




Υπολογιστικά µοντέλα
πολυτροπικής

διαδραστικότητας για µουσική
δηµιουργία και ανάκτηση
µουσικής πληροφορίας

Κοσµάς Κρίτσης
Πατρώνυµο: Ευάγγελος

Αριθµός Μητρώου: ΠΛ∆1702

∆ιδακτορική διατριβή

Τµήµα Πληροφορικής
Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών

Πανεπιστήµιο Πειραιώς
Ελλάδα, 2023





Computational models of
multimodal interaction for music

generation and music
information retrieval

Kosmas Kritsis

A dissertation presented for the degree of
Doctor of Philosophy

Department of Informatics
School of Information and Communication Technologies

University of Piraeus
Greece, 2023





Υπολογιστικά µοντέλα πολυτροπικής
διαδραστικότητας για µουσική

δηµιουργία και ανάκτηση µουσικής
πληροφορίας

Η διατριβή εκπονήθηκε για την απονοµή

∆ιδακτορικού ∆ιπλώµατος
από το Τµήµα Πληροφορικής

της Σχολής Τεχνολογιών Πληροφορικής και Επικοινωνιών
του Πανεπιστηµίου Πειραιώς

στόν
Κοσµά Κρίτση

Τριµελής Συµβουλευτική Επιτροπή
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“. . . A purely materialistic art would be like a tree which is expected to bear
fruit without flowering, and to sacrifice grace and beauty for mere utility.
Those who learn here should from the beginning, assiduously avoid this
spirit of utilitarianism. Our admiration for the Creator’s handiwork should
not be limited to those things He has provided us with for our daily needs,
but should include all that is good and beautiful. It is these tender feelings
of deep and silent admiration evoked from our hearts by the beauties of
creation that should find adequate expression in the fine arts. . . .”

Haile Selassie I





Acknowledgements

I would like to express my sincere gratitude and appreciation to all those
who have contributed to the completion of this PhD thesis. First and fore-
most, I am immensely grateful to my advisors, Prof. Aggelos Pikrakis and
Dr. Vassilis Katsouros, for their invaluable guidance, unwavering support,
and expertise throughout my research journey. Their encouragement, pa-
tience, and mentorship have been instrumental in shaping the direction of
my work and pushing me to reach this point. I am truly fortunate to have
had the opportunity to work under their supervision.

I would like to extend my heartfelt thanks to the members of my
thesis committee, Emilios Cambouropoulos, Dimitris Apostolou, Themis
Panayiotopoulos, Dionisios Sotiropoulos and Maximos Kaliakatsos-Papakostas,
for their valuable insights, constructive feedback, and critical evaluation of
my research. Their expertise and contributions have significantly strength-
ened the quality and rigor of this thesis.

My sincere appreciation also goes to the staff and faculty of Athena
R.C. for providing a stimulating scientific environment and the necessary
resources for carrying out my research. I am grateful for the opportunities
I have had to engage in various fruitful projects and collaborations with fel-
low researchers, which have greatly enriched my analytical thinking and
learning experience. I am indebted to my colleagues and labmates who
have supported me in countless ways, whether through their technical ex-
pertise, intellectual discussions, or moral support. This work would not have
been possible without all of you. I feel very lucky to have found so many
friends who believed in me more than I did, who understood my passion
and became prouder of my work than myself.

I would like to express my deepest appreciation to my family and friends
for their unwavering love, encouragement, and understanding throughout
this demanding endeavor. Their belief in my abilities has been a con-

i



ii ACKNOWLEDGEMENTS

stant source of motivation, and their presence in my life has given me the
strength to overcome moral challenges.

I am also grateful to the participants who volunteered their time and
contributed to the data collection process, as well as their willingness to
participate and share their insights in the subjective evaluations, both being
invaluable to the success of this research.

Lastly, I would like to acknowledge the financial support provided by the
European Union’s Horizon 2020 research and innovation programme un-
der the Grant agreement No. 731861, as well as Greece and the European
Union (European Social Fund—ESF) through the Operational Program “Hu-
man Resources Development, Education and Lifelong Learning 2014-2020”
in the context of the project “Analysis and Processing of Motion and Sound
Data for Real-Time Music Creation” under Grant MIS 5047232. Without their
generous funding, this research would not have been possible. I am truly
grateful for their investment in my academic pursuits.



Περίληψη

Η έρευνα στον τοµέα της µουσικής αλληλεπίδρασης απαιτεί τη χρήση διε-
πιστηµονικών µέσων κατανόησης βασισµένων σε δυναµικές αντιλήψεις. Με
αυτήν την έννοια, οι κύριες προσεγγίσεις, οι εµπειρικές µελέτες, οι υποκει-
µενικές αξιολογήσεις και οι τεχνικές µοντελοποίησης που αναπτύσσονται
σε αυτήν τη διδακτορική διατριβή ακολουθούν αυτές τις διεπιστηµονικές
αρχές. Τα συστήµατά µας λαµβάνουν και αναλύουν διάφορες µορφές και ε-
πίπεδα πληροφορίας που σχετίζονται µε τη µουσική, συµπεριλαµβανοµένου
του ακουστικού σήµατος, των αισθητηριακών και σκελετικών δεδοµένων,
καθώς και διαφορετικών τύπων συµβολικών αναπαραστάσεων. Εποµένως,
σε αυτή τη διδακτορική διατριβή παρουσιάζουµε µια εκτενή εξερεύνηση
των πεδίων της υπολογιστικής µουσικής, καθώς και της αυτόµατης ανα-
γνώρισης και σύνθεσης κίνησης, περιλαµβάνοντας µια σειρά από µεθοδο-
λογίες, µοντέλα και εφαρµογές. Η έρευνα αποσκοπεί στη βελτίωση της
κατανόησης αυτών των πεδίων και στην ανάπτυξη νέων προσεγγίσεων για
την αντιµετώπιση των διάφορων προκλήσεων.

Μέσα από τις πολλαπλές πειραµατικές προσεγγίσεις που αναπτύσσου-
µε, αναδύονται πολύτιµα συµπεράσµατα για τις δυνατότητες και τις επι-
πτώσεις των διαφορετικών υπολογιστικών αρχιτεκτονικών, ιδιαίτερα αυ-
τών που βασίζονται σε αναδροµικές και συνελικτικές συναρτήσεις. Συγκε-
κριµένα, η έρευνά µας ξεκινά µε την αξιολόγηση υπολογιστικών µοντέλων
για την αναγνώριση µουσικών κινήσεων, αναδεικνύοντας την ανωτερότη-
τα των συνελικτικών µοντέλων, όπως οι βαθιές συνελικτικές αρχιτεκτο-
νικές, όσον αφορά την ακρίβεια αναγνώρισης και τον χρόνο υπολογισµού.
Βασιζόµενοι σε αυτά τα ευρήµατα, αναπτύσσουµε µία διαδικτυακή εφαρµο-
γή µε στόχο τη µουσική αλληλεπίδραση σε πραγµατικό χρόνο µε εικονικά
µουσικά όργανα, συνδυάζοντας τόσο συνελικτικές όσο και αναδροµικές αρ-
χιτεκτονικές µε σκοπό τη βελτίωση της εµπειρίας χρήστη. Επίσης, εξερευ-
νούµε την αυτόµατη σύνθεση χορευτικών κινήσεων µε βάση το ακουστικό
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σήµα, όπου βαθιές συνελικτικές αρχιτεκτονικές που ενσωµατώνουν έναν ε-
ξαρτώµενο αυτοκωδικοποιητή, υπερτερούν σε σχέση µε τα αναδροµικά µο-
ντέλα στη δηµιουργία ποικίλων και ρεαλιστικών ακολουθιών χορευτικών
κινήσεων. Στη συνέχεια, επικεντρωνόµαστε στην προσοµοίωση της αλλη-
λεπίδρασης µεταξύ του ανθρώπινου σολίστα και του αυτόµατου συνοδού,
στο πλαίσιο µοντελοποίησης του τζαζ αυτοσχεδιασµού, αναδεικνύοντας
τις προκλήσεις και τις προοπτικές των εγγενών προσεγγίσεων µηχανικής
µάθησης στη µοντελοποίηση µουσικών αλληλεπιδράσεων. Τέλος, διερευ-
νούµε την επίδραση των συµβολικών κωδικοποιήσεων στην αυτόµατη πα-
ραγωγή µουσικής, τονίζοντας τη σηµασία των µουσικών χαρακτηριστικών
που πρέπει να αποτυπώνονται κατά τη σχεδίαση νέων προσεγγίσεων κωδι-
κοποίησης, µε σκοπό τη βελτιστοποίηση της δοµής της παραγόµενης µου-
σικής.

Συνολικά, η έρευνά µας παρέχει πολύτιµες πληροφορίες για την απόδο-
ση και τις δυνατότητες διαφορετικών υπολογιστικών αρχιτεκτονικών στην
υπολογιστική µουσική παραγωγή και αλληλεπίδραση. Η επιτυχής ενσω-
µάτωση συνελικτικών και αναδροµικών µοντέλων καταδεικνύει την ικα-
νότητά τους να µοντελοποιούν περίπλοκες µουσικές αλληλεπιδράσεις. Το-
νίζουµε τη σηµασία της επιλογής της κατάλληλης υπολογιστικής αρχιτε-
κτονικής µε βάση τους υποκειµενικούς στόχους, της συνθήκες και τους
περιορισµούς που ορίζει το κάθε πρόβληµα προς διερεύνηση. Τα ευρήµα-
τά µας θέτουν τα θεµέλια για περαιτέρω έρευνα, ενθαρρύνοντας την εξε-
ρεύνηση προηγµένων αρχιτεκτονικών, µεγαλύτερων συνόλων δεδοµένων,
καθώς και την εφαρµογή τους σε επιπλέων ερευνητικά προβλήµατα υπο-
λογιστικής µουσικής παραγωγής και αλληλεπίδρασης, που δεν καλύφθη-
καν στην παρούσα διατριβή. Με αυτόν τον τρόπο, προωθούµε νέες δυνα-
τότητες δηµιουργικής έκφρασης, συνεργασίας ανθρώπου-µηχανής και την
πρόοδο της µουσικής τεχνολογίας στο σύνολό της.



Abstract

In this dissertation, we explore multiple aspects of computational music
generation and interaction, addressing tasks such as musical gesture recog-
nition, virtual instrument interaction, audio-driven dance motion synthesis,
jazz improvisation accompaniment generation, and symbolic music encod-
ings. Throughout our various studies described here, we gain valuable in-
sights into the capabilities and implications of different computational ar-
chitectures, particularly recurrent and convolutional models. Our research
begins by evaluating computational models for musical gesture recognition,
with subsequent experimentation revealing the superiority of convolutional
models, such as deep convolutional architectures, in terms of recognition
accuracy and computation time. Building upon these findings, we develop
a web-based system for real-time interaction with virtual musical instru-
ments, incorporating both convolutional and recurrent architectures to en-
hance the user experience. We also explore audio-driven dance motion syn-
thesis, where deep convolutional architectures incorporating a conditional
autoencoder with dilated causal highway gates, outperform recurrent mod-
els in generating diverse and realistic dance motion sequences. Next, in the
context of jazz improvisation, we focus on simulating the interplay between
human soloists and artificial accompanists, highlighting the challenges and
prospects of implicit machine learning approaches in modeling musical in-
teractions. Lastly, we investigate the impact of symbolic music encodings
on automatic music generation, emphasizing the importance of careful en-
coding design characteristics in shaping the resulting musical structure.

Overall, our research provides valuable insights into the performance
and potential of different computational architectures across various tasks
in computational music generation and interaction. The successful inte-
gration of convolutional and recurrent models demonstrates their ability
to model complex musical interactions. We emphasize the importance of
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selecting the appropriate computational architecture based on the task-
specific goals and constraints. Our findings lay the foundation for future
research, encouraging further exploration of advanced architectures, larger
datasets, and more diverse tasks to continue pushing the boundaries of
computational music generation and interaction. By doing so, we can un-
lock new possibilities for creative expression, human-computer collabora-
tions, and the advancement of music technology.
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CHAPTER 1
Introduction

1.1 Human Interaction and Multimodality

Our daily interactions require us to process information from multiple sen-
sory modalities, such as hearing, sight, touch, smell, and taste, in order
to deduce emotions and intentions. Simple day-to-day decisions and ac-
tions are often the result of evaluating non-verbal cues, such as facial ex-
pressions and body gestures, as well as verbal cues, like vocal tone and
inflection. A well-known example of human multimodal integration is the
so called McGurk effect, which demonstrates how humans use both visual
and auditory information to perceive speech [1, 2].

The study of this phenomenon involved recording a voice articulating
one consonant and combining it with a video of a face articulating a differ-
ent consonant. Despite the acoustic speech signal being easily recognizable
on its own, when combined with incongruent visual speech, it was usually
perceived as a different consonant, especially an auditory /ba/ paired with
a visual /ga/ often resulted in the percept /da/ (see Figure 1.1). This illu-
sion has been replicated numerous times and has led to an abundance of
research, mainly due to its striking demonstration of multisensory integra-
tion. Various theories have been proposed to interpret this observation.

The initial hypothesis put forth by McGurk and MacDonald was that visi-
ble speech drives the perception of the position of articulation, while audible
speech determines the perception of voicing [4]. Various researchers have
characterized the McGurk effect as solely a fusion effect because it involves

3
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Figure 1.1: The classic example of the McGurk effect is that an auditory /ba/
paired with a visual /ga/ often produces the percept /da/ [3].

the integration of auditory and visual information resulting in the percep-
tion of a third consonant [5–7]. However, this definition fails to acknowledge
that other incongruent audio-visual stimuli can produce different types of
percepts. For instance, the reverse combination of the consonants (i.e. au-
ditory /ga/ and visual /ba/) is perceived as /bagba/, where the visual and
auditory components oscillate one after the other [4].

To this end, a line of studies focused on how individuals perceive both
the acoustic and visual components of the stimulus, aiming to explain per-
ceptual processing independently of motor behavior [8–11]. Especially,
this concept has been extensively explored in great detail by Massaro and
colleagues [12–17], proposing a prototypical pattern recognition approach
called the Fuzzy Logical Model of Perception (FLMP), where the accuracy of
identifying the unisensory components designate audiovisual speech per-
ception.

Figure 1.2 depicts the three key processes involved in the FLMP: evalua-
tion, integration, and decision. During the evaluation process, each source
of information is transformed into psychological values indicating the de-
gree of support for various alternatives. These values are then integrated
to provide an overall degree of support for each vocabulary alternative. The
decision operation maps these integrated outputs to an appropriate alter-
native. The model is based on several assumptions:

• each source of information is independently evaluated to determine
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Figure 1.2: Schematic diagram of the three operations assumed by the
FLMP [14]. The sources of information are represented by uppercase let-
ters. Auditory information is represented by Ai, and visual information is
represented by Vj . The evaluation process transforms these sources of in-
formation into psychological values (indicated by lowercase letters ai and
vj). These sources are then integrated to give an overall degree of support
for a given alternatively pi,j . The decision operation maps this value into
some response, such as a discrete function or a rating, Rij .

its continuous degree of specification for various alternatives;
• the sources of information are evaluated independently of each other;
• the sources of information are integrated to provide an overall contin-

uous degree of support for each alternative; and
• the relative degree of support among the various alternatives deter-

mines perceptual identification and interpretation.

To ensure a consistent metric for the degree of match of each feature, fuzzy-
truth values are employed [12]. These values offer a natural representation
of the degree of match in cases where multiple sources of information are
present. For instance, in the paradigm of Figure 1.1, by assuming the truth
values as “a lot like” = 0.9, “somewhat like” = 0.7, “mostly nothing like”
= 0.3 and “nothing like”= 0.1, it is evident that /da/ would have almost twice
as much support as the other options (i.e. using multiplicative integration
of the FLMP, support for /ga/ = 0.9∗0.3 = 0.27, support for /ba/ = 0.1∗0.9 =

0.09, while support for /da/ = 0.7 ∗ 0.7 = 0.49).
Overall, the FLMP predicts that the contribution of one source of infor-

mation to performance increases as the ambiguity of the other available
sources of information increases. This means that when one source of in-
formation is unclear or ambiguous, the brain relies more on other available
sources to make sense of the information. For example, in a noisy envi-
ronment where speech is difficult to hear, visual cues such as lip move-
ments become more important in understanding speech. Similarly, when
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Figure 1.3: Parallels between elements and structures of language and mu-
sic [23, 24].

the visual information is unclear or ambiguous, the brain relies more on the
auditory information to perceive speech. The FLMP provides a framework
for understanding how the brain integrates and weighs different sources of
information to perceive speech [17].

Language can be also considered as an embodied system that involves
physical expression through gestures [18]. Even though speech is the dom-
inant form of communication, manual gestures still accompany it. These
visuomanual properties of language are evident in various forms, includ-
ing sign language, handwriting and even typing [19]. Therefore, the man-
ual actions associated with co-speech gestures are closely connected to
the language system. Consequently, the occurrence of speech along with
co-speech gestures exemplifies the interaction between language and ac-
tion [20]. This communication model shares common characteristics with
other domains in which multimodal human perception and action intersect,
such as musical interaction [21, 22]. Both music and language are univer-
sal human abilities that share many similarities, including their acoustics,
structure, and frequent use in social settings [23–25]. Therefore, it can be
predicted that they are processed and understood similarly. An increasing
body of research supports this prediction, indicating that music and lan-
guage are indeed processed and understood in similar ways.

As depicted in Figure 1.3, most similarities between music and language
are found in terms of acoustics and structure [23, 24]. Rhythm, for instance,
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establishes a regular beat in music and maintains a definite syllable rate in
speech, such as in speech tempo [26]. In music, pitch advances the melody,
while in language it underlies prosody in expression and conversation. Both
music and language consist of numerous repeated units with an infinite
number of combinations, often organized hierarchically and frequently per-
formed in coordination with others [27]. Both systems are therefore rule-
based and can be conveyed in written form. Furthermore, they are found in
all known cultures [28, 29] and are often combined, such as in singing [30].

1.2 Musical Interaction

Music involves the integration of various human cognitive, perceptual, mo-
tor, and emotional abilities [31]. However, music cognition works differ-
ently from language, even though the roots of both processes might be
the same [32]. In particular, music has a “floating intentionality”, lack-
ing the clear referentiality that allows to refer to musical experiences by
means of language description [33]. Unlike many human activities that uti-
lize only specific parts of the brain, research using imaging techniques has
shown that both playing and listening to music involve coordinated activity
in multiple brain regions, including the prefrontal, motor, sensory, visual,
and auditory cortices, as well as the corpus callosum, which connects the
two hemispheres of the brain, and various structures that govern memory,
emotion, and balance [34, 35].

However, human engagement with music is not solely a product of hu-
man intellectual ability. A valuable perspective on the musical communica-
tion chain was presented by Richard Moore in his book Elements of Com-
puter Music [36]. Although his view is rooted in traditional musical con-
cepts, it provides an excellent starting point for understanding the inter-
disciplinary issues that arise when studying human-music interactions. As
illustrated in Figure 1.4, the communication chain is a loop of interconnected
signals (data) and processes (transformations of the signals) that encom-
passes all the elements involved in composing, performing, and perceiving
music. This loop results from the intersection of the musical knowledge,
which is primarily mental and based on our cultural tradition, and the phys-
ical knowledge, in which the laws of physics have a greater influence.

Starting at the top of the loop, the composer uses perceptual inputs and
personal musical background to create a symbolic representation that con-
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Figure 1.4: Musical communication chain involves musical data informa-
tion (boxes on circle) that exist in multiple modalities and processors
(dashed boxes), which may be human beings, machines, or a combination
of both [36].

veys a musical idea. Music composition, similar to other forms of art, entails
a multifaceted and intricate creative process. While this process can differ
greatly based on individual preferences [37], musicological analysis and in-
terviews with novice and professional composers, indicate that there are
common creativity approaches, characterized by either divergent or con-
vergent thinking [38]. Divergent thinking aims to generate a wide range of
new and different ideas, often with a “chance of discovery” in mind [39].
Conversely, convergent thinking is geared towards “seeking the suitable”,
involving the evaluation of ideas and adapting the selected few to better
serve the creative purpose [39]. These two processes often intertwine mul-
tiple times during the compositional process, as musical sub-problems arise
and get resolved. From this symbolic representation, a performer produces
gestures or temporal controls to operate a musical instrument, relying on
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shared musical backgrounds. The instrument is a physical object that can
produce sound from the performer’s gestures. The sound source produced
by the instrument then creates a sound field in a room that a listener per-
ceives. Finally, the listener processes the acoustic signal that enters their
ear, using previous perceptual experiences to have a perceptual and cogni-
tive experience. The composer then closes the loop by incorporating their
own perceptual and cognitive experiences into the musical creative deci-
sions. Globally speaking, music perception can be described as a process
that involves three stages [40], namely:

• the extraction of basic patterns from an audio signal,
• the analysis of these patterns by means of the existing structures that

reside in memory (also called “knowledge” or mental representation),
and

• associated experiences (e.g. tension, relaxation, affect, emotion).

Nevertheless, this is a traditional view of the music communication
chain, and it is evident that scientific and technological developments have
significantly impacted this loop. One critical alteration has been the in-
creased flexibility of some processes, as they can now be accomplished not
only by human beings or mechanical devices, but also by machines and
software algorithms. For instance, a physical room may be entirely skipped
in the communication chain, as we can attend to live performances though
online streaming services [41], or a performer may be also the composer,
creating sounds directly with a computer without the traditional performer-
instrument interaction [42]. The most significant impact has been the incor-
poration of new creative possibilities by developing computational models
for specific processes involved in the chain [43]. However, performance
on both traditional and digital musical instruments requires precise con-
trol of sensory-motor loops in real-time, including not only note onset but
also pitch and timbre, that involves muscular manipulation at a millisecond
scale.

To this end, it is clearly visible that music is also a highly embodied ac-
tivity that involves intricate, synchronized movements by both performers
and listeners in response to the sonic environment [44]. This is motivated
by the fact that many people do not engage with music in terms of narra-
tive reflections or interpretations of the music’s intentions, as evidenced
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by the non-verbal communication in musical social behaviors (e.g. con-
certs) [45]. Music serves not only as a socially embodied practice but also
possesses a complex abstract aspect. Many people do not have the neces-
sary background in music analysis, history, and culture to understand and
project subjective experience onto a linguistic narrative of cultural mean-
ings. However, this does not necessarily mean that they are barred from
making sense of music. Instead, it can be observed that people often listen
to music for its direct corporeal value, such as for relief after a stressful day,
improving mood, or distracting from repetitive tasks. People seek music for
its capacity to create behavioral resonance and its effects on mood [46].
During these activities, most people tend to engage with music in a corpo-
real way rather than a cerebral way [44].

This corporeal engagement with music broadens the perspective of what
musical communication is about and forms the basis for a range of interac-
tions with music. In addition to interactions based on linguistic or verbal nar-
rative descriptions and interactions based on symbolic or visual signs with
information stored in lists, such as scores and tables containing descriptions
of musical properties, we should also consider other forms of interactions
with music. These may include interactions based on mimetic skills or re-
hearsed action scenarios [47], such as playing a musical instrument, inter-
actions based on goal-directed gestures that are highly culture-dependent
but do not require highly developed skills, such as symbolic gestures, and in-
teractions based on direct episodic action sequences that involve responses
based on our emotive, affective, and expressive capabilities [48]. Nonver-
bal expressions, such as interactive bodily movements in a musical context,
depend on converting acoustical motion patterns into motor motion pat-
terns. The motor mode represents the manifestation of the initial auditory
experience and can be viewed as a portrayal of the original music through
bodily movements [46].

In other words, the theory of embodied music cognition proposes that
the body plays a crucial role in the music communication chain. This is
achieved through corporeal intentionality, which involves translating the
physical properties of music, such as frequency and amplitude, into a men-
tal representation of objects with specific qualities, goals, and intentions.
The action-perception couplings of a musician, which are developed through
embodied skills, knowledge, and experience, facilitate a pre-reflective
attunement between the musician and the musical world during perfor-
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mance [49]. By using learned schemas of action-perception couplings to
transform sound patterns into corporeal articulations, such as gestures and
musical patterns, a musician can resonate with the music in a corporeal way
and develop a deep understanding of its meaning [50]. This experiential,
corporeal basis for understanding music is known as embodied interac-
tion with music, in which the musician directly engages with the musical
environment they create while playing.

Although the study of gestures in music has a long history in musicol-
ogy [51] and research on interactive music systems [52], recent efforts
have focused on understanding their relationship to music [53]. Gestures
play a role in encoding and decoding musical expressions [54]. During
performance, “expression-supporting” gestures encode expressive quali-
ties in the music. During listening, “expression-responding” gestures de-
code these qualities. Both cases assume that expression can be transferred
between gesture and music. In addition, gestural shapes can relate to tim-
ing, particularly in the context of dance. Dancing provides various means of
acquiring bodily knowledge, such as through kinesthetic sensing in the mus-
cles, perception via other senses, concentration on internal stimuli within
the body, association of movement qualities with emotions, and interaction
with other dancers while moving through space. Through the act of danc-
ing, all of these aspects of sensory and bodily experiences are synchronized
and interrelated [55]. Repetitive gestures are constrained within a timing
framework dictated by the musical meter, and movement choreography is
based on a basic shape that reappears over set time periods. Elements of
the basic shape are linked to timing due to the overall timing framework set
by the music.





CHAPTER 2
Scope

2.1 Challenges in musical interaction and
generation

Although humans have been interacting with the natural world through mul-
tiple senses, conventional Human-Computer Interaction (HCI) has mainly
focused on unimodal communication [56]. This means that information or
data is conveyed primarily through a single mode or channel, such as typ-
ing text with a keyboard for input and visualizing the output on a screen.
Despite the fact that most computer interactions have been multimodal to
some extent (combining typed text with switches, buttons, mouse move-
ment and clicks, along with various visual and auditory output signals), the
predominant model for interactive computing has been based on a single
primary channel for data input and a different primary channel for data out-
put. The concept of multimodal interfaces refers to interactive systems that
aim to capitalize on the innate communication abilities of humans through
speech, touch, gesture, facial expressions, and other modalities. Such in-
terfaces incorporate advanced techniques for recognizing and categorizing
patterns, leading to more sophisticated HCI systems [57]. Although they
are not expected to completely replace conventional desktop and Graphical
User Interface (GUI)-based applications, multimodal interfaces are gaining
significance due to hardware and software advancements, their potential to
offer benefits to users, and their compatibility with the growing prevalence
of mobile computing [58].

13
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In this dissertation, the term “musical interaction” is used specifically to
refer to music and multimodal HCI. Music interaction can pose unique chal-
lenges for HCI researchers and designers, due to the intricate and demand-
ing nature of musical activities and their multimodal connection with vari-
ous human capabilities [53]. However, it also provides a valuable source of
inspiration for generating new ideas and techniques for musical HCI. More-
over, emerging forms of musical interaction have the potential to revolu-
tionize music in various domains, which can have significant implications for
musicians, educators, learners, and anyone interested in exploring music
in a deeper way. Theories from fields such as mathematics, computational
neuroscience, and cognitive psychology have been applied to illuminate as-
pects of musical practice and aesthetic and subjective musical judgment.

Some key topics of research in musical HCI include the role of body mo-
tion and gestures in musical communication (embodied interaction), and
the use of automatic music generation systems to augment musical ex-
periences and creativity [59]. In other words, automatic music generation
refers to the use of computer algorithms and machine learning techniques
to create music automatically, with or without direct input from human com-
posers or performers. On the other hand, embodied musical interaction
maps physical movements to musical features by utilizing gestures to ma-
nipulate musical content in real-time. One approach to achieve this is by
utilizing sensors and motion capturing technology to detect body or hand
movements, which can be translated into musical actions. Alternatively,
physical interfaces like instruments or controllers can also be used to cre-
ate and manipulate music [60, 61].

There are various approaches proposed in the literature for automatic
music generation, ranging from rule-based systems that use pre-defined
musical patterns and structures to generate new pieces, to deep learn-
ing models that analyze existing musical data and use that information to
generate new compositions [62]. Deep learning models have shown great
promise in generating musical content that is both creative and convincing
to human listeners. These models are typically trained on large datasets
of existing music, and use various techniques such as Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs), and Generative
Adversarial Networks (GANs) to generate new pieces of music [63]. One
of the main challenges in deep learning models for music generation is to
ensure that the generated music is both coherent and musically interest-
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ing [64]. This requires the model to have a deep understanding of musical
structure, including melody, harmony, and rhythm. Another challenge is
to incorporate human feedback into the generation process. While deep
learning models can generate music autonomously, they may not always
produce music that is appropriate for a particular context [65]. Incorpo-
rating feedback from human listeners or musicians can help to guide the
generation process and ensure that the output is of proper quality. Finally,
there is also a challenge in creating models that are able to interact with
human musicians in real-time [66]. This requires the computational model
to be able to process and respond to musical input in a way that is both
timely and musically meaningful.

Similarly, incorporating deep learning models into embodied musical
HCI systems poses several challenges. One significant hurdle is the devel-
opment of computational systems capable of processing multimodal data,
such as audio and motion tracking, to fully capture the complexity of em-
bodied musical experiences. Deep learning models may struggle to analyze
the nuances of musical expression and the subjective experiences of listen-
ers [53]. In addition, there is a need for large, diverse datasets to effectively
train deep learning models, which is challenging and time-consuming. Es-
pecially in the context of embodied musical interaction, this process often
requires specialized equipment and expertise [67]. Lastly, interpreting and
explaining the results of deep learning models in embodied musical interac-
tion presents another obstacle [68]. These models can be highly complex
and opaque, making it difficult to understand how they generate their pre-
dictions and recommendations.

2.2 Goals and Contributions

This dissertation tries to address the challenges of deep learning models
in musical interactive systems, from both technical and aesthetic perspec-
tives. We implement several computational models based on RNN and CNN
architectures, and evaluate their performance on different musical tasks,
including automatic music generation, real-time jazz accompaniment, mu-
sical gesture recognition and audio-driven dance motion synthesis. In this
regard, our research tries to answer the following questions:

• Can we leverage raw data from motion capture sensors to train a musi-
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cal gesture recognition system, considering the great amount of tem-
poral information of such gestures, and their subtle and short dura-
tion?

• Can we use such mid-air gestures to interact with virtual music instru-
ments that simulate real-world instruments, considering the absence
of physical constraints (e.g. specific tangible instrument body or string
positions)?

• How can we enhance the performance of gesture recognition sys-
tems, considering the great diversity in the way a single gesture is
performed by different or even individual users?

• How effective are pretrained pose detection algorithms in constructing
skeletal training data?

• Can deep learning models be trained to analyze the cross-modal in-
terconnection between auditory stimuli and dancing motion?

• What can we deduce from the different approaches to encode sym-
bolic musical data?

• Is it possible to categorize them systematically?
• What are the advantages and drawbacks for each one, especially re-

garding their impact on the form of a generated musical piece?
• Can the proposed deep learning systems capture the static harmonic

information of a given chart in a dynamic environment?
• How well do different computational models enable the musical in-

teractive systems to adapt to changing limitations that are reliant on
human input?

• Can the proposed computational models be implemented in real-time
settings, considering their computational complexity and robustness?

• Can we visualize the feature learning process and reason about the
decisions made by the computational models?

Thus far, the approaches developed in the literature present minimal
controllability and usually generate static predictions with low variability,
compared to the methods discussed herein, proposing dynamic changes to
the system’s responses, which are depended on the human intentions and
input. Consequently, the broad scope of this research has enabled us to
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achieve several contributions, which can be summarized as follows:

• Implemented a multimodal capturing system to record and analyze
Leap Motion sensorial data intuitively, based on a scalable and user-
friendly web interface, which can be adopted to the needs of any hand
motion analysis task1.

• Collected and released a dataset involving 8 classes (total 1200 sam-
ples) of musical gestures that belong to 2 instrumental interaction
families, namely, tapping and plucking2.

• Developed a series of deep learning models towards recognizing dy-
namic hand gestures with the Leap Motion sensor in the context of
musical performance with virtual instruments, simulating percussive
and stringed based interactions.

• The gesture recognition models were integrated and deployed as part
of the iMuSciCA web platform, validating their real-time effective-
ness3.

• Proposed a multimodal deep CNN architecture capable of generating
novel dance motion sequences of arbitrary length, based on an au-
toregressive curriculum learning training scheme, to deal with predic-
tion error accumulation during inference.

• Designed informative visualizations of the attention-based multi-
modal feature fusion method, helping to enhance the comprehension
of the generated dance motion sequences.

• Validated the effectiveness of pretrained pose detection models as a
data collection methodology and released a novel dataset containing
paired music and 2D skeletal pose sequences4.

• Proposed a taxonomy of monophonic symbolic music encodings that
accounts for common musical characteristics.

• Developed an automatic music generation system based on a Long
Short-Term Memory (LSTM) RNN architecture that was trained on a
diverse dataset of musical pieces, by re-encoding them in various for-

1https://github.com/kosmasK/air-writing-recognition
2https://zenodo.org/record/1260336
3https://workbench.imuscica.eu
4https://github.com/kosmasK/multimodal-dance-generation

https://github.com/kosmasK/air-writing-recognition
https://zenodo.org/record/1260336
https://workbench.imuscica.eu
https://github.com/kosmasK/multimodal-dance-generation
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mats5.
• Evaluated empirically the impact of the different music encodings

on the output of the system, supported further by visual explana-
tions based on depictions of the corresponding latent representations
learned by the computational model.

• Developed a two stage multi-layered system based on LSTM RNN ar-
chitectures to generate real-time music accompaniment, capable to
adapt to the intentions of the human soloist, by modelling the expecta-
tion and its violation in the context of jazz improvisation performance6.

• Released a refined symbolic music dataset according to Jazz stan-
dards, enhancing the variability of the accompaniments of the pieces
available.7

2.3 Thesis Outline

Research on musical interaction requires employing interdisciplinary means
of understanding based on dynamic perceptual principles. In that respect,
the main concepts, empirical studies, subjective evaluations and modeling
approaches that are developed in this dissertation stem from those prin-
ciples. Our systems receive and analyze various forms of music related
information, including raw audio, sensorial and skeletal data, as well as
different types of symbolic representations. Hence, the remainder of this
dissertation is organized into three main parts.

