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Abstract

Keywords: causal discovery, context awareness, causal features generation, influ-

ence identification, cloud computing, edge computing, machine learning, deep

learning

Causal Discovery and Context Awareness are central subjects in research for many

years. With its origins deeply rooted in scientific research, statistical inference,

and philosophical questions, causality has thrilled researchers due to its key role

in revealing the relationships between variables. Its significance lies in the pursuit

of understanding of not just what happens, but why it happens, and thus mak-

ing it vital in many scientific fields. Context awareness on the other hand, refers

to the ability of a system to understand the context and what are the factors that

affect the environment in which it is being used. That being said, Causal Discov-

ery and Context Awareness are of crucial importance when it comes to the devel-

opment of Artificial Intelligence systems that can be more accurate, robust and

generalizable. This thesis focuses on the design and implementation of two Con-

textual and Causal Extraction methods which can be used for the enrichment of

datasets towards the improvement of Machine Learning models. The first method

identifies the most influential instances in a dataset and utilizes them in order

to generate an Influence-based dataset. The second method discovers the causal

relationships that may exist in a dataset and afterwards utilizes this information

to generate causal features in order to incorporate this information to the initial
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dataset. In order to evaluate the methods’ performance they have been applied in

several, diverse frameworks and strategies used for the optimization of Cloud and

Edge Computing environments. The results show that the methods can effectively

extract contextual and causal information from datasets. Furthermore, the evalu-

ation proves that the utilization of this information can significantly improve the

performance of Machine Learning models. This thesis also provides potential di-

rections for future research that could build upon the findings of the current thesis.



Περίληψη

Λέξεις κλειδιά: ανακάλυψη αιτιότητας, επίγνωση πλαισίου αναφοράς, δη-
μιουργία αιτιακών χαρακτηριστικών, αναγνώριση επιρροής, υπολογιστικά νέφη,
υπολογιστική επεξεργασία στη περιφέρεια, μηχανική μάθηση, βαθειά μάθηση

Τα πεδία Ανακάλυψης Αιτιότητας (Causal Discovery) και Επίγνωσης Πλαι-
σίου Αναφοράς (Context Awareness) αποτελούν κεντρικά ϑέματα στην έρευνα
εδώ και πολλά χρόνια. Με τις ρίζες της βαθιά ριζωμένες στην επιστημονι-
κή έρευνα, στα στατιστικά συμπεράσματα και σε φιλοσοφικά ερωτήματα, η
Ανακάλυψη Αιτιότητας έχει ενθουσιάσει τους ερευνητές λόγω του βασικού
της ρόλου στην αποκάλυψη των σχέσεων μεταξύ των μεταβλητών. Η σημασία
της, έγκειται στο ότι δεν αρκείται μόνο στη κατανόηση του τι συμβαίνει, αλλά
και τους λόγους για τους οποίους συμβαίνει αυτό, γεγονός που τη καθιστά
απαραίτητη σε πολλά επιστημονικά πεδία. Η Επίγνωση Πλαισίου Αναφο-
ράς από την άλλη πλευρά, αναφέρεται στην ικανότητα ενός συστήματος να
κατανοεί το περιβάλλον στο οποίο χρησιμοποιείται καθώς και ποιοι είναι οι
παράγοντες που το επηρεάζουν. ∆εδομένων όλων των παραπάνω, τόσο η
Ανακάλυψη Αιτιότητας, όσο και η Επίγνωση Πλαισίου Αναφοράς αποτελούν
ϑέματα ζωτικής σημασίας όταν αφορούν στην ανάπτυξη συστημάτων Τεχνη-
τής Νοημοσύνης που μπορούν να είναι πιο ακριβή, ισχυρά και γενικεύσιμα. Η
παρούσα διατριβή εστιάζει στο σχεδιασμό, την υλοποίηση και την εφαρμογή
δύο μεθόδων Εξαγωγής Αιτιότητας και δεδομένων σχετικών με το Πλαίσιο Α-
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ναφοράς που μπορούν να χρησιμοποιηθούν για τον εμπλουτισμό των συνόλων
δεδομένων με τελικό σκοπό τη βελτίωση μοντέλων Μηχανικής Μάθησης. Η
πρώτη μέθοδος αναγννωρίζει τις παρατηρήσεις με τη μεγαλύτερη επιρροή σε
ένα σύνολο δεδομένων με σκοπό τη δημιουργία ενός συνόλου δεδομένων βα-
σισμένο σε αυτές. Η δεύτερη μέθοδος ανακαλύπτει τις αιτιώδεις σχέσεις που
μπορεί να υπάρχουν σε ένα σύνολο δεδομένων και στη συνέχεια χρησιμοποιεί
αυτές τις πληροφορίες για να δημιουργήσει αιτιακά χαρακτηριστικά τα οποία
τελικά ενσωματώνονται στο αρχικό σύνολο δεδομένων. Προκειμένου να αξιο-
λογηθεί η απόδοση των μεθόδων, έχουν εφαρμοστεί σε διαφορετικά πλαίσια
και στρατηγικές που χρησιμοποιούνται για τη βελτιστοποίηση περιβάλλοντων
Υπολογιστικών Νεφών (Cloud Computing) και Υπολογιστικής Επεξεργασίας
στη Περιφέρεια (Edge Computing). Τα αποτελέσματα δείχνουν ότι οι μέθο-
δοι μπορούν να εξάγουν αποτελεσματικά πληροφορίες σχετικά με το Πλαίσιο
Αναφοράς και τις Αιτιακές σχέσεις που υπάρχουν. Ακόμη αποδεικνύεται ότι
η αξιοποίηση αυτών των πληροφοριών μπορεί να βελτιώσει σημαντικά την α-
πόδοση των αλγορίθμων Μηχανικής Μάθησης. Τέλος, η παρούσα παρουσιάζει
πιθανές κατευθύνσεις για μελλοντική έρευνα που ϑα μπορούσε να βασιστεί
στα ευρήματα της τρέχουσας διατριβής.
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Chapter 1

Introduction

Chapter Structure

This Chapter is constructed as follows:

• Section 1.1 - Motivation, explains the reasons behind this research, and high-

lights its relevance and potential impact.

• Section 1.2 - Objectives, outlines the goals and objectives of the research.

• Section 1.3 - Research Questions, outlines the main questions that the study

aims to answer.

• Section 1.4 - Research Contributions, explains the contributions made by

the research.

• Section 1.5 - Outline of Dissertation, presents a structural overview of the

dissertation.

The origins of Artificial Intelligence (AI) can be traced back to the mid-20th cen-

tury [Carbonell et al., 1983], [Fradkov, 2020], when pioneers such as Alan Turing

established the fundamental principles for creating intelligent machines [Turing,

1992]. Nevertheless, it was only in the past several decades that AI and its sub-

set, Machine Learning (ML), have experienced a substantial and rapid develop-
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ment [Aggarwal et al., 2022].

This progress has been fueled by breakthroughs in both hardware and software.

Computing capabilities have increased (i.e., the computing power has been in-

creased exponentially, while the storage capabilities now allow the collection of

massive datasets). Furthermore, the software is now able to handle better complex

algorithms. Initially focused on rule-based systems, AI has progressed towards

more dynamic techniques, with ML becoming a cornerstone. The evolution from

early rule-based expert systems to modern Neural Network (NN) and Deep Learn-

ing (DL) has been characterized by the development of more elaborate models

that have the capacity to interpret and comprehend complex patterns.

Currently, AI and ML are everywhere, invading almost every aspect of our everyday

life. Starting with the healthcare sector in which AI has been made contributions

on the diagnosis of various cancer types [Kadir and Gleeson, 2018], [Kourou et al.,

2015], [Lazic et al., 2022], [Raoof et al., 2020], [Yarabarla et al., 2019], or the develop-

ment of individualized treatments or analyzing the survival rate of individuals in

clinical trials [Marinos et al., 2022], [Marinos et al., 2021], while in the finance sec-

tor, AI is used to enhance trading tactics [Kissell, 2020] and evaluate risks [Bhatore

et al., 2020].

The benefits of AI affect the transportation sector too, with the provision of au-

tonomous vehicles [Faisal et al., 2019], while in entertainment, recommendation

algorithms personalize content consumption [Pazzani and Billsus, 2007], [Phorasim

and Yu, 2017]. Social media platforms exploit ML and DL for advertising [De-

hghani and Tumer, 2015], Natural Language Processing (NLP) for sentiment anal-

ysis [Manias et al., 2023], while virtual assistants such as Apple’s Siri or Alexa from

Amazon [Brill et al., 2022] can be used to improve the overall user experience, as

they are able to perform daily routines and streamline tasks at ease.

The use of AI is also heavily increased in several emerging fields in the areas of

communication and services provision, from Cloud, Edge Computing, and Inter-

Doctoral Thesis



1.1. MOTIVATION 3

net of Things (IoT) [Chen, 2020], [Deng et al., 2020a], [Gill et al., 2022], to Cognitive

Network Management for 5G Networks [Bega et al., 2019]. The research towards

the creation of more intelligent ways to manage such diverse environments has

expanded over the last years, due to the increased use of these solutions by the

service providers and the facilities they provide.

Yet, as these technologies advance, important considerations and challenges arise,

including issues related to bias, transparency and in general the ability of AI to

comprehend the environment it is utilized in, and identify potential causal rela-

tionships among the factors that may affect it. And even though AI promises to

redefine how we live and work, these issues need to be resolved, something that

requires careful navigation.

As already stated, ML has made remarkable progress over the last few decades;

however, one of the most significant obstacles, has to do with its inability to recog-

nize and understand causal relationships [Stoica et al., 2017] and even though it

usually excels when it comes to recognizing patterns in complex datasets or mak-

ing predictions based on those correlations found in large datasets, it often fails

to identify the basic or hidden causal links that exist. This important limitation

prevents us from exploiting the full potential of AI. Not only that, as ML struggles

to comprehend the existing cause-and-effect relationships this may lead to less

accurate predictions, especially in situations where confounding factors. In order

to make better decision-making systems and more advanced AI applications, clos-

ing this gap and creating methods that build a better understanding of cause and

effect into ML algorithms becomes an absolute necessity.

1.1 Motivation

As described in the above, one of the key challenges of AI regards its incapacity to

identify potential causal relationships among the data. For this reason, over the

Chrysostomos G. Symvoulidis
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last years a turn towards Causal Learning has been acknowledged [Cheng et al.,

2022]. From adaptations of State-of-the-Art ML algorithms in order allowing the

uncovering causal relationships in data [Cheng et al., 2022], [Li et al., 2016b], DL so-

lutions such as Causal NN that are able to perform causal discovery on data [Wier-

ing et al., 2002]. This shift towards the implementation of such algorithms makes

it clear that developing AI models that are able to understand such relationships

will lead to more accurate and robust predictions. That being said, causal infor-

mation should enable ML algorithms to not just identify correlations, but rather

determine cause-and-effect relationships within a dataset, thus making them ca-

pable of making more informed decisions, and generalizing better to unseen data.

This is particularly important in complex real-world scenarios where multiple fac-

tors have a crucial impact, such as in the realm of managing Cloud and Edge Com-

puting infrastructures [Geiger et al., 2016], [Wang et al., 2021a]. In such cases, un-

derstanding causality is essential for an effective decision-making process, while

also increasing the users’ trust. The complexity of managing heterogeneous edge

servers, IoT devices and deployed services, coordinating distributed computing

resources, and managing varying workloads, creates an environment where the

interactions between the factors are substantial. In these situations, understand-

ing causality is critical to promoting effective decision-making [Afonso, 2018].

The potential benefits of integrating causal information and highlighting the con-

text via the identification of the most effective instances into datasets are mani-

fold. To start with, this will lead to the development of ML models that are in-

terpretable [Moraffah et al., 2020], [Xu et al., 2020a] and transparent [Mittelstadt,

2021], [Wischmeyer, 2020]. In addition, causal understanding can facilitate on im-

proving the overall performance of a model since it can help on reducing the bias,

and enhance the model’s fairness [Zhang and Bareinboim, 2018] and generaliza-

tion ability [Lv et al., 2022].

However, this research is not without challenge. Existing limitations include the
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difficulty in accurately utilize the identified causal relationships in data and the

efficient incorporation of this knowledge in the data, in order to be exploited by

the ML model during the training process, especially in diverse environments such

as an edge network or a cloud computing infrastructure. Another key challenge

relates to the actual data. In more detail, in general, causally-enhanced data can be

difficult to obtain or gain access. Therefore alternatives in order to recognize these

cause-and-effect relationships from the data that exist need to exist. Thus, there is

a need for methods that enable the identification of context and the extraction of

causal information in order to enhance the data and allow a ML to learn from it.

1.2 Objectives

The main objective of this thesis is to examine if there exist ways that enable the

extraction of causal and contextual information from data retrieved in heteroge-

neous and diverse environments as a Cloud infrastructure or an Edge network,

towards the creation of ML models capable of efficiently managing them. In order

to achieve this objective, this thesis will present specific methods that will allow

this.

In more detail, this thesis will present data enhancement methods that will enable

(i) the identification of context within a given environment through the informa-

tion that can be collected from it, (ii) the extraction of causal information from

the collected data, (iii) ways to incorporate this additional information to the data,

and finally (iv) how these methods can be applied as steps in any ML workflow.

In order to evaluate these methods, they will be utilized in different real-world

scenarios and in different ML tasks, from classification, to time-series analysis, to-

wards the advancement of existing methods used for managing Cloud and Edge

infrastructures. In more detail, these tasks are related to data placement, dynamic

resource allocation, optimal deployment configuration, and data prefetching. In

Chrysostomos G. Symvoulidis
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addition, the proposed data enhancement methods will be applied in those sce-

narios either individually or combined in order to evaluate their significance in

both situations.

1.3 Research Questions

This thesis tries to answer the following research questions:

RQ1: ”Is it possible to derive causal and contextual relationships from data, and

what methods are available for accomplishing this?”

As already established based on the analysis in the previous Sections, there is a

growing need for utilizing causal and contextual information which can be some-

how exploited towards the enhancement of an ML model. But before getting there

it is crucial to understand if such information can be extracted from the data in the

first place. Thus, trying to answer this question, this thesis investigates methods

related to causality and context identification from data.

RQ2: ”Can the extracted causal and contextual information be utilized for im-

proving the performance of ML or DL models used for the sufficient manage-

ment of Cloud and Edge Infrastructures?”

This question arises as the subsequent step following RQ1. In more detail it el-

evates the process further, since if causal extraction from data is something that

can be achieved, then, are there any ways that can be used in order to utilize this

information in order to improve ML models that facilitate on the management

of Cloud and Edge Infrastructures? And if so, what are the advantages that an AI

model will have if trained on causally- and context-aware data? In order to answer

to these points, this thesis evaluates the designed data enhancement methods in

order to obtain results that verify their significance.

RQ3: ”In which ML tasks can these causal and contextual enhancement meth-

Doctoral Thesis



1.4. RESEARCH CONTRIBUTIONS 7

ods be utilized?”

By asking this question, the goal is to identify in which ML tasks the proposed

methods can be applied efficiently. This is particularly important, when manag-

ing multifaceted environments such as the Cloud or the Edge. To be more pre-

cise, this thesis evaluates if the proposed methods can be applied in specific ML

tasks including supervised learning where the proposed methods are assessed in

classification problems, such as the prediction of the users’ mobility class in hy-

brid Cloud and Edge infrastructures, the recommendation of objects from storage

Cloud services, and time-series analysis for the prediction of the resource usage of

services deployed at the Edge, among others.

RQ4: Does the enhancement of the data with contextual and causal information

improve an ML model’s performance?

With this question, the goal is to evaluate the significance of the proposed meth-

ods. In other words, do these methods improve in any way the model? In order to

answer that, the relevance of the proposed techniques will be tested by comparing

the outcomes of the models when the methods are included in the training work-

flow and when they are absent. This direct comparison will provide the necessary

information to perform this evaluation.

1.4 Research Contributions

The research that has been conducted and will be presented in this thesis can be

formed in four key contributions and can be divided in these main areas: (i) the

identification of contextual information from data, (ii) the discovery of causal re-

lationships from data, and finally (iii) the enhancement of data exploiting the ex-

tracted contextual information and discovered relationships.

RC1: An Influence-based Instances identification method

Chrysostomos G. Symvoulidis
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In order to answer questions RQ1 and RQ2 in this thesis a novel Influence-based

Dataset Generation method will be presented. This method aims at identifying the

influence of any instance in a given Dataset and generating a new influence-based

Dataset which should highlight the key factors that impact the decision making

progress, and as a result facilitate on reducing over-fitting the AI model, and in

general aid in improving the model’s performance and robustness.

RC2: A Causal Features Generation method

Following an alternate approach to answer questions RQ1 and RQ2, this thesis

presents a Causal Features Generation method which aims at identifying causal

relationships among the features in a given Dataset, generating causal features ac-

cording to the previously identified causal relationships, and finally at enhancing

the existing Dataset by incorporating the generated causal features. The goal of

this method, is again to improve the performance of any AI model by highlighting

causal relations that may exist in the data.

RC3: Design and implementation of service components used for the optimiza-

tion of resources in Cloud and Edge Computing Infrastructures

Trying to answer questions RQ3 and RQ4 the two methods are evaluated in differ-

ence use cases and scenarios. In more detail, the Influence-based Dataset Genera-

tion has been integrated in a component of a Storage Cloud service responsible for

the identification of the most popular data in order to prefetch them and thus re-

duce the overall transmission delays, as well as a scenario in which it is used within

a component which identifies the optimal deployment configuration of services in

Edge Computing infrastructures. On the other hand, the Causal Features Genera-

tion method has been applied in a scenario in which an ML model predicts the

mobility of users in Edge networks towards the optimization of data placement

taking into consideration the users’ mobility.

RC4: Evaluation of the proposed Influence-based Dataset Generation and Causal
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Features Generation methods in diverse scenarios

In order to justify the proposed methods’ significance and answer question RQ4,

as already discussed they have been applied to different use cases. In some cases

the task was related to a classification problem, while in other cases it was related

to time-series analysis problems. Furthermore, in order to thoroughly assess the

methods importance, in all cases, a comparison evaluation is performed in which

the performance of each model is measured when the methods are applied or not.

In addition, Table 1.1 demonstrates how the publications are mapped to any of the

aforementioned research contributions.

1.5 Outline of Dissertation

The remainder of this dissertation is organized in the following way:

• Chapter 2 presents the Infuence-based Dataset Generation method. The

Chapter initially performs a literature review in the Instances Importance

and afterwards presents in detail the architecture of the proposed Influence-

based Dataset Generation method. Furthermore, in this Chapter a high-level

presentation of the scenarios in which the proposed method is evaluated, set-

ting the ground for the upcoming Chapters.

• Chapter 3 presents the first use case used for the evaluation of the proposed

Influence-based Dataset Generation method. The Chapter first analyzes and

explains the necessity of the existence of a prefetching mechanism in Health

Storage Clouds and the vital role such services play in the Health Information

Exchange (HIE). Consequently, an overview of the proposed Health Storage

Cloud is performed, showcasing the various features such a service includes,

along with the adaptations that were made to the generic Influence-based

Dataset Generation method. Finally, this Chapter concludes by depicting the

results of the performance evaluation that was performed in order to assess

Chrysostomos G. Symvoulidis
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the service as well as the importance of the Influence-based Dataset Genera-

tion method.

• Chapter 4 describes the second use case used for the evaluation of the pro-

posed Influence-based Dataset Generation method. The chapter starts by

performing an introduction to the topic of optimal deployment configura-

tion on the edge. Then, an overview of the proposed deployment configu-
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ration framework is presented, depicting how the Influence-based Dataset

Generation method is utilized. The Chapter concludes by showcasing the

results of the performance evaluation, and by discussing the lessons learnt

from the first two use cases, relative to the effectiveness of the Influence-

based Dataset Generation method.

• Chapter 5 presents the second data enhancement method, which is called

the Causal Features Generation method. The Chapter starts with an analysis

of the State of the Art, and the discussion of relevant topics and research ar-

eas such as Causal Inference and Causal Discovery. The proposed Causal Fea-

tures Generation method is then presented in detail, and the Chapter ends

with a provision of a high-level view of the use case used for the evaluation

of the proposed method.

• Chapter 6 presents the use case used for the evaluation of the proposed

Causal Features Generation method. At first, a literature review in the ar-

eas of Data Placement and Optimal Routing is performed. Next, an overview

of the proposed User Mobility-based Data Placement Strategy is presented,

along with the necessary adaptations that were made to the generic Causal

Features Generation method in order to be utilized efficiently in this scenario.

Moreover, the evaluation of the data placement strategy is presented, show-

casing the usefulness of the Causal Features Generation method. The Chap-

ter ends with a detailed discussion regarding the evaluation outcomes, in

which the advantages of the proposed method are highlighted.

• Chapter 7 presents a framework for Dynamic Resource Allocation at the Edge.

In this use case both data enhancement methods are utilized, in order to

assess whether they can be used efficiently in combination. First, a litera-

ture review in the area of Dynamic Resource Allocation at the Edge is per-

formed. Consequently, an overview of the proposed Dynamic Resource Allo-

cation framework is presented, highlighting the use of the two proposed data
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enhancement methods. The evaluation outcomes of the proposed frame-

work are also presented, and the significance of the two methods is also high-

lighted.

• Chapter 8 summarizes the Doctoral Dissertation and its main contributions,

and in addition, the open research topics and future goals as derived from

the present research are described.
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Chapter 2

Influence-based Dataset Generation

method

Chapter Structure

This Chapter is constructed as follows:

• Section 2.1 - Background on Instances Importance and Contextual Data

Enhancement, provides an in-depth review on the importance of the instances

in a dataset and present how they can be utilized towards understanding bet-

ter the outcomes of an ML model or how the information that they bring can

be exploited in order to make a model more robust and contextually-aware.

In addition, a review of contextual enhancement methods is performed.

• Section 2.2 - Influence-based dataset Generation Architecture, presents the

overview of the proposed Influence-based Dataset Generation method.

• Section 2.3 - Evaluation of the Influence-based Dataset Generation method,

provides a high-level view of the evaluation scenarios in which the proposed

method has been put under.

Before describing the proposed method, it is crucial to define the advantages that

training on influential instances provide:

13
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(i) When training AI models with datasets that are comprised of influential in-

stances could lead to better generalization, since they (i.e., such instances)

often capture essential characteristics of the underlying data.

(ii) Influential instances can make the training process more efficient, since the

ML model can concentrate on learning from observations that carry substan-

tial information, which can potentially reduce the need for extensive training

on less informative instances.

(iii) Model interpretability can also achieved when utilizing a dataset that con-

tains influential instances, since it can be made easier to communicate and

understand, providing insights into the critical factors driving the model’s

predictions.

(iv) Influential instances may include outliers or anomalies that are important

for certain applications, thus leading to more robust models. Training on

such instances facilitates in recognizing such atypical cases from the ML model.

On the other hand, by focusing on influential instances, a ML model may as

well become less sensitive to irrelevant observations which do not contribute

significantly to the overall predictive task. This can lead to more effective and

robust models.

In order to achieve this, the proposed method has two main objectives:

(i) To identify the influence of each instance in a given dataset [Gupta and Gupta,

2017], and

(ii) Second, to generate an influence-based dataset.

The influential instances are typically used to elucidate the results of difficult-to-

interpret ML or DL models. The current method, however, differs from the current

way influential instances are used because it employs influential instances in a

manner that will empower a ML model by providing additional data-related in-

formation. Specifically, it will provide the model with a catalog of instances that
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2.1. BACKGROUND ON INSTANCES IMPORTANCE AND CONTEXTUAL DATA ENHANCEMENT15

are potentially more significant than others, which the model can use to enhance

itself.

2.1 Background on Instances Importance and Contex-

tual Data Enhancement

2.1.1 Influential Instances

The Section provides an overview of the Influential Instances. In more detail, Sub-

section 2.1.1.1 introduces the term ”Influential Instances”. Sub-section 2.1.1.2,

presents the existing available techniques which allow for the identification of in-

fluential instances and how they can be used in order to interpret the outcomes of

ML or DL models, and in general how can this technique be utilized towards the

creation of eXplainable Artificial Intelligence (XAI).

2.1.1.1 What are the Influential Instances

ML models are essentially constructed from the training data they are trained with.

Therefore, removing a single instance from the training set can have an impact on

the final model.

A training instance is ”influential” if taking it out of the training data changes the

predictions or parameters of an ML model substantially [Molnar, 2020]. In addi-

tion, the influence of any instance can be measured, meaning that the greater the

change the instance produces to the model, the more influential it is. Furthermore,

the influence of any instance in a model also depends on its target.

There exist several methods in order to detect the influence of the instances in a

given dataset. Following, a detailed analysis of the most prominent methods will

be performed.
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2.1.1.1.1 Deletion Diagnostics

Deletion Diagnostics is a technique which can be utilized for detecting the influ-

ence any instance has in the model. The way Deletion Diagnostics work, is as fol-

lows: the process starts by training a model with a training dataset which consists

of all the available instances. Once the model is trained, the model’s predictions or

the model’s parameters can be measures using any of the available metrics, such

as Cook’s distance [Cook, 1977] or DFBETA [Adadi and Berrada, 2018], [Mi et al.,

2020], etc. These metrics are defined in detail in Chapter 3.

Consequently, a repetitive process starts, where one by one, the instances of the

training dataset are removed, the model is retrained, and the model’s predictions

along with the model’s parameters are measured again in order to calculate the

changes the deletion of an instance brings to the model. Understandably, the

higher the changes are when compared to the original measurements, the higher

the importance of the instance.

Also, an important note is that deletion diagnostics regards a model agnostic method,

which means that it can be used in any model in order to measure the influence

the instances of data have on it.

2.1.1.1.2 Influence Functions

The method of Influence functions belongs in the field of robust statistics and can

be used to calculate the influence an instance has on a model [Koh and Liang,

2017]. Similar to Deletion Diagnostics, the Influence Functions identify the train-

ing instance responsible for the model parameters and predictions.

