
University of Piraeus, School of Information and Communication Technologies,

Department of Digital Systems

M.Sc. Thesis Title:

“In the Heart of Data: Machine Learning Applications for

Improved Heart Failure Outcome Prediction”

by

Chelis Apostolos

Dissertation

submitted in partial fulfilment of the requirements for the degree of

Master of Science in Information Systems & Services

in the specialization of Big Data and Analytics

Piraeus, February 2024

2

THESIS COMMITTEE:

 Filippakis Michael (Supervisor) - Professor, University of Piraeus

 Kyriazis Dimosthenis - Professor, University of Piraeus

 Halkidi Maria - Associate Professor, University of Piraeus

ACKNOWLEDGMENTS

First and foremost, I would like to thank my supervisor, Professor Filippakis

Michael, for his willingness to provide me with his academic support and knowledge.

I would also like to thank the University of Piraeus and the Department of Digital

Systems, which hosted this research endeavor, as well as Prof. Kiriazis Dimosthenis

and Assoc. Prof. Halkidi Maria as members of my thesis committee.

A debt of gratitude is also owed to both my caring parents and my loving life

partner for their moral and physical support during my thesis.

3

TABLE OF CONTENTS

SUMMARY .. 7

ΠΕΡΙΛΗΨΗ.. 8

Chapter 1. INTRODUCTION .. 9

1.1 Generally ... 9

1.2 Thesis stimuli and structure ... 10

Chapter 2. LITERATURE REVIEW ... 11

2.1 Machine Learning and Data Mining .. 11

2.1.1 Generally ... 11

2.1.2 Contexts and Processes of Machine Learning... 12

2.1.3 Machine Learning Approaches ... 12

2.1.3.1 Supervised Learning .. 13

2.1.3.2 Unsupervised Learning ... 15

2.1.3.3 Semi-supervised Learning .. 16

2.1.3.4 Reinforcement Learning ... 17

2.1.4 Knowledge Discovery in Databases .. 18

2.2 Machine Learning Algorithms .. 20

2.2.1 Decision tree .. 20

2.2.2 Random Forest ... 24

2.2.3 Support Vector Machine ... 26

2.2.4 Logistic Regression ... 30

2.2.5 Linear Regression .. 34

2.2.6 k-Nearest Neighbor (kNN) ... 36

2.2.7 Gradient Boosting .. 39

2.3 Preprocessing Techniques .. 41

2.3.1 Generally ... 41

2.3.2 Tools and Libraries ... 42

2.3.3 Purpose of Data Preprocessing .. 43

2.3.4 Dealing with Missing Values .. 43

2.3.5 Scaling .. 44

2.3.6 Dealing with outliers .. 45

4

2.3.7 Feature Encoding ... 46

2.3.8 Dealing with Imbalanced Data .. 47

2.3.9 Dimensionality Reduction .. 48

2.4 Evaluation of Machine Learning Models ... 48

2.4.1 Generally ... 48

2.4.2 Holdout and Cross validation methods ... 49

2.4.3 Overfitting and Underfitting .. 51

2.4.3.1 Bias and Variance in Machine Learning ... 52

2.4.4 Classification Metrics ... 53

2.4.4.1 Confusion Matrix ... 53

2.4.4.2 Accuracy .. 53

2.4.4.3 Precision .. 54

2.4.4.4 Recall/ Sensitivity/ True Positive Rate.. 54

2.4.4.5 Specificity .. 54

2.4.4.6 F1 Score .. 55

2.4.4.7 Area Under Curve - Receiver Operating Characteristic Curve 55

2.4.5 Regression Metrics .. 56

Chapter 3. DATA & METHODS .. 58

3.1 Dataset ... 58

3.2 Methodology ... 64

Chapter 4. RESULTS ... 66

4.1 Full dataset ... 66

4.1.1 Random forest ... 66

4.1.2 Decision tree .. 67

4.1.3 Gradient boosting .. 68

4.1.4 Logistic regression .. 69

4.1.5 K-Nearest Neighbors (KNN) .. 70

4.1.6 Support vector machines Linear (SVM Linear) 71

4.1.7 Support vector machines Radial (SVM Radial)..................................... 72

4.2 Feature selection ... 73

4.2.1 Random forest ... 74

5

4.2.2 Decision tree .. 75

4.2.3 Gradient boosting .. 76

4.2.4 Logistic regression .. 77

4.2.5 K-Nearest Neighbors (KNN) .. 78

4.2.6 Support vector machines - Linear (SVM Linear) 79

4.2.7 Support vector machines - Radial (SVM Radial) 80

4.3 Undersampling .. 81

4.3.1 Random forest ... 81

4.3.2 Decision tree .. 82

4.3.3 Gradient boosting .. 83

4.3.4 Logistic regression .. 84

4.3.5 K-Nearest Neighbors (KNN) .. 85

4.3.6 Support vector machines - Linear (SVM Linear) 87

4.3.7 Support vector machines - Radial (SVM Radial) 88

4.4 Undersampling and feature selection ... 89

4.4.1 Random forest ... 89

4.4.2 Decision tree .. 90

4.4.3 Gradient boosting .. 91

4.4.4 Logistic regression .. 92

4.4.5 K-Nearest Neighbors (KNN) .. 93

4.4.6 Support vector machines - Linear (SVM Linear) 94

4.4.7 Support vector machines - Radial (SVM Radial) 95

4.5 Oversampling ... 96

4.5.1 Random forest ... 96

4.5.2 Decision tree .. 97

4.5.3 Gradient boosting .. 98

4.5.4 Logistic regression .. 99

4.5.5 K-Nearest Neighbors (KNN) ... 100

4.5.6 Support vector machines - Linear (SVM Linear) 101

4.5.7 Support vector machines - Radial (SVM Radial) 102

4.6 Oversampling and feature selection .. 103

4.6.1 Random forest .. 103

4.6.2 Decision tree ... 104

6

4.6.3 Gradient boosting ... 105

4.6.4 Logistic regression ... 106

4.6.5 K-Nearest Neighbors (KNN) ... 107

4.6.6 Support vector machines - Linear (SVM Linear) 109

4.6.7 Support vector machines - Radial (SVM Radial) 110

4.7 Principal component analysis ... 111

Chapter 5. CONCLUSIONS .. 114

5.1 Thesis conclusions ... 114

5.2 Practical and theoretical implications ... 115

5.3 Limitations and suggestions for future research 116

REFERENCES .. 117

APPENDIX .. 117

7

SUMMARY

The aim of this dissertation is to investigate and evaluate the effectiveness of

various machine learning models (Random Forest, Decision Tree, Support Vector

Machine, Logistic Regression, k-Nearest Neighbors and Gradient Boosting) and

methods (Feature selection, Undersamlig, Oversampling and Principal component

analysis), in predicting the occurrence of death events in patients with heart failure. The

study employs a diverse set of models on a dataset comprising medical records of heart

failure patients, released by Ahmad et al. (2017). Through rigorous analysis,

hyperparameter optimization, and exploration of data preprocessing techniques, the

research seeks to develop a robust framework capable of accurately classifying heart

failure patients based on their risk of experiencing a death event. The findings aim to

contribute valuable insights to the evolving landscape of precision healthcare.

Specifically, by testing and subsequently selecting the most effective methods/models

of machine learning and addressing critical factors/errors present in the datasets, a more

efficient determination of results is achieved.

Keywords – Machine learning models, Data mining, Performance Metrics,

Hyperparameter tunning, Biomedical informatics, Oversampling, Undersampling,

Feature Selection, Principal Component Analysis, Binary Classification.

8

ΠΕΡΙΛΗΨΗ

Ο στόχος αυτής της διατριβής είναι να εξετάσει και να αξιολογήσει την

αποτελεσματικότητα διάφορων μοντέλων μηχανικής μάθηση (Random Forest,

Decision Tree, Support Vector Machine, Logistic Regression, k-Nearest Neighbors και

Gradient Boosting) και μεθόδων (Feature selection, Undersamplig, Oversampling και

Principal component analysis), στον προσδιορισμό της πιθανότητας εμφάνισης

συμβάντων θανάτου σε ασθενείς με καρδιακή ανεπάρκεια. Η μελέτη χρησιμοποιεί ένα

ποικίλο σύνολο μοντέλων σε ένα σύνολο δεδομένων (Ahmad et al., 2017) που

περιλαμβάνει ιατρικές εγγραφές ασθενών με καρδιακή ανεπάρκεια. Μέσω αυστηρής

ανάλυσης, βελτιστοποίησης υπερπαραμέτρων και εξερεύνησης τεχνικών

προεπεξεργασίας δεδομένων, η έρευνα έχει ως στόχο την ανάπτυξη ενός αξιόπιστου

πλαισίου, ικανού να κατηγοριοποιεί με ακρίβεια ασθενείς με καρδιακή ανεπάρκεια,

βάσει του κινδύνου εμφάνισης συμβάντος θανάτου. Τα ευρήματα της παρούσας

εργασίας συμβάλλουν στον τομέα της υγειονομικής περίθαλψης. Πιο συγκεκριμένα,

μέσω της δοκιμής και εν συνεχεία επιλογής των πιο αποτελεσματικών μεθόδων

μοντέλων μηχανικής μάθησης και την αντιμετώπιση των κρίσιμων παράγοντων

σφαλμάτων που παρουσιάζουν τα σύνολα δεδομένων, επιτυγάνεται ο

αποτελεσματικότερος προσδιορισμός των αποτελεσμάτων.

