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SUMMARY 

 

The aim of this dissertation is to investigate and evaluate the effectiveness of 

various machine learning models (Random Forest, Decision Tree, Support Vector 

Machine, Logistic Regression, k-Nearest Neighbors and Gradient Boosting) and 

methods (Feature selection, Undersamlig, Oversampling and Principal component 

analysis), in predicting the occurrence of death events in patients with heart failure. The 

study employs a diverse set of models on a dataset comprising medical records of heart 

failure patients, released by Ahmad et al. (2017). Through rigorous analysis, 

hyperparameter optimization, and exploration of data preprocessing techniques, the 

research seeks to develop a robust framework capable of accurately classifying heart 

failure patients based on their risk of experiencing a death event. The findings aim to 

contribute valuable insights to the evolving landscape of precision healthcare. 

Specifically, by testing and subsequently selecting the most effective methods/models 

of machine learning and addressing critical factors/errors present in the datasets, a more 

efficient determination of results is achieved. 

 

Keywords – Machine learning models, Data mining, Performance Metrics, 

Hyperparameter tunning, Biomedical informatics, Oversampling, Undersampling, 

Feature Selection, Principal Component Analysis, Binary Classification. 
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ΠΕΡΙΛΗΨΗ 

 

Ο στόχος αυτής της διατριβής είναι να εξετάσει και να αξιολογήσει την 

αποτελεσματικότητα διάφορων μοντέλων μηχανικής μάθηση (Random Forest, 

Decision Tree, Support Vector Machine, Logistic Regression, k-Nearest Neighbors και 

Gradient Boosting) και μεθόδων (Feature selection, Undersamplig, Oversampling και 

Principal component analysis), στον προσδιορισμό της πιθανότητας εμφάνισης 

συμβάντων θανάτου σε ασθενείς με καρδιακή ανεπάρκεια. Η μελέτη χρησιμοποιεί ένα 

ποικίλο σύνολο μοντέλων σε ένα σύνολο δεδομένων (Ahmad et al., 2017) που 

περιλαμβάνει ιατρικές εγγραφές ασθενών με καρδιακή ανεπάρκεια. Μέσω αυστηρής 

ανάλυσης, βελτιστοποίησης υπερπαραμέτρων και εξερεύνησης τεχνικών 

προεπεξεργασίας δεδομένων, η έρευνα έχει ως στόχο την ανάπτυξη ενός αξιόπιστου 

πλαισίου, ικανού να κατηγοριοποιεί με ακρίβεια ασθενείς με καρδιακή ανεπάρκεια, 

βάσει του κινδύνου εμφάνισης συμβάντος θανάτου. Τα ευρήματα της παρούσας 

εργασίας συμβάλλουν στον τομέα της υγειονομικής περίθαλψης. Πιο συγκεκριμένα, 

μέσω της δοκιμής και εν συνεχεία επιλογής των πιο αποτελεσματικών  μεθόδων  

μοντέλων μηχανικής μάθησης και την αντιμετώπιση των κρίσιμων παράγοντων  

σφαλμάτων που παρουσιάζουν τα σύνολα δεδομένων, επιτυγάνεται ο 

αποτελεσματικότερος προσδιορισμός των αποτελεσμάτων. 

 

Λεξεις Κλειδία – Μοντέλα μηχανικής μάθησης, Εξόρυξη δεδομένων, 

Μετρικές απόδοσης, Βελτιστοποίηση υπερπαραμέτρων, Βιοϊατρική πληροφορική, 

Υπερδειγματοληψία, Υποδειγματοληψία, Επιλογή χαρακτηριστικών, Ανάλυση κύριων 

συνιστωσών, Δυαδική κατηγοριοποίηση. 
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 Chapter 1. INTRODUCTION 

 

Chapter 1 provides an overview of the major issues covered in the current 

thesis. 

 

1.1 Generally 

 

Cardiovascular diseases refer to conditions affecting the heart and blood vessels, 

causing approximately seventeen million global fatalities each year (Wu et al., 2023). 

Specifically, heart failure arises when the heart cannot adequately pump blood due to 

factors like diabetes, high blood pressure, or other cardiac issues (Heiney et al., 2020). 

Recognizing the critical role of the heart, medical professionals prioritize predicting 

heart failure, yet current clinical practices often fall short in achieving high accuracy 

(Buchan et al., 2019).  

Machine learning, when applied to medical records, emerges as a promising tool 

for predicting survival in patients exhibiting heart failure symptoms (Al’Aref et al., 

2019; Al’Aref et al., 2018) and identifying key clinical features or risk factors 

associated with heart failure (Gallagher et al., 2019; Dunn et al., 2007). Scientists can 

harness machine learning not only for clinical predictions (Ambale-Venkatesh et al., 

2017; Weng et al., 2017) but also for prioritizing features (Shilaskar & Ghatol, 2013). 

This dissertation delves into the analysis of a dataset comprising medical records of 

heart failure patients released by Ahmad et al. in July 2017. 

This thesis delves into the realm of machine learning applications in the context 

of heart failure outcome prediction. Employing a diverse set of machine learning 

models, including Random Forest, Decision Tree, Support Vector Machine (SVM), 

Logistic Regression, k-Nearest Neighbors (KNN) and Gradient Boosting, the study 

explores the efficacy of each model in classifying and detecting the critical target: the 

occurrence of a death event in patients with heart failure. 

To optimize the performance of these models, a Grid Search methodology is 

employed, systematically fine-tuning hyperparameters for enhanced predictive 

accuracy. Furthermore, the investigation extends to various data preprocessing 

techniques, such as Oversampling, Undersampling, Feature Selection, Principal 

Component Analysis (PCA) (and combinations of those techniques) aiming to unravel 

latent patterns within clinical data. 

The core objective is to develop a robust framework capable of accurately 
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classifying heart failure patients based on their risk of experiencing a death event. 

Through a meticulous analysis of model performances, hyperparameter optimizations, 

and feature engineering strategies, this research contributes to the evolving landscape 

of precision healthcare. The findings not only shed light on the most effective machine 

learning models for heart failure outcome prediction but also provide valuable insights 

into the critical factors influencing model performance in this domain. This master 

thesis paves the way for future advancements in the development of tailored predictive 

models for cardiovascular risk assessment. 

 

1.2  Thesis stimuli and structure  

 

The explanation of the stimuli of this thesis can be found below. The work 

presented in this thesis was motivated by an increased recognition among academics 

that: 

 The increasing availability of electronic health data presents a major opportunity in 

healthcare for both discovery and practical applications to improve healthcare 

(Wiens and Shenoy, 2023). 

 Modeling survival for heart failure is still a problem nowadays, both in terms of 

achieving high prediction accuracy and identifying the driving factors (Chicco & 

Jurman, 2020). 

 Machine learning applied to medical records, can be an effective tool to predict the 

survival of each patient having heart failure symptoms (Al’Aref et al., 2019). 

 Machine learning applied to medical records helps to detect the most important 

clinical features (or risk factors) that may lead to heart failure (Gallagher et al., 

2019).  

 Machine learning is an old concept that has recently gained a lot of attention due to 

the explosion of data generation processes in healthcare (Alanazi, 2022). 

 

The following is a summary of the remaining sections of the current thesis. 

Chapter 2 presents a detailed literature review of the topics under examination. In 

Chapter 3, the data and methods utilized in the present thesis are described. Chapter 4 

is dedicated to presenting the results, and this is where the discussion of the findings 

also takes place. Finally, Chapter 5 focuses on the key findings drawn from the study. 
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Chapter 2. LITERATURE REVIEW 

 

  Chapter 2 presents a detailed literature review of the topics and methods under 

examination. 

 

2.1 Machine Learning and Data Mining 

 

2.1.1  Generally 

 

In the contemporary era, voluminous datasets have become ubiquitous, and their 

effective utilization through diverse algorithms within the realm of machine learning 

holds the potential to transmute these datasets into consequential knowledge. Machine 

learning represents a domain of scholarly investigation that emerges at the confluence 

of three fundamental domains: statistics, artificial intelligence, and computer science 

(Muller et al., 2016). The foundational definition of machine learning encompasses a 

sphere of scholarly inquiry that confers upon computers the capability to learn 

autonomously, devoid of explicit programming (Awad, 2015). 

Historically, software engineering amalgamated rules crafted by humans with 

data to generate solutions for problems. Conversely, machine learning operates by 

utilizing data and solutions to unveil the underlying rules governing a problem (Chollet, 

2021). In other words, machine learning serves as a mechanism to transform data into 

comprehensible insights. Over the last five decades, a substantial surge in data 

generation has taken place. However, this amassed data remains inconsequential unless 

subjected to thorough analysis to unveil concealed patterns. Machine learning 

methodologies are employed to autonomously identify meaningful inherent patterns 

within intricate datasets that would otherwise pose challenges to uncover manually. The 

latent patterns and discernments pertaining to a given issue hold the potential to 

prognosticate future occurrences and facilitate multifaceted decision-making processes.  

Within this context, three distinct categories of machine learning manifest: 

Supervised Learning, Unsupervised Learning, and Reinforcement Learning. 

Subsequent to this delineation, the forthcoming subsection will undertake an exposition 

of these aforementioned classifications of machine learning. 
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2.1.2 Contexts and Processes of Machine Learning 

 

There are three major contexts regarding machine learning, the dataset, the 

features and the model (Amer et al., 2022). 

• Dataset: A compilation of data instances, encompassing significant attributes 

pivotal to addressing the given issue. 

• Features: Essential components of information that contribute to the 

comprehension of a problem. These are inputted into a machine learning algorithm 

to facilitate its learning process. 

• Model: The portrayal (internal framework) of a phenomenon acquired by a 

machine learning algorithm. This understanding is derived from the data presented 

during the training phase. The model constitutes the outcome achieved subsequent 

to algorithmic training. To illustrate, a decision tree algorithm would undergo 

training and yield a decision tree model as its result. 

 

Additionally, machine learning follows some constituent steps in order to 

analyze and retrieve information from the data (Naqa & Murphy, 2015). Those steps- 

processes are analyzed below:  

• Data Collection: Acquire the data essential for the algorithm's learning process. 

• Data Preparation: Organize and transform the data into an ideal structure, 

extracting crucial attributes and conducting dimensionality reduction. 

• Training: Referred to as the fitting phase, this is when the machine learning 

algorithm actively learns through exposure to the collected and prepared data. 

• Evaluation: Assess the model's performance to determine its efficacy. 

• Tuning: Refine the model to optimize its performance. 

 

2.1.3 Machine Learning Approaches 

 

As mentioned earlier, a multitude of approaches are available for conducting 

machine learning endeavors, often grouped into distinct categories. Among these, 

Supervised and Unsupervised approaches, having gained established and frequent use, 

hold prominence. On the other hand, Semi-supervised and Reinforcement Learning, 

being more contemporary and intricate, have showcased remarkable accomplishments 

(Muhammad & Yan, 2015). 
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2.1.3.1 Supervised Learning 

 

Supervised learning constitutes a category of machine learning wherein 

machines are trained utilizing meticulously “labeled” training data. Grounded in this 

data, machines make “anticipations” about the output. The term "labeled data" refers to 

input data that is already associated with the accurate output. Within the realm of 

supervised learning, the data used to train machines functions analogously to a 

supervisor, imparting the knowledge necessary for accurate output prediction. This 

mechanism mirrors the educational dynamic of a student guided by a teacher. 

Supervised learning involves furnishing both input data and corresponding correct 

output data to the machine learning model. The primary objective of a supervised 

learning algorithm is to ascertain a mapping function that correlates the input variable 

(x) with the output variable (y) (Alloghani et al., 2020). In practical applications, 

supervised learning finds utility in tasks such as Risk Assessment, Image Classification, 

Fraud Detection, and Spam Filtering, among others.  

 

The steps involved in supervised learning (Burkart & Huber, 2021) are analyzed 

below: 

• Dataset Type Identification: Begin by discerning the nature of the training dataset. 

• Data Collection: Assemble the labeled training data through collection efforts. 

• Dataset Partitioning: Divide the training dataset into distinct segments: the training 

dataset itself, a test dataset, and a validation dataset. 

• Input Feature Specification: Define the input features within the training dataset. 

These features should be sufficiently informative for the model to achieve accurate 

output predictions. 

• Algorithm Selection: Choose an appropriate algorithm for the model, such as 

options like support vector machines or decision trees. 

• Algorithm Execution: Apply the chosen algorithm to the training dataset. 

Occasionally, validation sets might be required to fine-tune control parameters; 

these sets are subsets of the training dataset. 

• Model Accuracy Assessment: Evaluate the model's accuracy by employing the test 

set. Successful accurate output predictions indicate a reliable model. 
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Depending on what you want to predict, supervised learning can be used to solve 

two types of problems: regression or classification (Jiang et al., 2020).  

 Regression Problem: When the goal is to forecast continuous values, like 

predicting house prices or outdoor temperatures, regression comes into play. This 

kind of problem lacks a rigid value boundary as predictions can encompass any 

numerical value without limitations. 

 Classification Problem: In instances where the inquiry is akin to "Is this a cat?", 

the scenario constitutes a classification problem. This involves the task of 

categorizing responses into distinct classes, such as 'yes' or 'no'. In this particular 

instance, the answer falls under the 'yes' category, making it a binary classification 

problem. 

 

Supervised learning has some major advantages and disadvantages. More 

extensively, supervised learning offers a range of advantages that contribute to its 

efficacy in various applications. Through the utilization of supervised learning, the 

model gains the ability to predict outputs by drawing upon past experiences and 

established patterns. This approach provides us with a precise comprehension of object 

classes within supervised learning, enhancing our understanding of their categorization. 

Moreover, the supervised learning model emerges as a potent tool for tackling an array 

of real-world challenges, including the intricate tasks of fraud detection and spam 

filtering. Its capacity to address these multifaceted problems underscores its practical 

relevance (Osisanwo et al., 2017). Despite its merits, supervised learning exhibits 

several limitations that warrant consideration. Supervised learning models demonstrate 

inefficiency in managing intricate tasks due to their inherent structure and reliance on 

labeled data. The effectiveness of supervised learning hinges on the assumption of 

similarity between test and training data. If test data varies significantly from the 

training dataset, accurate predictions may falter. Training supervised learning models 

demands substantial computational resources, contributing to prolonged processing 

times. Effective utilization of supervised learning necessitates a robust understanding 

of object classes. This prerequisite may hinder the model's applicability in cases with 

limited class insights (Schrider & Kern., 2018). 
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2.1.3.2 Unsupervised Learning 

 

Unsupervised learning, a technique within machine learning, involves models 

that aren't guided by a labeled training dataset. Instead, these models autonomously 

uncover concealed patterns and insights from provided data. This process can be 

likened to the way the human brain assimilates new information. In essence, 

unsupervised learning stands as a form of machine learning wherein models are trained 

using unlabeled datasets and operate on this data without external guidance (Mahesh, 

2020). 

Unlike supervised learning, which entails possessing input and corresponding 

output data, unsupervised learning cannot be directly applied to regression or 

classification problems. This is due to the absence of labeled data. The primary 

objective of unsupervised learning lies in unearthing the inherent structure of a dataset, 

clustering data based on similarities, and presenting the dataset in a more condensed 

representation (Alloghani et al., 2020). 

The significance of unsupervised learning is underscored by several key factors 

(Wang & Biljecki, 2022). Primarily, unsupervised learning proves invaluable in 

extracting valuable insights from data. This capability to uncover meaningful patterns 

contributes to its vital role in data analysis. Furthermore, the parallel between 

unsupervised learning and human cognitive processes enhances its relevance in the 

realm of genuine artificial intelligence. Similar to how humans learn and think through 

personal experiences, unsupervised learning autonomously identifies intricate patterns 

within data, lending it a certain authenticity. The essence of unsupervised learning is 

magnified by its adeptness at handling unlabeled and unclassified datasets. This unique 

capability of processing raw, unstructured data heightens the significance of 

unsupervised learning in data exploration and understanding. In the practical domain, 

scenarios often arise where input data lacks corresponding output, necessitating the 

application of unsupervised learning techniques. This aspect of addressing real-world 

complexities further underscores the indispensability of unsupervised learning in 

modern machine learning paradigms. 

Depending on what you want to group together, unsupervised learning can 

group data together by clustering or association (Li et al., 2020).  

 Clustering: Clustering, involves grouping objects into clusters in a manner that 

objects sharing the greatest similarities are consolidated within a cluster, while 
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maintaining minimal or no similarities with objects from other clusters. This 

technique entails identifying shared characteristics among data objects and 

classifying them based on the presence or absence of these shared traits. 

 Association: Association, pertains to an unsupervised learning approach aimed at 

revealing connections between variables within extensive databases. This method 

identifies sets of items that frequently co-occur in the dataset. By establishing such 

associations, the effectiveness of marketing strategies is amplified. For instance, it 

identifies trends like individuals purchasing item X (e.g., Coffee) often also acquire 

item Y (e.g., Sugar). A classic illustration of Association is exemplified in Market 

Basket Analysis. 