Unlike Deletion Diagnostics, rather than removing training instances, this tech-

nique calculates an approximation of the model’s changes in response to an in-

stance being upweighted in the empirical risk (which is the sum of the loss across

the training data).
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Influence Functions work by upweighing a training instance’s loss by an extremely

small step ε, which yields new model parameters as shown in Equation 2.1:

θ̂ε,z = argmin
θ∈Θ

(1 − ε)1
n

n∑
i=1

L(zi, θ) + εL(z, θ) (2.1)

where θ regards the model parameter vector, θ̂ε,z the parameter vector after up-

weighting z by a very small number ε. L represents the loss function used for the

model training, zi represents the data used for training, and finally z is the up-

weighted training instance. The key idea behind this method is to calculate the

change in loss when a specific instance zi is slightly upweighted from the training

data, and then downweight the other data instances by the same amount (ε) and

how the parameter vector is adjusted to optimize the new loss. This influence can

be found the formula found in Equation 2.2:

Iup,params(z) =
dθ̂ε,z

dε

∣∣∣∣∣∣
ε=0

= −H−1
θ̂
∇θL(z, θ̂) (2.2)

where ∇θL(z, θ̂) is the upweighted training instance’s loss gradient relative to the

model’s parameters. The gradient represents the training instance’s loss rate of

change and illustrates how much the loss varies when the model’s parameters θ̂

are changed. This means that when a model parameter rises and the gradient

vector shows a positive entry, the loss is increased, whereas, when the parame-

ter increases and the loss is decreased. H−1
θ̂

is the inversed Hessian matrix which

represents the rate of change of the gradient and can be estimated as defined in

Equation 2.3:

Hθ =
1
n

n∑
i=1
∇
2
θ̂
L(zi, θ̂) (2.3)

Influence Functions cannot work for all ML types though, since the method re-
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quires access to the loss gradient with respect to the model parameters. Hence,

it can be used in models such as Artificial Neural Networks (ANN), Logistic Re-

gression, and Support Vector Machines (SVM). On the other hand, the Influence

Functions method cannot be used in tree-based models such as Random Forests.

2.1.1.1.3 Influence Sketching

Influence Sketching, proposed by Wojnowicz et al. [Wojnowicz et al., 2016] is an

algorithm used to score the influence of the instances used for the training of

ML models. The authors proposed a novel scalable version of Cook’s distance, in

which random projections are inserted within the influence computation. In more

detail, the influence score is calculated using the randomly projected pseudo-dataset

from the post-convergence General Linear Model (GLM).

This method, similar to Influence Functions and Deletion Diagnostics, requires

the calculation of influence on instance level [Søgaard et al., 2021], which as al-

ready described above, happens in an iterative manner and it may require a sub-

stantial amount of time to complete, depending on the size of the training dataset.

2.1.1.1.4 TracIn

Pruthi et al. [Pruthi et al., 2020] proposed TracIn. TracIn method calculates the im-

pact of a training sample on a model prediction. The goal is to track changes in the

test point’s loss as the training process proceeds, each time the relevant training

example is used. As stated by the authors, the method can also be scaled by using

(i) a first-order gradient approximation to the precise calculation, (ii) preserved

checkpoints of common training processes, and finally (iii) picking specific layers

of a Deep Neural Network (DNN).

Doctoral Thesis



2.1. BACKGROUND ON INSTANCES IMPORTANCE AND CONTEXTUAL DATA ENHANCEMENT19

2.1.1.2 Influential Instances for ML / DL Interpretation

Influential Instances as a method used for ML and DL interpretability is based on

the idea that model’s parameters and predictions can be traced back to the dataset

that was used for training it.

The sense is that the algorithm responsible for producing a ML model, can be de-

fined as a function that accepts the training data, which comprises features X and

the target y as input, and returns the ML model as output.

In order to interpret a model using any of the Influential Instances methods the

key is to detect the impact on the model parameters or predictions that would

result from the exclusion of instances from the training data during the training

phase. The use of Influential Instances facilitates understanding the behavior of a

model as well as interpreting why individual predictions were made.

Not only that, using Influential Instances one can understand which of the sam-

ples in a dataset were the most impactful in the training process or which of those

were the most consequential for a given prediction. As a result this could also lead

to better understanding of the actual data, since it will be made easier to identify

potential erroneous data, in which cases the model could perform worse and ulti-

mately evaluate the robustness of the model.

2.1.2 Contextual Enhancement Methods

2.1.2.1 Outlier Detection

Outlier Detection (otherwise known as Anomaly Detection) regards a technique

frequently used for contextual information extraction and retrieval [Martinez et al.,

2008], [Stoimenova et al., 2006]. As also presented in [Singh and Upadhyaya, 2012],

this technique is most commonly used for time-series and spatial data [Zheng

et al., 2017], and allows for the detection of instances which are considered anoma-
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lies, given a specific context.

There exist several methods to apply Anomaly Detection, including statistical meth-

ods, distance-based methods, density-based methods, or ensemble methods, among

others. How it usually works, is that a threshold is defined (either by a domain ex-

pert, or using statistical measures) and if this threshold is not met, then a given

instance is considered an outlier.

2.1.2.2 Active Learning

Active Learning is an ML-based technique which can be used for contextual in-

formation extraction [Cardellino et al., 2015], [Wu and Pottenger, 2005]. Active

learning starts by initializing a model with a small amount of labeled data. Con-

sequently, the model selects a subset of unlabeled data points to query for labels,

using techniques such as uncertainty sampling, in which the data that the model

is most uncertain about is selected. The labels of this data is then acquired from

a human or a data source and the model is updated, according to the new labels.

The above procedure is repeated until the model is trained. Active Learning can

be applied for contextual information extraction, since it can be adapted in order

to identify data points (i.e., instances) that are most likely to contain contextual

information.

2.1.2.3 Transfer Learning

Transfer Learning is a technique falling under the ML umbrella. Transfer Learn-

ing is a technique in which a model is trained in a large dataset for a specific task.

Then this model is fine-tuned, by re-training it using a smaller dataset, in order to

be utilized for a new task. Transfer Learning can be applied for contextual infor-

mation extraction, since it can be used in order to extract relations and contextual

information from a dataset, such as entities in text [Zhang and Cao, 2023].
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2.1.2.4 Importance Sampling

Importance Sampling is a statistical technique similar to Influential Instances where

the instances in a dataset are weighted, according to their influence on the task,

through an importance function [Tokdar and Kass, 2010], where the higher the im-

portance of an instance (i.e., the more informative it is), the higher the weight it

gets. Importance Sampling can be used for contextual information extraction [Xu

et al., 2022], especially in cases where labeling the data is too expensive or the data

is imbalanced, by allowing the mode to focus on the important instances while

learning. Consequently,

2.1.3 How the Influential Instances are used in the Influence-based

Dataset Generation method

In the current thesis, the Influential Instances method is utilized for the optimiza-

tion of a model’s performance. The key rationale behind this choice is that the In-

fluential Instances provide a lot of information related to the data and their impact

on a model. So, this information could somehow be utilized in order to improve

the actual model if included in the training procedure. The Influential Instance

method is explained thoroughly in Section 2.2.

2.2 Influence-based Dataset Generation Method Overview

This Section describes in detail the Influence-based dataset Generation method.

As already described above, its objectives are two-fold; (i) to identify the influence

of any instance in a given dataset and (ii) to generate a new dataset based on those

instances. Creating a new dataset by selecting influential instances for training a

ML model has multiple potential advantages:

• Improved Model Performance: It is possible to train a more effective and
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accurate model by concentrating on the cases that significantly affect the

model’s predictions. Using only the most impactful instances when training

an AI model, enhances its capacity for prediction and generalization.

• Reduced Noise: Eliminating irrelevant instances from the training dataset

can facilitates on reducing over-fitting the AI model, which should also en-

hance its ability to generalize to new, unobserved data.

• Faster Training: Using influential instances for the training of AI result in

the generation of smaller datasets which leads to shorter training periods.

This is important especially when working with large datasets, as it reduces

the computational requirements and accelerates model development and

deployment in general.

• Enhanced Interpretability: Using a smaller, more focused dataset can make

it easier to interpret the model’s behavior, since it can be made easier to un-

derstand why the model makes specific predictions.

• Data Quality Improvement: The process of identifying influential instances

can also reveal data quality issues. In more detail, when identifying the most

influential instances and using just those for training, can lead to the elimina-

tion of inaccurate or inconsistent data which could reduce the overall quality

of a dataset.

• Reduced Bias: In case some instances influence the model’s predictions dis-

proportionately against other instances. In such cases, training using only

the influential instances can be used to reduce bias, since the generated data

set should be more balanced. Hence, the probability of bias in the model’s

predictions may be reduced.

• Resource Efficiency: As already stated, using datasets that are very big in size

lead to longer training periods. In addition to that, big datasets also lead to

other resource-related issues. When using a smaller, more concise dataset
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consisting solely of the influential instances less resources are required for

storing, and thereby reducing the overall cost.

• Improved Robustness: Finally, when using datasets comprised of influential

instances for training of an AI model, it can make it more robust against out-

liers or other data points that could negatively impact its performance.

However, to ensure that the resulting dataset is representative of the entire pop-

ulation, it is necessary to exercise caution when selecting influential examples.

Incomplete or biased selection may result in the loss of vital information or un-

intended model behaviors. In order for a ML or DL model’s decisions to be expli-

cable and justifiable, it is essential to maintain transparency in the data selection

process.

Creating a new dataset by identifying and utilizing influential instances can be a

valuable strategy, but it must be executed with care and in conjunction with rigor-

ous data analysis and domain knowledge.

The proposed method is split into two main phases; the training phase, and the

prediction phase.

2.2.1 The Training Phase

Beginning with the training phase, the proposed strategy consists of five principal

steps, as also depicted in Algorithm 1:

(i) the initial training of the ML algorithm using the original dataset,

(ii) the calculation of specific metrics, which determine whether an instance af-

fects the fitted model,

(iii) the selection of the most influential instances as determined by the defined

measures,
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Algorithm 1 Influence-based Dataset Generation Generic method
Auxiliary Variables:
D: the initial dataset,
D−i: the initial dataset, with the i-th instance removed,
D
′: the dataset consisting of all identified influential instances,

inf luentialInstances: the dataset constructed of the identified influential in-
stances.
Output:
D
′

Algorithm:
1: fit(D)

2: inf luentialInstances = [ ]
3: calculate metrics
4: for i ∈ D do
5: D−i : i < D
6: fit(D−i)

7: calculate metrics forD−i
8: end for
9: for i ∈ D do

10: if thresholds are met then
11: inf luentialInstances← inf luentialInstances ∪ i

12: D : D− i
13: end if
14: end for
15: kmeans.fit(inf luentialInstances, k = |inf luentialInstances|)
16: kmeans.partial fit(D)

17: D′ ←i: for each i ∈ kmeans.clusters

18: fit(D′)

(iv) the identification of all influential instances using the K-Means algorithm,

the generation of a new dataset consisting of only the identified influential

instances, and lastly,

(v) the retraining of the ML or DL model using the new dataset comprised of

influential instances.

In more detail, this method entails a methodical process for enhancing the perfor-

mance of an ML or DL model. The process starts with the preliminary training of

the model with the original dataset. This initial training establishes the model’s
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baseline understanding of the data. Following this, the control metrics are com-

puted in order to evaluate the influence of individual data points on the model.

The selection of the most influential data points is thereafter determined based

on these measures.

In order to further enhance the precision of the decisions, an additional step is

performed in which instances which were not initially considered influential are

assessed. There are several ways to perform this step, as it will be described in

the following chapters. One way regards the utilization of the K-Means clustering

technique in order to categorize comparable influential data points. The K-Means

clustering algorithm is employed to further refine the influential instances. This

algorithm combines similarly influential data elements. Clustering facilitates the

reduction of redundancy and the collection of a representative sample of essen-

tial data points. Another way to evaluate the influence of such those instances, as

shown in Chapter 4 could be a distance metric where an instance is considered in-

fluential if it is ”close” to an instance that is already marked as influential from the

previous steps. Regardless of the method selected for the assessment of those in-

stances, a novel dataset is finally generated, including exclusively these significant

cases.

In the concluding step of the training phase of the proposed method, the ML or

DL model is retrained using the new dataset containing influential examples. This

concentrated dataset enables the model to learn from the most important data

points, which can lead to enhanced performance and precision. Essentially, it fine-

tunes the model to focus on what matters most in the data, which could result in

a more accurate and efficient model.
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2.2.2 The Prediction Phase

The prediction phase regards the phase where the trained model is utilized for in-

ference. During this phase, the model is applied to new data in order to make pre-

dictions or classifications based on the knowledge it acquired during the training

phase, thereby making it a valuable tool for real-world applications and decision-

making.

2.3 Utilization of the Influence-based Dataset Genera-

tion method

The Influence-based Dataset Generation method has been effectively applied to

three distinct use cases, each in a different domain, to demonstrate its ability to

be generalized and applicability across a variety of situations. The algorithm is

adapted accordingly in each case.

• In the first use case, found in Chapter 3, it was utilized as the method for

training a DL network, which was used in a health storage cloud solution for

the recommendation of the most used items in order to pre-fetch them and

effectively reduce the transmission delay of such documents in emergency

cases.

• In the second use case, which can be found in Chapter 4, the proposed method

was used for the training of a ML model, used for the identification of the op-

timal execution context of services in Edge and Cloud infrastructures, based

on the services’ key characteristics and features.

• In the third use case, found in Chapter 7, the method is used in combination

with the Causal Features Generation method, as it will be presented in Chap-

ter 5. In this use case, both methods are utilized as a pre-processing step for

a ML model responsible for the forecasting of the resource usage of services
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deployed in Edge infrastructures.

The evaluation outcomes are described in detail for each case in the following

Chapters, where the systems in which the Influence-based Dataset Generation

method was adopted are also defined.
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Chapter 3

Cloud Computing Optimization: An

Influence-based, Prefetch Scheme in

Citizen-centered Health Storage Clouds

Chapter Structure

This Chapter is constructed as follows:

• Section 3.1 - Facilitating HIE in Medical Emergencies, describes the con-

cept HIE and its significance.

• Section 3.2 - Background on Health Storage Clouds, EHR Management on

the Cloud and Data Prefetching, analyzes the State of the Art concerning

Data Prefetching, the current Health Storage Cloud solutions, as well as means

of Electronic Health Record (EHR) Management on the Cloud.

• Section 3.3 - Overview of the Health Storage Cloud, presents an overview of

the proposed Health Storage Cloud and analyzes the adaptations that were

made in order to apply the generic Influence-based Dataset Generation method

to Prefetch Engine of the Health Storage Cloud.

• Section 3.4 - Evaluation Results, evaluates the proposed Health Storage Cloud
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CHAPTER 3. CLOUD COMPUTING OPTIMIZATION: AN
INFLUENCE-BASED, PREFETCH SCHEME IN

CITIZEN-CENTERED HEALTH STORAGE CLOUDS
and presents the outcomes of the experiments.

This Chapter presents the evaluation of the Influence-based Dataset Generation

method in the context of the implemented health storage cloud solution as it will

be described below. In more detail, the proposed method, has been utilized as

a pre-processing step in order to train a DL network, for the identification of the

most used items (i.e., health data) in order to pre-fetch them.

3.1 Facilitating HIE in Medical Emergencies

The objective of HIE [Kiourtis et al., 2021a] has received a growing amount of at-

tention, particularly in regards to the interchange of health data between various

healthcare institutions. However, the ability to exchange this data with citizens in

a manner that offers them control over their data remains a crucial aspect.

To this end, a HIE strategy was designed [Symvoulidis et al., 2021b], [Kiourtis et al.,

2022] consisting of two HIE protocols [Koutsoukos et al., 2022], a Storage Cloud ser-

vice [Symvoulidis et al., 2022], [Symvoulidis et al., 2021a], which allowed the stor-

age of EHR and Personal Health Record (PHR) in the cloud, and the Health Record

Index [Kiourtis et al., 2021b], a service that facilitates in the real-time accessing of

health data in emergency situations. Furthermore, the proposed solution allowed

the backup and sharing of such data using two Remote-to-Device (R2D) internet-

based protocols, namely the Remote-to-Device Backup (R2DB) and Remote-to-

Device Emergency (R2DE) over Hypertext Transfer Protocol (HTTP) / Hypertext

Transfer Protocol Secure (HTTPS).

In more detail, the R2DB protocol is an internet-based protocol which can be used

by citizens and allows them to backup safely their EHR and PHR in a storage cloud

service. This protocol specifies a set of operations used to enable all communica-

tion activities between a mobile application and an Health Storage Cloud in order

to back up health data to a remote cloud service. Figure 3.1 regards a sequence dia-
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Figure 3.1: Remote-to-Device Backup Protocol Sequence Diagram.
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gram depicting a comprehensive description of the R2DB protocol, which follows

an algorithmic process among the stakeholders. The steps depicted in the figure

can be divided into four categories:

(i) Registration / Login to the Health Storage Cloud: The user connects to their

preferred Health Storage Cloud using a mobile application and registers to it,

if not already done that. Otherwise, the user logs in using their credentials.

(ii) Approval of consents for storing and sharing EHRs and PHRs: In case the

user utilizes the Health Storage Cloud for the first time, they are requested

to accept two consent forms. The first consent allows the cloud service to

store the user’s encrypted health data, while the second one allows the cloud

service to share the user’s health data with trusted Healthcare Professional

(HCP) from a trusted Healthcare Organization (HO) in case of an emergency.

The consents are digitally signed by the user.

(iii) Health data transfer to the Health Storage Cloud: Once the user has agreed

on the aforementioned consent forms, the backup of their EHR procedure

is instantiated. The user’s EHR that is already stored on the mobile device of

the user is encrypted locally and then uploaded to the user’s preferred Health

Storage Cloud service.

(iv) Restoration of previously uploaded health data on the Health Storage Cloud:

This step allows the user to download their EHR from the Health Storage

Cloud back to their mobile device and synchronize in case new EHRs have

been uploaded.

On the other hand, the R2DE protocol, allows HCPs from trusted HO to access a

user’s data in case of an emergency. The procedure is depicted in the form of a

sequence diagram in Figure 3.2.

As depicted in Figure 3.2, the process consists of four main steps:

(i) Scan the user’s Quick Response (QR) code: The HCP scans the user’s QR
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Figure 3.2: Remote-to-Device Emergency Protocol Sequence Diagram.

code which includes information related to the user’s preferred Health Stor-

age Cloud, along with the encryption key which can be used for the decryp-

tion of the health data once it is downloaded from the user’s Health Storage

Cloud.

(ii) Request access to user’s health data by HCP: The HCP requests access to the

user’s selected Health Storage Cloud. In the HCP’s request a set of attributes

are also sent to verify that the HCP is related to a trusted HO. If the request

is successful, a temporary account is created for the HO which can be used
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by the HCP in order to download the user’s medical information from the

Health Storage Cloud.

(iii) Download of user’s health data from Health Storage Cloud by the HCP: Us-

ing the temporary account, the HCP can perform request to the Health Stor-

age Cloud in order to download the encrypted EHR and PHR of the user. This

data can then be decrypted using the encryption retrieved from the QR code

provided by the user.

(iv) Upload of Health Data related to the emergency to the user’s Health Stor-

age Cloud: Once the emergency is over, the HCP may upload health data

related to the emergency, back to the user’s Health Storage Cloud. Such data

may include the Patient Discharge Report (PDR) at patient’s discharge. All

data uploaded by the HCP are also encrypted using the same encryption key

prior to the their upload to the Health Storage Cloud service.

A comprehensive view of the emergency scenario [Symvoulidis et al., 2021b], [Kiour-

tis et al., 2021b] that the proposed Health Storage Cloud was used in, is depicted

in Figure 3.3.

3.2 Background on Health Storage Clouds, EHR Man-

agement on the Cloud and Data Prefetching

3.2.1 Health Storage Clouds and EHR Management on the Cloud

Before proceeding with the description of the architecture of the proposed Health

Storage Cloud it is important to summarize the work achieved in the field as well

as the importance of people being able to own their own health data. Over the last

few years and the evolution of the healthcare sector along with already established

technologies such as Cloud, Edge computing and the IoT, a significant turn toward

citizens’ health data ownership has been acknowledged [Sonin et al., 2021], [Mc-
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Figure 3.3: The Emergency Scenario used for the evaluation of the proposed
Health Storage Cloud solution.

Curry, 2021].

For this reason, more and more technology companies have been turning in that

direction [Health, 2023], [Microsoft, 2023] in order to allow their users to have

full ownership over their health data, such as PHRs. Even countries have already

started on the development of patient-oriented systems that provide new capa-

bilities to the citizens. In more detail [Digital, 2023] allows Estonian citizens to

combine health data from various sources and healthcare institutions, in order

to provide them comprehensive view of their health status. However, while the

above-mentioned initiatives certainly are steps in the right direction, there is still

a significant lack of cloud solutions that are citizen-centered [IBM, 2023] and not

HCP-centered [Salesforce, 2023], [Services, 2023].

To start with, several storage cloud services solutions have been proposed over

time for the secure collection of EHRs and healthcare data in general. In [Cai et al.,

2017], the authors proposed an EHR sharing scheme deployed on Cloud Comput-

ing infrastructures, in which the owner of the healthcare data can generate EHR
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ciphertexts, for a user to be able to decrypt them based on transformed cipher-

texts from the EHR Cloud.

Furthermore, the authors of [Cao et al., 2019] suggest a safe cloud-assisted e-Health

system in which the healthcare organizations that create and maintain a patient’s

EHR make sure that only those with permission may see and alter that data [Kiour-

tis et al., 2023], without the use of a reliable third party. The latter is made pos-

sible by taking advantage of blockchain technology, which offers an invulnera-

ble method of conducting operations, such as the exchange of EHRs, because no

transaction can be approved until it is recorded on the blockchain.

Similarly, the authors in [Seol et al., 2018] proposed a cloud-based EHR model,

which exploits Attribute-Based Access Control (ABAC) techniques for securing trans-

actions between the owner of the EHR and its requestor. All transactions are dig-

itally signed prior to their execution, while partial encryption of the EHRs is per-

formed as well. In addition, in [Joshi et al., 2018], a centralized Attribute-Based

Authorization (ABA) mechanism is introduced and in more detail Attribute-Based

Encryption (ABE) is used, in order to allow medical institution to delegate the au-

thority to healthcare providers in accessing EHRs stored in cloud-based systems.

This comes in agreement with the authors of [Manoj et al., 2017] where they sug-

gest the use of two encryption methods in a hybrid EHR system towards the opti-

mized access control and privacy upon the health data.

Finally, the authors of [Jin et al., 2011] proposed a distributed storage model for

EHR using Apache HBase [Apache, 2023b], a column-oriented database built on

top of Hadoop Distributed File System (DFS) [Apache, 2023a].

3.2.2 Background on Data Prefetching

Data prefetching (otherwise known as data caching ) is a technique which is often

used in database systems [Esteves et al., 2020], [Chen et al., 2021] to improve the
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execution performance by pre-storing data on memory before it is actually needed.

Such methods are frequently used in database systems for the prefetching of small

volumes of data, such as data in websites or data generated by IoT devices [Singh

and Chitra, 2021], [Hussien and Sulaiman, 2017].

While prefetching works great with smaller-sized files, when it comes to large files

that cannot be manipulated or stored even for a short time on memory or in cache,

other technologies such as data replication [Shakarami et al., 2021] are used in-

stead. There are several works that attempt to use this paradigm and integrate it

to the Web Services and Cloud domains.

To begin with, the authors in [Mansouri and Javidi, 2018] proposed a data replica-

tion strategy which identifies the correlation of the data files stored in the cloud

using historical data. The proposed strategy predicts which data are going to be

requested and replicates them in order to reduce transmission delays. In more de-

tail, the proposed data replication strategy measures the files’ popularity within

the cloud infrastructure, where in this case the popularity translates to the corre-

lation a file has with the other files stored in the database, and replicates them in

the requested site, thus improving both the access time and the bandwidth usage

overall.

In [Mansouri, 2016] the author presented an adaptive data replication strategy

aimed at minimizing the response time of applications. The data replication strat-

egy takes into consideration several metrics, including the Mean Service Time

(MST), Mean Access Rate (MAR), the load variance, the latency, etc. in order to

calculate a cost function which decide which is the most appropriate server for a

given data to be replicated.

Similarly, the authors in [Liang et al., 2021] proposed another correlation-aware

replication strategy which is based on a rule-based management system and iden-

tifies the data to be replicated. The replication strategy identifies high-valued files

(i.e., files that are more likely to be requested by the users of the system), and repli-

Chrysostomos G. Symvoulidis



38

CHAPTER 3. CLOUD COMPUTING OPTIMIZATION: AN
INFLUENCE-BASED, PREFETCH SCHEME IN

CITIZEN-CENTERED HEALTH STORAGE CLOUDS

Figure 3.4: Health Storage Cloud high-level architecture.

cate them in a prefetch pool. In the case where the prefetch pool’s capacity is not

sufficient, a decision is made based on the above-mentioned values in order to re-

move files already replicated in the prefetch pool to free space for the new replicas.

3.3 Overview of the Health Storage Cloud

This Section describes the proposed Health Storage Cloud service that was imple-

mented. A graphical depiction of the proposed service is illustrated in Figure 3.4.

3.3.1 Core Features of the Health Storage Cloud

The following features are enabled to the designed Health Storage Cloud:

• The Communication Gateway (see Section 3.3.2) which handles all incoming

requests from the users of the service,

• The Account Management (see Section 3.3.3), which is responsible for the

management of the users accounts and the policies applied to each user,

along with the management of the HO temporary accounts which are gen-

erated in emergency situations,

• The HCP Authorization Check (see Section 3.3.4), which allows the authoriza-
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tion of HCPs from trusted HOs and grants them access to the Health Storage

Cloud service,

• The EHR Storage (see Section 3.3.5), which is used for the storage of the user’s

personal health data,

• The Auditing management (see Section 3.3.6), responsible for keeping logs

of all actions performed by any user of the service, and finally,

• The Data Prefetching (see Section 3.3.7) which is accountable for determin-

ing which data requests will be made by system users and prefetching the

corresponding health data.