Part II focuses on the utilization of skeletal features to train various ar-
chitectures, both unimodal and multimodal, in the tasks of musical gesture
recognition, virtual music instrument performance and audio-driven dance
motion synthesis. Specifically, in Chapter 3 we explore computational mod-
els for musical gesture recognition using the Leap Motion sensor. We com-
pare different architectures, including recurrent and convolutional models,
and evaluate the performance of handcrafted and “raw” features. Leverag-
ing the effectiveness of our gesture recognition system, we then develop
a web-based system for interacting with 3D virtual music instruments, as
described in Chapter 4. The system utilizes the Leap Motion sensor and

5https://github.com/manosplitsis/MusicRep
6https://github.com/kosmasK/JazzICat
7https://zenodo.org/record/3523222

https://github.com/manosplitsis/MusicRep
https://github.com/kosmasK/JazzICat
https://zenodo.org/record/3523222
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employs state-of-the-art web technologies, enhancing the virtual musical
instruments with realistic visual and audio feedback. Our final system that
addresses skeletal-based features is presented in Chapter 5, where we ex-
amine the application of deep CNN architectures for modeling and synthe-
sizing novel dance motion sequences conditioned on audio features. The
proposed deep multimodal architecture benefits from the stacked dilated
convolutional operations for capturing the long-term spatio-temporal con-
text of dance sequences, thus allowing synthesis of arbitrarily length.

Next, in Part III we consider deep learning models trained with sym-
bolic music data in the tasks of automatic music generation and real-time
music accompaniment synthesis, towards investigating the effects of differ-
ent data encodings on the latent representations captured by the computa-
tional models. In Chapter 6 we propose a system that simulates the inter-
play between a human soloist and an artificial accompanist, in the context
of jazz improvisation. Our proposed methodology includes the development
of “a model within a model”, that allows the artificial agent to have its own
model of anticipation for the human improviser. The system demonstrates
harmonic compliance with chart chords and adaptability based on contex-
tual information. Further experimentation with various symbolic music data
encodings for automatic music generation, are investigated in Chapter 7,
emphasizing their impact on the resulting musical structure. Evaluation
results demonstrate that the choice of encoding method significantly influ-
ences aspects such as melodic phrasing and metric organization.

Finally, in Part IV we conclude this dissertation with a summary of the key
findings of our research and offer a discussion on possible future research
directions.





Part II

Skeletal Features





CHAPTER 3
Gesture recognition for

musical interaction

3.1 Introduction

With the recent advancements in Motion Capture (MoCap) technology, there
has been a growing demand for touchless interfaces. This has, in turn,
sparked further research endeavors in the fields of human motion analy-
sis and gesture recognition. HCI applications that directly utilize gesture
recognition algorithms include sign language recognition [69], robotics [70],
Virtual Reality (VR) [71], and musical interaction [72] among others. This
Chapter centers around hand gesture recognition, with two primary types
of gestures identified in the literature: (a) static and (b) dynamic hand ges-
tures [73]. Static hand gestures involve capturing postural information by
extracting hand contours and regions of interest at a specific moment. In
contrast, dynamic hand gestures focus on the temporal evolution of finger
joint positions and overall hand movement throughout a performed motion
pattern.

However, dynamic hand gestures are still challenging to be robustly rec-
ognized by computational models, due to the complex anatomy of the hand
skeleton, which provides 27 Degrees Of Freedom (DOFs) in total [74]. The
motion trajectories of fingers present great diversity of possible shapes,
which could be subjected to serious occlusions [75], as well as diverse intra-
class and inter-class similarities that further complicate the recognition pro-

23
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cess [76]. Moreover, the musical gestures performed during an instrumen-
tal performance are influenced by various perceptual mechanisms, includ-
ing visual, auditory, and tactile sensory cues. These factors need to be con-
sidered when designing gesture-driven virtual musical instruments [77].

With the emergence of depth sensors such as the Creative Senz3D1,
Microsoft Kinect2 and Leap Motion3, various studies have explored the po-
tential of employing such controller interfaces for interacting with virtual
musical instruments [78–80]. However, the interaction frameworks that
are usually employed in these gestural applications do not consider the
active role of prediction, rather than focusing on reactive mappings [81].
Recent advancements in the fields of Machine Learning (ML) and Artificial
Intelligence (AI) outperformed traditional systems based on Gaussian Mix-
ture Models (GMMs) and Hidden Markov Models (HMMs) approaches [82],
while bringing tremendous improvements in temporal pattern recognition
tasks. Nonetheless, significant work remains to be done for achieving satis-
factory recognition performance in expressive and real-time musical inter-
action scenarios [83].

Therefore, this Chapter focuses on recognizing dynamic hand gestures
by utilizing the Leap Motion sensor in the context of musical interaction with
virtual instruments, inspired by real-world instrumental gestures. Recogniz-
ing such gestures is challenging since:

• they convey a great amount of temporal information;
• the recognition window is very short;
• there is a lack of physical constraints (e.g. specific tangible instrument

body or string positions); and
• there is great diversity in the way a single gesture is performed by

different or even individual users.

The proposed computational models in this Chapter receive hand motion
tracking data captured with the Leap Motion sensor. The sensorial features
are processed by a sliding temporal window that constructs subsequent
overlapping sequences, to be used as input to the gesture recognition sys-
tems. In all our experiments, we consider a classification task between 7

1https://us.creative.com/p/web-cameras/creative-senz3d
2https://developer.microsoft.com/en-us/windows/kinect
3https://www.leapmotion.com/

https://us.creative.com/p/web-cameras/creative-senz3d
https://developer.microsoft.com/en-us/windows/kinect
https://www.leapmotion.com/
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predefined musical gestures, along with a dedicated category to handle ar-
bitrary (i.e. irrelevant) gestures (tagged as “unknown”); thus modelling two
families of musical gestures, namely, tapping and plucking, towards simu-
lating percussive and stringed based instrumental interactions respectively.
In our initial experiments, we evaluate the performance of a recurrent com-
putational architecture that utilizes a dense layer to compute feature em-
beddings, followed by an LSTM network for modelling the temporal feature
patterns, achieving average recognition rate of 91.77% in a 10-fold cross-
validation setup. In a cross-participant setup, where the data of a partici-
pant are used as the test set, we report a recognition rate of 85.5%. Also,
we examine the incorporation of a few gesture samples from test partici-
pants, simulating the scenario of fine-tuning the system with the users’ own
gestures to enhance accuracy.

Next, we explore the filtering effectiveness of convolutional filters to
model multidimensional data sequences and propose two computational
models that incorporate CNNs for the classification task at hand. First, we
test the effectiveness of 1D CNNs to produce feature embeddings by re-
placing the dense layer in our initial architecture, and keeping the LSTM
network for sequence modelling. Our second method relies completely on
a deep CNN architecture that utilizes consecutive convolutional and max
pooling operations. The experimental results demonstrate statistically sig-
nificant improvements compared to our initial dense-LSTM method, report-
ing average accuracies of 94.32% and 94.44% respectively. Our results per-
tain to window-based accuracy, which measures the recognition accuracy
within a window of Leap Motion frames. This window-based accuracy en-
ables real-time application in scenarios involving consecutive windows of
gesture recognition computations.

The remainder of this Chapter is organized as follows. In Section 3.2
we introduce the research problem that we aim to address with the study
presented herein, along with its application context. Next, in Section 3.3 we
discuss some related studies in the context of dynamic hand gesture recog-
nition and gesture-based musical interaction. In Section 3.4 we describe the
collected dataset and propose various computational architectures, based
on convolutional and recurrent operations. In Section 3.5 we present the
experimental setup and report the results of an initial ablation study, to-
wards evaluating the contribution of different data features, embeddings
and architectural configurations of the RNN model. Likewise, in Section 3.6
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we present the experimental setup and evaluation results regarding the
different computational models that utilize CNNs. Finally, Section 3.7 con-
cludes this Chapter by summarizing the main contributions and observa-
tions drawn from our study.

3.2 Problem Definition and Application Context

In the scope of the iMuSciCA4 project, we developed a Science, Technology,
Engineering, Arts and Mathematics (STEAM) education platform that allows
students, among other activities, to employ scientific and engineering prin-
ciples in constructing their custom virtual musical instruments with which
they can interact. Accurate music performance is important for achieving
the goal of STEAM education, which is the integration of all scientific ele-
ments of iMuSciCA in an enjoying and meaningful experience for the stu-
dents. In order to provide a realistic performance experience associated
with physical interactions (such as tapping a drum or plucking a string), it is
important to utilize appropriate gestures inspired by real-world instrumen-
tal performance. However, developing virtuosity in playing a virtual musi-
cal instrument is not necessary, as these instruments can be customized to
produce a diverse range of timbres and specific note sets that are meaning-
ful and interesting. In this regard, interacting with virtual instruments can
serve as a medium for musical expression, even for individuals without tra-
ditional musical training (not only within the context of STEAM education).

In this Chapter we focus on exploiting LSTM and CNN computational
models in the dynamic hand gesture recognition task using Leap Motion
data. The proposed algorithms specifically target quick gestures used to
rapidly trigger events during musical performances with 3D virtual instru-
ments, drawing inspiration from gestures employed during performance
with physical instruments. The main objective is to enhance the user expe-
rience by enabling control of virtual musical instruments through intuitive
hand gestures. While our goal is to create a versatile gesture recognition
module suitable for various 3D virtual instruments, we emphasize on inter-
action with string and percussive instruments. Hence, the primary focus
of the hand gesture classes in our study revolves around actions such as
plucking a string with one of the fingers or performing a tapping gesture on

4http://www.imuscica.eu/

http://www.imuscica.eu/
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Figure 3.1: Overview of the temporal windowing, where successive over-
lapping input frame sequences of raw hand tracking data are fed to the
recognition system.

a percussion instrument. Our objective is to achieve real-time recognition
of these quick gestures by employing the proposed gesture recognition al-
gorithms on continuously sliding overlapping windows, as illustrated in Fig-
ure 3.1. However, the quantitative evaluation that we present herein, fo-
cuses on the performance of the different gesture recognition models within
a single window of data. As a result, the proposed methodology, collected
data, and presented results primarily address strategies for training and
evaluating our systems on a window level, encompassing a single gesture
and not sequences of gestures. Also, it is important to highlight that the
proposed methods have been proven effective in generic-purpose gesture
recognition tasks as well [84].

3.3 Related Work

Early contributions to the task of 3D dynamic gesture recognition relied
mostly on the extraction of hand features from consecutive RGB image se-
quences by applying computer vision and image processing techniques [85].
However, it is quite difficult to capture the rich spatio-temporal movement
relations of dynamic hand gestures with a monocular camera sensor [75].
With the advent of innovative depth sensors such as the Microsoft Kinect
and Leap Motion sensor, there was an increasing interest by the research
community to incorporate depth tracking data streams for estimating real-
time hand gestures.

One of the first studies that targets sign language recognition based
on tracking data from a Leap Motion sensor was developed by Marion et
al. [86], where ad-hoc hand features computed from the raw positions and
orientations of the fingertips are fed to a Support Vector Machine (SVM) clas-



28 CHAPTER 3. GESTURE RECOGNITION FOR MUSICAL INTERACTION

sifier for estimating the performed letter signs. Furthermore, they examined
additional features extracted from a combination of depth data captured
from both Kinect and Leap Motion sensors, which could increase the overall
recognition performance. A similar approach was followed in [87], where
Leap Motion and Kinect sensors were jointly calibrated by means of com-
bining two classifiers for the different feature streams; a SVM classifier for
the Leap Motion-based features and a Random Forest for the depth-based
features of Kinect.

A music related project that utilizes both Leap Motion and Kinect sen-
sors for interacting with a virtual musical instrument, called “Intangible Mu-
sical Instrument” [88], targets piano-like gestures. More specifically, two
Leap Motion sensors (i.e. one for each hand) are dedicated to recognize the
piano-like gestures which are directly mapped to the inherent dynamics,
articulation and duration metaphors of natural music interaction, while a
Kinect sensor targets the motion trajectories of the head, arms and verte-
bral axis, which are indirectly mapped to a granular sound synthesis engine.
An attempt to use simple artificial neural networks for real-time recognition
of piano-like gestures was introduced in the “Virtual Piano” instrument [89],
where finger-based features were firstly computed from raw Leap Motion
tracking data and then fed to a simple Multilayer Perceptron (MLP) classi-
fier. An interesting study that focuses on out-of-range (not captured entirely
by the sensors) and overlapping (with significant occlusion) hand gestures
is called “Embodied Sonic Meditation” [90], where the authors experiment
with K-Nearest Neighbors (KNNs), Binary Decision Trees and SVMs classifiers
for recognizing 7 ancient Buddhist hand gestures named mudras.

With the breakthrough in deep learning architectures there is a grow-
ing trend towards the development of complex models that are able to ex-
tract high-level features and predict the spatio-temporal evolution of body
and hand gestures. Among the most successful approaches incorporate
the development of methods that rely on CNNs, which have proven effec-
tiveness in filtering raw sensorial data. For instance, McCartney et al. [91]
proposed a 3D gesture recognition model based on CNNs, which can identify
2D projections of the 3D space by combining the output of three different
2-layered CNNs for each individual projection plane (i.e. XY, YZ and XZ).
A different approach was introduced by Molchanov et al. [92], who utilized
depth and intensity channels, along with 3D CNNs, where each channel was
fed to a dedicated network. Devineau et al. [93] introduced a hand gesture
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recognition system based on 1D CNNs, that receive input sequences of raw
hand-skeletal joint positions, achieving state-of-the-art performance on the
Dynamic Hand Gesture dataset5 from the 2017 3D Shape Retrieval Con-
test (SHREC) [94]. Deep CNNs have also been applied for Human Activity
Recognition (HAR) from incoming skeletal tracking data provided by depth
sensors [95]. However, most methods either consider pre-segmented ges-
ture data sequences or treat segmentation and classification as separate
problems. For instance, Dynamic Time Warping (DTW) [96] and HMMs [75,
97] have been used as segmentation methods to determine presumable
start and stop points of gestures.

On the other hand, RNNs are able to address this issue, since their com-
putational architecture allows to capture the temporal patterns within a
gestural sequence. For instance, Molchanov et al. [76] proposed a gesture
recognition system that utilizes a deep 3D CNN model for spatio-temporal
feature extraction, a recurrent layer for global temporal modeling and a
softmax layer for predicting class-conditional gesture probabilities. It is
only recently that some approaches have proposed RNN architectures with
LSTM gates for recognizing dynamic human gestures. For instance, Sarkar
et al. [98] introduced a methodology that involves the initial computation of
3D hand descriptors from real-time depth data acquired from a mobile Time-
of-Flight sensor. These computed descriptors are subsequently utilized as
input for a single-layered deep LSTM network, which tackles a classifica-
tion task with four distinct categories. Núñez et al. [99] addressed HAR and
hand gesture recognition tasks, by employing a combination of CNN and
LSTM networks on 3D skeletal data sequences obtained from full-body and
hand tracking sensors. The CNN training was conducted separately, and in
a second stage, the full CNN-LSTM architecture was adjusted accordingly.
Similarly, the research described in [100] demonstrates the effectiveness
of an LSTM architecture in segmenting hand gestures from raw Leap Mo-
tion hand tracking sequences. The segmented gestures are then provided
as input either directly to an LSTM network, or indirectly to a CNN architec-
ture, through filters learned by a denoising auto-encoder. Another exam-
ple of combining convolutional and recurrent architectures was presented
in [101], where an end-to-end 3D CNN-LSTM model was trained to recognize
gestures in video sequences, achieving close to state-of-the-art accuracy on

5http://www-rech.telecom-lille.fr/shrec2017-hand/

http://www-rech.telecom-lille.fr/shrec2017-hand/
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the ChaLearn dataset [102]. To the best of our knowledge, up to the current
date there is a lack of similar deep learning approaches in the context of
HCI and gesture-enabled virtual musical instruments.

3.4 Methodology

To the best of our knowledge, the gestures required for the intended appli-
cation context have not been utilized in any previous research study. Fur-
thermore, these gestures are performed without any physical constraints or
feedback. In other words, there is no physical mass or tactile information
available to convey the momentary evolution of the gesture to the user.
Consequently, it is anticipated that different users will perform the same
gesture in diverse ways. This highlights the necessity of employing gesture
recognition methods based on more sophisticated and complex computa-
tional architectures and utilizing multiple examples from various users. To
address these requirements, multiple instances of gesture data were col-
lected from multiple users. The dataset was then used to train and test
recurrent and convolutional deep neural network for gesture recognition.

3.4.1 Dataset description

In Figure 3.2 we illustrate the targeted hand gestures, specifically focusing
on plucking and tapping actions. A description of these gestures can be
found in Table 3.1, which also corresponds to the label annotations in the
collected dataset. In total, there are 8 gesture classes: 5 related to pluck-
ing, 2 related to tapping, and one class labeled as “unknown”. The inclusion
of the “unknown” class allows the system to identify instances that do not
match any of the targeted gestures. This prevents the computational mod-
els from incorrectly categorizing every user action, including cases where
no gesture is performed. Regarding the plucking gesture, we consider vari-
ations performed by each of the five fingers individually (refer to Figures
3.2c – 3.2g). As for the tapping gesture, we examine both tapping with an
open palm (Figure 3.2b) and tapping with the extended index finger (Fig-
ure 3.2a). For the “unknown” gesture class, participants were instructed to
perform random hand movements that were as dissimilar as possible to the
other 7 gestures.
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(a) Finger tapping (b) Palm tapping (c) Thumb plucking

(d) Index plucking (e) Middle plucking (f) Ring plucking

(g) Pinky plucking

Figure 3.2: Illustration of the considered instrumental gesture classes cor-
responding to the right hand. For each gesture, the temporal evolution of
the fingers’ motion trajectories follows the direction of the arrow.

Table 3.1: Considered gesture classes and their labels.

Gesture Description Label
Palm tapping RHPT

Index finger tapping RHIT
Thumb finger plucking RHTP

Index finger plucking RHIP
Middle finger plucking RHMP

Ring finger plucking RHRP
Pinky finger plucking RHPP

Unknown RHUK
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Figure 3.3: Skeletal representation of the hand as it is recognized by the
Leap Motion sensor [103].

Data were collected from 10 participants (5 female and 5 male) using
the Leap Motion sensor for the 8 gesture classes (of the right hand) de-
scribed above. Each gesture recording was lasting 2 seconds with an inter-
mediate break of 3 seconds countdown before recording the next sample.
The considered dataset includes in total 1019 gesture samples, with 10-15
samples for each gesture class per participant. The recording sampling rate
was set to 50 frames per second (FPS). However, there are always expected
fluctuations in the actual frame-rate, which can unpredictably vary depend-
ing on the CPU power and current CPU processes of the operating system
during gesture recording. To compensate for the minor differences in the
frame length of each recorded sample, all samples were zero-padded up
to a specific number of total frames. The Leap Motion sensor identifies the
hands that fall within its capturing field of view (FOV) range and generates
a stream of frames, where each frame includes information about the po-
sitions and velocities among many other properties of the tracked hands.
An example of the hand hierarchy provided by the Leap Motion software
development kit (SDK) is presented in Figure 3.3.

All these measurements constitute a set of 186 features, called the
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“raw” set of features, which are used to train the considered gesture recog-
nition models, detailed as follows:

• Positions: 3D positions of all finger joints (including a zero-length ar-
ray for describing the missing metacarpal thumb bone), palm center,
wrist and elbow (cardinality: 84).

• Velocities: 3D velocity vectors for palm center and fingertips (cardi-
nality: 18).

• Directions: 3D vectors of directions of hand and fingers, along with
the 3D vector of the palm normal (cardinality 21).

• Miscellaneous: This feature set includes the arm and palm widths,
length of each finger, estimated pinch and grab strengths, finger
touch distances and touch zones, 3D position of the palm’s sphere
radius, stabilized positions for palm and fingers, along with the hand
type constant (i.e. left/right) (cardinality: 61).

In addition to the “raw” features, in our initial experiments we also consider
a set of 30 handcrafted features for the purpose of comparison, as they are
described in [87]. These features consist of:

• 5 values representing the cosine of the angle between each fingertip
and the plane defined by the palm.

• 5 values indicating the distances between each fingertip and the cen-
ter of the palm.

• 5 values representing the distances of each finger from the plane de-
fined by the palm.

• 15 values denoting the 3D positions of each fingertip within the or-
thonormal axis defined by the hand’s direction and normal vectors.

All the aforementioned features are normalized in the range of [0, 1] for each
gesture recording. According to Marin et al. [87] the length of each finger is
normalized based on the length of the middle finger, which is considered the
largest one. The collected dataset, named the Leap Motion Hand Gestures
for Interaction with 3D Virtual Music Instruments (LMHGIf3DVMI), has been
released with open-access copyrights [104]. Furthermore, the interface that
we developed to record the gesture samples is accessible online6

6https://github.com/kosmasK/air-writing-recognition

https://github.com/kosmasK/air-writing-recognition
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Figure 3.4: Architecture of the employed LSTM-based neural network.

3.4.2 Proposed Computational Models

As mentioned above the proposed systems focus on the classification task
of a single window of input data that includes one of the 8 classes. In our ini-
tial experiments, we assess the performance of a recurrent computational
architecture that employs a dense layer to compute feature embeddings,
followed by a LSTM network for capturing temporal feature patterns. Next,
we explore the effectiveness of incorporating convolutional filters to model
multidimensional data sequences. We propose two computational models
that utilize CNNs for the classification task at hand. The first method in-
volves testing the efficacy of 1D CNNs for producing feature embeddings.
In this approach, we replace the dense layer in our initial architecture while
retaining the LSTM network for sequence modeling. The second method
relies entirely on a deep CNN architecture that employs consecutive convo-
lutional and max pooling operations.

Initial LSTM architecture

Our initial methodology at its core employs a LSTM neural network and its
architecture is illustrated in Figure 3.4. The input to this network, denoted
as x

(i)
t , consists of a window comprising a sequence of 75 frames. The data

within the window can either be in its “raw” form, generated by the Leap Mo-
tion sensor (186 dimensions), or it can be represented by the handcrafted
features (30 dimensions). All the employed operations and functions (i.e.
multiplication, sum and division) are considered to be performed element-
wise. The indices (i), (b), (c), (l) and (o) represent the (i)nput, (b)ottom
dense linear layer, LSTM (c)lass output, (l)inearly transformed output and
(o)utput of the entire network respectively. To process the input vectors, we
employ a “Dense linear” layer (i.e. fully connected), which performs a linear
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transformation to embed the vectors into a space of fixed dimensionality,
as it is given by the following equation:

x
(b)
t = Wix

(i)
t + bi (3.1)

Where Wi and bi are the arrays of weights and biases respectively in the
bottom “Dense linear” layer. The embedding representation is further en-
coded using a RNN with LSTM gates as:

x
(c)
t = FLSTM

(
x
(b)
t , ϑ(c)

)
(3.2)

Where ϑ(c) represent the parameters of the LSTM network, defined as a
function FLSTM of the architecture. Finally, the LSTM output is linearly trans-
formed in a space with dimensionality equal to the number of gesture
classes (top “Dense linear” layer) as:

x
(l)
t = Wox

(c)
t + bo (3.3)

Where Wo and bo are the weights and biases of the top “Dense linear” layer,
the output of which is passed through a softmax function that results to the
probabilities of each target class as:

x
(o)
t =

ex
(l)
t∑
ex

(l)
t

(3.4)

The denominator in equation (3.4) represents the sum of all elements in the
ex

(l)
t (element-wise exponential of x(l)t ) array. The recognized gesture class

is the one with the highest probability:

c
(o)
t = argmax{x(o)t } (3.5)

Equation 3.5 returns the index of the x
(o)
t vector with the maximum value,

corresponding to the number of the one-hot encoded assigned class.

CNN-based Approaches

The proposed computational architectures that incorporate CNNs, lever-
age on their ability to capture relations in sequences of events and extract
meaningful features that increase classification accuracy. In particular, we
adopt CNNs in two different architectures. The first deploys a convolution
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Figure 3.5: Filtering process with 1D-CNN used for automated feature learn-
ing from the “raw” input data sequence.

layer for feature extraction that subsequently feed a LSTM network for se-
quence learning, similar to our initial approach. The second is a deep con-
volutional architecture with several 1D CNN layers in the feature dimension,
followed by max pooling in the time dimension.

In Figure 3.5 we present the 1D CNN filtering process used in both
methodologies. The Leap Motion sensor produces sequences of D mea-
surements, corresponding to the “raw” features as described above in Sec-
tion 3.4.1. Let us denote with T the time window of the input sequence
of “raw” data, expressed in number of frames. On each D-dimensional
sequence of T frames, we employ N 1D convolutional filters of kernel size
K that slides across frames, extracting one feature for each frame using
the Rectified Linear Unit (ReLU) activation function. We also apply zero
padding at the end of the sequences in order to preserve equal sequence
lengths for all gesture samples in our dataset. Thereby, each filter produces
a single 1D time series, which are stacked in an N × T matrix. It should
be noted that the ReLU output for each time frame is locally normalized
across a neighborhood of l time frames by following the 1D version of the
normalization process proposed in the ImageNet model [105], as:

bix = aix/

k + α

min(T−1,i+l/2)∑
j=max(0,i−l/2)

(ajx)
2

β

(3.6)

Where bix and aix correspond to the normalized and non-normalized activa-
tion values respectively.

Our first method that incorporates CNNs, referred to as CNN-LSTM, is
presented in Figure 3.6. It shares similarities with our initial method, as it
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Figure 3.6: CNN-LSTM Method: Feed the CNN-learned features (see Fig-
ure 3.5) to a LSTM neural network for sequence learning and with a fully
connected layer for classification.

still utilizes a LSTM network to model sequential information. However, the
main difference lies in the introduction of a CNN network to compute feature
embeddings (i.e. the CNN filtering process depicted in Figure 3.5), replacing
the “Dense linear” layer used in the previous approach. The output of the
LSTM network is used as input to a fully connected layer with linear activa-
tions, enabling classification among the targeted classes. During training,
the system learns the parameters of the CNN filters, the parameters of the
LSTM model, as well as the weights of the fully connected output layer.

The second method is illustrated in Figure 3.7, and it is referred to as
dCNN. This method is based on a deep CNN architecture, with 4-layers ap-
plying consecutive 1D convolutional and max pooling operations. The pro-
cess begins with the CNN-generated feature embedding matrix followed by
4 consecutive “bisects”. The output of the fourth layer is stacked (on the
time dimension) to form a vector of size N × T/16 which is then processed
by a fully connected layer with linear activations for classification. Dur-
ing training, the system learns the parameters of the CNN filters and the
weights of the fully connected output layer.

3.5 Initial Ablation Study

In this set of experiments we follow an ablation study, aiming to provide
a deeper understanding on the effects of the different data features, em-
beddings and architectural configurations of the RNN model, on the musical
gesture recognition task.
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Figure 3.7: dCNN Method: Consecutive application of convolution and max
pooling operations followed by a fully connected layer for classification.

3.5.1 Experimental setup

In our initial experiments we consider two types of input data, including (i)
“raw” sensorial measurements as provided by the Leap Motion SDK, and (ii)
handcrafted features, computed according to [87]. We ensure that all input
sequences have a fixed length of 75 time frames (including zero padding).
The specific training parameters used in our experiments include a learn-
ing rate of 0.001 using the Adaptive Moment estimation (Adam) optimization
algorithm [106] to minimize the cross entropy cost function, with L2 regu-
larization of weights set to 0.015, a dropout rate of 0.5 applied on the LSTM
gates and gradient clipping during back propagation in the range of [−1, 1].
These parameter values were determined after conducting several exper-
iments on a small subset of our dataset. We run experiments with 32, 64
and 128 embedding dimensions for all types of input features (see Equa-
tion (3.1)), tested various numbers of LSTM cells (32, 64 and 128) and layers
(1, 2 and 4), as well as Bidirectional Long Short-Term Memory (BLSTM) gates
in our recurrent network.

Overall we apply two different evaluation procedures: (i) the classical
10-fold cross validation in which we randomly select 90% of the samples
per participant and gesture class for training, while keeping the rest 10%
for testing, and (ii) cross participant validation, where we leave out one
participant for testing and include the remaining participants in the training
set. We implement all the considered models and experiments with the
TensorFlow framework7 on a computer with Intel Core i7 Central Processing
Unit (CPU) at 2.80 GHz and 16 GB random-access memory (RAM) and one

7https://www.tensorflow.org/

https://www.tensorflow.org/
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NVIDIA Tesla K40c Graphics Processing Unit (GPU).

3.5.2 Results

We start our evaluation by using a single LSTM layer with 128 cells and
test different sizes of embeddings, compared against the absence of such
transformation. Figures 3.8a and 3.8b present the moving averages of the
recognition rates on the test samples of participant #7 for 2000 training
steps. In the case of “raw” data as input, the introduction of an embedding
layer improves the performance, with the embeddings of 32 dimensions
reporting the best results. On the other hand, in the case of handcrafted
features, it can be seen that adding an embedding layer has a negative
impact on the performance of the model.

Next we evaluate the effect of different numbers of LSTM cells. In this set
of experiments we use an embedding layer of 32 dimensions for the case of
“raw” data, while for the handcrafted features we use no embeddings. The
results are presented in Figures 3.8c and 3.8d, where we plot the moving
averages of the recognition rates on the test set of participant #7 for 2000
training steps. It can be seen that the scenarios that involves 128 LSTM
cells report the best results for both types of input data. It is important
to be mentioned, that even though we tested greater number of cells, we
observed a negative impact on the performance of the system.

Furthermore, we run experiments considering deeper architectures of
multiple LSTM layers, as well as models based on BLSTM gates. In Fig-
ures 3.8e and 3.8f we plot the moving averages of the recognition rates
for 2000 training steps using the two types of input data for fold #2. We
can see that the best performance, regarding “raw” features, is reported
by the single layered LSTM model, whereas in the case of handcrafted fea-
tures, the most performant architecture is the one that employs a stack of
4 LSTM layers. Moreover, we observe that the recognition rates regarding
“raw” data is greater than the rates reported by the models trained with
handcrafted features. At the same time the reported performance variabil-
ity of the handcrafted features is greater than the corresponding variability
of “raw” data, indicating that the proposed architecture follows more stable
training process in the case of “raw” features.

In Tables 3.2 and 3.3 we present the average test recognition rates and
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(a) Test accuracies on participant #7, considering various sizes of
embedding dimensions with handcrafted features.

(b) Test accuracies on participant #7, considering various sizes of
embedding dimensions with “raw” features.
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(c) Test accuracies on participant #7, considering various numbers
of LSTM cells with handcrafted features.

(d) Test accuracies on participant #7, considering various numbers
of LSTM cells with “raw” data.
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(e) Test accuracies on fold #2, considering BLSTM gates and vari-
ous numbers of LSTM layers with handcrafted features.

(f) Test accuracies on fold #2, considering BLSTM gates and vari-
ous numbers of LSTM layers with “raw” data.

Figure 3.8: Plots of the reported test accuracies of the different experimental
scenarios for 2000 training steps.
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Table 3.2: Recognition rates for various configurations for 10-fold cross val-
idation.

Configuration Recognition Rate
(Average ± std)

Handcrafted,
no embedding,

4-layered 128 LSTM encoding
90.56%± 2.04%

Raw Data,
32 dense embedding,
128 LSTM encoding

92.62%± 1.82%

Table 3.3: Recognition rates for various configurations for participant cross
validation.

Configuration Recognition Rate
(Average ± std)

Handcrafted,
no embedding,

4-layered 128 LSTM encoding
63.31%± 4.21%

Raw Data,
32 dense embedding,
128 LSTM encoding

85.50%± 2.36%

their standard deviation (STD), for the two types of evaluation protocols
(i.e. 10-fold cross validation and participant cross validation), using the two
architectures corresponding to the cases of having as input handcrafted
features and “raw” data respectively. The averaging has been performed
with respect to the various trials on the test sets as well as with respect to
the training steps between 800 and 900 steps for the “raw” data and 200
to 300 steps for the handcrafted features. We use different ranges since
the two systems converge after different number of training steps. Overall,
the architecture that uses an embedding layer and a single LSTM layer on
“raw” data reports better recognition rates, than the 4-layered counterpart
on handcrafted features. Furthermore, we notice a significant decrease in
the average recognition rate during cross participant validation, particularly
when using handcrafted features. This observation suggests that the num-
ber of users in the training set is not sufficient to produce models that can
generalize well and achieve consistent performance regardless of testing
user.

In order to address this issue under real-world circumstances, usually a



44 CHAPTER 3. GESTURE RECOGNITION FOR MUSICAL INTERACTION

Table 3.4: Recognition rates of subjects with ids #5 and #7 for different
number of gesture samples in the training set.

Number of samples
in training set

Participant
#5

Participant
#7

0 89.55% 71.03%
2 89.81% 85.38%
5 94.29% 85.81%

few gesture samples could be given by the users to “fine-tune” or adapt the
system to their own gestural temperament. To this end we consider a set of
experiments where we keep one test participant out from the training pro-
cess, and on a later stage we use few samples of each gesture class of this
participant to evaluate the contribution to the recognition rates. To have a
better understanding of the impact of the adaptation approach, we select
participants #5 and #7 from our dataset to test this scenario, correspond-
ing to the two opposite extremes based on their performance reported in
the cross participant evaluation. The results presented in Table 3.4 demon-
strate the average accuracies between 800 and 900 training epochs on the
test sets of participants #5 and #7. The results indicate that model adapta-
tion with only few samples of user data would lead to better performance.
Especially regarding participant #7, the average accuracy increases from
71.03% up to 85.38% when only 2 adaptation gestures are given. Similarly,
for participant #5, the average accuracy increases from 89.55% to 94.29%

with 5 adaptation gestures. Moreover, during all experiments we measured
the average time of our system to produce results on input sequences of 75
time frames, being around 2.8ms.

