
 

 

UNIVERSITY OF PIRAEUS – DEPARTMENT OF INFORMATICS 

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ – ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 

MSc «Computer Science» 

ΠΜΣ «Πληροφορική» 

 

MSc Thesis 

Μεταπτυχιακή Διατριβή 

Thesis Title 
 
 
 
 
Τίτλος Διατριβής 

Architecting Scalable Solutions: A Diplomatic 

Exploration into Micro-Services and Modern 

Technologies 

 

Σχεδίαση Κλιμακούμενων Λύσεων: Μια 

Διπλωματική Έρευνα στις Μικρό-Υπηρεσίες και 

τις Σύγχρονες Τεχνολογίες 

Student’s name-surname 
Ονοματεπώνυμο φοιτητή 

Konstantinos Kolios 

Κωνσταντίνος Κολιός 

Father’s name 
Πατρώνυμο 

Lampros 

Λάμπρος 

Student’s ID No 
Αριθμός Μητρώου 

ΜΠΠΛ21032 

Supervisor 
Επιβλέπων 

Efthimios Alepis, Associate Professor 

Ευθύμιος Αλέπης, Αναπληρωτής Καθηγητής 

 

 

 

 

 

 

Delivery Date/ Ημερομηνία Παράδοσης    April 2024/ Απρίλιος 2024 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                        3-Member Examination Committee 

                                                        Τριμελής Εξεταστική Επιτροπή 

 

Efthimios Alepis        Maria Virvou   Konstantinos Patsakis 

Associate Professor                   Professor        Associate Professor 

 

Ευθύμιος Αλέπης                                      Μαρία Βίρβου                                  Κωνσταντίνος Πατσάκης 

Αναπληρωτής Καθηγητής                             Καθηγήτρια                                       Αναπληρωτής Καθηγητής 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 3 

 

 

Table of Contents 
Abstract ........................................................................................................................................... 8 

Περίληψη ......................................................................................................................................... 8 

Chapter 1: Modern Challenges: Monolithic vs. Microservices ........................................................ 9 

1.1 Introduction ........................................................................................................................... 9 

1.2 Monolithic Architecture: Pros and Cons ............................................................................... 9 

1.3 Micro-Services Architecture: Pros and Cons ....................................................................... 10 

1.4 Architectural Decision-Making: Simplifying Complexity ..................................................... 10 

Chapter 2: Overview of Key Technologies Utilized in the Application Development ................... 11 

2.1 Spring Boot: Streamlining Java-Based Microservices .......................................................... 11 

2.2 Gradle: Modern Build Automation ...................................................................................... 11 

2.3 Database and Schema Management ................................................................................... 12 

2.3.1 PostgreSQL: A Powerful Relational Database .............................................................. 12 

2.3.2 Liquibase: Database Migration Made Easy .................................................................. 12 

2.4 Monitoring and Metrics ....................................................................................................... 13 

2.4.1 Prometheus: Flexible Monitoring Solution .................................................................. 13 

2.4.2 Grafana: Rich Visualization for Monitoring Data .......................................................... 14 

2.5 Logging Solutions ................................................................................................................. 14 

2.5.1 Elasticsearch: Scalable Search and Analytics Engine .................................................... 14 

2.5.2 Logstash: Centralized Logging and Log Parsing ............................................................ 15 

2.5.3 Kibana: Visualizing Elasticsearch Data .......................................................................... 15 

2.5.4 Filebeat: Lightweight Shipper for Log Data .................................................................. 16 

2.6 Docker: Containerization for Seamless Deployment .......................................................... 16 

2.7 Keycloak: Secure Authentication with JWT Tokens............................................................. 17 

2.8 Thymeleaf: Evaluating the Technology ............................................................................... 17 

Chapter 3: Application Architecture Breakdown .......................................................................... 18 

3.1 Advantages of Micro-services Adoption ............................................................................. 18 

3.2 Utilizing Eureka for Service Discovery ................................................................................. 19 

3.3 Gateway Service: Efficient Routing and Load Balancing ..................................................... 19 

3.4 Configuration Service Management .................................................................................... 20 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 4 

 

3.4.1 Leveraging RabbitMQ for Centralized Configurations.................................................. 20 

3.5 Ensuring Business Logic Separation..................................................................................... 21 

3.5.1 Doctor Portal Service .................................................................................................... 21 

3.5.2 Appointment Service .................................................................................................... 22 

3.5.3 Payment Service ........................................................................................................... 22 

3.6 Choosing Gradle Over Maven: Enhancing Build Automation and Flexibility ...................... 22 

3.7 Embracing Liquibase for Database Versioning: Robustness and Cross-Database 

Compatibility ............................................................................................................................. 23 

3.8 Architectural Choice: Why Thymeleaf over React or Angular ............................................. 24 

Chapter 4: Application Guide ........................................................................................................ 25 

4.1 Role-Based Scopes ............................................................................................................... 25 

4.1.1 Doctor: Prescription Management, Patient Interactions, Appointment Handling, 

Payment Tracking .................................................................................................................. 25 

4.1.2 Patient: Appointment Scheduling, Doctor Search, Prescription Access, Payment 

Records .................................................................................................................................. 25 

4.1.3 Admin: Role Permissions Management, Logging and Metrics Monitoring .................. 25 

4.2 Operational Scenario: Doctor Registration, Patient Simulation, Prescription Management

 ................................................................................................................................................... 26 

4.3 A Use Case for Adding Prescriptions in Our Healthcare Application................................... 26 

4.3.1 Setup local environment .............................................................................................. 26 

4.3.2 Project Setup and Configuration .................................................................................. 27 

4.3.3 Microservices Initialization ........................................................................................... 27 

4.3.4 Database Initialization (Initial Setup Only): .................................................................. 28 

4.3.5 User Registration and Authentication: ......................................................................... 28 

4.3.6 Appointment Booking Process: .................................................................................... 28 

4.3.7 Doctor Confirmation and Payment Processing: ........................................................... 28 

4.3.8 Prescription and Medical Procedures: ......................................................................... 29 

4.3.9 Visual Representation Use Case ................................................................................... 29 

4.3.9.1 Register User ......................................................................................................... 29 

4.3.9.2 Validate register user using mock taxis net ........................................................... 31 

4.3.9.3 Schedule an Appointment ..................................................................................... 32 

4.3.9.4 Ensure Appointment Status, Payment, and Prescription Validation for Patient 

Review: .............................................................................................................................. 35 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 5 