Λεξεις Κλειδία – Μοντέλα μηχανικής μάθησης, Εξόρυξη δεδομένων,

Μετρικές απόδοσης, Βελτιστοποίηση υπερπαραμέτρων, Βιοϊατρική πληροφορική,

Υπερδειγματοληψία, Υποδειγματοληψία, Επιλογή χαρακτηριστικών, Ανάλυση κύριων

συνιστωσών, Δυαδική κατηγοριοποίηση.

9

 Chapter 1. INTRODUCTION

Chapter 1 provides an overview of the major issues covered in the current

thesis.

1.1 Generally

Cardiovascular diseases refer to conditions affecting the heart and blood vessels,

causing approximately seventeen million global fatalities each year (Wu et al., 2023).

Specifically, heart failure arises when the heart cannot adequately pump blood due to

factors like diabetes, high blood pressure, or other cardiac issues (Heiney et al., 2020).

Recognizing the critical role of the heart, medical professionals prioritize predicting

heart failure, yet current clinical practices often fall short in achieving high accuracy

(Buchan et al., 2019).

Machine learning, when applied to medical records, emerges as a promising tool

for predicting survival in patients exhibiting heart failure symptoms (Al’Aref et al.,

2019; Al’Aref et al., 2018) and identifying key clinical features or risk factors

associated with heart failure (Gallagher et al., 2019; Dunn et al., 2007). Scientists can

harness machine learning not only for clinical predictions (Ambale-Venkatesh et al.,

2017; Weng et al., 2017) but also for prioritizing features (Shilaskar & Ghatol, 2013).

This dissertation delves into the analysis of a dataset comprising medical records of

heart failure patients released by Ahmad et al. in July 2017.

This thesis delves into the realm of machine learning applications in the context

of heart failure outcome prediction. Employing a diverse set of machine learning

models, including Random Forest, Decision Tree, Support Vector Machine (SVM),

Logistic Regression, k-Nearest Neighbors (KNN) and Gradient Boosting, the study

explores the efficacy of each model in classifying and detecting the critical target: the

occurrence of a death event in patients with heart failure.

To optimize the performance of these models, a Grid Search methodology is

employed, systematically fine-tuning hyperparameters for enhanced predictive

accuracy. Furthermore, the investigation extends to various data preprocessing

techniques, such as Oversampling, Undersampling, Feature Selection, Principal

Component Analysis (PCA) (and combinations of those techniques) aiming to unravel

latent patterns within clinical data.

The core objective is to develop a robust framework capable of accurately

10

classifying heart failure patients based on their risk of experiencing a death event.

Through a meticulous analysis of model performances, hyperparameter optimizations,

and feature engineering strategies, this research contributes to the evolving landscape

of precision healthcare. The findings not only shed light on the most effective machine

learning models for heart failure outcome prediction but also provide valuable insights

into the critical factors influencing model performance in this domain. This master

thesis paves the way for future advancements in the development of tailored predictive

models for cardiovascular risk assessment.

1.2 Thesis stimuli and structure

The explanation of the stimuli of this thesis can be found below. The work

presented in this thesis was motivated by an increased recognition among academics

that:

 The increasing availability of electronic health data presents a major opportunity in

healthcare for both discovery and practical applications to improve healthcare

(Wiens and Shenoy, 2023).

 Modeling survival for heart failure is still a problem nowadays, both in terms of

achieving high prediction accuracy and identifying the driving factors (Chicco &

Jurman, 2020).

 Machine learning applied to medical records, can be an effective tool to predict the

survival of each patient having heart failure symptoms (Al’Aref et al., 2019).

 Machine learning applied to medical records helps to detect the most important

clinical features (or risk factors) that may lead to heart failure (Gallagher et al.,

2019).

 Machine learning is an old concept that has recently gained a lot of attention due to

the explosion of data generation processes in healthcare (Alanazi, 2022).

The following is a summary of the remaining sections of the current thesis.

Chapter 2 presents a detailed literature review of the topics under examination. In

Chapter 3, the data and methods utilized in the present thesis are described. Chapter 4

is dedicated to presenting the results, and this is where the discussion of the findings

also takes place. Finally, Chapter 5 focuses on the key findings drawn from the study.

11

Chapter 2. LITERATURE REVIEW

 Chapter 2 presents a detailed literature review of the topics and methods under

examination.

2.1 Machine Learning and Data Mining

2.1.1 Generally

In the contemporary era, voluminous datasets have become ubiquitous, and their

effective utilization through diverse algorithms within the realm of machine learning

holds the potential to transmute these datasets into consequential knowledge. Machine

learning represents a domain of scholarly investigation that emerges at the confluence

of three fundamental domains: statistics, artificial intelligence, and computer science

(Muller et al., 2016). The foundational definition of machine learning encompasses a

sphere of scholarly inquiry that confers upon computers the capability to learn

autonomously, devoid of explicit programming (Awad, 2015).

Historically, software engineering amalgamated rules crafted by humans with

data to generate solutions for problems. Conversely, machine learning operates by

utilizing data and solutions to unveil the underlying rules governing a problem (Chollet,

2021). In other words, machine learning serves as a mechanism to transform data into

comprehensible insights. Over the last five decades, a substantial surge in data

generation has taken place. However, this amassed data remains inconsequential unless

subjected to thorough analysis to unveil concealed patterns. Machine learning

methodologies are employed to autonomously identify meaningful inherent patterns

within intricate datasets that would otherwise pose challenges to uncover manually. The

latent patterns and discernments pertaining to a given issue hold the potential to

prognosticate future occurrences and facilitate multifaceted decision-making processes.

Within this context, three distinct categories of machine learning manifest:

Supervised Learning, Unsupervised Learning, and Reinforcement Learning.

Subsequent to this delineation, the forthcoming subsection will undertake an exposition

of these aforementioned classifications of machine learning.

12

2.1.2 Contexts and Processes of Machine Learning

There are three major contexts regarding machine learning, the dataset, the

features and the model (Amer et al., 2022).

• Dataset: A compilation of data instances, encompassing significant attributes

pivotal to addressing the given issue.

• Features: Essential components of information that contribute to the

comprehension of a problem. These are inputted into a machine learning algorithm

to facilitate its learning process.

• Model: The portrayal (internal framework) of a phenomenon acquired by a

machine learning algorithm. This understanding is derived from the data presented

during the training phase. The model constitutes the outcome achieved subsequent

to algorithmic training. To illustrate, a decision tree algorithm would undergo

training and yield a decision tree model as its result.

Additionally, machine learning follows some constituent steps in order to

analyze and retrieve information from the data (Naqa & Murphy, 2015). Those steps-

processes are analyzed below:

• Data Collection: Acquire the data essential for the algorithm's learning process.

• Data Preparation: Organize and transform the data into an ideal structure,

extracting crucial attributes and conducting dimensionality reduction.

• Training: Referred to as the fitting phase, this is when the machine learning

algorithm actively learns through exposure to the collected and prepared data.

• Evaluation: Assess the model's performance to determine its efficacy.

• Tuning: Refine the model to optimize its performance.

2.1.3 Machine Learning Approaches

As mentioned earlier, a multitude of approaches are available for conducting

machine learning endeavors, often grouped into distinct categories. Among these,

Supervised and Unsupervised approaches, having gained established and frequent use,

hold prominence. On the other hand, Semi-supervised and Reinforcement Learning,

being more contemporary and intricate, have showcased remarkable accomplishments

(Muhammad & Yan, 2015).

13

2.1.3.1 Supervised Learning

Supervised learning constitutes a category of machine learning wherein

machines are trained utilizing meticulously “labeled” training data. Grounded in this

data, machines make “anticipations” about the output. The term "labeled data" refers to

input data that is already associated with the accurate output. Within the realm of

supervised learning, the data used to train machines functions analogously to a

supervisor, imparting the knowledge necessary for accurate output prediction. This

mechanism mirrors the educational dynamic of a student guided by a teacher.

Supervised learning involves furnishing both input data and corresponding correct

output data to the machine learning model. The primary objective of a supervised

learning algorithm is to ascertain a mapping function that correlates the input variable

(x) with the output variable (y) (Alloghani et al., 2020). In practical applications,

supervised learning finds utility in tasks such as Risk Assessment, Image Classification,

Fraud Detection, and Spam Filtering, among others.

The steps involved in supervised learning (Burkart & Huber, 2021) are analyzed

below:

• Dataset Type Identification: Begin by discerning the nature of the training dataset.

• Data Collection: Assemble the labeled training data through collection efforts.

• Dataset Partitioning: Divide the training dataset into distinct segments: the training

dataset itself, a test dataset, and a validation dataset.

• Input Feature Specification: Define the input features within the training dataset.

