the company to prevent unauthorized users on the company's

network from accessing the accounting network (Shinn, 2005).

There exists lot of architectures that let you put firewall components together. The

simplest one are the SSiinnggllee--BBooxx AArrcchhiitteeccttuurreess that have a single object acts as the firewall

(screening router for example). Another one is the SSccrreeeenneedd SSuubbnneett AArrcchhiitteeccttuurreess that

adds an extra layer of security by adding a perimeter network that further isolates the

internal network from the Internet. Moreover, another important architecture is the

MMuullttiippllee SSccrreeeenneedd SSuubbnneett that has two additional perimeter networks.

The firewall architecture that I decided to construct for the purposes of this project is the

one that is depicted in ffiigguurree 22--22 that follows. This configuration assumes that you have a

front-end firewall with a DMZ segment and a LAN segment. The DMZ segment contains

an FTP server, a WEB server and a MAIL server. The firewall has three interfaces. One,

eth0, will be the Internet reachable interface; eth1, the internal interface; and eth2 will be

the DMZ. Also, the IP address in the external interface is static. The firewall protects an

internal network, 10.10.10.0/24, and a DMZ network, 192.168.1.0/24, which it contains a

web server with IP address 192.168.1.80, a mail server with IP address 192.168.1.25 and

an FTP server with IP address 192.168.1.21. The DMZ is configured in a way that it

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 7

cannot access the internal network. All HTTP, FTP and SMTP traffic destined to the

firewalls external IP address, 141.29.35.31, is DNATed to the DMZ_WEB_SERVER

(IP=192.168.1.80), DMZ_FTP_SERVER (IP=192.168.1.21) and DMZ_MAIL_SERVER

(IP=192.168.1.25) correspondingly. In addition, traffic from the internal network forward

through the firewall, and appears to come from the 141.29.35.31 address (SNAT). SNAT

and DNAT are discussed in SSeeccttiioonn 66..22..11..44. In addition, I use Squid proxy server on the

firewall as a local process.

DDMMZZ, which stands for De-Militarized Zone (named after the zone separating North and

South Korea) is dedicated to some specific tasks such as hosting corporate web, mail,

DNS, FTP and so on. A DMZ network would be used to provide limited access to/from

those systems from other networks for the purpose of isolating those systems from the

internal network and the Internet. The intent is not only protecting those servers, but also

to protect the internal network from them. After all, they are exposed to some untrusted

network, the Internet perhaps, and those servers have a higher probability of being broken

into. But because they are isolated on a DMZ network, those servers cannot be used to

break into the internal network from some other network (Shinn, 2005).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 8

FFiigguurree 22--22..Firewall architecture.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 9

3. Proxy Systems

There are certain risks associated with allowing people from inside an intranet to directly

contact Internet servers and resources. An intranet user might obtain a file from the

Internet that could damage the files on their computer and the entire intranet.

Additionally, when intranet users are allowed unfettered access to the Internet, it is

difficult for intranet administrators to guard against intruders who attempt to take over an

intranet computer or server. A common way to block this kind of access is to use pprrooxxyy

sseerrvveerrss. These servers sit inside a firewall, frequently on a bastion host (a computer

system that must be highly secured because it vulnerable to attack, usually because it is

exposed to the Internet and is a main point of contact for users of internal networks).

They balance the two functions of providing intranet users with easy access to the

Internet and keeping the network secure. When someone inside the intranet wants to

contact the Internet to get information or a resource-for example, to visit a Web page-

they don't actually contact the Internet directly. Instead, they contact a proxy server inside

an intranet firewall, and the proxy server contacts the Internet (in this instance, a Web

server). The Web server sends the proxy server the page, and the proxy server then sends

that page to the requester on the intranet. The operation of the proxy server is depicted in

ffiigguurree 33--11

FFiigguurree 33--11..PPrrooxxyy rr

:

eeaalliittyy aanndd iilllluussiioonn..

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 10

Basically, an application proxy is an application that runs on your firewall that relays

e talking about proxy services, we are specifically talking

traffic between you and your destination. The added advantage here is that the traffic is

being sent / received between both endpoints by a third-party application, meaning you

can enforce very specific guidelines on the way the traffic is crafted between both points.

In this project, when we ar

about proxies run for security purposes, which are run on a firewall host: either a dduuaall--

hhoommeedd hhoosstt

some other b

 with an interface on the internal network and one on the external network, or

baassttiioonn hhoosstt

ou will also run into proxies that are primarily designed for network efficiency instead

 that has access to the Internet and is accessible from the internal

machines. Proxy servers can log all actions they take so that intranet administrators can

check for attacks.

Y

of for security; these are ccaacchhiinngg pprrooxxiieess

here may be multiple proxy servers on a single intranet. There may be separate proxy

, which keep copies of the information for each

request that they proxy. The advantage of a caching proxy is that if multiple internal hosts

request the same data, the data can be provided directly by the proxy. Caching proxies

can significantly reduce the load on network connections. There are proxy servers that

provide both security and caching (Zwicky, 2000).

T

servers for the WWeebb, TTeellnneett, FFTTPP, and other IInntteerrnneett sseerrvviicceess

equire a proxy server, while others will not. For exam

. Often on an intranet, some

services will r ple, this includes

anything involving Telnet or FTP, because they involve file transferring, and they would

be likely to be on a proxy server. When a new Internet resource is first made available,

such as streaming multimedia files, proxy servers usually can't be used because proxy

server technology has not yet been developed for it. The intranet administrator will have

to decide whether to block those services completely or let them be used until proxy

software catches up to the new technology.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 11

3.1 Proxy Advantages

Proxying has many advantages. One of the most important is the scope that is primarily

designed which is network efficiency (ccaacchhiinngg). Since all requests are passing through

the proxy service anyway, the proxy can provide caching, keeping local copies of the

requested data. If the number of repeat requests is significant, caching can significantly

increase performance and reduce the load on network links (Zwicky, 2000).

Another important advantage is the llooggggiinngg (the main purpose of this project). Because

proxy servers can understand the application protocol, they can allow logging to be

performed in a particularly effective way.

Moreover, proxy can do iinntteelllliiggeenntt ffiilltteerriinngg. Since a proxy service is looking at specific

connections, it is frequently able to do filtering more intelligently than a packet filter. For

instance, proxy services are much more capable of filtering HTTP by content type (for

instance, to remove Java or JavaScript) and better at virus detection than packet filtering

systems.

Furthermore, proxy systems automatically provide pprrootteeccttiioonn ffoorr wweeaakk oorr ffaauullttyy IIPP

iimmpplleemmeennttaattiioonnss. As a proxy system sits between a client and the Internet, it generates

completely new IP packets for the client. It can therefore protect clients from deliberately

malformed IP packets.

Also, proxy systems can ppeerrffoorrmm uusseerr--lleevveell aauutthheennttiiccaattiioonn. Because a proxy system is

actively involved in the connection, it is easy for it to do user authentication and to take

actions that depend on the user involved. Although this is possible with packet filtering

systems, it is much more difficult (Zwicky, 2000).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 12

3.2 Disadvantages of Proxy

There are also some disadvantages of Proxy systems. One of the most important is the llaagg

bbeehhiinndd nnoonnpprrooxxiieedd sseerrvviicceess. When a new Internet resource is first made available, such as

streaming multimedia files, proxy servers usually can't be used because proxy server

technology has not yet been developed for it. The intranet administrator will have to

decide whether to block those services completely or let them be used until proxy

software catches up to the new technology.

Moreover, another disadvantage of the proxy is that may rreeqquuiirree ddiiffffeerreenntt sseerrvveerrss ffoorr

eeaacchh sseerrvviiccee. You may need a different proxy server for each protocol, because the proxy

server may need to understand the protocol in order to determine what to allow and

disallow, and in order to masquerade as a client to the real server and as the real server to

the proxy client. Collecting, installing, and configuring all these various servers can be a

lot of work. Again, you may be able to use a generic proxy, but generic proxies provide

only the same sorts of protection and functionality that you could get from packet filters

(Zwicky, 2000).

In addition, Proxy systems usually rreeqquuiirree mmooddiiffiiccaattiioonnss ttoo cclliieennttss,, aapppplliiccaattiioonnss,, oorr

pprroocceedduurreess. Except for services designed for proxying, you will need to use modified

clients, applications, and/or procedures. These modifications can have drawbacks; people

can't always use the readily available tools with their normal instructions. Because of

these modifications, proxied applications don't always work as well as nonproxied

applications. They tend to bend protocol specifications, and some clients and servers are

less flexible than others (Zwicky, 2000).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 13

3.3 How Proxy Servers Works

Well, in much the same way a proxy for voting in your next Chairman would work.

Assuming you are eligible to vote, but on this particular day (that the elections are being

held), you happen to be out of town. However, having anticipated this, you ask whether

you can cast your vote by proxy. So, finding a person whom you trust, you secretly tell

them your vote and they, on your behalf, vote for you in absentia. The Proxy server is just

like this.

 When a computer on the intranet makes a request out to the Internet-such as to

retrieve a Web page from a Web server-the internal computer actually contacts

the proxy server, which in turn contacts the Internet server. The Internet server

sends the Web page to the proxy server, which then forwards the page to the

computer on the intranet.

 Proxy servers log all traffic between the Internet and the intranet. For example, a

Telnet proxy server could track every single keystroke hit in every Telnet session

on the intranet-and could also track how the external server on the Internet reacts

to those keystrokes. Proxy servers can log every IP address, date and time of

access; URL, number of bytes downloaded, and so on. This information can be

used to analyze any attacks launched against the network. It can also help intranet

administrators build better access and services for employees.

 Some proxy servers must work with special proxy clients. A more popular

approach is to use off-the-shelf clients such as Netscape with proxy servers. When

such an off-the-shelf package is used, it must be specially configured to work with

proxy servers from a configuration menu. Then the intranet employee uses the

client software as usual. The client software knows to go out to a proxy server to

get the data, instead of to the Internet.

 Proxy servers can do more than relay requests back and forth between an intranet

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 14

and the Internet. They can also implement security schemes. For example, an FTP

proxy server could be set up to allow files to be sent from the Internet to a

computer on the intranet, but to block files from being sent from the corporate

network out to the Internet-or vice versa. In this way, intranet administrators can

block anyone outside the corporation from downloading vital corporate data. Or

they can stop intranet users from downloading files which may contain viruses.

 Proxy servers can also be used to speed up the performance of some Internet

services by caching data-keeping copies of the requested data. For example, a

Web proxy server could cache many Web pages, so that whenever someone from

the intranet wanted to get one of those Web pages, they could get it directly from

the proxy server across high-speed intranet lines, instead of having to go out

across the Internet and get the page at a lower speed from Internet lines.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 15

3.4 How Client Side Works

On the client side, it needs one of the following:

 Proxy-aware application software

With this approach, the software must know how to contact the proxy server

instead of the real server when a user makes a request (for example, for FTP or

Telnet), and how to tell the proxy server what real server to connect to.

 Proxy-aware operating system software

With this approach, the operating system that the client is running on is modified

so that IP connections are checked to see if they should be sent to the proxy

server. This mechanism usually depends on dynamic runtime linking (the ability

to supply libraries when a program is run). This mechanism does not always work

and can fail in ways that are not obvious to users.

 Proxy-aware user procedures

With this approach, the user uses client software that doesn't understand proxying

to talk to the proxy server and tells the proxy server to connect to the real server,

instead of telling the client software to talk to the real server directly.

 Proxy-aware router

With this approach, nothing on the client's end is modified, but a router intercepts

the connection and redirects it to the proxy server or proxies the request. This

requires an intelligent router in addition to the proxy software (although the

routing and the proxying can co-exist on the same machine). In the ffiigguurree 33--22 that

follows is depicted this operation.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 16

FFiigguurree 33--22..Proxy-aware router redirecting connections.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 17

3.5 Types of Proxy Servers

There are different types of proxy servers. In this section is described a number of

specific types of proxy servers.

3.5.1 Application-Level versus Circuit-Level Proxies

An aapppplliiccaattiioonn--lleevveell pprrooxxyy is one that knows about the particular application it is

providing proxy services for; it understands and interprets the commands in the

application protocol. A cciirrccuuiitt--lleevveell pprrooxxyy is one that creates a circuit between the client

and the server without interpreting the application protocol. The most extreme version of

an application-level proxy is an application like SSeennddmmaaiill, which implements a store-and-

forward protocol. The most extreme version of a circuit-level proxy is an application like

pplluugg--ggww, which accepts all data that it receives and forwards it to another destination.

The advantage of a circuit-level proxy is that it provides service for a wide variety of

different protocols. Most circuit-level proxy servers are also generic proxy servers; they

can be adapted to serve almost any protocol. Not every protocol can easily be handled by

a circuit-level proxy, however. Protocols like FTP, which communicate port data from

the client to the server, require some protocol-level intervention, and thus some

application-level knowledge. The disadvantage of a circuit-level proxy server is that it

provides very little control over what happens through the proxy. Like a packet filter, it

controls connections on the basis of their source and destination and can't easily

determine whether the commands going through it are safe or even in the expected

protocol. Circuit-level proxies are easily fooled by servers set up at the port numbers

assigned to other services (Zwicky, 2000).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 18

In general, circuit-level proxies are functionally equivalent to packet filters. They do

provide extra protection against problems with packet headers (as opposed to the data

within the packets). In addition, some kinds of protections (protection against packet

fragmentation problems, for instance) are automatically provided by even the most trivial

circuit-level proxies but are available only from high-end packet filters.

3.5.2 Intelligent Proxy Servers

A proxy server can do a great deal more than simply relay requests; one that does is an

iinntteelllliiggeenntt pprrooxxyy sseerrvveerr. For example, almost all HTTP proxy servers cache data, so that

multiple requests for the same data don't go out across the Internet. Proxy servers

(particularly application-level servers) can provide better logging and access controls

than those achieved through other methods, although few existing proxy servers take full

advantage of the opportunities. As proxy servers mature, their abilities are increasing

rapidly. Now that there are multiple proxy suites that provide basic functionality, they're

beginning to compete by adding features. It's easier for a dedicated, application-level

proxy server to be intelligent; a circuit-level proxy has limited abilities.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 19

4. Squid

4.1 Introduction

SSqquuiidd is a high-performance popular open source proxy caching server for web clients,

supporting FTP, gopher, and HTTP data objects. With Squid, you can:

 Use less bandwidth on your Internet connection when surfing the Web

 Reduce the amount of time web pages take to load

 Protect the hosts on your internal network by proxying their web traffic

 Collect statistics about web traffic on your network

 Prevent users from visiting inappropriate web sites at work or school

 Ensure that only authorized users can surf the Internet

 Enhance your user's privacy by filtering sensitive information from web requests

 Reduce the load on your web server(s)

 Convert encrypted (HTTPS) requests on one side, to unencrypted (HTTP)

requests on the other

Squid's job is to be both a pprrooxxyy and a ccaacchhee. As a proxy, Squid is an intermediary in a

web transaction. It accepts a request from a client, processes that request, and then

forwards the request to the origin server. The request may be logged, rejected, and even

modified before forwarding. As a cache, Squid stores recently retrieved web content for

possible reuse later. Subsequent requests for the same content may be served from the

cache, rather than contacting the origin server again (Wessels, 2004). You can disable the

caching part of Squid if you like, but the proxying part is essential and on this part based

the project.

As FFiigguurree 44--11 shows, Squid accepts HTTP (and HTTPS) requests from clients, and

speaks a number of protocols to servers. In particular, Squid knows how to talk to HTTP,

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 20

FTP, and Gopher servers. Conceptually, Squid has two “sides”. The client-side talks to

web clients (e. g., browsers and user-agents); the server-side talks to HTTP, FTP, and

Gopher servers. These are called origin servers, because they are the origin location for

the data they serve. Note that Squid's client-side understands only HTTP (and HTTP

encrypted with SSL/TLS). This means, for example, that you can't make an FTP client

talk to Squid (unless the FTP client is also an HTTP client). Furthermore, Squid can't

proxy protocols for email (SMTP), instant messaging, or Internet Relay Chat.

FFiigguurree 44--11.Squid sits between clients and server.

Unlike traditional caching software, Squid handles all requests in a single, non-blocking,

I/O-driven process (Programs that use non-blocking I/O tend to follow the rule that every

function has to return immediately, i.e. all the functions in such programs are non-

blocking. Thus control passes very quickly from one routine to the next). Moreover,

Squid keeps meta data and especially hot objects cached in RAM, caches DNS lookups,

supports non-blocking DNS lookups, and implements negative caching of failed requests.

Also, Squid supports SSL, extensive access controls, and full request logging. By using

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 21

the lightweight Internet Cache Protocol, Squid caches can be arranged in a hierarchy or

mesh for additional bandwidth savings (Eisermann, 2002).

Squid consists of a main server program ssqquuiidd, a Domain Name System lookup program

ddnnsssseerrvveerr, some optional programs for rewriting requests and performing authentication,

and some management and client tools. When squid starts up, it spawns a configurable

number of dnsserver processes, each of which can perform a single, blocking Domain

Name System (DNS) lookup. This reduces the amount of time the cache waits for DNS

lookups.