 

4.3.9.4.1 Appointments ................................................................................................. 35 

4.3.9.4.2 Payments: ....................................................................................................... 36 

4.3.9.4.3 Prescriptions: .................................................................................................. 36 

4.3.9.5 Admin Panel: ......................................................................................................... 36 

4.3.9.5.1 Inspect the logging using ELK( Elastic Logstash Kibana): ................................ 37 

4.3.9.5.2 Monitor the application using Grafana: ......................................................... 37 

4.3.9.5.3 Monitor the database using Grafana: ............................................................ 38 

4.3.9.5.4 Monitor the application instances: ................................................................ 38 

Chapter 5: Concluding Thoughts and Future Enhancements ........................................................ 39 

5.1 Delving into the Potential of Micro-Services: Balancing Enthusiasm with Pragmatism ..... 39 

5.2 Effortless Deployment with Cloud-Native Solutions ........................................................... 40 

Bibliography: .................................................................................................................................. 42 

Online Resources: .......................................................................................................................... 43 

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 6 

 

 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 7 

 

To my beloved family.

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 8 

 

Abstract 
 

In this thesis, a fully productive application will be presented, showcasing contemporary 
solutions and designs aimed at the development and expansion in the future within the 
healthcare sector. Its goal is to facilitate communication between doctors and patients. 
Challenges in selecting the appropriate software architecture for development are discussed, 
focusing on the differences and the advantages - disadvantages between Monolithic and Micro-
services architectures. Finally, instructions for installing the application are provided, allowing 
the reader of this document to follow the user scenario described for a complete understanding 
of the implementation. 

 

Περίληψη 
 

Στην παρούσα διπλωματική θα παρουσιαστεί μια πλήρως παραγωγική εφαρμογή που 

παρουσιάζει σύγχρονες λύσεις και σχεδιασμό, με σκοπό την ανάπτυξη ,συντήρηση καθώς και 

την επέκταση της στο μέλλον σχετικά με τον  τομέα υγείας με στόχο την διευκόλυνση της 

επικοινωνία μεταξύ γιατρών και ασθενών. Αναφέρονται οι προκλήσεις στην κατάλληλη επιλογή 

αρχιτεκτονικής για την ανάπτυξη λογισμικού, εστιάζοντας στην διαφορά και στα 

πλεονεκτήματα – μειονεκτήματα μεταξύ Monolithic και Micro-services. Τέλος, παρέχονται 

οδηγίες  για την εγκατάσταση της εφαρμογής, ώστε να μπορεί ο αναγνώστης του παρόντος 

κειμένου να ακολουθήσει το σενάριο χρήστη που περιγράφεται με σκοπό την πλήρη 

κατανόηση της υλοποίησης. 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 9 

 

Chapter 1: Modern Challenges: Monolithic vs. Microservices 

1.1 Introduction 

In today's rapidly evolving software landscape, developers face a host of challenges stemming 

from the growing complexity of applications and the need for scalable, resilient solutions. This 

chapter explores these contemporary programming challenges and the pivotal role that 

architectural design plays in addressing them. 

 

1.2 Monolithic Architecture: Pros and Cons  

Monolithic architecture, characterized by its cohesive structure where all components are 

tightly integrated into a single codebase, has long been a dominant approach in software 

development. Below, we dissect the pros and cons of this traditional architectural style:  

Pros of Monolithic Architecture:  

 Simplicity: Unified codebase simplifies development, deployment, and maintenance.  

 Ease of Testing: Testing the entire system as a unified entity ensures comprehensive test 

coverage. 

 Seamless Integration: Tightly coupled components facilitate smooth communication 

between modules.  

Cons of Monolithic Architecture:  

 Scalability Challenges: Scaling the entire system can lead to inefficiencies and performance 

bottlenecks.  

 Technology Lock-In: Difficulty in adopting new technologies or updating existing ones 

without significant refactoring.  

 Deployment Complexity: Updates may require redeploying the entire system, resulting in 

downtime and operational overhead 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 10 

 

1.3 Micro-Services Architecture: Pros and Cons  

In contrast to monolithic architectures, microservices architecture advocates for a decentralized 

approach, where applications are composed of loosely coupled, independently deployable 

services. Let's explore the advantages and disadvantages of this modern architectural paradigm: 

 

Pros of Micro-Services Architecture: 

Scalability: Granular scalability enables individual services to be scaled independently, 

enhancing flexibility and resource utilization. 

Technology Diversity: Allows for the use of diverse technology stacks for each service, fostering 

innovation and adaptability. 

Continuous Deployment: Facilitates rapid delivery of updates and features, enhancing agility and 

time-to-market. 

 

Cons of Micro-Services Architecture: 

Complexity: Managing service discovery, communication, and management introduces 

complexity, requiring robust infrastructure and tooling. 

Distributed Systems Challenges: Network latency, data consistency, and fault tolerance pose 

challenges that require careful design and implementation. 

Operational Overhead: Monitoring, logging, and coordination between services increase 

operational complexity and resource consumption. 

 

1.4 Architectural Decision-Making: Simplifying Complexity 

In many cases, significant time is devoted to deliberating over architectural choices, detracting 

from valuable implementation efforts. In our rapidly evolving environment, embracing a micro-

services approach may offer a prudent solution to scalability concerns. However, considering 

the need for swift results, a monolithic architecture serves as a pragmatic starting point, 

allowing for rapid deployment and subsequent expansion as requirements evolve. 

It's crucial to emphasize the importance of problem-solving over the creation of unnecessary 

complexities with overly intricate solutions. By adopting a pragmatic approach that prioritizes 

practicality and efficiency, we can navigate the complexities of architectural decision-making 

with clarity and purpose. 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 11 

 

Chapter 2: Overview of Key Technologies Utilized in the 

Application Development 

In the realm of modern software development, the choice of core technologies lays the 

foundation for the success of a project. Here, we delve into essential tools and frameworks that 

facilitate efficient development, deployment, and management of the existing application. 

 

2.1 Spring Boot: Streamlining Java-Based Microservices  

Spring Boot represents a paradigm shift in the Java ecosystem, offering developers a 

streamlined approach to building Micro-Services. At its core, Spring Boot embraces convention 

over configuration, reducing the need for verbose boilerplate code and simplifying setup tasks. 

Leveraging embedded servers, Spring Boot eliminates the complexity of external server 

configuration, enabling developers to focus on application logic rather than infrastructure 

concerns. 