Unsupervised learning has both advantages and disadvantages. More 

extensively, unsupervised learning proves advantageous in tackling intricate tasks that 

surpass the complexity of supervised learning. This distinction arises from the absence 

of labeled input data in unsupervised learning scenarios. Furthermore, the preference 

for unsupervised learning stems from the ease of acquiring unlabeled data in contrast 

to the often laborious task of obtaining labeled data. Conversely, the intrinsic 

complexity of unsupervised learning presents notable drawbacks. The absence of 

corresponding output data poses a challenge that differentiates it from supervised 

learning. As a result, the outcomes yielded by unsupervised learning algorithms might 

exhibit lower accuracy levels. The absence of labeled input data renders algorithms 

incapable of anticipating precise output, contributing to potential inaccuracies in results 

(Fahle et al., 2020).  

 

2.1.3.3 Semi-supervised Learning 

 

Semi-supervised learning resides in the intermediary realm between supervised 

and unsupervised learning paradigms, capitalizing on both labeled and unlabeled data 

during the training process. This approach typically involves utilizing a modest quantity 

of labeled data alongside a substantial volume of unlabeled data. Systems adopting this 

technique can notably enhance their learning accuracy (Zhu, 2005). The preference for 

semi-supervised learning arises particularly when the available labeled data demands 

expert and pertinent resources for effective training or learning. In contrast, gathering 

unlabeled data usually entails minimal supplementary resource allocation (Hady & 
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Schwenker, 2013). Semi-supervised learning. Handbook on Neural Information 

Processing, 215-239.). 

Semi-supervised learning models are experiencing a surge in popularity across 

various industries, driven by their effectiveness in addressing complex challenges 

(Zhou & Zhou, 2021). Several notable applications highlight their utility: 

 Speech Analysis: This stands as a quintessential illustration of semi-supervised 

learning's practicality. Labeling vast quantities of audio data is an arduous task 

requiring substantial human resources. By employing semi-supervised learning, this 

hurdle can be surmounted, making the process more feasible. 

 Web Content Classification: Labeling every webpage on the expansive internet is a 

formidable and impractical endeavor due to the extensive human intervention it 

necessitates. Semi-supervised learning algorithms offer a viable solution to mitigate 

this challenge, reducing the magnitude of manual effort required. 

 Search Engine Ranking: Major players like Google harness the capabilities of semi-

supervised learning algorithms to effectively rank webpages in response to user 

queries, thereby enhancing the accuracy and relevance of search results. 

 Protein Sequence Classification: In the domain of DNA strand analysis, where 

sequences are vast and intricate, the intervention of human experts is indispensable. 

The advent of semi-supervised models has emerged as a pivotal advancement in this 

sphere, streamlining the classification process. 

 Text Document Classification: Given the impracticality of procuring extensive 

amounts of labeled text data, semi-supervised learning emerges as an optimal 

solution. This approach circumvents the challenge by leveraging both labeled and 

unlabeled data, making it a valuable model for overcoming data scarcity. 

 

2.1.3.4 Reinforcement Learning 

  

Reinforcement learning resides within the domain of machine learning, 

focusing on making optimal decisions to maximize rewards within specific scenarios. 

This methodology is harnessed by diverse software and machines to ascertain the most 

favorable actions or paths in given situations (Wiering & Van Otterlo, 2012). Notably 

distinct from supervised learning, where training data carries the correct answers, 

reinforcement learning operates without predefined solutions. Instead, a reinforcement 

agent determines its actions to accomplish assigned tasks, learning from its 
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accumulated experiences due to the absence of a conventional training dataset (Li, 

2017). 

Reinforcement learning encompasses the realm of decision-making science. Its 

core objective is to acquire optimal behavioral patterns within an environment to attain 

the utmost rewards. Unlike supervised or unsupervised machine learning paradigms 

that rely on input data, reinforcement learning gathers data through trial-and-error 

procedures, facilitating adaptive learning without predefined datasets (Sutton & Barto, 

2018).  

Reinforcement learning employs algorithms that deduce suitable actions based 

on outcomes. Following each action, the algorithm receives feedback to ascertain the 

correctness, neutrality, or incorrectness of its choice. This approach is particularly 

effective for automated systems necessitating numerous nuanced decisions devoid of 

human intervention (François-Lavet et al., 2018). 

At its core, reinforcement learning operates as an autonomous, self-educating 

system that evolves through trial and error. It undertakes actions with the intent of 

optimizing rewards, effectively learning through practical application to achieve 

optimal results (Wang et al., 2016). 

 

2.1.4 Knowledge Discovery in Databases 

 

Knowledge Discovery in Databases (KDD), represents a systematic and 

analytical approach to model data sourced from a database, with the intent of extracting 

significant and valuable "knowledge" through data mining techniques. Data mining 

forms the cornerstone of the KDD process and is imperative for its comprehensive 

methodology. This methodology employs a variety of autonomous learning algorithms 

to derive meaningful patterns from scrutinized data. Within this cyclical and 

interconnected process, multiple iterations occur among distinct stages, facilitating 

continual feedback as mandated by algorithmic requirements and pattern elucidations. 

KDD process is commonly defined with the stages (Maimon & Rokach, 2005; Fayyad 

et al., 1996): 

1. Problem identification 

This marks the preliminary stage in the methodology, demanding a pre-existing 

grasp and proficiency in the relevant field of application. During this phase, the decision 

is made regarding the approach to extract insights from processed data and patterns 
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unveiled through data mining. This underlying premise holds paramount importance 

and any misjudgment can lead to erroneous construals and adverse repercussions for 

the final user. 

2. Data selection  

Following the establishment of goals and objectives, a crucial undertaking 

involves the deliberate selection and categorization of data into meaningful subsets, 

guided by considerations of availability, accessibility, significance, and quality. These 

attributes play a foundational role in data mining, significantly influencing the 

composition of data models that come into fruition. 

3. Data preprocessing & Transformation 

Our primary objective in this phase is to enhance data efficiency through the 

elimination of duplicate records, erroneous or noisy data, as well as the identification 

and removal of outliers. Additionally, we address the strategy for managing missing 

data attributes and aligning data with its appropriate data types. Tailoring our approach 

to the specific goals and tasks at hand, we embark on the quest to uncover valuable 

features that aptly represent the data. This journey may involve applying diverse 

transformations, each yielding distinct outcomes. Furthermore, we employ 

mathematical techniques to reduce dimensions and eliminate redundant data. With a 

refined and functional dataset in place, we then transition to the mining stage, poised to 

extract meaningful insights. 

4. Data mining 

Data mining stands as the pivotal process that entails distilling valuable insights 

from vast datasets through a diverse array of techniques, including regression, 

clustering, sequence modeling, dependency analysis, and linear scrutiny. This 

comprehensive methodology involves the instantiation and subsequent fitting of 

models, leading to the recognition of discernible patterns within the data. These adapted 

models are analytical tools that help to trace trends from the dataset.  

5. Interpretation and evaluation  

Data interpretation is the process of interpreting the results that are collected 

from applying the data mining techniques on the models and ensuring that useful 

knowledge is derived from the data. In this stage, we try to evaluate and interpret the 

mined patterns (rules, reliability, etc.) with respect to the goals defined in the first step. 

This step gives a lot of focus on the usefulness and comprehensibility of the produced 

model. The interpretation is typically carried out by visualizing the patterns. 
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2.2 Machine Learning Algorithms 

 

2.2.1 Decision tree 

 

A decision tree is a type of supervised learning technique that's useful for both 

classification and regression problems, though it's mainly used for classifying things. 

It's like a tree-shaped guide that helps make decisions. Inside the tree, there are two 

important kinds of points: Decision Nodes and Leaf Nodes. Decision Nodes help with 

making choices and have different paths, while Leaf Nodes are the outcomes without 

any more paths. Figure 1, explains the general structure of a decision tree (Kingsford 

& Salzberg, 2008).  

These choices are based on the features in the data you have. Imagine it as a 

map that gives you different paths to solve a problem. It's called a decision tree because, 

much like a tree, it starts with one main point and then branches out into smaller parts. 

To create a decision tree, the CART algorithm is used, which stands for 

classification and regression tree algorithm. The idea is simple: the decision tree asks a 

question and, depending on whether the answer is Yes or No, it keeps branching out 

into more detailed questions or outcomes. Absolutely, a decision tree is versatile in 

handling different types of data. It can handle categorical data where answers might be 

YES or NO, as well as numeric data, making it a flexible tool for various kinds of 

information (Kotsiantis, 2013).     

                        Figure 1. The general structure of a decision tree. 

 

Indeed, decision trees often replicate human thought processes when making 

decisions, which makes them quite comprehensible. The rationale behind a decision 
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tree is straightforward to grasp since it's presented in a tree-like format, resembling a 

flowchart that aligns with how we naturally think and make choices. Below, there are 

some key terms associated with decision trees (Maimon & Rokach, 2014): 

 Root Node: This is where the decision tree originates. It represents the whole dataset, 

which is then divided into two or more similar subsets. 

 Leaf Node: These are the endpoints of the tree, and no further divisions occur beyond 

them. They give the final output. 

 Splitting: Splitting refers to dividing a decision node or the root node into smaller 

sub-nodes based on specific conditions. 

 Branch/Sub Tree: A sub-tree forms when the tree is divided by splitting. 

 Pruning: Pruning involves removing unnecessary branches from the tree, 

simplifying it while retaining accuracy. This process is crucial for striking the right 

balance between complexity and accuracy. When a tree becomes excessively large, 

it runs the risk of overfitting the training data. Conversely, a small tree might fail to 

encompass all the vital aspects of the dataset. Pruning serves as a technique to 

mitigate these issues by reducing the size of the tree while maintaining its accuracy. 

Two key methods of tree pruning are commonly utilized, Cost Complexity Pruning 

and Reduced Error Pruning. 

 Parent/Child Node: The starting node of the tree is the parent node, and any 

subsequent nodes are called child nodes. 

 

The Decision Tree algorithm operates (Charbuty & Abdulazeez, 2021) as 

follows: 

 Starting Point: The process commences from the root node of the tree. The algorithm 

compares the root attribute's values with the corresponding attribute values in the 

real dataset. 

 Traversing the Tree: Based on this comparison, the algorithm moves along the 

branches, progressing to the next nodes in the tree. 

 Iterative Process: At each subsequent node, the algorithm once again compares the 

attribute value with the sub-nodes' attributes, advancing further as per the outcome. 

 Reaching Leaf Nodes: This process of comparison and advancement continues until 

the algorithm reaches a leaf node, which signifies an endpoint and provides the final 

class prediction. 
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The algorithm's progression can be outlined through (Priyam et al., 2013) the 

following steps: 

1. Initiation: The tree begins with a root node, labeled as S, encompassing the complete 

dataset. 

2. Attribute Selection: The algorithm identifies the best attribute using an Attribute 

Selection Measure (ASM). 

3. Data Subset Creation: The dataset (S) is divided into subsets, each corresponding to 

the possible values of the best attribute. 

4. Node Generation: Decision tree nodes are generated, each representing the chosen 

attribute. 

5. Recursion: The algorithm recursively constructs new decision trees using the subsets 

generated in step 3 (Data Subset Creation). This process is repeated until a point is 

reached where further classification is not feasible, resulting in the creation of leaf 

nodes. These leaf nodes are considered the final outcomes of the tree. 

 

In this manner, the Decision Tree algorithm maps out decision pathways and 

class predictions based on comparisons of attribute values, leading to interpretable and 

actionable results. 

 

Attribute Selection Measures (ASM) play a pivotal role in the Decision Tree 

algorithm by helping determine the most suitable attributes for both root and sub-nodes. 

They assist in making informed decisions during tree construction. Two commonly 

used ASM techniques are: 

 Information Gain / Entropy: Information Gain quantifies how much a particular 

attribute reduces the uncertainty in predicting the class. It calculates the difference 

between the uncertainty before and after splitting based on the attribute. Attributes 

with higher information gain are preferred since they lead to better classification. 

Information Gain is a critical concept in Decision Trees that gauges the alteration 

in entropy following the division of a dataset based on a particular attribute. It 

quantifies the information provided by a feature concerning a class. This value 

guides the splitting of nodes and the construction of the decision tree. The central 

goal of the Decision Tree algorithm is to maximize information gain, prioritizing 

nodes/attributes with the highest information gain for initial splitting (Forman, 

2003). The formula to calculate Information Gain is as follows: 
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𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − [(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔) ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)] 

 

Here, Entropy represents the level of impurity in a given attribute, reflecting 

randomness in data. It can be computed using the formula: 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = 𝑃(𝑦𝑒𝑠) ∗ 𝑙𝑜𝑔2(𝑃(𝑦𝑒𝑠)) − 𝑃(𝑛𝑜) ∗ 𝑙𝑜𝑔2(𝑃(𝑛𝑜)) 

 

Where, S is the total number of samples, P(yes) is the probability of the positive 

class and P(no) is the probability of the negative class. 

 

This concept aids in the meticulous selection of attributes for optimal tree 

construction, ensuring the resultant tree provides accurate classification outcomes. 

 

 Gini Index: The Gini Index measures the degree of impurity or disorder in a 

dataset. When choosing an attribute for splitting, the Gini Index evaluates the 

likelihood of a randomly selected item being misclassified. Lower Gini Index 

values indicate better attribute choices for effective classification. The Gini 

Index stands as a crucial metric in Decision Trees, serving as a measure of 

impurity or purity within the context of the CART (Classification and 

Regression Tree) algorithm. It assesses the quality of attribute splits during tree 

construction. When dealing with the Gini Index, attributes demonstrating lower 

values should be favored over those with higher values. This index operates 

solely with binary splits, aligning with the binary splitting approach adopted by 

the CART algorithm (Steinberg & Colla, 2009).  

 

𝐺𝑖𝑛𝑖 = 1 − ∑(p𝑖)2

𝑛

𝑖=1

 

 

Where pi is the probability of a particular element belonging to a specific class. 

 

Both Information Gain and Gini Index serve as valuable tools for assessing 

attribute importance, enabling the Decision Tree algorithm to make optimal attribute 

selections for creating a more accurate and efficient tree structure. Additionally, 

decision trees have both advantages and disadvantages (Podgorelec et al., 2002). Table 
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1, presents the positive and negative aspects of this algorithm. 

 

Table 1. Decision trees' advantages and disadvantages. 

Decision tree 

Positive aspects Negative aspects 

Compared to other algorithms 

decision trees require less effort for 

data preparation during pre-

processing. 

A small change in the data can cause a large 

change in the structure of the decision tree 

causing instability. 

A decision tree does not require the 

normalization of data. 

For a Decision tree sometimes 

calculation can go far more complex 

compared to other algorithms. 

A decision tree does not require 

scaling of data as well. 

Decision tree often involves higher 

time to train the model. 

Missing values in the data also do not 

affect the process of building a 

decision tree to any considerable 

extent. 

Decision tree training is relatively 

expensive as the complexity and time 

has taken are more. 

A Decision tree model is very 

intuitive and easy to explain to 

technical teams as well as 

stakeholders. 

The Decision Tree algorithm is 

inadequate for applying regression and 

predicting continuous values. 

 

 

2.2.2 Random Forest 

 

Random Forest is a popular machine learning algorithm that belongs to the 

supervised learning technique. It can be used for both classification and regression 

problems in machine learning. It is based on the concept of ensemble learning, which 

is a process of combining multiple classifiers to solve a complex problem and to 

improve the performance of the model (Belgiu & Drăguţ, 2016).  

As the name suggests, “Random Forest” is a classifier that contains a number 

of decision trees on various subsets of the given dataset and takes the average to 

improve the predictive accuracy of that dataset (Biau & Scornet, 2016). Instead of 
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relying on one decision tree, the random forest takes the prediction from each tree and 

based on the majority votes of predictions, and it predicts the final output. Figure 2, 

explains how the Random Forest algorithm works. 

The greater number of trees in the forest leads to higher accuracy and prevents 

the problem of overfitting. Since the random forest combines multiple trees to predict 

the class of the dataset, it is possible that some decision trees may predict the correct 

output, while others may not. But together, all the trees predict the correct output 

(Speiser et al., 2019).  

 

Figure 2. The operation of the Random Forest algorithm. 

 

The procedure for implementing the Random Forest algorithm is briefly explained 

below: 

 Initial Sampling: Begin by selecting random samples from the provided dataset or 

training set. 

 Individual Decision Trees: The algorithm proceeds to build a distinct decision tree 

for each training data entry. 

 Aggregation through Voting: Averaging of the decisions made by the individual 

decision trees is performed through a voting process. 

 Determining Final Prediction: Ultimately, the prediction result with the highest 

number of votes is chosen as the final prediction outcome. 
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Table 2, presents the positive and negative aspects of the Random forest 

algorithm. 
 

Table 2. Random forests’ advantages and disadvantages. 

Random Forest 

Positive aspects Negative aspects 

It reduces overfitting in decision 

trees and helps to improve the 

accuracy 

It requires much computational 

power as well as resources as it 

builds numerous trees to combine 

their outputs.  

It is flexible to both classification and 

regression problems 

It also requires much time for 

training as it combines a lot of 

decision trees to determine the class. 