Internet object caching is a way to store requested Internet objects (i.e., data available via

the HTTP, FTP, and gopher protocols) on a system closer to the requesting site than to

the source. Web browsers can then use the local Squid cache as a proxy HTTP server,

reducing access time as well as bandwidth consumption (Wessels, 2004).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 22

4.2 Hardware and Operating System Requirements

Squid runs on all popular UNIX systems, as well as Microsoft Windows. Although

Squid's Windows support is improving all the time, you may have an easier time with

UNIX. If you have a favorite operating system, I'd suggest using that one. Otherwise, if

you're looking for a recommendation, I really like Redhat-like systems (especially

FFeeddoorraa CCoorree 55).

Squid's hardware requirements are generally modest. Memory is often the most important

resource. A memory shortage causes a drastic degradation in performance. Disk space is,

naturally, another important factor. More disk space means more cached objects and

higher hit ratios. Fast disks and interfaces are also beneficial. SCSI performs better than

ATA, if you can justify the higher costs. While fast CPUs are nice, they aren't critical to

good performance.

Because Squid uses a small amount of memory for every cached response, there is a

relationship between disk space and memory requirements. As a rule of thumb, you need

32 MB of memory for each GB of disk space. Thus, a system with 512 MB of RAM can

support a 16-GB disk cache. Your mileage may vary, of course. Memory requirements

depend on factors such as the mean object size, CPU architecture (32- or 64-bit), the

number of concurrent users, and particular features that you use.

An often question for lot of people is the following: “I have a network with X users. What

kind of hardware do I need for Squid?” This kind of question is difficult to answer for a

number of reasons. In particular, it is hard to say how much traffic X users will generate.

The easiest way is to look at bandwidth usage, and go from there. In this case you can

build a system with enough disk space to hold 3-7 days worth of web traffic. For

example, if your users consume 1 Mbps (HTTP and FTP traffic only) for 8 hours per day,

that is about 3.5 GB per day. So, I would say you want between 10 and 25 GB of disk

space for each Mbps of web traffic (Wessels, 2004).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 23

4.3 Setup Configuration and Startup

Squid is normally distributed as source code. This means you will probably need to

compile it. The installation process should be relatively painless. The developers put a lot

of effort into making sure Squid compiles easily on all the popular operating systems.

You can also find precompiled binaries for some operating systems. Linux users can get

Squid in one of the various package formats (e.g., RPM, Debian, etc.). The FreeBSD,

NetBSD, and OpenBSD projects offer Squid ports. The BSD ports aren't binary

distributions but rather a small set of files that know how to download, compile, and

install the Squid source. While these precompiled or preconfigured packages may be

easier to install, I recommend that you download and compile the source yourself.

While RPMs and precompiled packages may initially save you some time, they also have

some drawbacks. Certain features must be enabled or disabled before you start compiling

Squid. The precompiled package that you install may not have the particular feature you

want. Furthermore, Squid’s ./configure script probes your operating system for certain

parameters. These parameters may be configured differently on your machine on which

Squid was compiled. Finally, if you want to apply a patch to Squid, you'll either have to

wait for someone to build a new RPM/package or get the source and do it yourself. The

computer that I work is a Redhat-like system (FFeeddoorraa CCoorree 55). So, I will present the setup

and basic configuration procedure in this operating system as an RPM package.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 24

4.3.1 Setup

In order to be able to setup Squid in FFeeddoorraa CCoorree 55 you must do the following:

I. Login as root

II. Verify the Squid package has been installed. Give the following command:

 rpm -qa | grep squid

 If you have no results after giving the above command, then you need to install

 Squid.

III. Make sure that you have an internet connection. Also, you have to install the yyuumm

application in order to be able to download and install squid. Moreover, it is a

requirement to have a web server installed in your machine. In my computer, I

have an Apache Web Server that run as standalone daemon process (hhttttppdd). If you

are under a proxy server, you need to set and export the proxy as:

 set http_proxy=http://Proxy_Name:Proxy_Port/

 export http_proxy=http://Proxy_Name:Proxy_Port/

IV. Then you can give the command:

 yum install squid

In the following figure (FFiigguurree 44--22) is depicted the above operation in a screenshot, as I

have tried in my computer. Once it has been verified that the packages are installed, the

squid proxy server will need to be configured.

http://139.28.35.23:81/
http://139.28.35.23:81/
http://139.28.35.23:81/

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 25

FFiigguurree 44--22.Squid setup procedure.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 26

4.3.2 Server Configuration

After installing Squid successfully, the next task is to delve into the configuration file.

Open a terminal window as root and type the following:

joe /etc/squid/squid.conf

Note that any text editor can be used in place of jjooee (gedit, vi, etc). This is the

configuration file for the squid proxy server. It contains a very good documentation about

the available configuration options with examples in most cases and it is about 3500

rows. All the ssqquuiidd..ccoonnff directives have default values.

Squid's configuration file is relatively straightforward. It is similar in style to many other

UNIX programs. Each line begins with a configuration directive, followed by some

number of values and/or keywords. Squid ignores empty lines and comment lines

(beginning with #) when reading the configuration file. In the following figure (ffiigguurree 44--

33) you can see some sample configuration lines:

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 27

FFiigguurree 44--33.Squid.conf sample.

Some directives take a single value. For these, repeating the directive with a different

value overwrites the previous value. For example, there is only one sshhuuttddoowwnn__lliiffeettiimmee

value. The first line in the following example has no effect because the second line

overwrites it:

shutdown_lifetime 30 seconds
shutdown_lifetime 1 minute

On the other hand, some directives are actually lists of values. For these, each occurrence

of the directive adds a new value to the list. The eexxtteennssiioonn__mmeetthhooddss directive works this

way (Wessels, 2004):

extension_methods UNGET
extension_methods UNPUT

 extension_methods UNPOST

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 28

For these list-based directives, you can also usually put multiple values on the same line:

extension_methods UNGET UNPUT UNPOST

In general, the configuration file directives may appear in any order. However, the order

is important when one directive makes reference to something defined by another. Access

controls are a good example. An acl must be defined before it can be used in an

http_access rule:

acl all src 0.0.0.0/0.0.0.0

 http_access allow all

Many things in ssqquuiidd..ccoonnff are case-sensitive, such as directive names. You can't write

AACCLL instead of acl. Moreover, the default squid.conf file contains comments describing

each directive, as well as the default values.

4.3.2.1 Most Basic Settings

4.3.2.1.1 User IDs

It is known that UNIX processes and files have user and group ownership attributes. You

need to select a user and a group for Squid. This user and group must have read and write

access to most of the Squid-related files and directories. It is a good practice creating a

dedicated squid user and group. This minimizes the chance that someone can exploit

Squid to read other files on the system. If more than one person has administrative

authority over Squid, you can add them to the squid group (Wessels, 2004).

UNIX processes inherit their parent process' ownership attributes. That is, if you start

Squid as user lagosm, Squid also runs as user lagosm. If you don't want Squid to run as

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 29

lagosm, you need to change your user ID beforehand. This is typically accomplished with

the su command. For example:

 su - squid
 /usr/local/squid/sbin/squid

Unfortunately, running Squid isn't always so simple. In some cases, you may need to start

Squid as root, depending on your configuration. If you start Squid as root, it will change

its effective/real UID/GID to the user specified below. The default is to change to UID to

"squid". If you define cache_effective_user, but not cache_effective_group, Squid sets

the GID to the effective user's default group ID (taken from the password file) and

supplementary group list from the from groups membership of cache_effective_user

(Wessels, 2004). For example, only root can bind a TCP socket to privileged ports like

port 80. The following directive tells Squid which user to become after performing the

tasks that require special privileges:

cache_effective_user squid

The name that you provide must be a valid user (i.e., in the /etc/passwd file).

Furthermore, note that this directive is used only when you start Squid as root. Only root

has the ability to become another user. If you start Squid as lagosm, it can't switch to user

squid.

You might be tempted to just run Squid as root without setting cache_effective_user. If

you try, you will find that Squid refuses to run. This, again, is due to security concerns. If

an outsider were somehow able to compromise or exploit Squid, he could gain full access

to your system. Although we strive to make Squid secure and bug-free, this requirement

provides some extra insurance, just in case (Fox, 2004).

If you start Squid as root without setting cache_effective_user, Squid uses nobody as the

default value. Whatever user ID you choose for Squid, make sure it has read access to the

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 30

files installed in $prefix/etc, $prefix/libexec, and $prefix/share. The user ID must also

have write access to the log files and cache directory (Wessels, 2004).

4.3.2.1.2 Port Numbers

The hhttttpp__ppoorrtt directive is used to specify the socket addresses where Squid will listen for

HTTP client requests (Fox, 2004). The best form for this tag (especially for security

reasons) is the following:

http_port IP: port

The default port is 3128. You can instruct Squid to listen on multiple ports with

additional hhttttpp__ppoorrtt lines. This is often useful if you must support groups of clients that

have been configured differently. For example, the browsers from one department may be

sending requests to port 3128, while another department uses port 8080. Simply list both

port numbers. Moreover, if you want Squid to listen to only to one interface, you can use

the above described format. If we omit the IP declaration, then Squid will listen to every

address in the server.

The iiccpp__ppoorrtt directive specifies the port number that Squid listens for the communication

with other proxy servers. ICP is a protocol used for communication among Squid caches.

ICP is primarily used within a cache hierarchy to locate specific objects in sibling caches.

The default value is 3130.

4.3.2.1.3 Access Controls

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 31

Squid's default configuration file denies every client request. You must place additional

access control rules in ssqquuiidd..ccoonnff before anyone can use the proxy. The simplest

approach is to define an Access Control List that corresponds to your user's IP addresses

and an access rule that tells Squid to allow HTTP requests from those addresses. Squid

has many different Access Control Lists types. The ssrrcc type matches client IP addresses,

and the hhttttpp__aacccceessss rules are checked for client HTTP requests. The format of this tag is:

acl aclname acltype parameters

For example, we have the following:

acl allpc src 0.0.0.0/0
acl mygroup src 10.0.0.0/8
http_access allow mygroup

 http_access deny all

The first line declares that there exists a group of computers named “allpc”. All the IP

addresses are within this group. The second line declares that there exists a group of

computers named “mygroup”. In this category reside all that are in the subnet 10.0.0.0/8.

In addition, the third line defines that the access is allowed to all that belong to mygroup

and the last one deny the access to whichever pc. If none of the “access” lines cause a

match, the default is the opposite of the last line in the list. If the last line was denied, as

in the above example, then the default is allowed. Conversely, if the last line is allowed,

the default will be denied. For these reasons, it is a good idea to have a “deny all” or

“allow all” entry at the end of the access lists to avoid potential confusion. Also, do not

forget that rules in the access list are read from top to bottom. The first rule matched will

be used. Other rules won’t be applied.

In ffigure 44--44 that follows, we can see the recommended minimum configuration in the

ssqquuiidd..ccoonnff file:

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 32

FFiigguurree 44--44.Squid.conf ACL recommended configuration.

When you edit ssqquuiidd..ccoonnff for the first time, look for this comment:

INSERT YOUR OWN RULE(S) HERE TO ALLOW ACCESS FROM YOUR CLIENTS

Insert your new rules below this comment, and before the hhttttpp__aacccceessss ddeennyy aallll line

(Lilliam, 2005).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 33

4.3.2.1.4 Other Parameters

Some other basic parameters are the following:

ccaacchhee__ddiirr::

This parameter specifies especially the kind of storage system to use and the

location where the cache swap files will be stored of the proxy cache. As an

example you can see the following directive, which is the default in the squid

configuration file (Wessels, 2004):

cache_dir aufs /var/spool/squid 1000 16 256

where aauuffss is the type of cache (uses the same storage format as the known “uuffss”,

but utilizing POSIX-threads to avoid blocking the main Squid process on disk-I/O

– that is the best storage scheme for Linux and Solaris), //vvaarr//ssppooooll//ssqquuiidd is the

top-level directory that the cache resides. It is important to say that it is a good

practice to reside in a different disk or in a separate partition of the same disk.

1000 is the size of cache in Megabytes, and the last two parameters specify the

first and second level of subdirectories which will be created under the top-level

directory.

cchhrroooott::

This directive is a UNIX feature that gives a process a new root filesystem

directory. It provides an extra level of security in the event that Squid is

compromised. If an attacker somehow gains access to the operating system

through Squid, she can only access files under the cchhrroooott filesystem. The other

system files, outside of the cchhrroooott tree, remain inaccessible (Fox, 2004). The

easiest way to run Squid in a chroot environment is by specifying the new root

directory in the ssqquuiidd..ccoonnff file with the following directive:

chroot /new/root/directory

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 34

But it’s a little bit tricky because you must replicate a number of files underneath

the new root directory. For example, if the default configuration file is normally

//eettcc//ssqquuiidd//ssqquuiidd..ccoonnff,, and you use the chroot directive, the file must be located at

//nneeww//rroooott//ddiirreeccttoorryy//eettcc//ssqquuiidd//ssqquuiidd..ccoonnff.

ffttpp__uusseerr ((squid@server.com))::

This directive can be used if you want the anonymous login password to be more

informative. It is the e-mail address that Squid gives to the ftp servers that are

connected with anonymous login.

sshhuuttddoowwnn__lliiffeettiimmee::

When you shut down the Squid process, some user requests will still be active.

This directive specifies how long to wait until all client requests are complete.

Squid finally exits when all client connections have been closed or when this

timeout occurs (Fox, 2004).

ccaacchhee__mmggrr ((rroooott))::

Using this tag, we can specify the email address of the local cache manager who

will receive mail, if the cache dies. The default is "root." In case squid dies, the

mail will be sent to the given mail id.

ffoorrwwaarrddeedd__ffoorr ((ooffff))::

If set, Squid will include your system's IP address or name in the HTTP requests

it forwards. By default it looks like this:

X−Forwarded−For: 192.1.2.3

It is a good practice to have this directive disabled increased user's privacy. So it

will appear as:

X−Forwarded−For: unknown

vviissiibbllee__hhoossttnnaammee::

mailto:squid@server.com

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 35

In most cases, you won't need to worry about the vviissiibbllee__hhoossttnnaammee directive.

However, you'll need to set it if Squid can't figure out the hostname of the

machine on which it is running, such in my case. When I try to start Squid and

verify that the ssqquuiidd..ccoonnff file makes sense, I take the following error:

 “FATAL: Could not determine fully qualified hostname. Please set

 'visible_hostname'”

 So, after this, I edit the squid.conf by adding the directive:

 visible_hostname darkstar

4.3.3 Startup

Now that the Squid is installed, and maybe even configured, its time to start running the

Squid. First of all, I try to verify that the ssqquuiidd..ccoonnff file makes sense. I just run the

following command:

squid -k parse

but a FATAL error about visible hostname is returned. I fix this problem by following the

procedure that I have already described in the previous section (44..33..22..11..44), and run the

above command again, with no output. So, the configuration file is valid.

Moreover, before running Squid for the first time, and whenever you add a new

ccaacchhee__ddiirr, I try to initialize the cache directories with the following command:

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 36

squid -z

After the initialization of all swap directories, I try to run Squid in a terminal window

with logging to stderr. This way, you can easily spot any errors or problems and make

sure that Squid successfully starts.

squid -N -d1

The --NN option keeps Squid in the foreground and the --dd11 option display level 1

debugging on ssttddeerrrr. After running the above command, Squid returns the following

error during performing DNS tests:

FATAL: ipcache_init: DNS name lookup tests failed

Squid, makes a few DNS queries before starting. This ensures that DNS servers are

reachable and functioning properly. Because of testing purposes, I try to disable the DNS

testing by giving the following command (add option --DD to the above one):

squid -D -N -d1

The output of the above command is depicted in the following figure (ffiigguurree 44--55). Once

the “Ready to serve requests.” message appears, then Squid is able to serve HTTP

requests. I test it with the “ssqquuiiddcclliieenntt” and I take the wanted results (ssqquuiiddcclliieenntt

http://www.squid-cache.org/). Now, you can interrupt the Squid process (CCttrrll--CC) and run

Squid as a daemon.

http://www.squid-cache.org/

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 37

FFiigguurree 44--55.Squid startup process.

To start Squid as a daemon in a Redhat-like system (see ffiigguurree 44--66 below), you can just

give the command:

/sbin/service squid start

If you want to run Squid on boot, you could give the following command:

chkconfig - - level 2345 squid on

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 38

FFiigguurree 44--66.Start Squid as a daemon and enable on boot.

Correspondingly, you can stop Squid and disable it by running on boot if you replace in

the above two commands the “start” with “stop” word and the “on” with the “off” word.

In addition, every time you make a change in the ssqquuiidd..ccoonnff file, in order to have the new

settings take effect, you can either shutdown and restart Squid, or you can reconfigure

Squid while it is running by giving the following command:

squid -k reconfigure

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 39

4.4 Log Files

Log files are the primary sources of persistent information about Squid's operation. In

other words, they provide a record of what Squid has been doing. This includes URIs

requested by users, objects that have been saved to disk, and various warnings and errors.

When Squid appears to be malfunctioning, you will want to check the log files first.