Moreover, Spring Boot's auto-configuration feature intelligently configures application 

components based on classpath scanning, minimizing manual configuration efforts. This 

approach significantly accelerates development cycles, allowing teams to rapidly prototype and 

iterate on microservices architectures. Additionally, Spring Boot provides a comprehensive 

ecosystem of starter dependencies, facilitating seamless integration with popular libraries and 

frameworks for tasks such as data access, security, and messaging. 

 

2.2 Gradle: Modern Build Automation  

Gradle emerges as a modern and flexible build automation tool, empowering developers to 

automate project tasks with ease. Unlike traditional build tools, Gradle adopts a Groovy-based 

DSL (Domain Specific Language) that offers expressive and readable build scripts. This 

declarative syntax simplifies the definition of project tasks, dependencies, and configurations, 

enhancing the maintainability of build scripts. 

One of Gradle's standout features is its support for incremental builds, which ensures that only 

modified or dependent tasks are executed during each build cycle. This optimization minimizes 

build times, particularly in large-scale projects with complex dependency graphs. Additionally, 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 12 

 

Gradle's dependency management capabilities enable seamless integration with external 

libraries and modules, promoting code reuse and modularity. 

 

2.3 Database and Schema Management  

Effective management of databases and schemas is fundamental to ensuring data integrity, 

consistency, and performance in modern applications. In this section, we explore two key 

components that facilitate database management and schema evolution. 

 

2.3.1 PostgreSQL: A Powerful Relational Database  

PostgreSQL stands as a robust and feature-rich relational database management system 

(RDBMS), trusted by developers and organizations worldwide. Renowned for its adherence to 

SQL standards and ACID (Atomicity, Consistency, Isolation, Durability) properties, PostgreSQL 

offers a reliable foundation for storing and querying structured data. 

One of PostgreSQL's notable strengths lies in its extensibility, with support for a wide range of 

data types, indexing mechanisms, and advanced SQL features. Whether handling complex 

transactions, performing full-text search, or managing geospatial data, PostgreSQL delivers 

optimal performance and scalability. Furthermore, its active open-source community ensures 

ongoing development and support, contributing to its continued relevance in modern 

application development. 

 

2.3.2 Liquibase: Database Migration Made Easy  

Liquibase simplifies the process of managing database schema changes and versioning, 

providing developers with a robust and flexible solution for database migration. As an open-

source tool, Liquibase allows developers to define database changes using version-controlled, 

XML-based change log files. 

One of Liquibase's key advantages is its platform-agnostic nature, supporting various database 

management systems, including PostgreSQL, MySQL, Oracle, and SQL Server. This flexibility 

enables developers to seamlessly migrate database schemas across different environments 

without vendor lock-in. Additionally, Liquibase's support for rollback operations and change set 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 13 

 

management ensures data consistency and integrity throughout the migration process, 

minimizing the risk of errors and downtime. 

 

2.4 Monitoring and Metrics  

Monitoring and metrics play a crucial role in ensuring the reliability, performance, and 

availability of modern applications. In this section, we explore two essential tools that facilitate 

effective monitoring and visualization of application metrics. 

 

2.4.1 Prometheus: Flexible Monitoring Solution  

Prometheus stands out as a versatile and powerful monitoring solution designed for cloud-

native environments. Built with scalability and reliability in mind, Prometheus adopts a pull-

based model for collecting time-series data, allowing for flexible instrumentation of applications 

and infrastructure components. 

One of Prometheus's key features is its robust query language, PromQL, which enables 

developers to perform ad-hoc analysis and visualization of metrics. With PromQL, developers 

can define custom queries to extract insights from the collected data, facilitating informed 

decision-making and proactive incident management. Additionally, Prometheus's support for 

alerting and alert management enables developers to define custom alerting rules and receive 

notifications when certain conditions are met, empowering them to respond swiftly to potential 

issues. 

Furthermore, Prometheus integrates seamlessly with container orchestration platforms such as 

Kubernetes, making it well-suited for monitoring dynamic and ephemeral environments. Its 

ecosystem of exporters allows developers to collect metrics from various sources, including 

applications, databases, and system components, providing comprehensive visibility into the 

entire infrastructure stack. 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 14 

 

2.4.2 Grafana: Rich Visualization for Monitoring Data  

Grafana complements Prometheus by providing rich visualization capabilities for monitoring 

data collected from various sources. With its intuitive and customizable dashboards, Grafana 

empowers developers and operators to gain actionable insights into system performance, 

resource utilization, and application behavior. 

One of Grafana's strengths lies in its extensive library of built-in and community-contributed 

plugins, which enhance its versatility and extend its capabilities. Developers can choose from a 

wide range of visualization options, including graphs, charts, tables, and heatmaps, to create 

tailored dashboards that meet their specific requirements. Moreover, Grafana's support for 

alerting and notification channels enables teams to set up proactive monitoring and incident 

response workflows, ensuring timely detection and resolution of issues. 

Overall, Prometheus and Grafana form a powerful combination for monitoring and 

observability, providing developers with the tools they need to monitor, analyze, and visualize 

application metrics effectively. By leveraging these tools, organizations can ensure the reliability 

and performance of their applications in today's dynamic and complex computing 

environments. 

 

2.5 Logging Solutions  

Logging solutions are indispensable tools for modern application development, offering 

essential capabilities for centralizing, parsing, visualizing, and analyzing log data. In this section, 

we explore key components of the logging ecosystem, each serving unique functions to enhance 

observability and troubleshooting efforts. 

 

2.5.1 Elasticsearch: Scalable Search and Analytics Engine 

Elasticsearch emerges as a cornerstone of the logging ecosystem, providing a dynamic platform 

for indexing, searching, and analyzing vast amounts of log data in real-time. Renowned for its 

scalability and performance, Elasticsearch excels in handling diverse data types and supporting 

complex querying operations. 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 15 

 

At its core, Elasticsearch boasts a distributed architecture designed for horizontal scalability and 

fault tolerance. By distributing data across multiple nodes in a cluster, Elasticsearch ensures 

resilience and high availability, even under heavy workloads. Its powerful query language 

enables developers to perform advanced searches and aggregations, extracting valuable insights 

from log data with ease. 

Furthermore, Elasticsearch's integration with Kibana and other Elastic Stack components 

enriches its capabilities, enabling seamless visualization and exploration of log data through 

intuitive dashboards and visualizations. 