The above listed features will be further explained in the following Sections.

3.3.2 Communication Gateway

The Communication Gateway is accountable for administering all incoming re-

quests to the cloud storage. During an emergency, these requests may come from

both citizens and physicians. It is a Flask service [Projects, 2023] that responds to

HTTP requests (Figure 3.5 depicts an example HTTP request). Its primary func-

tionalities are divided into two categories: (i) the functionalities that a user can

perform, such as a request to create an account, a request to upload an encrypted

health record, or a request to download the auditing information collected by the

Auditing manager ; and (ii) the functionalities performed by healthcare profession-

als on behalf of a healthcare institution. These capabilities include the initial re-

quest to access a user’s health data, a request to obtain a specific health record,

and a request to submit a discharge report once the emergency has passed and

the user has been discharged from the healthcare institution.
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Figure 3.5: Sample HTTP requests received by the Communication Gateway.

3.3.3 Account Management

With this feature administering the accounts of users of the Health Storage Cloud

can be performed, including also the temporary accounts for the healthcare pro-

fessionals that were granted access during an emergency. Once a user requests

to use the proposed Storage Cloud service, an account that is linked to a bucket

[MinIO, 2023b] on the EHR Storage is created. The user stores their encrypted

health data in a container, which is essentially a directory that is only accessible

through their account. This bucket is also accessible to authorized healthcare pro-

fessionals with transient accounts during medical emergencies. Importantly, only

the user’s account has both read and write permissions, while all other accounts

(i.e., impermanent accounts of healthcare personnel) have only read permissions.

A dedicated policy, such as the one shown in Figure 3.6, is used to grant these per-

missions to the user’s account.

3.3.4 HCP Authorization Check

The HCP Authorization Check feature allows to determine whether a healthcare in-

stitution is authorized to access a user’s health data in the event of an emergency.

The healthcare professionals treating the user submit a request to the cloud stor-
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Figure 3.6: Sample Policy for a user’s bucket.

age in order to access the user’s health data via the use of a temporary account.

This request should contain a collection of authorization attributes derived from a

trusted third-party Certification Authority (CA). Therefore, via the HCP Authoriza-

tion Check the trusted authority is contacted and the attributes are transmitted

to it. The CA then evaluates these characteristics and decides whether or not to

approve the request. If the request is accepted, the creation of the temporary ac-
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count is authorized and the account is created. If the request is denied, a response

is sent to the Communication Gateway to inform the requester that their request

has been denied.

3.3.5 EHR Storage

This feature can be used for storing a user’s health information [Mavrogiorgou

et al., 2023]. Its purpose is to ensure that health records are not only stored se-

curely, but are also immediately accessible, particularly in emergency situations

where every second counts; any potential delays should be eliminated. The EHR

Storage is based on MinIO Object Storage [MinIO, 2023a], an Object storage so-

lution. Numerous reasons exist for choosing an object store over a conventional

NoSQL-based solution such as MongoDB/GridFS [Pramukantoro et al., 2019], [Goli-

Malekabadi et al., 2016], [MongoDB, 2023], [Pandey and Subbiah, 2016] or an SQL-

based system. The health data stored in the storage cloud should be encrypted on

both the client and storage cloud sides, so that the cloud provider does not have ac-

cess to it and even if an unauthorized entity gains access to the storage cloud, they

cannot access the health data. Consequently, cloud-stored data are essentially en-

crypted bundles [Dimopoulou et al., 2022]. This solution met the requirements

because the health data stored in object storage are stored as objects. In addition,

individuals can deploy the proposed cloud storage service as a self-hosted service.

In addition to being readily deployable on commodity hardware, the object stor-

age solution that we utilized possesses another essential characteristic in that it is

also a lightweight solution. Lastly, the high availability assurance and simple scal-

ability of MinIO played a crucial role in its implementation. As previously men-

tioned, the Account Management feature is used to apply specific policies to the

various accounts that are created and is responsible for their management.
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3.3.6 Auditing Management

This feature allows the maintaining of logs of all actions performed on the en-

crypted health data (i.e., uploads, downloads, modifications, and uploads of newer

versions), requests to access the user’s health data (that may be approved or de-

nied), and the emergency temporary accounts that were created along with the

downloaded or uploaded data. The information maintained by the auditing man-

ager contains the following, as also depicted in Figure 3.7:

• Health data uploads performed by users,

• Health data downloads performed by users,

• Approved / Denies emergency access requests,

• List of HCPs and physicians who have temporary access to the storage cloud

through their HO’s account,

• List of declined requests and their originators,

• Health data downloads performed by HCPs during an emergency using their

HO’s temporary account,

• Health data uploads performed by HCPs during an emergency using their

HO’s temporary account

3.3.7 Data Prefetching

The Data Prefetching pertains to the implementation of the prefetch scheme’s en-

gine, as depicted in Figure 3.8. It is used for providing recommendations regarding

the data an HCP may request from the Health Storage Cloud prior to the actual re-

quest, so that it can be cached and prepared for transmission once the request

is made. During an emergency, HCPs will send HTTP requests, demanding the

download of health data for a given user. These requests are piled in the form of a
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Figure 3.7: Sample Audit information logged by the Auditing Management.

sequence for each HCP, and the Prefetch Engine is activated when the sequence

length exceeds a predetermined threshold.

Then, based on this sequence of requests, the Prefetch Engine, predicts and caches

the next health data resource that should be requested by the HCP, as graphically

depicted in Figure 8. If the resource to be cached is very large, it is replicated on

the prefetch engine so that it can ultimately be forwarded to the Communication
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Gateway. This architectural decision is made because the Prefetch Engine should

be deployed by the Communication Gateway, and as a result, the transmission de-

lay between the Prefetch Engine and the Communication Gateway is significantly

lower than that between the EHR Storage and the Communication Gateway.

In both circumstances, the Communication Gateway is informed to request the

resource from the prefetch engine rather than the EHR Storage. Upon completion

of the user’s request, the data are transmitted directly to the HCP’s application

from the Prefetch Engine, bypassing the EHR Storage in which they were initially

stored. Additionally, if the resource is not requested by the HCP, it is removed from

the Prefetch Engine in order to conserve resources. The Prefetch Engine utilizes

an adapted version of the proposed Influence-based Dataset Generation method,

presented in Chapter 2 for the training of the DL algorithm it encompasses which

will be analyzed below.

3.3.7.1 Influence-based Dataset Generation Method Adaptation for the Prefetch

Engine

In this Section, the modification of the original Influence-based dataset Genera-

tion method to fit the health data prefetching scenario at hand is reviewed. This

detailed presentation of the customized adaptation demonstrates the robustness

of the original method in accommodating the unique characteristics and require-

ments of the particular scenario in question. This demonstrates its adaptabil-

ity and versatility, highlighting its potential for customization across an extensive

range of application domains and challenges. In this case, not only are the specific

demands addressed, but also the method’s validity and potential for wider adop-

tion are evaluated.

To start with, Algorithm 2 presents the adapted method. Similar to the core method

there are two main phases; (i) the training or online phase, and (ii) the prediction

or online phase, as depicted in Figure 3.9.
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Figure 3.8: Sequence diagram illustrating the behavior of the Prefetch Engine
and how health data is downloaded when prefetched versus when
not prefetched.

Doctoral Thesis



3.3. OVERVIEW OF THE HEALTH STORAGE CLOUD 47

Algorithm 2 Adaptation Influence-based dataset Generation method as it is used
in the Prefetch Engine of the Health Storage Cloud service
Auxiliary Variables:
D: the initial dataset of requests performed by HCPs,
D−i: the initial dataset, with the i-th instance removed,
D
′: the dataset consisting of all identified influential instances,

DFBETA[i]: the DFBETAs of the DL algorithm when trained with the original
dataset without the i-th instance,

F1[i]: the F1 of the DL algorithm when trained with the original dataset with-
out the i-th instance,

inf luentialInstances: the dataset constructed of the identified influential in-
stances.
Output:

inf luentialInstances

Algorithm:
1: fit(D) // an LSTM model was used in this use case
2: GIVEN F1← 2 × Precision×Recall

Precision+Recall
3: inf luentialInstances = [ ]
4: for i ∈ D do
5: D−i : i < D
6: fit(D−i)

7: DFBETA[i]← β − β(−i)

8: F1[i]← 2 × Precisioni×Recalli

Precisioni+Recalli
9: end for

10: for i ∈ D do
11: if DFBETA[i] ≥ AVG(distance,D) && F1[i] ≥ GIVEN F1 then
12: inf luentialInstances← inf luentialInstances ∪ i

13: D : D− i
14: end if
15: end for
16: kmeans.fit(inf luentialInstances, k = |inf luentialInstances|, distance = DTW)

17: if kmeans.predict(i ∈ D)==cluster && dist(cluster, i ∈ D ≤

GIVEN DISTANCE) then
18: inf luentialInstances← inf luentialInstances ∪ i

19: end if
20: return inf luentialInstances

3.3.7.1.1 The Offline Phase

The initial phase of the algorithm is the Offline phase, or training phase as it is de-

scribed in Chapter 2 - Section 2.2.1. In greater depth, the procedure begins with
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Figure 3.9: The Prefetching Engine overall workflow.

the training of the prediction model using a dataset containing queries for down-

loading health data, made in the past by users of the Health Storage Cloud. The in-

coming requests are considered elements of a sequence, where the first element of

the sequence is the first request arriving from a specific user and the last element

is the latest received request coming from the same user. Parallel to the process of

DL model training, which will be examined in greater detail in the following para-

graphs, the user’s requests are continuously monitored. By observing this process,

a list of requested files and a timestamp for each request are generated. Thus, the

forthcoming request based on the previous data are predicted.

The DL model that was used regards an Long Short-Term Memory (LSTM) [Karim

et al., 2017], since it is proved that it outperforms other statistical models such as

Autoregressive Moving Average (ARMA) [Webby and O’Connor, 1996], Autoregres-

sive Integrated Moving Average (ARIMA) [Ho and Xie, 1998], or other DL-based

architectures such as Recursive Neural Network (RNN) [Zhang and Man, 1998]

when it comes to time-series analysis. LSTM exceeded classical statistical tech-

niques like ARIMA. In addition, LSTM is known to be able to better capture more

long-term relationships compared to fundamental RNN models [Gers et al., 2001],

while it also manages to address the problem of vanishing Gradient Descent as
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Figure 3.10: Architecture of the LSTM model used for the prediction of the up-
coming data item.

opposed to RNNs [Hochreiter et al., 2001].

Regarding its architecture, this model is a seven-layered model composed of six

LSTM layers and one dense layer, as depicted in Figure 3.10. To prevent overfitting,

dropout layers were added after each LSTM layer with a rate of 0.75 except for the

final layer, which had a rate of 0.50. Following experiments with testing datasets,

these rates were selected.

Once the model has been trained, the detection of influential instances takes place.

These constitute the instances (i.e., the user’s requests) that have a significant im-

pact on the trained model, and while this method is often applied for machine

learning interpretability, the purpose of this scheme is to use it to provide context-

aware predictions and improve the model’s performance [Karim et al., 2017], an

idea that is also utilized in the field of visual analytics on electronic medical records

when employing an RNN [Kwon et al., 2018].

As already mentioned in Chapter 2, an instance is considered influential if, when

it is removed from the training set and the model is retrained, a significant change

is established in the model, the model’s parameters (i.e., model weights) are dif-
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ferent, and the model’s predictions are also different. The greater the identified

change to the model and its parameters, the more influential the instance. To de-

termine whether an instance is influential, the model must be trained with and

without the instance in question, and the results must be contrasted. In the cur-

rent scenario, for instance, the LSTM model must be trained with and without an

instance in order to determine whether this instance can be considered influen-

tial. This is where the adaptation of the core Influence-based dataset Generation

method is done.

Typically, influential instances are used to explain the results of difficult-to-interpret

machine learning or deep learning models. The current solution, however, differs

from the current usage of influential instances in that it employs the influential

instances in a manner that empowers the LSTM model by providing additional

data-related information. Specifically, it will provide the model with a catalog of

instances that are potentially more significant than others, which the model can

use to enhance itself.

Usually, the influence of an instance on a model can be found using Cook’s dis-

tance [Cook, 1977], which calculates the effect on the model’s predictions when

the model is trained with a dataset that does not include the given instance. Cook’s

distance is measured as it is defined in Equation 3.1:

Di =
∑

n

j=1 (ŷj − ŷj(−i))2

p ×MSE
(3.1)

However, given that in the current case a DL is selected, the effectiveness of an

instance i on the model’s parameters is preferred as the first metric to calculate

the influence of the instances. In addition, Cook’s distance is mostly aimed to-

wards Linear Regression models and not DL models such as the selected one. Thus,

the DFBETA metric [Adadi and Berrada, 2018], [Mi et al., 2020] was used instead,

which is defined in Equation 3.2:
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DFBETAi = β − β(−i) (3.2)

where β is the weight vector of the LSTM model, while β(−i) is the weight vector of

the same model when trained without the instance i.

However, the calculation of DFBETA alone cannot provide context regarding the

impact of a particular instance on the model and its predictions. Hence, the F1
score is also computed in a similar manner, as defined in Equation 3.3:

F1[i] = 2 × Precisioni × Recalli

Precisioni + Recalli
(3.3)

where i is the instance that is removed in order to calculate its influence.

UtilizingDFBETA and calculatingF1 score for each instance, the instance’s impact

on the model can be determined. With this information, the instances are sorted

based on significance, and the most influential ones are then retained for the next

step.

The next step concerns the generation of clusters of important instances, based

on the ones that were identified from the previous step, as also presented in Fig-

ure 3.11. This is accomplished using the k-means [Huang et al., 2016] algorithm.

To elaborate, these instances serve as the starting points for the centroids in the

k-means algorithm, thereby initiating the training of the algorithm. The default

configuration of the k-means algorithm employs the Euclidean distance metric

for clustering [Ghosh and Liu, 2009].

Given that the present problem entails time series data, however, the Euclidean

distance metric is insufficient. In place of this, we employ the Dynamic Time Warp-

ing Matching (DTW) similarity metric [Senin, 2008] instead. In more detail, unlike

the Euclidean distance, which implies a linear relationship between data points,

DTW is more flexible. It is appropriate for comparing and categorizing time series
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Figure 3.11: Influential instances identification workflow.

data because it accommodates for variations in the timing and rate of data points.

DTW enables the comparison of sequences that may be out of sync temporally or

have distinct durations. In cases involving time series data, where such variations

are typical [Berndt and Clifford, 1994], DTW is used to provide a more accurate

and meaningful measure of similarity between data sequences, which is essential

for efficient analysis [Müller, 2007].

Consequently, the K-means algorithm is then applied to the instances that were

not originally considered as influential. As also shown in Algorithm 2, every in-

stance that is not considered influential, is assigned to its closest cluster by the

K-Means algorithm. If the distance between the instance from the centroid of its

predicted cluster, falls below a specified threshold, then this instance is also con-

sidered influential); otherwise, it is deemed an outlier.

3.3.7.1.2 The Online Phase

When a user sends a series of requests to the storage cloud, the online phase (or

prediction phase as it is called in the generic method in Chapter 2 - Section 2.2.2)

begins. Furthermore, the LSTM model anticipates the upcoming request based

on this sequence and requests the Health Storage Cloud to prefetch this data in

Doctoral Thesis



3.4. EVALUATION RESULTS 53

preparation for transmission.

Upon receiving the request and validating that it matches the prefetched data, the

Prefetch Engine exchanges the data directly. In contrast, if the user’s request does

not match the prefetched data, the prefetched data are erased in order to conserve

disk space, and the data are instead retrieved from the EHR Storage. In both cases,

the request sequences are archived in a specialized database that keeps a historical

record of all request sequences.

3.4 Evaluation Results

The evaluation of the Prefetch Engine was conducted in two distinct phases. The

first phase focused on assessing the effectiveness of the Influence-based Dataset

Generation method and the training of the LSTM model, while the second phase

examined whether the Prefetch Engine successfully enhanced the overall system

performance, by reducing the transmission process of the requested health data.

3.4.1 Performance Evaluation of the LSTM model and the Effec-

tiveness of the Influence-based Dataset Generation method

To evaluate the performance of the proposed prefetch strategy, a dataset consist-

ing of 800 observations, comprising a series of HTTP requests was utilized. To

evaluate the method’s impact, performance experiments were conducted com-

paring the results when the LSTM network was trained with the original dataset

against the results when trained with the enhanced dataset after the utilization

of the Influence-based Dataset Generation method. In both cases, the dataset was

separated into training and testing sets, with the training set of the original dataset

containing 650 observations and the testing set containing 150 observations.

The metrics used for the evaluation, given that the task is considered a classifica-
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Figure 3.12: Comparison of the accuracy of the model on the train and test
sets when trained with the original dataset, against the accuracy
when trained with the enhanced dataset, after the utilization of the
Influence-based Dataset Generation method.

tion problem where the Accuracy, Precision, Recall and F1-score, as it can also be

seen in Table 3.1. Early stopping was implemented in both scenarios as a regular-

ization technique to avoid overfitting; thus, the training phase concluded after 25

epochs. The results show an increase of ∼ 15.5% when it comes to the accuracy

(as also depicted in Figure 3.12) of the model. Similar results can be extracted from

the other metrics as well. More precisely, when it comes to the F1-score, there is

an increase of ∼ 17% since the model’s F1-score when trained with the original

dataset was equal to 0.5766, while it reached 0.6536 when trained with the en-

hanced dataset.
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Table 3.1: Comparison of results when the Incfluence-based Dataset Genera-
tion method is utilized vs. when not utilized.

Dataset Accuracy Precision Recall F1-Score
Initial 0.6992 0.4916 0.6992 0.5766
Influence-based 0.8083 0.6536 0.8083 0.6536

Figure 3.13: Average download times (in ms) of health records with varying sizes
of either 5 MB, 50 MB, 500 MB, or 1 GB, when the Health Stor-
age Cloud and the Prefetch Engine were deployed in infrastructures
with different physical locations.

3.4.2 Evaluation of the Prefetch Engine

Further than that, the performance of the actual Prefetch Engine was also eval-

uated. The conducted experiments were centered on evaluating the duration of

transmission for health records that were encrypted and varied in size. In more

detail, the download time, which is depicted in the following figures, denotes the

mean duration that elapses between the healthcare provider’s side of initiating a

request and the health record download’s completion. It is important to point out

that the time needed for file decryption was not considered into this evaluation, as

it is dependent on the computational capacity of the client’s device. Furthermore,

regardless of whether the file was transmitted in an encrypted or decrypted state,

the transmission time remained constant.
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Figure 3.14: Average download times (in ms) of health records with varying sizes
of either 5 MB, 50 MB, 500 MB, or 1 GB, when the Health Storage
Cloud and the Prefetch Engine were deployed in the same infras-
tructure but in different VMs.

Figure 3.15: Average download times (in ms) of health records with varying sizes
of either 5 MB, 50 MB, 500 MB, or 1 GB, when the Health Storage
Cloud and the Prefetch Engine were deployed in the same VM.
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Figure 3.16: Average download times (in ms) of health records with varying sizes
of either 50 MB, or 500 MB when simultaneous requests were made
in the Health Storage Cloud.

Figure 3.17: Average download times (in ms) when combination of requests for
health records were made in the Health Storage Cloud.
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The experiments were conducted within three distinct deployment configurations.

The first setup entailed the deployment of the storage cloud solution across two

VM within the same infrastructure, mirroring a standard cloud deployment with

the following hardware specifications: 2x Central Processing Unit (CPU) Intel Xeon

CPU E5-2620 v2 @ 2.10 GHz, 8 GB of Double Data Rate version 3 (DDR3) memory,

and 60 GB of Hard Disk Drive (HDD). The second experiment involved deploy-

ing the cloud solution within a single VM, utilizing the aforementioned hardware

resources, reflecting deployments in resource-constrained environments, such as

edge nodes. The third configuration featured the storage deployment across two

VMs, situated in different data centers, each equipped with identical resources.

This particular arrangement aimed to assess the Prefetch Engine’s performance

in a distributed environment. As for the network capabilities in all experimental

setups, the network speed remained consistent. Specifically, the download and up-

load speeds were both set at 150 Mbps. These varied infrastructure experiments

were conducted to benchmark the Health Storage Cloud under different condi-

tions, enabling the formulation of reliable conclusions concerning the utility of

the prefetch engine.

The experiments that were performed evaluated the transfer time of a encrypted

health records which varied in size. The download time, represented in the fol-

lowing Figures, is the mean duration between when a request is initiated on the

client side (i.e., the HCP’s side) until the encrypted health record download is con-

cluded. Furthermore, the Prefetch Engine’s performance was tested in cases where

the clients were performed sequential requests and in cases where the clients per-

formed parallel requests.

More specifically, starting with the sequential requests setup, in Figure 3.13, what

is presented, regards the average delay (in ms) of health records of various sizes

when the Health Storage Cloud service was deployed in a multi-cloud environ-

ment. As it can be observed in the same Figure, the use of the Prefetch Engine
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significantly reduces the transmission delay of a health record.

Figure 3.14 presents the average download time of the varying sized health data

with the difference that the Health Storage Cloud was in that time deployed in the

same cloud infrastructure but in different VMs. Likewise, a significant reduction in

the transmission time of health data when the data were prefetched was detected.

Adequate results in the evaluation are also observed in the case where the Health

Storage Cloud engines were all deployed in the same node (i.e., VM), as depicted

in Figure 3.15.

The Prefetch Engine was also tested under sequential requests made by several the

clients simultaneously. That the following experiments were only conducted in the

deployment setting, where Health Storage Cloud was deployed in different com-

puting infrastructure. As depicted in Figure 3.16, when the number of requests is

very small the transmission delay is not really affected, yet even with the slight-

est increase in the number of clients that are connected to the service perform-

ing download request, the transmission delay is substantially affected when the

Prefetch Engine is absent.

The last experiment that took place tested the performance of the Prefetch Engine

in the case where clients requested different data for download at a given time.

Similar to the previous experiments, the results, as depicted in Figure 3.17 show

that the Prefetch Engine manages to considerably reduce the overall transmission

delay.
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Chapter 4

Cloud and Edge Computing Optimiza-

tion: Dynamic Deployment Configura-

tion in Hybrid Cloud / Edge Environ-

ments

Chapter Structure

This Chapter is constructed as follows:

• Section 4.1 - Background on Deployment Configuration Optimization and

Optimal Service Placement in Cloud and Edge Computing Environments,

analyzes the State of the Art on Optimal Deployment Configurations identifi-

cation and Service Placement in Cloud and Edge Computing Environments.

• Section 4.2 - Overview of the Optimal Deployment Configuration in Edge

/ Cloud Infrastructures Framework, presents an overview of the proposed

Deployment Configuration framework and highlights the adaptations that

were made in order for the proposed Influence-based Dataset Generation

method to be incorporated in the given use case.
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• Section 4.3 - Evaluation Results, evaluates the proposed Deployment Con-

figuration framework and presents the outcomes of this evaluation.

This Chapter presents how the Influence-based Dataset Generation method is uti-

lized in the context of a framework for dynamic configuration of services in hy-

brid Edge and Computing infrastructures. In more detail, the proposed dataset

enhancement method, has been utilized as a pre-processing step in order to train

an ML model, responsible for the identification of the optimal deployment config-

uration for services deployed in Edge / Cloud infrastructures [Symvoulidis et al.,

2023b].

This regards an entirely different use case when compared to the scenario pre-

sented in Chapter 3 for several reasons:

• Different ML task and data types: In the Prefetch Engine, the main task is to

forecast, using time-series data, the health data that may be requested in ad-

vance. In the Deployment configuration prediction scenario, the ML has to

determine the most suitable deployment configuration for services deployed

in Cloud / Edge infrastructures, which is handled as a classification task.

• Different ML algorithm: In the Prefetch Engine a DL model is utilized. More

precisely, an LSTM model is used, while in second scenario a ML model, and

in particular a Random Forest (RF) classifier model.

• Application focus: The first use case primarily aims to enhance data access

efficiency by prefetching the anticipated health data, thereby reducing po-

tential latency in service requests. On the other hand, the second use case

is focused on optimizing the deployment setup within edge infrastructures,

with the goal of ensuring efficient resource allocation and enhancing system

reliability.
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4.1 Background on Deployment Configuration Optimiza-

tion and Optimal Service Placement in Cloud and

Edge Computing Environments

Ever since the establishment of Cloud Computing as the prominent mean of ap-

plications deployment, a major increase on the implementation of web-based ser-

vices and applications which are both resource- and data-intensive has been ac-

knowledged. In addition, Edge Computing has also played a great role on that due,

to the abilities it provides. And as a result, this led to an exponential increase of

produced data and need for more and more resources in order to meet the users’

needs. For this reason, hybrid solutions aiming at taking advantage of both the

Cloud and the Edge Computing worlds have emerged [Al Azad et al., 2021], [Yang

et al., 2019], but such a transmission to a fully Cloud / Edge environment, un-

less the issues related to resource allocation are solved first [Warneke and Kao,

2011], [Yousafzai et al., 2017].

The Service placement problem as well as the identification of the optimal deploy-

ment configuration in such heterogeneous environments are topics, widely dis-

cussed for several reasons. To start with, applications and services deployed on

the Cloud, the Edge or even in 5G infrastructures, are known for their diverse na-

ture [Symvoulidis et al., 2019], [Tsoumas et al., 2020] in a way that they are related

to large number of parameters, which should be taken into consideration when

deciding on the resources which will allocated for their deployment. Furthermore,

the devices (such as the IoT devices) have now the ability to process and analyze

data closer to the source.

Therefore, an efficient resource allocation strategy is crucial in order to assure

that the computing tasks can be performed on time and most important, cost-

effectively. Not to mention that, with the establishment of 5G and the IoT, new

challenges are expected to arise, especially when it comes to real-time adaptation
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and re-allocation of resources.