Depending on the configuration, Squid maintains, at most, seven log files. The three

primary files are: ccaacchhee..lloogg, aacccceessss..lloogg, and ssttoorree..lloogg. Two optional log files,

uusseerraaggeenntt..lloogg and rreeffeerreerr..lloogg, are similar to access.log but contain additional

information. In addition, there exist two more files: the sswwaapp..ssttaattee and nneettddbb__ssttaattee. These

are databases, used by Squid when it restarts. Note that the filenames, such as access.log,

are the default values. You can change most of the log file names with various squid.conf

directives (Wessels, 2004).

Each of the above log files is described following:

ccaacchhee..lloogg::

This log file contains human-oriented, informational messages about Squid's

operation. The filename is defined by the ccaacchhee__lloogg directive. Under normal

conditions, the file grows by about 10-100 KB per day.

aacccceessss..lloogg::

This log file contains an entry for every HTTP and (optionally) ICP transaction

made by Squid's clients. The filename is defined by the ccaacchhee__aacccceessss__lloogg

directive. It grows at a rate of 100-200 bytes per transaction.

ssttoorree..lloogg::

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 40

 This log file contains low-level information about objects that enter and leave the

 cache. The filename is defined by the ccaacchhee__ssttoorree__lloogg directive. It grows at a rate

 of about 150 bytes per transaction.

rreeffeerreerr..lloogg::

 This optional log file contains HTTP referer headers for each client request. You

 must enable referer logging with the ——eennaabbllee--rreeffeerreerr--lloogg option when running

 ./configure. The filename is defined by the rreeffeerreerr__lloogg directive. It grows at a rate

 of about 80 bytes per transaction (Wessels, 2004).

uusseerraaggeenntt..lloogg::

 This optional log file contains HTTP User-Agent headers for each client request.

 You must enable user-agent logging with the ——eennaabbllee--uusseerraaggeenntt--lloogg option when

 running ./configure. The filename is defined by the uusseerraaggeenntt__lloogg directive. It

 grows at a rate of about 75 bytes per transaction (Wessels, 2004).

sswwaapp..ssttaattee::

 These files contain internal metadata about the objects stored on disk. Squid uses

 them to reconstruct the cache upon startup. By default, they are located in the

 ccaacchhee__ddiirr directories. However, you can change the location with the

 caacchhee__sswwaapp__lloogg directive. They grow at a rate of 100 bytes per cache miss

 (Wessels, 2004).

nneettddbb__ssttaattee::

 This file holds the contents of the Network Measurement Database. It is always

 located in the first ccaacchhee__ddiirr directory. Its size is determined by the nneettddbb__hhiigghh

 value (Wessels, 2004).

If Squid receives an error while writing a log file, it doesn't silently continue. Instead, it

exits with a fatal error message to get your attention.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 41

4.3.1 access.log

Squid saves key information about HTTP transactions in aacccceessss..lloogg. This file is line-

based, such that each line corresponds to one client request. Squid records the cclliieenntt IIPP

aaddddrreessss (or hostname), rreeqquueesstteedd UURRII, rreessppoonnssee ssiizzee, and other information. Squid

records all HTTP accesses in aacccceessss..lloogg, except for those that disconnect before sending

any data. Squid also records all ICP (but not HTCP) transactions unless you disable them

with the lloogg__iiccpp__qquueerriieess directive. SSeeccttiioonn 44..33..22 describes the other ssqquuiidd..ccoonnff directives

that affect the aacccceessss lloogg.

The default aacccceessss..lloogg format contains 10 fields. Here are some examples, with long lines

split and indented:

1146547018.954 448 192.168.100.112 TCP_REFRESH_HIT/304 393 GET http://www.opap.gr/Style.css
- DIRECT/212.205.38.102 -
1146547019.382 382 192.168.100.112 TCP_REFRESH_HIT/304 392 GET
http://www.opap.gr/Images/back.gif - DIRECT/212.205.38.102 -
1146547019.543 161 192.168.100.112 TCP_REFRESH_HIT/304 392 GET
http://www.opap.gr/Images/tzoker2.gif - DIRECT/212.205.38.102 -
1146547019.575 504 192.168.100.112 TCP_MISS/304 393 GET http://www.opap.gr/Images/logo.jpg -
DIRECT/212.205.38.102 -
1146547054.832 1335 192.168.100.112 TCP_MISS/304 322 GET http://www.alphahentai.com/ -
DIRECT/70.85.72.250 -
1146547019.575 204 192.168.100.112 TCP_MISS/304 393 GET http://www.opap.gr/Images/logo.jpg -
DIRECT/212.205.38.102 -
1146547019.575 204 192.168.100.112 TCP_MISS/304 393 GET http://www.test.gr/Images/logo.jpg -
DIRECT/212.205.38.102 -
1146547063.549 540 192.168.100.112 TCP_MISS/304 322 GET
http://www.alphahentai.com/titanimebnr03_468x80.jpg - DIRECT/70.85.72.250 -
1246547064.083 1690 192.168.100.112 TCP_MISS/200 64478 GET
http://www.alphahentai.com/main.htm - DIRECT/70.85.72.250 text/html
1146547064.205 1015 192.168.100.112 TCP_MISS/200 7519 GET http://www.alphahentai.com/d3.jpg -
DIRECT/70.85.72.250 image/jpeg
1146547426.753 245 192.168.100.104 TCP_MISS/302 425 GET http://toolbar.google.com/version3? -
DIRECT/216.239.59.104 text/html
1146547427.083 330 192.168.100.104 TCP_MISS/200 296 GET
http://www.google.com/tools/toolbar/service/update? - DIRECT/216.239.59.104 text/plain
1246547427.384 726 192.168.100.104 TCP_MISS/200 24517 GET
http://www.whitepages.gr/gr/index.jsp - DIRECT/195.170.6.246 text/html
1146547427.964 202 192.168.100.104 TCP_MISS/304 166 GET http://www.whitepages.gr/css/site.css -
DIRECT/195.170.6.246 -
1146547428.085 319 192.168.100.104 TCP_MISS/304 166 GET http://www.whitepages.gr/scripts/dw.js
- DIRECT/195.170.6.246 -

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 42

1146547428.319 233 192.168.100.104 TCP_MISS/304 166 GET
http://www.whitepages.gr/scripts/utils_gr.js - DIRECT/195.170.6.246 -
1146547430.920 1519 192.168.100.112 TCP_MISS/200 80398 GET
http://www.alphahentai.com/dojins1/fgm_v135/024.jpg - DIRECT/70.85.72.250 image/jpeg
1146547443.070 1915 192.168.100.112 TCP_MISS/200 99092 GET
http://www.alphahentai.com/dojins1/fgm_v135/027.jpg - DIRECT/70.85.72.250 image/jpeg
1246547482.536 2159 192.168.100.112 TCP_MISS/200 92196 GET
http://www.in.gr/dojins1/fgm_v135/037.jpg - DIRECT/70.85.72.250 image/jpeg

I keep one sample entry in order to describe all the fields. The entry is the following:

1146547026.226 3102 192.168.100.112 TCP_MISS/200 29656 GET http://www.opap.gr/
- DIRECT/212.205.38.102 text/html

In the above line each field represents some piece of information that may be of interest

to an administrator. They are as follows:

 SSyysstteemm ttiimmee in standard UNIX format. The time in seconds since 1970. There are

many tools to convert this to human readable time.

 DDuurraattiioonn or the Elapsed Time in milliseconds the transaction required.

 CClliieenntt AAddddrreessss or the IP address of the requesting browser. Some configurations

may lead to a masked entry here, so that this field is not specific to one IP, but

instead reports a whole network IP.

 RReessuulltt CCooddeess provides two entries separated by a slash. The first position is one of

several result codes, which provide information about how the request was

resolved or wasn't resolved if there was a problem. The second field contains the

status code, which comes from the subset of the standard HTTP status codes.

 BByytteess is the size of the data delivered to the client in bytes. Headers and object

data are counted towards this total. Failed requests will deliver an error page, the

size of which will also be counted.

 RReeqquueesstt mmeetthhoodd is the HTTP request method used to obtain an object. The most

common method is, of course, GET, which is the standard method web browsers

use to fetch objects.

 UURRLL is the complete Uniform Resource Locator requested by the client.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 43

 RFC931 is the indent lookup information for the requesting client, if indent

lookups are enabled in your Squid. Because of the performance impact, indent

lookups are not used by default, in which case this field will always contain “-”.

 HHiieerraarrcchhyy ccooddee consists of three items. The first is simply a prefix of TIMEOUT_

if all ICP requests timeout. The second (first if there is not TIMEOUT_

prepended) is the code that explains how the request was handled. This portion

will be one of several hierarchy codes. This result is informative regardless of

whether your cache is part of a cache hierarchy, and will explain how the request

was served. The final portion of this field contains the name or IP of the host from

which the object was retrieved. This could be the origin server, a parent, or any

other peer.

 TTyyppee is simply the type of object that was requested. This will usually be a

recognizable MIME type, but some objects have no type or are listed as “:”.

From the above 10 fields, the most important for the scope of this project are the

following: ssyysstteemm ttiimmee, dduurraattiioonn, cclliieenntt aaddddrreessss, bbyytteess and UURRLL.

4.3.2 Configuration Directives that Affect access.log

Following are some of the most important (for the purposes of this project) configuration

file directives that affect the aacccceessss..lloogg in one way or another:

lloogg__iiccpp__qquueerriieess::

This directive that is enabled by default causes Squid to log all ICP queries. If you

are running a busy parent cache, this may make your aacccceessss..lloogg files huge. In

order to save space, I disable this directive:

log_icp_queries off

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 44

eemmuullaattee__hhttttppdd__lloogg::

The aacccceessss..lloogg file has two formats: common and native. The common format is

the same as most HTTP servers (e.g., Apache) use. It contains less information

than Squid's native format. However, you might want to use the common log-file

format if you use Squid as a surrogate. The common format may also be useful if

you have log-file analysis tools that know how to parse it. In this case, because I

am going to implement a log-file analysis tool, I use the following directive to

enable the common format:

emulate_httpd_log on

lloogg__ffqqddnn::

 By default, Squid puts client IP addresses in the aacccceessss..lloogg. You can record

 hostnames, when available, by enabling this directive: log_fqdn on.

 This causes Squid to make reverse DNS lookups for the client's address when it

 receives a request. If an answer is available by the time the request is complete,

 Squid places it in the third field. In this project, I need only IP addresses, so this

 directive must be as:

log_fqdn off

ssttrriipp__qquueerryy__tteerrmmss::

 This directive is a privacy feature. It removes query terms from URIs before

 logging them. If your log files somehow fall into the wrong hands, they won't be

 able to find any usernames and passwords. When this directive is enabled, all

 characters after a question mark (?) are removed. For example, a URI like this:

 http://agent.adman.gr/banner?MT=www.lagos.com&arch3&prov=&utf8

 is logged like this:

 http://agent.adman.gr/banner?

 I have this directive enabled:

strip_query_terms on

http://agent.adman.gr/banner?MT=www.lagos.com&arch3&prov=&utf8
http://agent.adman.gr/banner
http://agent.adman.gr/banner?
http://agent.adman.gr/banner?

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 45

uurrii__wwhhiitteessppaaccee::

The related RFCs state that URIs must not contain whitespace, but in reality it

happens all too often. The uurrii__wwhhiitteessppaaccee directive dictates how Squid should

handle such cases. The allowed settings are: strip (default), deny, allow, encode,

and chop. Of these, strip, encode, and chop ensure that the URI field doesn't

contain any whitespace (thus adding more fields to access.log).

The allow setting allows the request to pass through Squid unmodified. It is likely

to cause trouble for redirectors and log file parsers. The deny setting, on the other

hand, causes Squid to deny the request. The user receives an error message, but

the request is still written to access.log with the whitespace characters.

 If you set it to encode, Squid changes the whitespace characters to their RFC 1738

 equivalents. This is probably what the user-agent should have done in the first

 place. The chop setting causes Squid to cut off the URI at the first whitespace

 character.

The default setting is strip, which makes Squid remove the whitespace characters

from the URI. It ensures that your log-file parsers and redirectors will be happy,

but it might break certain things, such as improperly encoded search engine

queries. So, I have this directive enabled:

uri_whitespace strip

From the above it is obvious that the aacccceessss..lloogg file contains a wealth of information,

much more than you can see by just browsing through it. In order to get the big picture

view, a log-file analysis package is required. That is what exactly I implement. A fast and

free log file analysis package. It produces highly detailed, easily configurable usage

reports in text and HTML format. In the section that follows (SSeeccttiioonn 55), we can see an

analysis of the real implementation of this tool (coding issues). At this point, it is

important to note that the implemented log analyzer does not parse only the squid proxy

access.log file, but with small modifications it can also parse the iptables log file (see

SSeeccttiioonn 66) the mail.log file and more log files. It's a generic log analyzer.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 46

5. Proxy Log Analyzer Implementation

As it is referred in the previous section, a part of the implemented log file parser is the

squid traffic analyzer, designed to allow per-user scrutiny and analysis of squid log files.

The program allows a non-technical user to extract information about web usage patterns,

the type of information downloaded, the sites visited by users, the graphics downloaded,

and the amount of information (per-byte) accessed. The program runs in a Linux-based

system via a terminal.

As it has already referred in Section 1 (Introduction), the best way to deal with the above

is a combination of linked lists and hash tables.

LLiinnkkeedd lliissttss consist of a number of elements grouped, or lliinnkkeedd, together in a specific

order. They are useful in maintaining collections of data, similar to the way that arrays

are often used. However, linked lists offer important advantages over arrays in many

cases. Specifically, linked lists are considerably more efficient in performing insertions

and deletions. Linked lists also make use of dynamically allocated storage, which is

storage allocated at runtime. Since in many applications the size of the data is not known

at compile time, this can be a nice attribute as well (Parlante, 2001). Moreover, there are

two categories of linked lists. The first one named SSiinnggllyy--lliinnkkeedd lliissttss, are composed of

individual elements, each linked by a single pointer. Each element consists of two parts: a

data member and a pointer, called the next pointer. The second category of linked lists

named DDoouubbllyy--lliinnkkeedd lliissttss is composed of elements linked by two pointers. Each element

of a doubly-linked list consists of three parts: in addition to the data and the next pointer,

each element includes a pointer to the previous element, called the previous pointer. A

doubly-linked list is formed by composing a number of elements so that the next pointer

of each element points to the element that follows it and the previous pointer points to the

element preceding it (Loudon, 1999).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 47

On the other hand, hhaasshh ttaabblleess support one of the most efficient types of searching:

hhaasshhiinngg. Fundamentally, a hash table consists of an array in which data is accessed via a

special index called a kkeeyy. The primary idea behind a hash table is to establish a mapping

between the set of all possible keys and positions in the array using a hash function

(Unknown, 2005). A hash function accepts a key and returns its hhaasshh ccooddiinngg, or hhaasshh

vvaalluuee. Keys vary in type, but hash coding is always integer. Each list forms a bucket in

which we place all elements hashing to a specific position in the array (see FFiigguurree 55--11

FFiigguurree 55--11.A chained hash table with five buckets

hen two keys hash to the same position in a hash table, they collide. Chained hash

).

To insert an element, we first pass its key to a hash function in a process called hashing

the key. This tells us in which bucket the element belongs. We then insert the element at

the head of the appropriate list. To look up or remove an element, we hash its key again

to find its bucket, and then traverse the appropriate list until we find the element we are

looking for. Because each bucket is a linked list, a chained hash table is not limited to a

fixed number of elements. However, performance degrades if the table becomes too full

(Loudon, 1999).

containing a total of seven elements.

W

tables have a simple solution for resolving collisions: elements are simply placed in the

bucket where the collision occurs. One problem with this, however, is that if an excessive

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 48

number of collisions occur at a specific position, a bucket becomes longer and longer.

Thus, accessing its elements takes more and more time (Loudon, 1999).

Ideally, we would like all buckets to grow at the same rate so that they remain nearly the

same size and as small as possible. In other words, the goal is to distribute elements about

the table in as uniform and random a manner as possible. This theoretically perfect

situation is known as uniform hashing; however, in practice it usually can only be

approximated (Jenkins). Following, in ffiigguurree 55--22 we can see a sample when two keys

collide (k2 and k5) because they map to the same slot, and in ffiigguurree 55--33 is presented the

collision resolution by chaining. Each hash-table slot TT[[jj]] contains a linked list of all the

keys whose hash value is j. For example, hh((kk11)) == hh((kk44)) and hh((kk55)) == hh((kk22)) == hh((kk77)) (Loudon,

1999).

FFiigguurree 55--22..Using a hash function h to map keys to hash table slots. Keys k2 and k5 map to the

same slot, so they collide.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 49

FFiigguurree 55--33..Collision resolution by chaining.

Even assuming uniform hashing, performance degrades significantly if we make the

number of buckets in the table small relative to the number of elements we plan to insert.

In this situation, all of the buckets become longer and longer. Thus, it is important to pay

close attention to a hash table's load factor (Song, 2005). The load factor of a hash table is

defined as:

a = n/ m

where n is the number of elements in the table and m is the number of positions into

which elements may be hashed. The load factor of a chained hash table indicates the

maximum number of elements we can expect to encounter in a bucket, assuming uniform

hashing (Devi, 2004).