It works well with both categorical 

and continuous values 

Due to the ensemble of decision 

trees, it also suffers interpretability 

and fails to determine the 

significance of each variable. 

It automates missing values present 

in the data 
 

Normalizing of data is not required 

as it uses a rule-based approach. 
 

 

 

2.2.3 Support Vector Machine  

 

The Support Vector Machine (SVM) stands as one of the most widely utilized 

algorithms within the realm of Supervised Learning. It boasts applicability not only in 

Classification but also in Regression problems, though it’s primary use is prominent in 

Classification scenarios within Machine Learning (Huang et al., 2018). 

The core objective of the SVM algorithm revolves around the creation of an 

optimal line or decision boundary. This boundary serves to effectively partition an n-

dimensional space into distinct classes, ensuring that forthcoming data points can be 

accurately categorized. This optimal decision boundary is formally referred to as a 

hyperplane (Jakkula, 2006). 
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Put differently, the primary aim of the SVM algorithm centers on identifying 

the ideal hyperplane within an N-dimensional space. This hyperplane is meticulously 

positioned to segregate data points belonging to different classes within the feature 

space. In this pursuit, the hyperplane is designed to maximize the margin between the 

nearest points from disparate classes. The configuration of this hyperplane aligns with 

the dimensionality of the feature space – a two-feature input yields a linear hyperplane, 

while a three-feature input results in a two-dimensional plane. Visualization becomes 

more intricate as the number of features exceeds three (Meyer & Wien, 2001).  

According to Ghosh et al. 2019, Support Vector Machines (SVM) have two 

distinct forms: 

 Linear SVM: The Linear SVM is adept at handling datasets that are linearly 

separable. In essence, when a dataset's two classes can be accurately distinguished 

using a solitary straight line, this classification scenario is labeled as linearly 

separable data. For this purpose, the classifier employed is known as the Linear 

SVM classifier. 

 Non-linear SVM: Non-Linear SVM, on the other hand, is tailored for datasets that 

do not exhibit linear separability. In practical terms, when a dataset defies 

classification via a single straight line, it is categorized as non-linear data. In such 

cases, the Non-linear SVM classifier comes into play to effectively handle this type 

of data and classification complexity. 

 

To gain a better understanding of the aforementioned, in the next paragraph a 

brief presentation and elaboration regarding the terminology of the Support Vector 

Machine algorithm is made. Support Vector Machine Terminology (Scholkopf & 

Smola, 2018, Gu & Han, 2013, Brereton & Lloyd, 2010): 

 Hyperplane: The hyperplane serves as the decisive boundary employed to segregate 

data points belonging to different classes within the feature space. In the context of 

linear classifications, it takes the form of a linear equation, often represented as wx 

+ b = 0. 

 Support Vectors: Support vectors are data points located closest to the hyperplane, 

playing a pivotal role in determining both the hyperplane's placement and the 

margin's definition. 

 Margin: The margin signifies the spatial gap between the hyperplane and the support 

vectors. The central objective of the support vector machine algorithm is to 
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maximize this margin. A broader margin is indicative of superior classification 

performance. 

 Kernel: Kernels are mathematical functions integral to SVM, facilitating the 

transformation of original input data points into higher-dimensional feature spaces. 

This maneuver enables the identification of hyperplanes even when data points are 

not linearly separable in the initial input space. Common kernel functions include 

linear, polynomial, radial basis function (RBF), and sigmoid. 

 Hard Margin: The hard margin hyperplane, also referred to as the maximum-margin 

hyperplane, effectively distinguishes data points of diverse categories without any 

classification errors. 

 Soft Margin: The soft margin technique becomes relevant when data is not entirely 

separable or when outliers are present. In such cases, SVM introduces slack variables 

for each data point, relaxing the stringent margin requirement and accommodating 

certain misclassifications or deviations. This approach balances margin 

maximization and misclassification penalties. 

 C: The regularization parameter C in SVM strikes a balance between margin 

maximization and the cost of misclassification. It determines the penalty imposed 

for exceeding the margin or misclassifying data points. A higher value of C enforces 

a stricter penalty, potentially leading to a narrower margin and reduced 

misclassifications. 

 Hinge Loss: Hinge loss represents a common loss function within SVMs. It penalizes 

incorrect classifications and margin violations. Frequently, the objective function in 

SVM combines hinge loss with a regularization term. 

 Dual Problem: The dual problem in optimization pertains to identifying the 

Lagrange multipliers associated with support vectors. Solving this problem aids in 

solving the SVM. The dual formulation enables the utilization of kernel tricks and 

more efficient computations. 

 

Figure 3, explains the general structure of the Support Vector Machine 

algorithm, whereas in Table 3, presents the positive and negative aspects of the Support 

Vector Machine. 
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Figure 3. The general structure of a Support Vector Machine. 

 

Table 3. Support Vector Machine advantages and disadvantages. 

Support Vector Machine 

Positive aspects Negative aspects 

SVM works relatively well when 

there is a clear margin of separation 

between classes. 

SVM algorithm is not suitable for large 

data sets. 

SVM is more effective in high 

dimensional spaces. 

SVM does not perform very well when 

the data set has more noise i.e. target 

classes are overlapping. 

SVM is effective in cases where the 

number of dimensions is greater 

than the number of samples. 

 

If the number of features for each data 

point exceeds the number of training 

data samples, the SVM will 

underperform. 

SVM is relatively memory 

efficient. 

As the support vector classifier works 

by putting data points, above and 

below the classifying hyperplane there 

is no probabilistic explanation for the 

classification. 
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2.2.4 Logistic Regression 

 

Logistic regression stands out as one of the most widely employed machine 

learning algorithms, firmly situated within the domain of supervised learning. Its 

primary purpose is to forecast categorical dependent variables through the utilization 

of a specified set of independent variables. 

In logistic regression, the objective is to predict the outcome of a categorical 

dependent variable, necessitating the output to be categorical or discrete in nature. This 

can manifest as binary choices, such as Yes or No, 0 or 1, true or false, and so forth. 

However, rather than furnishing exact 0 and 1 values, logistic regression yields 

probabilistic values that fall within the range of 0 to 1. Comparatively, logistic 

regression shares similarities with linear regression, diverging mainly in their respective 

applications. Linear regression finds its utility in addressing regression problems, while 

logistic regression specializes in addressing classification problems (Wang et al., 2019). 

In logistic regression, the process involves fitting an "S"-shaped logistic 

function rather than a regression line, facilitating predictions of two maximum values, 

typically denoting 0 or 1. The curve generated by the logistic function conveys the 

likelihood of specific outcomes, such as identifying whether a patient suffers a medical 

condition (e.g., heart failure) or not, determining if a person is obese based on their 

weight and height, and similar scenarios. Logistic regression holds a position of 

significance within the realm of machine learning due to its capacity to provide 

probability estimates and effectively classify new data, accommodating both 

continuous and discrete datasets (Boateng & Abaye, 2019). 

Furthermore, logistic regression can be employed to classify observations 

across diverse types of data, and it readily identifies the most influential variables 

contributing to the classification process. The Figure 4, depicts the logistic regression 

function. 

The sigmoid function represents a crucial mathematical tool employed to 

transform predicted values into probability estimates. It possesses the capacity to 

convert any real number into a value confined within the range of 0 and 1 

(Christodoulou et al., 2019). 

More extensively, in the context of logistic regression, the central requirement 

is that the resultant values must fall within the narrow confines of 0 and 1, adhering 

rigorously to this limit. Consequently, this constraint manifests itself in the formation 
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of a distinctive curve, recognized as the sigmoid function or logistic function, often 

resembling the shape of the letter "S." Within logistic regression, we rely on the concept 

of a threshold value, which serves as a critical determinant of the assigned probability, 

either 0 or 1. In this context, values surpassing the threshold tend to converge toward 

1, while values residing below the threshold tend to gravitate towards 0. This pivotal 

threshold value plays a pivotal role in the classification process (Leukel et al., 2022).  

To perform logistic regression, certain assumptions must be satisfied. First and 

foremost, the dependent variable must exhibit categorical characteristics. Additionally, 

it is essential that the independent variables do not demonstrate multicollinearity. 

 

Figure 4. Logistic -Sigmoid function. 

 

The Logistic regression equation can be derived from the Linear Regression 

equation through a set of mathematical steps. The following outlines the process for 

obtaining the Logistic Regression equation (Ranganathan et al., 2017). The equation of 

the straight line can be written as: 

 

𝑦 = 𝑏𝑜+= 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 + 𝑏3 ∗ 𝑥3 + ⋯ + 𝑏𝑛 ∗ 𝑥𝑛 
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In Logistic Regression y can be between 0 and 1 only, so for this let's divide the 

above equation by (1-y): 

 
𝑦

1 − 𝑦
; 0 𝑓𝑜𝑟 𝑦 = 0 𝑎𝑛𝑑 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 𝑓𝑜𝑟 𝑦 = 1 

 

But range is needed between -[infinity] to +[infinity], then take logarithm 1of 

the equation it will become: 

 

log [
𝑦

𝑦 − 1
] = 𝑏𝑜 + 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 + 𝑏3 ∗ 𝑥3 + ⋯ + 𝑏𝑛 ∗ 𝑥𝑛 

 

The above equation is the final equation for Logistic Regression. 

 

Logistic Regression can be categorized into three distinct types based on the 

nature of the dependent variable (Binder et al., 2019). 

 Binomial Logistic Regression: In binomial logistic regression, the dependent 

variable can assume only two distinct categories or levels. Examples of such binary 

outcomes include 0 or 1, Pass or Fail, Yes or No, and so forth. Binomial logistic 

regression is used when the outcome variable is binary and unordered. 

 Multinomial Logistic Regression: Multinomial logistic regression comes into play 

when the dependent variable has three or more possible categories or classes that 

are unordered. For instance, if the outcome variable includes categories like "cat," 

"dogs," and "sheep," this type of logistic regression is suitable for modeling such 

scenarios. Multinomial logistic regression addresses cases where the categories are 

mutually exclusive but lack any inherent order. 

 Ordinal Logistic Regression: Ordinal logistic regression is employed when the 

dependent variable exhibits three or more categories that are not only unordered 

but also possess a natural order or hierarchy. Examples could include categories 

like "low," "Medium," or "High." This type of logistic regression accommodates 

scenarios where the categories maintain a meaningful rank or progression. 

These three types of logistic regression allow for the modeling of different types 

of categorical dependent variables, depending on the nature of the data and the research 

question at hand. 

Table 4, presents the positive and negative aspects of the Logistic regression. 
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Table 4. Logistic regression advantages and disadvantages. 

Logistic Regression 

Positive aspects Negative aspects 

Logistic regression is 

straightforward to implement, 

interpret, and efficient in training. 

When the number of observations is 

smaller than the number of features, it 

is advisable to avoid using Logistic 

Regression as it can potentially result 

in overfitting. 

It does not assume any specific 

class distribution in the feature 

space. 

It creates linear boundaries. 

It can readily expand to handle 

multiple classes (multinomial 

regression) and offers a natural 

probabilistic perspective on 

predicting classes. 

A primary limitation of Logistic 

Regression is its assumption of 

linearity between the dependent 

variable and the independent variables. 

It not only offers insight into the 

relevance of a predictor 

(coefficient magnitude) but also its 

association direction (positive or 

negative). 

Logistic Regression can exclusively be 

employed to predict discrete functions, 

implying that the dependent variable in 

Logistic Regression is constrained to a 

discrete numerical set. 

It efficiently classifies unknown 

records with speed. 

Logistic Regression is ill-suited for 

addressing non-linear problems due to 

its reliance on a linear decision surface. 

In practice, finding linearly separable 

data in real-world scenarios is a rare 

occurrence. 

It exhibits high accuracy on 

straightforward datasets and 

performs effectively when the 

dataset allows for linear separation. 

Logistic Regression necessitates either 

the absence of multicollinearity or its 

moderate presence among independent 

variables. 

Model coefficients can be 

interpreted as indicators of the 

Obtaining complex relationships using 

logistic regression can be challenging. 
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significance of features. More robust and concise algorithms, 

such as Neural Networks, often surpass 

the performance of logistic regression 

in such cases. 

Logistic regression has a lower 

tendency to overfit, but in high-

dimensional datasets, it can exhibit 

overfitting.  

Logistic Regression requires that the 

independent variables are linearly 

related to the log odds (log(p/(1-p)), 

where 'p' represents the probability of 

an event occurring. 

 

 

2.2.5 Linear Regression 

 

Linear regression stands as one of the most accessible and widely used Machine 

Learning algorithms, primarily employed for predictive analysis. It is a statistical 

technique tailored for making predictions concerning continuous or numeric variables, 

such as age, prices, sales etc. (Seber & Lee, 2003).  

Linear regression hinges on the establishment of a linear relationship between a 

dependent variable (usually denoted as 'y') and one or more independent variables 

(typically denoted as 'x'). Consequently, it is termed "linear regression" because it 

quantifies how changes in the independent variable(s) correspond to alterations in the 

dependent variable (Montgomery et al., 2021).  

The linear 

regression model, in 

essence, generates a 

straight-line 

representation, which 

depicts the relationship 

between these variables. 

The Figure 5, depicts the 

linear regression model.  

 

 

Figure 5. Linear regression model.  
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Mathematically, a linear regression we can be represented as follows: 

 

𝑦 = 𝑎0 +  𝑎1 ∗ 𝑥 + 𝑒 

 

Where, Y is the dependent Variable (Target Variable), X is the independent 

Variable (predictor Variable), a0 is the intercept of the line (Gives an additional degree 

of freedom), a1 is the Linear regression coefficient (scale factor to each input value) 

and e = random error. The values for x and y variables are training datasets for Linear 

Regression model representation. (Hope, 2020). 

Linear regression can be subdivided into two distinct types of algorithms based 

on the number of independent variables involved (Maulud & Abdulazeez, 2020). 

1. Simple Linear Regression. When a single independent variable is utilized to 

forecast the value of a numerical dependent variable, the resulting Linear 

Regression algorithm is termed Simple Linear Regression. 

2. Multiple Linear Regression. In cases where more than one independent variable are 

employed to predict the value of a numerical dependent variable, the corresponding 

Linear Regression algorithm is referred to as Multiple Linear Regression. 

Before running a regression analysis, regression assumptions should be tested. 

More specifically, the relationship between independent and dependent variables must 

be linear, there should be no multicollinearity, the values of the residuals must be 

independent, the variance of the residuals should be constant and the residuals should 

be normally distributed. When it’s tested that all the regression assumptions were met, 

a regression analysis can be conducted (Schmidt & Finan, 2018). Table 5, presents the 

positive and negative aspects of the Linear regression. 

 

Table 5. Linear regression advantages and disadvantages. 

Linear Regression 

Positive aspects Negative aspects 

Simple implementation. Prone to underfitting. 

Computationally efficient. Prone to noise and overfitting. 

Performance on linearly seperable 

datasets. 
Sensitive to outliers. 

Overfitting can be reduced by 

regularization. 

Linear Regression assumes that the 

data is independent. 
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2.2.6 k-Nearest Neighbor (kNN) 

 

K-Nearest Neighbors (K-NN) is among the simplest Machine Learning 

algorithms employed within the realm of Supervised Learning. This algorithm operates 

on the principle of assuming similarity between new data and existing data points, 

subsequently placing the new data into the category that most closely resembles the 

established categories. K-NN is characterized by its approach of retaining all available 

data and determining the classification of a new data point based on its similarity to 

existing data. Consequently, when new data emerges, it can be efficiently categorized 

into an appropriate class through the utilization of the K-NN algorithm (Agrawal, 

2014). 

K-NN is versatile in its application, serving both as a tool for regression and 

classification tasks, albeit it is more commonly utilized for classification challenges. 

One notable feature of K-NN is its non-parametric nature, signifying that it refrains 

from making any assumptions about the underlying data distribution. This algorithm is 

often referred to as a "lazy learner" as it abstains from immediate learning from the 

training set. Instead, it stores the dataset and takes action during the classification phase. 

During training, K-NN simply retains the dataset, and when presented with new data, 

it classifies that data into a category closely resembling the new data (Zhang et al., 

2017). 

The operation of the K-Nearest Neighbors (K-NN) algorithm can be elucidated 

through the following steps (Dhanabal & Chandramathi, 2011): 

Step 1. Select the number K of the neighbors. 

Step 2. Calculate the distance of K number of neighbors. There are various methods 

for calculating the distance between a new point (x) and an existing point (y), 

the most widely used ones are: 

 Euclidean Distance, is calculated as the square root of the sum of the 

squared differences between a new point (x) and an existing point (y). 

 

𝑑(𝑥, 𝑦) = √∑(𝑥𝑗 −  𝑦𝑗)2

𝑛

𝑗=1

 

 

 Manhattan Distance, is the distance between real vectors using the sum of 
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their absolute difference. 

 

𝑑(𝑥, 𝑦) =  ∑|𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

 

 

 Hamming Distance: It is used for categorical variables. If the value (x) and 

the value (y) are the same, the distance D will be equal to 0. Otherwise, 

D=1. 