These features should be sufficiently informative for the model to achieve accurate

output predictions.

• Algorithm Selection: Choose an appropriate algorithm for the model, such as

options like support vector machines or decision trees.

• Algorithm Execution: Apply the chosen algorithm to the training dataset.

Occasionally, validation sets might be required to fine-tune control parameters;

these sets are subsets of the training dataset.

• Model Accuracy Assessment: Evaluate the model's accuracy by employing the test

set. Successful accurate output predictions indicate a reliable model.

14

Depending on what you want to predict, supervised learning can be used to solve

two types of problems: regression or classification (Jiang et al., 2020).

 Regression Problem: When the goal is to forecast continuous values, like

predicting house prices or outdoor temperatures, regression comes into play. This

kind of problem lacks a rigid value boundary as predictions can encompass any

numerical value without limitations.

 Classification Problem: In instances where the inquiry is akin to "Is this a cat?",

the scenario constitutes a classification problem. This involves the task of

categorizing responses into distinct classes, such as 'yes' or 'no'. In this particular

instance, the answer falls under the 'yes' category, making it a binary classification

problem.

Supervised learning has some major advantages and disadvantages. More

extensively, supervised learning offers a range of advantages that contribute to its

efficacy in various applications. Through the utilization of supervised learning, the

model gains the ability to predict outputs by drawing upon past experiences and

established patterns. This approach provides us with a precise comprehension of object

classes within supervised learning, enhancing our understanding of their categorization.

Moreover, the supervised learning model emerges as a potent tool for tackling an array

of real-world challenges, including the intricate tasks of fraud detection and spam

filtering. Its capacity to address these multifaceted problems underscores its practical

relevance (Osisanwo et al., 2017). Despite its merits, supervised learning exhibits

several limitations that warrant consideration. Supervised learning models demonstrate

inefficiency in managing intricate tasks due to their inherent structure and reliance on

labeled data. The effectiveness of supervised learning hinges on the assumption of

similarity between test and training data. If test data varies significantly from the

training dataset, accurate predictions may falter. Training supervised learning models

demands substantial computational resources, contributing to prolonged processing

times. Effective utilization of supervised learning necessitates a robust understanding

of object classes. This prerequisite may hinder the model's applicability in cases with

limited class insights (Schrider & Kern., 2018).

15

2.1.3.2 Unsupervised Learning

Unsupervised learning, a technique within machine learning, involves models

that aren't guided by a labeled training dataset. Instead, these models autonomously

uncover concealed patterns and insights from provided data. This process can be

likened to the way the human brain assimilates new information. In essence,

unsupervised learning stands as a form of machine learning wherein models are trained

using unlabeled datasets and operate on this data without external guidance (Mahesh,

2020).

Unlike supervised learning, which entails possessing input and corresponding

output data, unsupervised learning cannot be directly applied to regression or

classification problems. This is due to the absence of labeled data. The primary

objective of unsupervised learning lies in unearthing the inherent structure of a dataset,

clustering data based on similarities, and presenting the dataset in a more condensed

representation (Alloghani et al., 2020).

The significance of unsupervised learning is underscored by several key factors

(Wang & Biljecki, 2022). Primarily, unsupervised learning proves invaluable in

extracting valuable insights from data. This capability to uncover meaningful patterns

contributes to its vital role in data analysis. Furthermore, the parallel between

unsupervised learning and human cognitive processes enhances its relevance in the

realm of genuine artificial intelligence. Similar to how humans learn and think through

personal experiences, unsupervised learning autonomously identifies intricate patterns

within data, lending it a certain authenticity. The essence of unsupervised learning is

magnified by its adeptness at handling unlabeled and unclassified datasets. This unique

capability of processing raw, unstructured data heightens the significance of

unsupervised learning in data exploration and understanding. In the practical domain,

scenarios often arise where input data lacks corresponding output, necessitating the

application of unsupervised learning techniques. This aspect of addressing real-world

complexities further underscores the indispensability of unsupervised learning in

modern machine learning paradigms.

Depending on what you want to group together, unsupervised learning can

group data together by clustering or association (Li et al., 2020).

 Clustering: Clustering, involves grouping objects into clusters in a manner that

objects sharing the greatest similarities are consolidated within a cluster, while

16

maintaining minimal or no similarities with objects from other clusters. This

technique entails identifying shared characteristics among data objects and

classifying them based on the presence or absence of these shared traits.

 Association: Association, pertains to an unsupervised learning approach aimed at

revealing connections between variables within extensive databases. This method

identifies sets of items that frequently co-occur in the dataset. By establishing such

associations, the effectiveness of marketing strategies is amplified. For instance, it

identifies trends like individuals purchasing item X (e.g., Coffee) often also acquire

item Y (e.g., Sugar). A classic illustration of Association is exemplified in Market

Basket Analysis.

Unsupervised learning has both advantages and disadvantages. More

extensively, unsupervised learning proves advantageous in tackling intricate tasks that

surpass the complexity of supervised learning. This distinction arises from the absence

of labeled input data in unsupervised learning scenarios. Furthermore, the preference

for unsupervised learning stems from the ease of acquiring unlabeled data in contrast

to the often laborious task of obtaining labeled data. Conversely, the intrinsic

complexity of unsupervised learning presents notable drawbacks. The absence of

corresponding output data poses a challenge that differentiates it from supervised

learning. As a result, the outcomes yielded by unsupervised learning algorithms might

exhibit lower accuracy levels. The absence of labeled input data renders algorithms

incapable of anticipating precise output, contributing to potential inaccuracies in results

(Fahle et al., 2020).

2.1.3.3 Semi-supervised Learning

Semi-supervised learning resides in the intermediary realm between supervised

and unsupervised learning paradigms, capitalizing on both labeled and unlabeled data

during the training process. This approach typically involves utilizing a modest quantity

of labeled data alongside a substantial volume of unlabeled data. Systems adopting this

technique can notably enhance their learning accuracy (Zhu, 2005). The preference for

semi-supervised learning arises particularly when the available labeled data demands

expert and pertinent resources for effective training or learning. In contrast, gathering

unlabeled data usually entails minimal supplementary resource allocation (Hady &

17

Schwenker, 2013). Semi-supervised learning. Handbook on Neural Information

Processing, 215-239.).

Semi-supervised learning models are experiencing a surge in popularity across

various industries, driven by their effectiveness in addressing complex challenges

(Zhou & Zhou, 2021). Several notable applications highlight their utility:

 Speech Analysis: This stands as a quintessential illustration of semi-supervised

learning's practicality. Labeling vast quantities of audio data is an arduous task

requiring substantial human resources. By employing semi-supervised learning, this

hurdle can be surmounted, making the process more feasible.

 Web Content Classification: Labeling every webpage on the expansive internet is a

formidable and impractical endeavor due to the extensive human intervention it

necessitates. Semi-supervised learning algorithms offer a viable solution to mitigate

this challenge, reducing the magnitude of manual effort required.

 Search Engine Ranking: Major players like Google harness the capabilities of semi-

supervised learning algorithms to effectively rank webpages in response to user

queries, thereby enhancing the accuracy and relevance of search results.

 Protein Sequence Classification: In the domain of DNA strand analysis, where

sequences are vast and intricate, the intervention of human experts is indispensable.

The advent of semi-supervised models has emerged as a pivotal advancement in this

sphere, streamlining the classification process.

 Text Document Classification: Given the impracticality of procuring extensive

amounts of labeled text data, semi-supervised learning emerges as an optimal

solution. This approach circumvents the challenge by leveraging both labeled and

unlabeled data, making it a valuable model for overcoming data scarcity.

2.1.3.4 Reinforcement Learning

Reinforcement learning resides within the domain of machine learning,

focusing on making optimal decisions to maximize rewards within specific scenarios.

This methodology is harnessed by diverse software and machines to ascertain the most

favorable actions or paths in given situations (Wiering & Van Otterlo, 2012). Notably

distinct from supervised learning, where training data carries the correct answers,

reinforcement learning operates without predefined solutions. Instead, a reinforcement

agent determines its actions to accomplish assigned tasks, learning from its

18

accumulated experiences due to the absence of a conventional training dataset (Li,

2017).

Reinforcement learning encompasses the realm of decision-making science. Its

core objective is to acquire optimal behavioral patterns within an environment to attain

the utmost rewards. Unlike supervised or unsupervised machine learning paradigms

that rely on input data, reinforcement learning gathers data through trial-and-error

procedures, facilitating adaptive learning without predefined datasets (Sutton & Barto,

2018).

Reinforcement learning employs algorithms that deduce suitable actions based

on outcomes. Following each action, the algorithm receives feedback to ascertain the

correctness, neutrality, or incorrectness of its choice. This approach is particularly

effective for automated systems necessitating numerous nuanced decisions devoid of

human intervention (François-Lavet et al., 2018).

At its core, reinforcement learning operates as an autonomous, self-educating

system that evolves through trial and error. It undertakes actions with the intent of

optimizing rewards, effectively learning through practical application to achieve

optimal results (Wang et al., 2016).