For example, in a chained hash table with m = 1699 buckets and a total of n = 3198

elements, the load factor of the table is a = 3198/1699 = 2. Therefore, in this case, we can

expect to encounter no more than two elements while searching any one bucket. When

the load factor of a table drops below 1, each position will probably contain no more than

one element. Of course, since uniform hashing is only approximated, in actuality we end

up encountering somewhat more or less than what the load factor suggests. How close we

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 50

come to uniform hashing ultimately depends on how well we select our hash function

(Loudon, 1999).

The goal of a good hash function is to approximate uniform hashing, that is, to spread

elements about a hash table in as uniform and random a manner as possible. A hash

function hh is a function we define to map a key kk to some position xx in a hash table. xx is

called the hash coding of k (Devi, 2004). Formally stated:

h(kk) = xx

Generally, most hashing methods assume kk to be an integer so that it maybe easily altered

mathematically to make hh distribute elements throughout the table more uniformly. When

kk is not an integer (such in this implementation), we can usually coerce it into one

without much difficulty. Precisely how to coerce a set of keys depends a great deal on the

characteristics of the keys themselves. Therefore, it is important to gain as much of a

qualitative understanding of them in a particular application as we can. In this project, the

implemented hash function coerces a key (the key is the IP address, for example

192.168.100.108) into a permuted integer through a series of bit operations. The resulting

integer is mapped using the division method. At this point it is important to refer the

reason that the actual hash code used for accessing the table is the hash code modulo the

table size. This transformation ensures that the hash coding does not position us past the

end of the table. So, we are sure that the hash coding does not fall outside of the bounds

of our table.

At this point, it is important to refer a problem that I had with the aacccceessss..lloogg file. Squid,

writes to a number of log files unless you disable them in squid.conf. I thought that there

was a need to periodically rotate the log files (more specifically the aacccceessss..lloogg file) to

prevent this from consuming too much disk space. Also, it is more useful for an intranet

administrator generates more helpful and easy conclusions in a daily basis, for example,

log file, instead from a 5 days log file. I think that it is better to have the information as

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 51

small as possible. So, I try to make a function that checks the size of the log file. If it

exceeds the 2GB then the file is renamed to a new one and a new aacccceessss..lloogg file will be

generated from Squid. The implementation of the two functions is presented below:

/**/
/* Function : getLogDirSize */
/* Arguements : path - the specified path
*/
/*
*/
/* This function is responsible to calculate the size of the */
/* provisioned path that log files are located. */
/* */
/**/

int getLogDirSize(char *path) {

 char cmd[BUF_LENGTH];
 char buf[BUF_LENGTH];
 FILE *ptrf;

 snprintf(cmd, sizeof cmd, "/usr/bin/du -ks %s", path);
 if ((ptrf = popen(cmd, "r")) != NULL) {

 while (fgets(buf, sizeof buf, ptrf) != NULL) {
 printf("%s\n", buf);
 }
 pclose(ptrf);
 }
 return (strtol(buf, (char **)NULL, 10));
}

/**/
/* Function : backupFile */
/* Arguments : srcName - the source file to be renamed */
/* */
/* This function will back up (move) the log file srcName to a file in
*/
/* the same directory with date extension ".YYYYMMDDHHMMSS". */
/* */
/**/

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 52

void backupFile(char *srcName) {

 time_t seconds; /* an arithmetic type suitable to represent time */
 struct tm *tm;
 struct timeval tv;
 char destFile[BUF_LENGTH];

 /* get current time of day */
 gettimeofday(&tv, NULL);

 seconds = tv.tv_sec;

 /* break this into yy/mm/dd/hh/mm/ss */
 tm = localtime(&seconds);

 /* build filename string in format 'Filename.YYYYMMDDhhmmss' */
 snprintf(destFile, sizeof destFile, "%s.%04d%02d%02d%02d%02d%02d",
 srcName,
 tm->tm_year + 1900,
 tm->tm_mon + 1,
 tm->tm_mday,
 tm->tm_hour,
 tm->tm_min,
 tm->tm_sec);

 printf("Dest file is: %s\n", destFile);

 printf("Created backup %s to %s", srcName, destFile);

 /* rename the current file */
 if(rename(srcName, destFile) != 0) {

 /* assume user has deleted the file so continue */
 return;
 }

 /* make target file read only */
 chmod(destFile, S_IRUSR);
}

As the project goes on, the above practice seems to be inappropriate for this purpose.

After all, I find a very useful function of Squid. Squid places a lot of importance on log

files and exits with an error message when it can't write to them.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 53

Squid keeps only the last llooggffiillee__rroottaattee versions of each log file. The older versions are

simply removed during the renaming process. If you want to keep more copies, you need

to increase the llooggffiillee__rroottaattee limit or write some custom scripts that move the log files to

a different location.

Because I need to keep the aacccceessss..lloogg file manageable and to keep some copies of this, I

decide to rotate this in a daily basis. Squid has a built-in feature for rotating log files. You

can invoke it with the following command in a cron job:

squid -k rotate

You then tell Squid how many old copies for each file to keep with the logfile_rotate

directive. For example, if you set it to 7, you will have eight versions of each log file: the

current file and seven old ones. Old log files are renamed with numeric extensions. For

example, when you execute a rotation, Squid renames log.6 to log.7, then log.5 to log.6,

and so on. The current log becomes log.0, and Squid creates a new, empty file named log.

Each time the squid -k rotate command is executed, Squid rotates among others the

aacccceessss..lloogg file.

Squid does not rotate the log files automatically. The best way to make it happen is with a

daily cron job. For example:

0 4 * * * /usr/local/squid/sbin/squid -k rotate

This crontab entry rotates the logs every 24 hours, at 4 A.M. :

Nevertheless, I decide to write my own script to manage the aacccceessss..lloogg file. I just simply

set the logfile_rotate directive to 0. Then, when I run squid -k rotate, Squid simply closes

the current log files and opens new ones. This is very useful when the operating system

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 54

allows you to rename files opened by another process. The following shell script

(Newham, 1998) illustrates the idea:

// Start of script
#!/bin/sh

set -e

yesterday_secs=`perl -e 'print time -43200'`

yesterday_date=`date -r $yesterday_secs +%Y%m%d`

archive_location=`/bin/mkdir -p /root/thorax/archive`

cd /var/log/squid

rename the current log file without interrupting the logging process
mv access.log access.log.$yesterday_date

tell Squid to close the current logs and open new ones
/usr/sbin/squid -k rotate

give Squid some time to finish writing swap.state files
sleep 60

mv access.log.$yesterday_date $archive_location

gzip -9 $archive_location/access.log.$yesterday_date
// End of script

Furthermore, an important problem that is faced during the development is the following.

When the incoming client address is the same with the existing in the memory in a

specific slot, but the URL is the same with the one that has already inserted before the

interception of other URL's, then I need to have a logic in the code that the list is

traversed from the start in order to find a matching URL. If a matching URL was not

found, then I need to create a new node that will contain the new URL. The above logic is

described in the pseudo code in the following section (SSeeccttiioonn 55..11). In addition, a big

problem is the case that we have collisions.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 55

Moreover, another important issue is the response time of the log analyzer. Initially, after

the first set of tests, the response time wasn't short enough for a professional tool like

this. More specifically, for an aacccceessss..lloogg file that was 6.5MB (47173 requests) the

response time was about 16 seconds. Because this program will be encapsulated into a

product, the parsing response time must be very short. After a lot of modifications into

the code (memory management, etc), the response time decreased and decreased. Finally,

the response time for the same aacccceessss..lloogg file is decreased from 16 seconds to the

following that is presented in the ffiigguurree 55--44:

FFiigguurree 55--44..Response time of the proxy log analyzer.

Moreover, I tried to test the application with a larger log file, in order to observe the

response time. So, with a size of 24MB (184353 requests) access.log file, the response

time was approximately 3.5 seconds in the same working machine.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 56

5.1 Pseudocode

Before the description of the pseudocode, I try to make a scheme of how to develop the

parsing of the proxy log file. I mean that I make an initial guide of how to implement the

algorithm. The logic behind the actual implementation is depicted in ffiigguurree 55--55:

FFiigguurree 44--55..An example of the logic behind the algorithm.

The description of the above figure is provided in SSeeccttiioonn 55, in a more general manner.

Following, is presented the next step that is the pseudocode.

############## Start Pseudocode ##############

Create a pseudorandom hash function that coerces the client IP address (the key) into a

permuted integer through a series of bit operations.

Read the tthhoorraaxx..ccoonnff file that contains the specified paths.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 57

Open the directory that contains the aacccceessss..lloogg file, check the permissions and read each

entry.

If (the log file is a file and the suffix is “..lloogg” that has suffix length 4) then open the

aacccceessss..lloogg file and read the next input line from the aacccceessss..lloogg file into a character array

buffer.

Define a structure for linked list elements and pointers to this structure that handle the

ideal case (no collisions) and the case that we have collisions:

typedef struct sListElement {
 char unixTime[buffer_size];
 int duration;
 char clientAddr[buffer_size];
 int size;
 char URL[buffer_size];

 //Vertical expansion of list, if we have same ip and different URL
 struct sListElement* nextURLRecord;

 //Horizontal expansion of list in order to avoid collisions
 struct sListElement* nextClientAddrRecord;
} listElement;

listElement* startClientAddr[HASH_TABLE_SIZE];
listElement* nextClientAddr[HASH_TABLE_SIZE];
listElement* startURL[HASH_TABLE_SIZE];
listElement* nextURL[HASH_TABLE_SIZE];
listElement* hashTable;

Get each record in the aacccceessss..lloogg file and separate it into tokens. Then set the kkeeyy, the

ttiimmee in human readable format, the eellaappsseedd ttiimmee, the IIPP, the bbyytteess and the UURRLL into the

parsing algorithm and keep this information in memory.

In order to set the data into memory, create the following algorithm:

If (nextURL[slot] == NULL) {

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 58

 //the defined slot in the hashtable is empty

 Create and fill the structure for the first time in the defined slot;

} else if (nextURL[slot] != NULL) {

 //the defined slot has already filled

 //Check the IP address for collisions

 if (clientsAddress is the same with the existing in the slot) {

 //Check the URL

 if (URL is the same as the existing) {

 Add duration and size;

 } else {

 initialize the nextURL[slot] to point to the same location as

 startURL[slot];

 if (URL is the same as the existing) {

 Add duration and size;

 } else {

 search the list for a matching URL. Case where you have

 the same IP address that has already inserted previously,

 before the interception of other web sites.

 While (URL in each record != NULL) {

 if (matching URL found) {

 Add duration and size;

 break;

 }

 }

 if (did not pass into the while loop) {

 Create a new Vertical structure in the same slot but

 with different URL;

 }

 }

 }

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 59

 } else if (clientsAddress is different with the existing in the slot) {

 //We have collisions

 Create a new horizontal list;

 if (nextClientAddr[slot] == NULL) {

 Create a new list due to collisions;

 } else if (nextClientAddr[slot] != NULL) {

 //Check the IP address

 if (IP is the same with the existing in the slot) {

 //Check URL

 if (URL is the same) {

 Add duration and size;

 } else if (URL is different) {

 initialize the nextClientAddr[slot] to point to the

 same location as startClientAddr[slot];

 if (URL is the same with the existing) {

 Add duration and size;

 } else if (URL is different) {

 Search the linked list for a matching URL.

 Case that we have the same IP address, and a

 web site that has already inserted previosly,

 before the interception of other web sites

 while (URL in each record != NULL) {

 if (matching URL found) {

 Add duration and size;

 break;

 }

 }

 if (did not pass into the while loop) {

 Create a new vertical node to the

 current list;

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 60

 }

 }

 }

 } else if (different IP address to the same slot) {

 Search the list in order to find a matching IP address;

 while (search the list until will be null) {

 if (match a client address) {

 break;

 }

 }

 if (did not pass into the while loop) {

 Insert new additional list;

 } else {

//a matching IP was found. Passed through the

//while loop.

 If (URL is matching) {

 Add size and duration;

 } else if (different URL) {

 //Search the list for a matching URL

 while (search the list until will be null) {

 if (matching URL found) {

 Add size and duration;

 break;

 }

 }

 if (did not pass through the loop) {

 insert new node to the current

 additional list;

 }

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 61

 }

 }

 }

 }

 }

}

When the parsing of the aacccceessss..lloogg file has been completed and all the data resides into

the memory, create a function that will be able to manipulate this information and to

exclude the data into a file. The name of the generated file will be the current date (that

will be taken from the system time).

For (go through the hash table and check each slot) {

 if (nextURL[slot] != NULL) {

 go to start of the list;

 while(nextURL[slot] != NULL) {

 write the information contained in the slot into the file;

 }

 while (nextClientAddr[slot] != NULL) {

 write the information contained in the slot into the file;

 }

 }

}

make the generated file read only;

Moreover, create a function that will be able to manipulate this information and to export

the data in an HTML format.

############## End of Pseudocode ##############

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 62

5.2 Log File Analyzer Installation

First of all, this application is written in C programming language (ANSI) to be

extremely fast and highly portable by using the Eclipse IDE version 3.1.2. The compiler

is: GGCCCC vveerrssiioonn 44..11..11.. Moreover, my working computer is a Sony Vaio laptop with CPU

Intel Pentium M 1.50 Ghz, HDD 60GB, RAM 512 MB and the operating system is LLiinnuuxx

FFeeddoorraa CCoorree 55.

In order to be able to run the existing application in your computer you must do the

following steps:

 Login as root in a Linux distribution and open a console.

 Make a directory named “thorax” under the /root path (/root/thorax). In the new

directory, create another directory named “userData” (/root/thorax/userData). In

this directory (/root/thorax/userData), you will have the generated file that

includes the needed information from the access log file. The filename comes

from the current date (the exact date that you run the application). The format of

the date is: YYYY-MM-DD.hh.mm. So, a sample file will have the following

format: “2006-08-31.00.00”. Note that you need to have the computer date and

time synchronized with the <<real>> date and time if you want to have the name

of the generated file the same with the current date.

 Extract the attached tarball file (proxy.tar.gz). In the generated folder named

“proxy” you can see the source code (fully comented).

 Put the “thorax.conf” file that you must take from the above generated folder

(proxy) in the /root/thorax path (/root/thorax/thorax.conf).

 Moreover, put the access.log file under the /root/thorax path

(/root/thorax/access.log).

 Go into the “proxy” directory and run the following command: make

 After the above steps, you can go to the /root/thorax/userData path and you can

open the generated file with a text editor (for example jjooee). Note that any text

editor can be used in place of jjooee (gedit, vi, etc). The generated file is read only.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 63

So, you cannot change it. Moreover, if you use ggeeddiitt as an editor, in order to have

the best alignment between the data in the file, choose as font the Monospace and

as size 10 (Edit->Preferences->Fonts & Colors->Editor font). Also, you can see

the results with the less command (for example: less 2006-09-04.21.24), or with

the joe editor (joe 2006-09-04.21.24).

 That's all!Have fun!

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 64

5.2.1 For the Impatiens

After you log on in a Linux-based distribution as root, put the attached tarball file

““pprrooxxyy..ttaarr..ggzz”” and the ““pprrooxxyy..iinnssttaallll”” file into the same directory. Open a terminal as

root and give the command: proxy.install (See ffiigguurree 55--55 below). Then, the above

described steps will be done automatically. Note that in the tarball file, there exists a

sample aacccceessss..lloogg file for testing purposes. Also, in the extracted folder named ““pprrooxxyy””

you can see the source code (fully commented) and the Makefile.

FFiigguurree 44--55..Proxy Log analyzer installation.

In ffiigguurree 55--66 that follows, one can see a sample screenshot after running the above steps

and the file with users data has already generated (by giving the command: less

file_name):

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 65

FFiigguurree 55--66..Sample screenshot with generated user data.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 66

6. Packet Filtering

Firewall is just filters traffic, or at least it tries to, and we hope that it does. The golden

rule with firewalls is always this: unless allowed, deny it. Never under circumstances

attempt to build a firewall that is configured the other way around: allow everything;

deny something. This is an approach doomed to fail. One additional advantage of the

good approach, “unless allow, deny”, is that you learn very quickly what short of traffic

traversing your firewall. This might produce time-consuming work determining what to

allow in and out of your firewall, but it's an excellent invaluable tool for determining

what's going on. This approach gives you visibility into your network and users that you

would otherwise never see if your firewall were built only to block certain things (Shinn,

2005).

Also, keep in mind that ports alone do not a good firewall policy make. Do not assume

that just because you only allow port 80 traffic into a network that the traffic will only be

HTTP if you are using the Linux kernels packet filtering capabilities. By default, the

kernel has no way of inspecting the traffic to ensure that is HTTP traffic. Ports are no

longer enough to define what the traffic is. If you want to filter the traffic into or out of a

network by protocol, then you will need to use either an application proxy that

understands the protocol (Squid) or utilize some of the iptables modules that can perform

protocol inspection. A port is nothing but a number to an IP stack; it has no bearing on

the protocol that might run over that port. Anything could be running on that port, not just

the service that normally resides there.