 

𝑑(𝑥, 𝑦) = ∑|𝑥𝑗− 𝑦𝑗|

𝑛

𝑗=1

 

 

𝑥 = 𝑦 → 𝑑(𝑥, 𝑦) = 0  
 

𝑥 ≠ 𝑦 → 𝑑(𝑥, 𝑦) = 1 
 

 Minkowski Distance: It is a metric intended for real-valued vector spaces. 

We can calculate Minkowski distance only in a normed vector space, which 

means in a space where distances can be represented as a vector that has a 

length and the lengths cannot be negative. There are a few conditions that 

the distance metric must satisfy: 

1. Non-negativity: d(x, y) >= 0  

2. Identity: d(x, y) = 0 if and only if x == y  

3. Symmetry: d(x, y) = d(y, x)  

4. Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)  

 

𝑑(𝑥, 𝑦) = √∑|𝑥𝑗− 𝑦𝑗|
𝑝

𝑛

𝑗=1

𝑝

 

 

The parameter "p" in the formula can be adjusted to produce various types 

of distances, such as: 

 p = 1, when p is set to 1 we get Manhattan distance, 

 p = 2, when p is set to 2 we get Euclidean distance. 

 

Step 3. Take the K nearest neighbors as per the calculated Euclidean distance. 
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Step 4. Among these k neighbors, count the number of the data points in each 

category. 

Step 5. Assign the new data points to that category for which the number of the 

neighbor is maximum. 

Step 6. Our model is ready. 

 

In order to gain better understanding in the k-Nearest Neighbor algorithm, 

Figure 6 depicts its function.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. k-Nearest Neighbor model. 

 

Determining the optimal "K" value lacks a definitive method; hence, we must 

experiment with various values to identify the most favorable one. Typically, a value 

of 5 is considered the most suitable. In other words, determining the optimal "K" value 

lacks a definitive method; hence, we must experiment with various values to identify 

the most favorable one. Typically, a value of 5 is considered the most suitable. Setting 

"K" to an exceedingly small value, like 1 or 2, can introduce noise and make the model 

susceptible to the influence of outliers. On the other hand, employing large "K" values 

has its merits, but it may encounter certain challenges (Tharwat et al., 2018). 

Table 6, presents the positive and negative aspects of the k-Nearest Neighbor 

algorithm. 



39 
 

 

Table 6. k-Nearest Neighbor advantages and disadvantages. 

k-Nearest Neighbor 

Positive aspects Negative aspects 

It's easy to understand and simple 

to implement. 

Associated computation cost is high as 

it stores all the training data. 

 It can be used for both 

classification and regression 

problems. 

Requires high memory storage. 

It's ideal for non-linear data since 

there's no assumption about 

underlying data. 

 Need to determine the value of K. 

 

It can naturally handle multi-class 

cases. 

The computation cost is high because 

of calculating the distance between the 

data points for all the training samples. 

It can perform well with enough 

representative data 
Sensitive to irrelevant features. 

 

2.2.7 Gradient Boosting 

 

Gradient Boosting is a combination of two techniques: Gradient Descent and 

Boosting. In Gradient Boosting, each new model minimizes the loss function from the 

previous one using the Gradient Descent Method (Bentéjac et al., 2021). 

 Boosting is an ensemble method that sequentially combines multiple weak learners 

to create a robust and powerful learner. In boosting, the predictors are trained one 

after another, with each subsequent predictor aiming to rectify the errors of its 

predecessor (Nayak & Sharma, 2023). 

 Gradient Descent is widely recognized as one of the most commonly employed 

optimization algorithms for training machine learning models, with the aim of 

minimizing the discrepancies between actual and anticipated outcomes. Its primary 

purpose is to identify the local minimum of a parameterized function, denoted as 

f(x) (). Defining the local minimum or local maximum of a function using gradient 

descent entails the following principles: 

o Moving in the direction of the negative gradient or away from the gradient of 
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the function at the present point leads to the discovery of the local minimum. 

o Progressing in the direction of the positive gradient or toward the gradient of 

the function at the current point results in the identification of the local 

maximum. 

The fundamental objective of employing the gradient descent algorithm is to 

iteratively diminish the cost function. This cost function serves as a quantification 

of the dissimilarity or error between actual and anticipated values at the current 

position, represented as a single real number. It plays a pivotal role in enhancing 

the efficiency of machine learning models by offering feedback, thereby facilitating 

error reduction and the identification of local or global minima (Ruder, 2016).  

In order to gain better understanding in the Gradient Descent algorithm, 

Figure 7 depicts its function. 

Figure 7. Gradient Descent algorithm. 

 

Briefly, in gradient boosting, the process involves each new model minimizing 

the loss function in comparison to its predecessor through the use of the Gradient 

Descent Method. This iterative procedure persists until a more optimal estimation of 

the target variable is attained. Distinguishing it from other ensemble techniques, the 

core concept in gradient boosting revolves around constructing a sequence of trees. 

Each subsequent tree endeavors to rectify the errors made by its predecessor tree (Chen 

& Shi, 2023). 
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Table 7, presents the positive and negative aspects of the Gradient Boosting 

algorithm. 

 

Table 7. Gradient Boosting advantages and disadvantages. 

Gradient Boosting 

Positive aspects Negative aspects 

Can support various loss functions 

and provides a number of 

hyperparameters tuning options 

which it makes it very flexible. 

It minimizes all errors, hence prone to 

over-fitting. One must use cross- 

validation to neutralize. 

It works great with numerical as 

well as categorical features as it is. 

This technique often requires many 

trees; hence it can be time and 

memory exhaustive. 

No data imputation is required.  

 

2.3 Preprocessing Techniques 

 

2.3.1 Generally 

 

The real-world data that we have to proceed and draw information from them is 

incomplete, inconsistent, inaccurate (contains errors or outliers), and often lacks 

specific attribute values/trends. This happens due to manual errors, unexpected events, 

technical issues, or a variety of other obstacles. While working on these data, it is 

important to know the types of data to process them and get the right results (Vijayarani 

et al., 2015). 

 

The data can be categorized into two main types: 

1. Qualitative or Categorical Data (Hancock & Khoshgoftaar, 2020) 

 Nominal Data: Nominal data serves to label variables without exhibiting any 

specific order or numerical value. Examples encompass gender, marital status, 

nationalities, individual names, and the like. 

 Ordinal Data: Ordinal data organizes variables into ranked categories, 

possessing a natural hierarchy based on some scale, such as from high to low. 

Instances include letter grades in examinations (A, B, C, D, etc.) and educational 
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levels (Higher, Secondary, Primary). 

2. Quantitative or Numerical Data (Famili et al., 1997) 

 Discrete Data: Discrete data encompasses values represented by integers or 

whole numbers. An illustration is the total count of students in a class. These 

values cannot be divided into decimal or fractional parts, and they are finite and 

countable in nature. 

 Continuous Data: Continuous data manifests in the form of fractional numbers 

and can be divided into smaller units. It represents information that can take any 

value within a specified range. Examples include temperature, height, width, 

time, speed, and similar variables. 

It is evident that nearly any information can be transformed into data. This implies that 

our data, in addition to potential errors like missing values and outliers, may also exhibit 

diverse types. Algorithms are typically not equipped to handle incomplete or noisy data, 

as they can disrupt the accurate representation of the sample. Data preprocessing 

addresses these issues through a comprehensive treatment of the available data (García 

et al., 2016). 

 

2.3.2 Tools and Libraries 

 

The process of preparing data for analysis can be streamlined with the aid of 

tools and libraries, simplifying management and execution. In the absence of specific 

libraries, crafting concise solutions can become a time-intensive coding task, 

demanding hours of development and optimization (Jansen et al., 2023).  

 Data Preprocessing with Python: Python, a versatile programming language, boasts 

numerous open-source libraries capable of executing complex operations in just a 

single line of code. The available functions for data preprocessing are extensive. 

 Autumunge: Autumunge is an excellent Python library platform designed to 

efficiently prepare tabular data for direct application in machine learning 

algorithms. 

 Data Preprocessing with R: R, primarily utilized for research and academic 

purposes, parallels Python by offering a range of packages, similar to libraries, 

which significantly support data preprocessing steps. 

 Data Preprocessing with Weka: Weka is a comprehensive software solution 

facilitating data mining and preprocessing, featuring integrated tools for intelligent 
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mining and machine learning models. 

 Data Preprocessing with RapidMiner: Similar to Weka, RapidMiner is an open-

source software equipped with a variety of effective tools designed to facilitate data 

preprocessing. 

 

2.3.3 Purpose of Data Preprocessing 

 

Once the data has been appropriately collected, it must undergo exploration or 

assessment to identify significant trends and discrepancies. The primary objectives of 

Data Quality Assessment include (García et al., 2015): 

 Get Data Overview: This involves comprehending the data formats and overall 

structure in which the information is stored. Additionally, it encompasses 

determining data properties like mean, median, standard quantiles, and standard 

deviation. These particulars aid in pinpointing irregularities within the data. 

 Detect Missing Data: It is common for real-world datasets to contain missing data. 

This can disrupt the genuine patterns within the data, potentially leading to further 

loss if entire rows or columns are removed due to a few absent cells in the dataset. 

 Identify Outliers or Unusual Data: Certain data points may significantly deviate 

from the prevailing data patterns, classifying them as outliers. It might be necessary 

to exclude these points for more accurate predictions, unless the algorithm's 

primary purpose is to detect anomalies. 

 Remove Inconsistencies: Similar to missing values, real-world data often harbors 

various inconsistencies such as incorrect spellings, erroneously populated columns 

and rows (e.g., salary inputted in the gender column), duplicated data, and more. 

At times, automation can address these discrepancies, but frequently they 

necessitate manual verification. 

 

2.3.4 Dealing with Missing Values 

 

Missing values are a common challenge in real-world datasets due to physical 

and manual constraints associated with data collection. For instance, if data is gathered 

through sensors, there may be instances where the sensor temporarily stops working, 

resulting in missing data. Different datasets may encounter various issues leading to 

missing data points (Raja & Thangavel, 2020). 

To effectively utilize available data, it's essential to address these missing 
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values. Here are some proven strategies (Sessa & Syed, 2016): 

 Drop Samples with Missing Values: This approach is beneficial when the number 

of samples is substantial and the count of missing values in a given sample is high. 

However, it's not recommended in other cases as it can lead to significant data loss. 

 Replace Missing Values with Zero: This technique can be effective for basic 

datasets, where zero can signify the absence of a value. Nevertheless, in many 

cases, zero may have its own meaning. For example, in temperature data from a 

tropical region, zero may not accurately represent a missing value. It's best used 

when the dataset is independent of its effect, such as in phone bill data. 

 Replace Missing Value with Mean, Median, or Mode: Using statistical functions 

like mean, median, or mode can address the issue of using zero incorrectly. While 

these values are also assumptions, they tend to provide more meaningful 

approximations compared to a single value like zero. 

 Interpolate Missing Values: Interpolation generates values within a range based on 

a given step size. For instance, if there are nine missing values between cells with 

values ranging from 0 to 10, interpolation will fill in the missing cells with numbers 

from 1 to 9. It's important to ensure the dataset is sorted according to a more 

reliable variable (like serial number) before applying interpolation. 

 Extrapolate Missing Values: Extrapolation populates values that fall outside a 

given range, such as extreme values of a feature. It relies on another variable, 

typically the target variable, to compare and populate the variable in question with 

a guided reference. 

 Build a model with other features to predict the missing values: By far the most 

intuitive of all techniques we’ve mentioned. Here, an algorithm studies all the 

variables except the actual target variable (since that would lead to data leakage). 

The target variable for this algorithm becomes the feature with missing values. The 

model, if well trained, can predict the missing points and provide the closest 

approximations. 

 

2.3.5 Scaling 

 

Columns in a dataset can have varying ranges. For instance, one column may 

represent distances, while another may represent currency units. These columns will 

exhibit markedly different numerical ranges, which can pose challenges for machine 
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learning models in achieving optimal computations. To address this, several popular 

scaling techniques are employed (Ahsan et al., 2021): 

 Min-Max Scaler: This technique rescales feature values to fit within a specified 

range, such as between 0 and 5. 

 Standard Scaler: The standard scaler assumes that the variable follows a normal 

distribution. It then scales the data to have a standard deviation of 1, with the 

distribution centered at 0. 

 Robust Scaler: This scaler is particularly effective when the dataset contains 

outliers. It scales the data based on the inter-quartile range after removing the 

median. 

 Max-Abs Scaler: Similar to the min-max scaler, this technique scales the feature 

to its maximum absolute value. Notably, it preserves the sparsity of the data by not 

centering it. 

 

2.3.6 Dealing with outliers 

 

Outliers are data points that do not conform with the predominant pattern 

observed in the data. They can cause disruptions in the predictions by taking the 

calculations off the actual pattern (Nnamoko & Korkontzelos, 2020). 

Box plots are a valuable tool for detecting and addressing outliers. They enable 

the identification of key statistical measures like the median, interquartile ranges, and 

outliers. To effectively manage outliers, it's important to take note of the maximum and 

minimum ranges, and subsequently filter the variable accordingly (Krishna et al., 2022). 

In order 

to gain better 

understanding 

regarding the 

Box plots, 

Figure 8 

depicts its 

function. 

 

Figure 8. Box Plot.  
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To better understand the above figure (Williamson et al., 1989),  

 median (Q2/50th Percentile): the middle value of the dataset. 

 first quartile (Q1/25th Percentile): the middle number between the smallest 

number (not the “minimum”) and the median of the dataset. 

 third quartile (Q3/75th Percentile): the middle value between the median and the 

highest value (not the “maximum”) of the dataset. 

 InterQuartile Range (IQR): 25th to the 75th percentile. IQR tells how spread 

the middle values are. 

 “maximum”: Q3 + 1.5*IQR 

 “minimum”: Q1 -1.5*IQR 

 Outliers: (shown as green circles) In statistics, an outlier is an observation point 

that is distant from other observations. 

Additionally, it is essential to clarify that not every outlier is a wrong value. 

 

2.3.7 Feature Encoding 

 

At times, data is presented in a format that isn't directly interpretable by 

machines. For instance, a column containing string values like names might not hold 

meaning for a model that relies solely on numerical inputs. This necessitates the process 

of data transformation to facilitate the model's comprehension. This technique is 

referred to as categorical encoding (Dahouda & Joe, 2021). There are several 

approaches to encoding categories. Here are some fundamental methods to begin with: 

 Label/Ordinal Encoding: This method assigns values from 1 to 'n' in a sequential 

order. Here, 'n' corresponds to the number of samples in the column. For instance, 

if a column contains three city names, label encoding will assign values 1, 2, and 

3 to the respective cities. While this method is suitable for ordered categories like 

student grades, it's not recommended for categorical values without a natural 

order, such as cities. 

 One-Hot Encoding: When categorical data lacks a natural order, one-hot 

encoding is employed. This technique generates a distinct column for each 

category. A positive value (1) is assigned in the row where the category is 

present, and 0 denotes its absence. It's worth noting that this method may lead to 

data expansion, but it's typically not problematic with a manageable number of 

features. 
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 Binary Encoding: This method addresses the potential bulkiness associated with 

one-hot encoding. Each categorical value is transformed into its binary 

representation, resulting in the creation of new columns for each binary digit. 

This compresses the number of columns compared to one-hot encoding. For 

instance, with 100 values in a categorical column, one-hot encoding would 

generate 100 (or 99) new columns, whereas binary encoding would yield 

considerably fewer, unless the values are exceedingly large. 

 BaseN Encoding: Similar to binary encoding, BaseN encoding utilizes a different 

base, allowing for a range of options beyond binary (base 2). The choice of base 

impacts the trade-off between information loss and compression efficiency. 

Higher bases result in greater compression power, but also entail increased 

information loss. 

 Hashing: This method involves generating values from a category using 

mathematical functions. It's akin to one-hot encoding, albeit with a more intricate 

function and fewer dimensions. However, hashing does entail some information 

loss due to collisions in resulting values. 

 

2.3.8 Dealing with Imbalanced Data 

 

In binary classification problems, imbalanced datasets present a common 

challenge for machine learning practitioners. Resampling data is a widely favored 

approach to tackle this issue, with two primary methods: Undersampling and 

Oversampling. Among these, Synthetic Minority Oversampling Technique (SMOTE) 

stands out as a popular technique (Garcia et al., 2012). 

SMOTE is specifically designed to address imbalanced datasets by generating 

synthetic samples for the minority class. This technique helps mitigate bias and capture 

crucial features of the minority class, ultimately leading to more accurate predictions 

and improved model performance (Hussein et al., 2019). 

The mechanism behind SMOTE involves creating synthetic samples along the 

lines connecting the nearest neighbors in the feature space. The fundamental concept is 

to generate new samples for the minority class by taking small steps from one of the 

minority class samples towards one of its k nearest neighbors, where k is a parameter 

of the algorithm (Fernández et al., 2018).  
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The algorithm operates in the following steps (Pradipta et al., 2021): 

Step 1. Select a minority class sample from the original dataset. 

Step 2. Identify its k nearest minority class neighbors in the feature space. 