3.6 CNN-based Experiments

In this set of experiments we leverage the results from the ablation study,
and extend our initial methods towards testing the effectiveness of convo-
lutional operations to (i) provide better embeddings, compared to simple
linear projection utilized in our initial models, and (ii) capture the spatio-
temporal relations of multidimensional data sequences compared to their
recurrent counterpart.
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3.6.1 Experimental Setup

In all experimental scenarios evaluated in this campaign, we consider 1D
CNNs with N = 64 convolutional filters of kernel size K = 2 for each layer
employed in the various models. As it regards the training parameters that
produce the reported results, we apply a learning rate of 0.001 using the
Adam optimization algorithm [106] for minimizing the cross entropy cost
function, with L2 regularization of weights set to 0.015, and gradient clipping
in the range of [−1, 1] during back propagation. Furthermore, we employ a
dropout rate of 0.5 on the LSTM cells and on the stacked features of the
dCNN. Moreover, regarding the local normalization applied after the ReLU
activations, we have set k = 1, α = 0.0002, β = 0.75 and the neighborhood
“radius” equal to l = 5. The LSTM network in the CNN-LSTM methodology
involves 128 LSTM cells.

In the experiments we employ a 10-fold cross validation scheme, consid-
ering only the dataset of “raw” features. We evaluate all the experimental
scenarios on a computer with Intel Core i7 CPU at 2.80 GHz, 16 GB RAM
and 1 NVIDIA Tesla K40c GPU. For the implementation of the methods we
use version 1.3 of the TensorFlow framework. Finally, we use batches of 50
gesture samples and train all models for 1000 epochs.

3.6.2 Results

In Table 3.5 we present the recognition rates and the run times on the
testing sets of the 10-folds, using the proposed architectures of CNN-LSTM
and dCNN, and compare them against the initially evaluated method based
solely on a LSTM architecture. Regarding the CNN-LSTM method, we can see
that the replacement of the “Dense linear” layer with a CNN layer provides
better feature embeddings that improves by 2.5% the overall performance
of the LSTM architecture on the musical gesture classification task. Simi-
larly, the dCNN architecture also presents an improvement of 2.5% in the
testing recognition rates compared to the initial LSTM method.

This performance improvement is statistically significant at 5% signifi-
cance level across all folds, as indicated by a two-sided Wilcoxon rank sum
test [107] on the given accuracy distributions, rejecting the null hypothe-
sis that the accuracy distributions between the LSTM, CNN-LSTM (p-value=
0.0232) and dCNN (p-value= 0.0373) come from distributions from the same
median. The differences between the CNN-LSTM and dCNN methodologies
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Table 3.5: Recognition accuracy and run time of the CNN-LSTM and dCNN
methods and comparison with the LSTM method.

Accuracy Run time (ms)
Fold No LSTM CNN-LSTM dCNN LSTM CNN-LSTM dCNN

0 90.91% 92.93% 95.96% 3.253 2.047 0.695
1 89.29% 95.54% 97.32% 2.547 2.475 0.614
2 94.50% 94.50% 94.50% 2.846 2.525 0.741
3 91.07% 93.75% 92.86% 3.179 2.761 0.427
4 94.59% 94.59% 98.20% 2.731 1.797 0.623
5 86.36% 99.09% 91.82% 2.611 1.886 0.735
6 93.69% 93.69% 93.69% 2.803 3.455 0.440
7 92.73% 90.00% 91.82% 2.602 1.852 0.916
8 92.59% 94.44% 95.37% 2.743 4.558 0.453
9 91.96% 94.64% 92.86% 2.547 3.155 0.695

Average 91.77% 94.32% 94.44% 2.786 2.651 0.633
Unbiased STD 2.40% 2.14% 2.12% 0.237 0.831 0.149

are not statistically significant (p-value= 0.8499). Furthermore, we report
the average run times of the different methods (see Table 3.5), for recog-
nizing one gesture sample of 75 frames. The LSTM and CNN-LSTM methods
require approximately the same computational time to provide a single pre-
diction, around 2.7ms. However, the dCNN method is quite faster, since it
requires only 0.6ms to respond with a prediction, which is more than 4 times
faster than the LSTM and CNN-LSTM methods.

Table 3.6 showcases the confusion matrix obtained from the experi-
ments conducted with the dCNN method on the testing sets of the 10-folds.
Upon examination, it can be observed that there is minimal confusion be-
tween most gesture classes, except for the “unknown” (RHUK) and “middle
finger plucking” (RHMP) gestures, which exhibit a higher number of misclas-
sifications. Specifically, the middle finger plucking (RHMP) is often mistaken
for the index finger plucking (RHIP), ring finger plucking (RHRP), and “un-
known” (RHUK) gestures. This outcome is somewhat expected since many
individuals tend to move their index and ring fingers downward when per-
forming the middle finger plucking gesture. Furthermore, the “unknown”
(RHUK) gesture is naturally prone to confusion with other gesture classes
as it encompasses various types of gestures, including the finger plucking
gestures.
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Table 3.6: Confusion matrix results from the proposed dCNN method.

Predicted
RHIP RHIT RHMP RHPP RHPT RHRP RHTP RHUK

G
ro

un
d

Tr
ut

h

RHIP 95.77% 0.85% 0.83% 0.00% 0.00% 0.85% 0.00% 1.70%
RHIT 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

RHMP 2.34% 0.00% 86.80% 0.00% 0.00% 4.66% 0.80% 5.41%
RHPP 0.00% 0.00% 0.00% 96.19% 0.63% 1.27% 0.00% 1.91%
RHPT 0.00% 0.83% 0.81% 2.46% 94.15% 0.00% 0.00% 1.75%
RHRP 0.78% 0.00% 0.00% 1.57% 0.79% 95.26% 0.00% 1.61%
RHTP 0.00% 0.00% 0.00% 0.00% 0.00% 0.69% 97.93% 1.38%
RHUK 1.19% 1.88% 1.80% 0.59% 0.59% 3.08% 1.27% 89.60%

3.7 Conclusions

In this Chapter we tested various computational models, based on recur-
rent and convolutional operations with various settings, on the task of mu-
sical gesture recognition. We used the Leap Motion sensor to construct
a dataset of 8 hand gestures (7 musical gestures and 1 corresponding to
arbitrary movements). According to the initial ablation study, we demon-
strated that the computational architecture involving a linear embedding
layer and a single LSTM layer, is able to form the basis of a real-time ges-
ture recognition engine, receiving as input directly “raw” sensorial data. As
it regards the contribution of handcrafted features [87], we presented that
the models that used these features as input, consistently reported the low-
est performance in all experimental scenarios. We have also demonstrated
that although the system is not user independent, its performance can be
improved significantly, by providing only a few gesture samples of the end-
user to fine-tune the parameters of the computational model.

Next we evaluated two methods that employ CNNs for the task at hand.
The first method leverages the outcome of our ablation study combining a
CNN to compute feature embeddings and the LSTM for sequence learning.
The second method involves a deep CNN architecture that utilizes consec-
utive 1D convolutions and max pooling operations. In our experiments,
both methods outperformed the initial LSTM-based model. Regarding the
CNN-LSTM approach, we showed that by replacing the fully connected layer
with a 1D convolutional layer for feature embedding, leads to a substantial
improvement in the reported recognition accuracy. Likewise, the dCNN ar-
chitecture also presented notable improvements in the reported gesture
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recognition rates compared to the initial LSTM-based method. However,
there is no statistically significant difference in performance between the
dCNN and CNN-LSTM methods. It is worth noting that the dCNN method
demonstrates a significant reduction in computation time compared to both
the LSTM and CNN-LSTM approaches.



CHAPTER 4
Interacting with virtual

musical instruments

4.1 Introduction

Research related to motion and gestural analysis have been conducted in
various scientific areas including cognitive science, communication theory,
linguistics and music. However, in recent years, gestural interaction gained
an increasing interest in the HCI research community, due to the reduc-
tion of cost and widespread availability of various sensors that allow the
acquisition of natural gestures in great detail and in a non-intrusive man-
ner [108]. As a consequence, the trends of 3D User Interfaces and VR re-
emerged [109, 110]. Additionally, their importance in the immersion of
virtual interaction stems from their ability to enhance the visual feedback
by introducing an additional layer of realism [71]. Even thought there are
multiple studies that experiment with augmented and virtual musical in-
struments, most of them are custom-made and platform dependent, while
their setup is usually difficult to reproduce [111]. To this end, web technol-
ogy standards, such as HyperText Markup Language (HTML)51, Web Audio2

and WebGL3, render modern web browsers as flexible and powerful plat-
forms for designing and utilizing such interactive multimedia applications.

1https://www.w3.org/TR/2010/WD-html5-20100624/
2https://www.w3.org/TR/webaudio/
3https://www.khronos.org/registry/webgl/specs/latest/
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Additionally, their goal is to hide the underlying hardware complexity and
provide a common framework for developing real-time and platform inde-
pendent applications.

In this regard, our approach evolves around integrating state-of-the-art
web technologies to develop an open-access cross-platform virtual 3D envi-
ronment, towards enabling users to interact conveniently in real-time with
3D virtual musical instruments. Moreover, the interactive setting discussed
in this Chapter forms an integral part of an educational platform focused
on STEAM education4. Its objective is to assist students in grasping funda-
mental scientific principles through engaging and interactive music-based
activities. Additionally, our proposal promotes the aspect of musical expres-
siveness and exploration by providing realistic aural feedback based on a
physical model-based sound synthesis engine. As a MoCap system we em-
ploy the Leap Motion sensor and employ its JavaScript SDK, enabling the
deployment of our gesture recognition models presented in Chapter 3. The
remainder of this Chapter is organized as follows. In Section 4.2 we present
some related studies. Next, in Section 4.3 we describe our methodology
and system architecture along with the different tools that we employ in
the development of our application. In Section 4.4 we evaluate the interac-
tive system based on usability testing campaigns and analyze our results.
We conclude this Chapter in Section 4.5, discussing the limitations and con-
tributions of our approach.

4.2 Related Work

In order to play a musical instrument, the musician interacts continuously
with the instrument by performing a set of complex subtle control ges-
tures, which from their side are affected by various proprioceptive senso-
rial feedback, including the sensorimotor, haptic, visual and auditory stimuli
cues [77]. These unique characteristics of musical gestures, usually require
multidisciplinary approaches for conducting meaningful research. However,
building computational models for the analysis of higher level gestural fea-
tures still remains a challenging task. Therefore, natural gestures are usu-
ally employed for controlling virtual musical instruments in a way of simu-
lating the corresponding sensory information, by approximating the actual

4https://workbench.imuscica.eu/

https://workbench.imuscica.eu/
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interaction status of real instrumental performances. In this sense, we can
specify three main research directions in the context of gesture-enabled HCI
as follows [112]:

• Sound synthesis control, where the user modifies in real-time funda-
mental sound synthesis properties of the virtual instrument, such as
note pitch, timber and velocity.

• Score-level control, where the user alters semantic features of a pre-
defined musical score.

• Sound processing control, by means of post-production events, where
the user may manipulate the amount of digital audio effects or control
the spatialization of sound during a live performance.

However, there are many research studies that experiment with more
than one of the aforementioned directions. For instance, NexusUI [113] is
a Javascript library aiming to address both sound synthesis and processing
functionalities, since it offers various touch-compatible interfaces that can
be integrated in web audio applications. Roma et al. in their project called
“Handwaving” [114] present a participatory musical system that was de-
veloped based on web standards. Their approach takes advantage of the
built-in accelerometer of smartphones in order to recognize specific gestu-
ral patterns and produce sounds in a given musical context. Other proposal
employ electromyography sensors, like the Myo Armband5, for analyzing
musical performance gestures [115] or to control sound and light spatial-
ization [116].

Common RGB and depth sensor cameras, such as the Leap Motion6 and
Microsoft Kinect7, are frequently used in gesture-driven musical projects.
The hand tracking capabilities of Leap Motion sensor have been tested in
projects regarding expressive real-time sound synthesis [89, 117, 118], as
well as modulating digital effects and spatialization of sound in multi-array
speakers installations [119]. On the other hand, Microsoft Kinect targets
whole body interactions. For instance, Mandanic et al. developed the sys-
tem called “Disembodied Voices” [79] that receives as input motion data
from a Kinect sensor, to control articulated events which are performed

5https://www.myo.com/
6https://www.leapmotion.com/
7https://developer.microsoft.com/en-us/windows/kinect

https://www.myo.com/
https://www.leapmotion.com/
https://developer.microsoft.com/en-us/windows/kinect
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by a virtual choir. Moreover, multiple studies employ whole-body skeletal
information to evaluate music conduction gestures, using various ML tech-
niques, such as GMMs [120], multimodal HMMs [121] or DTW [96].

However, there are limited solutions that specifically address the crucial
aspects of visual and haptic feedback. For instance, Leonardo et al. [122]
have conducted experiments involving the development of custom-built
haptic controllers. These controllers enable the simulation of realistic
touch feedback for instruments such as keyboards and bowed instruments.
Berthaut et al. in their study presented in [123], aim to bridge the gap
between the transparent nature of virtual instruments and the tactile stim-
uli of physical objects. Their approach involves the use of depth camera
sensors as gestural acquisition systems, and projectors to visually enhance
physical objects by displaying virtual graphics. When it comes to immer-
sive virtual reality (VR) applications, examples often employ Head-Mounted
Displays (HMDs) and marker-based MoCap systems like OptiTrack8. These
systems enable control of virtual avatars in VR environments with high
precision [124].

Upon reviewing the bibliography, it becomes apparent that user-friendly
setups for musical virtual instruments are limited. The majority of the ex-
isting applications either rely on costly MoCap systems [115, 124] and spe-
cialized custom-built controllers [122], or they utilize software tools specific
to particular platforms [111]. Nevertheless, there are a few applications
that facilitate audio interaction through web-based platforms [113, 114],
but they lack of realistic visual feedback.

4.3 Methodology

As mentioned above, the system described herein is deployed as part of a
STEAM education platform that promotes the learning of sciences though
music in secondary education. In this regard, the novelties of our work are
twofold: (i) we enhance the virtual musical instruments with realistic visual
and audio feedback; and (ii), we try to provide easy access to virtual musical
interaction activities by strictly utilizing web technologies that allow us to
run the application in modern web browsers. An overview of our system is
depicted in Figure 4.1.

8http://optitrack.com/

http://optitrack.com/
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Figure 4.1: General overview of the proposed system architecture.

The architecture comprises three primary components (corresponding
to the blue colored boxes in Figure 4.1). The first component aims to pro-
vide an environment that enables students to design a 3D virtual musical
instrument. Users can modify specific instrument parameters that directly
impact its sound characteristics. The second component encompasses a
physical model-based sound synthesis engine for the virtual instrument.
The physical parameters of the virtual instrument are simulated (although
sometimes with simplification) similarly to those found in physical instru-
ments. The third component is a 3D environment where users interact with
the virtual instruments using the Leap Motion. This component considers
the geometric properties of the designed instrument to compute the corre-
sponding interaction feedback between the captured hand motions and the
virtual instrument. Gesture data is processed in real-time and transmitted
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to the physical model-based sound synthesis engine, bringing the musical
instrument to “life”.

In our study, we focus on two categories of instruments, including string
and percussion instruments. Specifically, for string instruments, we exam-
ine a monochord instrument with two strings divided by a bridge, resulting
in a total of 4 interactive string components. As for percussion instruments,
we consider simple drum membranes with circular or square shapes, along
with a xylophone. We provide a detailed description of the methodology
applied to develop the proposed system and its submodules as follows.

4.3.1 3D Instrument Design

The 3D Instrument Design environment allows users to create a 3D graph-
ical representation of predefined virtual instruments, even without ad-
vanced skills in 3D graphics design. An example of designing a monochord
instrument is provided in Figure 4.2. While the underlying modeling soft-
ware offers various tools for editing 3D objects, it was important to restrict
the available functionalities. The 3D modeling environment consists of mul-
tiple 3D editing algorithms, providing features like painting, sculpting and
parametric design. This limitation prevents users from creating distorted 3D
models while maintaining an engaging application experience. Alongside
the 3D editing tools, users are encouraged to modify several physically-
based modeling parameters of the instrument, such as string material and
tension. This additional feature provides opportunities for customization
and exploration within the virtual instrument design process.

The modular core engine is written in C++ and it utilizes OpenGL9, thus
enabling a cross-platform deployment. The modeling engine has been al-
ready ported to several platforms, including, desktop, mobile and web-
based versions. Our system described herein benefits from the web-port
of the 3D modeling engine. The transpiling was made with emscripten10,
converting the C++ algorithms to JavaScript code, which can be run by any
HTML5-compatible web browser. Beside 3D editing tools, the modeling en-
gine is also enabled to work modern VR HMDs as an embedded application.

9https://www.opengl.org/
10http://emscripten.org

https://www.opengl.org/
http://emscripten.org
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Figure 4.2: Example of the 3D Instrument Design environment, customizing
a monochord instrument.

4.3.2 Physical Model-Based Sound Synthesis

In contrast to sound sampling or additive synthesis, physical model-based
sound synthesis aims to closely emulate natural aural phenomena. This
approach involves representing sounding objects, such as strings, plates,
bars and membranes, with physical characteristics like geometry and ma-
terial properties. These objects are connected and interact with each other
through specific actions like striking, tapping, or plucking. The resulting
physical system evolves over time according to complex mathematical
equations that model the behavior of the objects and their interactions. By
leveraging principles from physics, this synthesis technique can produce
nuanced and vibrant sounds. While our sound engine primarily relies on
a modal computational approach, which describes object resonances as
combinations of modes, performing real-time sound synthesis for a virtual
musical instrument still requires substantial computational resources. Ini-
tially written in C++, the Modalys [125] engine was ported to JavaScript
using the emscripten framework, to enable its deployment on a web-based
environment. We implemented various optimization strategies to achieve
satisfactory instrument performance without noticeable latency or audio
artifacts.

4.3.3 3D Instrument Performance

The 3D Instrument Performance environment encompasses 3 modes of in-
teraction, namely the Physical Interaction, Gesture Interaction, and Mixed
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Interaction. These modes are encoded within the architecture depicted in
Figure 4.1. The input to this interactive system includes the geometrical
parameters of the 3D virtual instrument and the “raw” hand tracking data
obtained from the Leap Motion sensor. This information is then processed
by 2 key components, including the Collision Detection Engine (CDE) and
the Gesture Recognition Engine (GRE). The CDE operates separately from
the GRE, and detects whether the hands come into contact with the virtual
instrument. Also, it provides additional information such as collision points,
speed and direction vectors. On the other hand, the GRE focuses solely on
“raw” Leap Motion data and identifies specific gestures performed by the
user’s hands, as described in Chapter 3.

The Interaction Engine (IE) receives the outputs from the CDE and GRE
as input and triggers corresponding messages to the physical model-based
sound synthesis engine, according to the underlying virtual instrument
type. Especially, in the case of the monochord instrument, we map the
movements of the user’s physical hands to a set of virtual 3D hands. As it
regards the percussion instruments, we map the position and orientation of
the user’s palm, either to a set of virtual mallets (in the case of xylophone)
or drumsticks (in the case of drum membranes). Moreover, we provide a
recording feature that allows users to record their hand movements and
subsequently review their performances. During playback, the recorded
hands appear in the virtual world, resembling the Leap Motion data, and
interact with the CDE and GRE accordingly. We developed the 3D Instru-
ment Performance environment using the Three.js11 framework, which is a
mature and lightweight JavaScript library that offers straightforward WebGL
rendering. The various 3D virtual instruments and their respective perfor-
mance examples are illustrated in Figure 4.3. Detailed descriptions of the
3 modes of interaction are provided as follows.

Physical-based Interaction

When selecting the Physical Interaction mode, users engage with the vir-
tual musical instruments as if they were interacting in the physical world
with real instruments. In this mode, the IE considers only the output from
the CDE. Additionally, the CDE processes the Leap Motion tracking data
by representing the hand as a collection of line segments. Each segment

11https://threejs.org/

https://threejs.org/
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(a) Monochord (b) Xylophone

(c) Circular drum membrane (d) Square drum membrane

Figure 4.3: Examples of musical interaction with the considered 3D virtual
instruments.

corresponds to a different finger, following the anatomical structure of the
human hand and adhering to the specifications of the Leap Motion device.
Specifically, each finger is represented by four continuous line segments,
except for the thumbs, which consist of three segments. This representation
is depicted in Figure 3.3.

Similarly, musical instruments are represented in a simplified manner,
focusing solely on the interactive components rather than the entire 3D
mesh of the virtual instrument. Specifically, in the case of a stringed instru-
ment, each string is represented as a line segment, while drum membranes
and xylophone bars are simulated as circular or square surfaces based on
their shape. Within the CDE, computational algorithms are employed to
detect and report collision events between these geometric shapes. For in-
stance, when dealing with the monochord instrument featuring four strings,
the CDE identifies collisions between the line segments representing the
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fingers and the four line segments representing the instrument’s strings.
Based on the collision results, the IE sends appropriate messages to the
physical model-based sound synthesis engine, triggering the correspond-
ing sound synthesis processes.

Gesture-based Interaction

In contrast to the Physical Interaction, the Gesture Interaction mode disre-
gards the 3D model of the virtual instrument and omits the CDE, while re-
lying solely on hand gestures to perform actions on the virtual instrument.
In this mode, the position of the hands in the 3D scene does not actively
influence the interaction with the virtual instrument. Instead, their visibil-
ity within the Leap Motion FOV is only required, in order to use the “raw”
tracking data to feed the gesture recognition model, by following the slid-
ing window process described in Chapter 3. We employed the best dCNN
computational model, according to the experimental results presented in
Section 3.6. Our implementation is based on the TensorFlow.js12, version
1.4.0, to deploy the trained model on the user’s browser (i.e. client-side)
and infer recognition results faster, avoiding possible network latency. In
the case of the monochord, we consider only the finger plucking gestures
(see Figure 3.2) as valid user actions to trigger musical events, while for the
percussion instruments we rely on the finger and palm tapping gestures.
When the corresponding gesture is recognized, the IE sends the appropri-
ate message to the physical model-based sound synthesis engine, using
predefined values for the collision points and velocity vectors.

Mixed Interaction

In the Mixed Interaction, the IE considers both the outputs of the CDE and
the GRE. It can be considered similar to the Physical Interaction, but with
the restriction that a gesture must be performed in order to trigger the in-
teractive component of the underlying instrument. For instance, if a finger
plucking gesture is detected by the GRE, then the results of the CDE that
correspond solely to that finger are considered, and only if that finger col-
lides with a string, then the IE sends the appropriate message to the sound
synthesis engine. It is important to highlight that this mode of interaction
was developed in a later stage to compensate the limitations presented by

12https://www.tensorflow.org/js

https://www.tensorflow.org/js
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the physical and gesture-based interactions, according to the results of our
usability evaluation campaign, described as follows.

4.4 Usability Testing

The evaluation of the 3D performance environment was conducted through
usability tests with students aged between 13 and 16. These tests took
place in schools located in Belgium (11 students), France (10 students), and
Greece (29 students). Participants were given a usability scenario and a
questionnaire, while the researchers conducting the tests engaged in infor-
mal conversations with the students and took note of any remarks that were
not captured by the questionnaires. The usability scenario presented to the
participants involved performing tasks and playing music using the various
tools provided in our STEAM platform. The goal was to encourage partic-
ipants to explore different aspects of the GUI and the functionality of the
3D Instrument Performance environment, with the aim of uncovering any
weaknesses or misinterpretations related to the overall functionality of the
system. The questionnaires included questions around whether the user
had an enjoying experience, if the GUI elements of the environment were
easily accessible and intuitive, and whether the setup was audio-visually
pleasing.

In summary, the usability scenario provided a step-by-step guide for
users to select instruments and explore different modes of interaction at
various stages. The main focus of the evaluation was to assess the phys-
ical and gesture-based interaction modes. Each participant was handed a
translated version of the scenario in their native language, and the coordi-
nating researcher provided instructions for each subsequent step. Once all
the tasks in the usability scenario were completed, the participant filled out
a questionnaire, including the following questions:

• Q1: How familiar are you with performing a musical instrument?
(Likert scale: 0: I don’t play any instrument, 1: I consider myself a
musician)

• Q2: How would you rate the overall usability of the interface?
(Likert scale: 0: Not usable at all, 1: Very easy to use)

• Q3: How would you rate the physical interaction mode with the in-
strument?
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Table 4.1: Compressed representation of user answers in the questionnaires
(total of 50 participants) in a normalized rage of [0, 1].

Question Mean Std Skewness Kurtosis
Q1 0.42 0.32 0.52 −0.75
Q2 0.73 0.22 −0.42 −0.58
Q3 0.68 0.24 −0.35 −0.64
Q4 0.71 0.24 −0.98 1.19
Q5 0.55 0.28 −0.38 −0.58
Q6 0.62 0.29 −0.21 −1.03
Q7 0.73 0.36 −0.94 −0.35

(Likert scale: 0: Very difficult, 1: Very easy)
• Q4: How would you rate the realism of the produced sound when

performing the virtual instrument?
(Likert scale: 0: Very poor, 1: Excellent)

• Q5: How would you rate the responsiveness of the instrument?
(Likert scale: 0: Very poor, 1: Excellent)

• Q6: How would you rate the gesture based interaction mode with the
instrument?
(Likert scale: 0: Not good at all, 1: Very good)

• Q7: Was it easy to record the gestures of the performance?
(Multiple choice: 0: No, 0.5: Not sure, 1: Yes)

Question 7 of the questionnaire utilize multiple-choice options, while the
remaining questions employ a Likert scale ranging from 1 to 5. The descrip-
tions provided in the aforementioned list correspond to the numeric values
used in the “compressed” representation of the results found in Table 4.1. In
this representation, all answers are encoded as normalized values ranging
from 0 to 1. For the multiple-choice question, numeric values were assigned
to each possible answer, so that negative responses were given a value of 0,
positive responses were assigned a value of 1, and intermediate responses
were assigned a value of 0.5. Regarding the Likert scale responses, they
were normalized by linearly transforming the original range of [1, 5] to the
range of [0to1].

In Table 4.1 we present the mean values (0 and 1 stand for the negative
and positive ends), the standard deviation (which indicates the agreement
among participants), the skewness (positive values show a skew towards
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the negative end and vice versa) and the kurtosis (greater values indicate
sharper edges towards the mean). By analyzing the collected answers, we
observe that the participants provided positive views on the general us-
ability and appearance of the environment (Q2). In terms of the physical-
based interaction mode with the virtual instrument, the participants held
moderate to positive opinions (Q3). Although, they encountered difficul-
ties in understanding how to perform the gesture-based interactions, yet
their answers were comparable for both interaction modes (Q6). Despite
the challenges, users found gesture interaction more interesting based on
written feedback, provided as optional comments to the researchers con-
ducting the tests. Most students rated positively the sound realism (Q4)
of the virtual instruments, but there were differing opinions regarding the
“responsiveness” of the environment (Q5). This discrepancy could be at-
tributed to variations in hardware setups used in the different locations
where the usability testings took place, such as differences in CPU, GPU
and memory resources which can significantly impact the performance of
the environment. Regarding the task of recording the musical performance
and reviewing the interactive session (Q7), students generally found it rel-
atively easy to accomplish.

4.5 Conclusions

In this Chapter we presented a web-based system that utilizes the Leap
Motion sensor for interacting in real-time with virtual musical instruments
within a 3D environment. Compared to the existing methods, our approach
(i) enhances the virtual musical instruments with realistic visual and au-
dio feedback, and (ii) facilitates accessibility to virtual musical interaction
activities by employing state-of-the-art web technologies that enable cross-
platform deployments. The architecture of our proposal consist of three core
modules, including (i) an instrument design environment where the user is
able to alter physical features of various instrument models, (ii) a physical
model-based sound synthesis engine that produces realistic sound, and (iii)
a musical performance environment where the virtual instruments can be
performed according to various interaction modes. We validate our system
based on subjective evaluations involving students from three different EU
countries. The collected answers provided the basis to develop the mixed
interaction mode, aiming to address the technical drawbacks of the phys-
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ical and gesture-based interaction modes, as reported by the participants.
Also, their answers regarding the overall usability, audio realism and de-
sign of our system were positive. However, we observed a discord between
the provided answers regarding the responsiveness of our system, which
can be ascribed to the variability of the underlying computer hardware em-
ployed during the usability tests. Since the architectural design of our sys-
tem follows a client-side approach, its performance is heavily affected by
the underlying hardware.



CHAPTER 5
Automatic Dance Motion

Generation

5.1 Introduction

Humans perform a large set of different movements in every-day activi-
ties such as jumping, running, walking, dancing etc. Furthermore, human
motion is affected by various subjective parameters and complex cognitive
mechanisms, including the auditory perception, physical conditions as well
as the cultural background [126]. Especially, the ability to dance by per-
forming motion patterns that follow a musical composition, is an inherent
and fundamental human characteristic. Dancing is a universal, symbolic
body language, mostly working as a medium of artistic expression to con-
vey important emotional flows [127], considering that people often dance
to music as a form of cultural and religious ritual, or as a recreational activity
in social occasions [128].

From a scientific perspective, human motion generation, although less
advanced than other generative tasks such as text-to-speech (TTS) syn-
thesis [129, 130] and automatic music generation [131, 132], is an equally
important applicative field of study. For instance, generating artificial skele-
tal motion sequences enables data augmentation, which in turn improves
the performance of computational models in most scientific areas related
to human motion analysis [133]. Particularly automatic dance motion syn-
thesis methods have great potential in computer graphics and multimedia

63
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industry as an artistic tool for virtual avatar animations [134, 135] or for
computer-aided dance teaching [136, 137].

From a technical perspective, modelling dance motion sequences is
even more challenging because it requires the ability to creatively synthe-
size original and continuous motion patterns with high long-term spatio-
temporal complexity that reflects the non-linear relationship with the ac-
companying musical content [138]. In other words, dancing inherently
constitutes a multimodal process where a dancing pose at any moment
can be followed by a plethora of possible movements, while it requires to
be properly aligned with the given musical style and context [139]. In or-
der to construct a representative multimodal dance motion dataset, one
option is to obtain 3D skeletal information by utilizing MoCap systems and
recruiting professional artists [139–141]. However, this method is usually
costly and time-consuming. An alternative approach is to employ auto-
matic pose estimation frameworks, such as OpenPose [142], for extracting
skeletal keypoint sequences from online videos. Although this method is
cheaper, it depends heavily on the accuracy of the underlying pose esti-
mation framework, which inevitably requires an additional post-processing
stage in order to correct the estimated poses on a frame-by-frame basis
and construct training data of acceptable quality [138, 143–145].

Most of the proposed methods in the literature tackle the challenges
of automatic dance motion generation by implementing RNN for modelling
the temporal correlation of skeletal poses with musical information and gen-
erating novel motion sequences [138, 140, 144–151]. Nevertheless, RNNs
are computationally cumbersome and inefficient for modelling very long se-
quences, since the error accumulation in the predicted pose sequences al-
lows synthesis over a limited range of future time-steps [152]. Furthermore,
it was demonstrated that RNN-based approaches disregard some specific
motion characteristics when they are trained with simple reconstruction
losses [153]. To overcome both issues, some studies treated dance syn-
thesis as a retrieval task from predefined choreographic units, which how-
ever limits the creativity of the generated dance sequences [149]. Other
studies implemented GANs and proposed various types of musical and mo-
tion feature correlation discriminators [138, 150, 151] for supervising the
training process. Yet, adversarial methods suffer from the so-called “Mode
Collapse” problem, complicating the generalization of the model by intro-
ducing further instabilities during training [154]. In terms of computational
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efficiency, CNNs present various advantages over RNNs, considering that
convolutional operations do not depend on computations performed in pre-
vious time-steps, thus providing faster inference while allowing the paral-
lelization of the training process [155]. To the best of our knowledge, there
is only a single proposal exploiting the utilization of CNNs for the task at
hand [143], but its architectural efficacy remains questionable due to de-
fective implementation details which do not allow reproducible results.

In this Chapter we try to address the limitations of RNN-based frame-
works and propose an autoregressive dilated causal CNN with highway gat-
ing functions [156], for automatically generating 2D skeletal dance motion
sequences conditioned on audio and skeletal information. The proposed
deep multimodal architecture benefits from the stacked dilated convolu-
tional operations for capturing the long-term spatio-temporal context of
dance sequences, thus allowing synthesis for any given length. Further-
more, by employing an attention mechanism we fuse the latent represen-
tations of past skeletal poses and audio features, in order to stochastically
generate novel, variable and complex motion patters, enhancing the over-
all creativity of our system. The main contributions of our study presented
herein are summarized as follows:

• We propose a multimodal deep CNN architecture capable of generat-
ing novel dance motion sequences of arbitrary length.

• We propose an autoregressive curriculum learning scheme for self-
supervised multimodal feature learning, to deal with prediction error
accumulation during the synthesis process.

• We provide explanatory visualizations of the proposed attention-
based feature fusion that contribute to the understanding of our
method.

• We conduct 2 different user-studies for the subjective evaluation of the
effectiveness of both unimodal and multimodal setups for the realistic
synthesis of expressive dance motion sequences.

• We validate the data collection methodology proposed in the literature
and release a novel dataset containing paired music and 2D skeletal
pose sequences along with the source code of the considered experi-
ments, promoting the reproducibility of our proposal1.

1https://github.com/kosmasK/multimodal-dance-generation

https://github.com/kosmasK/multimodal-dance-generation
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The rest of this Chapter is organized as follows. In Section 5.2 we provide
a detailed overview of closely related studies. The employed methodology
for collecting our dataset, as well as the proposed computational architec-
tures are described in Section 5.3. Next, in Section 5.4 we introduce the
various unimodal experimental scenarios and discuss their results. Simi-
larly, in Section 5.5 we thoroughly evaluate the proposed multimodal ar-
chitecture over quantitative, qualitative and subjective experiments and
present our results, in addition to explainable visualizations for interpreting
the effect of the attention mechanism to the outcome of the generated se-
quences. Section 5.6 summarizes the contributions of our study described
in this Chapter.

5.2 Related Work

Research in human motion related problems, such as motion segmenta-
tion [157] and classification [84, 158], has greatly benefited from modern
MoCap technology. Furthermore, the advent of publicly available image
datasets with annotated 2D human body joints [142, 159, 160] and their
correspondence to 3D human shapes [161–163], has paved the way for ex-
tensive improvements in the accuracy of automatic human pose estimation
methods.