To start with, the authors of [He et al., 2021] proposed a server configuration op-

timization strategy that handles the optimal server configuration problem as a

trade-off between the deployment cost and the system performance (i.e., the aver-

age response time). Zhang et al. [Zhang et al., 2017] on the other side, proposed an

offloading strategy in which a trade-off between energy consumption and latency

is considered towards the optimization of service offloading and configuration on

Mobile Edge Computing (MEC) infrastructures.

In a similar manner, the authors of [Ouyang et al., 2018] proposed a mobility-

aware service placement strategy for Edge Computing infrastructures. The pro-

posed strategy makes placement decisions with the utilization of a cost model

whose goal is to maintain Quality of Service (QoS) levels (in terms of latency), by

considering specific costs relative to migration, and service performance taking

also consideration the user’s mobility. A similar solution is proposed by the au-

thors of [Ning et al., 2020], where the service placement decision is handled as

an optimization problem. The proposed strategy first utilizes the Lyapunov opti-

mization method to split the problem into several instant optimization problems.

Consequently, an approximation-based algorithm is used to estimate the expected

upcoming service utilization and, based on this, perform the final decision.

The authors of [Wang et al., 2020] proposed an optimal service placement algo-

rithm for collaborative edge applications, which are in essence applications that

can be split into two main sides, the user side and the server side. the former han-

dles the client’s state as well as the computation-intensive tasks, while the latter

is in charge of collecting the client’s data and providing them feedback. For such

services, the authors convert the problem to a cost optimization problem in which

they consider costs related to placement, proximity, and activation in order to ar-

rive at a final placement decision.

The authors of [Wang et al., 2021b] proposed a service placement strategy for 5G
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Industrial Internet of Things (IIoT) MEC infrastructures, where the service place-

ment problem is converted into a particle swarm optimization problem. In more

detail, the strategy considers two main factors, the energy consumption of a ser-

vice and its delay, formulates a cost function that needs to be optimized, and ac-

cording to this information, selects the most appropriate server for placement at

a given time.

Based on the above, it is evident that most State-of-the-Art solutions focus mostly

on handling the service placement problem as a trade-off which needs to be opti-

mized and try to figure out solutions that may not always be the best, but instead

try to find the best compromise decision. This is especially problematic in cases

where the factors are conflicting. The proposed optimal configuration solution on

the other side, does not focus on trying to identify a middle solution but instead

concentrates on finding the best placement (deployment) configuration for any

given service taking into consideration its inherent features and characteristics.

4.2 Overview of the Optimal Deployment Configura-

tion in Edge / Cloud Infrastructures Framework

As described above, the Influence-based Dataset Generation method is utilized in

a novel framework responsible for the identification of the optimal deployment

configuration of services in Edge and Cloud computing infrastructures.

4.2.1 Core Features of the Deployment Configuration Framework

The framework includes four features, as also depicted in Figure 4.1, which are

presented in detail below:

• The Components Analyzer, which is responsible for identifying and extract-

ing the core technical and resource-related characteristics of a given service,
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Figure 4.1: Overall architecture of the Deployment Configuration Framework.

• The Variants Predictor, used for the identification of the optimal deployment

configuration for the given service,

• The Configuration Predictor which is responsible for generating the deploy-

ment configuration document for the given service based on the outcomes

of the Variants Predictor component, and finally,

• The Deployment Model Enrichment, which produces the enriched deploy-

ment configuration for the given service.

4.2.2 The Components Analyzer

The Components Analyzer examines the code of a given service in order to de-

rive valuable information concerning the service’s execution context. Through the

examination of the service’s code base, key features that may be utilized in deter-

mining its execution context are discovered. Static code analysis is used in order

to extract those key features from the code.

A bag-of-words [Qader et al., 2019] is produced through this procedure, which is

comprised of a collection of modules, packages, and libraries that are imported

into the code. For instance, containerized Python projects may incorporate pack-
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Algorithm 3 Adaptation of the Influence-based Dataset Generation method as it
used in Optimal Deployment Configuration framework
Auxiliary Variables:
D: the initial dataset,
D−i: the initial dataset, with the i-th instance removed,
D
′: the dataset consisting of all identified influential instances,

F1: the F1 score of the ML algorithm when trained with the original dataset,
F1[i]: the F1 score of the ML algorithm when trained with the original dataset

without the i-th instance,
inf luentialInstances: the dataset constructed of the identified influential in-

stances,
κ[i]: Kohen’s score of the ML algorithm when trained with the original dataset

without the i-th instance.
Output:

inf luentialInstances

Algorithm:
1: fit(D)

2: inf luentialInstances = [ ]
3: calculate κ(D)
4: calculate F1(D)
5: for i ∈ D do
6: D−i : i < D
7: fit(D−i)

8: F1[i]← F1(D−i)
9: κ[i]← κ(D−i)

10: end for
11: for i ∈ D do
12: if κ[i] ≤ κ(D) && F1[i] ≤ F1(D) then
13: inf luentialInstances← inf luentialInstances ∪ i

14: D : D− i
15: end if
16: end for
17: kmeans.fit(inf luentialInstances, k = |inf luentialInstances|)
18: if kmeans.predict(i ∈ D)==cluster && dist(cluster, i ∈ D ≤

GIVEN DISTANCE) then
19: inf luentialInstances← inf luentialInstances ∪ i

20: end if
21: return inf luentialInstances

ages such as TensorFlow [Google, 2023], NumPy [Numpy, 2023], and Pandas [Pan-

das, 2023], which are imported within the code of the project. Given that the appli-
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cation is containerized, it would additionally incorporate Docker [Docker, 2023a]

and Docker Compose [Docker, 2023b]. The dimensions of the bag-of-words may

vary across different services. As a result, the zero-padding method is applied to

ensure that every generated bag-of-words occupies the identical space.

The generated bag-of-words undergoes a Principal Components Analysis (PCA)

[Wold et al., 1987], [Abdi et al., 2013] in order to reduce the feature space and

achieve uniformity since the number of identified features, as already explained,

may be different for each service. The final result of this procedure regards a vec-

tor for the given service, which is then passed as input to the Variants Predictor,

which will be described in detail below.

4.2.3 The Variants Predictor

The Variants Predictor is responsible for the identification and prediction of the op-

timal execution context of a given service. The Variants Predictor, utilizes an adap-

tation of the proposed Influence-based dataset as described in Chapter 2. The

adaptations that have been made will be described in detail below.

4.2.3.1 Influence-based Dataset Generation method Adaptations for the Vari-

ants Predictor

Similar to the generic method, this adaptation is again split into two main phases:

the training phase and the prediction phase.

4.2.3.1.1 The Training Phase

The training phase involves 5 main steps:

(i) the training of the ML model with the unchanged dataset,

(ii) the calculation of the metrics used for the instances’ influence identification,

which in this case are the Cohen’s Kappa score and the F1-score,
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(iii) the selection of the most influential instances based on the outcomes of the

above-mentioned metrics,

(iv) the selection of all influential instances, including those that were not ini-

tially identified, and finally,

(v) the re-training of the ML model using the new dataset, which now consists

of solely influential instances.

In more detail, as also depicted in Algorithm 3, the original dataset, listed as D,

is used for the training of the ML model. The baseline Cohen’s Kappa score and

F1-score are then calculated for the original dataset. Consequently, the process

of evaluating the influence of the individual instances in the original dataset is

instantiated (i.e., steps ii and iii of the aforementioned list).

In any instance i of the dataset D, the Cohen’s Kappa score (also mentioned as

Cohen’s Kappa coefficient) is defined as in Equation 4.1:

κi =
p0 − pe
1 − pe

(4.1)

where p0 regards the agreement between the ground truth (i.e., the actual values

in the dataset) and the predicted values of the trained model, and pe regards the

proportion of chance agreement. The Kappa score can be a value of 0 ≤ κ ≤ 1
[McHugh, 2012]. The closer the Kappa score is, the higher the agreement between

the ground truth and the model’s predictions, whereas if the score is close to 0, the

less agreement there exists between the ground truth and the predictions of the

ML model.

Furthermore, the F1-score for any instance i in the dataset D is defined as in the

following Equation 4.2:

F1i = 2 × Precisioni × Recalli

Precisioni + Recalli
(4.2)

Chrysostomos G. Symvoulidis



70
CHAPTER 4. CLOUD AND EDGE COMPUTING OPTIMIZATION: DYNAMIC DEPLOYMENT

CONFIGURATION IN HYBRID CLOUD / EDGE ENVIRONMENTS

Upon completion of the above procedure, the most influential instances of the

given dataset can be found. Any instance i is considered influential if Cohen’s

Kappa coefficient κ[i] is less than the original Cohen’s Kappa score kappa(D), mean-

ing that the agreement between the ground truth and the prediction of the model

is reduced if the instance is removed from the dataset, and if the F1-score F1[i] is

also less than the original dataset’s F1 score F1(D), meaning that the overall accu-

racy of the ML is decreased if the instance is absent from the dataset.

This process produces the set of the most influential instances out of the dataset

D. Yet, the new dataset may be significantly reduced if only these instances are

used for the training of the ML model, something that may essentially reduce the

model’s performance [Barbedo, 2018], [Symvoulidis et al., 2022]. For this reason,

using the K-Means algorithm is used, or to be more precise, a generalization of

the K-Means algorithm called Gaussian Mixture Models (GMM) [Jung et al., 2020],

[Reynolds et al., 2009], [Zhang et al., 2021], to identify additional instances of the

original dataset D which may be influential as well but were not recognized in

the first phase. In more detail, the originally identified influential instances are

provided as input to the K-Means algorithm for its training. Consequently, the

instances of the dataset D which were not originally identified as influential, are

passed as input to the GMM and, if clustered in any the available clusters with a

high probability, they are considered influential too.

The final dataset D′ is then generated, which is comprised of the influential in-

stances that were initially found, along with the ones found by the K-Means algo-

rithm. The new datasetD′ is the one that is then used for training the ML model.

A sample of the final dataset is depicted in Table 4.1. In the labels column, a vec-

tor of configurations selected by the application provider or the application devel-

oper is present. In more detail, this vector’s dimensions are equal to the number of

application configurations available. For every service (i.e., every service is an in-

stance in the dataset), if the configuration is selected it is marked with 1, whereas

Doctoral Thesis



4.2. OVERVIEW OF THE OPTIMAL DEPLOYMENT CONFIGURATION IN EDGE / CLOUD
INFRASTRUCTURES FRAMEWORK 71

if it is not selected it is marked as 0 in the corresponding index of the array. The

configurations (or characteristics) can be split into two main categories: (i) the ap-

plication’s variant, which regards the execution type (e.g., it should be deployed as

a Docker container, in a VM, or in a High-Performance Computing center), and (ii)

in the hardware requirements, which regard the necessary hardware needed for

the execution of the application or service (e.g., an application may require Graph-

ical Processing Unit (GPU), a Field Programmable Gate Array (FPGA), a CPU, or

Tensor Processing Unit (TPU), etc. in order to be executed properly). A service

or an application may have more than one configurations enabled, e.g., a service

utilizing a ML or a DL model may require GPUs for training, while it may require

deployment as a Docker container.

Table 4.1: Features generated from Components Analyzer.
id feature 1 feature 2 feature 3 ... feature 100 labels
1 0.8662882236289067 0.4948947564279651 0.1117908516440862 ... 0.0016575690974061 [1,0,0,1,...,1]
2 0.2801278760588774 -0.3768388874846627 -0.1786334658385676 ... -0.0025667912344088 [0,0,0,1,...,1]
3 0.4584394177284303 -0.2221757257954971 0.4164187314335896 ... 0.0814415288341813 [1,1,0,1,...,0]
4 0.8724889756687922 -0.3850002938928947 0.6681803513604484 ... 0.0043081516691631 [1,0,0,1,...,0]
5 0.8623929920456005 0.372267125496619 0.0006769234066742 ... 0.004228546139617 [0,0,0,1,...,1]
6 0.8208299621612967 -0.4191173731824708 -0.1330643380947467 ... -0.001447499256128 [0,0,0,1,...,1]
7 0.8604778764407413 0.4820758063978614 0.1132148573161234 ... 0.0062417955775234 [1,0,0,1,...,1]
8 0.8816712078784504 0.3179218124276765 -0.0320968508223609 ... 0.0084860448516899 [0,0,0,1,...,1]
9 0.739789842562039 0.3253980024470399 -0.0326223828797936 ... 0.0066267363615557 [0,0,0,1,...,1]
... ... ... ... ... ... ...
389,000 0.1642750341691848 -0.0798884919720658 0.0539745709775505 ... 0.0326708300771116 [1,0,0,0,...,0]

4.2.3.1.2 The Prediction Phase

The prediction phase involves the utilization of the final ML model which has been

trained using the method as described in the training phase. More specifically,

the procedure starts with the analysis of the service’s code by the Components

Analyzer component, which produces the vector of the given service. This vector

is then passed to the Variants predictor component, and the outcome refers to the

vector of predicted configurations for the given service.
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4.2.4 The Configuration Predictor

The Configuration Predictor is responsible for generating the deployment model

which can be used at a later time by the orchestrator for the deployment of the ser-

vice. This deployment model is created using the Cloud Application Modelling and

Execution Language (CAMEL) [CAMEL, 2023], a Domain Specific Language (DSL)

used for specifying deployment, scalability, security, etc. requirements in multi-

cloud, edge or hybrid infrastructures [Totow Tom-At et al., 2024]. The generated

deployment model includes all necessary information needed for the proper de-

ployment of a service, including instantiation information such as the number of

CPU cores or the amount Random Access Memory (RAM) or the fact that it the

application can be containerized. In addition, the CAMEL model includes infor-

mation related to the required hardware or infrastructure (as already mentioned,

a service may require the existence of GPU, TPU, or that it may require being de-

ployed in an FPGA).

4.2.5 Deployment Model Enrichment

This is the final feature of the proposed Optimal Deployment Configuration and

framework. The input for the enrichment of the deployment model is the pro-

duced deployment configuration generated by the Configuration Predictor, along

with the application developer’s initial configuration and the enriched configura-

tion model is produced, again in CAMEL format. The enriched configuration is

actually the final configuration which combines necessary requirements placed

by the application developer and additional predicted information derived by the

model generated by the Configuration Predictor component CAMEL model.
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Figure 4.2: Number of repositories per programming language.

4.3 Evaluation Results

In order to evaluate the proposed Optimal Deployment Configuration framework,

a dataset consisting of 389,000 applications and services from public repositories

on GitHub [GitHub, 2023a] was created. The dataset was collected using GitHub’s

Representational State Transfer (REST) Application Programming Interface (API)

[GitHub, 2023b].

The dataset includes public repositories developed in six different programming

languages (i.e., C, C++, Go, Java, JavaScript, and Python). As depicted also in Figure

4.2, on average, around 50,000− 60,000 repositories were collected for each pro-

gramming language apart from C++, where the collected repositories were around

111,000.
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The goal of the evaluation was to examine the behavior and overall performance

of the proposed framework in terms of how accurately it can identify and predict

the various deployment configurations for the given services. Given that, this re-

gards a multi-label classification, since the goal is to mainly check if the Variants

Predictor can predict the necessary configurations (i.e., correctly predict the con-

figuration vector as described above). For this reason, the four key metrics used for

the evaluation of classification problems were utilized; Accuracy, Precision, Recall

and F1-Score, as they are defined in Equations 4.3, 4.4, 4.5, and 4.6 accordingly:

Accuracy = TP+ TN

TP+ TN+ FP+ FN
(4.3)

Precision = TP

TP+ FP
(4.4)

Recall = TP

TP+ FN
(4.5)

F1 = 2 × Precision × Recall

Precision + Recall
(4.6)

Table 4.2: Datasets evaluation metrics using the Initial dataset and the
Influence-based dataset.

Dataset Accuracy Precision Recall F1-Score Training time (in sec) Dataset size
Initial 0.843 0.794 0.838 0.815 71.535 311,200
Influential instances 0.916 0.874 0.923 0.898 51.034 217,840

The selected ML model was a Random Forest Classifier with 1000 trees. Further-

more, the final predicted configurations were those that were predicted by the Ran-

dom Forest Classifier with a probability greater than 50%.

80% of the dataset was utilized for training purposes (i.e., 311,200 instances), and

the remaining 20% was allocated for testing (i.e., 77,800 instances). Initially, the
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Random Forest Classifier was trained using the whole training set, as also depicted

in Table 4.2. Using the Influence-based Dataset Generation method, a dataset

consisting of only influential instances was generated, which yielded a dataset

decrease of 30% (the influential instances dataset was comprised of 217,840 in-

stances instead). Not only that, the model’s performance was significantly im-

proved since the accuracy was increased by ≃ 7%, and the F1-Score by ≃ 8%.

In general, this evaluation proved that the proposed framework, when utilizing

the adapted Influence-based Dataset Generation method, manages to success-

fully predict the deployment configurations for services regardless of the program-

ming language in which they were implemented.

4.4 Discussion of the Evaluation Outcomes and the Ef-

fectiveness of the Influence-based Dataset Genera-

tion method

The Influence-based Dataset Generation method was put under evaluation in three

entirely different use cases, presented in Chapters 3 and 4. In the first case, it

was used as a pre-processing step towards the creation of a dataset used for the

training of a DL model which predicts the data items to be pre-fetched in a Health

Storage Cloud service. On the other hand, in the second case, it was utilized for

the creation of a dataset used for the fitting of a ML model used for the predic-

tion of the optimal deployment configuration of services in hybrid Cloud / Edge

Computing infrastructures. In the third case, it was used in collaboration with the

Causal Features Generation method as presented in Chapter 5. In this case, an

ML model was designed which identified the consumption of important metrics

during a service’s execution such as CPU and memory consumption and based on

them perform dynamic resource allocation.

Chrysostomos G. Symvoulidis



76
CHAPTER 4. CLOUD AND EDGE COMPUTING OPTIMIZATION: DYNAMIC DEPLOYMENT

CONFIGURATION IN HYBRID CLOUD / EDGE ENVIRONMENTS

Notably, the outcomes of the scenarios in which the method was utilized, revealed

an overall increase in the performance of the models, independent of the model

architectures, be it a DL model (such as the LSTM model for time-series classifica-

tion), or a traditional ML model (such as the Random Forest Classifier).

This highlights the proposed Influence-based Dataset Generation method’s ability

while it shows that it is not limited to a specific model type or problem domain, yet

on the contrary, it effectively addresses underlying data-related challenges that are

prevalent across different modeling approaches.

In the case of the ML model for classification, the method facilitated better general-

ization by reducing noise and emphasizing crucial instances for decision-making,

and at the same time, the method showed how flexible it was when used with the

LSTM model for time series classification, where it worked well at finding and us-

ing important temporal patterns in the data.

The extracted outcomes from both scenarios highlight the robustness and versa-

tility of the proposed method, while its ability to enhance performance regardless

of the model architecture that was utilized, and the problem type highlights its

significance as a valuable pre-processing step in any ML (either traditional or DL)

model training pipeline.
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Chapter 5

Causal Features Generation method

Chapter Structure

This Chapter is constructed as follows:

• Section 5.1 - Background on Causality, analyzes the State of the Art related

to Causality, Causal Inference, and Causal Discovery.

• Section 5.2 - Causal Features Generation Architecture, presents the archi-

tecture of the proposed Causal Features Generation method.

• Section 5.3 - Evaluation of the Causal Features Generation method, pro-

vides a high-level view of the evaluation scenario in which the proposed method

has been put under.

This Chapter describes the architecture of the proposed Causal Features Genera-

tion method. Before describing the proposed method, it is important to highlight

why causal features are important, and in what ways they affect the performance

of AI models. To start with, there are several reasons, which will be analyzed below:

(i) To improve the interpretability of ML models [Moraffah et al., 2020], by com-

bining meaningful causal features with the original ones. This can be espe-

cially important, especially in scientific areas where model interpretability is
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crucial. In more detail, by incorporating such features in a dataset, the cause-

and-effect relationships among the features are highlighted. Thus, when

such features are consolidated in a dataset that trains an ML model, it be-

comes easier to interpret the impact (influence) that the variables have in

the model’s predictions. In other words, the inclusion of such causal features

in a dataset makes it easier to determine which features drive the outcomes

of the model.

(ii) To gain deeper insights into the causal relationships between features (a.k.a.,

variables) in the dataset [Guyon et al., 2007]. The added features could re-

veal hidden patterns or dependencies. Not only that, hidden or uncovered

relationships among the features of a dataset may also be highlighted, while

confounding variables can also be identified more efficiently and handled

better.

(iii) To enhance the performance of ML models [Wen et al., 2021] by incorpo-

rating causal features that capture relationships and dependencies within

the data. Causal features usually represent more meaningful relationships

among the features, which can facilitate the ML model to better recognize

how the features impact one another. Furthermore, increased performance

may lead to better interpretation of the outcomes of a ML model, while it will

lead to a model whose generalization ability is increased, meaning that it can

perform better in unseen data.

(iv) To improve the robustness of ML models [Sun et al., 2015] by incorporating

causal features that make predictions more resilient to changes in the data or

underlying system. This happens, since the causal features can help a ML or

DL model by making it less likely to overfit. Another point which leads to in-

creased robustness has to do with the increased generalization of the model

as it described above. Finally, when including causal features in a dataset, it

allows the model to better identify the noise in the data.
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To this end, the proposed Causal Features Generation method has three main

goals:

(i) The identification and extraction of the causal relationships among the fea-

tures of a given dataset,

(ii) The creation of new causal features according to the identified causal rela-

tionships, and finally,

(iii) The generation of a dataset enhanced with causal features, which can be used

for the training of AI algorithms.

5.1 Background on Causality

This Section provides a comprehensive exploration of the foundational concepts

surrounding causality, offering a solid background for understanding the nuanced

aspects of causal inference and causal discovery. The following Subsections delve

into various dimensions of causality, elucidating key principles and methodolo-

gies. Subsection 5.1.1 introduces the fundamental concept of causality, laying the

groundwork for the discussion of the topics of Causal Inference and Causal Dis-

covery. Subsection 5.1.2 discusses essential aspects of Causal Inference, address-

ing topics such as Counterfactuals, and Confounding, among others, topics of sig-

nificant importance when it comes to the identification of Causal Relationships.

Subsection 5.1.3 focuses on presenting Causal Discovery methodologies, tools and

techniques for uncovering causal relationships.

5.1.1 What is Causality?

This Section describes the concept of Causality and sets the ground for the fol-

lowing Sections, where advanced methodologies and techniques towards Causal

Relationships identification and Causal Discovery will be presented.

Chrysostomos G. Symvoulidis



80 CHAPTER 5. CAUSAL FEATURES GENERATION METHOD

5.1.1.1 The History of Causality

In the exploration of causality, philosophical perspectives have played a pivotal

role in shaping our understanding of how events unfold and intertwine. The con-

cept of Causality originated in Ancient Greece and Plato who stated the principle:

”everything that becomes or changes must be so owning to some causes” [Lee et al.,

1971]. Aristotle was the first philosopher to give a thorough explanation of what

Cause is in Posterior Analytics, Physics and Metaphysics [Falcon, 2006]. In more de-

tail, Aristotle stated, for example, in his Posterior Analytics, that knowing a thing

entails knowing its cause. The context always includes both a definite being and

the conditions of knowledge of that being.

According to Aristotle, there are four possible answers to the question ”What is

this?” for any unique entity. These answers are all related to what he defined as a

”cause,” which is defined as ”something without which the thing would not be”. The

answers have been designated as the material cause, the efficient cause, the final

cause, and the formal cause. Although a comprehensive response to the initial

question would have included all four responses and consequently all four causes,

Aristotle maintained that the formal cause was the primary and most significant

one.

In the Middle Ages, Aristotle’s ”unmoved mover” was changed to a ”creating cause

of existence”, when most Christian philosophers tried to bring together Aristo-

tle’s theory with the Christian belief that God created the world out of nothing

[Van Huyssteen, 2003].

Forwarding in the 18th century, Isaac Newton stated that ”causes are forces or con-

straints that compel moving bodies to behave differently than they would have done

without them”, or in other words that cause means that objects were constrained

[Smith, 2007] and is said to reject the principle of universal causation. Similarly,

John Locke supported the singularist theory of causality and rejected the modern
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view of causation which declared that causation involves consistency or the neces-

sity of link between two objects.

The modern view on Causality originated from David Hume who declared that

causation involves the concept of necessity, and in more detail asserted that a

causal relation is characterized by three elements: (i) continuity of cause and ef-

fect (both in space and time), (ii) that the cause precedes the effect, and (iii) a nec-

essary connection between the cause and the effect must exist. Also, Immanuel

Kant claimed that causality was an a priori idea in an effort to defend it. In more

detail in Critique of Pure Reason, Kant argued that some concepts, including causal-

ity and substance are universally true with relation to possible experience.

In the more recent years causality evolved from an abstract, philosophical con-

cept to one that is more exact and quantifiable [Guo et al., 2020]. Data mining,

ML, Statistics, and various other scientific fields are now used to look for possible

cause-and-effect links in observational data and causality is regarded as a factor

in the creation of events, in which a cause causes an effect, with the second occur-

ring as a result of the first. Causality, as it will be demonstrated in the following

Sections, can be further explained by two key concepts; Causal Inference (see Sec-

tion 5.1.2) and Causal Discovery (see Section 5.1.3).

5.1.1.2 Correlation and Causation

In this Section, it is crucial to highlight the distinction between two concepts: cor-

relation and causation. Causation refers to a direct cause-and-effect relationship,

whereas correlation, on the other hand, represents a statistical association between

two variables. Another important distinction is that even if correlation between

variables exists can be proved, this does not prove the existence of a cause-and-

effect relationship between those variables.

A highly discussed example to prove that correlation does not imply causation is

the one regarding the positive correlation between Nobel Laureates and Chocolate
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Figure 5.1: A typical example of a cause-and-effect relationship, concerns the
atmospheric pressure inside an Espresso machine and the BAR in-
dicator of an Espresso machine. There exists a causal relationship
between the two, since only the first causes the second and not vice
versa.
Image AI generated using Imagine’s AI Art Generator tool [Imagine,
2023].

consumption per capita [Messerli, 2012], [Prinz, 2020], while there is a negative

correlation between Coffee consumption and winning a Nobel Prize. Even if there

is a strong correlation between these facts, there is no causal relationship among

them, meaning that, eating more chocolate or drinking less coffee will not lead to

winning a Nobel prize.