Step 3. Randomly choose one of the k nearest neighbors.  

Step 4. Generate a new synthetic sample by interpolating between the selected minority 

class sample and the randomly chosen neighbor.  

Step 5. Repeat steps 1-4 until the desired number of synthetic samples is created. 

This process results in new synthetic data that shares similarities with the 

minority class samples in the feature space, yet is distinct from any existing samples. 

 

2.3.9 Dimensionality Reduction 

 

Dimensionality refers to the number of input features, variables, or columns 

present within a dataset. The process of reducing these features is known as 

dimensionality reduction. Datasets often encompass a multitude of input features in 

various instances, making the task of predictive modeling considerably more complex. 

Managing and visualizing a high-dimensional training dataset can be challenging. In 

such scenarios, the employment of dimensionality reduction techniques becomes 

imperative (Guyon & Elisseeff, 2003). 

Dimensionality reduction techniques can be defined as follows: "They are 

methods for transforming a high-dimensional dataset into a lower-dimensional one, 

with the objective of retaining similar information". These techniques find widespread 

application in machine learning, particularly in improving predictive models when 

dealing with classification and regression problems. Some of the common techniques 

of dimensionality reduction are: Principal Component Analysis, Backward Elimination, 

Forward Selection, Score comparison, Missing Value Ratio, Low Variance Filter, High 

Correlation Filter, Random Forest and Factor Analysis (Huang et al., 2019). 

 

 

2.4 Evaluation of Machine Learning Models 

 

2.4.1 Generally 

 

Evaluation metrics serve as essential tools for assessing the quality of statistical 

or machine learning models. The concept behind building machine learning models is 



49 
 

rooted in a feedback loop that fosters improvement. Evaluation metrics provide insights 

into a model's performance (Zhou et al., 2021). 

A crucial attribute of evaluation metrics lies in their ability to distinguish 

between different outcomes generated by a model. Evaluation metrics offer valuable 

insights about your model, such as whether it has truly learned or merely memorized 

patterns. This distinction holds great significance because a model that has only 

memorized is efficient in handling known data but lacks adaptability and efficiency 

(Dalianis & Dalianis, 2018).  

To ensure that the model genuinely learns, it is imperative to employ a variety 

of evaluation metrics. This approach is essential because a model might perform 

exceptionally well according to one evaluation metric, but its performance may decline 

when assessed using a different metric. Utilizing multiple evaluation metrics is pivotal 

in verifying that the model operates correctly and optimally (Rjoob et al., 2022). 

 

2.4.2 Holdout and Cross validation methods 

 

In the realm of machine learning, the dataset is typically divided into two 

distinct types: the "Training dataset" and the "Test dataset." The training dataset serves 

as the foundation for building and training the machine learning model to assess its 

functionality and performance. However, when it comes to evaluating the model, we 

rely on the test dataset, which consists of data samples that the model has never 

encountered during training (Perlaza et al., 2023). 

The reason we use a separate test dataset for evaluation is to gauge how well the 

model performs on previously unseen or unknown data, essentially testing its ability to 

generalize from the training data to new, unfamiliar examples (Takano & Alaghband, 

2019). 

If we were to evaluate the model using the same training dataset, it would likely 

exhibit high accuracy measures for all instances within that dataset. However, this 

scenario can be misleading because the model is essentially predicting outcomes it has 

already learned, and it may not perform as effectively on new, real-world data. 

Therefore, using the training dataset for evaluation doesn't provide a genuine 

assessment of the model's ability to handle novel scenarios (Mahesh, 2020). 

Two common methods for evaluating the performance of a model are the 

Holdout and the Cross validation methods.  
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I. Holdout method: The Holdout method is a technique used to assess the 

performance of a machine learning model. It involves dividing the 

dataset into two distinct sets: training data and testing data. The training 

data is used to train the model, while the testing data is employed to 

evaluate its performance. This method provides insight into how well 

the model, developed using various algorithm techniques, performs on 

previously unseen data. The Holdout approach is known for its 

simplicity, flexibility, and efficiency (Raschka, 2018). 

II. Cross validation: Cross-Validation is a more comprehensive evaluation 

procedure. It entails partitioning the dataset into multiple subsets or 

"folds." The model is trained on a subset of the data and evaluated on 

the remaining data. Cross-validation helps assess the model's 

performance across various data subsets, providing a more robust 

estimate of its accuracy (Stone, 1978). There are different methods for 

conducting cross-validation, including: 

a. Validation: The given dataset is split into 50% of training and 50% 

for testing purpose. The main drawback in this method is that the 

remaining 50% of data that is subjected to testing may contain some 

crucial information that may be lost while training the model (Borg 

et al., 2018).  

b. Leave one out cross validation (LOOCV): All the datasets are 

trained in the model and a single data point is left for testing purpose. 

This method aims at exhibiting lower bias, but there are some 

chances that this method might fail because, the data-point that has 

been left out may be an outlier in the given data; and in that case we 

cannot produce better results with good accuracy (Syed, 2011). 

c. K-Fold Cross Validation: Is a popular method used for evaluation of 

a Machine Learning model. It works by splitting the data into k-

parts. Each split of the data is called a fold. Here we train all the k 

subsets of data to the model, and then we leave out one (k-1) subset 

to perform evaluation on the trained model. This method results in 

high accuracy and produces data with less bias (Anguita et al., 2009). 
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2.4.3 Overfitting and Underfitting 

 

When discussing machine learning models, the focus is often on their 

performance and accuracy, which is measured by prediction errors. A machine learning 

model is considered good when it effectively generalizes new input data from the 

problem domain, enabling accurate predictions for unseen future data (Zhang et al., 

2019). However, issues arise in assessing how well a machine learning model learns 

and generalizes to new data, leading to problems like overfitting and underfitting. These 

issues are primarily responsible for suboptimal performance in machine learning 

algorithms (Jabbar & Khan, 2015). 

More specifically, on the one hand underfitting in the context of statistical 

modeling or machine learning refers to a situation where the model's simplicity renders 

it incapable of adequately grasping the intricacies present in the data. This leads to 

suboptimal performance not only on the training dataset but also when the model is 

tested on new, previously unseen data. In simpler terms, an underfit model tends to 

produce inaccurate results, especially when confronted with novel examples. This issue 

predominantly arises when an overly simplistic model is employed, often characterized 

by overly generalized assumptions. To tackle the problem of underfitting, it is essential 

to opt for more intricate models that possess improved feature representation and 

employ less regularization (Cunningham & Delany, 2021). 

On the other hand, overfitting is a phenomenon observed in statistical models 

when they fail to make accurate predictions on testing data. This occurs when a model 

is trained on an extensive dataset to the extent that it begins to learn from noise and 

inaccuracies present in the data, resulting in high variance when applied to test data. 

Consequently, the model struggles to correctly categorize data due to an excessive focus 

on fine details and noise (Roelofs et al., 2019). Overfitting is often associated with non-

parametric and non-linear machine learning methods, as these algorithms possess 

greater flexibility in constructing models based on the dataset, sometimes leading to the 

creation of unrealistic models. To mitigate overfitting, one strategy is to use linear 

algorithms for linear data or to apply parameters like maximal depth when employing 

decision trees. This helps strike a balance between model complexity and generalization 

(Ying, 2019). 

Figure 9, depicts the underfitting, goodfitting and overfitting of Machine 

learning models. 
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Figure 9. Underfitting, goodfitting and overfitting of Machine learning models. 

 

2.4.3.1 Bias and Variance in Machine Learning 

 

Bias refers to the error stemming from overly simplistic assumptions within the 

learning algorithm. These assumptions, while simplifying the model and its learning 

process, may not adequately capture the inherent complexities in the data. This error 

occurs when the model cannot accurately represent the genuine relationship between 

input and output. High bias is observed when a model performs poorly on both training 

and testing data, signifying underfitting due to its simplicity (Domingos, 2000).  

Conversely, variance pertains to the error resulting from the model's sensitivity 

to variations within the training data. It quantifies the extent of prediction variability 

for different training data instances. High variance arises when a model captures the 

noise and random fluctuations in the training data rather than the underlying pattern. 

Consequently, the model excels on the training data but falters on the testing data, 

indicating overfitting (Valentini & Dietterich, 2004). 
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2.4.4 Classification Metrics 

 

2.4.4.1 Confusion Matrix 

 

A confusion matrix is a square NxN matrix structure employed for the 

evaluation of a classification model's performance. More extensively, N represents the 

number of classes that the model predicts. This matrix is applied to a test dataset for 

which the true values are known. Its purpose is to provide insight into the accuracy of 

a classifier by documenting the count of both correct and incorrect predictions 

(Choudhary & Gianey, 2017). Within the matrix, we can find key values (Mehrabi et 

al., 2021) such as:  

 True Positives (TP) - The cases in which our predictions are true, and the actual 

output was also true. 

 False Positives (FP) - 

The cases in which our 

predictions are true, 

and the actual output 

was false. 

 True Negatives (TN) - 

The cases in which our 

predictions are false, 

and the actual output 

was also false. 

 False Negatives (FN) - 

The cases in which our 

predictions are false, 

and the actual output was true.                                         Figure 10. Confusion Matrix. 

These elements collectively contribute to assessing the model's correctness and 

effectiveness in classifying data. Figure 10, depicts the confusion matrix classes. 

 

2.4.4.2 Accuracy 

 

Accuracy serves as a fundamental metric for assessing the performance of 

classification models. Formally, accuracy can be defined as the ratio of the sum of True 

Positives (correctly predicted positive instances) and True Negatives (correctly 
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predicted negative instances) to the total number of predictions. In other words, 

accuracy measures how often the model's predictions are correct in relation to the entire 

dataset (Kotsiantis et al., 2007). 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Accuracy alone may not provide a comprehensive understanding of model 

performance, especially when we are working with a class-imbalanced data set, where 

there is a significant disparity between the number of positive and negative labels. 

 

2.4.4.3 Precision 

 

Precision is a valuable metric in classification evaluation. It quantifies the ratio 

of True Positives (correctly predicted positive instances) in a sample to the total number 

of positive samples predicted by the classifier. In essence, precision provides insights 

into how accurately the model identifies positive samples, highlighting the fraction of 

predicted positives that are indeed true positives. This metric is particularly relevant in 

situations where the cost or impact of false positives is a critical consideration 

(Osisanwo et al., 2017). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

2.4.4.4 Recall/ Sensitivity/ True Positive Rate 

 

The Recall also known as Sensitivity and True Positive Rate, expresses the 

percentage of positive instances out of the total actual positive instances. Therefore 

denominator (TP + FN) here is the actual number of positive instances present in the 

dataset. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

2.4.4.5 Specificity 

 

Specificity, often referred to as the True Negative Rate, is an important metric 

in classification evaluation. It quantifies the ratio of True Negatives (correctly predicted 



55 
 

negative instances) in a sample to the sum of True Negatives and False Positives (actual 

negative instances that were incorrectly classified as positives) within a given dataset. 

In essence, specificity provides insights into how effectively the model 

identifies actual negative samples from the provided dataset. This metric helps assess 

the model's ability to correctly recognize instances that are genuinely negative, without 

misclassifying them as positive. Mathematically, specificity can be expressed as: 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

So, whether the term specificity or true negative rate is used, both are describing 

the same evaluation metric that focuses on the model's capacity to accurately identify 

true negatives within the dataset. 

 

2.4.4.6 F1 Score 

 

The F1 score, which is the harmonic mean of precision and recall, offers a 

balanced assessment of a classification model's performance. A higher F1 score 

indicates better overall performance. Notably, the F1 score is sensitive to changes in 

either precision or recall; if one of them decreases, it can significantly impact the final 

F1 score due to their product relationship. 

A good F1 score is achieved when the model excels in both precision (correctly 

predicting positives among all predicted positives) and recall (not missing actual 

positives by predicting them as negatives). Mathematically, F1 Score can be expressed 

as: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

2.4.4.7 Area Under Curve (AUC) - Receiver Operating Characteristic (ROC) Curve 

 

The AUC-ROC curve serves as a performance measurement tool for 

classification problems across various threshold settings. The ROC (Receiver 

Operating Characteristic) curve is a graphical representation of the classifier's 

performance, while AUC (Area Under the Curve) quantifies the degree of separability 

between classes. 

Specifically, the AUC value indicates how effectively the model can 
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differentiate between classes. A higher AUC corresponds to a better ability of the model 

to correctly classify instances of class 0 as 0 and instances of class 1 as 1. In essence, a 

higher AUC signifies superior discrimination by the model. 

To create the ROC curve, True Positive Rate (TPR), also known as sensitivity, 

is plotted on the y-axis, and 

False Positive Rate (FPR) is 

plotted on the x-axis. The 

ROC curve visually illustrates 

the trade-off between TPR and 

FPR at different threshold 

settings, helping to visualize 

the classifier's performance 

across various decision 

boundaries (Narkhede, 2018). 

Figure 11, depicts the graph 

the AUC-ROC. 

Figure 11. Graph of AUC – ROC. 

 

2.4.5 Regression Metrics 

 

Predicting outcomes with the assistance of correlated independent variables is 

a fundamental aspect of regression analysis. In this context, three primary metrics serve 

the purpose of assessing the model's performance and determining whether it suffers 

from underfitting or overfitting (Botchkarev, 2019). These metrics include: 

 Mean Absolute Error (MAE): Mean Absolute Error represents the average 

discrepancy between predicted values and actual outcomes. It provides insight into 

the overall prediction accuracy but does not directly address issues related to 

underfitting or overfitting. Its calculation involves finding the mean of the absolute 

differences between predictions and actual values. 

 Mean Squared Error (MSE): Mean Squared Error shares similarities with Mean 

Absolute Error but introduces an element of squared differences. This entails 

computing the average of the squared disparities between original and predicted 

values. Squaring helps in managing the impact of both small and large errors within 

the dataset. 
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 Root Mean Squared Error (RMSE): Root Mean Squared Error is a widely adopted 

metric for evaluating regression models. It is derived by taking the square root of the 

mean of the squared differences between predicted and actual values. This metric 

adheres to a normal distribution assumption and relies on the notion of unbiased 

errors.  

These metrics serve as critical tools for gauging the effectiveness of regression 

models and guiding decisions on model fit and performance. 
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Chapter 3. DATA & METHODS 

 

  Chapter 3 describes the dataset and methods that are utilized in the present 

thesis. Specifically, the chapter starts with a description of the dataset and the sample. 

The chapter concludes with a description of the statistical methods that are used in 

order to analyze the data. 

 

3.1 Dataset 

 

For the purposes of this research a secondary data analyses is conducted. The 

examined dataset containing the medical records of 299 heart failure patients from the 

Faisalabad Institute of Cardiology and the Allied Hospital in Faisalabad, Punjab, 

Pakistan. The data was collected between April and December 2015 (Ahmad et al., 

2017). Among these patients, 105 were women (label 0) and 194 were men (label 1), 

with ages ranging from 40 to 95 years old. All 299 patients had experienced left 

ventricular systolic dysfunction and had previous heart failures, placing them in classes 

III or IV of the New York Heart Association (NYHA) classification for heart failure 

stages. 

This dataset includes 13 features, providing clinical, body, and lifestyle 

information (see Table 8). Some of these features are binary, indicating whether a 

patient has conditions like anemia, high blood pressure, diabetes, along with 

information about their sex and smoking habits. The diagnosis of anemia was based on 

hematocrit levels below 36%, as determined by the hospital physician. Unfortunately, 

the original dataset manuscript does not offer a specific definition for high blood 

pressure (Ahmad et al., 2017). 

Among the features, Creatinine Phosphokinase (CPK) indicates the level of the 

CPK enzyme in the blood, which rises when muscle tissue is damaged (McClellan et 

al., 2002). Elevated CPK levels may suggest heart failure or injury (Özbay Karakuş & 

Er, 2022). Ejection fraction measures the percentage of blood the left ventricle pumps 

out with each contraction. Serum creatinine, a byproduct of muscle breakdown, is 

closely monitored by doctors to assess kidney function. High levels of serum creatinine 

can signal renal dysfunction. Sodium, a vital mineral for muscle and nerve function, is 

assessed through a routine blood test to check for normal levels. Abnormally low 

sodium levels may be linked to heart failure (Chicco & Jurman, 2020). 

The 'death event' feature, used as the target in our binary classification study, 
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indicates whether a patient passed away or survived before the average follow-up period 

of 130 days (Ahmad et al., 2017). Unfortunately, the original dataset article does not 

provide information about whether any patients had primary kidney disease or details 

about the follow-up procedure. In terms of dataset balance, there are 203 patients who 

survived (death event = 0) and 96 patients who did not (death event = 1). This translates 

to 32.11% positive cases and 67.89% negative cases in statistical terms. 

 

Table 8. Meanings, measurement units, and intervals of each feature of the dataset. 