During the last decade, the advances in leveraging the computational
effectiveness of modern GPUs, have allowed deep neural networks to be
employed in modelling sequential information; a trend that has also been
exploited in several frameworks for human motion prediction. For instance,
the authors in [164] proposed an autoregressive generative model based
on a RNN encoder-decoder architecture that predicts human body poses
frame-by-frame. More recently, deep neural networks have been success-
fully deployed in expressive motion generation tasks that correlate multiple
modalities. For instance, the system presented in [165] generates skeletal
motion sequences of a pianist playing the keyboard instrument by using
Musical Instrument Digital Interface (MIDI) notes as an input stream. In
a similar fashion, the authors in [166] proposed a LSTM RNN framework
for generating sequences of arm and hand keypoints of either a pianist or
a violinist, according to the given audio input. Consequently, feature fu-
sion methods for correlating various modalities are usually employed when
working with multimodal data.
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According to [167], there are two main fusion approaches, including:

• Multimodal approaches that merge the initial modalities without nec-
essarily providing a bidirectional mapping of the initial representation
spaces to the new representation space.

• Crossmodal approaches that focus on bidirectional correlation of the
initial modalities, in other words such methods are trained to directly
map one modality to another.

In this regard, dance motion is also considered to be a highly expressive
type of human motion and a complex cognitive process that involves mul-
tiple perceptual stimuli. In the literature, various research attempts have
been proposed to tackle the multimodal challenges of dance motion gen-
eration. For instance, an audio beat tracking algorithm based on CNNs has
been embedded as a Nao robot application, where the dance moves of
predefined choreographies are synchronized with the output of a proposed
automatic beat tracking computational model [168]. Another rhythm-based
proposal was presented in [169], where the authors developed an audio-
driven LSTM architecture for generating new step charts for the popular
“Dance Dance Revolution” video game. An interesting multimodal ap-
proach for conditioning the generation of dance movements was presented
in [170], where the authors used Laban Movement Analysis (LMA) in order
to extract and annotate basic movement emotions, which were used to
in-paint predefined dance movements.

Nevertheless, audio-driven dance motion-generation has been widely
exploited as either a multimodal or crossmodal sequence-to-sequence
(seq2seq) problem, correlating audio and musical features with skeletal
poses. In Table 5.1 we summarize all the audio-driven dance generation
proposals related to the study at hand.

Earlier contributions in this field employed MoCap technologies to record
3D dance motion sequences and construct training data. Inspired by the
unimodal Chor-rnn architecture [146], the authors in [147, 148] consid-
ered dance synthesis as a multimodal 3D skeletal-based motion synthe-
sis problem conditioned on audio spectral features and past information,
by employing RNNs in conjunction with Mixture Density Networks (MDNs)
for controlling the variability of the generated dance sequences. A cross-
modal approach for learning the mapping from music information to mo-
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tion sequences in an unsupervised manner was proposed in [171] with the
GrooveNet model, which uses a combination of Factored Conditional Re-
stricted Boltzmann Machines (FCRBM) and RNNs to synthesize dance move-
ments for a given audio input. However, due to the small amount of training
data employed in their study (only 4 pairs of music and MoCap recordings),
the model could not generalize well to music tracks beyond the training
data. To this end, the authors in [140] released a dataset of pairs of music
and MoCap recordings, representing 4 different types of dance genres with
total duration of 94 minutes, and proposed a music-oriented dance chore-
ography synthesis system based on a LSTM autoencoder architecture for
mapping acoustic features to motion sequences. The same dataset was also
employed in [141], where the authors proposed a multimodal system that
first determines the genre of the input music based on a Visual Geometry
Group (VGG)-like [174] autoencoder and then chooses a pose generator for
the corresponding genre in order to synthesize new pose sequences, based
on a dilated causal CNN architecture. The main drawback of this approach
is that the pose generator must be trained separately for each genre. The
same dance genres were studied in the ChoreoNet [149] framework, with
the difference that dance motion sequences were divided in smaller groups
of poses that formed the so-called Choreographic Action Units (CAUs). On
the fist stage these pre-recorded CAUs along with their corresponding audio
features were used to train a CNN-Gated Recurrent Unit (GRU) autoencoder
that learns how to map a given song to sequences of CAUs, while on the
second stage they trained a U-net [175] architecture for blending the gen-
erated CAUs of the first stage, so as to have smoother transitions between
the individual units.

Due to the great amount of freely accessible dance videos, mostly
hosted on platforms such as YouTube2, multiple studies utilized automatic
pose estimation methods to extract 2D skeletal poses from such videos and
construct training data. The system presented in [144] proposed an autore-
gressive multimodal autoencoder based on two LSTM encoders for the two
unimodal inputs (skeletal features and music features), which are fused in
the decoder with a self-attention mechanism. Similarly, the authors in [143]
proposed a multimodal convolutional autoencoder for synthesizing original
dance sequences, conditioned on the mel-spectrogram of an input song. A

2https://www.youtube.com/

https://www.youtube.com/
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crossmodal GAN based on variational autoencoders (VAEs) was presented
in Dancing2Music framework [138] that proposed the so called “synthesis-
by-analysis” learning approach. The main idea of this proposal is to capture
the beat and style of the given music and generate a 2D dance unit se-
quence, which is then passed to a beat warping post-processing module
to render the output choreography. This study is considered an important
milestone and other studies in the literature usually compare their results
against it. Another interesting GAN-based crossmodal architecture was pre-
sented in [150], implementing an audio encoder with a GRU network for
constructing latent features, which are passed to a feed-forward network
in order to generate the corresponding skeletal poses. A similar approach
was proposed in DeepDance [151], however its main difference lies in the
employed dataset, since the authors applied a pre-trained framework for
retrieving 3D poses from 2D skeletal keypoints.

A line of studies have applied the Transformer architecture [176] to the
audio-driven dance motion generation task, inspired by its effectiveness
in cross-modal problems such as language translation [177–180]. For in-
stance, the authors in [145] employed a Transformer-based audio encoder
for extracting latent features which are then passed to an LSTM-based pose
generator for synthesizing new dance sequences. The Two-Stream Motion
Transformer model was presented in [172], implementing two individual
Transformer encoders for calculating the pose and audio latent features fol-
lowed by a late fusion of the two streams for predicting the pose of the
next time-step. However, the late fusion strategy actually decouples the
joint feature learning, resulting to unrealistic motions. In order to improve
the quality of the generated dance motion sequences the authors in [173]
proposed the Full-Attention crossmodal Transformer model that implements
a full attention decoder in order to form a joint latent representation from
the two Transformer-based encoded modalities. Also, during training they
employed a form of curriculum learning that further enhanced the ability of
the model to generate more realist 3D dance sequences compared to [172].
However, this model was trained with clips of audio-dance pairs with a du-
ration of around 10 seconds each, thus limiting its ability to generate longer
sequences.

To the best of our knowledge, most studies in the literature utilize RNNs
in order to model the spatio-temporal context of dance motion. Although
most of these proposals achieve promising results in motion sequence gen-
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eration, there are still various limitations. RNN-based approaches are not
computational efficient for very long sequences [152]; thus focusing mainly
on generating motion sequences of short duration (less than a second),
which is not optimal for capturing the expressive context of dance motion.
Longer desired sequence duration tends to accumulate errors that result
to either stagnant or unrealistic generated motion sequences [153, 172,
181]. The only proposal that uses solely CNNs for modelling the spatio-
temporal information of dance motion is [143], which theoretically is capa-
ble to generate dance motion sequences of arbitrary length, but it lacks of
reproducible results. On the contrary our proposal tries to bridge this gap
and work as a baseline for generative CNN-based sequential architectures.

5.3 Materials and Methods

In this section we describe the employed methodology for collecting the ap-
propriate videos from crowd-sourced online video hosting platforms, along
with the pre-processing and post-processing procedures, which are neces-
sary for extracting paired skeletal and audio features. Next we describe an
initially performed ablation study, that helped us to conclude to the con-
sidered computational models that were designed with the subjective of
predicting the skeletal pose of the sequential future time-step, based on a
temporal sliding window approach of past context. The reader can find the
source code of our implementation along with the collected dataset online3.

5.3.1 Dataset

The fastest and most cost-effective method for constructing skeletal train-
ing samples is to apply automatic pose estimation frameworks on videos
collected from online platforms. Our study requires paired audio and skele-
tal features which are already available from previous contributions, how-
ever most of them were designed based on proprietary protocols that limit
their adaptation to our study. For instance the duration of the video clips in
the datasets released in [138] and [150] are only 6 and 5 seconds respec-
tively, thus rendering them inefficient for long-term synthesis.

In this regard, we decided to validate the methodology proposed in the
literature and construct a new dataset for the study at hand that would

3https://github.com/kosmasK/multimodal-dance-generation

https://github.com/kosmasK/multimodal-dance-generation
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meet our requirements. We extracted human-based skeletal poses by uti-
lizing the OpenPose [142] framework to a set of videos downloaded from
YouTube. We collected 100 solo K-pop choreographies that contained only
a single dancer in the camera frame, with duration of around 3 minutes
each and a frame rate of 30 FPS. Due to body occlusions and variable light
intensity in the videos, multiple skeletal poses contained unrecognized key-
points, which were rectified by applying linear interpolation between neigh-
boring frames. For organizing the computed skeletal keypoints we used the
BODY25 representation format4 and kept the 2D coordinates of the first 15
keypoints. Next we normalized the skeletal coordinates by applying Min-
Max normalization, defined by the bounding box of the overall skeleton mo-
tion in each video separately. In order to maintain the spatial context of the
skeletal poses, we took into account the aspect ratio of each bounding box
in the normalization formula. In addition to the 15 keypoints, we computed
14 limb lengths by calculating the euclidean distance between the corre-
sponding keypoint coordinates that constitute each limb, similar to [143].
Thus, each skeletal pose in our dataset is represented by a 44-dimensional
vector of skeletal features in the continuous space.

Since, in this work, we want to capture the multimodal correlation be-
tween the audio stimuli and dancing motions, we separate the audio chan-
nel from the video stream. We use the Librosa [182] audio and music anal-
ysis library to load the audio files with a sampling rate of 22050 Hz and com-
pute the mel-spectrogram S ∈ RT×M with a Fast Fourier Transform (FFT)
window of 1024 samples and a mel-filter bank of 80 bins. To put all result-
ing magnitude values into a positive range we add 1 before computing the
logarithm [183]. Also, in order to obtain time aligned audio features that
match the data rate of the skeletal poses we chose a proper FFT window
overlap length. We finally normalize the audio features with a power-law
function as:

S = (
S

max(S)
)γ ∈ RT×M , (5.1)

with T and M corresponding to the total number of time-frames and audio
features respectively, and γ = 0.6, which is the gamma compression factor
that works as a type of high-pass filter, emphasizing higher frequencies over
the lower ones [129].

4https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_
doc_02_output.html

https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/md_doc_02_output.html
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5.3.2 Dilated Causal Highway Convolutional Layer

The proposed architecture captures the spatio-temporal context of a se-
quential data stream by stacking Dilated Causal Highway Convolution
(DCHC) layers. The key advantage of multilayered CNNs is their ability
to create hierarchical structures that provide a shorter path for capturing
long-term dependencies, compared to the recurrent representations mod-
eled by RNNs [155]. Especially, the causal padding that is applied to the
input stream ensures temporal integrity during feature learning, while the
exponential increase in the dilation factor allows for a greater temporal re-
ceptive field [184]. Furthermore, deep architectures can leverage trainable
highway gating functions [156, 185] for regularizing the flow of information
through the network nodes and optimize their parameters faster. Although
previous studies have already introduced the concept of the DCHC archi-
tecture [129, 143], it has to be noted that the provided descriptions lack
sufficient implementation details. Specifically, the formula of the DCHC
block proposed in [143], uses the tanh as an activation function for the
transform gate with output range between −1 and 1, affecting further the
carry gate to output values between 0 and 2. This does not agree with the
original definition of the highway gating functionality that requires the carry
gate to output values between 0 and 1 [156].

In our study, we consider the architecture of the DCHC layer shown in
Figure 5.1. The output of the DCHC is calculated by the following function:

DCHC(X) = σ(H1)⊙ tanh(H2) + (1− σ(H1))⊙X (5.2)

The input of the layer is a sequence X ∈ RW×F , where W and F corre-
spond to the temporal context and feature dimensions respectively. Then,
the input passes through the filter H(x) and transform T (x) gates, where
their parameters H1 and H2 are learned by two separate dilated causal
convolutional operations with the same dilation factor d. A tanh activation
function is applied to the output of the filter gate, while the transform gate
utilizes a sigmoid function in order to implement effectively the information
highway algorithm. It should be highlighted that in our implementation we
initialize the bias vector of the filter gate with a negative value (i.e. −1)
such that the network is initially biased towards the carry gate. With a zero
initialization scheme the model failed to converge completely, generating
random numbers. The carry gate works as a residual connection that com-



74 CHAPTER 5. AUTOMATIC DANCE MOTION GENERATION

Figure 5.1: Dilated Causal Highway Convolutional layer.

bines the layer input with the output of the transform gate and computes
the amount of the input information that will be carried to the output of the
DCHC layer. In other words, the combination of the transform and the carry
gates determine how much of the output Y is produced by transforming the
input and carrying it [156].

5.3.3 Preliminary Ablation Study

The majority of related systems have used RNNs to model the temporal
context of sequential data. The only method that relied entirely on convolu-
tional netoworks [143], proposed a multimodal autoencoder architecture for
automatic dance motion synthesis, where the two encoded input streams
(skeletal poses and audio features) were fused with a conditional decoder,
thus resembling the methodology presented in the gated CNN layer of the



5.3. MATERIALS AND METHODS 75

PixelCNN model [186]. Initially, our attempts were focused towards replicat-
ing the multimodal architecture of [143], but we were not able to achieve
comparable results. It is important to highlight that the descriptions of
the DCHC block and the conditional autoencoder lacked important details.
Moreover, no pretrained model or supplementary source code was avail-
able for reference. We therefore believe that there is not enough evidence
to support the effectiveness and reproducibility of their system.

In this regard, having as a starting point our implementation of the
system proposed in [143], we performed an architectural ablation study
in order to evaluate the entanglement of each layer to the given objec-
tive. Initially, the multimodal encoder-decoder architecture was not able to
generalize and the synthesized skeletal structures were either collapsing
or converging to the global mean resulting to stagnant poses with no mo-
tion. Consequently, we discarded the encoder corresponding to the audio
stream and focused only on the skeletal input. Then we trained multiple uni-
modal architectures, by removing one convolutional layer from the model
each time, to assess its contribution to the feature learning process. After
evaluating empirically the generated skeletal motions from each model we
concluded to the unimodal autoencoder architecture, as follows.

5.3.4 Unimodal DCHC Autoencoder

The objective of the unimodal computational model is to predict the suc-
cessive future skeletal poses conditioned on past poses from a sequence of
poses X, hence our problem can be formulated as a product of conditional
probabilities [184]:

p(X) =
t=T∏
t=1

p(xt|x1, . . . , xt−1) (5.3)

An overview of the proposed architecture of the unimodal DCHC-based au-
toencoder is illustrated in Figure 5.2. The sequence of input poses X is de-
fined by a temporal sliding window with dimensionality W×S ∈ R, where W

and S correspond to the temporal dimension of the window and the number
of the skeletal features, respectively. In each iteration the sliding window
progresses forward for one time-step/frame. For instance in time-step n,
the model receives as input a window of frames from Tn−w − Tn and out-
puts a window of the same temporal dimensionality corresponding to the
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Tn−w+1 − Tn+1 time frames. During synthesis, the model follows the au-
toregressive objective mentioned above, by using its past predictions to
generate the current pose.

The bottom layer of the encoder is a 1 × 1 convolution ∈ RW×F , which
upsamples the feature space of the input poses by computing F number of
filters, followed by a ReLU activation function and 2 consecutive 1× 1 con-
volutional layers with one more ReLU activation in-between. Next a stack
of 10 DCHC layers encodes the output of the previous convolutional layer,
each having a dilation factor d ∈ [1, 3, 9, 27, 1, 3, 9, 27, 1, 1], respectively. The
selected dilation stages ensure a wide receptive field, capable of capturing
enough past context sufficiently. The output of the last DCHC layer is down-
sampled by a 1× 1 convolution ∈ RW×F/2, followed by a tanh activation.

The decoder receives the resulted latent features and applies a stack of
6 DCHC layers with dilation factors d ∈ [1, 3, 9, 27, 1, 1]. The output is then
processed by 3 consecutive 1× 1 convolutional layers with tanh activation
functions. Finally, the top layer of the decoder architecture employs a 1× 1

convolution ∈ RW×S with a sigmoid (σ) activation, in order to output the
predicted future skeletal keypoint coordinates. All 1× 1 convolutional oper-
ations have kernel size of 1, while the convolutions of the DCHC layers are
computed with kernel size of 3.

5.3.5 Attention-based Multimodal Feature Fusion

The multimodal architecture that we propose for the audio-informed dance
motion generation task was mainly inspired by [143], and it was imple-
mented according to the results of the performed ablation study. Specifi-
cally, we carried out the appropriate architectural modifications to the DCHC
layer as it was described in Section 5.3.2, allowing the model to properly
leverage the functionality of the highway gates. Furthermore, we replaced
the PixelCNN-like conditional layer in the decoder with a scaled dot-product
attention mechanism [176], in order to fuse the encoded representations of
the multimodal input.

In this regard, the objective of the model is to predict the successive
future skeletal poses conditioned on past poses X and audio information Y

of the same time resolution, formulated as a conditional probability:
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p(X|Y ) =
t=T∏
t=1

p(xt|x1, . . . , xt−1, y1, . . . , yt−1) (5.4)

The multimodal input data streams in (5.4) are parsed by 2 temporal
sliding windows with dimensionality W ×M and W ×S, where W , M and S

correspond to the temporal dimension of the input window and the number
of the audio and skeletal features respectively. During training, in each
iteration the sliding window progresses one time-step. For instance, in time-
step n, the model receives a sequence of frames from Tn−w−Tn and outputs
a sequence of same temporal length, corresponding to the Tn−w+1 − Tn+1

time frames.
An overview of the proposed multimodal network is illustrated in Fig-

ure 5.3. The two input data streams are encoded by two unimodal encoder
networks of the same architecture, as described in Section 5.3.4. Then,
the decoder receives the resulted latent representations and utilizes an at-
tention mechanism, which works as stochastic conditioning for generating
novel pose sequences. According to the original Transformer decoder [176],
the target sequence (query) is used to condition the weighted sum of the
input values, where the weight assigned to each value is computed by a
compatibility function of the query with the corresponding key. This allows
every position in the decoder output to attend over all positions in the input
sequence. Similarly, the two encoded streams are merged into a joint repre-
sentation set at the top layer of the proposed decoder network by applying
a scaled dot-product attention mechanism, that packs the encoded skeletal
features into a query matrix (Q) and the encoded audio features into pairs
of key (K) and value (V ) matrices, in order to compute the compatibility
function. An optional mask can be added for preventing past information
to flow in the decoder network and preserve the autoregressive property.
The encoded skeletal features are also added to the output of the attention
mechanism with a residual connection, followed by weight normalization.
Then, similar to the unimodal decoder, a stack of 6 DCHC layers with dila-
tion factors d ∈ [1, 3, 9, 27, 1, 1] processes the salient features, followed by 3
consecutive 1 × 1 convolutional operations with tanh activation functions.
Finally, a 1 × 1 convolution ∈ RW×S with a sigmoid activation outputs the
predicted future skeletal keypoint coordinates. During the synthesis phase,
the model generates poses based on an autoregressive procedure.
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5.4 Unimodal Dance Synthesis Evaluation

In this section we describe the employed experimental setup along with
the different evaluation scenarios that we designed, oriented towards in-
vestigating to what extent smaller or larger sizes of past context, affect the
ability of the proposed unimodal autoencoder to synthesize skeletal-based
dance motions, both in terms of pose consistency and motion variability.
In this regard, we trained a set of models with different hyperparameter
settings and generated a large amount of sequences for evaluating the ef-
fect of these parameters both empirically and subjectively based on a user
study. Furthermore, according to the collected answers, the model with the
best performance is compared with a RNN baseline architecture by comput-
ing various quantitative metrics.

5.4.1 Experimental Setup

All the experiments were implemented with the Pytorch [187] deep learning
framework5. We designed various scenarios for investigating the effect of
utilizing different sizes of past context on the ability of the model to synthe-
size human-like skeletal poses. The past context of the model is primarily
specified by the temporal size W of the sliding window that is used as input
to the model during training. However, this is not the only hyperparameter
that affects the model’s ability to capture long-term sequential correlations.
The way that the loss is computed is also regulating the generalization of
the model. In our experiments, we trained our models with a full teacher-
force supervised learning procedure and monitor their performance based
on the L1 loss function similar to [143], by computing the distance between
the predicted and ground truth pose skeletal features as:

Lkeyp(pred
k, realk) =

1

w

w∑
i=1

|predki − realki | (5.5)

Llimb(pred
l, reall) =

1

w

w∑
i=1

|predli − realli| (5.6)

Lcomb = λ1Lkeyp + λ2Llimb (5.7)

where two different L1 losses for the predicted keypoints (5.5) and the
predicted limbs (5.6) are summed in (5.7) by utilizing the corresponding

5https://pytorch.org/

https://pytorch.org/
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weighting factors λ1 and λ2. In our study we set λ1 = λ2 = 1, since we
observed that our model was not able to converge with lower values. Also,
considering that the loss function is calculated as the mean of sums, the
model generalization is also affected by the employed batch size, in addi-
tion to w ≤ W , which is the amount of predicted context that we take under
account when computing the loss value that is used by the optimization
function.

To this end, for our study we considered three groups of models with
different input window sizes (30, 120, 500 time-steps per training sample),
and during training we calculated the loss function based on five different
sizes of past context (1, 15, 30, 120, 500), accordingly. We randomly se-
lected 90 videos for training the models, while the remaining 10 formed our
validation set. Totally, in our study we trained 12 unimodal DCHC models
for 100 epochs, with batch size of 16 examples (i.e. input sequences), us-
ing the Adam optimization algorithm [106] with 0.0001 learning rate. Then
we selected randomly 10 priming sequences of 10 seconds each from the
validation files and generated 1 minute long sequences of skeletal dancing
motions based on an autoregressive process, for each one of the 12 trained
models, for the same set of 5 epochs (20, 40, 60, 80, 100), resulting to total
600 synthesized sequences.

5.4.2 Qualitative evaluation

By comparing the generated videos empirically, the differences of the mod-
els are evident on their ability to synthesize human-like skeletal poses, with
consistent variability of motions. Some representative examples are illus-
trated in Figure 5.4. Regarding the models that were trained with a window
size of 30 frames (see Figure 5.4b), they were unable to generalize when us-
ing either 1 or 15 past steps for computing the loss function, even after they
were trained for 100 epochs. However, the model that was trained for 100
epochs and used 30 time-steps both for the input window size and for com-
puting the loss function, was capable to generate motion sequences, but
their long-term performance was poor, since the limb proportions started
to collapse resulting to totally random movements. Similar behavior was
observed in the motion sequences that were generated by the models that
were trained with 120 and 500 frames of input, but with short past context
(1,15,30) when computing the loss function (see Figure 5.4c).
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Figure 5.4: Examples of priming and generated motion sequences, illus-
trated as motion trajectories through time (left to right) of the skeletal key-
points corresponding to the hands and toes.

The models that were trained with samples of 120 frames (see Fig-
ure 5.4d), presented better performance in terms of pose consistency,
but the motion patterns were not realistic enough. The best results were
performed by the model that used 500 steps for the window size and for
computing the loss function. Furthermore, we observed that this model
generalizes sooner than the rest and was capable to synthesize consistent
poses with smoother motion trajectories, even when it was trained for only
40 epochs (see Figure 5.4e).

5.4.3 Subjective Evaluation

We further conducted a user-study to subjectively evaluate the realism of
the generated motion sequences and validate our empirical observations.
To this end, we randomly selected 5 priming motion sequences from the
validation set and then chose 5 representative synthesized sequences for
each window length (30, 120, 500). Hence, each participant was presented
with 20 tests in a random order so as to avoid any possible biases. Each
test included a video clip of 10 seconds with only skeletal motion and no
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sound, that could be either an original or a generated sequence. Then, the
participants had to rate the presented video by answering the following 3

questions in a Likert scale from 1 (Artificial) to 5 (Real):

• Q1: Rate the overall realism of the skeletal motion.

• Q2: Rate the pose consistency of the skeletal structure.

• Q3: Rate the motion variability of the skeletal structure.

We designed our user-study with SurveyJS6 by leveraging its online na-
tive services to host the random tests and store the collected answers. We
invited 24 evaluators to participate in our study, from which 16 were male
and 8 female, with the majority being 20 to 40 years old and all of them being
familiar with the concepts of machine learning and artificial intelligence.

Totally we collected 1440 answers and their distributions are presented
in Figure 5.5. We also apply a kernel density estimator for presenting the
probability density of the answers at different values. By inspecting the
median values (white dot points) of the answers, we observe that there is
a tendency among the participants to rate higher the pose consistency and
the motion variability of sequences that were generated from the trained
models with an input window of 500 frames. Furthermore, to our surprise,
these synthesized sequences are also rated as being more realistic than the
actual ground truth, although the pose consistency and motion variability
of the original data were always rated higher.

In order to determine the statistical importance of this preference, we
formulated the appropriate AB pairs and performed the corresponding non-
parametric Wilcoxon rank sum test, having as null hypothesis that there
is no difference in the perceived realism between the actual and the gen-
erated sequences. The calculated p-values (see Table 5.2) demonstrated
that the differences between the medians of the ground truth and the syn-
thesized sequences are statistically significant, indicating that there are
enough evidence to reject the null hypothesis.

5.4.4 Quantitative Diversity evaluation

RNN-based networks have been proven effective for modelling the tempo-
ral correlations of skeletal poses in dance motion sequences. In this regard,

6https://surveyjs.io/

https://surveyjs.io/
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Figure 5.5: Boxplots of the collected ratings from the unimodal user study.
The colored shapes around the box plots represent the distributions of the
answers by applying a kernel density estimator function.
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Table 5.2: Wilcoxon rank sum test p-values between the original and the
synthesized motion sequences.

AB pairs Q1 Q2 Q3
GT–W500 9.53× 10−5 7.85× 10−12 5.61× 10−9

GT–W120 9.18× 10−4 1.46× 10−21 1.46× 10−21

GT–W30 8.26× 10−5 7.68× 10−16 2.60× 10−9

according to the results provided by the user-study, we selected the uni-
modal DCHC architecture that received the best ratings and compared its
performance with a baseline CNN-LSTM network, following the same set-
tings proposed in [188]. The baseline model comprises one 1 × 1 convo-
lutional layer as a feature embedding operation, followed by a stack of 3
LSTM layers with 1024 hidden cells for modelling the temporal correlation
of the skeletal features. Finally, a sigmoid activation function is applied on
the output of the top LSTM layer for providing the future pose prediction.
We also implemented the baseline architecture in Pytorch and followed the
same hyperparameter settings and training strategy as described in our
experimental setup.

In order to automatically evaluate the two unimodal architectures, we
generated 180 sequences of 2000 poses for each model by choosing a ran-
dom priming skeletal sequence of 2 seconds from the validation set. Then
we used the coordinates of the predicted skeletal poses and computed var-
ious diversity metrics which are usually employed in related studies [138,
145, 150, 172, 173], including:

1. The Fréchet Inception Distance (FID) [189] score that measures the
distance between the distributions of the generated poses and the
original. We calculated the FID score of the original sequences by
randomly dividing the validation set in two equal parts of 1 min clips.

2. Inter-sequence diversity score that computes the variability between
pairs of sequences. We compute this metric by randomly selecting
sequences and measure the L2 distance between the feature vectors
of each pair. The final score is the average over the sequence length.

3. Intra-sequence diversity metric that computes the variability of poses
belonging to the same sequence. We divide each pose sequence into
4 segments, and compute the L2 feature distance among all possible
pairs. Next we average over all pairs from all sequences.
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Table 5.3: Comparison of diversity scores between the baseline model and
our proposed unimodal architecture.

Model FID ↓ Inter-seq L2 ↑ Intra-seq L2 ↑

Original 0.11± 0.01 0.76± 0.03 0.35± 0.08

CNN-LSTM [188] 0.55± 0.02 0.36± 0.02 0.52± 0.10
DCHC-UNI 0.46± 0.02 0.75± 0.02 0.52± 0.08

For preventing randomness in our results we performed 200 trials for
the diversity metrics and report their average and standard deviation in
Table 5.3. From the statistics we can observe that the CNN-LSTM network
is quite deterministic since it does not present enough variability among
the different generated sequences, as it is reported by the inter-sequence
diversity score. On the contrary, the proposed unimodal DCHC network,
even though it is a deterministic model, reports greater inter-sequence di-
versity that is quite close to the original. Also, the reported FID score indi-
cates that the distribution of the generated poses are closer to the original,
compared to the CNN-LSTM model. However, both unimodal architectures
report the same intra-sequence score that is higher than the original, in-
dicating that the generated motion patterns may not be smooth enough,
generating faster frame-by-frame transitions between the skeletal coordi-
nates of the poses.

5.5 Audio-informed Dance Synthesis evaluation

In this section we describe the applied experimental setup along with the dif-
ferent experimental scenarios that we employed for evaluating the perfor-
mance of our proposed multimodal DCHC autoencoder in terms of realism
and style consistency. Herein we extend our previous experiments by train-
ing the considered multimodal architecture based on a curriculum learning
strategy. Furthermore we provide a thorough assessment of our proposal
by employing 2 related state-of-the-art frameworks, in order to generate
numerous motion sequences that were used to conduct qualitative, quan-
titative and subjective evaluations. Also, we try to determine the effect of
curriculum learning on the proposed feature fusion, compared to the fully
guided teacher-forcing scheme, by providing comprehensive visualizations
of the attention mechanism.
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5.5.1 Experimental Setup

Autoregressive generative models are known to suffer from the “Exposure
Bias” problem, referring to the train-test discrepancy that arises when only
ground-truth context is used at training time, but generated one at test
time [190]. To this end, we exploited our proposed architecture on an
autoregressive curriculum-based self-supervision strategy, in contrast to
a typical fully teacher-force supervision scheme for modelling the audio-
driven conditional objective. Specifically, the proposed autoregressive cur-
riculum learning strategy was implemented by providing an initial ground-
truth input sample of W time-steps and then autoregressively generating
N future poses before computing and minimizing the loss function as de-
scribed in (5.5), (5.6) and (5.7). Furthermore, we evaluated 2 different
setups regarding the proposed attention-based feature fusion, where we
calculated the attention scores (compatibility function) with or without the
application of an upper triangular look-ahead mask, which further restricted
the attention mechanism to attend only past inputs.

Also, in our experiments we compared the performance of the 4 mod-
els deriving from the 2 supervision strategies, against 2 adversarial cross-
modal state-of-the-art frameworks. As a primary baseline we chose the
system described in [138], since it is considered to be the first study that
formulated the audio-driven dance motion generation task. As a second
baseline we selected the current state-of-the-art proposed in [150], where
the authors also compared their system with the primary baseline [138] in
their presented evaluation campaign.

We implemented our proposed multimodal architecture with Pytorch and
trained our 4 models using the same hyperparameter settings and dataset
split as it was described in Section 5.4.1. The only difference is that the
2 models that were trained with the self-supervised curriculum learning
scheme, generated N = 5 future poses for each input sequence in the train-
ing batch. As it concerns the 2 baselines, we used their corresponding pub-
licly available pre-trained models and transformed our validation dataset
accordingly, so as to comply with the different input requirements of each
framework. We chose not to train the baselines with our dataset, since both
studies employed either K-pop or urban dancing style in their experiments.
However, it should be highlighted that our models were trained with pairs
of audio and skeletal features that were both aligned in 30 FPS, while the
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models in [138] and [150] considered raw audio as input and generated
skeletal feature sequences of 15 FPS and 10 FPS respectively. Another lim-
itation of [150] is the fact that it receives audio clips of only 5 seconds in
order to generate the corresponding skeletal dance sequence. In this re-
gard, we did not apply any kind of post-processing on any of the generated
sequences, avoiding possible biases in our experiments. In our results we
refer to [138] and [150] as “NIPS” and “MM” respectively, while our models
that were trained with teacher-forcing correspond to “FAF” (full attention
fusion) and “MAF” (masked attention fusion), in addition to “SS-FAF” and
“SS-MAF” that denote our self-supervised models.

5.5.2 Diversity and Multimodality Evaluation

Choosing proper quantitative metrics for assessing automatically the per-
formance of generative systems is a quite challenging task. Especially, the
complexity of dancing motions is reflected by highly expressive and diverse
body movements. To this end, various diversity metrics have been pro-
posed in the literature as it was described in Section 5.4.4. Furthermore,
audio-driven dance generation systems usually require additional metrics
for validating their ability to synthesize original sequences in cases where
the same conditioning is applied [138]. Therefore, in addition to the 3 diver-
sity metrics, herein we also consider the following 2 multimodality metrics:

1. Same-music conditional multimodality, where given the same audio
features, we generate multiple skeletal pose sequences and compute
the L2 feature distances between all possible pairs. Similarly to the
intra-sequence metric, we average over all pairs from all sequences.

2. Same-skeletal conditional multimodality, where given the same prim-
ing skeletal sequence but different audio features, we generate nu-
merous motion sequences and compute the feature distance similar
to the aforementioned same-music multimodality metric.

For computing the diversity metrics we randomly selected 20 audio clips
with duration of 10 seconds for each song in the validation set, along with
20 random priming poses. Then we generated 180 skeletal dance motion
sequences of 10 seconds each, for all the considered models in this study,
totaling 1080 synthesized dance motion sequences. However, the models
that were trained with the curriculum learning approach were not able to
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generate sequences with only a single priming pose. Thus requiring longer
sequences as initial context, which based on empirical observations was
increased to 2 seconds (i.e. 60 poses). Furthermore, to overcome the limi-
tation of MM to generate motion sequences of 5 seconds, we simply divided
each 10 second audio sample into 2 parts and concatenated the generated
motion sequences respectively.