 

2.5.2 Logstash: Centralized Logging and Log Parsing  

Logstash complements Elasticsearch by providing a versatile data processing pipeline for 

ingesting, parsing, and transforming log data from various sources. As a centralized logging 

solution, Logstash simplifies the collection and enrichment of log events before they are indexed 

in Elasticsearch. 

A notable feature of Logstash is its extensive plugin ecosystem, which includes input, filter, and 

output plugins for handling diverse data formats and sources. Whether parsing structured logs, 

enriching log events with metadata, or routing data to different destinations, Logstash offers 

flexibility and extensibility to accommodate a wide range of use cases. 

Moreover, Logstash's configuration-driven approach empowers developers to define custom 

data processing pipelines tailored to their specific requirements. This flexibility, combined with 

robust error handling and retry mechanisms, ensures reliable and efficient log processing in 

complex environments. 

2.5.3 Kibana: Visualizing Elasticsearch Data  

Kibana serves as the visualization and exploration layer of the Elastic Stack, providing developers 

and operators with intuitive tools for analyzing and visualizing log data stored in Elasticsearch. 

With its user-friendly interface and rich visualization options, Kibana enables users to uncover 

insights and trends within their log data effortlessly. 

Key features of Kibana include customizable dashboards, interactive visualizations, and powerful 

search capabilities. Developers can create dynamic dashboards comprising multiple 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 16 

 

visualizations, such as line charts, histograms, and heatmaps, to monitor application 

performance and detect anomalies in real-time. 

Additionally, Kibana's integration with Elasticsearch's query language allows for ad-hoc 

searching and filtering of log data, facilitating rapid troubleshooting and root cause analysis. 

Whether exploring historical trends or investigating live incidents, Kibana empowers users to 

derive actionable insights from their log data with precision and efficiency. 

 

2.5.4 Filebeat: Lightweight Shipper for Log Data  

Filebeat serves as a lightweight log shipper designed to simplify the collection and forwarding of 

log data to Elasticsearch or Logstash for further processing. As an agent-based solution, Filebeat 

offers low resource consumption and minimal setup overhead, making it ideal for deployment in 

resource-constrained environments. 

One of Filebeat's primary strengths lies in its broad compatibility with various data sources and 

formats, including log files, system logs, and container logs. By leveraging lightweight modules 

and efficient log harvesting techniques, Filebeat ensures reliable and timely delivery of log 

events to downstream logging pipelines. 

Furthermore, Filebeat's support for dynamic configuration and stateful processing capabilities 

enables seamless integration with dynamic environments and log rotation scenarios. Whether 

monitoring standalone servers, containerized applications, or cloud-based infrastructure, 

Filebeat provides a flexible and scalable solution for collecting log data and enhancing 

observability across distributed systems. 

 

2.6 Docker: Containerization for Seamless Deployment  

Docker revolutionizes application deployment through containerization, offering a standardized 

and efficient approach to packaging, distributing, and running applications across diverse 

environments. At its core, Docker containers encapsulate application code, dependencies, and 

runtime environment, enabling consistent and reproducible deployments from development to 

production. 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 17 

 

A key advantage of Docker is its lightweight nature, which allows developers to create and 

deploy containers quickly and efficiently. By leveraging container images and Dockerfiles, 

developers can define application environments and dependencies in a declarative manner, 

ensuring consistency and reproducibility across different environments. 

Furthermore, Docker's ecosystem of tools and services, including Docker Compose for multi-

container orchestration and Docker Swarm for cluster management, simplifies the deployment 

and scaling of containerized applications. Whether deploying microservices architectures or 

monolithic applications, Docker provides a flexible and scalable solution for modernizing and 

streamlining the deployment pipeline. 

 

2.7 Keycloak: Secure Authentication with JWT Tokens 

Keycloak emerges as a leading identity and access management (IAM) solution, offering robust 

authentication and authorization capabilities for modern applications. Built on open standards 

such as OAuth 2.0 and OpenID Connect, Keycloak provides a secure and flexible foundation for 

implementing authentication and authorization workflows. 

A key feature of Keycloak is its support for JSON Web Tokens (JWT), which enable stateless 

authentication and token-based access control. By issuing JWT tokens to authenticated users, 

Keycloak simplifies the implementation of single sign-on (SSO) and federated identity solutions, 

allowing users to access multiple applications with a single set of credentials. 

Furthermore, Keycloak's extensive feature set includes support for user management, role-

based access control (RBAC), and fine-grained authorization policies. Administrators can define 

and enforce access policies based on user attributes, roles, and group memberships, ensuring 

compliance with security requirements and regulatory standards. 

 

2.8 Thymeleaf: Evaluating the Technology  

Thymeleaf is a modern server-side Java template engine for web and standalone environments. 

It stands out for its natural templating capabilities that enable the creation of dynamic and 

interactive web pages. Thymeleaf templates can be processed both on the server-side and on 

the client-side, offering flexibility in rendering approaches. Its seamless integration with Spring 

Boot and other Java frameworks makes it a popular choice for Java developers. Thymeleaf's 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 18 

 

syntax closely resembles HTML, making it easy to learn and use, particularly for developers with 

HTML experience. Its templating features include attribute modification, iteration, conditionals, 

and more, enabling the creation of complex UIs with minimal effort. Thymeleaf emphasizes 

simplicity, making it suitable for projects where backend logic takes precedence over extensive 

frontend interactivity.  

 

Chapter 3: Application Architecture Breakdown  

In this chapter, we explore our application's micro-services architecture and our approach to 

build automation. 

 

3.1 Advantages of Micro-services Adoption  

Micro-Services adoption offers several compelling advantages that align closely with the 

requirements and objectives of the application. By decomposing the monolithic architecture 

into smaller, loosely coupled services, the application gains agility, scalability, and resilience. 

One significant advantage is the ability to develop, deploy, and scale each service 

independently, allowing for rapid iteration and continuous delivery. This agility is particularly 

beneficial in a dynamic healthcare environment where evolving patient needs and regulatory 

requirements demand rapid adaptation. 

Moreover, microservices facilitate technology diversity, enabling teams to select the most 

suitable tools and frameworks for each service's specific requirements. This flexibility fosters 

innovation and empowers developers to leverage the latest advancements in technology to 

address complex healthcare challenges effectively. 

Additionally, microservices promote fault isolation, ensuring that failures in one service do not 

propagate to others, thereby enhancing system reliability and availability. This fault tolerance is 

crucial in healthcare applications where downtime or data inconsistencies can have significant 

consequences for patient care and safety. 