On the other hand, a typical cause-and-effect relationship can be found between

an Espresso Machine’s BAR pressure indicator and the atmospheric pressure within

the machine. The BAR indicator shows the atmospheric pressure within the ma-

chine, and the higher the pressure in the machine goes, the higher this indicator

points to. This is a clear cause-and-effect relationship since the cause (i.e., the
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atmospheric in the Espresso machine) leads to the effect (i.e., the BAR indicator

shoes a higher number). This relationship is not bidirectional, in the sense that,

even if someone changes the BAR indicator and turn it to a higher atmospheric

pressure point, the pressure in the machine will not change too.

5.1.2 Causal Inference

Causal Inference is a research topic important to many fields such as Statistics,

Computer Science, Education, Economics, among others, which studies the ef-

fects that exist when changes are performed in a system.

Causal Inference involves several key concepts and elements, such as Counterfac-

tuals and Confounding which will be further analyzed in the following Subsections.

Particularly in the case of Confounding, methods for addressing it will also be high-

lighted.

5.1.2.1 Counterfactuals

One of the fundamental concepts of Causal Inference regards the Counterfactu-

als [Yao et al., 2021]. This is an element that allows one to examine what would

have happened, had the conditions been different [Rubin, 2010]. These include

hypothetical scenarios that never happened and can measure the causal impact

of a treatment on individuals, The way to do that is to compare what actually hap-

pened (the observed outcome) against what would have happened had the cir-

cumstances be different (the counterfactual outcome).

The observed outcome is often denoted as Yi(1) for an individual i, representing

the outcome when the individual was exposed to the treatment (1), while the coun-

terfactual outcome is denoted as Yi(0) when the individual was not exposed to the

treatment. Hence, the causal effect of a treatment is defined as the difference be-

tween the observed outcome and the counterfactual outcome: Yi(1) − Yi(0).
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5.1.2.2 Confounding

Confounding is a key concept in Causal Inference [Athey and Imbens, 2015]. Con-

founding Variables are attributes in data which distort the relationship between a

cause (i.e., an independent variable) and the effect (i.e., the dependent variable).

Confounding Variables are very important to control for, since they may lead to in-

correct conclusions about the identified cause-and-effect relationships. In order

to control for and address confounding, several techniques and methodologies ex-

ist, which will detailed in the following paragraphs.

5.1.2.2.1 Instrumental Variables

Instrumental Variables (IV) [Greenland, 2000], [Martens et al., 2006] are one of the

most frequently used statistics tool in order to control for confounding variables in

observational studies. An IV is a variable that is correlated to the independent vari-

able (i.e., the cause) but not correlated to the dependent variable (i.e., the effect)

and can be used as an alternative to the independent variable in order to identify

the impact it has on the dependent variable.

5.1.2.2.2 Randomized Control Trials

Randomized Controlled Trials (RCT) [Stanley, 2007] is considered one of the gold

standards for evaluating the causal impact of a treatment [Bhide et al., 2018], or

an intervention on a particular outcome. In an RCT, participants are assigned

at random to either the treatment or the control group. This randomization re-

duces the possibility of confounding [Jager et al., 2008] by distributing possible

confounders equally across the groups, ensuring that the treatment and control

groups are equivalent in terms of both observable and unobserved features.

5.1.2.2.3 Matching

Matching is a statistics technique which can be used to control for confounding
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variables in observational studies by creating more proportional control and treat-

ment groups. Matching aims at balancing the distribution of confounding vari-

ables between the two groups using some of the core aspects of RCTs.

Initially, variables that may be confounding are selected. Afterwards, some of

them are selected for matching. The selected matching variables need to be rel-

ative to the outcome of the study, meaning that the should have an impact to

the outcome of the study. Consequently, the participants of the two groups are

matched to each other using any of the following methods. There exist differ-

ent kinds of matching techniques including (i) One-to-One matching where every

participant from the treatment group is directly matched to a participant of the

control group, (ii) One-to-Many matching where a participant of the treatment

group may be matched to more than one participants of the control group or vice

versa, and finally (iii) Nearest-Neighbor matching where the participants of the

treatment group are matched with the participant of the control group that has

the most similar values to them. Finally, the results for each maching group are

evaluated in order to estimate the treatment effect.

5.1.2.2.4 Propensity Score Matching

Propensity Score Matching is a specific type of matching, particularly useful in

studies where multiple covariates exist and need to be considered. This technique

allows to condense the information from all this variables into one variable; the

propensity score [Caliendo and Kopeinig, 2008]. The propensity score measures

the probability of receiving the treatment based on observed confounding vari-

ables. Propensity Score Matching follows a similar approach as in matching, but in

this case, the participants of the study are matched according to the their Propen-

sity Score. As in Matching, Propensity Score Matching helps when controlling

for confounding since it enables the creation of balanced control and treatment

groups with similar distributions of the identified confounding variables [Austin,
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2011], [Stürmer et al., 2014].

5.1.2.2.5 Stratification

Stratification is a statistics technique used in observational studies in order to con-

trol confounders [Hoggart et al., 2003]. Stratification works by creating strata or

subgroups of the population that participates in a study which have similar values

in the identified confounding variables. This allows for more accurate compar-

isons between the treatment and control groups.

Similar to Matching, in Stratification potential confounders are initially identified

[Tripepi et al., 2010] as well. Out of those potential confounding variables, the strat-

ification variables are selected and according to these, strata of the study popula-

tion are generated accordingly. Then, for each stratum, the control and treatment

groups are compared in order to identify the treatment effect, and given that the

strata include individuals with similar values in the identified confounding vari-

ables which were selected as stratification variables, this reduces the impact of the

confounding variable in the stratum [Jager et al., 2008], [Kahlert et al., 2017].

5.1.2.2.6 Difference-in-Differences

Difference-in-Differences (DiD) [Goodman-Bacon, 2021] is yet another statistics

technique used for the estimation causal effect of a treatment or a an intervention

in observational studies, and is especially useful when randomized trials are not

feasible, but there is a need for controlling for potential confounders which may

exist in the treatment and control groups.

The basic idea behind DiD is that both groups are supervised over time and the

changes that may exist over time are tracked and compared [Athey and Imbens,

2006]. Data from both groups are collected several times over the lifecycle of the

study, and the changes that may occur are evaluated and the treatment effect is

evaluated. DiD facilitate in controlling for confounding variables since it counts
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A B

Figure 5.2: In this example of a causal graph, attribute A is causing attribute B.

on the assumption that both groups would have produced the same over time if

both had received or not received the treatment. In other words, in DiD the control

group can act as a Counterfactuals [Streeter et al., 2017], [Zeldow and Hatfield,

2021] which also allows for controlling for time-related confounding variables.

5.1.2.2.7 Causal Graphs

Causal Graphs or otherwise known as Causal Diagrams are Directed Acyclic Graph

(DAG) which represent the causal relationships among variables in a system [Rohrer,

2018]. Causal Graphs can be particularly useful for the identification and control-

ling for potential confounding [Howards et al., 2012]. In a Causal Graph, the nodes

of the graph represent the features of the system and the directed edges (→) the

causal relationship between the attributes. In addition, as their name suggests

these graphs do not have any circles (acyclicity). For example, consider a graph

G = (V,E), where V is set of nodes of the graph which represent the attributes of

the system and E the edges of the graph. As shown in Figure 5.2, variable A is a

direct cause of variable B.

Causal Graphs are very useful when it comes to identifying confounding variables,

since it can be done in a visible way. As also depicted in Figure 5.3, variable B is a

common cause for both the independent variable A and the dependent variable B,

which may lead to a spurious relationship (i.e., wrong causal relationship between

the two variables). Causal Graphs can also facilitate on addressing for confoud-

ing once identified in numerous ways [Elwert, 2013], [Law et al., 2012], the most
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A

B

C

Figure 5.3: In this example of a causal graph, attribute B is a confounding vari-
able since it influences both the independent variable A and the
dependent variable C causing a spurious association between the
two.

common being:

• blocking confounding paths,

• using back-door and front-door criteria, or

• performing sensitivity analysis.

5.1.3 Causal Discovery

Causal Discovery is a field relative to Causal Inference but its primary goal is to

infer the causal relationships among the variables which often occurs through

Causal Graphs. Causal discovery techniques, like Causal Inference, attempt to re-

veal the causal relationships between variables without the need for experimen-

tal manipulations. Following a number of Causal Discovery methods will be dis-

cussed.
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5.1.3.1 Causal Bayesian Networks

Causal Bayesian Networks (CBN) are Graphical Causal Models which combine ele-

ments of Bayesian networks [Chiappa and Isaac, 2019] in order to represent causal

relationships between variables in the data [Pearl, 1985]. The CBN are graphs

where the nodes represent the features of the system and the directed edges the

causal relationships between them.

Several CBN-based causal algorithms have been proposed in the literature, which

in general can be divided to constraint-based and score-based. Constraint-based

algorithms on the one hand, exploit independence tests (such as G-square, Chi-

square of Fisher-z test) in order to create edge constraints on the causal graph

of observational data [Spirtes et al., 2000]. Score-based algorithms on the other

hand, generate Causal Graphs which are then scored using specific scores such

as the Bayesian Information Criterion (BIC). They key problem with Score-based

algorithms is that they are computationally expensive since they have to score all

possible candidate graphs in order to produce their outcomes.

The most frequently used Constraint-based Causal Discovery algorithm is the Pe-

ter - Clark (PC) algorithm, proposed by Spirtes et al.. This algorithm was used as

the basis for designing variants some which are presented below. To start with,

PC Stable [Colombo et al., 2014] is a variant of PC which can deal with a common

problem of the PC algorithm which regards its incapacity to handle order prop-

erly. In more detail, PC heavily depends on the order the variables are analyzed

by it, while in PC Stable this issue solves it. For high-dimensional data, PC Select

was proposed in [Bühlmann et al., 2010] which produces an undirected graph. An-

other Constrained-based algorithm regards the Fast Causal Inference (FCI) algo-

rithm was introduced in [Spirtes, 2001] which can be applied in situations where

the causal assumption cannot be met. Also, the FCI is known to tolerate con-

founding better than PC. Finally, Direct Linear non-Gaussian structural equation

model (DirectLiNGAM) proposed in [Shimizu et al., 2006], [Shimizu et al., 2011] is
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a causal discovery method that utilizes a Linear non-Gaussian structural equation

model (LiNGAM) to infer causal relations between variables.

Score-based Causal Discovery algorithms include Greedy Equivalence Search (GES)

and Greedy Interventional Equivalence Search (GIES) among others. GES [Chick-

ering, 2002] on the one hand aims at identifying the structure of the Bayesian Net-

work by searching through the space of possible graphs and determining which

edges represent direct causal relationships between variables. GIES [Hauser and

Bühlmann, 2012] which is an improvement of the GES algorithm due to its ability

to use interventional data and provide improved identifiability of causal models.

5.1.3.2 Causal Neural Networks

Causal Neural Networks (CausalNN) [Wiering et al., 2002], [Rumelhart et al., 1985]

regard a NN architecture, able of performing Causal Discovery. The way CausalNNs

work is by changing the feedforward phase to resemble a Bayesian Network and

thus being able to represent causal relationships. CausalNNs try to learn not only

statistical connections but also the underlying cause-and-effect mechanisms [Chat-

topadhyay et al., 2019] that exist in the observed data during training. They also

often have features for simulating interventions, which let the model guess how

certain behaviors affect the system.

5.1.3.3 Causal Decision Trees

Causal Decision Trees (CDT) are Decision Trees capable of incorporating causal

relationships into their modelling process [Li et al., 2016b] where each node of

the developed graph can be causally interpreted. Furthermore, CDTs are able to

provide a concise graphical depiction of the existing causal relationships.
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5.2 Causal Features Generation Method Overview

This Section describes in detail the proposed Causal Features Generation method

[Symvoulidis et al., 2023a]. As already described above, its objectives are the follow-

ing: (i) to identify the causal relationships among the features in a given dataset;

(ii) to generate causal features according to the previously identified causal rela-

tionships; and finally (iii) to generate a new causally enhanced dataset which in-

cludes also the new causal features.

The proposed Causal Features Generation method can be split into two main phases:

(i) the discovery of the causal relationships found among the already existing vari-

ables (i.e., the features) in the given dataset (described in Section 5.2.1), and (ii) the

generation of the new causal features based on the identified relationships along

with their inclusion in the original dataset (described in Section 5.2.2).

5.2.1 Causal Discovery

Algorithm 4 Causal Features Generation Generic method
Input:
D: the dataset used for training of a ML or DL model.

Auxiliary Variables:
t: A target feature,
CFt: List of feature t’s parents.

Output:
D

Algorithm:
1: perform causal discovery in order to extract causal relationships among the

features of the datasetD
2: store identified causal relationships in a data structure such as a list
3: for each of the identified causal relationships do
4: calculate P(t|CFt)
5: D : D ∪ P(t|CFt) // Append the new causal feature to the existing dataset
6: end for
7: returnD

The causal discovery phase starts, as described in Algorithm 4 with the identifica-
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tion of the causal relationships of the attributes in a given dataset D. The identi-

fication of such causal relationships is not always a straightforward procedure. In

many real-world scenarios, hidden relationships, a.k.a. confounders exist. Con-

founders (otherwise known as confounding variables or third variables) are, in

essence, features in a dataset that are associated with both the independent and

the dependent variables [McNamee, 2003]. If not properly dealt with, confounders

may lead to several issues, such as:

• Bias in predictions: If confounders are present in a dataset, they may lead to

incorrect conclusions due to the inclusion of bias [McNamee, 2003], [Thomas,

2020].

• Reduced model performance: When confounding variables are not dealt

with, there exist a potential to increase the variability of the predictions, and

as a result reduce a model’s precision and as a results its overall performance

[causaLens, 2023].

This is one of the most crucial issues when it comes to causal analysis, and while it

may not always be easy to deal with, there exist several strategies to address them,

the common of which is the following (a detailed analysis on how to deal with the

issue of identifying and managing confounding variables has been performed in

Section 5.1):

• Causal DAGs: Causal diagrams can be used to visually represent the rela-

tionships between variables in a dataset, which as a result can facilitate on

understanding and identifying potential causal relationships as well as con-

founding variables. Consequently, especially in the context of ML, additional

measures can be taken into consideration to measure the impact of the con-

founding variables, and to adjust accordingly the pre-processing steps as

well as the data which will be used for the training of a ML model. In addi-

tion, any of the following strategies can be also utilized in combination with

the generation of causal DAGs.

Doctoral Thesis



5.2. CAUSAL FEATURES GENERATION METHOD OVERVIEW 93

• Stratification: This strategy involves dividing the data (in statistical analy-

sis this is often referred to as the study population) into strata [Ding and

Lu, 2017], [Frangakis and Rubin, 2002], [Gallop et al., 2009], which are essen-

tially subgroups of the population that have common values of a key variable,

which may have been identified as a potential confounder. In the context

of ML, when splitting the dataset into training and testing sets, it should be

ensured that each one of the two sets contains a similar distribution of the

important (confounding) variables. This as a result, could ensure that a ML

or a DL model is evaluated on data that is representative of different strata

(i.e., different subgroups of the identified confounding variable).

• Propensity Score Matching: Propensity Score Matching is a strategy, mostly

used in observational studies, which aims at reducing the effect that poten-

tial confounding variables have over a study, by creating groups of individu-

als which have similar propensity scores [Austin, 2011], [Fu et al., 2019]. The

propensity score measures the probability of an individual, participating in

the study, of receiving the treatment, based on the observed covariates (i.e.,

the features).

• Other ML or Statistical methods: Advanced ML algorithms, such as Causal

Forests (or otherwise known as Generalized Random Forest (GRF)), [Athey

and Wager, 2019], [Caron et al., 2022], [Suk and Kang, 2023], or statistical

methods such as Targeted Maximum Likelihood Estimation (TMLE) [Luque-

Fernandez et al., 2018], [Pang et al., 2016], [Schuler and Rose, 2017], can be

used for causal inference, since they are capable for measuring the impor-

tance of the features in a dataset, while they can also be used in measuring

metrics such as Conditional Average Treatment Effect (CATE) and Individual

Treatment Effect (ITE).

In the proposed method, the identification of such causal relations is performed

using either the FCI algorithm, as proposed by Spirtes et al. [Spirtes, 2001] or the
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Figure 5.4: A CPDAG sample generated by the FCI algorithm. In this example
graph, attribute C is caused by two features, namely attributes A,
and B.

DirectLiNGAM algorithm, proposed by Shimizu et al. [Shimizu et al., 2011]. If the

selected causal discovery algorithm is FCI, the outcome regards a Completed Par-

tially Directed Acyclic Graph (CPDAG) G = (V,E), where V regards the features

of the dataset, and E the directed edges correspond to the causal relationship be-

tween one feature and another, such that A → B indicates that A causes B. As

an example, in Figure 5.4, attributes A and B are both causes of attribute C. An-

other option would be the PC algorithm proposed by Spirtes et al. [Spirtes et al.,

2000] [Spirtes and Glymour, 1991], yet it was proven that the FCI algorithm man-

ages to perform better than the PC algorithm, especially when it comes to toler-

ating with the confounders [Spirtes, 2001]. To this end, Algorithm 4 can then be

adapted as described in Algorithm 5.

On the other hand, if the selected causal discovery method is the DirectLiNGAM

algorithm, the outcome is an adjacency matrix where the columns and the rows

are the instances of the datasetD. The cells in this matrix represent the causal ef-

fect a feature (column) has on a feature (row), as shown in Equation 5.1. This can

be then translated into a Causal DAG, as depicted in Figure 5.5. In this case,the
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outcome regards a DAG G = (V,E) as the one described above, only with the dif-

ference that now the causal effect that a feature A has on feature B is shown on the

edge. In the DirectLiNGAM case, A
x
−→ B suggests that there exists a causal relation-

ship between A and B, and x represents the effect (or strength) of the causal rela-

tionship. The strength for each edge is calculated using conventional covariance-

based methods such as least squares regression.



0 0 0 2.97242198 0 0
3.01647872 0 1.98821239 0 0 0

0 0 0 5.9886615 0 0
0 0 0 0 0 0

7.97701605 0 −1.00053324 0 0 0
3.98514644 0 0 0 0 0


(5.1)

Once the above-mentioned causal discovery step is performed, the outcome is

the DAG or the CPDAG which includes the features of the dataset as nodes, and

as already mentioned, the edges represent the causal relations among the fea-

tures. It may also include the causal effect of each causal relationship, in case

DirectLiNGAM is utilized.

The generated CPDAG is then provided as input to the next phase, as it is described

in Section 5.2.2, whose purpose regards the generation of the new causal features,

and finally the generation of the causally enhanced dataset.
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Figure 5.5: A Causal DAG sample generated by the DirectLiNGAM algorithm.

5.2.2 Generation of Causal Features based on Causal Discovery

Outcomes

This phase of the proposed method is instantiated once the causal CPDAG is gener-

ated by the FCI or the DirectLiNGAM algorithms. As also described in the generic

Algorithm 4, the features in which to control for their causation variables are per-

formed, using the Parents - Children approach (p c as it is defined in Algorithms

5 for the FCI adaptation and 6 for the DirectLiNGAM adaptation). This means

that for each feature, only those features that are directly connected to it will be

selected, as also shown in Figure 5.6. Additional approaches also exist with re-
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Algorithm 5 Adapted Causal Features Generation method for the FCI case
Input:
D: the dataset.

Auxiliary Variables:
f ci: Output of the fci algorithm
pc: Output of the p c algorithm,
t: A target feature,
CFt: List of feature t’s parents.

Output:
D

Algorithm:
1: f ci← fci(D)
2: pc← p c(f ci)
3: for each tuple in pc do
4: calculate P(t|CFt)
5: D : D ∪ P(t|CFt) // Append the new causal feature to the existing dataset
6: end for
7: returnD

Figure 5.6: Sample of selecting causes of features using the Parents - Children
approach. In this example graph, attribute C is caused by two fea-
tures, namely attributes A, and B, hence both features are selected.

gards to the appropriate method of features selection, such as the Markov Blanket

approach [Yu et al., 2016], [Ling et al., 2019], [Fu and Desmarais, 2010], in which

the children (if any) of the target variable are also selected, along with its parent

variables, however, in the current case, only the parents are causes of the target
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Algorithm 6 Adapted Causal Features Generation method for the DirectLiNGAM
case
Input:
D: the dataset.

Auxiliary Variables:
f ci: Output of the DirectLiNGAM algorithm
pc: Output of the p c algorithm,
t: A target feature,
CFt: List of feature t’s parents,
ei: The causal effect of CFt on t.

Output:
D

Algorithm:
1: dLiNGAM← DirectLiNGAM(D)
2: pc← p c(dLiNGAM)
3: for each tuple in pc do
4: calculate occurrences of an instance appears in the dataset for P(t|CFt)
5: end for
6: for each tuple i in pc do
7: max((P(t|CFt)) ← calculate max occurrences in the dataset for P(t|CFt) for

any tuple in pc

8: min(P(t|CFt)) ←calculate min occurrences in the dataset for P(t|CFt) for
any tuple in pc

9: end for
10: for each tuple i in pc do

11: causalFeaturei ←
P(t|CFt)−min(P(t|CFt))

max(P(t|CFt))−min(P(t|CFt)) × zi
12: D : D ∪ causalFeaturei // Append the new causal feature to the existing

dataset
13: end for
14: returnD

variable.

Afterwards, the generation of the causal features process is instantiated. In case

the FCI is used for causal discovery, the newly generated features are in essence

probabilities that measure the influence of the parent attributes have, on the value

of the target attribute, and are calculated by estimating the relevant posterior prob-

abilities as suggested by Nogueira et al. [Nogueira et al., 2020], as also shown in

Equation 5.2, below:
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Figure 5.7: The new causal features are generated.

P(ControlF = t|CausalFs = CFt) =
∑
t ∩ CFt∑
CFt

(5.2)

Let t be the target feature and CFt a list of all features causing t (i.e., feature t’s par-

ents) as extracted by the FCI algorithm and selected using the Parents - Children

approach, such that CFt = [∀p ∈ CFt : p → t]. The calculated probabilities are in

fact the newly generated causal features of the dataset which are then consolidated

into the original dataset, as also depicted in Figure 5.7. A visual representation of

the overall workflow is presented in Figure 5.8, starting from the creation of the

causal graph, to the creation of the causal features and finally the generation of

the end dataset which contains the generated causal features.

In the case where the DirectLiNGAM algorithm is used for causal discovery, the

generated causal features measure the effect of the attribute CFt on t, using the

same posterior probability referred to above. The end formula to calculate the

Min-Max normalized new causal feature is found in the Equation 5.3 below:

causalFeaturei =
P(ti|CFti) −min(P(t|CFt))

max(P(t|CFt)) −min(P(t|CFt))
× zi (5.3)

where min(P(t|CFt)) and max(P(t|CFt)) are the minimum and maximum occur-

rences where ti has a given value given the value of CFt, and zi the z-score of the

effect ei accordingly.

The standard score (i.e., otherwise known as Z-score) zi for a given effect ei. It is
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Figure 5.8: The overall causal features generation workflow starts with the cre-
ation of the causal graph, the selection of the appropriate features
using the Parents - Children approach, to the generation of the new
causal features.

used to standardize the effects since they may vary from very small numbers close

to zero, to large or even negatives. The standard score is calculated as shown in

Equation 5.4 below:

zi =
ei − μ

σ
(5.4)

where μ is the mean of all effects and σ the standard deviation of all effects.

5.3 Evaluation of the Causal Features Generation method

The Causal Features Generation method has been applied to two use cases to

demonstrate its capabilities. The baseline algorithm as presented in the Chapter

has been adapted accordingly. The first use case in which the proposed method

was utilized in, can be found in Chapter 6 where it was utilized as a pre-processing

step to the training lifecycle of a DL network responsible for classifying users of

services deployed in hybrid Edge / Cloud computing infrastructures to mobility

classes. The outcomes of this model was then utilized for the optimization of the

data placement process.

In the second use case, the proposed data enhancement method is utilized in

conjunction with the Influence-based Dataset Generation method, which can be

found in Chapter 7. Similar to the first use case, both methods are part of the pre-
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processing steps in the training of ML model used for the prediction of resource

usage various metrics such as CPU and memory towards the dynamic resource

allocation at the edge.
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Chapter 6

Cloud and Edge Computing Optimiza-

tion: User Mobility-based Data Place-

ment in Hybrid Cloud / Edge Environ-

ments using Causally-aware DL

Chapter Structure

This Chapter is constructed as follows:

• Section 6.1 - Background on Data Placement and Optimal Path identifica-

tion solutions, performs a literature review in the areas of Data Placement

and Optimal Routing.

• Section 6.2 - Mobility-based Data Placement Strategy Overview, presents

a detailed overview of the proposed User Mobility-based Data Placement

Strategy and and highlights the adaptations that were made to the Causal

Features Generation method in order to utilize it in the User Mobility-based

Data Placement strategy.

• Section 6.3 - Evaluation Results, evaluates the proposed Data Placement
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strategy and presents the key outcomes of this evaluation.

• Section 6.4- Discussion on the Evaluation Outcomes and the Effectiveness

of the Causal Features Generation method, discusses the evaluation out-

comes of the given scenario and highlights the advantages the proposed method

brought.

This Chapter presents the results of the evaluation that the Causal Features Gener-

ation method has been put under. The proposed method is as described in Chap-

ter 5 and has been effectively applied to a use case [Symvoulidis et al., 2023a] to

demonstrate its ability. The generic algorithm is adapted accordingly to fit the use

case, as it will be described in Section 6.2.