2.1.4 Knowledge Discovery in Databases

Knowledge Discovery in Databases (KDD), represents a systematic and

analytical approach to model data sourced from a database, with the intent of extracting

significant and valuable "knowledge" through data mining techniques. Data mining

forms the cornerstone of the KDD process and is imperative for its comprehensive

methodology. This methodology employs a variety of autonomous learning algorithms

to derive meaningful patterns from scrutinized data. Within this cyclical and

interconnected process, multiple iterations occur among distinct stages, facilitating

continual feedback as mandated by algorithmic requirements and pattern elucidations.

KDD process is commonly defined with the stages (Maimon & Rokach, 2005; Fayyad

et al., 1996):

1. Problem identification

This marks the preliminary stage in the methodology, demanding a pre-existing

grasp and proficiency in the relevant field of application. During this phase, the decision

is made regarding the approach to extract insights from processed data and patterns

19

unveiled through data mining. This underlying premise holds paramount importance

and any misjudgment can lead to erroneous construals and adverse repercussions for

the final user.

2. Data selection

Following the establishment of goals and objectives, a crucial undertaking

involves the deliberate selection and categorization of data into meaningful subsets,

guided by considerations of availability, accessibility, significance, and quality. These

attributes play a foundational role in data mining, significantly influencing the

composition of data models that come into fruition.

3. Data preprocessing & Transformation

Our primary objective in this phase is to enhance data efficiency through the

elimination of duplicate records, erroneous or noisy data, as well as the identification

and removal of outliers. Additionally, we address the strategy for managing missing

data attributes and aligning data with its appropriate data types. Tailoring our approach

to the specific goals and tasks at hand, we embark on the quest to uncover valuable

features that aptly represent the data. This journey may involve applying diverse

transformations, each yielding distinct outcomes. Furthermore, we employ

mathematical techniques to reduce dimensions and eliminate redundant data. With a

refined and functional dataset in place, we then transition to the mining stage, poised to

extract meaningful insights.

4. Data mining

Data mining stands as the pivotal process that entails distilling valuable insights

from vast datasets through a diverse array of techniques, including regression,

clustering, sequence modeling, dependency analysis, and linear scrutiny. This

comprehensive methodology involves the instantiation and subsequent fitting of

models, leading to the recognition of discernible patterns within the data. These adapted

models are analytical tools that help to trace trends from the dataset.

5. Interpretation and evaluation

Data interpretation is the process of interpreting the results that are collected

from applying the data mining techniques on the models and ensuring that useful

knowledge is derived from the data. In this stage, we try to evaluate and interpret the

mined patterns (rules, reliability, etc.) with respect to the goals defined in the first step.

This step gives a lot of focus on the usefulness and comprehensibility of the produced

model. The interpretation is typically carried out by visualizing the patterns.

20

2.2 Machine Learning Algorithms

2.2.1 Decision tree

A decision tree is a type of supervised learning technique that's useful for both

classification and regression problems, though it's mainly used for classifying things.

It's like a tree-shaped guide that helps make decisions. Inside the tree, there are two

important kinds of points: Decision Nodes and Leaf Nodes. Decision Nodes help with

making choices and have different paths, while Leaf Nodes are the outcomes without

any more paths. Figure 1, explains the general structure of a decision tree (Kingsford

& Salzberg, 2008).

These choices are based on the features in the data you have. Imagine it as a

map that gives you different paths to solve a problem. It's called a decision tree because,

much like a tree, it starts with one main point and then branches out into smaller parts.

To create a decision tree, the CART algorithm is used, which stands for

classification and regression tree algorithm. The idea is simple: the decision tree asks a

question and, depending on whether the answer is Yes or No, it keeps branching out

into more detailed questions or outcomes. Absolutely, a decision tree is versatile in

handling different types of data. It can handle categorical data where answers might be

YES or NO, as well as numeric data, making it a flexible tool for various kinds of

information (Kotsiantis, 2013).

 Figure 1. The general structure of a decision tree.

Indeed, decision trees often replicate human thought processes when making

decisions, which makes them quite comprehensible. The rationale behind a decision

21

tree is straightforward to grasp since it's presented in a tree-like format, resembling a

flowchart that aligns with how we naturally think and make choices. Below, there are

some key terms associated with decision trees (Maimon & Rokach, 2014):

 Root Node: This is where the decision tree originates. It represents the whole dataset,

which is then divided into two or more similar subsets.

 Leaf Node: These are the endpoints of the tree, and no further divisions occur beyond

them. They give the final output.

 Splitting: Splitting refers to dividing a decision node or the root node into smaller

sub-nodes based on specific conditions.

 Branch/Sub Tree: A sub-tree forms when the tree is divided by splitting.

 Pruning: Pruning involves removing unnecessary branches from the tree,

simplifying it while retaining accuracy. This process is crucial for striking the right

balance between complexity and accuracy. When a tree becomes excessively large,

it runs the risk of overfitting the training data. Conversely, a small tree might fail to

encompass all the vital aspects of the dataset. Pruning serves as a technique to

mitigate these issues by reducing the size of the tree while maintaining its accuracy.

Two key methods of tree pruning are commonly utilized, Cost Complexity Pruning

and Reduced Error Pruning.

 Parent/Child Node: The starting node of the tree is the parent node, and any

subsequent nodes are called child nodes.

The Decision Tree algorithm operates (Charbuty & Abdulazeez, 2021) as

follows:

 Starting Point: The process commences from the root node of the tree. The algorithm

compares the root attribute's values with the corresponding attribute values in the

real dataset.

 Traversing the Tree: Based on this comparison, the algorithm moves along the

branches, progressing to the next nodes in the tree.

 Iterative Process: At each subsequent node, the algorithm once again compares the

attribute value with the sub-nodes' attributes, advancing further as per the outcome.

 Reaching Leaf Nodes: This process of comparison and advancement continues until

the algorithm reaches a leaf node, which signifies an endpoint and provides the final

class prediction.

22

The algorithm's progression can be outlined through (Priyam et al., 2013) the

following steps:

1. Initiation: The tree begins with a root node, labeled as S, encompassing the complete

dataset.

2. Attribute Selection: The algorithm identifies the best attribute using an Attribute

Selection Measure (ASM).

3. Data Subset Creation: The dataset (S) is divided into subsets, each corresponding to

the possible values of the best attribute.

4. Node Generation: Decision tree nodes are generated, each representing the chosen

attribute.

5. Recursion: The algorithm recursively constructs new decision trees using the subsets

generated in step 3 (Data Subset Creation). This process is repeated until a point is

reached where further classification is not feasible, resulting in the creation of leaf

nodes. These leaf nodes are considered the final outcomes of the tree.

In this manner, the Decision Tree algorithm maps out decision pathways and

class predictions based on comparisons of attribute values, leading to interpretable and

actionable results.

Attribute Selection Measures (ASM) play a pivotal role in the Decision Tree

algorithm by helping determine the most suitable attributes for both root and sub-nodes.

They assist in making informed decisions during tree construction. Two commonly

used ASM techniques are:

 Information Gain / Entropy: Information Gain quantifies how much a particular

attribute reduces the uncertainty in predicting the class. It calculates the difference

between the uncertainty before and after splitting based on the attribute. Attributes

with higher information gain are preferred since they lead to better classification.

Information Gain is a critical concept in Decision Trees that gauges the alteration

in entropy following the division of a dataset based on a particular attribute. It

quantifies the information provided by a feature concerning a class. This value

guides the splitting of nodes and the construction of the decision tree. The central

goal of the Decision Tree algorithm is to maximize information gain, prioritizing

nodes/attributes with the highest information gain for initial splitting (Forman,

2003). The formula to calculate Information Gain is as follows:

23

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − [(𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑣𝑔) ∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)]

Here, Entropy represents the level of impurity in a given attribute, reflecting

randomness in data. It can be computed using the formula:

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) = 𝑃(𝑦𝑒𝑠) ∗ 𝑙𝑜𝑔2(𝑃(𝑦𝑒𝑠)) − 𝑃(𝑛𝑜) ∗ 𝑙𝑜𝑔2(𝑃(𝑛𝑜))

Where, S is the total number of samples, P(yes) is the probability of the positive

class and P(no) is the probability of the negative class.

This concept aids in the meticulous selection of attributes for optimal tree

construction, ensuring the resultant tree provides accurate classification outcomes.

 Gini Index: The Gini Index measures the degree of impurity or disorder in a

dataset. When choosing an attribute for splitting, the Gini Index evaluates the

likelihood of a randomly selected item being misclassified. Lower Gini Index

values indicate better attribute choices for effective classification. The Gini

Index stands as a crucial metric in Decision Trees, serving as a measure of

impurity or purity within the context of the CART (Classification and

Regression Tree) algorithm. It assesses the quality of attribute splits during tree

construction. When dealing with the Gini Index, attributes demonstrating lower

values should be favored over those with higher values. This index operates

solely with binary splits, aligning with the binary splitting approach adopted by

the CART algorithm (Steinberg & Colla, 2009).

𝐺𝑖𝑛𝑖 = 1 − ∑(p𝑖)2

𝑛

𝑖=1

Where pi is the probability of a particular element belonging to a specific class.