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 19 

 

3.2 Utilizing Eureka for Service Discovery  

Eureka, a service discovery tool provided by Netflix OSS, plays a pivotal role in the application's 

architecture by facilitating dynamic service registration and discovery. As the application 

comprises numerous microservices serving various functions, Eureka enables seamless 

communication and interaction between these services. 

Eureka operates on a client-server architecture, where microservices register themselves with 

the Eureka server upon startup. Through periodic heartbeats and health checks, Eureka ensures 

that the registry remains up-to-date, allowing clients to discover and consume available services 

dynamically. 

By leveraging Eureka for service discovery, the application achieves improved resilience and 

scalability. Services can be added or removed dynamically without manual intervention, 

enabling elastic scaling and efficient resource utilization based on demand fluctuations. 

 

3.3 Gateway Service: Efficient Routing and Load Balancing  

The gateway service serves as the entry point to the application, responsible for routing 

incoming requests to the appropriate microservices and performing essential cross-cutting 

concerns such as authentication, authorization, and rate limiting. 

By centralizing these concerns in the gateway service, the application simplifies the 

management of cross-cutting functionalities and ensures consistent enforcement across all 

microservices. This centralized approach enhances security, maintainability, and governance, 

mitigating the risk of unauthorized access or abuse. 

Furthermore, the gateway service enables efficient load balancing and traffic management, 

distributing requests evenly across multiple instances of each microservice. This load balancing 

strategy optimizes resource utilization, improves response times, and enhances overall system 

performance and scalability. 

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 20 

 

3.4 Configuration Service Management  

Configuration management is critical for maintaining consistency and coherence across the 

application's distributed architecture. The configuration service centralizes the management of 

configuration properties and settings, ensuring that all microservices adhere to the same 

configuration standards. 

By externalizing configuration from the codebase and storing it in a centralized repository, the 

application enhances flexibility, scalability, and maintainability. Changes to configuration 

settings can be applied dynamically without redeploying the affected services, enabling rapid 

adaptation to evolving requirements. 

Moreover, the configuration service supports versioning and auditing of configuration changes, 

providing transparency and accountability in the configuration management process. This audit 

trail is invaluable for troubleshooting issues, tracking changes, and ensuring compliance with 

organizational policies and regulatory requirements. 

 

3.4.1 Leveraging RabbitMQ for Centralized Configurations  

In this section, we delve into the strategic utilization of RabbitMQ for centralized configuration 

management within our application architecture. By leveraging RabbitMQ, we aim to streamline 

the distribution and management of configuration settings across the microservices ecosystem, 

thereby enhancing scalability, flexibility, and maintainability. 

RabbitMQ serves as a robust message broker that facilitates the exchange of messages between 

distributed components within our application. Leveraging its asynchronous messaging 

capabilities, RabbitMQ enables seamless communication and coordination between 

microservices, allowing for efficient distribution of configuration updates in real-time. 

One of the primary advantages of utilizing RabbitMQ for centralized configuration management 

is its support for pub/sub (publish/subscribe) messaging patterns. This enables us to decouple 

the configuration management process from individual microservices, ensuring that updates are 

propagated to all relevant components without introducing tight coupling or dependencies. 

Additionally, RabbitMQ provides features such as message durability, acknowledgments, and 

message routing, which contribute to the reliability and resilience of our configuration 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 21 

 

management system. Messages containing configuration updates can be persisted to durable 

queues, ensuring that they are not lost in the event of system failures or network issues. 

Moreover, RabbitMQ's support for message routing enables us to implement sophisticated 

routing logic based on message attributes or content, allowing us to target specific 

microservices or groups of microservices with tailored configuration updates. 

By centralizing configuration management with RabbitMQ, we can adapt to changing 

requirements and dynamic environments more effectively. Configuration updates can be 

propagated to all relevant microservices in a timely and consistent manner, enabling us to 

maintain configuration coherence and integrity across the entire application ecosystem. 

 

3.5 Ensuring Business Logic Separation   

In this section, we delve into the imperative of ensuring a robust separation of business logic 

through the strategic decomposition of our application into distinct microservices. This 

architectural paradigm facilitates enhanced modularity, scalability, and maintainability by 

segregating specific functionalities into self-contained components. 

 

3.5.1 Doctor Portal Service 

Positioned as the central hub of user interaction, the Doctor Portal Service serves as the primary 

UI interface for the application. This pivotal service orchestrates seamless communication with 

other integral components, including the Appointments and Payments services. Herein lies the 

crux of user authentication, meticulously facilitated by Keycloak. This pivotal authentication 

mechanism ensures stringent access control and user validation, leveraging JWT token 

authentication for role-based access and authorization. Moreover, beyond its authentication 

prowess, the Doctor Portal Service encapsulates a significant portion of the application's core 

business logic. This consolidation of logic within the Doctor Portal Service streamlines 

operational efficiency and promotes code coherence, thereby elevating the overall robustness 

and maintainability of the application. 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 22 

 

3.5.2 Appointment Service  

The Appointment Service emerges as a dedicated microservice singularly focused on managing 

appointment-related functionalities. By encapsulating appointment-specific logic within its 

purview, this service embodies a paradigm of functional specialization, thus fostering clarity and 

agility in development endeavors. The discrete nature of the Appointment Service empowers 

independent scalability and evolution, facilitating seamless adaptation to evolving business 

requirements and operational exigencies. 

 

3.5.3 Payment Service 

Exclusively designated for the handling of payment-related operations, the Payment Service 

stands as a bastion of financial transaction processing within the application architecture. By 

extricating payment logic into its autonomous microservice, we establish a delineation of 

responsibilities that fosters operational cohesion and resilience. This discrete segregation of 

payment functionalities not only enhances clarity and maintainability but also fortifies the 

application's security posture, mitigating potential risks associated with financial transactions. 

 

3.6 Choosing Gradle Over Maven: Enhancing Build Automation and 

Flexibility 

In this section, we explore the strategic decision to favor Gradle as our primary build automation 

tool over Maven. While Maven has long been a stalwart in Java development, Gradle offers 

compelling advantages that make it a superior choice for our project's dynamic requirements. 