Feature Explanation Measurement Range 

Age  Age of the patient Years [40, ..., 95] 

Anaemia  Decrease of red blood cells or 

hemoglobin 

Boolean 0, 1 

High blood 

pressure  

If a patient has hypertension Boolean 0, 1 

Creatinine 

phosphokinase  

(CPK) 

Level of the CPK enzyme in the 

blood 

mcg/L [23, ..., 7861] 

Diabetes  If the patient has diabetes Boolean 0, 1 

Ejection fraction  Percentage of blood leaving  

the heart at each contraction 

Percentage [14, ..., 80] 

Sex  Woman or man Binary 0, 1 

Platelets  Platelets in the blood kiloplatelets/mL [25.01,...,850.00] 

Serum 

creatinine  

Level of creatinine in the blood mg/dL [0.50, ..., 9.40] 

Serum sodium  Level of sodium in the blood mEq/L [114, ..., 148] 

Smoking If the patient smokes Boolean 0, 1 

Time  Follow-up period Days [4,...,285] 

(target) death 

event  

If the patient died during the 

follow-up period 

Boolean 0, 1 

mcg/L: micrograms per liter. mL: microliter. mEq/L: milliequivalents per litre 

 

In the comprehensive analysis of the full dataset comprising heart failure 

patients, the distribution of key categorical features is detailed in the Table 9. The 

sample is categorized based on the presence or absence of specific conditions: Anaemia 

(0: false, 1: true), High blood pressure (0: false, 1: true), Diabetes (0: false, 1: true), Sex 

(0: woman, 1: man), and Smoking (0: false, 1: true). 
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Table 9. Statistical quantitative description of the categorical features. 

 Full 

Sample 

Dead 

patients 

Survived 

patients 

Feature Count % Count % Count % 

Anaemia (0: false) 170 56.86 50 52.08 120 59.11 

Anaemia (1: true) 129 43.14 46 47.92 3 40.89 

High blood pressure (0: false) 194 64.88 57 59.38 137 67.49 

High blood pressure (1: true) 105 35.12 39 40.62 66 32.51 

Diabetes (0: false) 174 58.19 56 58.33 118 58.13 

Diabetes (1: true) 125 41.81 40 41.67 85 41.87 

Sex (0: woman) 105 35.12 34 35.42 71 34.98 

Sex (1: man) 194 64.88 62 64.58 132 65.02 

Smoking (0: false) 203 67.89 66 68.75 137 67.49 

Smoking (1: true) 96 32.11 30 31.25 66 32.51 

Full sample: 299 individuals. Dead patients: 96 individuals. Survived patients: 203 individuals. 

 

The presented Table 10, offers a comprehensive statistical analysis of numeric 

features within a dataset, differentiating between two distinct groups: "Dead patients" 

and "Survived patients." These features encompass various clinical and demographic 

characteristics, and the statistics provided offer valuable insights into the central 

tendencies and variabilities exhibited within each group. 

 Age Analysis  The median age for the full sample is 60.00 years, with a mean 

age of 60.83 years. Notably, the median age for Dead patients is slightly higher 

at 65.00 years, with a mean age of 65.22 years, while Survived patients exhibit 

a lower median age of 60.00 years and a mean age of 58.76 years. These figures 

suggest that Dead patients tend to be older on average, potentially indicating age 

as a factor worth exploring in the context of patient outcomes. 

 Creatinine Phosphokinase (CPK) Insights   The data reveals varying trends in 

creatinine phosphokinase levels. For the full sample, the median is 250.00, while 

the mean is substantially higher at 581.80. Dead patients exhibit a median of 

259.00 and a mean of 670.20, while Survived patients have a median of 245.00 

and a mean of 540.10. This indicates that creatinine phosphokinase levels tend 

to be higher on average in Dead patients, warranting further investigation into 

the potential significance of this marker in predicting patient outcomes. 

 Ejection Fraction (EF) Findings  Ejection fraction statistics show differences 
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between the groups. The full sample has a median ejection fraction of 38.00 and 

a mean of 38.08, while Dead patients present a lower median of 30.00 and a 

mean of 33.47. In contrast, Survived patients have a similar median of 38.00 but 

a higher mean of 40.27. These variations highlight the potential role of ejection 

fraction in distinguishing outcomes, with Dead patients generally showing 

lower ejection fractions. 

 Platelets Examination  The analysis of platelet counts indicates modest 

differences between the groups. The full sample exhibits a median of 262.00 

and a mean of 263.36. Dead patients have a slightly lower median of 258.50 and 

mean of 256.38, while Survived patients have a slightly higher median of 263.00 

and mean of 266.66. This suggests that platelet counts do not significantly 

differentiate between the two groups. 

 Serum Creatinine (SC) Considerations  Serum creatinine values are notable, 

with the full sample showing a median of 1.10 and a mean of 1.39. Dead patients 

have a higher median of 1.30 and mean of 1.84, indicating elevated serum 

creatinine levels, while Survived patients have a lower median of 1.00 and mean 

of 1.19. These findings suggest that serum creatinine could serve as a valuable 

predictor of patient outcomes, with higher levels potentially associated with 

increased mortality risk. 

 Serum Sodium (SS) Implication  The analysis of serum sodium levels 

demonstrates modest variation. The full sample has a median of 137.00 and a 

mean of 136.60. Dead patients exhibit a slightly lower median of 135.50 and 

mean of 135.40, while Survived patients present a higher median of 137.00 and 

mean of 137.20. These findings suggest that serum sodium levels may not be a 

major distinguishing factor in predicting patient outcomes. 

 Time and Its Impact  Time, a variable with significant variance, exhibits 

interesting patterns. The median time for the full sample is 115.00, but Dead 

patients have a substantially lower median of 44.50, indicating a shorter time 

period, while Survived patients have a higher median of 172.00. The mean time 

for Dead patients is 70.89, while for Survived patients, it is 158.30. These results 

suggest that the time factor plays a critical role in distinguishing outcomes, with 

a shorter time interval being associated with higher mortality. 

In summary, this analysis of numeric features provides valuable insights into 
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the potential predictors of patient outcomes, highlighting the significance of age, 

creatinine phosphokinase, ejection fraction, serum creatinine, and time in 

distinguishing between Dead and Survived patients. These findings may serve as a basis 

for further research and clinical decision-making in healthcare contexts. 

 

Table 10. Statistical quantitative description of the numeric features. 

 Full sample Dead patients Survived patients 

Feature Mdn M σ Mdn M σ Mdn M σ 

Age 60 60.83 11.89 65 65.22 13.21 60 58.76 10.64 

Creatinine 

phosphokinase 
250 581.8 970.3 259 670.2 1316.58 245 540.1 753.8 

Ejection 

fraction 
38 38.08 11.83 30 33.47 12.53 38 40.27 10.86 

Platelets 262 263.36 97.80 258.5 256.38 98.53 263 266.7 97.53 

Serum 

creatinine 
1.10 1.39 1.03 1.30 1.84 1.47 1 1.19 0.65 

Serum sodium 137 136.6 4.41 135.5 135.4 5.00 137 137.2 3.98 

Time 115 130.3 77.61 44.50 70.89 62.38 172 158.3 67.74 

Mdn: Median. M: Mean. σ: Standard deviation Full sample: 299 individuals. Dead patients: 

96 individuals. Survived patients: 203 individuals. 

 

Following the presentation of statistical Tables 9 and Table 10, that elucidate 

the quantitative aspects of our dataset, we embark on a visual exploration of the data 

through graphical plots (Figure 12, 13, 14). Visualization serves as a powerful 

complement to numerical summaries, providing a more intuitive understanding of 

trends, patterns, and relationships within the data. This sequential integration of 

statistical tables and graphical plots aims to offer a comprehensive perspective on the 

dataset, enhancing the interpretability and depth of our analysis. 
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Figure 12. Distributions and Box-plots of numerical features. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Histograms of numerical features. 
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Figure 14. Histograms of categorical features. 

 

 

3.2 Methodology 

 

In our research on predicting death events in heart failure patients through 

Machine Learning, the dataset was thoroughly examined for missing values, and it was 

found to be complete, with no missing entries. An outlier analysis was also conducted, 

but no modifications were made due to the medical nature of the data, which was 

determined to have medically plausible values. 

Data normalization was applied to ensure consistent feature scaling, a vital step 

to enhance model performance. Feature selection was carried out using the Extra Tree 

Classifier in several experimental approaches, helping to identify and retain the most 

relevant features, thus improving model efficiency and interpretability (see Figure 15). 

The feature “time”, which is the most important feature, has been excluded from all the 

analyses to highlight the differentiation among the approaches of this study. 

For binary classification of patient outcomes, a selection of Machine Learning 

models was employed, including Random Forest, Decision Tree, Support Vector 

Machine (SVM), Logistic Regression, k-Nearest Neighbors (KNN), and Gradient 

Boosting. Hyperparameters for each model were optimized through grid search. The 

dataset is separated as follows: 70% for training our Machine Learning models and 30% 

for validation. 

A variety of experimental approaches were undertaken to assess model 

performance under different conditions. These approaches included using:  
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1. the full dataset,  

2. with feature selection to retain the 'Serum creatinine' and 'Ejection fraction' features, 

3. employing undersampling techniques for data balance,  

4. combining undersampling with feature selection,  

5. applying SMOTE for oversampling using the entire dataset,  

6. combining SMOTE with feature selection, 

7. and Principal Component Analysis (PCA) was employed to reduce dimensionality. 

The dataset used for this research consists of clinical data related to heart failure 

patients, with the primary objective of classifying and predicting death events. Model 

performance was evaluated using various metrics, such as the Confusion matrix, AUC-

ROC curve, Recall, Precision, F1-score, and Accuracy. 

This comprehensive methodology provides a solid foundation for our research, 

enabling a clear presentation of findings and robust conclusions regarding the 

effectiveness of different Machine Learning models and approaches in predicting death 

events in heart failure patients. 

 

Figure 15. Feature importance using Extra Tree Classifier. 
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Chapter 4. RESULTS 

 

  Chapter 4 presents the results of this thesis, while the discussion of the findings 

also takes place. More specifically, for each machine learning model, the parameters 

obtained from the Grid search method are analyzed, and the results are presented 

through a Confusion matrix, Receiver operating characteristic - Area under the curve 

and other statistical validation measures. 

 

4.1 Full dataset 

 

In this section all the data features – except the time feature  are used to create 

the machine learning models.  

 

4.1.1 Random forest 

 

The optimized Random Forest model, resulting from a grid search, is configured 

with the following parameters: 'bootstrap' set to False, 'criterion' utilizing entropy, 

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 2 samples 

per leaf node, 'min_samples_split' set at 5, and an ensemble of estimators consisting of 

200 trees.  

This confusion matrix provides a clear breakdown of the model's predictions. 

The elements along the main diagonal represent correct predictions, while off-diagonal 

elements indicate misclassifications (Figure 16). In this case: 

 True Positive (TP):  

11 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

57 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

5 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

17 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.766 (Figure 16). 
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Figure 16. Random forest’s confusion  

matrix, ROC Curve and statistics for the full dataset. 

 

4.1.2 Decision tree 

 

The optimized Decision tree model, obtained through grid search, is 

characterized by the following key parameters: a Gini criterion for node splitting, a 

maximum tree depth of 3 levels, a minimum of 7 samples required for leaf nodes, and 

a minimum of 2 samples for node splitting. 

The confusion matrix (Figure 17) for the Decision tree model provides a 

breakdown of the model's predictions: 

 True Positive (TP):  

8 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

53 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

9 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

20 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.749 (Figure 17). The Decision tree model that arises is presented in Figure 

18. 
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Figure 17. Decision tree’s confusion  

matrix, ROC Curve and statistics for the full dataset. 

 

Figure 18. Decision tree for full dataset approach.  

 

4.1.3 Gradient boosting 

 

The Gradient Boosting model, refined through grid search, is characterized by 

the following parameters: a criterion for impurity measurement set to Friedman Mean 

Squared Error, a learning rate of 0.1, a maximum tree depth of 10 levels, feature 

selection based on the logarithm base 2 of total features, 10 boosting stages (estimators), 

and a subsample fraction of 0.6. 
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The confusion matrix (Figure 19) for the Gradient Boosting model analyzed 

below as follows: 

 True Positive (TP): 7 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 21 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.683 (Figure 19).  

Figure 19. Gradient boosting’s    

confusion matrix, ROC Curve and statistics for the full dataset. 

 

4.1.4 Logistic regression 

 

The optimized Logistic Regression model, obtained through grid search, is 

characterized by a regularization strength 'C' of 10 and an 'L2' penalty. This parameter 

configuration signifies a meticulous fine-tuning process, achieving a balance between 

model complexity and predictive accuracy tailored to the specific characteristics of the 

dataset. 

 

The confusion matrix (Figure 20) for the Logistic Regression model is presented 

and analyzed as follows: 

 True Positive (TP): 12 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0. 
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 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.733 (Figure 20).  

 

Figure 20. Logistic regression’s    

confusion matrix, ROC curve and statistics for the full dataset. 

 

4.1.5 K-Nearest Neighbors (KNN) 

 

After a research for the ideal number of  Nearest Neighbors for the K-Nearest 

Neighbors (KNN) model, it is concluded that the value of the ideal number of the 

Nearest Neighbors is setting N=3 (Figure 21), achieving a prediction accuracy score of 

0.711.  

The confusion matrix (Figure 22) for the K-Nearest Neighbors (KNN) model is 

analyzed: 

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 54 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.681 (Figure 22). 
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Figure 21. Ideal number of Nearest Neighbors (full dataset approach). 

Figure 22. KNN’s confusion matrix, 

ROC curve and statistics for the full dataset. 

 

4.1.6 Support vector machines  Linear (SVM Linear) 

 

The optimized Support Vector Machine (SVM) model with a linear kernel, 

obtained through grid search, is characterized by a regularization parameter (C) of 10, 

a degree of 1, and a gamma value of 0.0001.  

 

The confusion matrix (Figure 23) for the Support Vector Machine (SVM) –

Linear model is examined: 
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 True Positive (TP): 12 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.736 (Figure 23). 

 

Figure 23. SVM’s (Linear) 

confusion matrix, ROC curve and statistics for the full dataset. 

 

4.1.7 Support vector machines  Radial (SVM Radial) 

 

The optimized Support Vector Machine (SVM) model with a radial kernel 

(Figure 24), obtained through grid search, is characterized by a regularization parameter 

'C' of 10 and a gamma value of 0.1. 

 

The confusion matrix for the Support Vector Machine (SVM)  Radial model 

with a radial kernel is tested: 

 True Positive (TP): 17 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 43 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 19 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 11 instances of actual class 1 incorrectly predicted as class 0. 
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The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.686 (Figure 24). 

Figure 24. SVM’s (Radial) 

confusion matrix, ROC curve and statistics for the full dataset. 

 

 

4.2 Feature selection 

 

In this section, the Extra Tree algorithm was employed to identify the two most 

significant features. The time feature was excluded from the analysis. As illustrated in 

Figure 25, serum creatinine and ejection fraction emerged as the two most important 

features, and they were consequently utilized in the construction of the machine 

learning models. 

Figure 25. Feature selection for “Feature selection” approach. 
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4.2.1 Random forest 

 

The optimized Random Forest model, resulting from a grid search, is configured 

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini, 

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 2 samples 

per leaf node, 'min_samples_split' set at 2, and an ensemble of estimators consisting of 

200 trees.  

This confusion matrix provides a clear breakdown of the model's predictions. 

The elements along the main diagonal represent correct predictions, while off-diagonal 

elements indicate misclassifications (Figure 26). In this case: 

 True Positive (TP): 13 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 15 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.799 (Figure 26). 

 

Figure 26. Random forest’s confusion 

matrix, ROC Curve and statistics for the 

feature selection approach. 
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4.2.2 Decision tree 

 

The optimized Decision Tree model, obtained through grid search, is 

characterized by the following key parameters: a Entropy criterion for node splitting, a 

maximum tree depth of 7 levels, a minimum of 5 samples required for leaf nodes, and 

a minimum of 2 samples for node splitting. 

 

The confusion matrix (Figure 27) for the Decision Tree model provides a 

breakdown of the model's predictions: 

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 58 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 4 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.746 (Figure 27).  

 

 

 

Figure 27. Decision tree’s confusion  

matrix, ROC Curve and statistics for the 

feature selection approach. 
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4.2.3 Gradient boosting 

 

The Gradient Boosting model, refined through grid search, is characterized by 

the following parameters: a criterion for impurity measurement set to Friedman Mean 

Squared Error, a learning rate of 0.1, a maximum tree depth of 6 levels, feature selection 

based on the logarithm base 2 of total features, 10 boosting stages (estimators), and a 

subsample fraction of 0.8. 

 

The confusion matrix (Figure 28) for the Gradient Boosting model analyzed 

below as follows: 

 True Positive (TP): 11 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 56 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 17 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.741 (Figure 28).  

 

Figure 28. Gradient boosting’s confusion 

matrix, ROC Curve and statistics for the 

feature selection approach. 
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4.2.4 Logistic regression 

 

The optimized Logistic Regression model, obtained through grid search, is 

characterized by a regularization strength 'C' of 1 and an 'L2' penalty. This parameter 

configuration signifies a meticulous fine-tuning process, achieving a balance between 

model complexity and predictive accuracy tailored to the specific characteristics of the 

dataset. 