Both Information Gain and Gini Index serve as valuable tools for assessing

attribute importance, enabling the Decision Tree algorithm to make optimal attribute

selections for creating a more accurate and efficient tree structure. Additionally,

decision trees have both advantages and disadvantages (Podgorelec et al., 2002). Table

24

1, presents the positive and negative aspects of this algorithm.

Table 1. Decision trees' advantages and disadvantages.

Decision tree

Positive aspects Negative aspects

Compared to other algorithms

decision trees require less effort for

data preparation during pre-

processing.

A small change in the data can cause a large

change in the structure of the decision tree

causing instability.

A decision tree does not require the

normalization of data.

For a Decision tree sometimes

calculation can go far more complex

compared to other algorithms.

A decision tree does not require

scaling of data as well.

Decision tree often involves higher

time to train the model.

Missing values in the data also do not

affect the process of building a

decision tree to any considerable

extent.

Decision tree training is relatively

expensive as the complexity and time

has taken are more.

A Decision tree model is very

intuitive and easy to explain to

technical teams as well as

stakeholders.

The Decision Tree algorithm is

inadequate for applying regression and

predicting continuous values.

2.2.2 Random Forest

Random Forest is a popular machine learning algorithm that belongs to the

supervised learning technique. It can be used for both classification and regression

problems in machine learning. It is based on the concept of ensemble learning, which

is a process of combining multiple classifiers to solve a complex problem and to

improve the performance of the model (Belgiu & Drăguţ, 2016).

As the name suggests, “Random Forest” is a classifier that contains a number

of decision trees on various subsets of the given dataset and takes the average to

improve the predictive accuracy of that dataset (Biau & Scornet, 2016). Instead of

25

relying on one decision tree, the random forest takes the prediction from each tree and

based on the majority votes of predictions, and it predicts the final output. Figure 2,

explains how the Random Forest algorithm works.

The greater number of trees in the forest leads to higher accuracy and prevents

the problem of overfitting. Since the random forest combines multiple trees to predict

the class of the dataset, it is possible that some decision trees may predict the correct

output, while others may not. But together, all the trees predict the correct output

(Speiser et al., 2019).

Figure 2. The operation of the Random Forest algorithm.

The procedure for implementing the Random Forest algorithm is briefly explained

below:

 Initial Sampling: Begin by selecting random samples from the provided dataset or

training set.

 Individual Decision Trees: The algorithm proceeds to build a distinct decision tree

for each training data entry.

 Aggregation through Voting: Averaging of the decisions made by the individual

decision trees is performed through a voting process.

 Determining Final Prediction: Ultimately, the prediction result with the highest

number of votes is chosen as the final prediction outcome.

26

Table 2, presents the positive and negative aspects of the Random forest

algorithm.

Table 2. Random forests’ advantages and disadvantages.

Random Forest

Positive aspects Negative aspects

It reduces overfitting in decision

trees and helps to improve the

accuracy

It requires much computational

power as well as resources as it

builds numerous trees to combine

their outputs.

It is flexible to both classification and

regression problems

It also requires much time for

training as it combines a lot of

decision trees to determine the class.

It works well with both categorical

and continuous values

Due to the ensemble of decision

trees, it also suffers interpretability

and fails to determine the

significance of each variable.

It automates missing values present

in the data

Normalizing of data is not required

as it uses a rule-based approach.

2.2.3 Support Vector Machine

The Support Vector Machine (SVM) stands as one of the most widely utilized

algorithms within the realm of Supervised Learning. It boasts applicability not only in

Classification but also in Regression problems, though it’s primary use is prominent in

Classification scenarios within Machine Learning (Huang et al., 2018).

The core objective of the SVM algorithm revolves around the creation of an

optimal line or decision boundary. This boundary serves to effectively partition an n-

dimensional space into distinct classes, ensuring that forthcoming data points can be

accurately categorized. This optimal decision boundary is formally referred to as a

hyperplane (Jakkula, 2006).

27

Put differently, the primary aim of the SVM algorithm centers on identifying

the ideal hyperplane within an N-dimensional space. This hyperplane is meticulously

positioned to segregate data points belonging to different classes within the feature

space. In this pursuit, the hyperplane is designed to maximize the margin between the

nearest points from disparate classes. The configuration of this hyperplane aligns with

the dimensionality of the feature space – a two-feature input yields a linear hyperplane,

while a three-feature input results in a two-dimensional plane. Visualization becomes

more intricate as the number of features exceeds three (Meyer & Wien, 2001).

According to Ghosh et al. 2019, Support Vector Machines (SVM) have two

distinct forms:

 Linear SVM: The Linear SVM is adept at handling datasets that are linearly

separable. In essence, when a dataset's two classes can be accurately distinguished

using a solitary straight line, this classification scenario is labeled as linearly

separable data. For this purpose, the classifier employed is known as the Linear

SVM classifier.

 Non-linear SVM: Non-Linear SVM, on the other hand, is tailored for datasets that

do not exhibit linear separability. In practical terms, when a dataset defies

classification via a single straight line, it is categorized as non-linear data. In such

cases, the Non-linear SVM classifier comes into play to effectively handle this type

of data and classification complexity.

To gain a better understanding of the aforementioned, in the next paragraph a

brief presentation and elaboration regarding the terminology of the Support Vector

Machine algorithm is made. Support Vector Machine Terminology (Scholkopf &

Smola, 2018, Gu & Han, 2013, Brereton & Lloyd, 2010):

 Hyperplane: The hyperplane serves as the decisive boundary employed to segregate

data points belonging to different classes within the feature space. In the context of

linear classifications, it takes the form of a linear equation, often represented as wx

+ b = 0.

 Support Vectors: Support vectors are data points located closest to the hyperplane,

playing a pivotal role in determining both the hyperplane's placement and the

margin's definition.

 Margin: The margin signifies the spatial gap between the hyperplane and the support

vectors. The central objective of the support vector machine algorithm is to

28

maximize this margin. A broader margin is indicative of superior classification

performance.

 Kernel: Kernels are mathematical functions integral to SVM, facilitating the

transformation of original input data points into higher-dimensional feature spaces.

This maneuver enables the identification of hyperplanes even when data points are

not linearly separable in the initial input space. Common kernel functions include

linear, polynomial, radial basis function (RBF), and sigmoid.

 Hard Margin: The hard margin hyperplane, also referred to as the maximum-margin

hyperplane, effectively distinguishes data points of diverse categories without any

classification errors.

 Soft Margin: The soft margin technique becomes relevant when data is not entirely

separable or when outliers are present. In such cases, SVM introduces slack variables

for each data point, relaxing the stringent margin requirement and accommodating

certain misclassifications or deviations. This approach balances margin

maximization and misclassification penalties.

 C: The regularization parameter C in SVM strikes a balance between margin

maximization and the cost of misclassification. It determines the penalty imposed

for exceeding the margin or misclassifying data points. A higher value of C enforces

a stricter penalty, potentially leading to a narrower margin and reduced

misclassifications.

 Hinge Loss: Hinge loss represents a common loss function within SVMs. It penalizes

incorrect classifications and margin violations. Frequently, the objective function in

SVM combines hinge loss with a regularization term.

 Dual Problem: The dual problem in optimization pertains to identifying the

Lagrange multipliers associated with support vectors. Solving this problem aids in

solving the SVM. The dual formulation enables the utilization of kernel tricks and

more efficient computations.

Figure 3, explains the general structure of the Support Vector Machine

algorithm, whereas in Table 3, presents the positive and negative aspects of the Support

Vector Machine.

29

Figure 3. The general structure of a Support Vector Machine.

Table 3. Support Vector Machine advantages and disadvantages.

Support Vector Machine

Positive aspects Negative aspects

SVM works relatively well when

there is a clear margin of separation

between classes.

SVM algorithm is not suitable for large

data sets.

SVM is more effective in high

dimensional spaces.

SVM does not perform very well when

the data set has more noise i.e. target

classes are overlapping.

SVM is effective in cases where the

number of dimensions is greater

than the number of samples.

If the number of features for each data

point exceeds the number of training

data samples, the SVM will

underperform.

SVM is relatively memory

efficient.

As the support vector classifier works

by putting data points, above and

below the classifying hyperplane there

is no probabilistic explanation for the

classification.

30

2.2.4 Logistic Regression

Logistic regression stands out as one of the most widely employed machine

learning algorithms, firmly situated within the domain of supervised learning. Its

primary purpose is to forecast categorical dependent variables through the utilization

of a specified set of independent variables.

In logistic regression, the objective is to predict the outcome of a categorical

dependent variable, necessitating the output to be categorical or discrete in nature. This

can manifest as binary choices, such as Yes or No, 0 or 1, true or false, and so forth.

However, rather than furnishing exact 0 and 1 values, logistic regression yields

probabilistic values that fall within the range of 0 to 1. Comparatively, logistic

regression shares similarities with linear regression, diverging mainly in their respective

applications. Linear regression finds its utility in addressing regression problems, while

logistic regression specializes in addressing classification problems (Wang et al., 2019).