6.1 Background on Data Placement and Optimal Path

identification solutions

Before proceeding with the overview of the proposed Mobility-based Data Place-

ment Strategy, it is important to highlight the work in the fields of Data Placement

and Optimal Path identification, in order to emphasize on the significance of the

proposed solution.

Key aspects taken into consideration in data placement Additional features
Research work Latency Bandwidth Storage Capacity Redundancy Migration cost Routing Data Importance User Mobility
Wei et al. [Wei and Wang, 2021] ✓ ✓ partial partial ✗ ✓ ✓ ✗

Xie et al. [Xie et al., 2019a] ✓ ✓ ✗ ✓ ✗ ✓ ✗ ✗

Du et al. [Du et al., 2020] ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Shao et al. [Shao et al., 2019] ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗

Proposed Solution ✓ ✓ ✓ partial partial / indirect ✓ ✗ ✓

Table 6.1: Criteria-based comparison of data placement strategies on the edge.

6.1.1 Data Placement

The development of mobile-related applications has accelerated significantly in

recent years which led to an increasing number of mobile devices, which are capa-

ble of generating and analyzing huge amounts of data, are developing. A typical
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example is IoT devices which are regarded as one of the most significant sources of

data production. In fact, according to published surveys, IoT devices will be exclu-

sively responsible for producing over 75 zettabytes of data by 2025. In contrast, the

data volume generated by such devices was a mere 13.6 zettabytes in 2019 [O’Dea,

2020]. Thus, it is reasonable to expect that the volume of information will con-

tinue to grow exponentially. Consequently, both the transmission and analysis of

this data will become more complex, requiring substantial computational power

and potentially causing delays when managed within conventional cloud infras-

tructures.

The term Data Placement, is associated with activities related to storing, replicat-

ing, locating and retrieving data to or from a system such as a distributed database.

In general, it is a topic broadly discussed in several areas such as Cloud Computing

[Agarwal et al., 2010], [Yuan et al., 2010], distributed databases and systems [Mehta

and DeWitt, 1997], and Peer-to-Peer (P2P) networking [Ye et al., 2011], [Chervenak

et al., 2007], among others. However, lately, there has been an increasing interest

in the field of Edge Computing as well, where multiple studies are being conducted

to examine this topic from different points of view.

Furthermore, despite the fact that modern ML and DL technologies have made

tremendous progress recently in an attempt to address issues associated with Cloud

and Edge Computing, such as orchestration [Wu, 2020], [Leng et al., 2022], run-

time adaptation [Eom et al., 2013], [Sniezynski et al., 2019], etc., they are neglected

in the data placement domain, since the majority of Data Placement strategies

only provide specific algorithms for specified use cases and scenarios that are

nearly impossible to adapt to in an exhaustive way.

To begin with, the authors of [Wei and Wang, 2021], have proposed a virtual-space

method to consider the popularity of the data when storing them at the edge. In

more detail, the authors proposed a methodology which involved placing the most

frequently accessed data in close proximity to the network center. This placement
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is intended to decrease the overall transmission latency by shortening the path

needed for data retrieval. Additionally, they introduced data offloading and repli-

cation strategies, which take into consideration the data popularity. As a result,

these strategies decrease the workload on the servers that are being used the most,

and eventually improve the edge network’s overall performance. The popularity

metric defined by the authors and it measures how much a data is requested by the

users in the system. The greater the value of this metric, the greater the popular-

ity of the data; consequently, the data is stored in closer proximity to the network

center.

Xie et al. in [Xie et al., 2019b], [Xie et al., 2021] proposed COordinate-based IN-

dexing (COIN), a data indexing mechanism used for data sharing on the edge, in

which the control plane of the edge network stores the the data indices and co-

ordinates of the edge switches in a two-dimensional virtual space. The proposed

mechanism then stores the data index to an indexing edge server, which is con-

nected to a switch that is the closest to the coordinates of the data index. In addi-

tion, Xie et al. in [Xie et al., 2019a] extended their work and proposed Greedy Rout-

ing for Edge Data (GRED), a data placement and retrieval protocolwhich specifies

the way data is stored and retrieved to / from the edge servers as follows. First, the

position of the network switches is identified in a two-dimensional virtual space

as in COIN. The an optimization of the positions is performs utilizingthe Voronoi

Tessellation (VT) methodology, while a Delaunnay Triangulation (DT) multi-hop

graph is constructed. Once the final graph is constructed, the data placement pro-

cess is instantiated. The data is first sent to the switch that is the closest to the

data and then forwarded by that switch to the closest edge server found in the

two-dimensional space.

The authors of [Shao et al., 2019] proposed a data replica placement strategy for

IoT workflows in hybrid Edge and Cloud environments. The data coming from IoT

devices is deployed in edge servers in close proximity assuming that the data ac-
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cess cost is minimum. If the data access cost exceeds a certain limit, the data is

placed to another adjacent edge server or a remote data center in order to mini-

mize the cost.

Du et al. in [Du et al., 2020] proposed a data placement and sharing strategy for

multi-region heterogeneous Cloud / Edge environments . In more detail, the au-

thors proposed a Discrete Particle Swarm Optimization (DPSO) with Differential

Evolution (DE) data placement strategy, called Differential Evolution - Discrete

Particle Swarm Optimization - Data Placement Strategy (DE-DPSO-DPS), in order

to design a data placement methodology which takes into account the data trans-

fer cost among multiple clouds, the storage capacity of an edge micro-data center,

and the most significant elements that result in data transmission delays.

Lin et al. in [Lin et al., 2019] on the other hand, proposed Discrete Particle Swarm

Optimization algorithm with Genetic Algorithm operators (GA-DPSO) which aimed

at optimizing the data transmission times when performing data placement pro-

cessed for a scientific workflow on the Edge and Cloud. The authors considered

that the data placement problem regards a multi-parametric issue in which the

data center where the data should be stored had to be considered, in combina-

tion to the actual data, a Map, which represents the data relocation from one data

center to another, and the total transmission time during data placement.

In order to tackle these challenges, the concept of Edge Computing has been estab-

lished, which leverages the computational capabilities present at the edge [Vargh-

ese et al., 2016]. Therefore, it is confident to argue that Edge Computing is emerg-

ing as a vital instrument for mitigating the costs associated with data transmis-

sion, and enhance the quality of services offered by analyzing data in smaller vol-

umes and in closer proximity to users. However, Data Placement still remains a

challenge that prevents Edge Computing from being utilized at its full potential.

The latter highlights the significance of designing solutions that optimize the Data

Placement process, with attention to resource management and the overall qual-
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ity of service. Nevertheless, a critical concern emerges: the existing methods and

techniques proposed in the literature primarily focus on data placement and op-

timization, with little consideration to the user and their needs, while exclusively

considering the infrastructure and network facilities. As a result, these methods

are policy-centric in nature, which produces solutions that lack dynamicity and

fail to adapt to changing environments.

6.1.2 Optimal Routing

One of the most extensively studied subjects in computer science, the shortest

path identification problem concerns discovering the shortest route from a given

node in a graph to every other node. This is of significant importance within the

area of Edge Computing, considering that the edge computing nodes are linked

together via a network and form an edge network graph. To address this issue,

several articles can be found in the literature and are described in detail below.

To start with, the authors of [Desai et al., 2022] presented an optimal IIoT, Edge-

based Optimal Routing framework in order to reduce the communication latency,

in which, three routing algorithms were designed. In the first algorithm, K-Means-

based Optimal Path Algorithm (KOPA), the location of the edge nodes and the

specified number of clusters are provided as input, and applies the K-Means algo-

rithm in order to group the nodes according to their Euclidean distance. A Cluster

Head (CH) node is selected, which is a essentially an edge server that has the ca-

pacity to directly communicate with every node in the cluster. The CH node is also

directly connected to the other CHs of the other clusters. Using Dijkstra’s shortest

path algorithm, the distances between the various CHs are sorted and as a result,

the distance between any two servers within the edge network graph is the dis-

tance between the first edge server and its CH, along with the distance between the

two CHs and the distance between the second CH and the desired edge server. The

second algorithm, named Cluster-based Optimal Path Algorithm (COPA),groups
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the servers into clusters according to their physical coordinates. For each cluster

an edge server is assigned as a CH which is in that case, the edge node closest

to the centroid of the cluster. The communication following to clustering forma-

tion matches that of the KOPA algorithm. The third and final algorithm proposed

by Desai et al. is the Minimum Interval-based Optimal Path Algorithm (MIOPA),

which is in fact an extension of the KOPA and COPA algorithms. The MIOPA algo-

rithm’s objective is to achieve a balance between the amount of the clusters so as

to select the CHs in an efficient manner, by arranging the clusters with respect to

their maximum length of the available geographical area.

Zhang et al. in [Zhang et al., 2020] proposed an Ad-hoc On-demand Multi-path

Distance Vector (AOMDV)-based routing protocol for mobile edge computing, called

LLECP-AOMDV. The proposed protocol, utilizes the Link Lifetime and Energy Con-

sumption Prediction (LLECP) and consists of two main phases. In the first phase,

all possible paths between any two edge computing nodes are found, while in the

second phase, the optimal path out of the available ones is selected. For the final

selection, additional constraints are inserted, including the lifetime of the link and

the energy consumption required for the data transfer.

In addition, the amount of research dedicated to the implementation of Interference-

Aware Routing (IAR) protocols has risen considerably in recent years such as the

researches found in [Waharte et al., 2008], [Mahmood and Cornaniciu, 2005], [Siraj

and Abbasi, 2022], [He et al., 2019]. A case in point is the paper authored by Waqas

et al. [Waqas et al., 2022]. The authors where proposed the Interference-Aware Co-

operative Routing (IACR) algorithm. This algorithm determines the routing cost

by utilizing a function that incorporates both the produced and received interfer-

ence of a node within the edge network. The interference metric is referred to as a

way of measuring the efficiency of an edge computing network against its energy

consumption.

Following, the proposed User Mobility-based Data Placement strategy will be pro-
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posed, which attempts to improve data placement and optimal routing for Edge

Computing infrastructures in multiple ways. First of all, there exist none user

mobility-based data placement (and data retrieval) solutions for such environments

in the literature. In addition, the majority of these solutions are rule-based, which

may function adequately in a controlled environment but could affect the robust-

ness of the final system. In an effort to progress in that direction, a Causal-aware

DL model is implemented which exploits the proposed Causal Features Genera-

tion method, as will be explained over following Sections. Additionally, the migra-

tion cost towards the selection of the most suitable servers is taken into account,

which is a factor, heavily valued in service placement issues [Mao et al., 2017].

As far as the contributions of the proposed data placement strategy in the optimal

routing field are concerned, we propose utilizing ML algorithms (K-Means) in or-

der to generate clusters within a given edge network graph. The utilization of such

methods is performed as a preliminary step to divide the edge network graph into

several smaller sub-graphs and find optimal paths in each among the sub-graphs.

This results to the reduction of the size of graph, since the route optimization (for

the majority of the use cases) is only performed within a given cluster and there-

fore simplifies the problem considerably.

Table 6.1 presents a detailed criteria-based comparison of the proposed data place-

ment strategy against the literature. The baseline criteria, which include aspects

such as the storage capacity of the nodes, the overall latency of the network, and

data redundancy, there exist specific features in the proposed strategy which are

not considered before. Such factors involve (i) the evaluation of the migration

costs that occur when transferring data from one edge node to another, (ii) the pro-

cess of determining the optimal path connecting the user’s present edge node and

the edge node the contains the user’s data, and finally (iii) the use of the User Mo-

bility metric which has only been used for service placement strategies [Ouyang

et al., 2018].
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6.2 Mobility-based Data Placement Strategy Overview

Consider an Edge Computing infrastructure like the one depicted in Figure 6.1.

Consider a typical edge computing environment, which can be formulated in the

form of a graph G(V,E), where G is the graph of the edge network, vertices V =
{v1, v2, ..., vN} represent the edge servers of the network, and E = {e1, e2, ..., eM}
represent the edges that connect the servers of the network.

The proposed data placement strategy aims at identifying the optimal server vj

(author’s note: the edge server may also be referred to as node in the following

Sections) according to the user’s mobility class. In addition, the data placement

strategy also defines the optimal path to upload the data from the current node

the user is connected to (i.e., vi), to the node vj, where the data should be stored.

The information related to the optimal edge server vj will be stored in the central-

ized cloud infrastructure (see Figure 6.1). Thus, a data retrieval request is made,

the edge node vi (i.e., the node the user is currently connected to) must contact

the cloud infrastructure, in order to retrieve information about which edge node

vj holds the user’s data. Next, the optimal path between vi and vj needs to be cre-

ated. The data needs to be first migrated to vi. Once the data migration is done,

the user can download it.

For each edge node vi ∈ V, their maximum capacity is defined as ci = c(vi) , while

lij = l(vi, vj) defines the calculated least distance between two edge nodes vi and

the vj. This way, all the least distances between every node set is found in the

L = {lij} distance matrix. It is important to note that, in this context, the term

distance refers to the physical distance (i.e., the number of edges that connect the

two servers). Furthermore, the transmission costwij between edge servers i and j is

defined as the sum of all transmission delays (i.e., latencies) tij for each lij. Similar

to the distance matrix, matrix W = {wij} contains all transmission costs between

any two edge servers i and j and is defined as shown in Equation 6.1 below:
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Data D

Request Data D
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Figure 6.1: An edge computing network, including the nodes, a cloud infras-
tructure, and the edges connecting the servers and the cloud infras-
tructure, along with its users, who may perform requests to either
place or request data to or from the network.

wij =
j∑
i,k

lik × tik (6.1)

The transmission delay, denoted as tij as presented in Equation 6.1 is not static
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metric, yet it dynamically updated, such that it may be increased or decreased

depending onthe data migrations performed over a given edge server at a certain

time period. The transmission delay tij between two edge nodes i and j is defined

as shown in Equation 6.2:

tij = δ +
n∑

k=1

dk

bij
(6.2)

δ refers to the default delay of the edge server, dk is the size of a data to be trans-

mitted, and bij the available bandwidth of the edge that connected the two edge

nodes i and j. Hence, the transmission delay tij at a certain time period is calcu-

lated by taking into consideration the load that each data point d incorporates into

the overall network when it is migrated.

Additionally, a number of user-related information are also defined. Starting with,

k which represents the number of users connected to the edge network, such that

U = {u1,u2, ...,uk} is the list of all users. M = {m1,m2, ...,mk} refers to the mobility

of each user, where the mobility of each user is defined as mi = m(ui). Let T =[
k × q

]
be a matrix consisting of the edge nodes a user has visited within a sliding

time window of q days (e.g., for the last 30 days). Each row of T represents a user’s

number of visited nodes. A =
[
k × q

]
on the other hand, refers to a matrix that

consists of the actions the user’s made within the same sliding time window of q

days, where each row of matrix A represents an individual user’s activity ai. Both

matrices T and A will be used for the calculation of the users’ mobility.

The high-level user mobility-based data placement strategy, starts with the cre-

ation of proximity-based clusters in the edge network, as they will be defined fur-

ther in Section 6.2.1. Consequently, the user’s information are exploited in order

to identify their mobility patterns and classify them into mobility classes. The

users may be either classified as static, local, or mobile over a predefined period

of time. Thus, a user that could have been initially classified as static, as the time
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progresses their mobility class might change to local, or mobile.

In any case, specific data placement algorithms have been designed for each mo-

bility class, and the appropriate one is utilized according to the users’ current class.

These data placement algorithms are utilized to predict the user’s optimal nodes

for data placement.

Finally, as time affects the mobility class of the users, the above procedure is per-

formed repetitively. This may lead to data migrations over time since the user

might change mobility class, or another node that may be more optimal for this

user may exist.

6.2.1 Proximity-based Clustering of the Edge network

The original edge network topology G is split into several clusters, utilizing the

proximity-based clustering methodology, in which the K-Means algorithm is used

in order to cluster the edge nodes into regions within the edge network, similar to

the clusters shown in Figure 6.2.

The clustering of the edge network is based on the distances of the nodes and will

be utilized during the data placement phase. In more detail, this allows the pro-

posed data placement strategy to have greater freedom on how the data should be

placed on the various edge servers, since adjacent servers can be easily identified,

and as a result make the optimal node selection easier and faster.

6.2.2 User Mobility Definition

User mobility measures at what rate a user is travelling through the nodes of an

edge network. It refers to a metric that has been broadly used in the cloud com-

puting and edge computing systems. Mostly though, it is used in order to optimize

service selection or placement process for the users [Wu et al., 2019], [Ouyang
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Figure 6.2: Proximity-based clustering of edge networks utilizing the K-Means
algorithm.The graph depicts an edge network where the nodes
(whose IDs are represented as numbers), are interconnected via a
network.

et al., 2018], to assign tasks on the edge [Wang et al., 2018], to improve context-

aware applications [Do et al., 2015], or to enhance and improve User Centric Net-

works (UCN) [Li et al., 2016a]. In this context, we utilize the user mobility in order

to optimize the data placement process.

And even though it has been previously utilized in service placement strategies

[Wei et al., 2020], to the best of our knowledge, it has never be exploited towards

the provision a mobile-aware data placement strategy. Hence, it is essential to

highlight how important it is, and the reasons why there is a need to perform data

placement in such diverse environments [Tsoumas et al., 2021] by always taking
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into consideration the user’s mobility.

There are three primary reasons for designing data placement strategies that con-

sider user mobility as a key factor in the decisions they make. To begin with, all

user data will be stored on one or more edge nodes situated in close proximity

to the user. As a result, the data transmission times will be considerably reduced,

due to the data being in closer proximity to its owner (i.e., the user that this data

belongs to). Furthermore, due to the fact that the data will be distributed across

a limited number of edge nodes (the data might even be stored in just one edge

node), the amount of time of the data fusion procedure will be reduced as well,

something that will also affect the cost [Khan et al., 2019] as well as the greenness

level of the overall procedure [Chowdhury et al., 2013].

6.2.3 User Mobility Prediction

User i’s mobility is defined as mi, over a given time period of q days and is rep-

resented by an integer, as it will described further below. The higher the mobility

metric mi is, the higher the mobility of a user. In order to predict the mobility of the

user, a DL network which utilizes the proposed Causal Feature Generation method

as it is described in Chapter 5 is utilized. According to the mobility metric mi, the

user is then classified in either of three mobility categories:

• The mobile user class: This mobility class refers to users that are not using

only one edge node, or edge nodes coming from only one proximity cluster

(as the ones described in Section 6.2.1. Mobile users may are travelling along

the entire edge network connecting to different edge servers every time over

the given time period, and their movement pattern may be sometimes diffi-

cult to predict.

• The local user class: The local users are those that over the given time period

of q days, mostly visited edge servers of a specific proximity cluster. The lo-
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cal users may be linked to one or two clusters, but not more, otherwise they

would be considered mobile users. The local users regard a typical case of

users such as people whose home is located in a different geographic loca-

tion from their office.

• The static user class: The static user category refers to those users that gener-

ally communicate with the edge network only from one specific server node.

This type of user does not travel frequently even within the borders of the

cluster they are linked to.

Despite the fact that these three classes may not encompass all user scenarios,

users may exist who do not strictly fall into these classes. However, they comprise

a wide variety of user behaviors and mobility patterns, making them suitable for a

variety of edge computing applications. In addition, the results which will be pre-

sented in detail in the following Sections prove that to a great extent,the proposed

data placement strategy manages to provide adequate results.

The user mobility prediction phase, utilizes the proposed Causal Features Genera-

tion method method. The adapted version of the proposed method, similar to the

generic approach is divided in two steps for the causal features generation part.

In this case, there exist an additional step which includes the training of the DL

model which is utilized for the mobility class predictions of the user. The first

phase regards the discovery of the potential causal relationships between the at-

tributes of the data, exploiting the FCI algorithm proposed by Spirtes et al. [Spirtes,

2001]. During the second phase, the causal features are generated (as explained in

Section 5.2.2, which are then incorporated to the initial dataset. Finally, upon com-

pletion of the aforementioned steps, the training of the dedicated DL model used

for the user mobility prediction using the new causal dataset is performed.
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Figure 6.3: A,B,C, ...,X are the features of a dataset. (a) Using the FCI algo-
rithm, the causal relationships among these features are discovered
and the CPDAG is generated. (b) Based on the generated CPDAG,
using the Parents - Children selection approach, for each feature its
parents (i.e., those features that are its direct causes) are selected
(if any). Consequently the new causal features are generated as de-
scribed in Section 5.2.2.

6.2.3.1 Causal Discovery

Similar to the generic Causal Features Generation method, in the current case a

dataset D, used for the training of DL model which is responsible for predicting

the mobility of a user, exists. DatasetD contains several information related to the

user’s interactions with the edge network, such as the number of these interactions

over a time period of q days. In addition, for each interaction, the type of data

requests are kept (i.e., whether it was a place or a retrieve data request), as well as

the size of the exchanged data, which edge server did the user interact with, and

the mobility of the user. Further than that, the dataset also includes information

for each edge node, and more specifically, the distances between the nodes which

is useful in order to also take into consideration the movement of the user (e.g., if

the user visited only edge servers that are adjacent they should not be considered

mobile but instead they could be considered either local or static).

The process starts with the identification of the causal relationships among the

features of the dataset (as depicted also in Figure 6.3(a)). The causal relationships

are identified using the FCI algorithm, since it is capable of estimating a CPDAG

comprised of the features of the dataset directly connected with the features that
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are causing them.

Consequently, the features along with the ones that there is a causal relationship

with, are selected, based on the Parents - Children approach, as shown in Figure

6.3(b), as input to generate the causal probabilistic variables. The Parents - Chil-

dren approach selects a tuple of the target feature along with its parents, i.e., the

features directly connected to it, thus have a causal relationship with the child.

These tuples, as also presented in Algorithm 7, are provided as input to the next

phase which regards the inference of probabilities. Again, even though there ex-

ist other approaches, such as the Markov blanket approach which not only selects

the parents of a target variable but also its children (if any), the use of the Parents

- Children approach is favorable, since only the parents are causing the target vari-

able.

Algorithm 7 Causal Features Generation and DL network training
Input:
D: the dataset including all information about the users’ interactions.

Auxiliary Variables:
f ci: Output of the fci algorithm,
pc: Output of the p c algorithm,
t: A target feature,
CFt: List of feature t’s parents.

Output:
causal aware model: The trained causal-aware Deep Learning network capable

of predicting a user’s mobility.
Algorithm:

1: f ci← fci(D)
2: pc← p c(f ci)
3: for each tuple in pc do
4: calculate P(t|CFt)
5: D : D ∪ P(t|CFt) // Append the new causal feature to the existing dataset
6: end for
7: causal aware model.train(D)
8: return causal aware model
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6.2.3.2 Ascertain Probabilities and Causal Features Generation

Next, the causal feature generation step is initiated. As mentioned in Section 5.2.2,

these causal features are in fact probabilities that measure the influence of the

parent attributes to the value of a target attribute and are calculated by inferring

the relevant posterior probabilities, as shown in Equation 6.3:

P(TargetF = t|CausalFs = CFt) =
∑
t ∩ CFt∑
CFt

(6.3)

6.2.3.3 Model Training and Prediction

The causal aware model is trained as presented in Algorithm 7. This model is in

fact a DL network that is capable of predicting the mobility class of a user and is

trained using datasetDwhich contains generated causal features.

The selected DL model, whose high-level architecture is depicted in Figure 6.4,

regards a feed-forward NN with fully connected layers followed by an output layer.

Since the proposed method mostly focuses on the insertion of Causally-enhanced

data the architecture of the model is not thoroughly manipulated.

As far as the output layer is concerned, it utilizes the categorical cross-entropy acti-

vation function in order to generate m(ui) ∈ [0, 1,2], which refers the user’s mobil-

ity class. The higher the output, the higher the probability metric for this specific

user. Finally, the user is then categorized in the three main categories; namely

static, local and mobile using the rule presented in Equation 6.4.

mi =


static, if m(ui) = 1,

local, if m(ui) = 2,

mobile, if m(ui) = 3.

(6.4)

Doctoral Thesis



6.2. MOBILITY-BASED DATA PLACEMENT STRATEGY OVERVIEW 121

x1

xj

Input layer Hidden layer Output layer

Dropout layer

Hidden layer

Dropout layer

Static

x2

cf1

cf2

cfk

Local

Mobile

Figure 6.4: The feed-forward DL network used for the prediction of the mobil-
ity class of the users. It takes as input not only the original data
features, but also the causal features as these are extracted from
the previous steps, presented in Section 5.2.2. The original data fea-
tures are depicted as xi, while the generated causal features are de-
picted as cfi. The output of the neural network regards the predicted
mobility class of a user, i.e., they can be classified as either static, lo-
cal, or mobile. In order to reduce over-fitting, dropout layers are
inserted after each hidden layer.

6.2.4 Data Placement

As presented in Algorithm 8, the data placement process is initiated by training of

the DL network with the causally-enhanced datasetD consisting of all users’ infor-

mation. This step is only performed once and may only be repeated occasionally

in order to further enhance the network’s results.

Consequently, the user’s information over the last q days is given as input to the

DL network which then performs a prediction of this user’s mobility class.

In case the user is classified as static, then the optimal node oi of this specific user
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Algorithm 8 Data Placement process
Input:

ai = [k]: User’s visited nodes in the last q days.
Auxiliary Variables:
D: the dataset including all information about the users’ interactions,
mi: user’s mobility,
m(ui): user’s mobility as predicted by the causal aware model,
vi: the node the user is currently using,
oi: user i’s optimal node,
s(di) : data di’s size,
op(vi,vj): optimal path between nodes vi and vj,

cs(vi) : vi’s occupied storage,
c(vi) : vi’s total capacity,
di: user’s data to be placed,
ni: nearest selected node,
R : A list including all nodes in order based on their ranking.

Output:
The Data Placement Decision based on the mobility of ui.