Gradle's build script DSL (Domain-Specific Language) stands in stark contrast to Maven's XML-

based configuration, providing developers with an intuitive and expressive syntax. This allows 

for finer control and customization, empowering developers to craft tailored build workflows 

that precisely meet our project's needs. The flexibility and expressiveness of Gradle's DSL 

enhance productivity and adaptability, enabling smoother development processes. 

Moreover, Gradle's support for incremental builds and task caching mechanisms significantly 

accelerates build times, offering a more responsive and agile development experience. This 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 23 

 

efficiency is particularly valuable in environments where rapid iteration and deployment are 

essential, ensuring faster feedback cycles and quicker time-to-market. 

In addition to its superior flexibility and efficiency, Gradle excels in managing complex project 

structures and dependencies. Its robust dependency resolution algorithm ensures reliable and 

consistent build outcomes, even in projects with intricate interdependencies or large-scale 

requirements. 

Compared to Maven, Gradle offers a more modern and adaptable approach to build 

automation, making it better suited for our project's multifaceted needs. Its advanced features, 

intuitive syntax, and efficient build execution make Gradle the optimal choice for enhancing 

productivity, flexibility, and agility in our development workflow 

 

3.7 Embracing Liquibase for Database Versioning: Robustness and 

Cross-Database Compatibility 

In this segment, we delve into our strategic adoption of Liquibase as the primary solution for 

managing database schema versioning within our application, comparing it to the alternative 

tool, Flyway. Liquibase presents a comprehensive and adaptable approach to database 

evolution, empowering us to confidently navigate database changes with precision and 

efficiency. 

One notable advantage of Liquibase is its database-agnostic nature, enabling seamless migration 

across various relational database management systems (RDBMS). This cross-platform 

compatibility liberates us from vendor lock-in, facilitating smooth transitions between different 

database platforms without sacrificing data integrity or consistency. 

Additionally, Liquibase's declarative approach to database change management simplifies the 

process of defining and executing schema changes. By encapsulating changes within version-

controlled change log files, Liquibase ensures transparency, traceability, and auditability 

throughout the database evolution journey. 

Furthermore, Liquibase offers robust support for advanced features such as rollback scripts, 

change set dependencies, and preconditions, facilitating the orchestration of complex database 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 24 

 

migrations with ease. Its seamless integration with version control systems like Git enhances 

collaboration and accountability, enabling effective teamwork and streamlined workflows. 

While both Liquibase and Flyway serve as viable options for database versioning, Liquibase's 

broader feature set and cross-platform compatibility make it the preferred choice for our 

application's needs. By embracing Liquibase, we reinforce our application's resilience and 

scalability, establishing a robust foundation for seamless database evolution and management 

across diverse technological environments. 

 

3.8 Architectural Choice: Why Thymeleaf over React or Angular 

In making the architectural decision to utilize Thymeleaf for frontend development over more 

intricate frameworks such as React or Angular, personal preferences and project-specific needs 

significantly influenced the choice. Thymeleaf was selected primarily for its seamless integration 

with Spring Boot, a technology stack I am intimately familiar with. This integration offered a 

smooth development experience, aligning perfectly with the project's backend-driven focus. The 

simplicity of Thymeleaf's templating approach also resonated with me, allowing for rapid 

iteration on frontend designs without sacrificing attention to backend feature refinement. 

Furthermore, Thymeleaf's server-side rendering capability emerged as a crucial factor in the 

decision-making process. Given the project's emphasis on fast initial page loads and SEO 

performance, Thymeleaf's approach proved advantageous over client-side rendering 

frameworks like React and Angular. While React and Angular offer superior frontend 

interactivity, the learning curve and complexity associated with these frameworks were 

potential obstacles that could have impacted development timelines and resource allocation. 

Ultimately, the decision to choose Thymeleaf was rooted in the project's specific requirements 

and my familiarity with the technology stack. While React and Angular may offer advanced 

frontend capabilities, Thymeleaf's simplicity, compatibility, and efficiency aligned more closely 

with the project's goals, ensuring a smooth and efficient development process. 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 25 

 

Chapter 4: Application Guide  

4.1 Role-Based Scopes  

To ensure security and enhance reusability within the application's user interface, a deliberate 

decision was made to segregate user roles based on specific contexts. These roles were 

delineated into doctors, patients, and administrators, each assigned distinct scopes and 

associated business logic. Below, I will elucidate the responsibilities and privileges inherent to 

each role: 

 

4.1.1 Doctor: Prescription Management, Patient Interactions, Appointment Handling, 

Payment Tracking  

The doctor role encompasses a myriad of responsibilities crucial to the efficient functioning of 

the application. Doctors possess the authority to accept or reject appointment requests, track 

payment history associated with appointments, and crucially, issue prescriptions to patients. 

This role serves as the linchpin in facilitating seamless interactions between healthcare 

providers and patients, with a primary focus on delivering quality care and ensuring effective 

treatment outcomes. 

 

4.1.2 Patient: Appointment Scheduling, Doctor Search, Prescription Access, Payment 

Records  

Patients wield the ability to navigate the healthcare ecosystem through a comprehensive suite 

of functionalities tailored to their needs. Key among these capabilities is the capacity to 

schedule appointments with healthcare providers, search for suitable doctors based on specific 

criteria, access prescribed medications, and view comprehensive records of payment 

transactions. This role empowers patients to take an active role in managing their healthcare 

journey, fostering a collaborative and patient-centric approach to treatment. 

 

4.1.3 Admin: Role Permissions Management, Logging and Metrics Monitoring 

Administrators serve as the gatekeepers of the application's operational integrity, entrusted 

with overseeing role permissions management and monitoring critical system metrics. In 

addition to managing user accounts and defining role-specific permissions, administrators play a 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 26 

 

pivotal role in maintaining the application's robustness through diligent logging and metrics 

monitoring. This role ensures adherence to regulatory standards, identifies potential issues 

proactively, and safeguards the application against unauthorized access or malicious activity. 

 

4.2 Operational Scenario: Doctor Registration, Patient Simulation, 

Prescription Management 

In this section, I will present a practical use case scenario illustrating the application's 

functionality. Through a series of screenshots and step-by-step instructions, I will demonstrate 

the process of registering a new doctor within the system, mock patient profiles for 

appointment scheduling purposes, and simulate the prescription issuance process. By providing 

a visual walkthrough of these essential operations, users will gain a comprehensive 

understanding of the application's capabilities and user workflows, facilitating seamless 

adoption and utilization. 