In logistic regression, the process involves fitting an "S"-shaped logistic

function rather than a regression line, facilitating predictions of two maximum values,

typically denoting 0 or 1. The curve generated by the logistic function conveys the

likelihood of specific outcomes, such as identifying whether a patient suffers a medical

condition (e.g., heart failure) or not, determining if a person is obese based on their

weight and height, and similar scenarios. Logistic regression holds a position of

significance within the realm of machine learning due to its capacity to provide

probability estimates and effectively classify new data, accommodating both

continuous and discrete datasets (Boateng & Abaye, 2019).

Furthermore, logistic regression can be employed to classify observations

across diverse types of data, and it readily identifies the most influential variables

contributing to the classification process. The Figure 4, depicts the logistic regression

function.

The sigmoid function represents a crucial mathematical tool employed to

transform predicted values into probability estimates. It possesses the capacity to

convert any real number into a value confined within the range of 0 and 1

(Christodoulou et al., 2019).

More extensively, in the context of logistic regression, the central requirement

is that the resultant values must fall within the narrow confines of 0 and 1, adhering

rigorously to this limit. Consequently, this constraint manifests itself in the formation

31

of a distinctive curve, recognized as the sigmoid function or logistic function, often

resembling the shape of the letter "S." Within logistic regression, we rely on the concept

of a threshold value, which serves as a critical determinant of the assigned probability,

either 0 or 1. In this context, values surpassing the threshold tend to converge toward

1, while values residing below the threshold tend to gravitate towards 0. This pivotal

threshold value plays a pivotal role in the classification process (Leukel et al., 2022).

To perform logistic regression, certain assumptions must be satisfied. First and

foremost, the dependent variable must exhibit categorical characteristics. Additionally,

it is essential that the independent variables do not demonstrate multicollinearity.

Figure 4. Logistic -Sigmoid function.

The Logistic regression equation can be derived from the Linear Regression

equation through a set of mathematical steps. The following outlines the process for

obtaining the Logistic Regression equation (Ranganathan et al., 2017). The equation of

the straight line can be written as:

𝑦 = 𝑏𝑜+= 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 + 𝑏3 ∗ 𝑥3 + ⋯ + 𝑏𝑛 ∗ 𝑥𝑛

32

In Logistic Regression y can be between 0 and 1 only, so for this let's divide the

above equation by (1-y):

𝑦

1 − 𝑦
; 0 𝑓𝑜𝑟 𝑦 = 0 𝑎𝑛𝑑 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦 𝑓𝑜𝑟 𝑦 = 1

But range is needed between -[infinity] to +[infinity], then take logarithm 1of

the equation it will become:

log [
𝑦

𝑦 − 1
] = 𝑏𝑜 + 𝑏1 ∗ 𝑥1 + 𝑏2 ∗ 𝑥2 + 𝑏3 ∗ 𝑥3 + ⋯ + 𝑏𝑛 ∗ 𝑥𝑛

The above equation is the final equation for Logistic Regression.

Logistic Regression can be categorized into three distinct types based on the

nature of the dependent variable (Binder et al., 2019).

 Binomial Logistic Regression: In binomial logistic regression, the dependent

variable can assume only two distinct categories or levels. Examples of such binary

outcomes include 0 or 1, Pass or Fail, Yes or No, and so forth. Binomial logistic

regression is used when the outcome variable is binary and unordered.

 Multinomial Logistic Regression: Multinomial logistic regression comes into play

when the dependent variable has three or more possible categories or classes that

are unordered. For instance, if the outcome variable includes categories like "cat,"

"dogs," and "sheep," this type of logistic regression is suitable for modeling such

scenarios. Multinomial logistic regression addresses cases where the categories are

mutually exclusive but lack any inherent order.

 Ordinal Logistic Regression: Ordinal logistic regression is employed when the

dependent variable exhibits three or more categories that are not only unordered

but also possess a natural order or hierarchy. Examples could include categories

like "low," "Medium," or "High." This type of logistic regression accommodates

scenarios where the categories maintain a meaningful rank or progression.

These three types of logistic regression allow for the modeling of different types

of categorical dependent variables, depending on the nature of the data and the research

question at hand.

Table 4, presents the positive and negative aspects of the Logistic regression.

33

Table 4. Logistic regression advantages and disadvantages.

Logistic Regression

Positive aspects Negative aspects

Logistic regression is

straightforward to implement,

interpret, and efficient in training.

When the number of observations is

smaller than the number of features, it

is advisable to avoid using Logistic

Regression as it can potentially result

in overfitting.

It does not assume any specific

class distribution in the feature

space.

It creates linear boundaries.

It can readily expand to handle

multiple classes (multinomial

regression) and offers a natural

probabilistic perspective on

predicting classes.

A primary limitation of Logistic

Regression is its assumption of

linearity between the dependent

variable and the independent variables.

It not only offers insight into the

relevance of a predictor

(coefficient magnitude) but also its

association direction (positive or

negative).

Logistic Regression can exclusively be

employed to predict discrete functions,

implying that the dependent variable in

Logistic Regression is constrained to a

discrete numerical set.

It efficiently classifies unknown

records with speed.

Logistic Regression is ill-suited for

addressing non-linear problems due to

its reliance on a linear decision surface.

In practice, finding linearly separable

data in real-world scenarios is a rare

occurrence.

It exhibits high accuracy on

straightforward datasets and

performs effectively when the

dataset allows for linear separation.

Logistic Regression necessitates either

the absence of multicollinearity or its

moderate presence among independent

variables.

Model coefficients can be

interpreted as indicators of the

Obtaining complex relationships using

logistic regression can be challenging.

34

significance of features. More robust and concise algorithms,

such as Neural Networks, often surpass

the performance of logistic regression

in such cases.

Logistic regression has a lower

tendency to overfit, but in high-

dimensional datasets, it can exhibit

overfitting.

Logistic Regression requires that the

independent variables are linearly

related to the log odds (log(p/(1-p)),

where 'p' represents the probability of

an event occurring.

2.2.5 Linear Regression

Linear regression stands as one of the most accessible and widely used Machine

Learning algorithms, primarily employed for predictive analysis. It is a statistical

technique tailored for making predictions concerning continuous or numeric variables,

such as age, prices, sales etc. (Seber & Lee, 2003).

Linear regression hinges on the establishment of a linear relationship between a

dependent variable (usually denoted as 'y') and one or more independent variables

(typically denoted as 'x'). Consequently, it is termed "linear regression" because it

quantifies how changes in the independent variable(s) correspond to alterations in the

dependent variable (Montgomery et al., 2021).

The linear

regression model, in

essence, generates a

straight-line

representation, which

depicts the relationship

between these variables.

The Figure 5, depicts the

linear regression model.

Figure 5. Linear regression model.

35

Mathematically, a linear regression we can be represented as follows:

𝑦 = 𝑎0 + 𝑎1 ∗ 𝑥 + 𝑒

Where, Y is the dependent Variable (Target Variable), X is the independent

Variable (predictor Variable), a0 is the intercept of the line (Gives an additional degree

of freedom), a1 is the Linear regression coefficient (scale factor to each input value)

and e = random error. The values for x and y variables are training datasets for Linear

Regression model representation. (Hope, 2020).

Linear regression can be subdivided into two distinct types of algorithms based

on the number of independent variables involved (Maulud & Abdulazeez, 2020).

1. Simple Linear Regression. When a single independent variable is utilized to

forecast the value of a numerical dependent variable, the resulting Linear

Regression algorithm is termed Simple Linear Regression.

2. Multiple Linear Regression. In cases where more than one independent variable are

employed to predict the value of a numerical dependent variable, the corresponding

Linear Regression algorithm is referred to as Multiple Linear Regression.

Before running a regression analysis, regression assumptions should be tested.

More specifically, the relationship between independent and dependent variables must

be linear, there should be no multicollinearity, the values of the residuals must be

independent, the variance of the residuals should be constant and the residuals should

be normally distributed. When it’s tested that all the regression assumptions were met,

a regression analysis can be conducted (Schmidt & Finan, 2018). Table 5, presents the

positive and negative aspects of the Linear regression.

Table 5. Linear regression advantages and disadvantages.

Linear Regression

Positive aspects Negative aspects

Simple implementation. Prone to underfitting.

Computationally efficient. Prone to noise and overfitting.

Performance on linearly seperable

datasets.
Sensitive to outliers.

Overfitting can be reduced by

regularization.

Linear Regression assumes that the

data is independent.

36

2.2.6 k-Nearest Neighbor (kNN)

K-Nearest Neighbors (K-NN) is among the simplest Machine Learning

algorithms employed within the realm of Supervised Learning. This algorithm operates

on the principle of assuming similarity between new data and existing data points,

subsequently placing the new data into the category that most closely resembles the

established categories. K-NN is characterized by its approach of retaining all available

data and determining the classification of a new data point based on its similarity to

existing data. Consequently, when new data emerges, it can be efficiently categorized

into an appropriate class through the utilization of the K-NN algorithm (Agrawal,

2014).

K-NN is versatile in its application, serving both as a tool for regression and

classification tasks, albeit it is more commonly utilized for classification challenges.