PPaacckkeett ffiilltteerriinngg is a network security mechanism that works by controlling what data can

flow to and from a network. In other words, is a piece of software which looks at the

header of packets as they pass through, and decides the fate of the entire packet in a way

that reflects a site's own security policy (Russel, 2002), as shown in ffiigguurree 66--11. It might

decide to DDRROOPP the packet (i.e., discard the packet as if it had never received it – without

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 67

notifying the sender), AACCCCEEPPTT the packet (i.e., let the packet go through), or RREEJJEECCTT

the packet (i.e., refuse to forward it and return an error to the sender). Under Linux,

packet filtering is built into the kernel (as a kernel module, or built right in), and there are

a few trickier things we can do with packets, but the general principle of looking at the

headers and deciding the fate of the packet is still there.

The basic device that interconnects IP networks is called a rroouutteerr. A rroouutteerr may be a

dedicated piece of hardware that has no other purpose, or it may be a piece of software

that runs on a general-purpose computer running UNIX or another operating system.

Packets traversing an internetwork (a network of networks) travel from router to router

until they reach their destination. A router has to make a routing decision about each

packet it receives; it has to decide how to send that packet on towards its ultimate

destination. In general, a packet carries no information to help the router in this decision,

other than the IP address of the packet's ultimate destination. The packet tells the router

where it wants to go but not how to get there. Routers communicate with each other using

routing protocols such as the RRoouuttiinngg IInnffoorrmmaattiioonn PPrroottooccooll ((RRIIPP)) and OOppeenn SShhoorrtteesstt PPaatthh

FFiirrsstt ((OOSSPPFF)) to build routing tables in memory to determine how to get the packets to

their destinations. When routing a packet, a router compares the packet's destination

address to entries in the routing table and sends the packet onward as directed by the

routing table (Zwicky, 2000). Often, there won't be a specific route for a particular

destination and the router will use a default route; generally, such a route directs the

packet towards smarter or better-connected routers (the default routes at most sites point

towards the Internet).

In determining how to forward a packet towards its destination, a normal router looks

only at a normal packet's destination address and asks only ““HHooww ccaann II ffoorrwwaarrdd tthhiiss

ppaacckkeett??”” A packet filtering router also considers the question ““SShhoouulldd II ffoorrwwaarrdd tthhiiss

ppaacckkeett??”” The packet filtering router answers that question according to the security

policy programmed into the router via the packet filtering rules. Some machines do

packet filtering without doing routing; that is, they may accept or reject packets destined

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 68

for them before they do further processing. The type of router used in a packet filtering

firewall is known as a ssccrreeeenniinngg rroouutteerr (Zwicky, 2000).

FFiigguurree 66--11..Using a screening router to do packet filtering.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 69

6.1 Why Packet Filtering?

The reasons that the packet filtering is essential and a basic component of good firewall

architecture are the following:

CCoonnttrrooll::

when you are using a Linux box to connect your internal network to another

network (say, the Internet) you have an opportunity to allow certain types of

traffic, and disallow others. For example, the header of packet contains the

destination address of the packet, so you can prevent packets going to a certain

part of the outside network. As another example, I use Mozilla Firefox to access

the contra.gr athletic web site. There are advertisements from various sites on the

page, and Firefox wastes my time by cheerfully downloading them. Telling the

packet filter not to allow any packets to or from the address owned by these web

sites solves that problem.

SSeeccuurriittyy::

when your Linux box is the only thing between the chaos of the Internet and your

nice, orderly network, it's nice to know you can restrict what comes tromping in

your door. For example, you might allow anything to go out from your network,

but you might be worried about the well-known 'Ping of Death' coming in from

malicious outsiders. As another example, you might not want outsider’s telnetting

to your Linux box, even though all your accounts have passwords. Maybe you

want (like most people) to be an observer on the Internet, and not a server (willing

or otherwise). Simply don't let anyone connect in, by having the packet filter

reject incoming packets used to setup connections (Russel, 2002).

WWaattcchhffuullnneessss::

sometimes a badly configured machine on the local network will decide to spew

packets to the outside world. It's nice to tell the packet filter to let you know if

anything abnormal occurs; maybe you can do something about it, or maybe you

are just curious by nature (Russel, 2002).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 70

Nevertheless, there are some disadvantages to using packet filtering. Currently filtering

tools are hard to configure. Once configured, the packet filtering rules tend to be hard to

test. Moreover, packet filtering reduces router performance because it adds extra load on

it.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 71

6.2 Packet Filtering Under Linux

Linux kernels have had packet filtering since the 1.1 series. The first generation, based on

ipfw from BSD, was ported by Alan Cox in late 1994. This was enhanced by Jos Vos and

others for Linux 2.0; the userspace tool ““iippffwwaaddmm”” controlled the kernel filtering rules.

In mid-1998, for Linux 2.2, Rusty Russell reworked the kernel quite heavily, with the

help of Michael Neuling, and introduced the userspace tool ““iippcchhaaiinnss””. Finally, the

fourth generation tool, ““iippttaabblleess””, and another kernel rewrite occurred in mid-1999 for

Linux 2.4 (and beyond). It is this iptables which this project concentrates on (Russel,

2002).

You need a kernel which has the netfilter infrastructure in it: nneettffiilltteerr is a general

framework inside the Linux kernel which other things (such as the iptables module) can

plug into. Also, you need the tool iptables that talks to the kernel and tells it what packets

to filter.

6.2.1 Netfilter/iptables

iippttaabblleess is the replacement for the userspace tool ipchains in the Linux 2.4 kernel and

beyond. It is part of the kernelspace Netfilter Project (http://www.netfilter.org). iippttaabblleess has

many more features than ipchains and is also structured more sensibly. A great advantage

of iippttaabblleess is that it can configure stateful firewalls (Marie). A stateful firewall is capable

of assigning and remembering the state of connections made for sending or receiving

packets. Also, it gives total control over firewall configuration and packet filtering and is

free!

http://www.netfilter.org/documentation/index.html

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 72

For a Linux system connected to a network, a firewall is the essential defense mechanism

that allows only legitimate network traffic in and out of the system and disallows

everything else. To determine whether the network traffic is legitimate or not, a firewall

relies on a set of rruulleess it contains that are predefined by a network or system

administrator. These rules tell the firewall whether to consider as legitimate and what to

do with the network traffic coming from a certain source, going to a certain destination,

or having a certain protocol type. The term ""ccoonnffiigguurriinngg tthhee ffiirreewwaallll"" refers to adding,

modifying, and removing these rules (Bamdel, 2001).

Network traffic is made up of IP packets which are small chunks of data traveling in

streams from a source system to a destination system. These packets have headers, i.e.

bits of data prefixed to every packet that contain information about the packet's source,

destination, and protocol types. Based on a set of rules, a firewall checks these headers to

determine which packet to accept and which packet to reject. This process is known as

ppaacckkeett ffiilltteerriinngg.

Iptables split the packet handling into three different tables, each of which contains a

number of chains. The three tables are filter, nat and mangle. The first is quite obvious,

and is used for packet filtering. Nat is used to provide packet modification capabilities,

such as NAT/PAT and, of course, IP masquerading. The final table is the most obscure

and is used for setting packet options, such as the Type of Service (TOS) field and

marking packets for further filtering or routing (Coulson, 2003).

The nneettffiilltteerr//iippttaabblleess IIPP ppaacckkeett ffiilltteerriinngg ssyysstteemm, although referred to as a single entity, is

actually made up of two components: nneettffiilltteerr and iippttaabblleess. The netfilter component, also

known as kernelspace, is the part of the kernel that consists of packet filtering tables

containing sets of rules that are used by the kernel to control the process of packet

filtering. The iptables component is a tool, also known as userspace, which facilitates

inserting, modifying and removing rules in the packet filtering tables. By using

userspace, you can build your own customized rules that are saved in packet filtering

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 73

tables in kernelspace (Stephens). These rules have ttaarrggeettss that tell the kernel what to do

with packets coming from certain sources, heading for certain destinations or have certain

protocol types. If the rule doesn't match the packet, then the next rule in the chain is

consulted. If a packet matches a rule, the packet can be allowed to pass through using

target ACCEPT. A packet can also be blocked and killed using target DROP or REJECT.

There are many more targets available for other actions that can be performed on packets.

The rules are grouped in chains, according to the types of packets they deal with. A chain

is a checklist of rules. Rules dealing with incoming packets are added to the IINNPPUUTT

cchhaaiinn. Rules dealing with outgoing packets are added to the OOUUTTPPUUTT cchhaaiinn. And rules

dealing with packets being forwarded are added to the FFOORRWWAARRDD cchhaaiinn. These three

chains are the main chains built-in by default inside basic packet-filtering tables. There

are many other chain types available like PPRREERROOUUTTIINNGG and PPOOSSTTRROOUUTTIINNGG and there

is also provision for user-defined chains. Each chain can have a ppoolliiccyy that defines “a

default target”, i.e. a default action to perform, if a packet doesn't match any rule in that

chain. In a security-conscious system, this policy usually tells the kernel to DDRROOPP the

packet (Coulson, 2001). In the following diagram (ffiigguurree 66--22), we can see how packets

traverse the different chains and in which order. When a packet first enters the firewall, it

hits the hardware and then gets passed on the proper device driver in the kernel. Then the

packet starts to go through a series of steps in the kernel before it is either sent to the

correct application (locally), or forwarded to another host or whatever happens to it. In

addition, as we talk about stateful firewalls, it is very important to understand the four

states that the netfilter state engine recognizes. These are the states a packet is in based

on the kernel's connection tracking capabilities (Shinn, 2005). At any given time a

packet, when under the control of the state engine, is in one of the following four states:

NEW

 A new connection. Only the first packet in a connection will meet this state. All

 subsequent packets, for that session, will not be considered NEW.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 74

ESTABLISHED

 A session that has been established and is being tracked by the state engine. All

 packets that follow after a packet labeled as NEW in a single session.

RELATED

A special state. A separate connection related to an ESTABLISHED session. This

can happen when an ESTABLISHED connection spawns a new connection as

part of its data communication process. An example of this is FTP-DATA

connection spawned by an FTP connection. These types of connections are very

complicated and almost always require a “helper” module that has been written to

understand the underlying protocol. If there is no helper module to analyze a

complex protocol that requires a related connection to function, then that

connection will not function properly (Shinn, 2005).

INVALID

 A packet that is otherwise not identified as having any state. It is always a good

 idea to DROP, not REJECT, this packet.

The specific piece of the netfilter code that handles all the above is called ccoonnnnttrraacckk. Its

job is to watch each session and determine if the packets are part of an existing session or

a related one and to enforce the rules supplied by the userland tools around this

information.

Related to the above, an important issue is the fragmentation (division of a large packet).

Some packets simply lack enough context to tell the kernel enough about the connection

it might be associated with. The fact that the kernel does this for us is a good thing. It

makes the firewall more secure, the rules can be that much simpler because we don't have

to worry about fragment anymore, and we can detect other problems with the packet

before passing it on to a protected resource (Hall, 2000).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 75

FFiigguurree 66--22..Traversing packets into different chains.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 76

After the rules are built and chains are in place, the real work of packet filtering starts.

Here is where the kernelspace takes over from userspace. When a packet reaches the

firewall, the kernel first examines the header information of the packet, particularly the

destination of the packet. This process is known as routing (Russel, 2002).

If the packet originated from outside and is destined for the system and the firewall is on,

the kernel passes it on to the IINNPPUUTT chain of the kernelspace packet filtering table. If the

packet originated from inside the system or another source on an internal network the

system is connected to and is destined for another outside system, the packet is passed on

to the OOUUTTPPUUTT chain. Similarly, packets originating from outside systems and destined

for outside systems are passed on to the FFOORRWWAARRDD chain. Normally, we would write a

rule something like this:

iptables [-t table] command [match] [target/jump]

The table option allows you to use any table other than the default (filter – is used for

general packet filtering). The other tables are: nnaatt and mmaannggllee. The nat table is used for

packets to be forwarded and the mangle table is used if there are any changes to be made

in packets and their headers (Coulson, 2001). The compulsory command section of the

command above is the most important part of the iptables. It tells the iptables command

what to do, for example, to insert a rule, to add a rule to the end of the chain, or to delete

a rule. The optional match section specifies the characteristics that a packet should have

to match the rule, such as source and destination address, protocol, etc. The matches are

divided in two major categories: generic matches (can be used for packets having any

protocol) and protocol-specific matches. And finally, the ttaarrggeett option is the actions

specified by rules to be performed on packets that match those rules (Andreasson, 2005).

Next the packet's header information is compared with each rule in the chain it is passed

on to, unless it perfectly matches a rule. If a packet matches a rule, the kernel performs

the action specified by the target of that rule on the packet. But if the packet doesn't

match a rule, then it is compared to the next rule in the chain. Finally, if the packet

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 77

doesn't match to any rule in the chain, then the kernel consults the policy of that chain to

decide what to do with the packet. Ideally the policy should tell the kernel to DROP that

packet (Kenshi).

So, an entire network can be shielded from intrusions originating from other networks by

the strategic placement of a rule-based firewall such as iptables. A single host on the

same network can benefit from its own “line of defense” by running its own instance of

iptables. This is particularly useful for hosts within a “DDee--MMiilliittaarriizzeedd ZZoonnee” (DMZ),

where you need to open up service ports at the firewall/gateway to external access.

DMZ’s will often host web, ftp, DNS or email servers.

It is important to note that with the use of Squid on the firewall (such as in this case), the

FORWARD rules will not be called, even though the firewall is technically forwarding

packets. However, it's the Squid that is doing the actual forwarding. The kernel has no

way of knowing this, so only the INPUT and OUTPUT rules will be tripped as Squid is

just a local process on the firewall (Shinn, 2005).

I think its time to go on some more practical issues like setup and configuration of

iptables.

6.2.1.1 Setup iptables

First of all, there is a need to have iptables installed on a computer. In order to install

iippttaabblleess in FFeeddoorraa CCoorree 55 you must do the following (Lilliam, 2005):

 Login as root

 Verify the iptables package has been installed. Give the following command:

 rpm -qa | grep iptables

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 78

If you have no results after giving the above command, then you need to install

iptables.

 Make sure that you have an Internet connection. Also, you have to install the yyuumm

application in order to be able to download and install iptables. If you are under a

proxy server, you need to set and export the proxy as:

set http_proxy=http://Proxy_Name:Proxy_Port/

export http_proxy=http://Proxy_Name:Proxy_Port/

 Then you can give the command:

yum install iptables

Once it has been verified that the packages are installed, iptables will need to be

configured.

6.2.1.2 iptables Startup

Now that iptables package is installed on the computer, its time to start running it. To

start iptables as a daemon in a Redhat-like system (see ffiigguurree 66--33 below), you can just

give the command:

/sbin/service iptables start

If you want to run iptables on boot, you could give the following command:

chkconfig - - level 2345 iptables on

http://139.28.35.23:81/
http://139.28.35.23:81/

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 79

FFiigguurree 66--33.Start iptables as a daemon and enable on boot.

Correspondingly, you can stop iptables and disable it by running on boot if you replace in

the above two commands the “start” with “stop” word and the “on” with the “off” word.

In order to check that iptables is up and running, I give the following command:

iptables -L #list the current ruleset

It responds so I am sure about the successful startup of iptables. After installing iptables

successfully and is up and running, the next task is to delve into the configuration.

6.2.1.3 Netfilter/iptables Configuration

The first task to undertake when configuring the firewall ruleset is to turn on all the

options you would like the kernel to use when processing IP packets and the next task is

to configure the userland (iptables).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 80

6.2.1.3.1 Kernel Setup

Let’s try to configure the firewall architecture that is described in SSeeccttiioonn 22..22 from the

kernel point of view. The first option is dependent on how your firewall gets its IP

addresses. If one or more of the firewall's interfaces uses DHCP to configure its

interfaces, then you need to turn the ip_dynaddr option on by passing it the integer value

of 1:

echo 1 > /proc/sys/net/ipv4/ip_dynaddr

otherwise, if all of your firewall's interfaces are assigned static IP addresses, you will

want to set this variable to 0:

echo 0 > /proc/sys/net/ipv4/ip_dynaddr

The following script disables source routing. Source routing is basically a way of

dictating what route the traffic will take from the origin of the packet as dictated by the

client. This means that a client can dictate the specific route to a destination, subverting

much of your firewall's purpose.

if [-e /proc/sys/net/ipv4/conf/all/accept_source_route]; then

 for f in /proc/sys/net/ipv4/conf/*/accept_source_route

 do

 /bin/echo 0 > $f

 done

fi

The next two scripts instruct the kernel not to send/accept ICMP redirect requests. Some

resource on the network can sent an ICMP redirect to your firewall telling it there is a

new network route to some other device.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 81

if [-e /proc/sys/net/ipv4/conf/all/send_redirects]; then

 for f in /proc/sys/net/ipv4/conf/*/send_redirects

 do

 /bin/echo 0 > $f

 done

fi

if [-e /proc/sys/net/ipv4/conf/all/accept_redirects]; then

 for f in /proc/sys/net/ipv4/conf/*/accept_redirects

 do

 /bin/echo 0 > $f

 done

fi

Spoof protection is something near to the hearts of many in the network security world,

and fortunately Linux gives us the ability to limit spoofed packets to some extent. The

kernel includes a neat little /proc setting that basically tells the kernel not to respond to a

packet out of a different interface than the interface from which it was received. This is

basically a system for helping to prevent spoofed packets by looking at where, from the

firewall's perspective, it expects the packet to come from. With this turned on, the

firewall should reject packets that come from outside your protected network that pretend

to come from inside. This will help to prevent an attacker from spoofing trusted systems

in an attempt to circumvent your firewall rules.

if [-e /proc/sys/net/ipv4/conf/all/rp_filter]; then

 for f in /proc/sys/net/ipv4/conf/*/rp_filter

 do

 /bin/echo 1 > $f

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 82

 done

fi

In addition to detecting and stopping spoofed packets, the kernel can also detect what are

known as “martian” addresses. These addresses are invalid IP addresses that the firewall

should never see. If you tell the firewall to, it will log all those invalid addresses it sees.