Algorithm:
1: m(D)← causal aware model(D) // Train the Causal DL model with the causal

enriched dataset.
2: mi ← m(ui) // Predict mobility of user ui.
3: if mi == 0 ||mi == 1 then // i.e., the user is classified as static or local.
4: oi ←max(ai)
5: op(vi,oi) ← optimal path(vi, oi) // From Algorithm 9.
6: if cs(oi) + s(di) ≤ c(oi) then // Optimal node can be used
7: return placement decision(di, vi, oi, op(vi,oi))
8: else // Optimal node cannot be used - storage limit exceeded
9: ni ← find nearest neighbor(oi, di)

10: op(vi,ni) ← optimal path(vi,ni)
11: return placement decision(di, vi,ni, op(vi,ni))
12: end if
13: else // i.e., the user is classified as mobile.
14: h = 0
15: while true do:
16: if cs (R [h]) + s(di) ≤ c (R [h]) then // The current node can be used
17: oi = R [h]
18: op(vi,oi) ← optimal path(vi, oi)
19: return placement decision(di, vi, oi, op(vi,oi))
20: end if
21: h + =1
22: end while
23: end if
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needs to be selected. This selection is performed by viewing the interactions this

user had with the edge network over the last q days and the node that the user

mostly interacted with, is selected as optimal. Afterwards, edge server oi is in-

spected on whether it is able to store the new data di with respect to their size.

If the edge server has the enough space to store the user’s data, the optimal path

between the user and the optimal node is found, by utilizing the Algorithm 9. Oth-

erwise, the find nearest neighbor algorithm is used in order to identify the closest

neighbor to oi that can host the data. This adjacent edge node is stated as ni. It is

imporant to mention that the adjacent edge server needs to belond in the same

cluster with the optimal edge node. The optimal path between the vi and the ni is

then calculated using the optimal path) algorithm, as presented in Algorithm 9.

In the case of a local user, the process follows a similar manner as in the static

users. The proposed algorithm identifies the optimal edge server oi and places the

data there. If the edge server oi is incapable of storing the data of the user (i.e.,

the free storage capacity of the optimal node is not sufficient to store the user’s

data), then the find nearest neighbor algorithm is used once again, in order to

select the closest neighbor, which as noted in the static users case, needs to be one

of the servers within the same cluster of the optimal edge server. Regardless, the

optimal path algorithm is applied in order to calculate the least distance between

the edge server that the user is currently connected to, and the one that is chosen

to store the user’s data. Since a local user may be linked to one or two clusters, this

means that is such cases, the optimal edge server selection takes into account the

nodes of both clusters.

Last but not least, if the user is classified as mobile, the data placement process,

states that the data should be placed on the edge node or nodes that has on aver-

age the least transmission cost across the whole edge network, while also taking

into consideration their capacity and how frequently they have been visited by

the user. For this reason, a ranking metric has been defined which rates the edge

Chrysostomos G. Symvoulidis



124
CHAPTER 6. CLOUD AND EDGE COMPUTING OPTIMIZATION: USER MOBILITY-BASED DATA

PLACEMENT IN HYBRID CLOUD / EDGE ENVIRONMENTS USING CAUSALLY-AWARE DL

nodes according to the aforementioned characteristics.

The eccentricity of a node regards a metric that measures the maximum distance

between an edge node i and any other node in the graph. Once the eccentricity

of each node is calculated, having also each one’s available capacity, the nodes’

ranks are generated. The nodes are then sorted against their eccentricity along

with their capacity and produce two numbers; the rank the node is when sorted

by eccentricity and the rank the node is when sorted by available capacity. The

centrality of any node i is produced as defined in Equation 6.5:

centralityi =
(M− ecc posi) × (M− cap posi)

M
(6.5)

where M is the total number of nodes in the graph. The higher the position a

node gets in either one of the ranks, the better the overall rank of it. For instance,

consider a graph network consisting of 50 nodes. If an edge node is ranked first

on both ranks (note that the position of the node ranked first is 0 and the po-

sition of the node ranked last is M − 1), the overall rank would be equal to 50
(M−ecc pos = 50,M−cap pos = 50, divided by50). While in the case where a node is

ranked last on both ranks, the overall rank would be equal to 0.02 (M− ecc pos = 1,

M− cap pos = 1, divided by 50).

Consequently, a list as defined in Equation 6.6 is produced, where it is measured

how frequently each node i has been visited by each user j:

F[ij] =
n∑

k=1
δ(a[j], i) (6.6)

where a regards the list of the previously visited nodes of the user j and δ the fre-

quency of visits of j to each node i.

The edge node that is selected for a given user is the one with the highest rank. The
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ranking system is defined by solving the Equation 6.7. The node that is the highest

in the rank metric, is selected for storing the user’s data, as long as its capacity is

sufficient to store the user’s data and the data are placed there (as also depicted

in Algorithm 8 (lines 15-22). Following, the optimal path between the vi and the oi

(i.e., the selected edge node) is calculated using the optimal path algorithm.

rankij =
(M− centralityi) × (M− F[ij])

M
(6.7)

The procedure outlined above facilitates to consistently account for the user’s move-

ments, resulting in the selection of the most appropriate edge node in the vast

majority of instances, however, there are situations in which the designated edge

node may not be the optimal one. In such cases, what is calculated is, (i)the mi-

gration cost in case the user requested the data from the node where the data is

stored (Cost), and (ii) the migration cost to migrate the data to the user’s current

edge node plus the migration cost if the user’s data were already in their current

edge node and then were requested for retrieval (Cost′). Thus, if this difference

exceeds a specific threshold, as shown in Equation 6.8, the data is migrated to the

user’s current edge node, otherwise, the data stays on the original edge node.

Cost − Cost
′ > threshold (6.8)

In all cases, as also seen in Algorithm 8, the placement decision (lines 7, 11, and

19) is produced, which is constituted by the information regarding the data di that

has to be placed, the user’s current edge node vi, the edge node to which di will be

placed to (the final edge node may either be the optimal oi or its sufficient neighbor

ni, the current edge node vi or its sufficient neighbor ni), and the optimal path

between the vi and the selected edge node.
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6.2.4.1 Neighbor Selection algorithm

The find nearest neighbor algorithm is responsible for identifying an alternative

node (depicted in Algorithm 8 as ni) that has the capacity to store the user’s idata di.

This requires a two-step process. As a first step, the adjacent nodes of the chosen

one (either oi or vi) are identified and the ones whose capacity ci is not sufficient

are excluded. Next, the remaining nodes (which we will annotate as r ∈ R, where

R is the list of all non-excluded nodes) are sorted by distance against the chosen

node. Whichever has the minimum distance l(vi|oi),r = min(l((vi|oi), r)),∀r ∈ R is

then selected as the ni.

Algorithm 9 Optimal Path Identification algorithm
Input:

vi, vj: the two edge nodes whose shortest path needs to be identified.
Auxiliary Variables:

P[vi, vj]: set of all possible paths between two nodes vi and vj,
S[vi, vj]: total transmission cost between two nodes vi and vj for each one of

the paths in P,
PSvi,vj : A tuple consisting of all available paths
between vi and vj and their corresponding distances,
PS Sortedvi,vj : The sorted PSvi,vj tuple in ascending order.

Output:
lij: The shortest path between vi and vj.

Algorithm:
1: P[vi, vj]←Discover all possible paths between vi and vj

2: for each p ∈ P[vi, vj] do:
3: Calculate transmission cost and assign it to S

4: end for
5: PSvi,vj ← (P, S) // A tuple consisting of all paths and their corresponding trans-

mission costs
6: PS Sortedvi,vj ← sort(PS)
7: lij ← PS Sortedvi,vj[0]
8: return lij // The path with the least distance
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6.2.4.2 Optimal Path Selection algorithm

Let P [vi, vj] be the set of all possible paths between two edge servers, vi and vj.

The purpose of the optimal path algorithm, as also presented in Algorithm 9, re-

gards the identification of the optimal path lij between these two edge nodes. The

process starts by discovering the available paths between the two edge nodes. The

possible paths are then assigned to the list I[vi, vj]. Afterwards, the paths are sorted

with respect to their total cost (since the G(V,E) is a weighted graph, where E re-

gards the edges between the edge servers v ∈ G, whose weight, i.e., the transmis-

sion delay between the two connected edge nodes, is known) and the path with

the least distance is selected as the optimal path.

6.2.5 Data Retrieval

This Section presents how a user may retrieve their data from the edge nodes. The

same data retrieval process is performed when it comes to static or local users,

while the data retrieval process is different when it comes to mobile users. In any

case both processes will be presented accordingly.

6.2.5.1 Data Retrieval for a static or a local user

Consider a user whose optimal node is identified in advance, as shown in Figure

6.5. When a user performs a request to retrieve their data, this request is forwarded

to the optimal edge node that was initially selected for storing their data. This edge

node is responsible for transmitting the user’s data back to the user.

In the case where the data of this specific user has been stored in other edge nodes

as well, as also depicted in Algorithm 10, the optimal edge node is responsible for

retrieving it from them as well (lines 4-6 if the user’s current edge node matches

the node where their data is, and lines 11-14 if the user’s current edge node does

not match the node where their data is) and then forwarding them to the user.

Chrysostomos G. Symvoulidis



128
CHAPTER 6. CLOUD AND EDGE COMPUTING OPTIMIZATION: USER MOBILITY-BASED DATA

PLACEMENT IN HYBRID CLOUD / EDGE ENVIRONMENTS USING CAUSALLY-AWARE DL

Cloud
Infrastructure

Edge Server Edge Server

Edge Server Edge Server

Edge Server

Static user

Edge Server

Mobile user

Static user's  
Data A

Static user's  
Data B

Mobile user's  
data placement  

info

Mobile User's  
Data A

Mobile User's  
Data B

Mobile User's  
Data C

Figure 6.5: Data retrieval process for both static and mobile users. The static
user’s data is mostly located in one node, while the mobile user’s
data is placed in different nodes across the edge network.

This simplifies the retrieval process process since it is an option only occurring to

static or local users whose optimal edge node did not have sufficient resources

to store their data. In that case, the optimal edge node knows which adjacent

edge nodes are selected for storage and performs a direct retrieval request to them.

Once all data objects are collected by the optimal edge server, the actual process

of transmitting the data to the user, is initiated.
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Algorithm 10 Data Retrieval process for static and local users
Input:

vi: the node the user is currently using,
oi: the optimal node of the user.

Auxiliary Variables:
op(vi,vj): optimal path between nodes vi and vj,

ddi: a Boolean value stating whether the user i’s data is only stored in oi, or not,
di: data to be retrieved by user.

Output:
The Data Retrieval decision for a static or a local user.

Algorithm:
1: if vi == oi then // The user’s current node matches the user’s optimal node
2: ddi ← user has data in other nodes(oi)
3: if ddi == True then
4: di += retrieve data(ni, vi, opoi,vi)
5: end if
6: return retrieve data decision(di, vi)
7: else // The user is using a node different from their optimal one
8: op(vi,oi) ←optimal path(vi, oi)
9: ddi ← user has data in other nodes(oi)

10: if ddi == True then
11: di += retrieve data(ni, oi, opni,oi) // Retrieve data from adjacent nodes to

optimal node
12: end if
13: di += retrieve data(oi, vi, opoi,vi)
14: return retrieve data decision(di, vi)
15: end if

6.2.5.2 Data Retrieval for a mobile user

If a user is categorized as mobile, the data retrieval process is more complicated.

As also presented in Algorithm 11, the data may be stored in several edge nodes

across the edge environment and must be collected from all of them (line 4), ag-

gregated in the edge node the user is currently connected to, and then forward it

to the user (line 11).

Every time a mobile user performs a data placement, the data is placed on the

current best overall-ranked edge server that has the capacity to store it. The infor-

mation regarding which nodes have been used to hold the user’s data is all kept in
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the centralized cloud infrastructure that acts as the managing component of the

edge network. Thus, whenever a data retrieval request is performed by a mobile

user, the edge node the user is currently connected to, asks the centralized cloud

component and retrieves this information. Consequently, individual requests are

performed from the current edge node, to all the edge nodes that contain the user’s

data.

For each data transmission between the current edge node and any edge node

that has user’s data, the optimal path algorithm is called, in order to identify the

optimal path between the two edge nodes and assist in minimizing the transmis-

sion times. Once all data is transmitted to the user’s current edge node, the actual

transmission from the current edge node to the user’s device is instantiated.

Algorithm 11 Data Retrieval process for mobile users
Input:

vi: the node the user is currently using.
Auxiliary Variables:

Q: List of node hosting user i’s data retrieved from the centralized cloud infras-
tructure,

op(vi,vj): optimal path between nodes vi and vj,

di: data to be retrieved by user.
Output:

The Data Retrieval decision for a mobile user.
Algorithm:

1: Q← retrieve nodes list(ui)
2: for qi ∈ Q do
3: op(vi,qi) ←optimal path(vi, qi)
4: di += retrieve data(qi, vi, opvi,qi)
5: end for
6: return data retrieval decision(di, vi)

6.3 Evaluation Results

This Section presents the results of the simulations that were performed, in or-

der to evaluate the proposed data placement strategy. First, the simulated envi-
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ronment along with the metrics that will be used for the evaluation of both the

proposed User Mobility-based Data Placement strategy, and the Causal Features

Generation method will be described. Consequently, the results and the lessons

learned from the experiments will be further analyzed.

6.3.1 Simulation Description and Metrics used for the Evaluation

The goal of the proposed User Mobility-based Data Placement strategy is to max-

imize the QoS of the enrolled users in the edge network, while optimizing the uti-

lization of the edge network’s computing resources. In order to measure the QoS

the transmission cost metric is utilized, as it will be described in the following para-

graphs. The edge nodes’ storage capacity along with the distribution of the data

items throughout the network two metrics are taken into consideration, in order

to measure the resource utilization. In order to evaluate the proposed data place-

ment strategy simulations were executed in an edge computing network whose

topology is presented below.

The edge network topology regards a randomly generated network graph G, with

50 edge servers, and 100users. Each edge node has a storage capacity which is ran-

domly set and ranges from 500 MB to 1000 MB. Each user may have data whose

size is randomly set within the range of 100 MB to 200 MB each. The graph edges

(i.e., the links between the edge nodes) correspond to the delay (a.k.a., network

cost) between the two connected edge nodes and is set randomly from 1 to 20
ms. A sample edge network graph, including the users, each connected to an edge

node of the network, is depicted in Figure 6.6.

In order to evaluate the performance of the proposed data placement strategy, the

following performance metrics were utilized:

• Average path length: The average path length is used to measure the distance

between the edge node the user is currently connected to and the edge node
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where the user’s data are placed.

• Average transmission cost : The average transmission cost measures the av-

erage latency (sum of delays) for each edge between the user’s current edge

node and the edge nodes where the user’s data is placed.

• Distribution of data items in nodes: The distribution of data items metric

evaluates whether the data are uniformly distributed across the edge net-

work.

• Used storage capacity in nodes: The storage capacity when combined with

the distribution of data items in nodes in order to assure that the proposed

User Mobility-based Data Placement strategy does not rely only on a small

subgroup of the available edge nodes yet manages to successfully distribute

the load across the whole edge network.

In addition, in order to evaluate the performance of the DL model that predicts

the mobility of the users (through the evaluation of the DL model, indirectly the

Causal Features Generation method is evaluated as well), the following metrics

are used; Accuracy, Precision, Recall and F1-Score. Regarding Precision, Recall,

and F1-Score the results for each class in Table 6.3 are presented. Furthermore,

Table 6.2 depicts the confusion matrix summarizing the overall performance of

the Causal-aware model when the Causal Features are included in the dataset, and

comparing those results when those features are not included in the dataset used

for the training of the model.

6.3.2 Simulation Execution and Discussion of Results

The simulation started with the creation of the randomly generated edge network

as it was described in the previous Section. Consequently, 50 workers were de-

ployed in order to perform random walks in the graph each one with a walk length

of 100. The produced walks were then stored in a separate file which was used as
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Figure 6.6: An edge network configuration and connected users. The nodes are
colored in blue, while the users are colored in green with their cor-
responding ID numbers.

input to the K-Means algorithm in order to produce the clusters, as shown in Fig-

ure 6.2. K (i.e., the number of clusters or neighbors as they were described before)

was set to 6.

Starting with the average path length metric, as also seen in Figure 6.7, the pro-

posed User Mobility-based Placement strategy performed significantly better when

it comes to static and local users, which is reasonable given that for these user

types, the data was placed within the cluster the users were assigned to. On the

other hand, in the case of mobile users, the proposed strategy performed poorer

in comparison, but even in the worst case scenario (i.e. the mobile user case), the

proposed Data Placement strategy performed similarly when compared to other
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Figure 6.7: Average distance between the users and their data for each mobility
class.

Figure 6.8: Average distance between the users and their data.
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Figure 6.9: Average accessing cost between the users and their data for each
mobility class.

Figure 6.10: Accessing cost for every user.
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Figure 6.11: Number of data items per edge node.

Figure 6.12: Range of stored data items per edge node.
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Figure 6.13: Used capacity among all edge nodes.

solutions with similar simulation configurations [Wei and Wang, 2021].

The proposed strategy significantly outperforms similar solutions, especially when

it comes to static and local users, while it performs adequately when it comes to

mobile users. In more detail, the average path length for all users was equal to

17.89, while specifically for static and local users, the same average path distance

was equal to 5.72 and 14.67 accordingly. To compare with, when it comes to mo-

bile users, the same metric was on average equal to 31.31.

A comprehensive view of the average distance for each user in the simulated envi-

ronment is depicted in Figure 6.8.

Another metric which was used for the performance evaluation of the proposed

User Mobility-based Data Placement strategy concerns the accessing (or transmis-

sion) cost for each individual user (as depicted in Figure 6.10 which presents the

average cost per user in the simulation) and per mobility class as referred to, above.

As depicted also in Figure 6.9, similar results to the average distance metric have
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been in observed, which means that the proposed strategy successfully did man-

age to keep the accessing cost low in the cases of static and local users. When it

comes to mobile users, the cost was increased when compared to the previous two

mobility classes, but it was in general under acceptable limits. In more detail, on

average, the accessing cost for mobile users was equal to 48.87, while for static and

local users it was equal to 12.12 and 27.25 correspondingly. The overall average

accessing cost was equal to 32.03.

In order to assure that the data placement strategy does not utilize only a small

part of the available edge nodes, but instead utilizes the majority of them, the av-

erage used capacity among all the available edge nodes was measured, in combi-

nation to the distribution of the stored data items among the edge nodes.

The results depicted in Figure 6.11 show that there were cases where some nodes

were loaded with more data items that other nodes (such as the edge node with

id 2) which was loaded with 7 data items. And even though this comes in contrast

to the end goal, which is to avoid cases where there are several edge nodes with

many data items, that would mean that many individual users were allocated to

them, while also the average capacity across the nodes was low.

Yet, the majority of the data items were equally distributed across the network.

This can also be established when examining Figure 6.12, where we see that most

edge nodes stored on average 0 − 3 data items and only a few over 4 data items,

and in fact, on average there were 2 data items stored per node. Another key re-

sult that can be extracted when looking at Figure 6.13 is that although there exist a

few edge nodes whose used capacity reached over 60%, only a very few number of

nodes had a used capacity which exceeded 80%. In fact, on average, the used ca-

pacity across all 50 deployed edge nodes was at 28.4%, while the maximum used

capacity percentage was identified at node with the id 47, which had 86% of its

available storage in use.

A crucial element in this evaluation concerned the assessment of the DL model
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With Causal
Attributes

Without Causal
Attributes

Actual Class
Static Local Mobile Static Local Mobile

Predicted
Class

Static 22 2 1 18 5 2
Local 4 27 8 7 19 9
Mobile 0 3 32 2 8 30
Total 27 32 41 27 32 41

Table 6.2: Confusion matrix depicting the mobility class predictions of the 100
users in the simulations.

which performed the classification of the users to mobility classes, and through

that the evaluation of the proposed Causal Features Generation method. Given

that the end task regarded a multi-class classification problem, the metrics that

were utilized were Accuracy, Precision, Recall and F1-Score. As it can be extracted

from Table 6.2, the model performed on average very well in predicting the users’

mobility accurately, while on average the accuracy is 81% when including the gen-

erated the Causal Attributes, and 67% when the Causal Features were not included

in the dataset that was used for the training of the model.

In addition, as also shown in Table 6.3, the model managed to successfully sep-

arate the mobility classes. Based on the above, it can be safely said that an im-

provement in the model’s overall performance suggests that the generated causal

features played a significant role in enhancing the model’s predictive capabilities.

This can be also drawn by calculating the Macro-averaged F1-Score where in the

case where the Causal Attributes were used, it was equal to 0.816, while when ab-

sent the same metric was equal to 0.693.

With Causal Attributes Without Causal Attributes
Precision Recall F1-Score Precision Recall F1-Score

Static 0.880 0.815 0.846 0.72 0.667 0.773
Local 0.692 0.843 0.761 0.543 0.594 0.567
Mobile 0.914 0.780 0.842 0.750 0.732 0.741

Table 6.3: Precision, Recall, and F1-Score for each user mobility class.

To sum up, the evaluation of the proposed data placement strategy led to the fol-
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lowing remarks:

• The QoS requirement that was initially set was met, since the overall access-

ing cost for accessing the data is less when compared to other similar solu-

tions from the the State of the Art,

• The proposed solution performs in general better when it comes to static,

or local when compared to mobile users which is understandable, given the

nature of the mobile users. Nonetheless, it still performs average when com-

pared to the State of the Art even for the mobile users category.

• Initially, there was a major impact on the overall accessing cost when several

static or local users were in one area (i.e., a cluster of edge servers). For this

reason, the strategy had to be adapted accordingly in order to make it more

resilient in such cases. The adaptation that had to be made, in this scenario,

allowed data placement on edge servers that were not part of the cluster the

user was in but on adjacent ones as well.

In conclusion, the evaluation that it was performed proves that the proposed User

Mobility-based Data Placement strategy can significantly reduce the data place-

ment and data retrieval operations performed in an edge network, and that in

most cases the optimal edge node is utilized to store the user’s data. Finally, the

simulated evaluation proved the ability of the proposed data placement strategy

to utilize the whole edge network for data placement, rather than overloading only

a few edge servers while the rest remained neglected.

6.4 Discussion on the Evaluation Outcomes and the

Effectiveness of the Causal Features Generation method

The Causal Features Generation method was evaluated in two scenarios in which,

a DL model was utilized for the classification of users of an edge computing envi-
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ronment into mobility classes according to their behavior and their overall inter-

action with the system.

As the results suggested, the inclusion of the method as a preprocessing step in the

training pipeline improved the model’s overall performance, and the observations

that can be extracted from this outcome are the following. First of all, the improved

performance proves that the proposed Causal Features Generation method can

make the DL model more robust by providing additional information and allowing

it to generalize better to unseen data.

Another important note is that, by including these Causal-based Features in the

training dataset, patterns or relationships in the data that were not evident in the

original set are made easier to identify by the model.
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Chapter 7

Edge Computing Optimization: A Causal

Contextually-Aware Machine Learning

Approach for Dynamic Resource Allo-

cation

Chapter Structure

This Chapter is constructed as follows:

• Section 7.1 - Background on Dynamic Resource Allocation at the Edge, an-

alyzes the State of the Art on Resource Allocation and Deployment Configu-

rations on Cloud and Edge Computing Environments

• Section 7.2 - Overview of the Dynamic Resource Allocation Framework,

presents an overview of the proposed resource allocation framework and

highlights the adaptations that were made two both data enhancement meth-

ods (i.e., the Causal Features Generation and the Influence-based Dataset

Generation methods) in order to be incorporated in the given use case.

• Section 4.3 - Evaluation Results, evaluates the proposed framework and presents
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the outcomes of the performed experiments.

This Chapter presents the evaluation of both data enhancement methods in the

context of a framework for dynamic resource allocation Edge Computing infras-

tructures. In more detail, both methods have been utilized as a pre-processing

step in order to train an ML model responsible for the prediction of the resource

allocation of services deployed at the Edge [Symvoulidis et al., 2024].

7.1 Background on Dynamic Resource Allocation at the

Edge

A new age of decentralized and distributed computing architectures has emerged

in recent years with the rise of Edge Computing. With its focus on processing

data closer to the source, Edge Computing brings forth exciting opportunities for

both businesses and customers as well. From managing IoT devices in transpora-

tion [Zhou et al., 2021], [Lin et al., 2020], [Chavhan et al., 2022], or for the imple-

mentation of smart cities solutions [Khan et al., 2020], [Liu et al., 2019], [Lv et al.,

2021].

However, there are additional challenges to overcome. One major issue involves

the effective use of the resources at hand [Xiong et al., 2020], [Symvoulidis et al.,

2023b], and as the demand for real-time and context-aware applications [Symvoulidis

et al., 2019] increases, the demand for a strong framework for dynamic resource

allocation grows. But although there exist solutions in the literature that aim at

solving this matter [Tang et al., 2019a], [Wu et al., 2023], there is still work to be

done, as in most cases, the proposed solutions often rely on heuristic or simplified

assumptions, which do not fully encompass the dynamic and multifaceted nature

of Edge Computing environments.

The authors of [Tang et al., 2019b] suggested a method for allocating resources
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in hybrid cloud and edge computing systems for latency-critical applications. The

proposed strategy utilizes two key algorithms, the first one being a resource schedul-

ing algorithm and the second one being a resource matching algorithm. The re-

source scheduling algorithm, determines the task scheduling cost based on the

data center transmission cost (i.e., the cloud infrastructure part) and the edge

servers. The resource matching method optimizes the resources to be allocated

for the requested task on an edge server by taking into account the location of the

resource, the overall cost of network transmission, and the priority of the tasks. It

achieves this by considering the results of the resource scheduling algorithm.

The authors of [Deng et al., 2020b] suggested a Dynamic Throughput Maximum

(DTM) method based on the Lyapunov optimization to optimize computation and

communication resources for MEC environments with the goal of maximizing the

overall throughput. Similar to this, the authors of [Plachy et al., 2016a] suggested

a method for allocating resources for VM in MEC while incorporating the mobility

of the users [Symvoulidis et al., 2023a]. In addition, the algorithm determines the

best route, accounting for user movement, between the users and the deployed

VM.