 

The confusion matrix (Figure 29) for the Logistic Regression model is presented 

and analyzed as follows: 

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 59 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 3 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.716 (Figure 29).  

 

Figure 29. Logistic regression’s confusion 

matrix, ROC curve and statistics for the 

feature selection approach. 
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4.2.5 K-Nearest Neighbors (KNN) 

 

After a research for the ideal number of  Nearest Neighbors for the K-Nearest 

Neighbors (KNN) model, it is concluded that the value of the ideal number of the 

Nearest Neighbors is setting N=18 (Figure 30), achieving a prediction accuracy score 

of 0.789. The confusion matrix (Figure 31) for the K-Nearest Neighbors (KNN) model 

is analyzed: 

 True Positive (TP): 14 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 57 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 5 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 14 instances of actual class 1 incorrectly predicted as class 0. 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.733 (Figure 31). 
 

Figure 30. Ideal number of Nearest Neighbors (feature selection approach). 

 

Figure 31. KNN’s confusion matrix, ROC 

curve and statistics for the feature selection 

approach.  
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4.2.6 Support vector machines - Linear (SVM Linear) 

 

The optimized Support Vector Machine (SVM) model with a linear kernel, 

obtained through grid search, is characterized by a regularization parameter (C) of 1, a 

degree of 1, and a gamma value of 0.0001.  

 

The confusion matrix (Figure 32) for the Support vector machine linear model 

is examined: 

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 59 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 3 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.718 (Figure 32). 

 

 

Figure 32. SVM’s (Linear) confusion 

matrix, ROC curve and statistics for the 

feature selection approach. 
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4.2.7 Support vector machines - Radial (SVM Radial) 

 

The optimized Support Vector Machine (SVM) model with a radial kernel 

(Figure 33), obtained through grid search, is characterized by a regularization parameter 

'C' of 1 and a gamma value of 10. 

 

The confusion matrix for the Support Vector Machine (SVM) model with a 

radial kernel is tested: 

 True Positive (TP): 13 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 54 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 15 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.804 (Figure 33). 

 

 

Figure 33. SVM’s (Radial) confusion 

matrix, ROC curve and statistics for the 

full dataset. 
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4.3 Undersampling 

 

In response to the imbalanced nature of the dataset, characterized by 203 

instances of class 0 (death event not occurred) and 96 instances of class 1 (death event 

occurred), an undersampling technique was implemented. This involved randomly 

removing instances from the majority class (class 0) to create a more equitable 

distribution between the classes. The primary goal of undersampling is to address bias 

and ensure that the machine 

learning model does not 

disproportionately favor the 

dominant class. The Figure 34, 

presents how the final classes 

are formulated after the 

undersampling method.  

 

Figure 34. Final classes after 

the undersampling method. 

 

 

4.3.1 Random forest 

 

The optimized Random Forest model, resulting from a grid search, is configured 

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini, 

'max_depth' limited to 6 levels, 'min_samples_leaf' requiring a minimum of 1 samples 

per leaf node, 'min_samples_split' set at 4, and an ensemble of estimators consisting of 

100 trees. This confusion matrix provides a clear breakdown of the model's predictions.  

The elements along the main diagonal represent correct predictions, while off-

diagonal elements indicate misclassifications (Figure 35). In this case: 

 True Positive (TP): 23 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 9 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.833 (Figure 35). 
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Figure 35. Random forest’s confusion 

matrix, ROC Curve and statistics for the 

undersampling approach. 

 

4.3.2 Decision tree 

 

The optimized Decision Tree model, obtained through grid search, is 

characterized by the following key parameters: a Entropy criterion for node splitting, a 

maximum tree depth of 10 levels, a minimum of 1 samples required for leaf nodes, and 

a minimum of 9 samples for node splitting. 

The confusion matrix (Figure 36) for the Decision Tree model provides a 

breakdown of the model's predictions: 

 True Positive (TP): 22 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 15 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 11 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 10 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.706 (Figure 36).  
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Figure 36. Decision tree’s confusion 

matrix, ROC Curve and statistics for the 

undersampling approach. 

 

 

4.3.3 Gradient boosting 

 

The Gradient Boosting model, refined through grid search, is characterized by 

the following parameters: a criterion for impurity measurement set to Friedman Mean 

Squared Error, a learning rate of 0.05, a maximum tree depth of 7 levels, feature 

selection based on the logarithm base 2 of total features, 100 boosting stages 

(estimators), and a subsample fraction of 0.5. 

The confusion matrix (Figure 37) for the Gradient Boosting model analyzed 

below as follows: 

 True Positive (TP): 19 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 13 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.774 (Figure 37).  
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Figure 37. Gradient boosting’s confusion 

matrix, ROC Curve and statistics for the 

undersampling approach. 

 

 

4.3.4 Logistic regression 

 

The optimized Logistic Regression model, obtained through grid search, is 

characterized by a regularization strength 'C' of 0.01 and an 'L2' penalty. This parameter 

configuration signifies a meticulous fine-tuning process, achieving a balance between 

model complexity and predictive accuracy tailored to the specific characteristics of the 

dataset. 

The confusion matrix (Figure 38) for the Logistic Regression model is presented 

and analyzed as follows: 

 True Positive (TP): 15 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 21 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 5 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 17 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.722 (Figure 38).  
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Figure 38. Logistic regression’s confusion 

matrix, ROC curve and statistics for the 

undersampling approach. 

 

 

 

4.3.5 K-Nearest Neighbors (KNN) 

 

After a research for the ideal number of  Nearest Neighbors for the K-Nearest 

Neighbors (KNN) model, it is concluded that the value of the ideal number of the 

Nearest Neighbors is setting N=5 (Figure 39), achieving a prediction accuracy score of 

0.672.  

The confusion matrix (Figure 40) for the K-Nearest Neighbors (KNN) model is 

analyzed: 

 True Positive (TP): 18 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 21 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 5 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 14 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.706 (Figure 40). 
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Figure 39. Ideal number of Nearest Neighbors (Undersampling approach). 

 

 

Figure 40. KNN’s confusion matrix, ROC 

curve and statistics for the undersampling 

approach. 
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4.3.6 Support vector machines - Linear (SVM Linear) 

 

The optimized Support Vector Machine (SVM) model with a linear kernel, 

obtained through grid search, is characterized by a regularization parameter (C) of 1, a 

degree of 1, and a gamma value of 0.0001.  

The confusion matrix (Figure 41) for the Support vector machine linear model 

is examined: 

 True Positive (TP): 20 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 12 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.793 (Figure 41). 

 

 

 

Figure 41. SVM’s (Linear) confusion 

matrix, ROC curve and statistics for the 

undersampling approach. 
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4.3.7 Support vector machines - Radial (SVM Radial) 

 

The optimized Support Vector Machine (SVM) model with a radial kernel 

(Figure 42), obtained through grid search, is characterized by a regularization parameter 

'C' of 10 and a gamma value of 0.01. 

The confusion matrix for the Support Vector Machine (SVM) model with a 

radial kernel is tested: 

 True Positive (TP): 21 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 11 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.768 (Figure 42). 

 

 

Figure 42. SVM’s (Radial) confusion 

matrix, ROC curve and statistics for the 

undersampling approach. 
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4.4 Undersampling and feature selection 

 

In this section, a combination of undersampling and feature selection 

approaches is applied. 

 

4.4.1 Random forest 

 

The optimized Random Forest model, resulting from a grid search, is configured 

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini, 

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 2 samples 

per leaf node, 'min_samples_split' set at 5, and an ensemble of estimators consisting of 

200 trees. This confusion matrix provides a clear breakdown of the model's predictions. 

The elements along the main diagonal represent correct predictions, while off-diagonal 

elements indicate misclassifications (Figure 43). In this case: 

 True Positive (TP): 24 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 8 instances of actual class 1 incorrectly predicted as class 0. 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.819 (Figure 43). 

Figure 43. Random forest’s confusion 

matrix, ROC Curve and statistics for 

Undersampling and feature selection 
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approach. 

4.4.2 Decision tree 

 

The optimized Decision Tree model, obtained through grid search, is 

characterized by the following key parameters: a Gini criterion for node splitting, a 

maximum tree depth of 4 levels, a minimum of 5 samples required for leaf nodes, and 

a minimum of 2 samples for node splitting. 

The confusion matrix (Figure 44) for the Decision Tree model provides a 

breakdown of the model's predictions: 

 True Positive (TP): 19 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 22 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 4 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 13 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.745 (Figure 44).  

 

 

Figure 44. Decision tree’s confusion 

matrix, ROC Curve and statistics for 

Undersampling and feature selection 

approach. 
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4.4.3 Gradient boosting 

 

The Gradient Boosting model, refined through grid search, is characterized by 

the following parameters: a criterion for impurity measurement set to Friedman Mean 

Squared Error, a learning rate of 0.01, a maximum tree depth of 2 levels, feature 

selection based on the logarithm base 2 of total features, 100 boosting stages 

(estimators), and a subsample fraction of 0.5. 

The confusion matrix (Figure 45) for the Gradient Boosting model analyzed 

below as follows: 

 True Positive (TP): 23 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 9 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.796 (Figure 45).  

 

Figure 45. Gradient boosting’s confusion 

matrix, ROC Curve and statistics for 

Undersampling and feature selection 

approach. 
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4.4.4 Logistic regression 

 

The optimized Logistic Regression model, obtained through grid search, is 

characterized by a regularization strength 'C' of 10 and an 'L2' penalty. This parameter 

configuration signifies a meticulous fine-tuning process, achieving a balance between 

model complexity and predictive accuracy tailored to the specific characteristics of the 

dataset. 

The confusion matrix (Figure 46) for the Logistic Regression model is presented 

and analyzed as follows: 

 True Positive (TP): 25 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 7 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.767 (Figure 46).  

 

Figure 46. Logistic regression’s confusion 

matrix, ROC curve and statistics for 

Undersampling and feature selection 

approach. 
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4.4.5 K-Nearest Neighbors (KNN) 

 

After a research for the ideal number of  Nearest Neighbors for the K-Nearest 

Neighbors (KNN) model, it is concluded that the value of the ideal number of the 

Nearest Neighbors is setting N=5 (Figure 47), achieving a prediction accuracy score of 

0.793. The confusion matrix (Figure 48) for the KNN model is analyzed: 

 True Positive (TP): 29 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 17 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 9 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 3 instances of actual class 1 incorrectly predicted as class 0. 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.864 (Figure 48). 

Figure 47. Ideal number of Nearest Neighbors (Undersampling and feature selection 

approach). 

 

Figure 48. KNN’s confusion matrix, ROC 

curve and statistics for the Undersampling 

and feature selection approach. 
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4.4.6 Support vector machines - Linear (SVM Linear) 

 

The optimized Support Vector Machine (SVM) model with a linear kernel, 

obtained through grid search, is characterized by a regularization parameter (C) of 10, 

a degree of 1, and a gamma value of 0.0001.  

 

The confusion matrix (Figure 49) for the Support vector machine linear model 

is examined: 

 True Positive (TP): 21 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 11 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.766 (Figure 49). 

 

Figure 49. SVM’s (Linear) confusion 

matrix, ROC curve and statistics for the 

Undersampling and feature selection 

approach. 
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4.4.7 Support vector machines - Radial (SVM Radial) 

 

The optimized Support Vector Machine (SVM) model with a radial kernel 

(Figure 50), obtained through grid search, is characterized by a regularization parameter 

'C' of 100 and a gamma value of 0.01. 

 

The confusion matrix for the Support Vector Machine (SVM) model with a 

radial kernel is tested: 

 True Positive (TP): 20 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 12 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.785 (Figure 50). 

 

Figure 50. SVM’s (Radial) confusion 

matrix, ROC curve and statistics for the 

Undersampling and feature selection 

approach. 
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4.5 Oversampling 

 

In response to the imbalanced nature of the dataset, with 203 instances 

representing the absence of a death event (class 0) and 96 instances indicating the 

occurrence of a death event 

(class 1), an oversampling 

technique was employed. 

Oversampling 

(SMOTE) is a corrective 

measure that involves 

artificially boosting the 

representation of the minority 

class (class 1) in the dataset 

(Figure, 51). 

Figure 51. Final classes after the undersampling method. 

 

4.5.1 Random forest 

 

The optimized Random Forest model, resulting from a grid search, is configured 

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing entropy, 

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 1 samples 

per leaf node, 'min_samples_split' set at 4, and an ensemble of estimators consisting of 

100 trees.  

This confusion matrix provides a clear breakdown of the model's predictions. 

The elements along the main diagonal represent correct predictions, while off-diagonal 

elements indicate misclassifications (Figure 52). In this case: 

 True Positive (TP): 53 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 45 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.850 (Figure 52). 
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Figure 52. Random forest’s 

confusion matrix, ROC Curve and statistics after SMOTE. 

 

4.5.2 Decision tree 

 

The optimized Decision Tree model, obtained through grid search, is 

characterized by the following key parameters: a Gini criterion for node splitting, a 

maximum tree depth of 3 levels, a minimum of 1 samples required for leaf nodes, and 

a minimum of 2 samples for node splitting. 

The confusion matrix (Figure 53) for the Decision Tree model provides a 

breakdown of the model's predictions: 

 True Positive (TP):  

49 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

43 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

10 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

20 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.743 (Figure 53).  
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Figure 53. Decision tree’s 

confusion matrix, ROC Curve and statistics after SMOTE. 

 

4.5.3 Gradient boosting 

 

The Gradient Boosting model, refined through grid search, is characterized by 

the following parameters: a criterion for impurity measurement set to Friedman Mean 

Squared Error, a learning rate of 0.025, a maximum tree depth of 7 levels, feature 

selection based on the logarithm base 2 of total features, 100 boosting stages 

(estimators), and a subsample fraction of 0.5. 

 

The confusion matrix (Figure 54) for the Gradient Boosting model analyzed 

below as follows: 

 True Positive (TP):  

54 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

44 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

9 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

15 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.871 (Figure 54).  
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Figure 54. Gradient 

boosting’s    confusion 

matrix, ROC Curve and 

statistics after SMOTE. 

 

4.5.4 Logistic regression 

 

The optimized Logistic Regression model, obtained through grid search, is 

characterized by a regularization strength 'C' of 0.1 and an 'L2' penalty. This parameter 

configuration signifies a meticulous fine-tuning process, achieving a balance between 

model complexity and predictive accuracy tailored to the specific characteristics of the 

dataset. 

The confusion matrix (Figure 55) for the Logistic Regression model is presented 

and analyzed as follows: 

 True Positive (TP):  

52 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

41 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 

12 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

17 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.846 (Figure 55).  
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Figure 55. Logistic regression’s 

confusion matrix, ROC curve 

and statistics after SMOTE. 

 

 

4.5.5 K-Nearest Neighbors (KNN) 

 

After a research for the ideal number of  Nearest Neighbors for the K-Nearest 

Neighbors (KNN) model, it is concluded that the value of the ideal number of the 

Nearest Neighbors is setting N=25 (Figure 56), achieving a prediction accuracy score 

of 0.811.  

The confusion matrix (Figure 57) for the K-Nearest Neighbors (KNN) model is 

analyzed: 

 True Positive (TP):  

52 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

47 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

6 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

17 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.859 (Figure 57). 
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Figure 56. Ideal number of Nearest Neighbors (SMOTE). 

 

 

 

Figure 57.KNN’s confusion 

matrix, ROC curve and 

statistics after SMOTE. 

 

4.5.6 Support vector machines - Linear (SVM Linear) 

 

The optimized Support Vector Machine (SVM) model with a linear kernel, 

obtained through grid search, is characterized by a regularization parameter (C) of 0.01, 

a degree of 1, and a gamma value of 0.0001.  
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The confusion matrix (Figure 58) for the Support vector machine linear model 

is examined: 

 True Positive (TP): 49 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 42 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 11 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):20 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.847 (Figure 58). 

 

 

Figure 58. SVM’s 

(Linear) confusion 

matrix, ROC curve and 

statistics after SMOTE. 

 

4.5.7 Support vector machines - Radial (SVM Radial) 

 

The optimized Support Vector Machine (SVM) model with a radial kernel 

(Figure 59), obtained through grid search, is characterized by a regularization parameter 

'C' of 100 and a gamma value of 0.001. 

 

The confusion matrix for the Support Vector Machine (SVM) model with a 

radial kernel is tested: 

 True Positive (TP): 48 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 41 instances of actual class 0 correctly predicted as class 0. 
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 False Positive (FP): 12 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 21 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.839 (Figure 59). 

 

Figure 59. SVM’s (Radial) 

confusion matrix, ROC curve 

and statistics after SMOTE. 

 

 

4.6 Oversampling and feature selection 

 

In this section, a combination of oversampling (SMOTE) and feature selection 

approaches is applied. 

 

4.6.1 Random forest 

 

The optimized Random Forest model, resulting from a grid search, is configured 

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini, 

'max_depth' limited to 10 levels, 'min_samples_leaf' requiring a minimum of 4 samples 

per leaf node, 'min_samples_split' set at 2, and an ensemble of estimators consisting of 

500 trees.  