This can be very useful when tracking down an errant piece of network or equipment or

some strange attack on your firewall or the devices it's protecting. You can turn this

option on as follows:

/bin/echo 1 > /proc/sys/net/ipv4/conf/all/log_martians

The next setting allows you to set the system to not respond to ICMP echo messages set

to a broadcast address, otherwise known as a “smurf” attack. Unless you need to be able

to ping broadcast addresses on your firewall, which you probably do not, just use the

setting below. Failure to do so may cause the firewall to be used by an attacker to

“amplify” an ICMP flood on another host.

/bin/echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

Moreover, another important setting is to not response to ICMP pings as follows:

/bin/echo 1 > /proc/sys/net/ipv4/icmp_echo_ignore_all

Sometimes devices like routers will send to broadcast frames, which will be logged by

the kernel. On a busy network this can quickly become annoying. Setting this to true will

disable these messages from being logged.

/bin/echo 1 > /proc/sys/net/ipv4/icmp_ignore_bogus_error_responses

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 83

The final section to look at related to the kernel configuration is the network performance

setting in /proc. The first network setting of interest is the TCP FIN timeout setting. This

defines the amount of time to hold a socket in the FIN-WAIT-2 status, if the socket was

closed by our side. This is part of the final tear down part of TCP session where we send

out FIN packet and are awaiting a response from the other side via an ACK response. If

the host on the side is broken, is slow, or does not respond, the socket will be held open

for a certain period of time to wait regardless of what happens. In my kernel (2.6), the

value is 60 seconds. If you want to change to a shorter period of time, which means that

the socket will be killed off if the remote host does not finish the tear down, then:

/bin/echo 40 > /proc/sys/net/ipv4/tcp_fin_timeout

A similar setting is for the UDP connection timeout value. This defines how long the

connection tracking engine will consider a UDP connection to be alive. If nothing else

comes back within this timeframe, the connection will be removed from the state engine.

In my kernel the value of this option is 30. So, if you want to change it, then you can give

the following command:

/bin/echo 50 > /proc/sys/net/ipv4/netfilter/ip_conntrack_udp_timeout

In addition, to prevent SYN floods attacks, you need to have the following option enables

as:

/bin/echo 1 > /proc/sys/net/ipv4/tcp_syncookies

Moreover, you can enable the forwarding option in order to be able to forward packets as:

/bin/echo 1 > /proc/sys/net/ipv4/ip_forward

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 84

All the above settings form a basic initial configuration of the kernel. There are many

other settings for the kernel that are not discussed because there are out of the scope of

this project.

6.2.1.3.2 Userland Setup

After the kernel is configured as described in the previous section, its time to start loading

iippttaabblleess modules we might want to use. There are two ways to do this; explicitly, which

is the safer and more secure manner of doing this than the one that loading all the

modules we have configured for this kernel. So, if you want to load each one explicitly,

then you can give the following commands:

/sbin/modprobe ip_tables

/sbin/modprobe ip_conntrack

/sbin/modprobe ip_conntrack_ftp

/sbin/modprobe iptable_filter

/sbin/modprobe iptable_mangle

/sbin/modprobe iptable_nat

/sbin/modprobe ipt_LOG

/sbin/modprobe ipt_limit

/sbin/modprobe ipt_state

/sbin/modprobe ip_nat_ftp

[...]

After the kernel is properly configured and all the necessary firewall modules are loaded,

its time to start adding rules into the kernel.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 85

In case that iptables won't start, then you must do the following: the iptables startup

script expects to find the “/etc/sysconfig/iptables” before it starts. If none exists, then

symptoms include the firewall status always being stopped and the “/etc/init.d/iptables”

script running without the typical [OK] or [FAILED] messages. If you have just installed

iptables and have never applied a policy, then you will face this problem. Unfortunately,

running the service iptables save command before restarting won't help either. You have

to create this file.

There are two ways in adding rules. First of all, you could edit the

“/etc/rc.d/init.d/iptables” script. This would have the bad effect that the rules would be

deleted if you updated the iptables package or after a reboot. The second way of doing

the setup is to make and write a ruleset in a file, or directly to iptables, that will meet you

requirements, and use iptables-save command to save them, so that you don't have to

retype them each time (Chunyan, 2004). Consequently, you can enter the command:

iptables-save > /etc/sysconfig/iptables

which would save the ruleset to the file “/etc/sysconfig/iptables”. But if you want to save

the rules in a separate file other than the default then:

iptables-save > iptables-script

iptables-restore iptables-script

which all rules in the packet filtering tables are saved in the file iptables-script and then

can be restored (after a reboot for example). In addition, if we want to have the ruleset in

a startup script, we can create a new file called rc.firewall in the /etc/rc.d directory and

then open the file /etc/rc.d/rc.local and add the line /etc/rc.d/rc.firewall.

I suppose that its time to make an example. Note that it is beyond the scope of this project

to document all the switches for iptables; however, a few brief pointers should help with

uncovering the proper manner in which a command should be executed. Because I have

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 86

no real network connection, I decide to use the “loopback” interface (IP address

127.0.0.1). The scenario is to try to drop all ICMP packets coming from the “loopback”

interface. So in this case, the conditions are that the protocol must be ICMP and that the

source address must be 127.0.0.1. The target is DROP. I give the following command:

ping -c 1 127.0.0.1

and the result is that:

PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.090 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.053 ms

Before going on the definition of rules, it is best practice of flushing (-F) all chains before

loading rules. So,

$IPTABLES -F INPUT
$IPTABLES -F OUTPUT

$IPTABLES -F FORWARD

Aside from creating rules, you also can create your own chains with iptables by using the

-N command:

$IPTABLES -N new_chain

And much like rules, you also can delete, rename or replace a chain. In order to delete all

the existing custom tables and to zeroth all the packet counters (Kenshi), as following:

$IPTABLES -X

$IPTABLES -Z

and then we must define the default policy. This policy in my system is to accept

everything. As I mentioned before, if we want to have a security-conscious system, the

policy must be modified in order to DROP everything, if there is no rule in a chain for a

specific packet (Chunyan, 2004). So,

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 87

$IPTABLES -P INPUT DROP

$IPTABLES -P OUTPUT DROP

$IPTABLES -P FORWARD DROP

FFiigguurree 66--44 that follows shows the default policy and the changed policy. So now, it’s

impossible to send or receive something.

FFiigguurree 66--44.Default modified policy.

Then I append to the INPUT and OUTPUT chain, a rule specifying that for packets from

source 127.0.0.1 with protocol ICMP we should jump to ACCEPT. Also, I need to log

these actions. Note that the -A switch puts the new rule at the end of the chain, while the -

I switch puts it at the beginning. So, I give the command:

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 88

$IPTABLES -A INPUT -p ICMP -s 127.0.0.1 -j ACCEPT
$IPTABLES -A INPUT -p ICMP -s 127.0.0.1 –j LOG –log-prefix “INPUT: ”
$IPTABLES -A OUTPUT -p ICMP -s 127.0.0.1 -j ACCEPT
$IPTABLES -A OUTPUT -p ICMP -s 127.0.0.1 –j LOG –log-prefix “OUTPUT: ”

The results are the willing and depicts in the following figures. FFiigguurree 66--55 depicts the

sent/received ICMP messages and ffiigguurree 66--66 shows the logging of these actions.

FFiigguurree 66--55.Accept all ICMP messages from localhost.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 89

FFiigguurree 66--66.Logging of the actions.

Let’s try to give some basic rules in order to have my firewall architecture works

properly. There are paranoid people that they like to be more and safer. It is truth that it

never hurts to add in a rule to catch any fragments and drop them if something were to go

horribly wrong with all of this (Brockmeier, 2001). So, to catch any fragments that slip

through, which, again, shouldn't occur if you are using the state engine, simply add the

following rules to the top of your rule sets:

$IPTABLES -N NOFRAGS

$IPTABLES -A OUTPUT -p ip -f -j NOFRAGS

$IPTABLES -A INPUT -p ip -f -j NOFRAGS

$IPTABLES -A FORWARD -p ip -f -j NOFRAGS

$IPTABLES -A NOFRAGS -m limit –limit 1/second -j LOG –log-level info –log-prefix \

“Fragment – DROP “ --log-tcp-sequence –log-tcp-options –log-ip-options

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 90

$IPTABLES -A NOFRAGS -j DROP

Also, one more important setting is to define connection tracking rules as:

$IPTABLES -A INPUT -m state --state ESTABLISHED,RELATED \

-j ACCEPT

$IPTABLES -A OUTPUT -m state --state NEW,ESTABLISHED,RELATED \

-j ACCEPT

$IPTABLES -A FORWARD -m state --state NEW,ESTABLISHED,RELATED \

-j ACCEPT

Also, we need to have TCP sequence numbers logged. In order to achieve this fact, you

must have the following rule:

$IPTABLES –A INPUT –p TCP –j LOG –log-tcp-sequence

In addition, in order to configure the DMZ section of the firewall architecture you need to

DNATed the HTTP, FTP and SMTP traffic as follows:

HTTP traffic

$IPTABLES -A FORWARD -i $EXTERNAL -o $DMZ -p TCP --dport 80 \

-m state -state NEW, ESTABLISHED, RELATED -j ACCEPT

$IPTABLES -t nat -A PREROUTING -i $EXTERNAL -p TCP \

--dport 80 -j DNAT --to-destination $DMZ_WEB_SERVER

SMTP traffic

$IPTABLES -A FORWARD -i $EXTERNAL -o $DMZ -p TCP --dport 25 \

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 91

-m state -state NEW, ESTABLISHED, RELATED -j ACCEPT

$IPTABLES -t nat -A PREROUTING -i $EXTERNAL -p TCP \

--dport 25 -j DNAT --to-destination $DMZ_MAIL_SERVER

FTP traffic

$IPTABLES -A FORWARD -i $EXTERNAL -o $DMZ -p TCP --dport 20:21 \

-m state -state NEW, ESTABLISHED, RELATED -j ACCEPT

$IPTABLES -t nat -A PREROUTING -i $EXTERNAL -p TCP \

--dport 20:21 -j DNAT --to-destination $DMZ_FTP_SERVER

In order to have the users from internal network to be able to SSH into the firewall you

just need to add the following rule:

$IPTABLES -A INPUT -p TCP --dport 22 -i $LAN -j ACCEPT

and in order to SNATed the traffic from the internal, then:

$IPTABLES -t nat -A POSTROUTING -i $LAN -o $EXTERNAL -j SNAT \

--to-source $EXTERNAL_IP

Finally, I implement a catch all logging rule before the final DROP or REJECT rule. This

is very helpful if you want to diagnose packets that are dropped by the firewall because of

a missing rule, typo, or other mistake. This is also a useful security measure because the

firewall will now log all the packets will be rejected as part of the “unless allow, deny”

security philosophy. In this example, the number of packets is limited to 1 per second in

order to prevent the firewall logging system from being overwhelmed by either too much

traffic or by a deliberate attempt by an attacker to overwhelm the system. The rule that

implement the above is:

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 92

$IPTABLES -A INPUT -p all -m limit --limit 1/second \

-j LOG --log-level info --log-prefix "##==>DROP==<##" \

--log-tcp-sequence --log-tcp-options --log-ip-options

6.2.1.3.3 State Engine

SSeeccttiioonn 66..22..11 describes a basic understanding of how the state engine works. Let's take a

look at what its tracking. The first place to look is in the most powerful file system on a

Linux system, //pprroocc. It's a virtual file system that lets you look at the devices in your

system, to reconfigure some of them, and even to modify the kernels' and networks'

behavior on the fly. This is an extraordinarily powerful feature of Linux (Russel & Welte,

2002).

As to the state engine, let's take a look at /proc/net/ip_conntrack. This lists all the current

connection the kernel is tracking and any information the system has on those

connections. In my working computer, it has the following entry:

 tcp 6 424763 ESTABLISHED src=127.0.0.1 dst=127.0.0.1 sport=51282 dport=6009

packets=93 bytes=255520 src=127.0.0.1 dst=127.0.0.1 sport=6009 dport=51282 packets=92

bytes=4912 [ASSURED] mark=0 use=1

6.2.1.3.4 Specifying an Interface

The ‘-i’ (or ‘--in-interface’) and –o (or ‘--out-interface’) options specify the name of an

interface to match. An interface is the physical device the packet came in (‘-i’) or is

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 93

going out on (‘-o’). You can use the ifconfig command to list the interfaces which are

“up”. Packets traversing the INPUT chain don’t have an output interface, so any rule

using ‘-o’ in this chain will never match. Similarly, packets traversing the OUTPUT

chain don’t have an input interface, so any rule using ‘-i’ in this chain will never match.

Only packets traversing the FORWARD chain have both an input and output interface.

It is perfectly legal to specify an interface that currently does not exist; the rule will not

match anything until the interface comes up. This is extremely useful for dial-up PPP

links (usually interface ppp0) and the like. As a special case, an interface name ending

with a `+' will match all interfaces (whether they currently exist or not) which begin with

that string. For example, to specify a rule which matches all PPP interfaces, the -i ppp+

option would be used. Moreover, the interface name can be preceded by a `!' to match a

packet which does NOT match the specified interface(s).

I suggest that whenever possible you define all your rules and chains with their respective

interfaces to add an extra layer of security into your security model. IP addresses can be

spoofed, and do make mistakes with rules. By adding in an additional layer of specificity

to your rules, by defining the interface that rule specifically applies to, you can help

yourself with debugging and by making your firewall and network more secure.

6.2.1.4 Network Address Translation (NAT)

Normally, packets on a network travel from their source (such as your home computer) to

their destination (such as www.fedora.org) through many different links. None of these

links really alter your packet: they just send it onward. If one of these links were to do

NAT, then they would alter the source or destinations of the packet as it passes through.

http://www.fedora.org/

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 94

As you can imagine, this not how the system was designed to work, and hence NAT is

always something a crock. Usually the link doing NAT will remember how it mangled a

packet, and when a reply packet passes through the other way, it will do the reverse

mangling on that reply packet, so everything works.

The main reasons that you need NAT are the following:

Modem Connections to the Internet

Most ISPs give a single IP address when you dial up to them. You can send out

packets with any source address you want, but only replies to packets with this

source IP address will return to you. If you want to use multiple different

machines (such as a home network) to connect to the Internet through this one

link, you will need NAT. This is by far the most common use of NAT today,

commonly known as “masquerading” in the Linux world. This is usually called

SNAT, because you change the source address of the first packet (Russel, 2002).

Multiple Servers

Sometimes you want to change where packets heading into your network will go.

Frequently this is because (as above), you have only one IP address, but you want

people to be able to get into the boxes behind the one with the “real” IP address. If

you rewrite the destination of incoming packets, you can manage this. This type

of NAT was called port-forwarding under previous versions of Linux (Russel,

2002).

Transparent Proxying

Sometimes you want to pretend that each packet which passes through your Linux

box is destined for a program on the Linux box itself. This is used to make

transparent proxies. The transparent part is because your network won’t even

know it’s talking to a proxy, unless of course, the proxy doesn’t work (Russel,

2002).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 95

The NAT is divided into two different types: SSoouurrccee NNAATT ((SSNNAATT)) and DDeessttiinnaattiioonn NNAATT

((DDNNAATT)). SSNNAATT is when you alter the source address of the first packet: i.e. you are

changing where the connection is coming from. Source NAT is always done post-routing,

just before the packet goes out onto the wire. Masquerading is a specialized form of

SNAT. MMaassqquueerraaddiinngg is another name for what many call many to one NAT. In other

words, traffic from all devices on one or more protected networks will appear as if it

originated from a single IP address on the Internet side of the firewall. Note that the

masquerade IP address always defaults to the IP address of the firewall’s main interface.

The advantage of this is that you never have to specify the NAT IP address. This makes it

much easier to configure iippttaabblleess NAT with DHCP. You can configure many to one

NAT to an IP alias, using the POSTROUTING and not the MASQUERADE statement.

Keep in mind that iptables requires the iippttaabblleess__nnaatt module to be loaded with the

mmooddpprroobbee command for the masquerade feature to work. Masquerading also depends on

the Linux operating system being configured to support routing between the Internet and

private network interfaces of the firewall. This is done by enabling IP forwarding or

routing by giving the file “/proc/sys/net/ipv4/ip_forward” the value 1 as opposed to the

default disabled value of 0. You need to enter:

/bin/echo "1" > /proc/sys/net/ipv4/ip_forward

Once masquerading has been achieved using the POSTROUTING chain of the NAT table,

you will have to configure iptables to allow packets to flow between the two interfaces.