One notable feature of K-NN is its non-parametric nature, signifying that it refrains

from making any assumptions about the underlying data distribution. This algorithm is

often referred to as a "lazy learner" as it abstains from immediate learning from the

training set. Instead, it stores the dataset and takes action during the classification phase.

During training, K-NN simply retains the dataset, and when presented with new data,

it classifies that data into a category closely resembling the new data (Zhang et al.,

2017).

The operation of the K-Nearest Neighbors (K-NN) algorithm can be elucidated

through the following steps (Dhanabal & Chandramathi, 2011):

Step 1. Select the number K of the neighbors.

Step 2. Calculate the distance of K number of neighbors. There are various methods

for calculating the distance between a new point (x) and an existing point (y),

the most widely used ones are:

 Euclidean Distance, is calculated as the square root of the sum of the

squared differences between a new point (x) and an existing point (y).

𝑑(𝑥, 𝑦) = √∑(𝑥𝑗 − 𝑦𝑗)2

𝑛

𝑗=1

 Manhattan Distance, is the distance between real vectors using the sum of

37

their absolute difference.

𝑑(𝑥, 𝑦) = ∑|𝑥𝑗 − 𝑦𝑗|

𝑛

𝑗=1

 Hamming Distance: It is used for categorical variables. If the value (x) and

the value (y) are the same, the distance D will be equal to 0. Otherwise,

D=1.

𝑑(𝑥, 𝑦) = ∑|𝑥𝑗− 𝑦𝑗|

𝑛

𝑗=1

𝑥 = 𝑦 → 𝑑(𝑥, 𝑦) = 0

𝑥 ≠ 𝑦 → 𝑑(𝑥, 𝑦) = 1

 Minkowski Distance: It is a metric intended for real-valued vector spaces.

We can calculate Minkowski distance only in a normed vector space, which

means in a space where distances can be represented as a vector that has a

length and the lengths cannot be negative. There are a few conditions that

the distance metric must satisfy:

1. Non-negativity: d(x, y) >= 0

2. Identity: d(x, y) = 0 if and only if x == y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)

𝑑(𝑥, 𝑦) = √∑|𝑥𝑗− 𝑦𝑗|
𝑝

𝑛

𝑗=1

𝑝

The parameter "p" in the formula can be adjusted to produce various types

of distances, such as:

 p = 1, when p is set to 1 we get Manhattan distance,

 p = 2, when p is set to 2 we get Euclidean distance.

Step 3. Take the K nearest neighbors as per the calculated Euclidean distance.

38

Step 4. Among these k neighbors, count the number of the data points in each

category.

Step 5. Assign the new data points to that category for which the number of the

neighbor is maximum.

Step 6. Our model is ready.

In order to gain better understanding in the k-Nearest Neighbor algorithm,

Figure 6 depicts its function.

Figure 6. k-Nearest Neighbor model.

Determining the optimal "K" value lacks a definitive method; hence, we must

experiment with various values to identify the most favorable one. Typically, a value

of 5 is considered the most suitable. In other words, determining the optimal "K" value

lacks a definitive method; hence, we must experiment with various values to identify

the most favorable one. Typically, a value of 5 is considered the most suitable. Setting

"K" to an exceedingly small value, like 1 or 2, can introduce noise and make the model

susceptible to the influence of outliers. On the other hand, employing large "K" values

has its merits, but it may encounter certain challenges (Tharwat et al., 2018).

Table 6, presents the positive and negative aspects of the k-Nearest Neighbor

algorithm.

39

Table 6. k-Nearest Neighbor advantages and disadvantages.

k-Nearest Neighbor

Positive aspects Negative aspects

It's easy to understand and simple

to implement.

Associated computation cost is high as

it stores all the training data.

 It can be used for both

classification and regression

problems.

Requires high memory storage.

It's ideal for non-linear data since

there's no assumption about

underlying data.

 Need to determine the value of K.

It can naturally handle multi-class

cases.

The computation cost is high because

of calculating the distance between the

data points for all the training samples.

It can perform well with enough

representative data
Sensitive to irrelevant features.

2.2.7 Gradient Boosting

Gradient Boosting is a combination of two techniques: Gradient Descent and

Boosting. In Gradient Boosting, each new model minimizes the loss function from the

previous one using the Gradient Descent Method (Bentéjac et al., 2021).

 Boosting is an ensemble method that sequentially combines multiple weak learners

to create a robust and powerful learner. In boosting, the predictors are trained one

after another, with each subsequent predictor aiming to rectify the errors of its

predecessor (Nayak & Sharma, 2023).

 Gradient Descent is widely recognized as one of the most commonly employed

optimization algorithms for training machine learning models, with the aim of

minimizing the discrepancies between actual and anticipated outcomes. Its primary

purpose is to identify the local minimum of a parameterized function, denoted as

f(x) (). Defining the local minimum or local maximum of a function using gradient

descent entails the following principles:

o Moving in the direction of the negative gradient or away from the gradient of

40

the function at the present point leads to the discovery of the local minimum.

o Progressing in the direction of the positive gradient or toward the gradient of

the function at the current point results in the identification of the local

maximum.

The fundamental objective of employing the gradient descent algorithm is to

iteratively diminish the cost function. This cost function serves as a quantification

of the dissimilarity or error between actual and anticipated values at the current

position, represented as a single real number. It plays a pivotal role in enhancing

the efficiency of machine learning models by offering feedback, thereby facilitating

error reduction and the identification of local or global minima (Ruder, 2016).

In order to gain better understanding in the Gradient Descent algorithm,

Figure 7 depicts its function.

Figure 7. Gradient Descent algorithm.

Briefly, in gradient boosting, the process involves each new model minimizing

the loss function in comparison to its predecessor through the use of the Gradient

Descent Method. This iterative procedure persists until a more optimal estimation of

the target variable is attained. Distinguishing it from other ensemble techniques, the

core concept in gradient boosting revolves around constructing a sequence of trees.

Each subsequent tree endeavors to rectify the errors made by its predecessor tree (Chen

& Shi, 2023).

41

Table 7, presents the positive and negative aspects of the Gradient Boosting

algorithm.

Table 7. Gradient Boosting advantages and disadvantages.

Gradient Boosting

Positive aspects Negative aspects

Can support various loss functions

and provides a number of

hyperparameters tuning options

which it makes it very flexible.

It minimizes all errors, hence prone to

over-fitting. One must use cross-

validation to neutralize.

It works great with numerical as

well as categorical features as it is.

This technique often requires many

trees; hence it can be time and

memory exhaustive.

No data imputation is required.

2.3 Preprocessing Techniques

2.3.1 Generally

The real-world data that we have to proceed and draw information from them is

incomplete, inconsistent, inaccurate (contains errors or outliers), and often lacks

specific attribute values/trends. This happens due to manual errors, unexpected events,

technical issues, or a variety of other obstacles. While working on these data, it is

important to know the types of data to process them and get the right results (Vijayarani

et al., 2015).

The data can be categorized into two main types:

1. Qualitative or Categorical Data (Hancock & Khoshgoftaar, 2020)

 Nominal Data: Nominal data serves to label variables without exhibiting any

specific order or numerical value. Examples encompass gender, marital status,

nationalities, individual names, and the like.

 Ordinal Data: Ordinal data organizes variables into ranked categories,

possessing a natural hierarchy based on some scale, such as from high to low.

Instances include letter grades in examinations (A, B, C, D, etc.) and educational

42

levels (Higher, Secondary, Primary).

2. Quantitative or Numerical Data (Famili et al., 1997)

 Discrete Data: Discrete data encompasses values represented by integers or

whole numbers. An illustration is the total count of students in a class. These

values cannot be divided into decimal or fractional parts, and they are finite and

countable in nature.

 Continuous Data: Continuous data manifests in the form of fractional numbers

and can be divided into smaller units. It represents information that can take any

value within a specified range. Examples include temperature, height, width,

time, speed, and similar variables.

It is evident that nearly any information can be transformed into data. This implies that

our data, in addition to potential errors like missing values and outliers, may also exhibit

diverse types. Algorithms are typically not equipped to handle incomplete or noisy data,

as they can disrupt the accurate representation of the sample. Data preprocessing

addresses these issues through a comprehensive treatment of the available data (García

et al., 2016).

2.3.2 Tools and Libraries

The process of preparing data for analysis can be streamlined with the aid of

tools and libraries, simplifying management and execution. In the absence of specific

libraries, crafting concise solutions can become a time-intensive coding task,

demanding hours of development and optimization (Jansen et al., 2023).

 Data Preprocessing with Python: Python, a versatile programming language, boasts

numerous open-source libraries capable of executing complex operations in just a

single line of code. The available functions for data preprocessing are extensive.

 Autumunge: Autumunge is an excellent Python library platform designed to

efficiently prepare tabular data for direct application in machine learning

algorithms.

 Data Preprocessing with R: R, primarily utilized for research and academic

purposes, parallels Python by offering a range of packages, similar to libraries,

which significantly support data preprocessing steps.

 Data Preprocessing with Weka: Weka is a comprehensive software solution

facilitating data mining and preprocessing, featuring integrated tools for intelligent

43

mining and machine learning models.