Regarding the same-music multimodality metric, we randomly selected
from each of the 9 songs in our validation set an audio clip with duration
of 10 seconds, and by using a random priming pose (or sequence of poses
for the self-supervised models), we generated 10 extra dance motion se-
quences that were conditioned on the same audio features, resulting to 90

synthesized dance motion sequences per model (total 540 sequences). The
same-skeletal multimodality metric applies only to our self-supervised mod-
els that require more than a single pose as initial context. In this regard,
we randomly selected 10 priming skeletal sequences of 2 seconds and for
each priming sequence, we selected 1 random audio clip of 10 seconds from
every song in our validation set, for generating 9 dance motion sequence
that were conditioned on the same priming skeletal features, summing to
90 synthesized motion sequences for each self-supervised model (total 180
sequences).

It should be highlighted that both NIPS and MM frameworks output skele-
tal features in different ranges, thus requiring to normalize all generated
poses to [0−1] range for retrieving comparable results. Also, in order to pre-
vent randomness in our experiments, we run 200 trials for all the diversity
and multimodality metrics and present their average and standard devia-
tion in Table 5.4. According to the computed diversity scores, our proposed
architecture outperformed both baseline frameworks, while both our mod-
els employing full-attention feature fusion reported the closest FID scores
to the original. Additionally, we observe that the autoregressive mask pro-
moted both the inter-sequence and intra-sequence diversity. However, the
self-supervised models presented slightly inferior performance compared
to our models that were trained with teacher-forcing. The worst FID score
was reported by NIPS indicating that multiple poses were quite far from the
original distributions. Although, its reported inter-sequence metric indicates
high variability between the different synthesized sequences, which can be
explained by the fact that NIPS is a VAE network that samples a priming
pose from the learned skeletal distributions for initializing the hidden states
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of the RNN dance sequence generator.
Furthermore the same-music multimodality score reported by NIPS is

also justified by its VAE-based cross-modal architecture. On the contrary,
MM learned a direct cross-modal mapping by using a GRU-based audio en-
coder and a multi-layer perceptron as pose generator that presented de-
terministic performance, according to the reported multimodality score. As
it concerns our models, the reported scores in both multimodality metrics
validate the stochastic ability of our proposed multimodal feature fusion
architecture to generate diverse dance motion sequences, whether condi-
tioned on the same audio features or on the same priming skeletal context.
Similar to the diversity metrics, we observe that our models that employed
a look-ahead mask to compute the compatibility function presented supe-
rior performance compared to the full-attention feature fusion.

5.5.3 Qualitative Evaluation

By visualizing the generated sequences we try to assess the considered
audio-informed models from a qualitative perspective. Some representa-
tive examples of synthesized pose sequences are presented in Figure 5.6,
illustrating the motion trajectories of 10 seconds, that correspond to the
skeletal hands and toes, while we visualize a complete pose every second.

As it concerns our multimodal architectures that were trained with
teacher-forcing, we observe that the absence of the look-ahead mask is
crucial, since it affects the ability of the model to synthesize expressive and
diverse dance motions. Furthermore, the motion sequences that were gen-
erated by the full-attention feature fusion model (i.e. FAF), tend to freeze
within the first second. Even though its FID metric indicated that the gen-
erated poses may be realistic (best FID score), the reported intra-sequence
diversity failed to capture the almost stagnate motion patterns. On the
other hand, by applying a triangular autoregressive mask in our proposed
attention-based feature fusion (i.e. MAF), the model is forced to maintain its
causal functionality, generating highly expressive motion patterns. This ob-
servation is also reflected on the computed qualitative assessment, since
the MAF model steadily reported the highest scores in all diversity and
multimodality metrics.

The self-supervised models that were trained with the proposed cur-
riculum learning technique, presented similar performance to the teacher-
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Figure 5.6: Generated examples from the considered models in our audio-
driven dance motion synthesis study.
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forced models. By inspecting the shape of the motion trajectories, the supe-
riority of the masked-attention feature fusion (i.e. SS-MAF) to synthesize di-
verse motion patterns, compared to the full-attention scheme (i.e. SS-FAF),
is more than evident. Furthermore, we observe that the self-supervision
training approach alleviated the problem of the frozen poses in the case
of the full-attention, although the diversity of the generated sequences re-
mains low, with lots of micro-fluctuations in the coordinates of the gener-
ated skeletal keypoints between consecutive frames. The same floating
micro movements are also present in the sequences generated by SS-MAF,
affecting further the overall smoothness and realism of the generated mo-
tion patterns.

Regarding the dance motion sequences generated by the 2 baseline
methods, we can see that the sequences generated by NIPS resemble the
sequences that were synthesized by SS-FAF, while MM presented many simi-
larities with our models that employed an autoregressive mask for comput-
ing the attention scores. Additionally, we observed that some sequences
synthesized by NIPS were prone to error accumulation, resulting to poses
that were moving outside the frame borders, while this fact is also indi-
cated by the reported FID score. The limitation of MM to synthesize clips
of only 5 seconds with a frequency of 10 FPS have an impact on the over-
all smoothness of the generated motion patterns. Furthermore, the simple
concatenation of consecutive generated clips is more than apparent, which
likely influences the perceived realism.

5.5.4 Visual Explanations of Feature Fusion

The proposed feature fusion method employs both audio and skeletal mo-
tion features in the compatibility function, computing the possible attention
matrix that lies in the small subspace of RW×W . Overall, there are 2 differ-
ent design directions that incorporate different levels of information for mul-
timodal feature alignment. One option is to apply a full-attention scheme
where the compatibility function have access to all time-steps, while the al-
ternative is to use an upper triangular mask, restricting the attention mech-
anism to consider information only from past context.

In Figure 5.7 we present some examples of the attention matrices as
they were computed by our models trained either with full-attention or by
utilizing the corresponding look-ahead mask. From a computational per-
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spective, the full-attention approach is quite costly to train with typical
teacher-force learning. As it can be seen in Figure 5.7a, the computed at-
tention matrix resembles a dense matrix with quite small values, affecting
the model to generate sequences with frozen poses. Since there is a nat-
ural linear correlation of the temporal order of the skeletal poses with the
corresponding audio features, we would expect to retrieve a sparse scoring
matrix with non-zero values, following the main diagonal of the matrix. Es-
pecially the utilization of causal masking, should be enforcing the model to
learn this diagonal correlation. However, we observe that the masked at-
tention model even after it was trained for 100 epochs, it fails to pay atten-
tion to the audio features, thus scoring as most important only the skeletal
features (see Figure 5.7b).

Therefore, in order to address these issues we applied a self-supervision
scheme to train our proposed architecture, leveraging prior knowledge that
could be embodied into the model, towards alleviating the training burden
of the attention module. In this regard, we followed the proposed autore-
gressive curriculum learning approach to train our multimodal architecture
with both full-attention and masked-attention feature fusion methods. By
visualizing the computed alignment scores, we show that this simple self-
supervision scheme actually facilitated the training process and improved
the attention matrix in both methods. Specifically, we observe that the spar-
sity of the full-attention score matrix was increased (see Figure 5.7c), while
the masked-attention model learned to compute scores that are nearly di-
agonal (see Figure 5.7c). However, the full-attention alignment matrix even
though it presented high sparsity, it still failed to capture the causal spatio-
temporal relation of the two modalities. As it was observed in our qualita-
tive evaluation, this defect is also reflected in the generated dance motion
sequences, where the synthesized poses seem to stagnate within the first
second.

To this end, by visualizing side-by-side the attention weights along with
the multimodal input streams, we try to provide interpretable insights re-
garding the effect of the different attention methods to the scoring decisions
and outcome of the models, as it is illustrated in Figure 5.8. Specifically, we
can see that the full-attention model (see Figure 5.8a), due to the fact of
having access to all time-steps, is prone to error accumulation that is also
reflected in the corresponding alignment matrix, by giving most of its at-
tention to a single audio frame and thus synthesizing poses that are very
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(a) Teacher-forced full attention. (b) Teacher-forced maksed attention.

(c) Self-supervised full attention. (d) Self-supervised masked attention.

Figure 5.7: Examples of the different training approaches and their effect
on the attention scores.

similar to each other. On the other hand, the masked-attention example
presented in Figure 5.8b, is more expressive than the full-attention model
because internal tokens learned to follow the autoregressive momentum,
which is further prompted by the applied look-ahead mask. By providing
access only to previous time-steps, encourages the network to focus on the
temporal correlation of the two modalities, which along the proposed cur-
riculum learning approach are the key factors for training a model that does
not suffer from motion freezing and maintains its expressiveness after few
predictions during synthesis in test time.
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(a) Self-supervised full attention.

(b) Self-supervised maksed attention.

Figure 5.8: Examples of the two self supervised attention-based feature
fusion alignment matrices, along with the corresponding input streams.
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5.5.5 Subjective evaluation

In order to subjectively evaluate the realism and style consistency of the
generated dance sequences we conducted a user-study, by including pair-
wise comparisons of our multimodal method with the 2 baseline frameworks
and real dances. Based on our qualitative observations, we discarded our
full-attention feature fusion models from the user-study due to their poor
performance, thus keeping only those sequences that were generated from
the 2 masked-attention models.

Specifically, from the 180 sequence generated by each individual method
in our diversity evaluation, we randomly selected pairs of dances with the
same music, formulating the following 10 AB groups: (Real-NIPS), (Real-
MM), (Real-MAF), (Real-SSMAF), (SSMAF-NIPS), (SSMAF-MM), (SSMAF-MAF),
(MM-NIPS), (MM-MAF), (NIPS-MAF). We repeated this process 2 times for
each participant in order to create 20 random tests, while the order of the
tests as well as the methods in each AB group were randomly shuffled,
avoiding possible biases. All generated sequences were rendered in the
native output frequency of each model, while the original dance sequences
were rendered in all possible frame rates (10, 15, 30 FPS) according to their
pair in each comparison. Every group was presented to the user as a single
test containing 2 videos side-by-side, followed by 2 questions of preference
where the user was required to select either A or B, answering:

• Q1: Which dance is more realistic regardless of music?

• Q2: Which dance matches the music better?

In order to automate this process we designed our user-study by adopt-
ing the SurveyJS7 library to our requirements. Furthermore, we developed
a web-server for creating and presenting on-the-fly the random tests to
the user, while all the answers along with their corresponding random test
templates were stored in a database, so we could later process them ac-
cordingly. We invited 45 participants in our study, from which 30 were males
and 15 females, with the majority of their ages spanning from 20 to 50 years
old, while 9 users being older than 50 years. We also asked the participants
to rate their familiarity with the concepts of machine learning and artificial
intelligence, and most evaluated themselves at least to the moderate level.

7https://github.com/surveyjs/survey-library

https://github.com/surveyjs/survey-library
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At the end of the survey, we also included an area for comments as optional
feedback. Totally we collected 1800 preference answers and the results are
presented in Figure 5.9.

From the statistics, it becomes clear that real dances were in most cases
perceived as being more realistic and style consistent to the music in ev-
ery comparison. However, we found that the reported preferences in our
user-study, regarding the groups of real choreographies with both MM and
NIPS, are significantly lower from those presented in their manuscript. For
instance in Q1, 30% of the users in our study preferred MM over real dances,
in contrast to 51% that was reported in [150]; similarly for NIPS, herein we
accounted 12% versus 32.6% that was presented in [138]. Moreover, we
observed that MM outperformed both our methods in direct comparisons,
while our model that was trained with teacher-forcing performed better than
both NIPS and our self-supervised approach.

According to the collected comments, the users observed that the
videos from NIPS presented slow-paced motion patters that were almost
stagnant, while the self-supervised sequences (SSMAF) included numerous
pose fluctuations that affected negatively the users’ preference. Regarding
the sequences synthesized by our teacher-forced model, the users consis-
tently commended that the sizes of the generated poses were bigger than
other sequences, which might be induced by the bounding-box normaliza-
tion applied in our training data. Furthermore, they noted that in songs with
faster tempo, the generated motion patters were failing to follow the mu-
sical context. Additionally, we were expecting the low frame rate of MM to
have a negative impact on user preference, however the participants com-
mented that these sequences were quite expressive and consistent with the
given music. Although, many users were able to identify the concatenation
gap between the 2 consecutive clips that formed each 10-second video,
suggesting the inefficiency of MM to synthesize long-term choreographies.
To this end, by comparing the realism preference statistics with the FID
scores reported in our quantitative evaluation, the discrepancy is apparent,
which further indicates the inability of FID as an automatic metric to pro-
vide human-like assessment regarding the realism and expressiveness of
synthesized dance motion sequences.
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5.6 Conclusions

In this Chapter we presented a thorough study on the ability of deep CNNs to
model and synthesize novel dance motion sequences from both skeletal and
audio features. The motivation of this work lies in the fact that most of the
available proposals in the literature, utilize RNNs for modelling the spatio-
temporal correlation of audio and motion sequences. However, the recur-
rent representations created by RNNs are susceptible to prediction error
accumulation, restricting the models to generate short motion sequences,
usually of less than 100 poses. The proposed DCHC layer bridges this gap
by leveraging the effectiveness of stacked dilated causal convolutions to
provide a wider temporal receptive field of 500 poses with only few layers,
while the information-flow of the network is controlled by highway gating
transforms, allowing the model to generalize faster to the given objective.
Furthermore, the proposed conditional decoder employs an attention mech-
anism to fuse the latent multimodal representations of past audio and mo-
tion information, in order to stochastically control the generation process,
enhancing the creativity of our system.

In our experimental campaign we trained the proposed unimodal archi-
tecture solely with skeletal information, by considering 12 different setups,
based on 3 different temporal window lengths as past context. Then, we
autoregressively synthesized 600 motion sequences by randomly choosing
priming information from the validation set and provide a qualitative eval-
uation based on empirical observations. In order to subjectively evaluate
the perceptual realism of the generated motion sequences, we further con-
ducted a user study, where 25 participants had to compare original and syn-
thesized sequences, by rating their consistency in terms of pose integrity
and motion variably. The collected answers show that the best performance
was presented by our models that were trained with temporal context of
500 time-steps. Additionally, we compared our best model proposed by the
users with a CNN-LSTM [188] baseline by computing various diversity met-
rics, validating the superiority of our convolutional network to effectively
generate diverse and realistic skeletal motion sequences.

Regarding the proposed multimodal architecture, we considered 2 ap-
proaches for computing the attention scores by either applying a full-
attention scheme or a look-ahead mask. In our experiments we exploited
both typical teacher-forcing and self-supervised autoregressive curriculum
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learning, for training a total of 4 models, in order to compare their perfor-
mance with 2 state-of-the-art audio-driven dance motion synthesis frame-
works. Overall, we generated 1800 dance motion sequences for evaluating
the perceived realism, motion diversity and multimodality based on numer-
ous quantitative, qualitative and subjective experiments. Specifically, the
quantitative metrics indicated that our models outperformed both base-
lines, while the best trade-off performance was yielded by the models that
employed an autoregressive mask in the attention mechanism. Our em-
pirical observations on the generated sequences supported the qualitative
superiority of masked attention over full-attention feature fusion. We fur-
ther interpreted this difference by visualizing representative examples of
computed score matrices, while providing adequate explanations of the
effect of self-supervision training on the model’s ability to learn the cross-
modal spatio-temporal alignment of the two encoded input streams.

For subjectively evaluating the performance of the masked attention
feature fusion method, we conducted a user-study based on pairwise com-
parisons of our masked models with the 2 baseline systems and real dances,
totaling 1800 preference answers from 45 participants. The results from
the collected answers proposed the superiority of the sequences gener-
ated by [150] in terms of motion realism and style consistency, while our
teacher-forced model outperformed our self-supervised method and [138].
However, the pre-trained model provided by [150] is limited to generate
sequences of only 5 seconds and according to the participants’ feedback,
the concatenation gap of the underlying clips that formed each 10-second
video in our user-study was always noticeable. Overall, we observed that
the sequences generated by [138] were consistently found to present the
worst performance in all the considered experimental scenarios. Although
our composite reconstruction loss may be sufficient to encourage our self-
supervised masked-attention model to capture the causal spatio-temporal
relation of the two modalities, it still presented minimal motion fluctuations
in the generated sequences, with a negative impact in the perceived real-
ism.
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Symbolic Music Features





CHAPTER 6
Jazz Improvisation

Accompaniment

6.1 Introduction

The use of automatic systems for generating music is a captivating vi-
sion and a multidisciplinary research problem studied for decades. The
diversity of automatic music generative systems relies on their different
objectives and the musical content that they produce, such as chord pro-
gressions, melody generation, accompaniment arrangements and counter-
points [191]. Already from the late 1950s and early 1960s, composers such
as Lejaren A. Hiller [192] and Iannis Xenakis [193] explored stochastic mod-
els for algorithmic music generation.

With the recent advances in the computational capabilities of modern
computers, there is an exploding tendency of generative system proposals,
incorporating complex artificial neural network architectures as a technical
foundation. Conditional generative models based on GANs have been used
to combine unpaired lead sheet and MIDI datasets for generating lead sheet
arrangements. The lead sheet arrangement can be defined as the process
that receives a lead sheet as input and outputs piano-rolls of a number of
instruments to accompany the melody of a given lead sheet. For instance,
Liu and Yang [194] proposed an architecture that comprises 3 stages (lead
sheet generation, feature extraction and arrangement generation) in or-
der to generate eight-bar phrases of lead sheets and their arrangement.

105
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The feature extraction stage is responsible to compute symbolic-domain
harmonic features from the given lead sheet in order to condition the gen-
eration of the arrangement. Wang and Xia [195] developed a framework
for generating both lead melody and piano accompaniment arrangements
of pop music. Specifically, they consider a chord progression as input and
propose 3 phases for generating a structured melody with layered piano
accompaniments. First, the harmony alternation model receives a given
chord progression in order to transform it to a different one that fits better
with a specified music style based on HMMs. Then, the melody generation
model generates the lead melody and the layered accompaniment voices
through seasonal Autoregressive Moving Average (ARMA) processes. The
final phase implements the melody integration model that is responsible
for integrating the melody voices together to form the final piano accom-
paniment.

On the other hand, RNNs are often used to generate sequences of musi-
cal content in a stepwise manner, where the network input is the previous
note and output is considered the predicted note to occur on the follow-
ing time interval [196]. Similarly, RNN architectures with LSTM gates have
been utilized for generating blues style melodies conditioned on a given
chord progression [197]. By definition, LSTM-based models have the ability
to correlate and capture the temporal context of a sequence, thus simu-
lating the human cognitive abilities for predicting sequential information.
Also, RNNs have proven efficacy on modelling complex musical structures
such as polyphonic chorales. For instance, the “DeepBach” system was
trained to generate four-part chorales in the style of J.S. Bach [198]. As it
is demonstrated by Jaques et al. in [199], generative systems can be also
constrained by music theory rules via a reinforcement learning mechanism.
In addition to the music theory rules, Lewandowski et al. [200] considered
probabilistic harmonic and rhythmic rules based on distribution estimators,
conditioned on the output of a RNN model that was trained to discover tem-
poral dependencies from polyphonic music scores of varying complexity.

Other approaches take into account the chord progressions for provid-
ing longer musical structures. For instance, the work presented in [201]
utilized a text-based LSTM network to capture the relationships within text
documents that contained symbols of chord progressions. Another example
based on chord progressions is the “JamBot” system [202] that generates
music in two steps. The bottom network is a LSTM architecture that predicts
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a chord progression based on a chord embedding, while a second LSTM net-
work generates polyphonic music based on the predicted chord progression
received from the bottom network. Nevertheless, this approach lacks the
ability of modeling interactions within a polyphonic musical ensemble. In
order to overcome this limitation, Chu et al. [203] proposed a hierarchical
architecture, where each level is an individual RNN that generates differ-
ent accompaniments for the synthesized song. A monophonic melody is
generated first, followed by the accompanying chords and drums.

In the scope of the “Impro-Visor” project1, Johnson et al. [204] proposed
a neural network architecture consisting of two LSTM-based sub-networks
that jointly learn to predict a probability distribution over future notes con-
ditioned on past notes of the melody. Furthermore, researchers from the
same laboratory developed the “JazzGAN” system [205] that utilizes RNN-
based GANs to improvise monophonic jazz melodies over given chord pro-
gressions. Their results indicated that the proposed system was capable to
address frequent and diverse key changes, as well as unconventional and
off-beat rhythms, while providing flexibility with off-chord notes. Other pro-
posals incorporate music theory grammar in combination with LSTM neural
networks to generate jazz music. For instance, [206] extracted the interval,
duration and note category information from jazz MIDI files and trained a
LSTM model to learn the transition probabilities between notes. Then they
take advantage of the music grammar in order to arrange and output the
generated sequence of notes.

LSTM networks have been also tested for generating jazz music compo-
sitions constrained by a given performer’s style. In particular, De Prisco et
al. [207] developed a 3 staged generative system, consisting of a One-Class
SVM for learning the performing style of a specific jazz musician, an LSTM
network to generate patterns relevant to the learned style and a splicing
system to compose melodic lines in the given style. Splicing systems are
formal models for generating “languages” (i.e. sets of words), inspired by
a recombinant behavior of DNA [208]. A music splicing composer requires
to define an alphabet, an initial set and a set of rules. Another example of
a complex system that utilizes LSTM-based networks for learning statistical
correlations between instruments within a jazz piano trio ensemble (piano,
bass, drums) was proposed by Hori et al. in [209]. They trained a LSTM

1https://www.cs.hmc.edu/~keller/jazz/improvisor/

https://www.cs.hmc.edu/~keller/jazz/improvisor/
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architecture to learn the relationship between the musical features of the
piano performance that is applied on top of a HMM, which is responsible to
segment the bass and drums performance feature spaces. Overall the sys-
tem was reported capable of generating coherent rhythmic patters and bass
melodies as accompaniments to a piano solo input. However, the authors
specify that their model can be further improved due to the lack of available
jazz datasets. To this regard, Hung et al. [210] employed transfer learning
techniques aiming to solve the problem of jazz data insufficiency. They pro-
posed a Bidirectional GRU VAE generative model, trained on a dataset of
unspecified genres as source, and a Jazz-only dataset as target.

It is worth noting that only a few projects experiment with real-time cre-
ative scenarios where a human improviser is accompanied by an automatic
agent without any musical constraints. To this end, Kaliakatsos et al. [211]
proposed an accompaniment system that employs Differential Evolution
and Genetic Algorithms for producing the accompanying music. Another ap-
proach to the task of real-time music generation for jazz improvisation, was
presented by Hutchings and McCormack in [212], where they implemented
a composite system with a LSTM-based melody agent that was trained on
chord progressions of jazz “standard” compositions, and a rule-based har-
mony agent that manipulates precomposed melodies for improvising new
themes and variations. The composition flow between the agents is con-
trolled by a rating system that rewards harmonic consistency and melodic
continuity.

The objective of our work in this Chapter is to explore the attributes
of real-time musical accompaniment that an artificial agent can offer to a
human improviser within a context similar to traditional forms of jazz im-
provisation. This involves adhering to predetermined harmonic sequences
and metrical structures as constraints. Software tools and methods that
are able to generate “static” accompaniment to human soloists, exist for a
long time [213]. On the other hand, the scenario that we examine in our
study includes “spontaneous” alterations in accompaniment responses of
an artificial agent both in terms of rhythm and harmony, based on the im-
provisation of a human soloist. The algorithmic cornerstone of our approach
relies on LSTM-based architectures. The motivation for pursuing and study-
ing such an approach in modeling human-machine improvisation and the
reasons for choosing to examine basic deep learning neural networks as an
algorithmic backbone is analyzed in the following section.
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6.2 Research Scope and Contributions

In music, “masterful” violation of anticipation has been identified as key
component for the emergence of emotion, meaning, concepts and over-
all interest [214]. Furthermore, anticipation is shaped by the exposure to
stimuli with common characteristics, a fact that induces relations between
fundamental mechanisms of music understanding and statistical learning
[214]. The basic principles of jazz improvisation evolve around the vio-
lation of expectation, with improvising musicians constantly attempting to
introduce meaningful novelty in the way they express themselves, and com-
municate with other musicians in real-time. Therefore, jazz improvisation
could be described as an exemplar for studying the core-mechanism of mu-
sic cognition, which is the interplay between anticipation and its violation.

Communication between improvising musicians is a key element for
achieving interesting and meaningful improvisations. Especially in jazz im-
provisation, each musician assumes multiple roles that are of particular rel-
evance to our study. The key characteristics of these roles can be summa-
rized as follows:

1. Preserve harmonic and rhythmic characteristics of a piece. Typical
jazz improvisation incorporates a standard jazz melody with a fixed
harmonic description in a fixed metric structure. However, these
components are expected to be creatively altered by improvising
musicians (usually not the metric structure though), towards creat-
ing meaningful violations of anticipation on the overall harmonic and
rhythmic domain. For instance, chord substitutions are usual, either
by introducing chords that include alternate voicings, extensions or
even by including new chords altogether (e.g. tritone substitution).

2. Express original ideas. Violation of harmonic/rhythmic expectations is
considered to come “with a reason”. A common approach for soloists
to attempt to build new musical phrases when improvising, is by cre-
atively modifying and combining “standard” jazz licks, a fact that
helps towards building and violating anticipation. Jazz licks in the
muscle memory of the soloist are products of statistical learning, built
through practicing and listening multiple jazz pieces, excerpts and
phrases.

3. Communicate musically with the improvisation/accompaniment of
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other musicians. In a broad sense, the role of the accompanist is to
highlight musical choices of the soloist, or even further, understand
the intentions of the soloist and improvise accompaniments accord-
ingly. Therefore, communication, on the side of the accompanist,
includes predicting the intentions of the soloist and preparing the re-
sponse in a timely manner, given that proper accompaniment needs
to be provided concurrently with the solo. Jazz musicians, as musicians
in any other music genre, develop a common perception that can be
described as the integration of a “similar” statistical model, both in
the soloist and the accompanist. This model allows the accompanist
to roughly predict the imminent soloist choices during improvisation.

To this end, an artificial agent that is able to perform basic musical ac-
companiment in real-time under the aforementioned setting needs to have:
(i) the ability to comply with harmonic and metrical constraints set by an
input chart; (ii) a model of anticipating for imminent actions of the human
soloist; (iii) a dictionary of accompanying voicings for given chords that is
rich enough for producing diverse/interesting accompaniment; and (iv) the
ability to “adapt” its playing style to the anticipated choices of the human
soloist, both in terms of voicings and rhythm. Since the problem descrip-
tion incorporates statistical learning and given the fact that deep neural
networks have exhibited impressive capabilities in capturing the prominent
statistical behavior in large amounts of training data, our study examines
the incorporation of such ML approaches for the task at hand. Therefore, the
research questions revolve around the suitability of deep learning methods
for the described improvisation setting, under the methodological frame-
work that is presented in Section 6.3. These questions are formulated as
follows:

• Is the considered ML system able to capture “static” harmonic in-
formation of a given chart in a setting of “dynamic” constraints (i.e.
changing playing style of the human soloist)?

• To what extent is the proposed system responding to “dynamic” com-
ponents introduced by the human agent?

• Is the examined setup suitable for real-time performance, both in
terms of robustness and computational feasibility?



6.3. MATERIALS AND METHODS 111

Recent advances in deep learning include the development of systems
that are able to generate music that adapts to pre-configured constraints.
In general terms, such systems either compose music sequentially or non-
sequentially. Sequential systems (e.g. as the one presented by [215]), pro-
vide decisions for each note depending only on previous notes, with ad-
ditional potential constraints in place. Regarding non-sequential systems,
such as “DeepBach” [198], new notes are inserted by sampling, forming
“dynamic” constraints for notes that are inserted later on, regardless of
time precedence. In other words, notes at the end of the piece could be
inserted at an earlier stage, than notes that appear earlier in the piece, de-
pending on randomly sampled priorities. In one sense, a system that is able
to perform real-time accompaniment, as described in our study presented
herein, needs to be able to both compose sequentially (since time moves
forward while performing) and comply with constraints that change as the
composition is constructed (since the human soloist is expected to violate
the expectations reflected by the solo predictive model).

The main contribution of this paper is that it studies the characteristics
of a complex, multi-layered neural network where both static and dynamic
components are combined for preforming predictions. The real-time impro-
visation setup discussed herein offers a well-defined platform of experimen-
tation with potential interest for real-world applicability.

6.3 Materials and Methods

The proposed system provides real-time accompaniment to a human musi-
cian, based on a given harmonic description of lead sheet chord symbols.
The role of the system is to reflect harmonic information as given in the
lead sheet and also interpret this information with variability, responding to
the predicted implied harmonic variability of a human solo. Hence, training
data for our system need to include information about:

1. Metric structure, for letting the system become aware of measure
changes.

2. Lead sheet information, for learning to comply with given lead sheet
chords.

3. Human solo channel, for learning to respond to what the human soloist
is expected to play.
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4. Accompaniment channel, for learning to play proper accompaniment
chords/voicings over the given lead sheet chords.

Up to our knowledge, such a dataset containing all the aforemen-
tioned properties is missing from the research community. To this end,
Section 6.3.1 describes the processes for constructing our dataset by start-
ing off with an initial dataset collected from online resources that covers
most of the requirements. Next, we present the proposed system that in-
corporates two layers of information processing, starting with a dedicated
computational model for predicting the imminent steps of the human per-
formance, followed by a second model for integrating this prediction along
with other static constraints (i.e. metric and lead sheet information), to-
wards providing the final chord accompaniment prediction.

6.3.1 Data Preparation

The initial dataset2 [194] contains all necessary information about the
pieces, including tempo, beat, melody and the chords on a lead sheet. It
should be noted that only lead sheet information is included in this dataset
without actual notation of the accompaniment chords. In order to address
this issue we performed a harmonic enrichment procedure that is described
in detail later in this section. Furthermore, we use the beat information to
indicate the start of a measure. A single time-step corresponds to the 1/24

of a quarter note, a time resolution which is fine enough to even represent
rhythm values of 64th triplets. The melody and the accompanying chords
are represented as 128-key piano rolls with the aforementioned time res-
olution, where each active note at each time instance is annotated with
the respective velocity value. With this representation however, the infor-
mation about a note repetition is potentially obscured. For instance, there
is no differentiation between a single note/chord of a quarter duration (24
time-steps) and two successive notes/chords with a duration of an eighth
per note (12 time-steps). A time resolution reduction from 24 steps per
beat (quarter) to 2 steps per beat was performed, such that each time-step
was represented by 1/2 of a quarter note, which is an eighth note. In other
words, from each beat (24 time-steps) we only kept the melodic information
of the 1st and 13th time-step, by splitting each quarter (24 time-steps) in

2https://github.com/wayne391/lead-sheet-dataset/

https://github.com/wayne391/lead-sheet-dataset/
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half. Thus keeping only the first of each of the two subsets of time instances
(12 time-steps).

In order to construct a suitable and compact representation of chord
information in the form of a jazz standard lead sheet, we use the informa-
tion extracted from the accompanying chords channel of the initial dataset.
Specifically, instead of keeping the velocity values of the chord notes and
their MIDI value, we only kept the pitch class of their root, as well as the type
of those chords, by using ready-made functions from the Music21 Python
library3 [216], which contains a set of tools for computer-aided musicology.
Moreover, we chose to represent the jazz standard chord information as
a binary vector of size 15, where the first 12 bits represent the root pitch
class information, while the remaining 3 bits represent major/minor 3rd,
perfect/augmented/diminished 5th and major/minor 7th respectively. The
reason for performing such an abstraction for representing chord informa-
tion on the lead sheet is motivated by the fact that jazz musicians need
a fundamental description of harmony, which they can manipulate/alter in
a creative manner. The employed scheme allows for basic chord types to
be represented, such as major/minor triads, dominant/7, major 7th, (half)
diminished and augmented.

As mentioned earlier, the initially obtained dataset includes information
only about lead sheet chords, without specific notation of actual accom-
panying chords. Hence, we constructed the actual accompaniment chords
algorithmically by applying a basic “harmonic enrichment” process, where
the lead sheet chords are transcribed into actual accompanying chords with
different inversions and diverse rhythmic patterns. The enrichment process
begins by assigning accompaniment chords to positions of lead sheet chord
symbols. Next, inverted chords are probabilistically inserted after the ini-
tially placed chords. Aim of this process is to introduce rudimentary variabil-
ity in the accompaniment channel, based on the lead sheet chord symbols
and the melodic rhythm. The likelihood of inserting a chord at a particular
position on the score is influenced by two factors:

1. The duration of time without a chord event (the longer the duration,
the higher the probability).

2. The presence of a melodic note event (melody notes enhance the
probability of chord insertion).

3https://web.mit.edu/music21

https://web.mit.edu/music21
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Since the melody channel is monophonic, the 128-sized vector represen-
tation of each note in the melody channel is flattened to its single non-zero
value (the actual MIDI value of that note). For the accompaniment channel
(i.e. the actual notes that the system is intended to learn), a dictionary of
all the unique chords in the training set is created, and each chord is repre-
sented by its index in the dictionary. Practically, the “flattened” values for
both the melody and the accompaniment parts allow us to apply one-hot
representation of the respective data streams. Prior to the harmonic en-
richment step, the initial accompaniment chord dictionary consisted of 476
chord classes. After augmentation and before transposing to all possible 12

pitches, the number of chord classes increased to 847. Finally, following the
complete data preparation procedure, including augmentation and trans-
position, we obtained a total of 2677 unique accompaniment chord classes.

6.3.2 System Architecture and Real-time Considerations

As mentioned earlier, the generated accompaniment part should be influ-
enced by the soloist’s intended future melody notes. To achieve this, our
proposal comprises two sub-systems: the Human Agent RNN (HA-RNN) and
the Artificial Agent RNN (AA-RNN). These sub-systems leverage the effec-
tiveness of RNNs with LSTM gates for modeling sequential information. An
overview of the proposed system is presented in Figure 6.1.

The overall system receives as input successively overlapping windows
comprising 16 time-steps, representing events within a time resolution of
eighth notes. The window slides one step/eighth note at each iteration,
which occurs in every eighth successively. Information for each time-step
includes:

1. The metric information (bt).
2. The soloist’s melodic/solo part (ht).
3. The accompaniment chords that are expected to be learned from the

system (mt).
4. The chord information in the abstract lead sheet style described in

Subsection 6.3.1 (ct).