To do this, use the FORWARD chain of the filter table. More specifically, packets related

to NEW and ESTABLISHED connections will be allowed outbound to the Internet, but

only packets related to ESTABLISHED connections will be allowed inbound. This helps

to protect the home network from anyone trying to initiate connections from the Internet.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 96

On the other hand, DDNNAATT is when you alter the destination address of the first packet: i.e.

you are changing where the connection is going to. Destination NAT is always done

before routing, when the packet first comes off the wire. Port forwarding, load sharing,

and transparent proxying are all forms of DNAT (Li, 2002).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 97

6.2.1.5 iptables Logging

Nevertheless, another useful and very important thing is the llooggggiinngg. You track packets

passing through the iptables list of rules using the LLOOGG target. You should be aware that

the LOG target:

 Logs all traffic that matches the iptables rule in which it is located.

 Automatically writes an entry to the “/var/log/messages” file and then executes

the next rule.

If you want to log only unwanted traffic, therefore, you have to add a matching rule with

a DROP target immediately after the LOG rule. If you don’t, you will find yourself

logging both desired and unwanted traffic with no way of discerning between the two,

because by default iptables doesn’t state why the packet was logged in its log message.

The messages are stored in “/var/log/messages” and we can observe them with the

command “tail -f /var/log/messages”. We can log all the incoming and outgoing tcp

packets that were dropped as following:

iptables -A INPUT -p tcp -j LOG --log-prefix "iptables:IN-TCP DROPPED:"

iptables -A OUTPUT -p tcp -j LOG --log-prefix "iptables:OUT-TCP DROPPED:"

Also, we can log anything else that was dropped:

iptables -A INPUT -j LOG --log-prefix "iptables:INCOMING DROPPED:"

iptables -A OUTPUT -j LOG --log-prefix "iptables:OUTGOING DROPPED:"

The information that a computer exchanges with other computers on the Internet travels

in units called packets. The packets contain the data intended to be communicated

between two computers, as well as a header. The header contains information about the

packet (e.g. the size of the packet, various flags, etc.), and routing information (such as

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 98

the source and the destination). The usual analogy is with a postal letter: if the letter itself

is the data, the envelope (containing the "TO:" and the "FROM:" fields) is the header.

Again, the packet header contains other information as well, and the exact fields in the

header depend on the protocol (such as tcp, udp or icmp). We will be interested mainly in

the source address/port and the destination address/port fields, the protocol of the packet,

as well as some packet flags.

As is referred previously, the correct logic to design the firewall is this: drop everything

by default, then punch holes into the firewall as needed, to let the “good” packets come

through. Assume that all packets are bad, and single out the good ones, not vice versa. I

cannot emphasize this enough. The DROP policy in the INPUT chain acts as a safety net.

After we've set the policy to DROP, we punch holes to allow useful packets, such as ssh,

ntp, http, smtp, ftp, and whatever the needs of your particular site require.

Logging is not mandatory for the proper operation of the firewall, but it is very useful.

That’s exact the aim of this log file analyzer that I have implemented. It can read the

firewall log file and can extract useful information. There are obviously two extremes:

lloogg nnootthhiinngg, or lloogg eevveerryytthhiinngg. If we log everything (or nearly everything), we must

decide on the granularity of the logging. Specifically, the logs can be coarse, i.e. we can

log irrespective of the nature of the packet (e.g. the same log prefix, or no log prefix at all

for all packets), or fine: a special log prefix for each type of packet. In the latter case, we

would have to accompany each “real” rule in the firewall, with a log rule, with a special

log prefix. This way, we would be able to figure out in the logs, which rule was

responsible for dropping/accepting a packet.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 99

6.2.1.5.1 Netfilter Log Format (firewall.log)

When a packet is logged, it shows up in “/var/log/messages” in the below format (is a

hypothetical log message generated by netfilter):

Feb 12 21:01:44 darkstar kernel: DROP IN=eth0 OUT=eth1

MAC=00:80:8c:1e:12:60:00:10:76:00:2f:c2:08:00

SRC=132.26.78.235 DST=128.192.234.143 LEN=73

TOS=0x00 PREC=0x00 TTL=64 ID=33345 CE DF MF FRAG=179

OPT(072728CBA404DFCBA40253CBA4032ECBA403A2CBA4033ECBA40

2C1180746EA18074C52892734A200)

PROTO=TCP SPT=33456 DPT=23456 SEQ=1168094040 ACK=0

WINDOW=34560 RES=0x00 URG ACK PSH RST SYN FIN URGP=0

OPT (020405B40402080A05E3F3C40000000001030300)

Like other syslog entries, each entry starts with a date, timestamp, hostname (darkstar in

this case), and the fact that the kernel provided the log entry. The "DROP" entry is one

chosen by the person creating the firewall; it could be any ascii string that provides clues

as to why it is being logged. In this case, it simply refers to the fact that this packet is

being caught by the generic "log and drop everything else" rules at the end of the firewall.

Also, packets arriving at the system only have IN= set. Packets leaving the system have

only OUT= set. Packets being forwarded through an iptables box acting as a router have

both set. In addition, log prefixing is a feature that's so simple; people tend to overlook

how powerful it can be. The prefixing capability allows you to define an iptables rule and

specify a text string that should be recorded to the logs whenever that rule is matched. Let

me give you an example. Assume eth1 is the internal interface and eth0 is the external

interface:

iptables -A FORWARD -i eth1 -m state --state NEW -s 192.168.1.0/24 -d 0/0 \

-j LOG --log-prefix " DROP "

iptables -A FORWARD -i eth1 -m state --state NEW -s 192.168.1.0/24 -d 0/0 -j \

ACCEPT

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 100

The first rule states

For traffic received on the eth1 interface, match packets that are new connection requests

originating from 192.168.1.0-192.168.1.255, going to any destination IP address. When a

match is found, allow the connection request, log this packet and prefix the log entry with

the text pattern " DROP ".

Here is an example log entry recorded by this pair of rules. Notice that the word DROP

appears just before the packet specific information:

Oct 31 06:11:35 gw1 kernel: DROP IN=eth1 OUT=eth0 SRC=192.168.1.101

DST=204.152.189.116 LEN=52 TOS=0x00 PREC=0x00 TTL=127 ID=18437 DF

PROTO=TCP SPT=32865 DPT=80 WINDOW=5840 RES=0x00 SYN URGP=0

In the following table (ttaabbllee 11), is presented an explanation of each field in the netfilter

log format (Unknown, Netfilter Log Format).

Feb 12 21:01:44
darkstar kernel:

Syslog prefix.

DROP Enabled with: --log-prefix 'prefix'
A user defined log prefix.

IN=eth0 Interface from which the packet arrived. Empty value for locally
generated packets.

OUT=eth1 Interface through which the packet will leave the system.
MAC=00:80:8c:1e:12:60:
00:10:76:00:2f:c2:
08:00

Destination MAC=00:80:8c:1e:12:60,
Source MAC=00:10:76:00:2f:c2,
Type=08:00 (ethernet frame carried an IPv4 datagram)

SRC=132.26.78.235 The source IP address of the packet.
DST=128.192.234.143 The destination IP address of the packet.
LEN=73 Is the length of the total packet in bytes.
TOS=0x00 The Type of Service value specifies how an upper layer protocol

(Layer 4+) should handle the packet and the importance of the
packet. Its value is commonly 0 indicating no special priority
handling needed.

PREC=0x00 Is for precedence.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 101

TTL=64 Is set by the sender and then decremented by 1 each time a router
forwards the datagram. In this case, the remaining Time To Live of
this packet is 64 hops.

ID=33345 Unique ID of this IP datagram.
CE The CE bit is located in the TOS field.
DF If present, the Don't Fragment bit is set.
MF "More Fragments following" flag.
FRAG=179 Fragment offset in units of "8-bytes". In this case the byte offset for

data in this packet is 179*8=1432 bytes. Specifies what position the
fragment is in relation to the beginning of the datagram.

OPT (0727..A200) Enabled with: --log-ip-options
IP options. This variable length field is rarely used. Certain IP
options, f.e. source routing, are often disallowed by netadmins.
Even harmless options like "Record Route" may only be allowed if
the transport protocol is ICMP, or not at all.

PROTO=TCP Protocol name or number. Netfilter uses names for TCP, UDP,
ICMP, AH and ESP. Other protocols are identified by number. A
list is in your /etc/protocols.

SPT=33456 The source port (TCP and UDP) of the packet. A list of port
numbers is in your /etc/services. 0-65535 are the legal values.

DPT=23456 The destination port (TCP and UDP) of the packet, restricted
to 0-65535.

SEQ=1168094040 Enabled with: --log-tcp-sequence
Receive Sequence number. By cleverly chosing this number, a
cryptographic "cookie" can be implemented while still satisfying
TCP protocol requirements. These "SYN-cookies" defeat some
types of SYN-flooding DoS attacks and should be enabled on all
systems running public TCP servers.
echo 1 > /proc/sys/net/ipv4/tcp_syncookies

ACK=0 Same as the Receive Sequence number, but for the other end of the
TCP connection.

WINDOW=34560 The TCP Receive Window size. This may be scaled by bit-shifting
left by a number of bits specified in the "Window Scale" TCP
option. If the host supports ECN, then the TCP Receive Window
size will also be controlled by that.

RES=0x00 Any value set in the TCP reserved bits in bytes 12 and 13
URG Urgent flag.
ACK Acknowledgment flag.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 102

PSH Push flag.
RST Reset flag.
SYN SYN flag, only exchanged at TCP connection establishment.
FIN FIN flag, only exchanged at TCP disconnection.
URGP=0 The Urgent Pointer allows for urgent, "out of band" data transfer.

Unfortunately not all protocol implementations agree, so this facility
is hardly ever used.

OPT (020…300)

enabled with: --log-tcp-options
TCP options. This variable length field gets a lot of use. Important
options include: Window Scaling, Selective Acknowledgement and
Explicit Congestion Notification.

TTaabbllee 11.Explanation of netfilter log format.

One of the most important functions of the IP layer is rroouuttiinngg. Every IP datagram

contains a source and destination IP address. FFiigguurree 66--77 shows the format of an IPv4

header. The most significant bit is numbered 0 at the left, and the least significant bit of a

32-bit value is numbered 31 on the right. The 4 bytes in the 32-bit value are transmitted

in the order: bits 0-7 first, then bits 8-15, then 16-23, and bits 24-31 last. This is called

bbiigg eennddiiaann byte ordering, which is the byte ordering required for all binary integers in the

TCP/IP headers as they traverse a network. This is called the nneettwwoorrkk bbyyttee oorrddeerr.

Machines that store binary integers in other formats, such as the lliittttllee eennddiiaann format, must

convert the header values into the network byte order before transmitting the data

(Stevens, 2003).

The header of the IP packet consists of 5 or more words of 32 bits (4 bytes) each. The

minimum header length (no options) is therefore 20 bytes. The version field for the

shown type of packet is 4 = IPv4 (Internet Protocol version 4). The header Length field is

the header length in 32bit words; this would be 5 without options, and at most 15 with

options. The Total Length is in bytes and includes the header. Data length can then be

calculated from the supplied values.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 103

FFiigguurree 66--77..IP header format.

On the other hand, TCP is a connection-oriented service and handles the transfer of data,

flow control, reliability, and multiplexing all in one protocol. TCP is a very robust

protocol and can handle most error conditions with automated recovery. It is a good

protocol for higher-level protocols, such as HTTP and SMTP, which do not have built in

error recovery and flow control capabilities. But TCP is not ideal for protocols that

handle this internally, such as VPN protocols, which are tunneling TCP connections

within (Hall, 2000).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 104

The header of a TCP packet consists of 5 or more words of 32 bits (4 bytes) each. The

minimum header length (no options) is therefore 20 bytes. FFiigguurree 66--88 shows the format

of the TCP header.

 FFiigguurree 66--88..TCP header format.

In order to have a real paradigm of protocol functionality and mainly for the TCP/IP

header, I analyze a Voice Over IP call that you can see in Appendix A.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 105

6.3 Firewall Logging Implementation

Firewall logs reveal a lot of information on the nature of traffic coming in and going out

of the firewall, allows you to plan your bandwidth requirement based on the bandwidth

usage across the firewalls. Analyzing these firewall traffic logs is vital to understanding

network and bandwidth usage and plays an important role in business risk assessment.

Firewall Analyzer uses the Linux syslog server (syslogd) that listens for exported firewall

logs at the defined listener ports. The syslog server is a prerequisite for the right operation

of Firewall Analyzer. The architecture of firewall log analyzer is shown in ffiigguurree 66--99.

FFiigguurree 66--99..Firewall log analyzer architecture.

Firewall analyzer uses the Linux syslog daemon to store the firewall logs, and provides

comprehensive reports on firewall traffic, security breaches, and more. This helps

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 106

network administrators to arrive at decisions on bandwidth management, monitor web

site visits, audit traffic, and ensure appropriate usage of networks by employees.

The logic behind this implementation is exactly the same as the one that described in

proxy log file implementation (SSeeccttiioonn 55). The actual implementation is much easier than

the proxy log file, because the algorithm that implements the parsing is simpler. What

you need is a sorting of information per source address. One can observe that the

algorithm is generic and with few modifications are enough to parse any other log file

(for example the mail.log file).

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 10

6.3.1 Pseudocode

Before the description of the pseudocode, I try to make a scheme of how to develop the

parsing of the firewall log file. I mean that I make an initial guide of how to implement

the algorithm. The logic behind the actual implementation is depicted in ffiigguurree 66--1100:

7

FFiigguurree 66--1100..An example of the logic behind the algorithm.

The description of the above figure is provided in SSeeccttiioonn 55, in a more general manner.

Following, is presented the next step that is the pseudocode.

############## Start Pseudocode ##############

Create a pseudorandom hash function that coerces the source IP address (the key) into a

permuted integer through a series of bit operations (Lever, 200).

Read the tthhoorraaxx..ccoonnff file that contains the specified paths.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 108

Open the directory that contains the ffiirreewwaallll..lloogg file, check the permissions and read each

entry.

If (the log file is a file and the suffix is “..lloogg” that has suffix length 4) then open the

ffiirreewwaallll..lloogg file and read the next input line from the ffiirreewwaallll..lloogg file into a character

array buffer.

Define a structure for linked list elements and pointers to this structure that handle the

ideal case (no collisions) and the case that we have collisions:

/* Define a structure for linked list elements. */

typedef struct sListElement {

 char date[MIN_BUFFER_LEN];

 char prefix[MIN_BUFFER_LEN];

 char in[10];

 char out[10];

 char macAddress[MIN_BUFFER_LEN];

 char srcIP[19];

 char dstIP[19];

 char totalLength[MIN_BUFFER_LEN];

 char priority[10];

 char precedence[10];

 char hops[6];

 char uniqueId[15];

 char df[2];

 char protocol[15];

 char sourcePort[15];

 char dstPort[15];

 char seqNum[10];

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 109

 /* Vertical expansion of list, if we have same ip and different URL */

 struct sListElement* nextPortRecord;

 /* Horizontal expansion of list in order to avoid collisions */

 struct sListElement* nextSrcAddrRecord;

} listElement;

listElement* startSrcAddr[HASH_TABLE_SIZE];

listElement* nextSrcAddr[HASH_TABLE_SIZE];

listElement* startPort[HASH_TABLE_SIZE];

listElement* nextPort[HASH_TABLE_SIZE];

listElement* hashTable;

Get each record in the ffiirreewwaallll..lloogg file and separate it into tokens. Then set the kkeeyy, the

ddaattee, the lloogg pprreeffiixx,, the IINN interface, the OOUUTT interface, the MMAACC address, the source IP

(SSRRCC) and the destination IP (DDSSTT), the length of the packet (LLEENN), the type of service

(TTOOSS), the PPRREECC flag, the TTTTLL, IIDD, DDFF flag, PPRROOTTOO, source port (SSPPTT) and destination

port (DDPPTT) and sequence number (SSEEQQ) into the parsing algorithm and keep this

information in memory.

In order to set the data into memory, create the following algorithm:

If (nextPort[slot] == NULL) {

 //the defined slot in the hashtable is empty

 Create and fill the structure for the first time in the defined slot;

} else if (nextPort[slot] != NULL) {

 //the defined slot has already filled

 //Check the source address for collisions

 if (SRC is the same with the existing in the slot) {

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 110

 Create a new Vertical node in the same slot;

 } else if (SRC is different with the existing in the slot) {

 //We have collisions

 Create a new horizontal list;

 if (nextSrcAddr[slot] == NULL) {

 Create a new list due to collisions;

 } else if (nextSrcAddr[slot] != NULL) {

 //Check the source IP address

 if (SRC is the same with the existing in the slot) {

 Create a new vertical node to the current list;

 } else if (different SRC to the same slot) {

 Search the list in order to find a matching IP address;

 while (search the list until will be null) {

 if (match a client address) {

 break;

 }

 }

 if (did not pass into the while loop) {

 Insert new additional list;

 } else {

//a matching IP was found. Passed through the

//while loop.

 if (did not pass through the loop) {

 insert new node to the current

 additional list;

 }

 }

 }

 }

 }

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 111

}

When the parsing of the ffiirreewwaallll..lloogg file has been completed and all the data resides into

the memory, create a function that will be able to manipulate this information and to

exclude the data into a file. The name of the generated file will be the current date (that

will be taken from the system time).