A Generative Adversarial Network (GAN) - assisted dynamic resource allocation

scheme for MEC was proposed by the authors of [Gong et al., 2023], building on

the work presented in [Kaur et al., 2021] and [Xu et al., 2020b]. In more detail,

in order to forecast the demand for each edge node in the upcoming time slot

and make allocation decisions based on this knowledge, the authors examine prior

information (i.e., historical data) related to user mobility.

The authors of [Xiao et al., 2012a] proposed a virtualization technology-based sys-

tem which allocates the available computing resources dynamically, taking into

consideration the applications’ requirements. In more detail, the authors sug-

gested using the ”skewness” metric to quantify possible misuse of resources and

the end goal was to minimize this metric, hence achieve optimizing resource al-
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location and usage. In the same fashion, the authors of [Saraswathi et al., 2015],

proposed a dynamic VM resource allocation model which can dynamically adapt

the available virtual resources, based on the characteristics of the deployed ser-

vices and as a result lead to an optimized use of the resources.

Gao et al. [Gao et al., 2022] proposed a dynamic resource allocation system for

Virtual Network Function (VNF) in satellite edge clouds which aims at minimiz-

ing the services’ delay while also minimizing overall network bandwidth cost. The

proposed solution utilized a Distributed Virtual Network Function (D-VNF) algo-

rithm.

Chhabra and Singh in [Chhabra and Singh, 2022] on the other hand, suggested

an Service Level Agreement (SLA)-aware resource allocation scheduling method,

which has two main phases. In the first phase it analyzes the resource require-

ments of a given service, while in the second phase it allocates the appropriate

resources for the service’s deployment.

The work of Yeh and Yu [Yeh and Yu, 2022] focuses on the design of a dynamic re-

source allocation model which can dynamically adjust the computing resources

assigned to jobs in Hadoop [Apache, 2023a] towards the acceleration of their exe-

cution. The proposed model, is also capable to prioritize the execution of critical

jobs by allowing these jobs to utilize more containers against the jobs with regular

priority.

In a different use case, Lim et al. [Lim et al., 2021] raise the importance of training

AI algorithms without moving the data away from their source; an important issue

that is very much discussed in the existing data privacy-related policies, such as

the General Data Protection Regulation (GDPR) in the European Union (EU). To

deal with this matter, the authors propose the use Federated Learning (FL), but

in order to exploit such techniques efficiently, several resource allocation related

issues need to be resolved. To solve these issues the authors propose a two-level

resource allocation and incentive mechanism, in which the resources are allocated
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to workers according to the size of data they use for FL.

Plachy et al. [Plachy et al., 2016b] proposed a dynamic resource allocation model

for MEC infrastructures, based on the users’ mobility. In more detail, the authors

proposed a computing and communication resources allocation algorithm where

initially the user’s mobility is predicted. Consequently, the most appropriate in-

frastructure to allocate a VM for the execution of the user’s task is selected, and

upon deployment of the VM, the optimal communication path is between the

deployed VM and the user is identified to optimize the inter-communication be-

tween the two entities.

Given the above, it is evident that Edge Computing environments are very complex

since they include multiple devices, heterogeneous workloads, and constantly shift-

ing contextual factors [Tsoumas et al., 2021]. This is often ignored by traditional

resource allocation algorithms [Xiao et al., 2012b]. Therefore, it is safe to assume

that even though the research on resource allocation has progressed considerably,

the subject requires further attention and should be investigated more thoroughly

in order to design and develop more reliable and efficient solutions.

For this reason, in the following Sections, the proposed dynamic resource alloca-

tion framework is presented. The proposed framework is designed to perform dy-

namic resource adaptations on the edge servers of a given Edge Computing net-

work, similar to the one shown in Figure 7.1.

The presented framework makes predictions using an ML model trained on a causally

and contextually augmented dataset, which allows the model to generalize and

adapt to dynamic contexts as an Edge Computing network. The enhancement

of the dataset is performed using adaptations of the two proposed data enhance-

ment methods (Influence-based Dataset Generation and Causal Features Genera-

tion) as they are described in Chapters 2 and 5 accordingly.
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Cloud
Infrastructure

Edge Node

Edge Node

Edge Server

Edge Node

Edge Node

Figure 7.1: The Hybrid Cloud / Edge architecture of the system.

7.2 Dynamic Resource Allocation Framework Overview

7.2.1 Problem Formulation

In order to address the problem of dynamic resource allocation, it was formu-

lated as presented below. First, the Edge network is considered a graph G, where

G = (V,E), V = {v1, v2, ..., vm} are the edge nodes and E = {e1, e2, ..., en} are the

edges of the network connecting the nodes, as shown in Figure 7.1. This is a simi-

lar representation as in the graph network represented in Chapter 6. There are two

Doctoral Thesis



7.2. DYNAMIC RESOURCE ALLOCATION FRAMEWORK OVERVIEW 149

main goals for the proposed resource allocation framework: (i) to performe accu-

rate predictions related to the resource utilization for the nodes of the given edge

network, and (ii) to dynamically adapt the resources of any given node according

to the predictions.

For each node component (i.e., the servers and the links between them) of the

edge network, it is considered that the following characteristics are known. To

start with each server, for every server i, vi ∈ V, ci = c(vi) represents its storage

capacity, mi = m(vi) represents its memory usage, while pi = p(vi) its CPU usage

at any given time. In addition, lij = l(vi, vj) contains the calculated least distance

between the i-th node and any other node j, such that all least distances from node

i to any node j can be found in the L = {lij} distance matrix. The distance in this

scenario refers to the physical distance of the nodes (i.e., the number of edges that

connect the two servers). Furthermore, the service migration cost wij between two

nodes i and j is also measured.

Furthermore, the transmission delay between the node i and the node j or the user

of the edge network can be found using Equation 7.1:

tij =
n∑

k=1
δ + Tproc + Ttrans (7.1)

where δ is the default delay of the edge that connects i and j (measured in ms),Tproc

the processing time of the service, and Ttrans the transmission delay between i and

j. The transmission delay can be calculated using Equation 7.2, below:

Ttrans =
dk

bij
(7.2)

where dk is the size of the transmitted data and bij the available bandwidth for the

edge i and j.
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Figure 7.2: High-level Overview of the proposed Dynamic Resource Allocation
platform.

Thus, the overall delay is defined as the sum of all pairs tij for any i and j, as also

shown in Equation 7.3:

T =
m∑

i=1,j=1
tij (7.3)

Based on the above, the proposed dynamic resource allocation framework aims

at identifying the optimal actions in order to optimize resource utilization of the

entire edge network, while also reducing the overall delay.
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7.2.2 Core Features of the Dynamic Resource Allocation Frame-

work

The proposed framework has four key features that enable the proper and accu-

rate resource usage prediction and consequently the dynamic adaptation of the

resources: (i) resources monitoring, (ii) resource usage prediction, (iii) interven-

tion model generation, and (iv) resource adaptation.

7.2.2.1 Resources Monitoring

This feature allows the monitoring the resources of all computing nodes of the

edge network. Essentially, it is a system that tracks critical metrics such as CPU and

memory use, available disk storage, and network metrics like latency and egress

and ingress bandwidth. All of the metrics are then saved in a MySQL database

[Oracle, 2023].

7.2.2.2 Resource Usage Prediction

The resources prediction feature allows the prediction of the resource usage of any

edge node at a given time. It utilizes both data enhancement methods in order

to predict the utilization of two important metrics; CPU and memory. and the

adaptation that are performed to the Influence-based Dataset Generation method

and the Causal Features Generation method will be presented in detail below.

Prior to exploring the execution of the predictions, it is important to start with

the process of data enhancement. To be more specific, the two methods are em-

ployed to improve the dataset. The process starts with the Causal Features Gener-

ation and continues with the identification of the most important instances in the

dataset along with the the generation of the new enhanced dataset.

7.2.2.2.1 Adaptation of the Causal Features Generation method
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To start with the causal features generation, as also shown in Algorithm 12, the pro-

cess starts with the identification of the causal relationships among the features of

the dataset. Only this time, instead of using the FCI algorithm, the causal discov-

ery is performed using the DirectLiNGAM [Shimizu et al., 2011]. The outcome of

the DirectLiNGAM algorithm produces an adjacency matrix n × n, where n is the

number of the features, as shown in Equation 7.4:



0 0 0 1.534e − 05 0 0 0 8.617e − 09 2.366e − 04
3.398e + 07 0 0 −5.739e + 03 0 1.748e + 05 −6.874e + 01 6.337e + 00 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 6.765e + 00 7.287e − 03 4.403e − 05 −5.556e + 00
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 −5.296e − 04 0 0 1.376e + 02 0 0 −1.377 + 02
0 0 0 0 0 −1.301e + 04 8.389e + 00 0 −1.445e + 04
0 0 0 0 0 9.999e − 01 0 0 0



(7.4)

where each row and each column is any feature of the given dataset. The number

in any position of the adjacency matrix refers to the causal effect that a feature

(on the column) has on another (on the row). This can be also represented as an

acyclic causal graph, in which each node represents a feature of the dataset and

an edge between two nodes represents the causal relationship between these two

features, similar to what is shown in Figure 7.3, where if A and Bare two features

of the dataset. In that case, any A
x
−→ B relation shows that there exists a causal

relationship between A and B, x represents how strong the causal effect is, and the

direction of the arrow represents the causal influence between the two features

(i.e., that A causes B). In the proposed solution only the

Next, for the target variable(s) (which in this case it is the CPU and memory us-

age), the features that have a causal effect on them are selected using the Parents-

Children approach. For each instance in the dataset, the occurrences which has

the same value as the target are selected, given that they also have the same value
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Figure 7.3: The produced Causal Diagram which was utilized for the genera-
tion of the causal features.

as the parent feature. In order to convert the value into a number in the [0, 100]
space, the following Equation 7.5 is utilized, which represents the newly created

causal feature that is then appended to the original dataset.

causalFeaturei ←
P(ti|CFti) −min(P(t|CFt))

max(P(t|CFt)) −min(P(t|CFt))
× zi (7.5)

where zi the z-score of the effect ei as formulated in Equation 7.6 below:

zi =
ei − μ

σ
(7.6)

ei regards the causal effect of the causal feature CFt on the target feature t, μ the
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mean of all effects, and σ the standard deviation of the effects.

Algorithm 12 Adapted Causal Features Generation method
Input:
D: the dataset including all information about the users’ interactions.

Auxiliary Variables:
dLiNGAM: Outcomes of the DirectLINGAM algorithm,
pc: Output of the p c algorithm,
t: The target feature,
CFt: List of feature t’s parents.
ei: The causal effect of CFt on t,

Output:
D: The original dataset, which now contains the causal features.

Algorithm:
1: dLiNGAM← DirectLINGAM(D)
2: pc← p c(dLiNGAM) if causal effect ei is significant (i.e., << 0 >>)
3: for each tuple in pc do
4: calculate occurrences of an instance appears in the dataset for P(t|CFt)
5: end for
6: for each tuple i in pc do
7: max((P(t|CFt)) ← calculate max occurrences in the dataset for P(t|CFt) for

any tuple in pc

8: min(P(t|CFt)) ←calculate min occurrences in the dataset for P(t|CFt) for
any tuple in pc

9: end for
10: for each tuple i in pc do

11: causalFeaturei ←
P(t|CFt)−min(P(t|CFt))

max(P(t|CFt))−min(P(t|CFt)) × zi
12: D : D ∪ causalFeaturei // Append the new causal feature to the existing

dataset
13: end for
14: returnD

7.2.2.2.2 Adaptation of the Influence-based Dataset Generation method

The process continues with the utilization of the proposed Influence-based Dataset

Generation method towards the generation of the contextually enhanced dataset.

In order to utilize it, some adaptations to the generic method were performed,

which will be explained in detail below. As also described in Algorithm 13, the

selected ML algorithm is trained using the original dataset and the Mean Abso-
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lute Error (MAE) and the Root Mean Square Error (RMSE) are calculated. Conse-

quently, the instances of the dataset are evaluated with respect to their influence

as follows. After an instance is removed from the original dataset, the model is

retrained and the two aforementioned metrics are calculated again. In case the

model’s performance drops (meaning that the RMSE and MAE are both increased),

then this instance is considered influential, and it is appended to the influential in-

stances dataset, which is denoted as I. Afterwards, the instace is re-inserted back

into the original dataset, and the same process continues for all the instances in

the dataset.

The next step regards the assessment of the instances that were not initially con-

sidered influential. These are then evaluated again by measuring their deviation

from any of the already-identified influential instances. Every instance can be con-

sidered a vector of an X-dimensional space, where X is the number of the features,

hence if the degree between the instance and any influential instance is less than

a given value denoted as Θ, then this instance is also considered influential and is

then appended to the influential instances datasetI. The calculation of the degree

θ(u⃗, v⃗) between two vectors (i.e., features) u⃗ and v⃗ is shown in Equation 7.7 below:

θ(u⃗, v⃗) = cos−1 u⃗ · v⃗

∥u⃗∥ × ∥⃗v∥
(7.7)

where ∥u⃗∥ is the length of the vector u⃗ which in this case should match the length

of the vector v⃗, ∥⃗v∥ as they are both features of the same dataset and thus have the

same dimensions.

As far as the model that was selected for this task, in this case it is a Random Forest

Regressor with 1000 trees. The reason behind the utilization of such a model, is

because it has been proven to perform efficiently in similar tasks [Al Qassem et al.,

2023], [Bei et al., 2015], [Chen et al., 2020], [De and Singh, 2016], [Kumar T et al.,

2021].
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Algorithm 13 Context Identification and Dataset Enhancement
Input:
D: the original dataset.

Auxiliary Variables:
I: the new dataset containing the influential instances,
Θ: the threshold degree.

Output:
I.

Algorithm:
1: fit(D)

2: I = [ ]
3: calculate MAE(D)
4: calculate RMSE(D)
5: for i ∈ D do
6: D

−i : i < D
7: fit(D−i)

8: calculate MAE(D−i) and RMSE(D−i)
9: if RMSE(D−i) ≥ RMSE(D) &&MAE(D−i ≥MAE(D) then

10: I : I ∪ i

11: D : D− i
12: end if
13: end for
14: for i : i ∈ D ∧ i < I and k : k ∈ I do
15: if θ(i, k) ≤ Θ then
16: I : I ∪ i

17: end if
18: end for
19: return I

7.2.2.3 Intervention Model Generation

This is a feature of the proposed Dynamic Resource Allocation framework which

can be used to make decisions related to the actions that need to be taken. As

already specified, the goals of the proposed framework is to reduce the overall

latency of the edge network and optimize the resources use. According to these

goals, a set of actions are designed which can be taken, considering the resource

usage predictions that were previously made.

The first goal is to optimize the average delay of the edge network so that it does
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Figure 7.4: Comparison of Memory utilization when the resource allocation
framework is used and is not used.

not exceed a given threshold, which is set to 10 ms. In case the average delay stays

does not exceed the threshold, yet the CPU and / or the memory usage is over 80%
the state is considered normal and there are no actions required.

On the other hand, if the CPU and / or the memory utilization is low (< 80%), a

request to free resources can be performed to the edge servers of the network that

have the least CPU and memory utilization. In the event that the average delay

exceeds the 10 ms threshold, a request to scale up is taken instead.
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Figure 7.5: Comparison of CPU utilization when the resource allocation frame-
work is used and is not used.

7.2.2.4 Resources Adaptation

This feature allows the decisions taken, to be actualized to the edge network. In

more detail, with this feature, the proposed dynamic resource allocation frame-

work can perform the necessary adaptations to the edge network as indicated by

the decisions of the Intervention Model Generation feature.

In the case where freeing resources is requested, taking into account also the real-

time monitoring information, the edge nodes with the least CPU and / or memory

utilization are identified and a request to downscale is made. In contrast, the edge

nodes with the highest resource utilization are scaled up in case the delay thresh-
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Figure 7.6: Comparison of the average total network latency over a time period
when the resource allocation framework is used vs. when it is not
used.

old is not met. If this adaptation is sufficient and the average delay drops below 10
ms, no other actions are required.

On the other side, if this does not improve the average latency (after a given num-

ber of iterations) the services with the highest latency are selected for re-deployment

to the edge server with the least resource usage, in order to utilize those nodes bet-

ter. What happens, essentially, is that the services are deployed to these servers

too, given that they (the servers) have the storage capacity to host the services.
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Figure 7.7: Average latency of the 100 services when the resource allocation
framework is used and is not used.

7.3 Evaluation Results

Several simulations have been conducted in a simulated edge computing network

in order to assess the suggested resource allocation paradigm, whose outcomes

are detailed below. Starting with the network’s topology, it regarded a randomly

generated network graph denoted as G, where 50 edge servers were deployed, sim-

ilar to the simulation of the evaluation of the User Mobility-based Data Placement

strategy described in Chapter 6. The edges of the graph represented the delay (in

ms) and was set in the range of 6 − 20 ms for each edge node.

The difference with the simulations in Chapter 6, is that in this simulation, the re-

quired computing resources for the deployed services were taken into considera-

tion as well. In more detail, a service was deployed randomly and required 5−10%
of CPU usage, 10−15% of memory, and 1−5% of storage, while during their initial

deployment, they were allocated 10 − 15% of the edge server’s CPU, 15 − 20% of

the server’s memory, and 5 − 10% of the server’s storage capacity.
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Figure 7.8: CPU Usage utilization and prediction, using the original dataset.

Once the Edge network was constructed, 1000 users were introduced to it and

after every iteration, more users would inserted in the system, while others would

be removed at a similar rate. They were connected to one edge server every time,

and they were able to hop from one edge server to another or stay on their current

one in every iteration. At least one service was deployed to each edge server, while

the total number of services was set to 100. The latency between a user and the

edge server they were connected to, was randomly set from 6 to 20 ms (including

the default delay δ, processing timeTproc, and transmission delayTtrans). The factor

that was alternating at each iteration was Tproc which was defined as formulated in

Equation 7.8:
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Figure 7.9: CPU Utilization and prediction, using the enhanced dataset.

Tproc = tproc × (1 + cpu sage) × (0.5 ×mem usage) (7.8)

where tproc is the default processing time of a given service (set randomly to 3 − 6
ms and was fixed), cpu usage percentage of the utilized allocated CPU at a given

time, and mem usage percentage of the utilized allocated memory at a given time.

For instance, if a service was allocated 25% of CPU and was utilizing 20%, the

cpu usage metric was equal to 80%.

It is important to note here that the services were also categorized as CPU- or

memory-intensive. This means that for a CPU-intensive application every 10users,

required an additional 5% of CPU usage. Similarly, for memory-intensive applica-

tions every 10 users were set to require an additional 10% of memory usage.
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In order to assess the proposed resource allocation framework, the average latency

of the overall edge network was utilized as a key metric, while in order to evaluate

the predictions of the predictions on the CPU and memory usage, given that these

can be considered time-series forecasting (regression) tasks, the utilized metrics

that were used are Mean Square Error (MSE), MAE, and the R-squared (R2) score.

In the second case, a different dataset derived from a real use case scenario was

utilized, as will be further explained below.

Starting with the assessment of the proposed dynamic resource allocation frame-

work, the results indicate that the overall latency of the edge network was signif-

icantly reduced when compared to the overall latency of the edge network when

the framework was not exploited. As shown in Figures 7.4 and 7.5 which depict the

average memory and CPU utilization of the entire edge network accordingly, it can

be inferred that the use of the proposed dynamic allocation strategy has resulted

in enhanced overall CPU and memory utilization in general. In more detail, on av-

erage, the average CPU utilization when utilizing the proposed strategy was equal

to ∼ 55.5% and the average memory utilization was equal to ∼ 64.38%. On the

other hand, the average CPU utilization without the use of the proposed strategy

was equal to ∼ 62.5% and the average memory utilization was equal to ∼ 72.48%,

resulting in a decrease in CPU utilization of approximately 7%, and a decrease in

memory utilization of approximately 8.1%.

Figures 7.7 and 7.6, present a comparison of the average latency per service, and

the average latency of the entire network is depicted in the latter figure when the

not utilizing the proposed framework and when it is used accordingly. The aver-

age latency when utilizing the proposed strategy was equal to ∼ 16.4 ms, while

when the strategy was not used the average latency was equal to ∼ 17.64 ms. This

resulted in an average decrease of approximately 7%.

For the second part of the evaluation, which was related to the assessment of the

resource usage predictions performed by the selected ML model, a dataset com-
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posed of actual services incorporating real-time monitoring metrics such as CPU,

memory and disk utilization, latency, egress bandwidth, ingress bandwidth, etc.,

was utilized. This dataset was retrieved from an actual edge network, which is com-

prised of 5 edge servers (every edge server is a Raspberry Pi [Foundation, 2023]

with 8 GB of memory and 4 CPU cores). The monitoring data were collected using

Prometheus [Prometheus, 2023]. The dataset had a total of 1,260,431 instances.

90% of the data was used for training, while the remaining 10% was used for test-

ing.

In order to evaluate the validity of the proposed data enhancement methods, the

ML model (i.e., the Random Forest Regressor) was initially trained using the orig-

inal dataset, without being enhanced using the causal feature generation and the

influence-based instances selection methods. Afterwards, the training was per-

formed again, using the enhanced dataset. The results show a significant improve-

ment in the performance of the model which can be also seen in Figures 7.8 and

7.9. Figure 7.8 depicts the predictions of the model using the original dataset,

while Figure 7.9, shows the model’s predictions using the causally and contextually

enhanced dataset. Based on this, it is safe to assume that the model’s performance

was improved when trained on the enhanced dataset. Another important note is

that the dataset size was also reduced, since only the influential instances were

finally used (the final enhanced dataset was comprised of 930, 198 instances, i.e.,

an ∼ 18% decrease in size).

The results on the test set from the original dataset show that initially the MSE was

equal to 109.374, while in the case of the enhanced dataset, the MSE was equal

to 48.476 instead. This indicates that the model’s predictions were closer to the

actual values on average by ∼ 55.71% when trained with the enhanced dataset.

Adequate conclusions can be drawn when evaluating the MAE. With the original

dataset the MAE was equal 8.084, while when using the enhanced dataset it was

equal to 6.024, leading to an improvement of∼ 25.51% on average. Based on this,
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it can be understood that the absolute differences between the predicted and the

actual values were closer when utilizing the enhanced dataset.

Finally, when looking at the R2 score, when using the original dataset it was equal

to 0.631, and when using the enhanced dataset it was equal to 0.798 which means

that the model could better fit on the data of the enhanced dataset. Similar results

were also observed for the memory usage prediction. To sum up, this suggests

that the utilization of the data enhancement method has significantly improved

the performance of the ML model, leading to an increase of ∼ 26.5% for the R2

score and a decrease of the MAE by ∼ 25%.
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Chapter 8

Conclusions and Future Work

Chapter Structure

This Chapter is constructed as follows:

• Section 8.1 - Conclusions, presents the concluding remarks of this thesis.

This Section summarizes the key findings of the research and highlights its

significance.

• Section 8.2 - Future Work, outlines potential directions for future research

that could build upon the findings of the current thesis.

8.1 Conclusions

The main goals of this thesis was manifold. First, examine whether causal and

contextual information can be efficiently extracted from any given dataset. The

second main goal was to assess whether this information can be used in any way

in order to ML models. Thus, this thesis focuses on the development of dataset

enhancement methods that can extract such information and incorporate them

in the dataset. This led to the last goal of this thesis, which was to evaluate such

methods in diverse environments in order to evaluate their significance. These
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methods were then exploited in approaches used for the optimization of Cloud

and Edge Computing infrastructures.

In order to better structure this research, four questions were raised in which, this

thesis aimed at answering. The first question, RQ1, raised the issue of whether

causal and contextual information can be derived from data and if yes, how to do

that. Trying to answer to that, in this thesis two information extraction method-

ologies were introduced. The first, initially described in Chapter 2, regards an

Influence-based Dataset Generation method which aims at generating an Influence-

based dataset by identifying the most influential instances in one. The second

method described in Chapter 5 regards a Causal Features Generation method. This

method first discovers causal relationships in a dataset and afterwards utilizes this

information to generate causal features in order to incorporate this information to

the initial dataset.

The proposed methodologies also addressed RQ2 which wonders if the extracted

causal and contextual information can be somehow utilized in order to enrich the

data. Furthermore, even if the data are in enhanced, does this affect the perfor-

mance of an ML model in specific tasks related to managing diverse environments

such as a Cloud Computing Infrastructure or an Edge network. In order to do an-

swer to these points, and to the points raised in RQ3 which asks in which ML tasks

these methodologies can be utilized, this thesis evaluated the proposed method-

ologies in various diverse scenarios and assessed their performance. The use cases

were related to various ML tasks from classification, to clustering and time-series

analysis.

Finally, RQ4 doubts if the enrichment of the data with causal and contextual infor-

mation actually improves in any way the performance of a ML model. To answer

that, the performance of the ML models used in each scenario was evaluated when

the proposed methodologies were utilized and when not and the results were com-

pared, proving that in most cases the performance increase was substantial.
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8.2 Future Work

This thesis proposed two methodologies used for the extraction of contextual and

causal information for the enhancement of data towards the improvement of ML

models used in various scenarios related to efficient Cloud and Edge Computing

infrastructures management. Although evaluated in several distinct scenarios to

justify their relevance, the proposed methodologies have some limitations which

can be the starting point for future research towards more causal-aware AI.

To start with, the Influence-based Dataset Generation method manages to effi-

ciently identify contextual information relative to the environment given the pro-

vided information, it has been tested with datasets that are of relatively modest

sizes. Yet, it has been acknowledged to take significant time to operate thus mak-

ing it difficult to scale when it comes to big datasets. A solution to that issue may

be an adaptation of the existing method which first performs clustering on the

instances and identifies influential clusters instead of individual instances.

In addition, the proposed methodologies are applied to scenarios with a controlled

environment. In the future it would be interesting to utilize them in observational

studies, meaning studies where there exist no manipulation of the existing vari-

ables or control over the experimental conditions. This is also a great chance to

see how the proposed methodologies manage to perform in cases where it is most

certain that uncontrolled confounders may exist.
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