Since the HA-RNN is responsible for predicting the solo melody of the
successive time-step (ht+1), it excludes the accompaniment channel from
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Figure 6.1: A detailed overview of the proposed system architecture. Con-
secutive overlapping time-frames are processed by the two sub-systems.
The HA-RNN predicts the soloist melody that is later used by the AA-RNN
for predicting the accompaniment chords for the following time-step.

its input, while having the beat and chord information channels one eighth
ahead from the current melody. On the other hand, the AA-RNN takes under
account all the information channels, in addition to the predicted P (ht+1) of
the HA-RNN, in order to anticipate the accompaniment chord for the future
eighth step (mt+1). Both agents at their core, implement a similar neural
network architecture. Firstly, the input time frame is processed by the bot-
tom “Dense linear” (fully connected) layer, where it gets embedded to a
fixed size dimension through a linear transformation. Next, the embedded
output is further encoded into a latent space through the LSTM RNN layer.
Then, the top “Dense linear” layer receives the encoded LSTM output and
applies a linear transformation to a space with dimensionality equal to the
number of the target classes. Finally, the output of the top fully connected
layer passes through a softmax function, resulting to a probability distribu-
tion for the target classes (P (h) and P (m)). The final prediction is the class
with the highest probability.

As a proof-of-concept, we train a basic system with batches of 128 sam-
ples. The embedding dimension of the bottom fully connected layer is equal
to the size of the feature dimension of the input frame, whilst the RNN layer
involves 64 LSTM cells. We used the Adam optimization algorithm [106] for
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the minimization of the cross entropy cost function with a learning rate of
0.001. Both the HA-RNN and AA-RNN architectures were implemented using
the TensorFlow 2.0 framework [217] and trained for at least 1200 epochs
on a computer equipped with one NVIDIA Tesla K40c GPU, an Intel Core
i7-5820K CPU at 3.30 GHz and 32 GB DDR4 RAM at 2133 Mhz.

With the aforementioned experimental setup, we observed that the av-
erage time of the overall system to predict an accompaniment chord was
around 0.66ms (0.31ms for the HA in addition to 0.35ms for the AA). This fact
indicates the feasibility of the proposed system to be adopted in real-time
applications, however a thorough evaluation of the real-time capabilities
of the presented method needs to be examined as future work. In this re-
gard, we developed a prototype web application based on MIDI.js4 and Ten-
sorFlow.js5 javascript libraries for testing the adaptability of the proposed
model to the user’s soloing input in a real-time setting. An example of the
GUI of the web application is illustrated in Figure 6.2. On the top side we vi-
sualize the solo improvisation performed by the user on the piano keyboard,
which is placed in the middle of the screen. On the bottom side, the user
can specify the chord progressions according to the selected time signature
and number of bars. The accompaniment system starts to provide predic-
tions by clicking on the “Play” button. The system implementation, source
code of the LSTM models, and the real-time web application are available
online6.

6.4 Evaluation and Results

The results are oriented towards answering the research questions given in
Section 6.2, i.e. whether and to what extent is the system able to capture
the harmonic lead sheet constraints, to what extent is the system influenced
by different soloing styles and what are possible limitations for applying
this approach in real-time settings with currently available technologies.
To this end, two test jazz standards, namely “All of Me” and “Au Privave”,
are examined in different and diverse artificial improvisation settings, that
simulate two extreme scenarios, where the human player:

4https://github.com/mudcube/MIDI.js/
5https://www.tensorflow.org/js
6https://github.com/kosmasK/JazzICat

https://github.com/mudcube/MIDI.js/
https://www.tensorflow.org/js
https://github.com/kosmasK/JazzICat
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Figure 6.2: The web interface developed as a proof-of-concept to test the
deployment of the proposed system in real-time setting.

1. is not playing any note during the solo performance (consecutive oc-
currences of pause events); and

2. is playing random notes within two octaves (as a form of extremely
complex improvisation).

The responses of the system under these two settings for each piece are
analyzed for different epochs of training (randomly sampled across all train-
ing epochs), providing insights about how harmonic compliance is varied
and how the existence of a solo affects system responses (adaptability) at
different stages of training. Since technical limitations led to building a sys-
tem with limited computational power (incorporating solely a single LSTM
layer with few neurons for the artificial agent) and keeping time resolution
to eight notes, getting useful feedback from musicians through exhaustive
real-time experiments was not possible. In this regard, a preliminary empir-
ical evaluation based on listening tests was conducted by comparing gener-
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ated and original accompaniments. We maintain, however, that the results
presented herein indicate that employing more sophisticated architectures
for at least the part of the artificial agent, would lead to a system that both
adapts to the playing style of the user and preserves harmonic consistency
according to the given lead sheet.

6.4.1 Compliance with lead sheet harmony

This section examines the ability of the system to play chords that corre-
spond to the chord symbols on the lead sheet chart. This part of the study
concerns the compliance with the basic harmonic guidelines provided by
the chart and, hence, comparison is presented on the level of pitch class
sets. To this end, the lead sheet chart chords are translated to their cor-
responding pitch classes as well as the interpretations of the system. To
obtain insight on how training epochs influence the harmonic compliance
of the system, results are taken from an early and a late epoch of train-
ing (59 and 1251). Tables 6.1 (epoch 59) and 6.2 (epoch 1251) we present
the chord symbols and the responses of the system, regarding the “All of
me” jazz standard, when no solo (top) and random solo (bottom) was pro-
vided. Similarly, Tables 6.3 and 6.4 show the responses of the system in “Au
Privave” with and without random solo.

Regrading “All of Me”, we can observe in Table 6.1 that in most cases
the exact harmonic description in the lead sheet chart is reflected by the
system. Initially, it should be noted that harmonic deviations mostly con-
cern the first few starting measures of each piece, where the system has
not incorporated any memory in its decisions. The beginning chord of the
chart, [0, 4, 7, 11], appears to have the most alterations, some of which are
clearly erroneous (e.g. the [4, 6, 8, 10, 11] interpretation that was composed
for random solo). Figure 6.3a shows the first 8 measures and Figure 6.3b
measures 33 to 40, composed by the system for “All of Me” in a real-time
simulation setting with random solo (the solo part is not shown). The “er-
roneous” choices appear to be artifacts of the initial delay of the system
to catch up with the constraints and start building up harmonic memory.
Figure 6.3a indicates that the first three chords shown in the lower part
of Table 6.1 are a result of this delay. Other harmonic deviations concern
the delay of the system in complying with “unexpected” chord changes,
given that most pieces in the dataset are pop songs. For instance, some
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Table 6.1: System interpretations of chart chords for “All of Me” without solo
(top) and with random (bottom) solo at epoch 59, shown as pitch class sets.
Numbers in parentheses show the total time-steps that a system-generated
PC-set occurs under the respective chart PC-set.

No solo
Chart chord System interpretations
[0, 4, 7, 11] [0, 4, 7, 11](80) [0, 3, 8](4) [2, 7, 10](12) [0, 2, 4, 5, 7](24)
[0, 4, 7, 10] [0, 5, 7, 10](1) [2, 6, 11](1) [2, 4, 6, 8](4) [2, 4, 8, 11](1) [0, 4, 7, 10](25)
[2, 4, 8, 11] [2, 6, 9, 11](1) [2, 4, 8, 11](185) [0, 4, 7](4) [0, 4, 7, 10](18)
[1, 4, 7, 9] [1, 4, 7, 9](168) [2, 5, 9](4) [2, 7, 10](4)
[2, 5, 9] [2, 5, 9](128)
[0, 4, 9] [0, 4, 9](64)
[0, 2, 6, 9] [0, 2, 6, 9](64)
[0, 2, 5, 9] [1, 4, 7, 9](8) [0, 2, 5, 9](72)
[2, 5, 7, 11] [2, 5, 7, 11](79)
[0, 5, 9] [0, 5, 9](32)
[0, 5, 8] [0, 5, 9](4) [0, 5, 8](28)
Random solo
Chart chord System interpretations
[0, 4, 7, 11] [4, 6, 8, 10, 11](1) [4, 6, 8, 11](3) [2, 6, 11](3) [0, 4, 7, 11](80)

[0, 3, 8](4) [2, 7, 10](12) [0, 2, 4, 5, 7](24)
[0, 4, 7, 10] [0, 4, 7, 10](32)
[2, 4, 8, 11] [0, 4, 7](4) [2, 4, 8, 11](186) [0, 4, 7, 10](18)
[1, 4, 7, 9] [1, 4, 7, 9](168) [2, 5, 9](4) [2, 7, 10](4)
[2, 5, 9] [2, 5, 9](128)
[0, 4, 9] [0, 4, 9](64)
[0, 2, 6, 9] [0, 2, 6, 9](64)
[0, 2, 5, 9] [1, 4, 7, 9](8) [0, 2, 5, 9](72)
[2, 5, 7, 11] [2, 5, 7, 11](79)
[0, 5, 9] [0, 5, 9](32)
[0, 5, 8] [2, 5, 9](4) [0, 5, 8](28)

misinterpretations of the E7 chord ([2, 4, 8, 11]) are a result of delay in “com-
prehending” the unexpected change. This effect can be noted in the third
bars of both parts of Figure 6.3. System-generated chords for “Au Privave”
follow a similar pattern in terms of harmonic compliance, but with fewer
erroneous harmonic deviations, as evident in Table 6.3.

6.4.2 Variability

The chords generated by the system in each improvisation setting for each
piece are expected to be different, since different improvisations from the
human soloist should trigger different responses. These differences are ex-
amined by direct comparison of the system generated chords for the two
improvisation modes (i.e. the chords generated by the system without hu-
man solo, and with a random solo). A general figure that describes the
differences between the system-generated chords in both examined pieces
with (random) and without solo, is given by computing the percentage of
chords that are different per time-step for accompaniment sessions com-
prising four repetitions of the entire chart, with (random) and without solo.
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Table 6.2: System interpretations of chart chords for “All of Me” without solo
(top) and with random (bottom) solo, shown as pitch class sets. Numbers
in parentheses show the total time-steps that a system-generated PC-set
occurs under the respective chart PC-set.

No solo
Chart chord System interpretations
[0, 4, 7, 11] [3, 5, 8, 11](2) [0, 2, 9, 10](1) [2, 4, 9](1) [1, 3, 10, 11](1) [1, 3, 6, 10](1)

[0, 3, 8](1) [2, 5, 10](1) [0, 4, 7, 11](103) [3, 7, 10](13) [0, 5, 9](3)
[0, 4, 7, 10] [0, 3, 8](2) [2, 5, 10](1) [0, 4, 7, 10](23) [2, 5, 7, 11](3) [2, 7, 11](3)
[2, 4, 8, 11] [2, 4, 8, 11](162) [4, 8, 11](1) [4, 7, 11](4) [0, 3, 5, 9](1) [3, 6, 8, 11](1)

[1, 4, 9](1) [1, 4, 7, 9](12) [1, 4, 6, 10](3) [2, 6, 8, 11](3) [2, 5, 9](6)
[0, 2, 5, 9](3) [0, 2, 6, 9](3)

[1, 4, 7, 9] [1, 4, 7, 9](124) [2, 4, 7, 11](9) [1, 2, 6, 9](11) [2, 4, 8, 11](7) [1, 3, 10, 11](4)
[2, 6, 8, 11](4) [5, 8, 11](3) [2, 8, 11](3)

[2, 5, 9] [2, 5, 7, 9](15) [2, 7, 10](4) [2, 5, 9](94) [1, 3, 10, 11](3) [1, 5, 8, 10](3)
[3, 7, 10](6)

[0, 4, 9] [0, 4, 9](12) [3, 6, 10](1) [1, 6, 9](1) [4, 8, 11](1) [0, 2, 4, 9](45)
[2, 5, 9](3)

[0, 2, 6, 9] [0, 2, 6, 9](54) [0, 4, 9](5) [0, 3, 6, 10](1) [0, 5, 8](1) [0, 3, 5, 8](1)
[2, 5, 10](1)

[0, 2, 5, 9] [2, 5, 10](13) [0, 2, 5, 9](36) [0, 3, 7, 10](2) [3, 7, 10](1) [1, 3, 4, 11](8)
[0, 5, 8](12) [2, 4, 7, 11](4) [2, 5, 7, 10](4)

[2, 5, 7, 11] [2, 5, 7, 11](65) [2, 3, 7, 10](4) [0, 3, 7](4) [0, 5, 8](3) [2, 5, 9, 10](3)
[0, 5, 9] [0, 4, 5, 9](28) [2, 5, 9](4)
[0, 5, 8] [0, 5, 8](28) [3, 7, 10](4)
Random solo
Chart chord System interpretations
[0, 4, 7, 11] [3, 5, 8, 11](1) [1, 3, 6, 8](2) [2, 4, 9](1) [0, 4, 5, 9](1) [1, 3, 6, 10](1)

[2, 7, 10](1) [0, 5, 9](5) [0, 4, 7, 11](86) [3, 7, 10](5) [0, 2, 4, 5, 7](14)
[0, 4, 7](2) [2, 4, 5, 9](1) [1, 5, 8, 11](1) [2, 5, 10](1) [0, 2, 6, 9](1)
[0, 3, 6, 8](1) [1, 4, 9](2) [2, 5, 9, 10](1)

[0, 4, 7, 10] [0, 4, 7, 10](28) [1, 5, 8](1) [0, 4, 5, 9](1) [2, 7, 11](2)
[2, 4, 8, 11] [2, 4, 8, 11](177) [1, 4, 7, 9](12) [4, 8, 11](2) [4, 7, 11](3) [1, 4, 8, 11](2)

[1, 6, 9](2) [2, 4, 5, 9](1) [3, 6, 9, 11](1) [2, 4, 7, 11](1)
[1, 4, 7, 9] [1, 4, 7, 9](140) [1, 2, 6, 9](5) [2, 4, 8, 11](5) [1, 4, 6, 10](4) [1, 6, 8, 11](5)

[0, 2, 6, 9](6) [2, 4, 7, 11](4) [2, 4, 5, 9](1)
[2, 5, 9] [2, 5, 9](95) [2, 5, 7, 9](30) [2, 7, 10](2) [0, 4, 7](1)
[0, 4, 9] [0, 2, 4, 9](30) [2, 5, 9](2) [0, 4, 9](25) [1, 3, 10, 11](2) [2, 4, 6, 7](2)

[4, 8, 11](1)
[0, 2, 6, 9] [0, 2, 6, 9](46) [0, 4, 9](8) [1, 3, 10, 11](2) [2, 5, 7, 10](2) [0, 4, 7, 9](2)

[2, 7, 11](2)
[0, 2, 5, 9] [0, 2, 5, 9](49) [1, 3, 10, 11](3) [0, 2, 5, 8](2) [0, 4, 7](6) [0, 1, 5, 8](2)

[2, 5, 7, 10](6) [3, 7, 10](3) [2, 6, 9](2) [0, 3, 5, 8](2) [2, 5, 10](2)
[0, 5, 8](1) [0, 2, 5, 7](1)

[2, 5, 7, 11] [2, 5, 7, 11](62) [2, 5, 9, 10](2) [2, 5, 10](8) [2, 3, 7, 10](1) [2, 7, 11](1)
[5, 8, 11](1) [0, 4, 7, 10](1) [0, 2, 5, 9](1) [0, 4, 7](1)

[0, 5, 9] [0, 4, 5, 9](28) [2, 5, 9](4)
[0, 5, 8] [0, 5, 8](28) [3, 7, 10](4)
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Table 6.3: System interpretations of chart chords for “Au Privave” without
solo (top) and with random (bottom) solo at epoch 59, shown as pitch class
sets. Numbers in parentheses show the total time-steps that a system-
generated PC-set occurs under the respective chart PC-set.

No solo
Chart chord System interpretations
[0, 5, 9] [2, 5, 10](6) [0, 5, 9](61) [0, 5, 9, 10](12)
[2, 5, 7, 10] [2, 5, 7, 10](60) [0, 4, 7, 9](36) [2, 5, 9](16)
[0, 4, 7, 10] [0, 4, 7, 10](35) [2, 5, 8, 10](4) [1, 3, 7, 10](4) [0, 2, 6, 9](4)
[0, 3, 7, 10] [0, 3, 7, 10](16)
[1, 3, 5, 9] [0, 3, 5, 9](1) [0, 3, 6, 8](2) [5, 8, 11](9)
[2, 5, 8, 10] [2, 5, 10](1) [2, 5, 8, 10](28) [3, 6, 10, 11](3)
[1, 5, 8, 10] [1, 5, 8, 10](16)
[1, 3, 7, 10] [2, 5, 8, 10](16)
[0, 4, 7, 9] [2, 5, 7, 10](8) [0, 2, 5, 9](4) [0, 4, 7, 9](4)
[0, 2, 6, 9] [0, 4, 5, 9](12) [2, 5, 9, 10](4) [0, 2, 5, 9](4) [0, 2, 6, 9](12)
Random solo
Chart chord System interpretations
[0, 5, 9] [2, 5, 10](3) [0, 5, 9](73) [0, 5, 9, 10](3)
[2, 5, 7, 10] [0, 5, 9](1) [2, 5, 7, 10](83) [0, 4, 7, 9](12) [2, 5, 9](16)
[0, 4, 7, 10] [0, 4, 7, 10](46) [0, 2, 6, 9](1)
[0, 3, 7, 10] [0, 3, 7, 10](16)
[1, 3, 5, 9] [0, 3, 5, 9](5) [0, 3, 6, 8](6) [2, 6, 9, 11](1) [2, 5, 9, 11](2)
[2, 5, 8, 10] [2, 5, 10](1) [2, 5, 8, 10](31)
[1, 5, 8, 10] [1, 5, 8, 10](16)
[1, 3, 7, 10] [2, 5, 8, 10](4) [1, 3, 7, 10](12)
[0, 4, 7, 9] [0, 4, 7, 9](16)
[0, 2, 6, 9] [0, 2, 5, 9](2) [0, 2, 6, 9](30)

(a) Bars 1-8.

(b) Bars 33-40.

Figure 6.3: First 8 measures (a) and measures 33 − 40 (b) of system-
generated chords over the respective lead sheet chords for “All of Me” with
random solo part (omitted in the depiction).
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Table 6.4: System interpretations of chart chords for “Au Privave” without
solo (top) and with random (bottom) solo at epoch 1251, shown as pitch
class sets. Numbers in parentheses show the total time-steps that a system-
generated PC-set occurs under the respective chart PC-set.

No solo
Chart chord System interpretations
[0, 5, 9] [1, 3, 10, 11](5) [0, 3, 5, 9](5) [0, 3, 7, 8](1) [3, 6, 11](1) [2, 6, 8, 11](1)

[1, 3, 7, 10](1) [0, 5, 8](1) [0, 3, 8](1) [2, 7, 11](1) [0, 5, 9](51)
[5, 8, 11](4) [2, 7, 10](4) [0, 5, 7](3)

[2, 5, 7, 10] [2, 5, 8, 10](2) [2, 5, 7, 10](59) [0, 1, 5, 8](1) [2, 3, 7, 10](1) [0, 5, 8](1)
[1, 3, 10, 11](4) [1, 4, 6, 9](4) [0, 4, 7, 10](10) [1, 4, 7, 9](4) [0, 3, 7](4)
[2, 5, 10](4) [0, 2, 5, 7](12) [0, 2, 5, 9](3) [0, 2, 7, 10](3)

[0, 4, 7, 10] [0, 3, 7](16) [2, 5, 10](1) [1, 3, 6, 10](1) [0, 4, 7, 10](24)
[0, 3, 7, 10] [0, 3, 7, 10](16)
[1, 3, 5, 9] [0, 3, 5, 9](1) [0, 1, 5, 8](8) [1, 3, 7, 10](3)
[2, 5, 8, 10] [3, 5, 8, 11](4) [0, 3, 7](7) [2, 7, 10](3) [2, 5, 8, 10](4) [2, 5, 10](7)

[0, 5, 8](4) [2, 5, 9](3)
[1, 5, 8, 10] [3, 5, 7, 10](10) [1, 3, 7, 10](6)
[1, 3, 7, 10] [1, 3, 7, 10](2) [0, 3, 8](4) [0, 5, 8](4) [3, 7, 10](6)
[0, 4, 7, 9] [0, 4, 7, 9](16)
[0, 2, 6, 9] [0, 2, 6, 9](12) [0, 3, 7](8) [0, 5, 8](4) [0, 5, 7, 8](4)
Random solo
Chart chord System interpretations
[0, 5, 9] [1, 3, 10, 11](4) [2, 5, 7, 10](5) [3, 5, 8, 10](1) [1, 3, 7, 10](1) [1, 3, 5, 8](1)

[1, 5, 8](1) [3, 5, 7, 10](2) [2, 5, 10](2) [3, 6, 11](6) [0, 4, 5, 9](11)
[2, 5, 8, 10](5) [0, 3, 7](2) [0, 5, 9](17) [3, 7, 10](4) [4, 8, 11](3)
[0, 3, 5, 9](3) [3, 5, 8, 11](2) [0, 4, 7, 10](2) [0, 5, 8](3) [0, 3, 8](1)

[2, 5, 7, 10] [1, 3, 7, 10](2) [0, 3, 7](1) [0, 3, 8, 10](1) [2, 6, 8, 11](1) [2, 5, 7, 10](57)
[5, 6, 8, 11](2) [0, 3, 5, 9](2) [2, 5, 9](7) [1, 3, 10, 11](4) [1, 4, 6, 9](3)
[1, 5, 8, 10](1) [2, 3, 7, 10](3) [1, 4, 9, 11](2) [1, 4, 6, 10](3) [0, 5, 7, 9, 10](1)
[0, 5, 8, 10](1) [1, 4, 9](1) [0, 5, 9](1) [2, 5, 10](4) [5, 8, 11](1)
[0, 2, 3, 5, 10](1) [3, 6, 8, 11](1) [0, 2, 5, 9](1) [0, 3, 7, 8](2) [0, 5, 8](1)
[2, 7, 11](1) [2, 5, 9, 10](1)

[0, 4, 7, 10] [0, 3, 7](6) [3, 5, 7, 8](1) [0, 5, 8](2) [0, 4, 7, 10](18) [0, 3, 8](1)
[2, 5, 10](3) [1, 4, 6, 9](1) [1, 3, 6, 10](1) [3, 6, 8, 11](1) [2, 7, 10](1)
[0, 3, 7, 8](2)

[0, 3, 7, 10] [0, 3, 7, 10](11) [1, 4, 9, 11](1) [1, 3, 10, 11](1) [3, 7, 10](2) [0, 1, 5, 8](1)
[1, 3, 5, 9] [0, 3, 5, 9](5) [1, 4, 6, 10](1) [2, 6, 8, 11](1) [0, 3, 5, 8](1) [1, 3, 7, 10](1)

[0, 5, 8](1) [0, 3, 7](3)
[2, 5, 8, 10] [2, 7, 10](1) [2, 5, 8, 10](19) [0, 5, 8](5) [1, 3, 7, 10](1) [3, 7, 10](1)

[2, 5, 10](3) [2, 5, 7, 10](2)
[1, 5, 8, 10] [1, 3, 6, 10](1) [1, 3, 5, 10](3) [1, 3, 7, 10](2) [3, 5, 7, 10](3) [1, 5, 8, 10](6)

[2, 5, 8, 10](1)
[1, 3, 7, 10] [1, 3, 7, 10](8) [0, 5, 8](1) [3, 6, 10](1) [3, 7, 10](4) [0, 3, 8](1)
[0, 4, 7, 9] [0, 4, 7, 9](12) [0, 2, 3, 5, 10](1) [2, 5, 7, 10](1) [1, 3, 5, 6, 8](1)
[0, 2, 6, 9] [0, 2, 6, 9](10) [0, 3, 5, 9](2) [0, 3, 7](5) [0, 5, 8](3) [0, 2, 5, 9](3)

[2, 5, 7, 11](1) [0, 1, 3, 8](1)
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Regarding “All of Me”, only 2% of system-generated chords are different be-
tween random and no solo for epoch 59, which increases to 60% in epoch
1251, indicating that the system decisions are affected slightly by the pres-
ence of a solo in early epochs, while the effect of solo is more evident as
epochs progress. In “Au Privave” this percentage starts from 74% during
epoch 59, and gets to 84% at epoch 1251, showing that system generations
are more sensitive to the presence of a chord solo for this piece.

For observing the differences within each improvisation session, the
system-generated chords in four repetitions of the entire chart are exam-
ined repetition-by-repetition, thus forming four quarters of the entire com-
position, referred to as “quartiles”. Tables 6.5-6.7 and 6.6-6.8 show the
quartile similarities without and with random solo, for “All of Me” (epochs
59 and 1251) and “Au Privave” (epochs 59 and 1251) respectively. In “All
of Me”, and especially in the scenario with an absence of solo, both in the
early and the late epoch of training, only the first repetition is different from
the remaining three, as show in the first rows and columns of both matrices
in Tables 6.5 and 6.7. The insertion of the random solo does not influence
the overall result in the early epoch (bottom matrix in Table 6.5), but for the
late epoch the influence is evident (bottom matrix in Table 6.7). Therefore,
the example of “All of Me” shows that training the system for more epochs
allows some sense of responsiveness to human input, as evident by the
variability that emerged from the random solo. On the other hand, in “Au
Privave”, the incorporation of the random solo (see Table 6.6) influences
each repetition even from early training epochs, therefore creating differ-
ent variations of the chart in each of the four iterations (except repetition
3 and 4 that differ only by 1%); Variations for this test piece are even more
evident in the more progressed training epoch (see Table 6.8).

A final examination of variability in the generated chords is performed
by measuring the number of different voicings per chord symbol on the
chart. This is a more detailed examination of how the pitch class sets pre-
sented in Tables 6.1-6.2 and 6.3-6.4, are further split down in voicing lay-
outs, i.e. what is the variability in terms of inversions and note doublings
in the chords generated by the system. Figure 6.4 illustrates the average
number of different voicings composed by the system for each chord label
in the chart, in form of errorbars for some random epochs sampled across
all training epochs. As it regards “All of Me” (see Figure 6.4a), each chord
symbol in the chart is materialized with approximately 2.5 different voicing
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Table 6.5: “Quartile” similarity in system-generated chords in “All of Me”
without (top) and with random solo (bottom) at epoch 59.

No solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.09 0.09 0.09
2nd qrt 0.09 0.00 0.00 0.00
3rd qrt 0.09 0.00 0.00 0.00
4th qrt 0.09 0.00 0.00 0.00

Random solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.05 0.05 0.06
2nd qrt 0.05 0.00 0.00 0.00
3rd qrt 0.05 0.00 0.00 0.00
4th qrt 0.06 0.00 0.00 0.00

Table 6.6: “Quartile” similarity in system-generated chords in “Au Privave”
without (top) and with random solo (bottom) at epoch 59

.

No solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.34 0.34 0.35
2nd qrt 0.34 0.00 0.00 0.01
3rd qrt 0.34 0.00 0.00 0.01
4th qrt 0.35 0.01 0.01 0.00

Random solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 1.00 0.99 0.99
2nd qrt 1.00 0.00 0.33 0.34
3rd qrt 0.99 0.33 0.00 0.01
4th qrt 0.99 0.34 0.01 0.00

implementations in epoch 59, almost regardless of the presence of solo (red
’x’ indicates presence of random melody and blue circle absence thereof).
The system presents increased voicing variability dependence on human
solo input for this piece as the epochs increase. In the case of “Au Privave”
(see Figure 6.4b), the tendency of the system to become more dependent
on human input becomes more evident as epochs increase. The error value
of the objective function on the validation set during training is presented
in Figure 6.5. The typical decrease that is observed, indicates that there
is a relation between error loss and system adaptability to human input, in
other words, better data fitting leads to further variability.
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(a) All of me

(b) Au Privave

Figure 6.4: Error-bars of different voicings employed by the system for each
chord label in the chart across a sampled set of epochs.
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Table 6.7: “Quartile” similarity in system-generated chords in “All of Me”
without (top) and with random solo (bottom) at epoch 1251.

No solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.53 0.53 0.54
2nd qrt 0.53 0.00 0.00 0.00
3rd qrt 0.53 0.00 0.00 0.00
4th qrt 0.54 0.00 0.00 0.00

Random solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.51 0.72 0.19
2nd qrt 0.51 0.00 0.30 0.55
3rd qrt 0.72 0.30 0.00 0.72
4th qrt 0.19 0.55 0.72 0.00

Table 6.8: “Quartile” similarity in system-generated chords in “Au Privave”
without (top) and with random solo (bottom) at epoch 1251.

No solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.40 0.40 0.41
2nd qrt 0.40 0.00 0.00 0.01
3rd qrt 0.40 0.00 0.00 0.01
4th qrt 0.41 0.01 0.01 0.00

Random solo
1st qrt 2nd qrt 3rd qrt 4th qrt

1st qrt 0.00 0.65 0.96 0.70
2nd qrt 0.65 0.00 0.91 0.73
3rd qrt 0.96 0.91 0.00 0.83
4th qrt 0.70 0.73 0.83 0.00

6.4.3 Listening Tests

The dataset used to train the artificial agent, contains a broad variety of
popular western music melodies with simulated accompaniments derived
from an augmentation process. Furthermore, the quantitative metrics pre-
sented in the previous subsections are not capable to completely capture
the perceptual quality and originality of the chord accompaniments gen-
erated by the proposed system. To this end, we carried out a subjective
evaluation based on listening tests, aiming to study whether the gener-
ated accompaniments are comparable to the original chords existing in the
dataset.
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Figure 6.5: Loss of the training objective function in the validation set across
multiple epochs.

For preparing the listening tests we randomly selected 10 solo melodies
along with their original accompaniments from the validation set. Then we
used the 10 selected melodic parts to generate their corresponding chord
accompaniments with the proposed artificial agent, thus ensuring that the
system receives novel input, not wielded during training. Accordingly, each
participant was presented with 10 tests, where each test included 3 audio
clips, starting only with the melodic part and followed by its combinations
with the 2 accompaniments (original and generated), which are introduced
in a random order so as to avoid any possible biases. The actual audio
excerpts had a duration of around 30 seconds and looped for 6 times to
reach 3 minutes of total duration. Then, the participants had to answer the
following 3 questions for each accompaniment (6 questions per test) in a
Likert scale from 1 (low) to 5 (high):

• Q1: Evaluate the overall high-level structure of the accompaniment
with respect to the introduced melody.

• Q2: Evaluate the harmonic compliance of the accompaniment with
reference to popular western music.

• Q3: Evaluate the rhythmical compliance of the accompaniment with
reference to popular western music.

In our study 21 participants were involved, 15 male and 6 female, with
the majority being 20 to 40 years old. All the participants were musicians
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with different levels of expertise, having at least intermediate knowledge of
music theory. Consequently, we collected a total of 1260 answers and the
results are presented in Table 6.9. By inspecting only the mean values we
can observe that the participants evaluated slightly better the original ac-
companiments in most questions. However, in order to determine whether
this preference is statistically important, we performed a Wilcoxon rank sum
test [107], having as null hypothesis that there is no difference between the
two accompaniments. The calculated p-values demonstrated that there is
statistically significant difference between the original and the generated
accompaniments in examples 5, 6, 7, 9 and 10 (highlighted with bold fonts
in Table 6.9), while we cannot reject the null hypothesis for the remaining
examples. In other words, in 50% of the examples, we cannot be certain
about whether the generated music is inferior to the original, as far as the
examined qualities can define.

Overall, we can say that the accompaniments generated by the pro-
posed artificial agent had better rhythmical compliance rather than har-
monic, which might be due to the metric information that is included in
the system input. Also, the poor performance in some examples indicates
that the computational capabilities of a single LSTM layer are limited, thus
suggesting more sophisticated architectures to be tested. We strongly en-
courage the reader to visit the online repository and listen to the audio files
of the listening tests.

6.5 Conclusion

This Chapter presented a study on how deep neural network architectures
can be employed for simulating a jazz improvisation setting between a hu-
man soloist and an artificial accompanist, based on a common chord chart.
A basic implementation incorporating deep neural networks was presented
and publicly available data were transformed in a way that all necessary in-
formation for the task at hand became available, i.e. information about met-
ric structure, lead sheet chords, human-generated solo/melody and system-
generated accompaniment responses. The motivation of this work is based
on modeling the interplay between expectation and its violation by two
improvising musicians (one human and one artificial) with implicit ML ap-
proaches (deep neural networks). The proposed methodology included the
development of “a model within a model”, that allows the artificial agent to
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have its own model of expectation for the human improviser. We also con-
sidered additional challenges, including the adaptation of large amounts
of data to the desired form, leading to the development of a data enrich-
ment process that generated variability in the accompaniment parts of the
collected pieces.

Results were obtained by testing the system in 2 real-time simulation
settings: (i) without any assumed human solo, and (ii) with the inclusion of
a random solo. The responses of the system under these two settings in
two well-known jazz standards (“All of me” and “Au Privave”) indicated that
harmonic compliance with the chart chords was mainly achieved, except
mainly from the beginning of each accompaniment session, where the sys-
tem required to “build up memory” (information context) in order to provide
better accompaniment. This is possibly due to the random initialization of
the states in the LSTM networks that are in the core of the presented basic
implementation. Even though it was expected for the system to be influ-
enced by the incorporation of a human solo, this was not the case in both
examined pieces. Especially in “All of Me”, the inclusion of a random solo
did not seem to affect the output of the system, while the system-generated
chords exhibited self-repetition in accompaniment sessions incorporating 4
iterations of the chart. Conversely, in “Au Privave” the inclusion of the ran-
dom solo affected the system output, both by decreasing self-repetition in 4
iterations, and by increasing the number of chord voicings employed by the
system for the given chart chords. In order to evaluate the perceptual qual-
ity of the generated chords, we performed subjective evaluations based on
listening tests, where participants had to compare original and generated
accompaniments given their corresponding melodies, by ranking their har-
monic and rhythmical compliance in a liker scale. A Wilcoxon rank sum test
on the responses showed that 50% of the examples were not significantly
inferior to the original accompaniments.

Further research is necessary for a more thorough examination of such
systems for real-time accompaniment. The results presented herein indi-
cate that it is possible to model expectation and violation thereof for real-
time jazz accompaniment with deep neural networks, however, several lim-
itations have to be acknowledged for performing additional studies:

1. There is no proper data available with all the necessary information
(lead sheet chords, metric information, solo and accompaniment). A
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crucial part of the data, i.e. the accompaniment, was actually con-
structed algorithmically, while the solo part included melodies (rather
than solos) with restricted expressional variability. The data enrich-
ment method that was developed to construct artificial variability in
the data was based on a rudimentary probabilistic implementation
which is not enough for creating consistent connections that could be
learned from the system.