For (go through the hash table and check each slot) {

 if (nextPort[slot] != NULL) {

 go to start of the list;

 while(nextPort[slot] != NULL) {

 write the information contained in the slot into the file;

 }

 while (nextSrcAddr[slot] != NULL) {

 write the information contained in the slot into the file;

 }

 }

}

make the generated file read only;

Moreover, create a function that will be able to manipulate this information and to export

the data in HTML format.

############## End of Pseudocode ##############

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 112

6.2 Firewall Log Analyzer Installation

The requirements are exactly the same with those of Proxy log analyzer in SSeeccttiioonn 44..22.

First of all, this application is written in C programming language (ANSI) to be

extremely fast and highly portable by using the Eclipse IDE version 3.1.2. The compiler

is: GGCCCC vveerrssiioonn 44..11..11.. Moreover, my working computer is a Sony Vaio laptop with CPU

Intel Pentium M 1.50 Ghz, HDD 60GB, RAM 512 MB and the operating system that is

LLiinnuuxx FFeeddoorraa CCoorree 55.

In order to be able to run the existing application in your computer you must do the

following steps:

 Login as root in a Linux distribution and open a console.

 Make a directory named “firewall” under the /root/thorax path

(/root/thorax/firewall). In the new directory, create another directory named

“userData” (/root/thorax/firewall/userData). In this directory

(/root/thorax/firewall/userData), you will have the generated file that includes the

needed information from the firewall log file. The filename comes from the

current date (the exact date that you run the application). The format of the date

is: YYYY-MM-DD.hh.mm. So, a sample file will have the following format:

“2006-08-31.00.00”. Note that you need to have the computer date and time

synchronized with the <<real>> date and time if you want to have the name of the

generated file the same with the current date.

 Extract the attached tarball file (firewall.tar.gz). In the generated folder named

“firewall” you can see the source code (fully comented).

 Put the “thorax.conf” file that you must take from the above generated folder

(firewall) in the /root/thorax/firewall path (/root/thorax/firewall/thorax.conf).

 Moreover, put the firewall.log file under the /root/thorax/firewall path

(/root/thorax/firewall/firewall.log).

 Go into the “firewall” directory and run the following command: make

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 113

 After the above steps, you can go to the /root/thorax/firewall/userData path and

you can open the generated file with a text editor (for example jjooee). Note that any

text editor can be used in place of jjooee (gedit, vi, etc). The generated file is read

only. So, you cannot change it. You can see the results with the less command

(for example: less 2006-09-04.21.24), or with the joe editor (joe 2006-09-

04.21.24).

 That's all!Have fun!

6.2.1 For the Impatiens

After you log on in a Linux-based distribution as root, put the attached tarball file

““ffiirreewwaallll..ttaarr..ggzz”” and the ““ffiirreewwaallll..iinnssttaallll”” file into the same directory. Open a terminal

as root and give the command: firewall.install (See ffiigguurree 66--1111 below). Then, the above

described steps will be done automatically. Note that in the tarball file, there exists a

sample ffiirreewwaallll..lloogg file for testing purposes. Also, in the extracted folder named

““ffiirreewwaallll”” you can see the source code (fully commented) and the Makefile.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 114

FFiigguurree 66--1111..Firewall log Analyzer Installation.

In ffiigguurree 66--1122 that follows, one can see a sample screenshot after running the above steps

and the file with users data has already generated (by giving the command: less

file_name):

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 115

FFiigguurree 66--1122..Sample screenshot with generated user's data.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 116

Appendixes

A. TCP/IP Example in a Real Paradigm

In, ffiigguurree 66--1133,, is depicted a screenshot from a network sniffer called WWiirreesshhaarrkk that

captures a call that is generated from an MMGGCCPP (Media Gateway Protocol) endpoint, and

via an MMGGCCPP SSiiggnnaalliinngg MMaannaaggeerr to a soft switch in order to route and translate the call

to another end point, via the corresponding signaling manager (depends on the type of

protocol – ISUP, SIP, H.323, MEGACO). More specifically, is a part of the call and not

all frames. It is just an example from a real environment. Moreover, ffiigguurree 66--1144 shows

the initiation frame of the MGCP endpoint. Also, ffiigguurree 66--1155 shows the IP header of a

TCP frame and ffiigguurree 66--1166 the corresponding TCP header of the same TCP frame.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 117

 FFiigguurree 66--1133..Frames analysis paradigm from a VoIP scenario.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 118

FFiigguurree 66--1144..MGCP initiation frame IP header format.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 119

FFiigguurree 66--1155..TTCCPP ffrraammee IP header format.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 120

FFiigguurree 66--1166..TCP frame TCP header format.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 121

B. Proxy Log Analyzer Code

The source code for the proxy log analyzer is attached in the CD in a folder named

proxyLogAnalyzer. Also, is attached a script for the rotation of the squid in a daily basis,

as described in Section 5.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 122

C. Firewall Log Analyzer Code

The source code for the firewall log analyzer is attached in the CD in a folder named

firewallLogAnalyzer. Moreover, is attached a script with iptables rules configuration for

the firewall architecture that described in Section 2.2.

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 123

References

Andreasson, O. (2005) Iptables Tutorial 1.2.0. Accessed 25/04/2006.

http://iptables-tutorial.frozentux.net/iptables-tutorial.html

Bamdel, D. (2001) Taming the Wild Netfilter. Accessed 25/04/2006.

http://www2.linuxjournal.com/article/4815

Brockmeier, J. (2001) Filtering Packets with iptables. Accessed 25/03/2006.

http://www.unixreview.com/documents/s=1237/urm0103c/0103c.htm

Brockmeier, J. (2001) Using iptables. Accessed 25/03/2006.

http://www.unixreview.com/documents/s=1236/urm0104l/0104l.htm

Chunyan, X. S. (2004) Simple IPTables Tips. Acecssed 12/05/2006.

http://www.nus.edu.sg/comcen/security/newsletter/Aug2004/simple_iptables_tips.htm

Coulson, D. (2001) Mastering IPTables. Accessed 26/04/2006.

http://davidcoulson.net/writing/lxf/14/iptables.pdf

Coulson, D. (2003) Network Security IPTables. Accessed 26/04/2006.

http://www.davidcoulson.net/writing/lxf/38/iptables.pdf

Devi, L. (2004) Hash Tables. Accessed 27/02/2006.

http://www.cs.unc.edu/~plaisted/comp122/13-hashing.ppt

Doherty, N. F. & Fulford, H. (2005) Aligning the Information Security Policy with the

Strategic Information Systems Plan. Computers & Security, 25(1), pp. 55-63, 2006.

http://iptables-tutorial.frozentux.net/iptables-tutorial.html
http://www2.linuxjournal.com/article/4815
http://www.unixreview.com/documents/s=1237/urm0103c/0103c.htm
http://www.unixreview.com/documents/s=1236/urm0104l/0104l.htm
http://www.nus.edu.sg/comcen/security/newsletter/Aug2004/simple_iptables_tips.htm
http://davidcoulson.net/writing/lxf/14/iptables.pdf
http://www.davidcoulson.net/writing/lxf/38/iptables.pdf
http://www.cs.unc.edu/%7Eplaisted/comp122/13-hashing.ppt

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 124

Eisermann, M. (2002) Performance tests with the Microsoft Internet Security and

Acceleration (ISA) Server. Accessed 15/06/2006.

http://www.webperformanceinc.com/library/files/proxy_server_performance.pdf

Fox, T. (2004) squid Proxy Server Configuration. Accessed 15/06/2006.

http://www.linuxheadquarters.com/howto/networking/squid.shtml

Garfinkel, S., Schwartz, A. & Spafford, G. (2003) Practical UNIX & Internet Security.

3rd ed. United States of America: O’Reilly & Associates, Inc.

Hall, A. E. (2000) Internet Core Protocols: The Definitive Guide. United States of

America: O’Reilly & Associates, Inc.

Jenkins, J. R. Hash Functions for Hash Table Lookup. Accessed 23/02/2006.

http://www.burtleburtle.net/bob/hash/evahash.html

Kenshi, P. Help File Library: Iptables Basics. Accessed 26/04/2006.

http://www.justlinux.com/nhf/Security/IPtables_Basics.html

Kernighan, W. B. & Ritchie, M. D. (1998) The Ansi C Programming Language. 2nd ed.

Pearson Professional Education.

Kirch, O. & Dawson, T. (2000) Linux Network Administrator’s Guide. 2nd ed. United

States of America: O’Reilly & Associates, Inc.

Lever, C. (2000) Linux Kernel Hash Table Behavior: Analysis and Improvements.

Accessed 24/02/2006.

http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf

Li, Y. (2002) The Double NAT MINI-HOWTO. Accessed 18/01/2006.

http://www.webperformanceinc.com/library/files/proxy_server_performance.pdf
http://www.linuxheadquarters.com/howto/networking/squid.shtml
http://www.burtleburtle.net/bob/hash/evahash.html
http://www.justlinux.com/nhf/Security/IPtables_Basics.html
http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 125

http://www.netfilter.org/documentation/HOWTO//netfilter-double-nat-HOWTO.html

Lilliam, K. P. (2005) A simple guide to creating a firewall and squid proxy server.

Accessed 18/04/2006.

https://www.redhat.com/apps/reseller_catalog/marketing/easy/network_services_linuxise

asy.pdf

Loudon, K. (1999) Mastering Algorithms with C. United States of America: O’Reilly &

Associates, Inc.

Marie, F. Netfilter Extensions HOWTO. Accessed 18/01/2006.

http://www.netfilter.org/documentation/HOWTO//netfilter-extensions-HOWTO.html

Messier, M. & Viega, J. (2003) Secure Programming Cookbook: for C and C++. United

States of America: O’Reilly & Associates, Inc.

Newham, C. & Rosenblatt, B. (1998) UNIX Shell Programming: Learning the Bash

Shell. 2nd ed. United States of America: O’Reilly & Associates, Inc.

Newstrom, H. (2002) Using Linux Scripts to Monitor Security. Accessed: 27/12/2005.

http://www.sans.org/reading_room/whitepapers/linux/197.php

Oualline, S. (1997) Practical C Programming. 3rd ed. United States of America: O’Reilly

& Associates, Inc.

Parlante, N. (2001) Linked Lists Basics. Accessed 23-02/2006.

http://cslibrary.stanford.edu/103/LinkedListBasics.pdf

Prata, S. (2004) C Primer Plus. 5th ed. United States of America: Sams Publishing.

http://www.netfilter.org/documentation/HOWTO//netfilter-double-nat-HOWTO.html
https://www.redhat.com/apps/reseller_catalog/marketing/easy/network_services_linuxiseasy.pdf
https://www.redhat.com/apps/reseller_catalog/marketing/easy/network_services_linuxiseasy.pdf
http://www.netfilter.org/documentation/HOWTO//netfilter-extensions-HOWTO.html
http://www.sans.org/reading_room/whitepapers/linux/197.php
http://cslibrary.stanford.edu/103/LinkedListBasics.pdf

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 126

Russel, R. (2002) Linux 2.4 Packet filtering HOWTO. Accessed 18/01/2006.

http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html

Russel, R. (2001) Linux Networking-Concepts HOWTO. Accessed 18/01/2006.

http://www.netfilter.org/documentation/HOWTO//networking-concepts-HOWTO.html

Russel, R. (2002) Linux 2.4 NAT HOWTO. Accessed 18/01/2006.

http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.html

Russel, R. & Welte H. (2002) Linux netfilter Hacking HOWTO. Accessed 16/01/2006.

http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO.html

Shinn, M. & Shinn, S. (2005) Troubleshooting Linux Firewalls. Hagerston: Addison

Wesley.

Stephens, J. Iptables. Accessed 23/04/2006.

http://www.sns.ias.edu/~jns/wp/iptables/

Song, H. et al. Fast Hash Table Lookup Using Extended Bloom Filter: An Aid to

Network Processing. (2005) In ACM sigcomm, Philadelphia, Pennsylvania.

Spenneberg, R. (2005) Analysis Tools for Firewall Logfiles: For the Record. Accessed

15/05/2006.

https://www.linux-magazine.com/issue/50/Firewall_Logfile_Analyzers.pdf

Stevens, R. W., Fener, B. & Rudoff, M. A. (2003) UNIX Network Programming: The

Sockets Networking API. 3rd ed. Addison Wesley.

Strebe, M. (2004) Network Security Foundations. United States of America: Sybex Inc.

http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO//networking-concepts-HOWTO.html
http://www.netfilter.org/documentation/HOWTO//NAT-HOWTO.html
http://www.netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO.html
http://www.sns.ias.edu/%7Ejns/wp/iptables/
https://www.linux-magazine.com/issue/50/Firewall_Logfile_Analyzers.pdf

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 127

Unknown. (2005) Dictionaries. Accessed 22/01/2006.

http://ww3.algorithmdesign.net/handouts/HashTables.pdf

Unknown. (2003) Firewall Logging & Monitoring. Accessed 18/04/2006.

http://www.loganalysis.org/sections/parsing/application-specific/firewall-logging.html

Unknown. IP Datagram General Format. Accessed 15/05/2006.

http://www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm

Unknown. IPTABLES quick HOWTO. Accessed 28/04/2006.

http://www.cse.msu.edu/~minutsil/iptables.html

Unknown. Linked Lists, Trees, Hash Tables (Data Structures). Accessed 24/02/2006.

http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial/lists.html

Unknown. Netfilter Log Format. Accessed 28/04/2006.

http://logi.cc/linux/netfilter-log-format.php3

Unknown. Quick HOWTO : Ch14 : Linux Firewalls Using iptables. Accessed

28/04/2006.

http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch14_:_Linux

_Firewalls_Using_iptables

Unknown. Using iptables. Accessed 29/04/2006.

http://www.linuxguruz.com/iptables/howto/iptables-HOWTO-6.html

Wessels, D. (2004) Squid: The Definitive Guide. United States of America: O’Reilly &

Associates, Inc.

http://ww3.algorithmdesign.net/handouts/HashTables.pdf
http://www.loganalysis.org/sections/parsing/application-specific/firewall-logging.html
http://www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm
http://www.cse.msu.edu/%7Eminutsil/iptables.html
http://vergil.chemistry.gatech.edu/resources/programming/c-tutorial/lists.html
http://logi.cc/linux/netfilter-log-format.php3
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch14_:_Linux_Firewalls_Using_iptables
http://www.linuxhomenetworking.com/wiki/index.php/Quick_HOWTO_:_Ch14_:_Linux_Firewalls_Using_iptables
http://www.linuxguruz.com/iptables/howto/iptables-HOWTO-6.html

Λαγός Μιχαήλ Μεταπτυχιακή Διπλωματική Εργασία

 Αναλυτής Αρχείων Καταγραφής 29/09/2006 128

Zwicky, D. E., Cooper, S. & Chapman, B. D. (2000) Building Internet Firewalls. 2nd ed.

United States of America: O’Reilly & Associates, Inc.

MM II CC HH AA II LL LL AA GG OO SS

	 Περίληψη
	
	Πίνακας Περιεχομένων
	1. Introduction
	2. Internet Firewall
	2.1 Security Policy
	2.2 Firewall Architectures
	3. Proxy Systems
	3.1 Proxy Advantages
	3.2 Disadvantages of Proxy
	
	3.3 How Proxy Servers Works
	3.4 How Client Side Works
	3.5 Types of Proxy Servers
	3.5.1 Application-Level versus Circuit-Level Proxies
	3.5.2 Intelligent Proxy Servers

	
	4. Squid
	4.1 Introduction
	
	4.2 Hardware and Operating System Requirements
	4.3 Setup Configuration and Startup
	4.3.1 Setup
	4.3.2 Server Configuration
	4.3.2.1 Most Basic Settings
	4.3.2.1.1 User IDs
	4.3.2.1.2 Port Numbers
	4.3.2.1.3 Access Controls
	4.3.2.1.4 Other Parameters
	4.3.3 Startup

	4.4 Log Files
	4.3.1 access.log
	4.3.2 Configuration Directives that Affect access.log

	5. Proxy Log Analyzer Implementation
	
	5.1 Pseudocode
	5.2 Log File Analyzer Installation
	
	5.2.1 For the Impatiens

	6. Packet Filtering
	
	6.1 Why Packet Filtering?
	
	6.2 Packet Filtering Under Linux
	6.2.1 Netfilter/iptables
	6.2.1.1 Setup iptables
	6.2.1.2 iptables Startup
	6.2.1.3 Netfilter/iptables Configuration
	6.2.1.3.1 Kernel Setup
	6.2.1.3.2 Userland Setup
	6.2.1.3.3 State Engine
	6.2.1.3.4 Specifying an Interface
	6.2.1.4 Network Address Translation (NAT)
	6.2.1.5 iptables Logging
	6.2.1.5.1 Netfilter Log Format (firewall.log)

	
	6.3 Firewall Logging Implementation
	6.3.1 Pseudocode

	6.2 Firewall Log Analyzer Installation

	
	6.2.1 For the Impatiens

	Appendixes
	A. TCP/IP Example in a Real Paradigm
	B. Proxy Log Analyzer Code
	C. Firewall Log Analyzer Code

	References