 

4.3 A Use Case for Adding Prescriptions in Our Healthcare Application 

In this scenario, we illustrate the process of adding prescriptions for patients within our 

healthcare application, demonstrating how healthcare providers can efficiently manage patient 

treatments. 

 

4.3.1 Setup local environment 

1. Git: Version control system for tracking changes in source code during development. 

 Download: Git 

2. Gradle: Build automation tool for managing dependencies and building projects. 

 Download: Gradle 

3. JDK 17: Java Development Kit, the environment required to develop and run Java 

applications. 

 Download: JDK 17 

4. Docker Desktop: Platform for building, sharing, and running containerized applications. 

 Download: Docker Desktop 

https://git-scm.com/downloads
https://gradle.org/install/
https://www.oracle.com/java/technologies/javase/jdk17-archive-downloads.html
https://www.docker.com/products/docker-desktop/


Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 27 

 

5. Liquibase: Database schema change management tool for tracking, managing, and 

applying database changes. 

 Download: Liquibase 

6. Python: Optional, but useful for various scripting and development tasks. 

 Download: Python 

 

4.3.2 Project Setup and Configuration 

Clone the project repository using the command: git clone https://github.com/SylvanasGr/my-

doctor-app. 

 

Open the project directory located at '../my-doctor-app'. 

 

Follow the instructions provided in 'my-doctor-app/api-gateway/keycloak.md' for setting up 

Keycloak. 

 

4.3.3 Microservices Initialization 

Start the microservices in the following sequence:  

  discovery-server  

  configuration-service  

  api-gateway  

  my-doctor-app-service  

  payment-service  

  appointment-service 

  

https://www.liquibase.com/download
https://www.python.org/downloads/
https://github.com/SylvanasGr/my-doctor-app
https://github.com/SylvanasGr/my-doctor-app


Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 28 

 

4.3.4 Database Initialization (Initial Setup Only): 

If setting up for the first time: 

 Open a terminal and navigate to the path '~/my-doctor-app-

service/liquibase/changelog'. 

 Execute the command 'liquibase update' to create the schemas. 

 Run the script located at './global/bash_scripts/citizen_mock_data.sh' to populate mock 

citizen data. 

 

4.3.5 User Registration and Authentication: 

Select a random record from the 'citizen' table to simulate user identity (SELECT * FROM citizen 

ORDER BY random() LIMIT 1). 

Visit http://localhost:8500/login and select 'Login' -> 'Keycloak', then choose 'Register'. 

Provide your real information, excluding the data from the user selected in the previous step. 

Upon successful login, navigate to the 'User Page' to validate your existence by providing your 

tax number and social number to the system. 

 

4.3.6 Appointment Booking Process: 

Navigate to the 'Doctors' tab to request an appointment. 

Choose 'Schedule Appointment' and select a date and time. 

Monitor appointment status in the 'Appointments' tab. 

 

4.3.7 Doctor Confirmation and Payment Processing: 

Open another browser, log in as the chosen doctor from the previous step, and navigate to 

'Appointments' to accept the appointment. 

Refresh the page to validate that the appointment has been accepted (Status: Accepted), and 

check the 'Payments' tab to view the payment history. 

 

http://localhost:8500/login


Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 29 

 

4.3.8 Prescription and Medical Procedures: 

As a doctor, add the patient for the appointment using the 'Add Patient' button and prescribe 

necessary medications (Add Prescriptions). 

Check the associated prescriptions from the 'Prescription' tab as a user. 

 

4.3.9 Visual Representation Use Case 

4.3.9.1 Register User 

In order to register a user select the ‘Register’ option:  

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 30 

 

Fill in the relevant data and submit the registration by pressing the 'Register' button: 

 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 31 

 

4.3.9.2 Validate register user using mock taxis net 

Navigate to ‘User Page’ panel: 

 

 

Fill the data and press the ‘Login’ button: 

 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 32 

 

4.3.9.3 Schedule an Appointment 

Select ‘Scheduled Appointment’ button: 

 

 

Pick a date and press ‘Schedule’ button:  

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 33 

 

Open a new tab and log in to the application with John Smith doctor as describe at the section 

4.3.2, and choose ‘Super User Page’ and then ‘Appointments’ and Accept the appointment 

request: 

 

 

 

Then add the patient to the doctor’s list and write a prescription: 

 

 

 

 

 

 

 

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 34 

 

Choose associate patient: 

 

 

 

Choose Prescription:  

 

 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 35 

 

Write a prescription with the following order:  

 

 

4.3.9.4 Ensure Appointment Status, Payment, and Prescription Validation for Patient 

Review: 

4.3.9.4.1 Appointments: 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 36 

 

4.3.9.4.2 Payments: 

 

 

4.3.9.4.3 Prescriptions: 

 

4.3.9.5 Admin Panel:  

Lastly you can log in with Admin User and see how many users register to the app for specific 

periods: 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 37 

 

4.3.9.5.1 Inspect the logging using ELK( Elastic Logstash Kibana): 

 

4.3.9.5.2 Monitor the application using Grafana: 

 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 38 

 

4.3.9.5.3 Monitor the database using Grafana: 

 

 

4.3.9.5.4 Monitor the application instances: 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 39 

 

Chapter 5: Concluding Thoughts and Future Enhancements 

5.1 Delving into the Potential of Micro-Services: Balancing Enthusiasm 

with Pragmatism  

When first introduced to micro-services architecture, I found myself exhilarated by its promises 

of unparalleled flexibility and scalability. The prospect of breaking down monolithic applications 

into smaller, independently deployable services seemed like a revolutionary leap forward, 

especially in the context of scaling solutions and facilitating collaborative development efforts. 

The ability to utilize diverse languages, conduct autonomous testing, and streamline 

development processes held immense appeal, particularly in projects involving multiple teams 

working in parallel. 

However, as with any architectural approach, it's essential to temper enthusiasm with 

pragmatism. While micro-services offer compelling advantages, they are not a one-size-fits-all 

solution. In scenarios where projects are nascent and business logic is relatively simple, the 

overhead of implementing micro-services may outweigh the benefits. Monolithic architectures, 

despite their drawbacks such as longer build times and centralized solutions, remain a viable 

option for rapidly prototyping and iterating on ideas. The transition from a monolithic to micro-

services architecture can be a gradual process, initiated as the project matures and the need for 

scalability and autonomy becomes apparent. 

Reflecting on my journey with micro-services, I discovered that simplicity often lies in elegance. 