This confusion matrix provides a clear breakdown of the model's predictions. 

The elements along the main diagonal represent correct predictions, while off-diagonal 

elements indicate misclassifications (Figure 60). In this case: 
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 True Positive (TP): 53 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 45 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.882 (Figure 60). 

 

Figure 60. Random forest’s confusion matrix, 

ROC Curve and statistics for SMOTE and 

feature selection approach. 

 

4.6.2 Decision tree 

 

The optimized Decision Tree model, obtained through grid search, is 

characterized by the following key parameters: a Gini criterion for node splitting, a 

maximum tree depth of 9 levels, a minimum of 2 samples required for leaf nodes, and 

a minimum of 8 samples for node splitting. 

The confusion matrix (Figure 61) for the Decision Tree model provides a 

breakdown of the model's predictions: 

 True Positive (TP): 49 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 42 instances of actual class 0 correctly predicted as class 0. 
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 False Positive (FP): 11 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 20 instances of actual class 1 incorrectly predicted as class 0. 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.786 (Figure 61). 

 

 

Figure 61. Decision tree’s confusion matrix, 

ROC Curve and statistics for SMOTE and 

feature selection approach. 

 

 

4.6.3 Gradient boosting 

 

The Gradient Boosting model, refined through grid search, is characterized by 

the following parameters: a criterion for impurity measurement set to Friedman Mean 

Squared Error, a learning rate of 0.15, a maximum tree depth of 3 levels, feature 

selection based on the logarithm base 2 of total features, 10 boosting stages (estimators), 

and a subsample fraction of 0.8. 

The confusion matrix (Figure 62) for the Gradient Boosting model analyzed 

below as follows: 

 True Positive (TP): 51 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 44 instances of actual class 0 correctly predicted as class 0. 
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 False Positive (FP): 9 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.854 (Figure 62). 

 

Figure 62. Gradient 

boosting’s confusion 

matrix, ROC Curve and 

statistics for SMOTE and feature selection approach. 

 

4.6.4 Logistic regression 

 

The optimized Logistic Regression model, obtained through grid search, is 

characterized by a regularization strength 'C' of 0.01 and an 'L2' penalty. This parameter 

configuration signifies a meticulous fine-tuning process, achieving a balance between 

model complexity and predictive accuracy tailored to the specific characteristics of the 

dataset. 

The confusion matrix (Figure 63) for the Logistic Regression model is presented 

and analyzed as follows: 

 True Positive (TP): 50 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN): 44 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP): 9 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN): 19 instances of actual class 1 incorrectly predicted as class 0. 
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The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.855 (Figure 63).  

 

Figure 63. Logistic 

regression’s confusion 

matrix, ROC curve and 

statistics for SMOTE and feature selection approach. 

 

4.6.5 K-Nearest Neighbors (KNN) 

 

After a research for the ideal number of  Nearest Neighbors for the K-Nearest 

Neighbors (KNN) model, it is concluded that the value of the ideal number of the 

Nearest Neighbors is setting N=25 (Figure 64), achieving a prediction accuracy score 

of 0.787.  

The confusion matrix (Figure 65) for the K-Nearest Neighbors (KNN) model is 

analyzed: 

 True Positive (TP):  

50 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

46 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

7 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

19 instances of actual class 1 incorrectly predicted as class 0. 
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The Receiver Operating Characteristic - Area Under the Curve (ROC AUC) 

value is 0.850 (Figure 65). 

Figure 64.Ideal number of Nearest Neighbors (Smote and feature selection approach). 

 

 

 

Figure 65. KNN’s 

confusion matrix, ROC 

curve and statistics for SMOTE and feature selection approach. 

 

 

 



109 
 

4.6.6 Support vector machines - Linear (SVM Linear) 

 

The optimized Support Vector Machine (SVM) model with a linear kernel, 

obtained through grid search, is characterized by a regularization parameter (C) of 0.01, 

a degree of 1, and a gamma value of 0.0001.  

 

The confusion matrix (Figure 66) for the Support vector machine linear model 

is examined: 

 True Positive (TP):  

49 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

43 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

10 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

20 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.850 (Figure 66). 

 

 

Figure 66.SVM’s (Linear) 

confusion matrix, ROC 

curve and statistics for 

SMOTE and feature selection approach. 
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4.6.7 Support vector machines - Radial (SVM Radial) 

 

The optimized Support Vector Machine (SVM) model with a radial kernel 

(Figure 67), obtained through grid search, is characterized by a regularization parameter 

'C' of 100 and a gamma value of 0.001. 

 

The confusion matrix for the Support Vector Machine (SVM) model with a 

radial kernel is tested: 

 True Positive (TP):  

48 instances of actual class 1 correctly predicted as class 1. 

 True Negative (TN):  

41 instances of actual class 0 correctly predicted as class 0. 

 False Positive (FP):  

12 instances of actual class 0 incorrectly predicted as class 1. 

 False Negative (FN):  

21 instances of actual class 1 incorrectly predicted as class 0. 

 

The Receiver Operating Characteristic - Area under the Curve (ROC AUC) 

value is 0.837 (Figure 67). 

 

Figure 67. SVM’s (Radial) 

confusion matrix, ROC curve 

and statistics for SMOTE and feature selection approach. 
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4.7  Principal component analysis  

 

Seeking to apply the Principal Component Analysis (PCA) method to the initial 

dataset under examination in this study, in order to determine the ranking of the 

coefficients resulting from it, a different data normalization method (Min-Max scaling) 

was employed. The objective was to minimize deviations among values and standardize 

all variables to the same scale (0-1).  

In Figure 68, the Principal components (PCs) are depicted for a dataset with 

N=11 variables, illustrating the correlation coefficients of the eigenvectors for each 

principal component. 

 

 

Figure 68.  

Principal components (PCs), 

their values and the 

cumulative explained 

variable. 
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In the bar chart below (Figure 69), the percentage of variance (vertical axis) for 

each principal component is illustrated. Based on this bar chart, the histogram (Figure 

70) was constructed, pinpointing the elbow in the sixth principal component (PC6). The 

elbow represents the point beyond which the components contribute less variance to 

our data. Using six components, we can explain 93% of the variability in the original 

data. 

 

 

 

 

Figure 69. Bar 

chart of variance 

in principal 

components.  

 

 

 

Figure 70.  

Histogram of 

Variance in 

Principal 

Components. 

 

Using the six Principal components (PC6) derived from the information 

mentioned earlier, all machine learning models implemented in this study were 

executed. The summarized results of these models are presented in Table 11. 

Additionally, the results tables for the statistics of the remaining methods executed are 

provided, aiming to facilitate a comparison between models and methods (Table 12). 

 

Table 11. Principal component analysis (PCA). 

 Accuracy F1 score TP rate TN rate ROC/AUC Precision 

Random Forest 0.62 0.57 0.14 0.85 0.508 0.56 

Decision Tree 0.62 0.52 0.00 0.92 0.338 0.45 

Logistic Regression 0.69 0.60 0.10 0.97 0.588 0.66 

Gradient Boosting 0.64 0.55 0.03 0.93 0.577 0.52 

KNN 0.68 0.60 0.10 0.95 0.531 0.60 

SVM (linear-radial) 0.68 0.55 0.00 1.00 0.557 0.46 
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Table 12. Statistics of the other approaches. 

 Accuracy F1 score TP rate TN rate ROC/AUC Precision 

Full Dataset 

Random Forest 0.76 0.73 0.39 0.92 0.766 0.74 

Decision Tree 0.68 0.65 0.29 0.85 0.749 0.65 

Logistic Regression 0.74 0.73 0.43 0.89 0.733 0.73 

Gradient Boosting 0.69 0.65 0.25 0.89 0.683 0.65 

KNN 0.71 0.69 0.36 0.87 0.681 0.69 

SVM (Linear) 0.74 0.73 0.43 0.89 0.736 0.73 

SVM (Radial) 0.67 0.68 0.61 0.69 0.686 0.70 

Feature Selection 

Random Forest 0.76 0.74 0.46 0.89 0.799 0.74 

Decision Tree 0.76 0.73 0.36 0.94 0.746 0.75 

Logistic Regression 0.77 0.74 0.36 0.95 0.716 0.77 

Gradient Boosting 0.74 0.72 0.39 0.90 0.741 0.73 

KNN 0.79 0.78 0.50 0.92 0.733 0.78 

SVM (Linear) 0.77 0.74 0.36 0.95 0.718 0.77 

SVM (Radial) 0.74 0.73 0.46 0.87 0.804 0.73 

Undersampling 

Random Forest 0.72 0.72 0.72 0.73 0.833 0.73 

Decision Tree 0.64 0.64 0.69 0.58 0.706 0.64 

Logistic Regression 0.62 0.61 0.47 0.81 0.722 0.66 

Gradient Boosting 0.66 0.66 0.59 0.73 0.774 0.67 

KNN 0.67 0.67 0.56 0.81 0.706 0.70 

SVM (Linear) 0.69 0.69 0.62 0.77 0.793 0.70 

SVM (Radial) 0.71 0.71 0.66 0.77 0.768 0.72 

Undersampling and feature selection 

Random Forest 0.76 0.76 0.75 0.77 0.819 0.76 

Decision Tree 0.71 0.70 0.59 0.85 0.745 0.74 

Logistic Regression 0.76 0.76 0.78 0.73 0.767 0.76 

Gradient Boosting 0.74 0.74 0.72 0.77 0.796 0.75 

KNN 0.79 0.79 0.91 0.65 0.864 0.80 

SVM (Linear) 0.69 0.69 0.66 0.73 0.766 0.70 

SVM (Radial) 0.69 0.69 0.62 0.77 0.785 0.70 

Oversampling 

Random Forest 0.80 0.80 0.77 0.85 0.850 0.81 

Decision Tree 0.75 0.76 0.71 0.81 0.743 0.77 

Logistic Regression 0.76 0.76 0.75 0.77 0.846 0.77 

Gradient Boosting 0.80 0.80 0.78 0.83 0.871 0.81 

KNN 0.81 0.81 0.75 0.89 0.859 0.83 

SVM (Linear) 0.75 0.75 0.71 0.79 0.847 0.76 

SVM (Radial) 0.73 0.73 0.70 0.77 0.839 0.74 

Oversampling and feature selection 

Random Forest 0.80 0.80 0.77 0.85 0.882 0.81 

Decision Tree 0.75 0.75 0.71 0.79 0.786 0.76 

Logistic Regression 0.77 0.77 0.72 0.83 0.855 0.78 

Gradient Boosting 0.78 0.78 0.74 0.83 0.854 0.79 

KNN 0.79 0.79 0.72 0.87 0.850 0.80 

SVM (Linear) 0.75 0.76 0.71 0.81 0.850 0.77 

SVM (Radial) 0.73 0.73 0.70 0.77 0.837 0.74 

 

The cumulative charts corresponding to the above Table are presented in the Appendix. 
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Chapter 5. CONCLUSIONS 

 

  Chapter 5 discusses the implications of the thesis' results and concludes with 

a discussion of the thesis' limitations and recommendations for future research. 

 

5.1 Thesis conclusions 

 

In conclusion, the exploration into predicting death events in heart failure 

patients through Machine Learning has provided valuable insights. The dataset's 

meticulous examination confirmed its completeness, eliminating the need for 

modifications and identified medically plausible outliers. Successful feature 

normalization ensured consistent scaling, a crucial step for bolstering model 

performance. The application of the Extra Tree Classifier for feature selection 

effectively identified and retained crucial features, enhancing model efficiency and 

interpretability. Notably, excluding the "time" feature underscored distinctions among 

our experimental approaches. The array of Machine Learning models includes Random 

Forest, Decision Tree, SVM, Logistic Regression, KNN, and Gradient Boosting. These 

models demonstrated multiple important results. Hyperparameter optimization through 

Grid Search further honed their performance. Experimentation with diverse conditions, 

including feature selection, undersampling, SMOTE oversampling, and their 

combinations, provided a nuanced understanding of model behavior. 

In this study, the importance of feature selection is notably evident. As indicated 

in the earlier chapters of the thesis, utilizing the two most crucial features in the 

dataset—serum creatinine and ejection fraction—results in either comparable or 

superior outcomes compared to the examined models (refer to subchapter 4.2). This is 

in contrast to the scenario where all features are employed (refer to subchapter 4.1). 

Additionally, the significance of undersampling and oversampling is highlighted by the 

noticeable improvement in classifying the minority class, specifically class 1 (death 

event = occurred). Combining undersampling-oversampling methods with the selection 

of the most significant features in the dataset has the potential to bring about substantial 

improvements in the results of machine learning models. In summary, this thesis 

establishes a sturdy foundation for comprehending the dynamics of Machine Learning 

models in predicting death events among heart failure patients. To conclude, it is crucial 

to experiment with various models and methods to identify the most optimal and 

suitable one before making the final selection. 
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5.2 Practical and theoretical implications 

 

This thesis provides useful implications, for the practitioners in the medical and 

bioinformatics sector. More specifically,  

 Helping Doctors Make Decisions: The study's practical side means creating 

tools that doctors can use. The computer models, especially when we use feature 

selection and SMOTE, offer practical help for doctors to predict which heart 

failure patients might face death. This aids in timely actions and better 

personalized care. 

 Making Models Easier to Understand: Picking the right features not only makes 

the models work better but also makes it easier for doctors to understand why 

the models predict certain outcomes. This is important for doctors who want to 

use computer predictions in their decision-making. 

 Guiding Healthcare Strategies: The thesis' practical impact extends to how 

hospitals and healthcare providers use data. The successful use of SMOTE 

shows its relevance in handling imbalanced data, helping make more accurate 

predictions. This can guide how healthcare decisions are made in the future. 

In summary, this research simplifies how machines predict deaths in heart 

failure patients. It shows that using the right features and balancing data can improve 

predictions, making it useful for doctors and healthcare decisions. 

This thesis also provides several scholarly contributions. More extensively: 

 Advancing Predictive Models: This dissertation boosts the understanding of 

how machines can predict death events in heart failure patients. It shows that 

using different computer models, along with picking important features and 

balancing data, can improve predictions in medical scenarios. 

 Importance of Picking Key Features: The thesis highlights how choosing the 

right features (like specific health indicators) is crucial. This idea can be applied 

more broadly in medical data analysis, emphasizing the need to focus on 

important factors for accurate predictions. 

 Balancing Data Effectively: By comparing two methods (undersampling and 

SMOTE), the thesis suggests that adding more data through SMOTE helps 

computer models perform better, especially when predicting rare events like 

deaths in heart failure patients. 
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5.3 Limitations and suggestions for future research 

 

In acknowledging the limitations of this study, it's crucial to note that our dataset 

was relatively small, with only 299 patients. A larger dataset would have given more 

reliable results and a better understanding of how well this thesis’ methods, especially 

PCA, work. It would also help to determine if these methods are truly necessary. 

Valuable information such as the patients' physical characteristics (like height, 

weight, and body mass index) and their job histories, could have helped us identify 

more risk factors for cardiovascular diseases. Additionally, not having an external 

dataset from a different location limited the ability to validate the thesis findings with 

a separate group. 

Looking ahead, alternative normalization methods can be explored, such as the 

robust scaler, and fine-tune our approach by adjusting hyperparameters using methods 

like random search. Furthermore, future research avenues could explore additional 

techniques for dimensionality reduction in small datasets, ensuring a more 

comprehensive evaluation of model performance (Chicco & Jurman, 2020). Machine 

learning methods can be also extend to different datasets related to cardiovascular 

diseases (Masino et al., 2019; Aushev et al., 20018; Patrício et al., 2018) and other 

illnesses like cervical cancer (Fernandes et al. 2018), neuroblastoma (Maggio et al., 

2018), breast cancer (Yunus et al., 2018), and amyotrophic lateral sclerosis (Kueffner 

et al., 2019). 
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APPENDIX  

 

In the Appendix, all cumulative charts (graphs) of the results are provided. 

Graph 1. Performance metrics comparison for Full dataset approach. 

 

Graph 2. Performance metrics comparison for Feature selection approach. 
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Graph 3. Performance metrics comparison for Undersampling approach. 

 

Graph 4. Performance metrics comparison for Undersampling approach and Feature 

selection approach. 
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Graph 5. Performance metrics comparison for Oversampling approach. 

 

Graph 6. Performance metrics comparison for Oversampling approach and Feature 

selection approach. 
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Graph 7. Performance metrics comparison for Principal Component Analysis (PCA) 

approach. 

 

Graph 8. Performance metrics comparison between Full dataset and Feature selection 

approaches. 
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Graph 9. Performance metrics comparison between Full dataset and Undersampling 

approaches. 

 

 

Graph 10. Performance metrics comparison between Undersampling and 

Undersampling with Feature selection approaches. 
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Graph 11. Performance metrics comparison between Full dataset and Oversampling 

approaches. 

 

 

Graph 12. Performance metrics comparison between Oversampling and Oversampling 

with Feature selection approaches. 
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Graph 13. Performance metrics comparison between Full dataset and Principal 

Component Analysis (PCA) approaches. 

 

 

 

 

 