2. The execution time of predictions might be marginally acceptable for
scalable real-time systems. For the presented study, time resolution
was significantly reduced for making the system safely compatible
with real-time conditions, however, this fact reduced the expressional
capabilities of the system. This includes not only restricted capabili-
ties for the system responses, but also restricted capabilities for the
system to identify expressional characteristics of the human soloist.

3. The prominent style found in the dataset was pop, which comprises
smaller harmonic variability in comparison to jazz. Hence, the result-
ing accompaniment needed to undergo creative adjustments to better
reflect the complex progressions found in jazz lead sheets. To delve
deeper into this problem, a consistent dataset of jazz standard accom-
paniment sessions is essential for further study.





CHAPTER 7
Symbolic Music Encodings

7.1 Introduction

The field of Algorithmic Music Composition predates modern computers and
the idea of AI. However, during the last twenty years it has progressed
rapidly, from simple rule-based systems to complex systems (seemingly)
able to compose original music. Central to this technological advancement
was the implementation of deep neural networks models. Despite being a
longstanding field, music generation has not experienced the same rapid
advancements as disciplines such as Natural Language Processing (NLP), al-
though it has adopted several methodologies originally developed for NLP.
This can be attributed, in part, to the abstract and inherently ambiguous na-
ture of music, which presents unique challenges compared to human lan-
guage. Furthermore, the lack of standardized data encoding for musical
information has also hindered progress in this field.

Current approaches often rely on transcription methods intended for hu-
man readability, such as ABC notation [218] or tablatures, or utilize com-
munication standards like MIDI that were not specifically designed for au-
tomatic music generation purposes. The choice between these two encod-
ing types is typically based on their historical usage and intended purpose
[219]. However, it is worth noting that music data can often be effectively
translated or re-encoded between the two, with minimal loss of informa-
tion. This allows for the utilization of music data in contexts that differ
from its original intended usage. For instance, an electronic musician may

133



134 CHAPTER 7. SYMBOLIC MUSIC ENCODINGS

use a Bach score re-encoded to MIDI as input for a synthesizer, or a classi-
cal ensemble may employ scores converted from video game music in the
NES Sound Format (NSF) for their performances [220]. Simultaneously, it
is crucial to clearly define the objective and intended usage of a system.
For instance, Sturm has emphasized in multiple blog posts [221, 222] that
folk-RNN1 is specifically designed to model music transcriptions, particu-
larly those in the ABC music format, which holds significance in the Irish
folk music tradition.

In our study, we aim to avoid considerations of intended usage, such
as the example mentioned above, and instead focus on encodings inde-
pendently of their historical context. This approach enables us to conduct
more comprehensive and general comparisons. Our research primarily fo-
cuses on notations that have been developed within the Western music tra-
dition, spanning from the common practice period to the present. While the
division between East and West is somewhat arbitrary, the term “Western
music” accurately represents a historical tendency in music notation. This
notation system typically incorporates octave equivalence, predominantly
utilizes the 12-tone equal temperament tuning system, provides limited in-
formation regarding duration and pitch (often on a grid-like structure), and
exhibits a preference for keyboard instruments. Furthermore, it treats mu-
sical compositions as unique entities. This particular type of notation, es-
pecially the traditional score, has served as a fundamental source of in-
spiration for the majority of the existing methods used to digitally encode
music.

This Chapter specifically considers transcription methods that concep-
tualize music as a sequence of discrete events unfolding over time. Alterna-
tive perspectives, such as viewing a musical composition as a collection of
time-independent rules, are not included in our analysis. Therefore, a mu-
sic transcription is essentially represented as a sequence of events, which
aligns with popular formats used to encode musical compositions, such as
piano roll, tablature, scores, and MIDI. Furthermore, our focus is narrowed
down to encodings where events possess a clear musical significance. While
notations like ABC notation or MusicXML2 can be seen as representing a mu-
sic transcription as a sequence of characters, they often require complex
interpreters to be processed by computers. On the other hand, MIDI format

1https://folkrnn.org/
2https://w3c.github.io/musicxml/

https://folkrnn.org/
https://w3c.github.io/musicxml/
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provides a straightforward interpretation of events, where note-on events
initiate a note, for example. An example of this distinction is the transition
made by folk-RNN v2, which shifted from a text-based encoding (pure ABC
notation) to a “tokenized” version of ABC, where each token represented an
interpretable event. In our view, it is highly likely that an “ideal” encoding
for music generation would not resemble a sequence of musically meaning-
ful events. Instead, it would abstract and condense crucial elements of a
transcription or performance in a manner that is efficient and enhances the
learning process of the music generation system. Even with the straightfor-
ward encodings utilized in our experiments, the choice of implementation
can significantly impact the system’s performance and characteristics. Fur-
thermore, advancements in ML, such as learned embeddings [223, 224],
have the potential to introduce novel representations for music that are not
reliant on sequential structures and may not even be interpretable by hu-
mans. Nonetheless, we believe that studying simple sequential encodings
is still necessary, as their resemblance to human-readable scores can offer
valuable insights in the early stages of research. Despite the potential de-
parture from these sequential encodings in the future, the examination of
their properties remains relevant.

We perceive the choice of encoding not merely as another hyperparam-
eter of computational models, arbitrarily determined in practice. Instead, it
holds the potential to be an integral component of a system, with its selec-
tion guided by a theoretical and empirical understanding of its implications.
Furthermore, it is important to clarify our usage of the terms “encoding” and
“representation” in this Chapter, which are generally used interchangeably
unless explicitly specified. The typical distinction, as proposed in related
studies such as [191], is that an encoding involves the conversion of musi-
cal information of a given representation into raw data suitable for compu-
tational models. As our study encompasses both high-level and low-level
organization of musical information within a programming context, we pri-
marily employ the term “encoding”, acknowledging that many of the encod-
ings we explore herein would be referred to as “symbolic representations”
in the Music Information Retrieval (MIR) research community.

The remainder of this Chapter is organized as follows. In Section 7.2 we
provide an overview of the context and motivation underlying the present
study. We outline our main research questions and present our general ap-
proach to addressing them. Next in Section 7.3, we explore the existing
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literature in the field of AI, with a specific focus on RNN-based music gen-
eration approaches and techniques. We examine the broader landscape of
music generation systems and delve into the discussion surrounding the
encoding of symbolic musical data. In Section 7.4 we present an overview
of various potential characteristics that are required for designing a proper
musical encoding protocol. Next, Section 7.5 introduces the encoding ap-
proaches proposed in our study and categorizes them in two families. In
Section 7.6 we provide an overview of the employed datasets and compu-
tational models, as well as the training and evaluation strategies applied in
our study. Section 7.7 presents the experimental results based on objective
metrics towards evaluating the effects of each encoding on the structure
of the generated music. We also visualize the model parameters to gain
deeper understanding of the representational capacity of each encoding.
Section 7.8 summarizes the contributions of our study and provides a dis-
cussion on possible future research directions.

7.2 Research Scope and Contributions

The research endeavor for studying the effects of different music encod-
ings on the latent feature representations memorized by recurrent com-
putational models, emerged as a result of the limitations encountered in
the development of the automatic jazz improvisation accompaniment sys-
tem, as described in Chapter 6. Particularly the choice of a suitable musical
representation was not obvious, while the employed encoding strategy ob-
scured possible note repetitions. Furthermore, upon reviewing the existing
literature, we discovered a notable absence of a comprehensive empirical
study on the impact of different information encodings in music generation
systems. While the rationale behind the choice of data encoding was occa-
sionally mentioned in established generative systems, it was typically dis-
cussed in relation to specific problem domains or model architectures, often
with limited detail. In many cases, there was not any information provided
regarding the specific methods used for data encoding. This prompted us
to question the possibility of establishing benchmark tests to compare dif-
ferent musical data encodings, creating a taxonomy of diverse encoding
approaches, and possibly acknowledging that certain encodings are an in-
separable part of a musical work, or alternatively be regarded as just an-
other implementation detail, simply translating “pure” musical information
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to representations ready for computational modeling. Either way, we recog-
nized the value of investigating the effects and characteristics of different
encodings. Either way, we argue that an investigation in their effects and
characteristics would be of scientific value. Such an exploration could shed
light on their role in music generation and provide insights into their broader
implications.

Hence, with this study we aim to provide answers regarding the following
questions. What can we deduce from the different ways to encode symbolic
musical data? Is it possible to categorize them in a systematic way? What
are the advantages and drawbacks for each one, especially regarding auto-
matic music generation systems? By keeping some choices constant, such
as the type of network, the dataset and the way music is being generated,
can we gain some insight on the way certain computational architectures
and types of musical data behave when trained with different encodings?
How do they impact the form of a synthesized musical piece? In order to
address these inquiries we:

• Develop a taxonomy of monophonic music encodings by considering
common musical characteristics.

• Implement an automatic music generation system utilizing a LSTM
RNN computational architecture.

• Train the system using a dataset of musical pieces encoded in various
formats.

• Evaluate the generated output of the various models trained with dif-
ferent encodings and compare them to the original dataset.

• Investigate the ability of each model to learn high-level features by
analyzing the network’s parameters when presented with different en-
codings of the same musical piece.

7.3 Related Work

Although the issue of digitally encoding symbolic musical data has been
a constant challenge in the design of all sorts of systems in MIR applica-
tions, there has been a limited focus on dedicated studies addressing this
issue. Especially regarding the field of ML-based music generation, there
have been three significant surveys conducted. In the study presented by
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Fernandez et al. [225], although various systems are discussed, with the
majority not utilizing neural networks, there is no specific focus on encod-
ings. Similarly, Herremans et al. [226] attempt a taxonomy for music gener-
ation systems, exploring many of the same characteristics as our encoding
taxonomy presented in Section 7.4. However, Briot et al. dedicate an entire
chapter to music representation in their work presented in [191], providing
a comprehensive explanation of important neural network models for music
generation. It also includes a chapter covering the fundamentals of neural
network models used in music generation, making it a valuable resource for
beginners. For a more extensive and mathematically advanced reference
on neural networks, we refer to the work presented by Aggarwal in [227].

Probably the first use of RNNs-based models for automatic music gen-
eration appears in [228], the design characteristics of which still appear in
most sequential music generation models and whose tradition we essen-
tially follow with this study. Some years later, Eck and Schmidhuber [197]
proposed a recurrent system that employs LSTM gates, managing to synthe-
size long-term structured blues improvisations based on a standard blues
chord progression. The availability of various RNN-based models, particu-
larly with LSTM gates, has greatly expanded the repertoire of music gen-
eration techniques. Karpathy’s “char-rnn” model and his blog post [229]
played a significant role in popularizing character-based sequential auto-
regressive RNN models for text generation, which subsequently led to their
adoption in music generation as well. Inspired by char-rnn, numerous mu-
sic generation models have been developed, and one notable example is
“folk-RNN” [230]. Originally trained on a corpus of pieces represented in
the text-based ABC notation, folk-RNN demonstrated the potential of char-
rnn-like approaches in generating folk music compositions.

While we utilized a LSTM-RNN model in our study to explore a well-
established computational architecture, recent advancements in music
generation systems have surpassed simple RNN architectures. Notably, the
Transformer architecture introduced in the work by Vaswani et al. [176], has
gained prominence. This sequential model incorporates attention mecha-
nisms and has been employed by Google’s Magenta Team in the “Music
Transformer” system [231] with highly promising outcomes. Another note-
worthy system developed by the same group is “MusicVAE” [232], which
utilizes a hierarchical decoder within a VAE framework to adapt to sequen-
tial musical data.
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7.3.1 Works exclusively about symbolic encodings

There are more than a few articles and books on symbolic music repre-
sentations, most of which are fairly old and deal with representations that
have since been abandoned [233]. The definitive handbook is considered
the work of Byrd et al. [234], where they catalogue and analyze practically
every major (and a few minor) symbolic representations for music at the
time, including MIDI and its extensions (MIDI-like languages like Csound3),
as well as score representations. Another important study is presented by
Wiggins et al. in [235], where an evaluation of representations is attempted
on the basis of two separate axes:

• Expressive completeness, denoting the range of raw musical data that
can be represented.

• Functional generality, measuring the capacity of representing a range
of high-level structures.

This is a useful approach, which somewhat echoes our historical distinction
between essential digital music protocols like MIDI and human interpretable
scores. The work presented by Honing in [236] provides a valuable explo-
ration of the representation of time and structures in music, highlighting
potential pitfalls and challenges that can arise in this domain. Additionally,
the topic of symbolic music representation is also addressed in the brief but
insightful work by Dannenberg in [237].

Upon reviewing the relevant literature, it becomes apparent that much
of the research on symbolic representations predates the past two decades,
with many of the cited articles being at least 20 years old. Moreover, the
systems mentioned in these works have largely been abandoned by the
majority of music-related research communities, without being replaced by
new designs. This shift can be attributed, in part, to the predominant use of
audio in digital music and sound production over the past 20 years, leaving
symbolic data sources limited to recordings of MIDI performances. There is a
prevailing notion that arguing for a “good choice of representation” is some-
what outdated. Although handcrafted feature extraction has been prevalent
in the field of MIR until recently, it has been surpassed by automatic feature
learning methods when sufficient labeled data is available [238]. Symbolic
encodings often encompass a set of features, particularly when explicitly

3https://csound.com/

https://csound.com/
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specified in the encoding for musical-related attributes. Therefore, select-
ing the appropriate encoding for a given task is akin to manual feature ex-
traction. While our focus primarily centers on encodings intended for com-
putational use, it is worth noting that significant efforts are being made,
primarily within the field of musicology, to develop symbolic encodings for
score visualization purposes. In the work by Napoles et al. [239], it is ar-
gued that the standard approach, “what you see is what you get”, employed
by most electronic notation frameworks, has inherent limitations. Identical-
looking scores can possess different semantic content, which the encoding
should take into consideration in order to avoid any possible discrepancies
in the future.

7.3.2 Evaluating music generation systems

Evaluating generative systems poses inherent challenges [240], and the ab-
sence of semantic information in musical data, along with the lack of widely
accepted performance metrics for computer generated music, further com-
plicates finding a proper validation approach. The computational creativity
research community has extensively examined deep learning music gener-
ation systems [241, 242]. The conventional approach to assess the output
of a generative model involves either human expert evaluation and listen-
ing surveys (i.e objective evaluations), as well as the utilization of objective
measures to evaluate different qualities of the computational models. While
listening tests can be informative, many suffer from limitations such as in-
complete disclosure of testing parameters, insufficient sample sizes to yield
significant results [243], or improper utilization of the Turing Test approach
[244]. Often, the analysis of a selection of the model’s output by a music
expert can provide deeper insights into its quality and characteristics [245].

Alternatively, rather than directly evaluating the output of the compu-
tational model, an evaluation based on the architectural parameters can
be attempted. For instance, in the case of the folk-RNN system [246]4 and
other RNN-based architectures like [247], an evaluation based on the pa-
rameters of intermediate layer weight activations and loss gradients has
been explored. It is important to consider the size of the model, as larger
models such as folk-RNN (containing over 5 million parameters) require ap-

4https://github.com/IraKorshunova/folk-rnn

https://github.com/IraKorshunova/folk-rnn
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propriate statistics and visualizations to extract interpretable information
from the model’s parameters.

7.4 Characteristics of Music Encodings

In this section, we present an overview of various potential characteristics
that an encoding can possess. A sufficiently complex encoding has the ca-
pacity to represent and express these characteristics in different manners.
Some of these traits can be explicitly stated or inferred by human readers
or processing systems, while others may remain immutable throughout the
entire piece, or act as a “state” until altered. Additionally, certain charac-
teristics function as signals, requiring them to be set at every time instance.
Although our experiments solely utilize monophonic encodings (i.e. allow-
ing only one voice to be active at any given time), the following character-
istics are applicable to any method capable of encoding polyphony, which
encompasses a broader range than the systems we examine in our study.
The characteristics discussed as follows are drawn from existing discussions
in the literature on symbolic representation, primarily from [191]. These
characteristics have been either expanded upon or restricted to align with
the scope of our research, while also including some proposals of our own.
While we cannot claim to have provided an exhaustive list, it is valuable to
identify at least these characteristics when encountering or creating a new
encoding. This approach allows the encoding to be placed within a larger
“encoding graph”, where links represent the steps necessary to modify two
encodings until they become essentially the same.

Metric Information In order for a score to be easily interpreted by hu-
mans while conveying rhythmic information, it is typically necessary
to incorporate a metric structure. This structure can be either static
or dynamic, often indicated by a Time Signature with barlines, used
to demarcate measures. The specification of these elements can be
either explicit or implicitly deduced.

Key Information The key signature in staff music notation typically im-
plies the key, either through the presence of accidentals within the
score or by explicit notation. This is particularly common in traditional
and popular music songs, which usually maintain a static key. More-
over, the scale mode can be explicitly specified as well.
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Velocity/Volume/Dynamics Information Velocity is commonly inter-
preted as the “force” exerted by a performer on their musical in-
strument, resulting in a louder sound (thus higher in volume). Due
to the absence of dedicated control knobs on physical musical instru-
ments, velocity and volume are often used interchangeably. However,
in a MIDI file, volume parameters directly influences the instrumen-
tal output volume linearly, while velocity can yield various effects
based on the design of the MIDI instrument. Nonetheless, velocity
primarily controls what we refer to as performance dynamics [248].
In dynamics-sensitive systems and encodings, both velocity and vol-
ume typically need explicit notation.

Time and Tempo In encodings that involve quantized note lengths or in-
corporate metric information, a fixed timestep is generally established
based on a default length. Tempo is often expressed in Beats per
Minute (BPM), where a beat typically corresponds to a quarter note.
To ensure that no timing information is lost, the fixed timestep length
should be the lowest common denominator among the durations of
all the notes. In cases where none of the aforementioned informa-
tion is provided, the progression of time is typically measured in ab-
solute units. Altering the tempo in such situations is equivalent to
multiplying or dividing the current time value at each point by a num-
ber within the range of (0,∞). Alternatively, a third option between
uniform quantization and a real-valued timescale, is the utilization of
variable timestep segmentation. This approach involves employing
separate timesteps for each played note, as demonstrated in [249].

Onset, envelopes and Note Events Virtually, every music encoding en-
compasses an equivalent representation of a note onset, denoting the
precise time at which a note event occurs. In most human-readable
notations, there is typically no explicit information regarding how the
amplitude or other characteristics of a note evolve over time. There-
fore, note events are considered “distinct” and “uniform”, placing the
responsibility of capturing and expressing these evolving characteris-
tics upon the performer or virtual instrument. Regarding pitch, par-
ticularly in the case of pitched instruments, it is commonly specified
either as a discrete element within a specific tuning system or, more
generally, as a fundamental frequency expressed in Hz. Alternatively,
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pitch can also be encoded as an interval relative to a reference pitch,
often employed when the data consists of pieces in the same key.

7.5 Proposed Music Encodings

In the scope of our study, we have identified and categorized music en-
codings into two primary families: (i) timestep-based and (ii) event-based
encodings. Timestep-based encodings employ an implicit representation of
time, relying on a fixed timestep length reminiscent of the piano roll rep-
resentation. On the other hand, event-based encodings provide a granular
representation of music by encoding individual events, allowing for more
detailed and flexible representation of musical information. A detailed de-
scription is presented as follows.

7.5.1 Timestep-based encodings

Fixed timestep encodings have been extensively employed in the early ap-
plications of artificial neural networks for music generation [197, 228]. The
prevailing belief was that their straightforward temporal structure facili-
tated more effective processing of rhythm by the computational models
[250]. In all fixed-timestep encodings, it is essential to distinguish held
notes from repeated ones. One approach, exemplified by tstep1, employs
a “hold event” token, as observed in the “DeepBach” system [198]. Con-
versely, tstep2 adopts a “note-off” token, as seen in [197]. Another variant,
utilized in [228], incorporates an additional token to indicate the start of
notes.

To ensure consistency, we set the timestep to the minimum note length
we wish to represent, relative to a quarter note length. The term “resolu-
tion” is used to denote the value used for dividing one quarter note duration
to determine the relative length of a timestep. For instance, a resolution of
4 corresponds to a timestep length of 1/4 of a quarter note, equivalent to
a 16th note. In our subsequent experiments, we select a resolution of 8

for all encodings, resulting in a minimum duration of a 32nd note. Alterna-
tively, when no metric information is available, absolute time values of note
subdivisions can be calculated based on the given tempo in BPM, and then
quantize the piece accordingly.



144 CHAPTER 7. SYMBOLIC MUSIC ENCODINGS

tstep1

In tstep1, each piece is represented as an array of integers in the range
[0, 129], where:

• 0− 127: Denote a note-on event, where each value corresponds to a
specific pitch.

• 128: Represents a rest, indicating a period of silence.
• 129: Signifies “continue playing the last-seen note”, instructing the

model to sustain the previously processed pitch.

When multiple pieces are concatenated into a larger array, it is possi-
ble to insert piece start and stop symbols between them. These symbols
can be represented, for example, by introducing additional tokens such
as 130 and 131. For instance, let’s consider the transcription of a musi-
cal sequence consisting of a quarter note C3 followed by two eighth C3
notes. In the corresponding sequence vector, it would be represented as
[60, 129, 129, 129, 60, 129, 60, 129]. It is important to note that during the con-
version process, all pieces are quantized to the smallest representable note
length, which is equal to the chosen timestep length.

tstep2

In tstep2, each piece is represented as an array of integers within the range
[0− 129], where:

• 0− 127: Represent note-on events, with each value indicating a spe-
cific pitch.

• 128: Denotes a rest.
• 129: Indicates a note-off event, signifying the end of a sustained note.

In contrast to the tstep1, the tstep2 encoding handles note durations
differently. Held notes are represented by sequences of note-on events. A
note may stop playing either when another note or rest appears, or when a
note-off event is encountered. The note-off event continues the note for the
current timestep and stops it thereafter. Note-off events are only used when
the same note is played consecutively. This distinction becomes important
to avoid ambiguity in representing different note durations. For example,
to encode two C3 8th notes, the vector sequence would be [60, 129, 60, 129],
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instead of [60, 60, 60, 60], which would represent a C3 quarter note (assuming
a 16th note resolution).

The inclusion of note-off events in the timestep-based notation was dis-
cussed in [197] to address the challenge of encoding notes with the min-
imum timestep length. However, herein we utilize the note-off event only
when the same note is played successively. To fully resolve this issue, a sep-
arate note-off event would be required for cases where a note is held for
only one timestep and then repeated. For instance, to encode three C3 16th

notes, the sequence would be [60, 130, 130], where 130 represents the note-
off event. During our experiments, the quantization challenges described
above were not extensively addressed, as the chosen resolution proved to
be sufficient in preserving note onset and duration information.

The main reason for employing a separate timestep-based encoding,
aside from addressing quantization challenges, was to examine the event
distribution in both datasets. In Figure 7.2, which illustrates the token dis-
tribution in the dataset used for our initial experiments, we observe that
the distribution in tstep2 is less skewed compared to tstep1, having sig-
nificantly higher number of note-on events. Consequently, the distribution
of note-on events in tstep2 no longer aligns with the distribution of their
original onsets.

7.5.2 Event-based encodings

In event-based encodings, musical data is represented as a series of dis-
crete events or individual commands. Each event typically contains infor-
mation about a specific occurrence, such as the onset, pitch, duration, ve-
locity, or any other relevant attribute of a musical note or event. These
events are arranged in a sequential order to capture the temporal struc-
ture of the musical piece. Unlike timestep-based encodings, which rely on a
fixed timestep length and implicitly represent time, event-based encodings
focus on the individual events themselves. This approach allows for greater
flexibility in representing musical dynamics and note envelopes, as events
can have varying durations and temporal relationships. Event-based encod-
ings are particularly useful for capturing expressive performances, complex
rhythms, or polyphonic music, where multiple events may occur simultane-
ously or in close succession.

The most widely-used encoding based on events is the MIDI format that
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represents musical events as discrete messages, including note-on and
note-off events, control changes, pitch bends, and more. Another famous
example is the ABC notation [218] that encodes musical events using let-
ters, numbers, and symbols to indicate notes, rhythms, and other musical
information. Most event-based encodings are designed to allow for pre-
cise representation and manipulation of musical events, facilitating various
music-related tasks such as analysis, composition, transcription, and gener-
ation. However, the aforementioned encoding systems still require to apply
some kind of preprocessing in order to be properly employed by the un-
derlying computational model. In this regard, we propose an event-based
encoding approach that tries to bridge this gap, referred herein as event1,
and its methodology is described as follows.

event1

The event1 encoding draws loose inspiration from the MIDI protocol and in-
corporates tokens for note-on and note-off events. It explicitly represents
the progression of time using special “move forward in time” events. Specif-
ically:

• 0 − 127: Correspond to note-on events.
• 128 − 255: Denote note-off events.
• 256 − 356: Represent time-shift events.

Rests are implicitly represented in this encoding but can be made ex-
plicit by including an additional rest token with its corresponding note-off
token. The time-shift events are utilized to advance time by a specific incre-
ment, which can be measured in seconds (or any subdivisions), or aligned
with a predefined grid (such as quarters, 16th etc.). Moreover, it is com-
mon practice to use various time lengths. For example, the range 256− 266

can represent increments of 1 to 10ms, while 267− 277 can represent incre-
ments of 10 to 100ms, and so on. In our implementation, the event with a
value of 256 represents the shortest time interval, and subsequent events
represent multiples of that interval. This implementation simplifies compar-
isons with timestep-based encodings, as the length of the 256 event aligns
with the chosen timestep length, enabling consistent use of the resolution
parameter across all considered encodings.
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A typical pattern, particularly in well-quantized pieces, involves a se-
quence of events, for instance: note-on, a period of waiting, note-off, an-
other period of waiting, followed by another note-on, and so on. Conse-
quently, each note in the original piece requires three or four distinct events
to encode. This means that there is a strict limit on the number of events
needed to represent a piece, and this limit does not increase with reso-
lution. For most musical pieces, this results in significantly fewer events
compared to timestep-based encodings, except for densely packed, well-
quantized pieces with a high resolution, where a timestep-based encoding
theoretically requires one or two events per note. This distinction becomes
especially important when aiming to capture real-time performances, where
the time step can be as low as 1/44100 s. A similar encoding to event1, with
the inclusion of velocity events, was employed in Magenta’s “Performance
RNN” system [251].

7.6 Methodology

In this section, we provide an overview of the datasets, computational mod-
els, training and evaluation strategies employed in our study. We conduct
two major experiments, where we train a LSTM-based recurrent architec-
tures on two datasets using different encoding approaches, in order to as-
sess the resulting representations through subjective and objective mea-
sures. In our initial experiments we focus on a small dataset of European
folk songs encoded in tstep1, tstep2, and event1. However, in the second
experiment we employ a larger dataset of Irish folk tunes, restricting the
computational model to a single music style, encoded in tstep1, event1,
and a tokenized version of the ABC notation system. For further details,
including the Python source code developed for the experiments, as well
as generated audio examples of the trained models, please refer to the
project’s GitHub repository5.

7.6.1 Datasets and preprocessing

In the first part of our experiments, we utilize a dataset consisting of 7264
original melody transcriptions in the **kern format. These transcriptions
were sourced from the online KernScores library [252], specifically from two

5https://github.com/manosplitsis/MusicRep

https://github.com/manosplitsis/MusicRep
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Listing 7.1: A German folk piece in the Essen corpus in **kern format.
!!!OTL: ABSCHIED MUSS ICH NEHMEN HIER

!!!ARE: Europa , Mitteleuropa , Deutschland , Niederrhein;

Westfalen; Bergisches Land

!!!SCT: E0776

!!!YEM: Copyright 1995, estate of Helmut Schaffrath.

**kern

*ICvox

*Ivox

*M4/4

*k[b-e-a-]

*E-:

=1

{4e-

8e-

8g

4b-

4b-

=2

4.g

8f

4e-

4r}

collections: (i) approximately 6000 songs from the Essen folksong collection,
and (ii) 1000 songs collected by Daimen Sagrillo6. The **kern notation style
is a part of the Humdrum toolkit, which provides a text-based representa-
tion of music along with software for musicological analysis. An example
of the first two measures of a typical **kern file from the dataset is pre-
sented in Listing 7.1. Each voice in the transcription is represented by a
separate column containing note, duration, key, and metric information.
Although the dataset is relatively small in terms of the number of pieces
and average duration, the **kern representation offers rich structural and
metadata information, facilitating the extraction of relevant features when
necessary. Furthermore, the Humdrum music format can be easily parsed
using the music21 MIT Python library7 [216], which we use for all pre- and
post-processing of the musical data.

Therefore, the **kern files were processed and converted into music21
Streams. We removed irrelevant information, such as titles and comments,

6https://kern.humdrum.org/
7http://web.mit.edu/music21/

https://kern.humdrum.org/
http://web.mit.edu/music21/
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Figure 7.1: A German folk piece in the Essen corpus, in score format.

and we arranged the transcriptions into a flat structure. Subsequently, we
extracted the tstep1, tstep2, and event1 representations for each song as
vectors of integers. A typical original transcription from the Essen corpus
is illustrated in Figure 7.1. By plotting the distributions of the different to-
kens we can observe the effect of the considered encoding methods on the
resulting amount of data. Figure 7.2 displays the number of occurrences
in a logarithmic scale, for every token in the three encodings (from top
to bottom: event1, tstep1, tstep2). The token numbers correspond to the
descriptions provided in Section 7.5. In all plots, note-on tokens are repre-
sented in blue. As it regards event1, we can observe that the distribution
of note-off tokens, which are highlighted in red, mirrors that of note-on to-
kens, as expected. On the other hand, the distribution of tokens in tstep2
is less skewed compared to tstep1, having significantly higher number of
note-on events. Consequently, the distribution of note-on events in tstep2
no longer aligns with the distribution of their original onsets.

For the second part of our study, we opted to work with a larger dataset
while simultaneously limiting the variation in musical styles. To achieve
this, we utilized a collection of 45849 transcriptions of Irish folk tunes in
ABC format, which were originally used to train folk-RNN v3 model8. These
tunes were sourced from the weekly compilations provided by “The Ses-
sion” community 9 and preprocessed in a later stage by the folk-RNN team.
In the preprocessing stage the ABC dataset underwent several modifica-

8https://github.com/IraKorshunova/folk-rnn/tree/master/data
9https://thesession.org/

https://github.com/IraKorshunova/folk-rnn/tree/master/data
https://thesession.org/
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event1

tstep1

tstep2

Figure 7.2: Distribution of ground truth labels for each representation (top to
bottom: event1 - tstep1 - tstep2). The y axis denotes number of occurences
(in log scale).
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Listing 7.2: The Swallow’s Nest
T: Swallow ’s Nest , The

M: 4/4

L: 1/8

K: Gmaj

|~G3A GEDE|G2BG AedB|A~E3 ~A2Bd|e2fa gedB|

~G3A GEDE|G2Bd efge|d~G3 EGDG|1FGAF GcBA :|2 FGAF G2 z2|:

e~g3 edBA|GEDE G2Bd|eaag aged|~B3d e3g|

d~g3 agba|aged e2ge|d~G3 EGDG|FGAF G2 z2:|

tions, removing all fields, except the meter (M) and key (K) information.
Additionally, the tunes were transposed to a key without accidentals, cor-
responding to one of the modes of the C major scale. Finally, the files were
tokenized by introducing spaces between individual tokens.

Although the “pure” text-based ABC format falls outside the direct scope
of our study, it is worth mentioning that the tokenized version proposed by
folk-RNN introduces a transformation that groups symbols together to form
new “musically meaningful” symbols. It is important to note that this tok-
enization process is arbitrary, as different choices could lead to distinctive
encodings. For instance, the duration of a note could be included in the
note tokens, or the note octave could be represented as a separate token.
The tokens represent various elements, such as individual notes (e.g. ‘c’,
‘Ĝ’, ‘=f,’), duration adjustments (e.g. ‘/2’, ‘4’), complete header expressions
(e.g. ‘M:6/8’, ‘K:maj’ indicating C major, ‘K:dor’ indicating D dorian), and bar
lines (‘|’, ‘|:’). A typical transcription of an unprocessed tune in ABC format
is presented in Listing 7.2. The same tune after undergoing tokenization,
with added lines after the header for readability, is displayed in Listing 7.3.

We extracted the tstep1, tstep2, and event1 encodings from the MIDI
files provided by the folk-RNN team. The MIDI files were generated by con-
verting the ABC dataset using the abc2midi program10. The first bar of
“The Swallow’s Nest” encoded in tstep1 is presented in Listing 7.4, while
the encoding in event1 is displayed in Listing 7.5. The resulting datasets
exhibit various differences. The average sequence length required to rep-
resent one measure is 8.71 (STD 3.362) for the tokenized ABC dataset, 20
(STD 3.939) for the event-based encoding, and consistently 32 for the fixed-
timestep encoding. This means that the musical context provided to the

10https://abcmidi.sourceforge.io/

https://abcmidi.sourceforge.io/
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Listing 7.3: The Swallow’s Nest (ABC Tokenized)
<s>

| =C 3 =D =C =A, =G, =A, | =C 2 =E =C =D =A =G =E |

=D =A, 3 =D 2 =E =G | =A 2 =B =d =c =A =G =E |

=C 3 =D =C =A, =G, =A, | =C 2 =E =G =A =B =c =A |

=G =C 3 =A, =C =G, =C |1 =B, =C =D =B, =C =F =E =D :|

|2 =B, =C =D =B, =C 2 z 2 |: =A =c 3 =A =G =E =D |

=C =A, =G, =A, =C 2 =E =G | =A =d =d =c =d =c =A =G |

=E 3 =G =A 3 =c | =G =c 3 =d =c =e =d |

=d =c =A =G =A 2 =c =A | =G =C 3 =A, =C =G, =C |

=B, =C =D =B, =C 2 z 2 :|

</s>

Listing 7.4: The Swallow’s Nest (tstep1 - first bar)
[60, 129, 129, 129, 129, 129, 129, 129, 129, 129, 129,

129, 62, 129, 129, 129, 60, 129, 129, 129, 57, 129,

129, 129, 55, 129, 129, 129, 57, 129, 129, 129]

Listing 7.5: The Swallow’s Nest (event1 - first bar)
[60, 267, 188, 62, 259, 190, 60, 259, 188, 57, 259, 185,

55, 259, 183, 57, 259, 185]

computentional model within a fixed-length sequence is three times larger
when encoded in ABC compared to tstep1. This disparity increases further
for fixed-timestep encodings as the time resolution becomes finer.