Initially, I encountered challenges stemming from excessive HTTP calls between microservices, 

leading to unnecessary complexity and performance overhead. It dawned on me that a 

monolithic approach, consolidating all business logic within a single application, could 

potentially streamline operations and reduce network dependencies. 

However, through proper redesign and refactoring of the micro-services architecture, I was able 

to overcome these challenges. By optimizing communication pathways and minimizing 

unnecessary interactions between services, I achieved a more efficient and resilient system. 

Moreover, I came to realize the fundamental difference between micro-services, which are 

network-independent, and monolithic architectures, which are CPU-dependent. This insight 

prompted a shift in perspective, highlighting the importance of understanding the underlying 

principles and trade-offs associated with different architectural paradigms. 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 40 

 

In conclusion, my journey with micro-services architecture has been a transformative 

experience, marked by both excitement and introspection. While the allure of scalability and 

flexibility initially captivated me, it was through practical challenges and iterative refinement 

that I truly grasped the nuances of architectural decision-making. By embracing pragmatism, 

continuous learning, and a willingness to adapt, I have gained valuable insights into the 

complexities of software design and the importance of striking a balance between innovation 

and practicality. 

 

5.2 Effortless Deployment with Cloud-Native Solutions 

One of the key hurdles encountered in implementing the use case outlined in this thesis is the 

intricacy of setting up a local development environment. The process involves tasks such as 

installing dependencies, ensuring compatibility across various operating systems, and managing 

infrastructure configurations, which can pose significant barriers to the application's adoption 

and exploration. 

To overcome these challenges and lay the groundwork for future enhancements, I propose 

deploying the application to the cloud using Kubernetes in conjunction with a suitable cloud 

provider. By harnessing Kubernetes' robust container orchestration capabilities, the aim is to 

abstract away the complexities associated with managing infrastructure, thus facilitating 

seamless scaling and deployment processes. 

Furthermore, by embracing cloud-native solutions such as Amazon Web Services (AWS) or 

Google Cloud Platform (GCP), I intend to capitalize on managed services and principles of 

infrastructure-as-code (IaC). This approach will enable the streamlining of deployment 

workflows, enhancing operational efficiency and scalability. 

In addition to cloud deployment, the plan involves implementing pipelines and automation for 

essential development tasks such as testing and linting. By incorporating continuous integration 

and continuous deployment (CI/CD) pipelines, the goal is to enable rapid iteration, ensuring that 

changes are thoroughly tested and seamlessly integrated into the application. Automation of 

repetitive tasks and enforcement of coding standards will further enhance the reliability, 

maintainability, and scalability of the application over time. 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 41 

 

In conclusion, by carefully evaluating the suitability of micro-services for new projects, and by 

embracing cloud-native deployment options such as Kubernetes and AWS, organizations can 

effectively address deployment challenges and unlock the full potential of modern application 

architectures. Through strategic planning, disciplined execution, and a commitment to 

continuous improvement, we can pave the way for a future where software development is 

characterized by agility, scalability, and resilience. 



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 42 

 

Bibliography: 
 

1. Fowler, M. (2012). Monolithic vs. Microservices Architecture: Monolith to Microservices: Evolutionary 

Patterns to Transform Your Monolith. Addison-Wesley Professional. 

2. Malin, M., & Berglund, E. (2016). Spring Boot in Action: Spring Boot in Action. Manning Publications. 

3. Muschko, B. (2020). Gradle Beyond the Basics: Gradle Beyond the Basics. O'Reilly Media. 

4. Momjian, B., & Rigsbee, J. (2017). PostgreSQL Up and Running: PostgreSQL: Up and Running. O'Reilly 

Media. 

5. White, N. (2012). Liquibase: Continuous Database Evolution: Liquibase: Continuous Database Evolution for 

Databases in an Agile World. Manning Publications. 

6. Soundararajan, A., & Sarkar, S. (2018). Monitoring with Prometheus: Prometheus: Up & Running. O'Reilly 

Media. 

7. Barciś, S., & Kowalewski, T. (2020). Grafana Observability: Grafana Observability. Packt Publishing. 

8. Gormley, C., & Tong, Z. (2015). Elasticsearch: The Definitive Guide: Elasticsearch: The Definitive Guide. 

O'Reilly Media. 

9. Gialluca, S., & Lancini, M. (2016). The Logstash Book: The Logstash Book. Logstash Book. 

10. Penton, A. (2019). Kibana Essentials: Kibana Essentials. Packt Publishing. 

11. Pothulapati, A. (2018). Docker on Windows: Docker on Windows. Packt Publishing. 

12. Luksa, M. (2018). Keycloak: Securing Your Apps with OAuth2 and OpenID Connect: Keycloak: Securing Your 

Apps with OAuth2 and OpenID Connect. O'Reilly Media. 

13. Grails, G., & Rocher, G. (2010). The Definitive Guide to Thymeleaf: The Definitive Guide to Thymeleaf. 

Apress. 

  



Master Thesis  Konstantinos Kolios 

Architecting Scalable Solutions: A Diplomatic Exploration into Micro-Services and Modern Technologies  Page 43 

 

Online Resources: 

 

1. Spring Boot official documentation: https://spring.io/projects/spring-boot 

2. Gradle official documentation: https://gradle.org/ 

3. PostgreSQL official documentation: https://www.postgresql.org/docs/ 

4. Liquibase official documentation: https://www.liquibase.org/ 

5. Prometheus official documentation: https://prometheus.io/docs/ 

6. Grafana official documentation: https://grafana.com/docs/ 

7. Elasticsearch official documentation: https://www.elastic.co/guide/index.html 

8. Logstash official documentation: https://www.elastic.co/guide/en/logstash/current/index.html 

9. Kibana official documentation: https://www.elastic.co/guide/en/kibana/current/index.html 

10. Docker official documentation: https://docs.docker.com/ 

11. Keycloak official documentation: https://www.keycloak.org/documentation.html 

12. Thymeleaf official documentation: https://www.thymeleaf.org/documentation.html 

 

 

 

https://spring.io/projects/spring-boot
https://gradle.org/
https://www.postgresql.org/docs/
https://www.liquibase.org/
https://prometheus.io/docs/
https://grafana.com/docs/
https://www.elastic.co/guide/index.html
https://www.elastic.co/guide/en/logstash/current/index.html
https://www.elastic.co/guide/en/kibana/current/index.html
https://docs.docker.com/
https://www.keycloak.org/documentation.html
https://www.thymeleaf.org/documentation.html