The resulting token distributions also present notable distinctions. In
Figure 7.3, we plot in a logarithmic scale the number of appearances of
each token for the three considered encoding approaches. Notably, there is
a prominent prevalence of the “advance-by-1/8” token in event1 (visible as
a spike in the green area of the event1 plot). This bias is a characteristic of
the dataset, as further evidenced when visualizing the mean Note Length
Transition Matrix in Figure 7.6. As observed in the token distributions of
the dataset employed in our initial experiments, the distribution in tstep1
is highly skewed, with two orders of magnitude more “hold” tokens (in red)
compared to note-on or rest tokens (in blue).
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ABC

event1

tstep1

Figure 7.3: Distribution of distinct tokens for each representation (top: ABC,
left: event1, right: tstep1). The y axis denotes absolute number of oc-
curences in the dataset, in a logarithmic scale.
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7.6.2 Model Architecture and Training

In both experiments, we deliberately opt for a small and shallow RNN archi-
tecture with a single LSTM layer and 32 hidden cells. We make this choice in
order to establish a baseline architecture using a less complex model. More-
over, a shallow model with fewer parameters allows for easier inspection
and visualization of the activations of the LSTM gates, that further enables
us to gain insights into how the model “comprehends” each encoding.

In the initial experiment, we tackle the automatic music generation task
as a many-to-one sequence problem. In this setup, a sequence of tokens is
fed into the LSTM layer, having as target (prediction) the token of the next
timestep/event. The output of the LSTM layer is passed through a “Dense
linear” layer with dimensionality equal to the size of the corresponding en-
coding dictionary. Next, we apply a softmax function to the output of the
“Dense linear” layer, resulting in a probability distribution over the dictio-
nary size. The final prediction is the token with the highest probability. Dur-
ing training, we apply a dropout rate of 0.2 on the LSTM gates (i.e. randomly
setting 20% of the layer’s activations to 0), aiming to enhance the model’s
generalization capacity [253].

The computational model is trained using partially overlapping se-
quences of 64 tokens. Each token is converted into a one-hot encoded
vector with a dimension equivalent to the size of the dictionary accordingly.
This conversion is applied by employing a sliding window technique across
the length of each piece in the dataset, resulting in a total of L − 64 se-
quences for a piece with a length of L. The categorical cross-entropy loss
is calculated between the true and predicted token, and the gradients are
back-propagated after processing a batch of 256 sequences. The trainable
parameters of the model are optimized using the Adam Adam optimization
function [106], with an initial learning rate of 0.0001. Training continues
until convergence is achieved, typically spanning more than 100 epochs.

In the second experiment, we address the music generation system
by following a many-to-many sequence learning approach (i.e. seq2seq),
where the target for a given input sequence is the entire sequence shifted
by one token forward in time. This approach allows for the computation of
the loss function across all predictions after processing a sequence sam-
ple. To ensure consistent number of tokens in a sequence sample, we use a
sequence length of 100 tokens for all the considered encoding approaches,
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Figure 7.4: Plots of the accuracy and loss function (red color corresponds
to the training set, while blue color indicates the validation set) for the ABC
dataset in the second experiment.

while smaller sequences are zero-padded to that length. During training,
we monitor the validation loss and apply an early stopping when the loss
value increases for more than 2 consecutive epochs. In Figure 7.4 we plot
the loss value and accuracy rates on the training set (in red) and validation
set (in blue), when fitting the model to the ABC dataset over 161 epochs.

7.6.3 Generation

In both experiments, the generation of new pieces follows an autoregres-
sive process, where every prediction is generated based on past tokens, up
to the current time instance. Especially in the first experiment, our model
architecture only allows for a priming input sequence of fixed length, equal
to the sequence length employed during training. Therefore, the resulting
input seeds are relatively large compared to the average piece length in the
dataset. Moreover, we apply a sampling function on the softmax probabili-
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ties to select the next token, in contrast to the argmax approach employed
during training. The sampled token is then appended to the seed sequence,
while we discard the first token in the seed, ensuring a constant sequence
length during generation. As a result, the model “disregards” the begin-
ning of a piece once it generates the subsequent part, as its past context
extends as far back as the sequence length.

In the second experiment, our model implementation allows for se-
quences of arbitrary length. Hence, we start with an initial priming se-
quence of exactly one bar, the length of which varies significantly for the
three encoding methods examined herein. After each step, the predicted
token is appended to the seed, effectively preserving the context of the
entire generated piece at all times (at least in theory). However, it is impor-
tant to note that LSTM models, despite being more optimized than regular
RNNs, still are prone to vanishing gradient issues. As the gradient is back-
propagated through time after each training batch, it diminishes over a
finite number of timesteps.

During our experiments, we sample directly from the softmax distribu-
tion to obtain the index of the predicted tokens, in order to minimize the
effect of autoregressive “Exposure Bias” as much as possible. In practical
music generation scenarios, RNNs often employ sampling strategies to con-
trol the level of randomness introduced in the generation process. These
strategies can involve dividing the “Dense linear” logits by a fixed value,
known as the “temperature” factor, before applying the softmax function
during inference, or sampling from only the top-K probability tokens.

7.7 Experimental Results and Evaluation

Designing an experiment that effectively measures the impact of music en-
coding, especially in the context of music generation, poses a nontrivial
challenge. This is further compounded by the fact that evaluating music
generation systems remains an ongoing research problem. To this end, our
objective is to employ music-specific objective measures to evaluate the
effect of each encoding on the statistical similarity between the generated
output and the original dataset, similar to the approach presented by Yang
and Lerch [243]. Furthermore, we aim to conduct an analysis on the model’s
parameters to gain a deeper understanding of its learning capacity for each
encoding. This analysis draws inspiration from the methodologies employed
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in [254] and [246]. Additionally, we evaluate empirically the quality of the
generated music.

7.7.1 Initial Experiments

As mentioned in Section 7.6.1, in our initial experiment we utilized a dataset
consisting of 7264 European folk songs originally encoded in the Humdrum
format as **kern files. These files were used to generate three distinct tok-
enized datasets in the event1, tstep1, and tstep2 encodings. Following the
evaluation strategy proposed by [243] for music generation networks, we
selected 200 random pieces from our validation set. Using the first segment
of each piece as a seed melody, we generated a set of 200 melodies, each
consisting of 8 bars (exactly 16 seconds in duration at a tempo of 120 BPM),
for each encoding.

Objective Measures

Subsequently, we computed 12 music-specific statistical features for each
set, including Pitch Count (PC), Note Count (NC), Pitch Class Histogram
(PCH), Pitch Class Transition Matrix (PCTM), Pitch Range (PR), average Pitch
Shift (PS), average Inter-onset Interval (IOI), Note Length Histogram (NLH),
and Note Length Transition Matrix (NLTM). To facilitate comparison among
different systems, we performed an exhaustive cross-validation by measur-
ing the distance between each sample within a set (i.e. intra-set distance)
and comparing it to all samples from another set (i.e. inter-set distance).
These relative measures provided histograms for each feature, from which
we computed continuous Probability Density Functions (PDFs) using the Ker-
nel Density Estimation (KDE) approach. To evaluate the similarity between
generated and original data, we computed the Kullback–Leibler Divergence
(KLD) and Overlapping Area (OA) between the intra-set PDF of the gener-
ated data, as well as the inter-set PDF between the generated and original
data. A low KLD indicates similarity in the shape of the compared distribu-
tions, while a high OA indicates a higher probability density overlap. These
similarity metrics allowed us to assess how closely the generated outputs of
each model resembled the original dataset across different measures. The
results for the KLD and OA for the three sets are presented in Table 7.1. Our
main focus was to answer the question: which of the three representations
produced pieces that closely resembled the initial dataset, and why? While
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Table 7.1: Intra-set similarity measures for the three encodings in the initial
experiment.

PC PC/bar NC NC/bar PCH PCH/bar PCTM PR PS IOI NLH NLTM

ts
te

p1 KLD 0.738 0.059 0.286 0.162 0.054 0.310 0.112 0.770 0.001 0.038 0.045 0.400

OA 0.831 0.589 0.569 0.532 0.844 0.847 0.390 − 0.935 0.829 0.763 0.461

ts
te

p2 KLD 0.272 0.403 0.028 0.110 1.094 1.491 0.326 0.020 0.008 0.031 1.525 0.058

OA 0.819 0.943 0.944 0.847 0.339 0.357 0.638 0.864 0.881 0.847 0.058 0.236

ev
en

t1 KLD 0.501 0.069 0.017 0.022 0.035 0.132 0.079 0.164 0.004 0.006 0.043 0.061

OA 0.908 0.925 0.906 0.933 0.815 0.828 0.877 0.892 0.860 0.922 0.909 0.891

the absolute measures (as shown in Table 7.2) provided some insights, they
only exhibited a weak correlation or failed to provide a comprehensive per-
spective.

Upon analyzing the relative measures, several trends become apparent.
In Figure 7.5, we present the computed PDFs for the intra-set and inter-set
distances of the PCH, comparing the original dataset with each generated
set. The blue and green curves represent the variation within the dataset
and the generated output, respectively, providing insights into the distri-
bution characteristics of each measure. For instance, in Figure 7.5, the
intra-set PDF of the dataset exhibits a bell-like shape, indicating that the
variation of the pitch class histograms follows a Gaussian distribution with
a mean value of 0.38 and standard deviation of 0.130, as shown in Table 7.2.
It is worth noting that relying solely on the numerical values from Table 7.2
may be insufficient when the distribution deviates from a Gaussian shape,
as observed in the case of tstep2. In this case, the distribution takes the
form of a mixture of Gaussian distributions with distinct means.

Considering the plots for all features collectively, we observe that the
intra-set distribution of event1 consistently aligns closely with that of the
original dataset. This finding is also reflected in the similarity measures pre-
sented in Table 7.1, where event1 consistently exhibits high OA and low KLD
values, indicating a high degree of similarity to the original dataset. On the
other hand, the performance of the other two encodings (tstep1 and tstep2)
varies, depending on the specific measure being examined. Furthermore,
the aforementioned findings align with subjective evaluations provided by
3 human experts. Upon listening to the generated samples, several ob-
servations become apparent. As it regards samples generated with the
model that was trained with the event1-based encodings demonstrate su-
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Figure 7.5: Pitch Class Histogram Intra- (blue and green curves) and inter-
set (orange curve) difference distributions for the three generated sets in
the initial experiment. Set1 is always the Dataset (in blue), while set2 is
(from top to bottom) event1, tstep1,tstep2 (in green).
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perior quality, conforming to the stylistic rhythm and tonality of the dataset.
The only discrepancy, which the statistical measures fail to capture, is the
occasional lack of adherence to a metric structure, resulting in syncopa-
tions or, at worst, complete arrhythmia. This may be attributed to directly
sampling the softmax distribution, which occasionally generates inappropri-
ate time-skip events, particularly given the distribution of time skip events
(see Figure 7.2). Many of these syncopations are imperceptible when listen-
ing without a metronome or rhythmic accompaniment. In contrast, tstep1,
while generally maintaining a consistent metric structure, produces numer-
ous off-key notes and irregularly spaced intervals (partially attributable also
to the sampling approach). Examples from tstep2 appear to be the weakest
among the three encodings, both rhythmically and in terms of pitch. They
feature prolonged notes (as expected from the data distribution) followed
by rapid successions of short notes, likely due to sampling-based genera-
tion. Audio examples from the generated pieces can be found online in the
repository of the project11.

7.7.2 Second Experiment

In our second experiment, we incorporated the tokenized version of ABC
notation provided by the folk-RNN project [230], along with the event1 and
tstep1 encodings, according to the results from the initial experiment. The
dataset we employed comprises 12058 Irish folk tunes in 4/4 time signature,
all transposed to the key of C major or its modes.

Objective Measures

Following the approach outlined in [243], we generated 200 music pieces us-
ing the models trained with each encoding. To serve as priming sequences
for the generation process, we kept the first bar of 200 randomly selected
tunes from the validation set, which vary in length to precisely represent
one measure in 4/4 time signature. We generated exactly 8 measures for
each song, resulting in a total of 200 samples, consisting of 9 bars each,
equivalent to a duration of 18 seconds at 120 BPM, for each encoding. For
comparison purposes, we also considered the first 9 bars from the randomly
selected 200 original pieces. Subsequently, all samples were converted to

11https://github.com/manosplitsis/MusicRep

https://github.com/manosplitsis/MusicRep
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MIDI format, allowing us to extract the same statistical measures, as out-
lined in Section 7.7.1.

The statistical measures for the three models, along with the corre-
sponding objective metrics of the original tunes from the validation set, are
presented in Table 7.3. However, interpreting the results directly from these
measures can be challenging. To gain a deeper understanding of the com-
puted metrics, we visualize some of the absolute measures in Figure 7.6,
where we plot the mean NLTM and mean PCTM for the original validation set
in the top row, while in the bottom row we present the NLTM and PCTM of a
random sample from the original validation set. The mean NLTM indicates
that, on average, the samples predominantly consist of 8th notes. As ex-
pected, the mean PCTM reveals that the dataset contains only notes from
the C major scale, providing insights into prevalent melodic motions such
as stepwise motion being more common, while interval skips of a 4th or
5th note are less frequent. Comparing the intra-set distances of the PCTM
and NLTM measure between the original and the generated sequences, we
observe that there is considerable variance in the original data, while the
generated sets exhibit smaller variances. This observation aligns with the
typical behavior of RNNs to converge towards the mean.

By analyzing the results presented in Table 7.4, we observe that all three
models exhibit relatively low KLD values and high OA values, when com-
paring the PDF of inter-set distances in the generated sequences, to the
intra-set distances between the original and generated sets for most of the
computed objective measures. Based on the KLD and OA statistics alone,
it is difficult to determine if one model is better at capturing the charac-
teristics of the original dataset compared to the others. However, the ABC
encoding appears to demonstrate slightly better performance across most
measures. Nevertheless, further examination of the generated sequences
by domain experts is necessary to provide a comprehensive assessment.
Additionally, it is important to consider that the advantage reported by the
ABC encoding may be attributed to a single re-encoding process, compared
to the other encodings that involve multiple transformation steps from ABC
to the target encoding and finally to MIDI, which could introduce artifacts or
alter timing information that may not be present in the original transcrip-
tions.
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Figure 7.6: Top row: Mean NLTM (left) and PCTM (right) for the original
dataset. Bottom row: NLTM (left) and PCTM (right) for a random tune in
the dataset of employed in the second experiment.

Table 7.4: Intra-set similarity measures for the three encodings in the sec-
ond experiment.

PC PC/bar NC NC/bar PCH PCH/bar PCTM PR PS IOI NLH NLTM

ts
te

p KLD .1369 .2657 .0078 .0924 .0080 .1686 .0456 .0718 .0141 .0650 .0230 .0133

OA .7419 .9351 .8675 .8942 .6580 .4799 .4780 .7893 .8306 .8649 .8586 .9067

ab
c KLD .1746 .1046 .0088 .0334 .0234 .1947 .1120 .0075 .0043 .1280 .0151 .0129

OA .8775 .9549 .9062 .8981 .8251 .5556 .7153 .9267 .9048 .8709 .9074 .9314

ev
en

t KLD .2605 .5395 .0395 .3559 .0552 .9893 .4550 .0296 .0085 .3785 .0397 .0194

OA .7358 .9366 .7323 .9041 .6768 .7352 .4495 .8132 .8464 .8615 .8529 .8536
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Examining model parameters

In this experiment we also aimed to investigate the parameters of the com-
putational models, to determine if they have captured valuable information
regarding the musical structure of a piece, with respect to the underlying
encoding. To achieve this, we utilized the trained models corresponding
to each encoding and employed complete pieces from the respective val-
idation set, as input to the models. The last token representing the “end
of piece”, is excluded from the input sequences. Then, we generated se-
quences of predictions, matching the length of the input sequences by uti-
lizing the contextual information from preceding predictions (i.e. autore-
gressively). Throughout the generation process, we stored the probability
distributions provided by the softmax function, along with the states of the
LSTM layer that employs a tanh function, limiting the state values within
the range of [−1, 1].

During listening-based examination of the generated music, a common
characteristic observed in all models, despite their overall adherence to the
correct tonal key, is their consistent ability to maintain rhythmic regularity,
predominantly producing music perceived as following a 4/4 time signature.
Since the metric structure is implicit in event1 and tstep1 encodings, we
conducted a visual analysis of the states for each of the 32 cells within the
LSTM layer, focusing on the onset of a melody in all encodings. Our objec-
tive was to identify potential correlations between the activation patterns,
and metric or other musical information. In Figure 7.7 we present these vi-
sualizations for each encoding approach considered in our study, where the
top layer represents the input sequence, depicted as a dark blue bar, that
corresponds to the beginning of a tokenized ABC tune. In the middle layer,
the cell activations are visualized using a color heat map, where yellow in-
dicates higher activation values (closer to +1), dark blue represents lower
activation values (closer to −1), and light green represents intermediate
activation levels. On the bottom part we show the top-5 probability predic-
tions, as computed from the softmax function. We can draw several notable
observations from these visualizations. In the case of ABC notation, it ap-
pears that cells 9 and 22 exhibit distinct activation patterns associated with
barlines. Specifically, the 9th cell gets activated when a barline is processed
by the model, while the 22nd cell shows anticipatory activation, preceding
the occurrence of a barline (as indicated by the elevated probability of a
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barline following these activations). Although the precise interpretation of
other cell behaviors may not be immediately apparent, there is some indi-
cation of non-local memory retention, exemplified by the behavior of the
10th cell.

When examining the other encodings that lack explicit reference to bar-
lines, it becomes challenging to discern whether the model possesses an
inherent sense of measuring time. Instead, the focus shifts to identifying lo-
cal patterns that indicate the presence of melodic phrases. Especially in the
case of event1, we can observe that following a note-on event, the model
consistently generates an “advance-time” event, followed by the appropri-
ate note-off event for the currently playing note. Notably, the “advance-
time” events with the highest probabilities correspond precisely to the du-
ration of an 8th note, which is the default note length for all ABC pieces.
A similar preference for 8th note durations can be observed in the softmax
output of the tstep1 model. This remark also aligns with the results from the
mean NLTM presented in Figure 7.6, indicating that the model has learned to
consistently output note lengths that are representative of the dataset’s av-
erage. For both event1 and tstep1 encodings, note-on tokens exhibit fewer
activations, with only a single cell consistently activating upon processing
this token. Moreover, in all three models, we can observe that in the case of
generating a note-on token, there is no discernible bias towards a particular
note prediction. Consequently, the melodic output demonstrates significant
variability, as a well-designed sampling strategy would mitigate repetitive
patterns.

7.8 Conclusions

To the best of our knowledge, this study represents the first empirical eval-
uation of the impact of symbolic musical data encodings, on automatic
music generation systems based on recurrent computational architectures.
Our approach focused on investigating various encodings within a well-
established baseline model, employing a shallow LSTM model for autore-
gressively generating monophonic melodies. Specifically, we examined a
selection of widely-used symbolic encodings. Our experimental results con-
clusively demonstrated that the choice of data encoding employed in train-
ing a music-generating model, significantly influences the resulting musical
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(a) The piece in tokenized ABC.

(b) The event1 piece.

(c) The piece in tstep1.

Figure 7.7: Activations and predictions for the same song. For each of the
three, the top row shows the input sequence, middle part shows the LSTM
activations for each neuron (Dark blue is -1, Yellow is +1), the bottom part
shows the top-5 probability predictions.
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structure, including aspects such as musical phrasing and metric organiza-
tion.

However, our study is subject to several inherent limitations. Generaliz-
ing results from such a small-scale study is challenging. Even within the con-
fines of our research scope, there exists a multitude of potential encodings,
many of which are not readily translatable across different formats and pos-
sess distinct characteristics that influence each model type in unique ways.
It is worth noting that implementation issues and the availability of reliable
parsing and conversion software tools, further compound these challenges.
Additionally, compared to audio representations, there is a scarcity of sym-
bolic musical data that encompasses sufficient metadata and exhibits the
necessary diversity to facilitate large-scale experiments. Most readily avail-
able symbolic music data, primarily comprises human-made transcriptions
of scores, predominantly representing Western common practice music, or
a variety of curated or uncurated MIDI files.

Nonetheless, this should not discourage further research in this area.
There are still valuable challenges to be explored. One possible direction is
to conduct further experiments on popular encoding methods, which sur-
prisingly are not as numerous as one might expect, using CNNs, transformer-
based models or other state-of-the-art computational architectures. This
line of research has the potential to shed light on how different systems pro-
cess and retain information for creative tasks. In the long run, the objective
could be to develop innovative approaches to efficiently encode musical
information into abstract representations, potentially eliminating the need
for manual transcriptions, while enabling translation into human-readable
formats or plain MIDI events. Additionally, the convergence of musical
notation and performance opens up possibilities for designing AI-enabled
musical instruments capable of processing symbolic notations and inter-
preting them without explicit information on absolute timing or velocity,
thereby introducing their own variations and styles during the interpreta-
tion process.



Part IV

Conclusions





CHAPTER 8
Conclusions and Discussion

8.1 Overall Conclusions

In this dissertation we have explored various aspects of computational mu-
sic generation and interaction, contributing to our understanding of the
field and paving the way for future advancements. The research endeav-
ors unfolded with a focus on different tasks, encompassing musical ges-
ture recognition, virtual music instrument interaction, audio-driven dance
motion synthesis, jazz improvisation accompaniment generation, and sym-
bolic music encodings. Throughout the various experimental campaigns
described herein, the performance of recurrent computational architectures
(i.e. LSTM RNNs), and convolutional models were examined, providing valu-
able insights into their respective capabilities and implications.

Our research began with the task of musical gesture recognition, where
different computational models were evaluated. The initial architecture, uti-
lizing a single LSTM layer, served as the foundation for a real-time gesture
recognition system. However, subsequent experimentation using CNNs
for computing feature embeddings, such as the CNN-LSTM approach and
the deep CNN (dCNN) architecture described in Chapter 3, proved to be
more effective. Both models outperformed the shallow LSTM-based model,
demonstrating improved recognition accuracy and reduced computation
time. These findings suggest that convolutional models, with their ability to
capture spatial dependencies and exploit pattern recognition capabilities,
offer advantages in the domain of musical gesture recognition.

171
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Building upon the recognition models, in Chapter 4 the thesis delves into
the development of a web-based system for real-time interaction with vir-
tual musical instruments in a 3D environment. By leveraging the Leap Mo-
tion sensor and state-of-the-art web technologies, the system provided real-
istic visual and audio feedback, enhancing accessibility and cross-platform
deployment capabilities. User evaluations confirmed the positive feedback
regarding usability, audio realism, and design. Overall, the integration of
convolutional and recurrent architectures showcased the potential for de-
ploying various computational model types into interactive music systems,
facilitating a seamless user experience.

Subsequently, our research in Chapter 5 tackled the task of audio-driven
dance motion synthesis, where the use of deep CNN architectures proved
to be highly effective. The proposed models, incorporating the DCHC layer
along with a conditional decoder, outperformed the baseline LSTM mod-
els in terms of generating diverse and realistic skeletal motion sequences.
These findings demonstrated the advantages of convolutional models in
capturing complex temporal and spatial correlations within dance motion
data. Furthermore, the DCHC layer allowed for a wider temporal recep-
tive field, enabling the generation of longer sequences, while the condi-
tional decoder enhanced the creativity of the generated sequences through
stochastic control. We also considered two different training schemes, in-
cluding classical teacher-forcing along with a curriculum-learning approach,
demonstrating the effectiveness of self-supervised models to handle predic-
tion error accumulation during the autoregressive synthesis process.

As it regards the scenario of jazz improvisation, in Chapter 6 our study fo-
cused on simulating the interplay between a human soloist and an artificial
accompanist, showcasing the challenges and prospects of modeling music
improvisational interactions using implicit ML approaches. The proposed
system demonstrated harmonic compliance with chart chords information
and contextual adaptability. However, limitations related to data availabil-
ity and real-time design considerations were acknowledged, indicating the
need for further research and dataset enrichment. The successful integra-
tion of RNN-based models highlighted the potential of combining different
architectures to model complex musical interactions.

In this regard, we subsequently examined various symbolic music in-
formation encodings in the task of automatic music generation, emphasiz-
ing their impact on the resulting musical structure, as described in Chap-
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ter 7. The choice of encoding method significantly influenced aspects such
as melodic phrasing and metric organization. These findings highlighted the
importance of careful consideration when designing music generation mod-
els. The findings highlighted the need for careful consideration of encoding
methods in designing computational music generation models.

Overall, the performance of RNN and CNN models varied across the dif-
ferent tasks and architectures explored in our research. While LSTM-based
models presented promising results in capturing temporal dependencies
and modeling sequential data, the convolutional models, such as the CNN-
LSTM, dCNN and DCHC architectures, exhibited superior performance in
tasks such as gesture recognition and dance motion synthesis. Moreover,
the findings from Chapter 7 highlight the significance of encoding methods,
which suggest the potential benefits of convolutional models in shaping
music generation outcomes. It is important to note that the performance
of these models can be influenced by various factors such as dataset char-
acteristics, model architecture, hyperparameter settings, and the specific
requirements of the task at hand. To this end, visualization approaches
were utilized in several chapters to aid in comprehending the outcomes of
the various models. They provide intuitive representations of complex data
and facilitate the analysis and performance evaluation of the developed
systems. By visualizing various aspects of the model parameters and out-
put, we gained valuable insights into their processing behavior, identified
patterns and trends, and informed our decisions regarding model improve-
ments or refinements.

Therefore, it is crucial to carefully evaluate and select the appropriate
architecture based on the specific goals and constraints of each task in the
field of computational music generation and interaction. In conclusion, our
research has contributed to the field of computational music generation
and interaction by advancing our understanding of the capabilities and im-
plications of different model types. The successful integration of different
computational architectures showcased the potential for combining their
strengths to model complex musical interactions. These findings provide a
foundation for future research, where further advancements can be made
by exploring advanced architectures, larger datasets, and more diverse
tasks. By continuing to push the boundaries of computational music genera-
tion and interaction, we can unlock new possibilities for creative expression,
human-computer collaborations, and the evolution of music technology.
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8.2 Future Directions

Here we discuss and organize in a list some potential future research direc-
tions and provide recommendations based on the findings and limitations
identified in our research as follows:

Gesture recognition systems: Future research in gesture recognition
can focus on exploring recent deep learning architectures, such as
Transformer models, Graph Neural Networks, or diffusion models, to
capture more complex spatio-temporal patterns and improve gesture
recognition performance. Additionally, investigating the integration of
additional modalities, such as audio or inertial sensors, can enhance
gesture recognition models and enable a more comprehensive under-
standing of musical gestures. Techniques for transfer learning and
domain adaptation can be explored to transfer knowledge between
gesture recognition tasks or adapt models to new users or musical
contexts, reducing the need for extensive training on new datasets.
Furthermore, developing user-independent gesture recognition sys-
tems that accurately recognize gestures from different individuals
without requiring individual training data would be valuable in in-
creasing the versatility and applicability of such systems.

Virtual musical interaction: To advance virtual musical interaction sys-
tems, further research may explore multiple directions. One area of
focus is real-time performance optimization, developing techniques
to enhance system performance across diverse hardware configura-
tions and platforms, ensuring seamless and responsive experiences.
Another aspect is the pursuit of enhanced realism and expressive-
ness in virtual musical instruments, encompassing both visual and
audio feedback, and capturing the intricate nuances of instrumental
performance. Additionally, the integration of machine learning and
user feedback can be leveraged to create adaptive systems that learn
from user input, enabling virtual musical instruments to personalize
their responses based on individual preferences and playing styles.
Lastly, collaborative virtual environments present an exciting oppor-
tunity to facilitate remote musical collaboration and improvisation, al-
lowing multiple users to interact and perform together.
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Audio-driven dance motion synthesis: Future research in dance mo-
tion synthesis models may explore several techniques to capture and
synthesize motion sequences with enhanced realism and expressive-
ness, focusing on fine-grained details like subtle body movements,
joint rotations, and expressive qualities of different dance styles. The
integration of dynamics and physics-based modeling can be explored
to enhance dance motion synthesis by accurately capturing the phys-
ical characteristics and dynamics of human movement. Additionally,
the fusion of additional modalities, such as textual cues, can be ex-
plored to improve the generation of dance motion sequences and
enable synchronized and meaningful interactions between music and
dance. Furthermore, methods can be developed to personalize dance
motion synthesis systems, allowing users to customize the generated
sequences to match their preferred dance style, level of expertise, or
artistic preferences.

Jazz accompaniment generation: Future diractions in this area may in-
cude advanced harmonic and melodic analysis techniques, which can
be integrated into the improvisation model to enhance the artificial
accompanist’s understanding of the musical context and enable more
musically coherent responses to the human soloist. Multimodal ap-
proaches can be investigated to model and simulate the expressive
variations inherent in jazz improvisation, capturing the nuances of
different artists, improvisational styles, and characteristic phrasing.
Additionally, the development of collaborative improvisation systems
can be explored, creating platforms that facilitate interaction and in-
terplay between multiple human and artificial improvisers, fostering
creative collaborations and providing new musical experiences.

Data availability and information encoding: To overcome the limita-
tions related to data availability and encoding, future research can
explore methods to curate diverse and comprehensive datasets that
encompass a wide range of musical genres, styles, and cultural con-
texts. These datasets should include both symbolic and audio infor-
mation, accompanied by sufficient metadata, to facilitate extensive
and generalizable research. Another area of focus is the investigation
of advanced symbolic encoding approaches that can capture more
nuanced musical information, preserving and representing elements
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such as musical structure, dynamics, and expressiveness more effec-
tively. Additionally, researchers may explore the integration of multi-
modal architectures with audio representations, such as spectrograms
or waveforms, enabling direct synthesis or analysis of music without
relying solely on symbolic annotations. Lastly, collaborative efforts
and standardization should be promoted in data collection, encoding,
and sharing practices to foster the development of larger and more
diverse datasets. This will facilitate reproducibility and comparability
across research studies, ultimately advancing the field as a whole.

Overall, these research directions hold immense potential to push the
boundaries of creativity, realism, and interactive musical experiences. They
can revolutionize the way we interact with music, towards enabling new
forms of expression, collaboration, and artistic possibilities, where technol-
ogy seamlessly intertwines with human creativity, shaping the future of
music.
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[115] Álvaro Sarasúa, Baptiste Caramiaux, Atau Tanaka, and Miguel Ortiz.
“Datasets for the Analysis of Expressive Musical Gestures”. In: Pro-
ceedings of the 4th International Conference on Movement Comput-
ing, London, United Kingdom, June 28-30, 2017. 2017, 13:1–13:4.
DOI: 10.1145/3077981.3078032.

[116] Balandino Di Donato, James Dooley, Jason Hockman, Simon Hall,
and Jamie Bullock. “MyoSpat: A hand-gesture controlled system for
sound and light projections manipulation”. In: Proceedings of the
43rd International Computer Music Conference. Ed. by Margaret
Schedel. Oct. 2017, pp. 335–340. DOI: 2027/spo.bbp2372.2017.
056.

[117] Marcella Mandanici and Sergio Canazza. “The hand composer:
gesture-driven music composition machines”. In: 1st international
workshop on computer and robotic Systems for Automatic Music
Performance (SAMP14). 2014, pp. 553–560.

[118] Jules Françoise, Olivier Chapuis, Sylvain Hanneton, and Frédéric
Bevilacqua. “SoundGuides: Adapting Continuous Auditory Feedback
to Users”. In: Proceedings of the 2016 CHI Conference Extended Ab-
stracts on Human Factors in Computing Systems. CHI EA ’16. San
Jose, California, USA: ACM, 2016, pp. 2829–2836. ISBN: 978-1-4503-
4082-3. DOI: 10.1145/2851581.2892420.

[119] Lamtharn Hantrakul and Konrad Kaczmarek. “Implementations of
the Leap Motion in sound synthesis, effects modulation and as-
sistive performance tools”. In: Music Technology meets Philoso-
phy - From Digital Echos to Virtual Ethos: Joint Proceedings of the
40th International Computer Music Conference, ICMC 2014, and the
11th Sound and Music Computing Conference, SMC 2014, Athens,
Greece, September 14-20, 2014. 2014. DOI: 2027/spo.bbp2372.
2014.100.
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[161] Rıza Alp Güler, Natalia Neverova, and Iasonas Kokkinos. “Dense-
Pose: Dense Human Pose Estimation in the Wild”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). June 2018, pp. 7297–7306.

[162] Nikos Kolotouros, Georgios Pavlakos, Michael J. Black, and Kostas
Daniilidis. “Learning to Reconstruct 3D Human Pose and Shape via
Model-Fitting in the Loop”. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). Oct. 2019, pp. 2252–
2261.

[163] Muhammed Kocabas, Nikos Athanasiou, and Michael J. Black. “VIBE:
Video Inference for Human Body Pose and Shape Estimation”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). June 2020, pp. 5253–5263.

[164] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Ma-
lik. “Recurrent Network Models for Human Dynamics”. In: Proceed-
ings of the 2015 IEEE International Conference on Computer Vision
(ICCV). ICCV ’15. USA: IEEE Computer Society, 2015, pp. 4346–4354.
ISBN: 9781467383912.

https://doi.org/10.1049/iet-cvi.2016.0385
https://doi.org/10.1049/iet-cvi.2016.0385
https://doi.org/10.23919/EUSIPCO.2019.8902973


BIBLIOGRAPHY 197

[165] Bochen Li, Akira Maezawa, and Zhiyao Duan. “Skeleton Plays Pi-
ano: Online Generation of Pianist Body Movements from MIDI Per-
formance”. In: Proceedings of the 19th International Society for Mu-
sic Information Retrieval Conference (Paris, France). Paris, France:
ISMIR, Sept. 2018, pp. 218–224. DOI: 10.5281/zenodo.1492387.

[166] Eli Shlizerman, Lucio Dery, Hayden Schoen, and Ira Kemelmacher-
Shlizerman. “Audio to Body Dynamics”. In: 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). Los Alami-
tos, CA, USA: IEEE Computer Society, June 2018, pp. 7574–7583.
DOI: 10.1109/CVPR.2018.00790.
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