 Data Preprocessing with RapidMiner: Similar to Weka, RapidMiner is an open-

source software equipped with a variety of effective tools designed to facilitate data

preprocessing.

2.3.3 Purpose of Data Preprocessing

Once the data has been appropriately collected, it must undergo exploration or

assessment to identify significant trends and discrepancies. The primary objectives of

Data Quality Assessment include (García et al., 2015):

 Get Data Overview: This involves comprehending the data formats and overall

structure in which the information is stored. Additionally, it encompasses

determining data properties like mean, median, standard quantiles, and standard

deviation. These particulars aid in pinpointing irregularities within the data.

 Detect Missing Data: It is common for real-world datasets to contain missing data.

This can disrupt the genuine patterns within the data, potentially leading to further

loss if entire rows or columns are removed due to a few absent cells in the dataset.

 Identify Outliers or Unusual Data: Certain data points may significantly deviate

from the prevailing data patterns, classifying them as outliers. It might be necessary

to exclude these points for more accurate predictions, unless the algorithm's

primary purpose is to detect anomalies.

 Remove Inconsistencies: Similar to missing values, real-world data often harbors

various inconsistencies such as incorrect spellings, erroneously populated columns

and rows (e.g., salary inputted in the gender column), duplicated data, and more.

At times, automation can address these discrepancies, but frequently they

necessitate manual verification.

2.3.4 Dealing with Missing Values

Missing values are a common challenge in real-world datasets due to physical

and manual constraints associated with data collection. For instance, if data is gathered

through sensors, there may be instances where the sensor temporarily stops working,

resulting in missing data. Different datasets may encounter various issues leading to

missing data points (Raja & Thangavel, 2020).

To effectively utilize available data, it's essential to address these missing

44

values. Here are some proven strategies (Sessa & Syed, 2016):

 Drop Samples with Missing Values: This approach is beneficial when the number

of samples is substantial and the count of missing values in a given sample is high.

However, it's not recommended in other cases as it can lead to significant data loss.

 Replace Missing Values with Zero: This technique can be effective for basic

datasets, where zero can signify the absence of a value. Nevertheless, in many

cases, zero may have its own meaning. For example, in temperature data from a

tropical region, zero may not accurately represent a missing value. It's best used

when the dataset is independent of its effect, such as in phone bill data.

 Replace Missing Value with Mean, Median, or Mode: Using statistical functions

like mean, median, or mode can address the issue of using zero incorrectly. While

these values are also assumptions, they tend to provide more meaningful

approximations compared to a single value like zero.

 Interpolate Missing Values: Interpolation generates values within a range based on

a given step size. For instance, if there are nine missing values between cells with

values ranging from 0 to 10, interpolation will fill in the missing cells with numbers

from 1 to 9. It's important to ensure the dataset is sorted according to a more

reliable variable (like serial number) before applying interpolation.

 Extrapolate Missing Values: Extrapolation populates values that fall outside a

given range, such as extreme values of a feature. It relies on another variable,

typically the target variable, to compare and populate the variable in question with

a guided reference.

 Build a model with other features to predict the missing values: By far the most

intuitive of all techniques we’ve mentioned. Here, an algorithm studies all the

variables except the actual target variable (since that would lead to data leakage).

The target variable for this algorithm becomes the feature with missing values. The

model, if well trained, can predict the missing points and provide the closest

approximations.

2.3.5 Scaling

Columns in a dataset can have varying ranges. For instance, one column may

represent distances, while another may represent currency units. These columns will

exhibit markedly different numerical ranges, which can pose challenges for machine

45

learning models in achieving optimal computations. To address this, several popular

scaling techniques are employed (Ahsan et al., 2021):

 Min-Max Scaler: This technique rescales feature values to fit within a specified

range, such as between 0 and 5.

 Standard Scaler: The standard scaler assumes that the variable follows a normal

distribution. It then scales the data to have a standard deviation of 1, with the

distribution centered at 0.

 Robust Scaler: This scaler is particularly effective when the dataset contains

outliers. It scales the data based on the inter-quartile range after removing the

median.

 Max-Abs Scaler: Similar to the min-max scaler, this technique scales the feature

to its maximum absolute value. Notably, it preserves the sparsity of the data by not

centering it.

2.3.6 Dealing with outliers

Outliers are data points that do not conform with the predominant pattern

observed in the data. They can cause disruptions in the predictions by taking the

calculations off the actual pattern (Nnamoko & Korkontzelos, 2020).

Box plots are a valuable tool for detecting and addressing outliers. They enable

the identification of key statistical measures like the median, interquartile ranges, and

outliers. To effectively manage outliers, it's important to take note of the maximum and

minimum ranges, and subsequently filter the variable accordingly (Krishna et al., 2022).

In order

to gain better

understanding

regarding the

Box plots,

Figure 8

depicts its

function.

Figure 8. Box Plot.

46

To better understand the above figure (Williamson et al., 1989),

 median (Q2/50th Percentile): the middle value of the dataset.

 first quartile (Q1/25th Percentile): the middle number between the smallest

number (not the “minimum”) and the median of the dataset.

 third quartile (Q3/75th Percentile): the middle value between the median and the

highest value (not the “maximum”) of the dataset.

 InterQuartile Range (IQR): 25th to the 75th percentile. IQR tells how spread

the middle values are.

 “maximum”: Q3 + 1.5*IQR

 “minimum”: Q1 -1.5*IQR

 Outliers: (shown as green circles) In statistics, an outlier is an observation point

that is distant from other observations.

Additionally, it is essential to clarify that not every outlier is a wrong value.

2.3.7 Feature Encoding

At times, data is presented in a format that isn't directly interpretable by

machines. For instance, a column containing string values like names might not hold

meaning for a model that relies solely on numerical inputs. This necessitates the process

of data transformation to facilitate the model's comprehension. This technique is

referred to as categorical encoding (Dahouda & Joe, 2021). There are several

approaches to encoding categories. Here are some fundamental methods to begin with:

 Label/Ordinal Encoding: This method assigns values from 1 to 'n' in a sequential

order. Here, 'n' corresponds to the number of samples in the column. For instance,

if a column contains three city names, label encoding will assign values 1, 2, and

3 to the respective cities. While this method is suitable for ordered categories like

student grades, it's not recommended for categorical values without a natural

order, such as cities.

 One-Hot Encoding: When categorical data lacks a natural order, one-hot

encoding is employed. This technique generates a distinct column for each

category. A positive value (1) is assigned in the row where the category is

present, and 0 denotes its absence. It's worth noting that this method may lead to

data expansion, but it's typically not problematic with a manageable number of

features.

47

 Binary Encoding: This method addresses the potential bulkiness associated with

one-hot encoding. Each categorical value is transformed into its binary

representation, resulting in the creation of new columns for each binary digit.

This compresses the number of columns compared to one-hot encoding. For

instance, with 100 values in a categorical column, one-hot encoding would

generate 100 (or 99) new columns, whereas binary encoding would yield

considerably fewer, unless the values are exceedingly large.

 BaseN Encoding: Similar to binary encoding, BaseN encoding utilizes a different

base, allowing for a range of options beyond binary (base 2). The choice of base

impacts the trade-off between information loss and compression efficiency.

Higher bases result in greater compression power, but also entail increased

information loss.

 Hashing: This method involves generating values from a category using

mathematical functions. It's akin to one-hot encoding, albeit with a more intricate

function and fewer dimensions. However, hashing does entail some information

loss due to collisions in resulting values.

2.3.8 Dealing with Imbalanced Data

In binary classification problems, imbalanced datasets present a common

challenge for machine learning practitioners. Resampling data is a widely favored

approach to tackle this issue, with two primary methods: Undersampling and

Oversampling. Among these, Synthetic Minority Oversampling Technique (SMOTE)

stands out as a popular technique (Garcia et al., 2012).

SMOTE is specifically designed to address imbalanced datasets by generating

synthetic samples for the minority class. This technique helps mitigate bias and capture

crucial features of the minority class, ultimately leading to more accurate predictions

and improved model performance (Hussein et al., 2019).

The mechanism behind SMOTE involves creating synthetic samples along the

lines connecting the nearest neighbors in the feature space. The fundamental concept is

to generate new samples for the minority class by taking small steps from one of the

minority class samples towards one of its k nearest neighbors, where k is a parameter

of the algorithm (Fernández et al., 2018).

48

The algorithm operates in the following steps (Pradipta et al., 2021):

Step 1. Select a minority class sample from the original dataset.

Step 2. Identify its k nearest minority class neighbors in the feature space.

Step 3. Randomly choose one of the k nearest neighbors.

Step 4. Generate a new synthetic sample by interpolating between the selected minority

class sample and the randomly chosen neighbor.

Step 5. Repeat steps 1-4 until the desired number of synthetic samples is created.

This process results in new synthetic data that shares similarities with the

minority class samples in the feature space, yet is distinct from any existing samples.

2.3.9 Dimensionality Reduction

Dimensionality refers to the number of input features, variables, or columns

present within a dataset. The process of reducing these features is known as

dimensionality reduction. Datasets often encompass a multitude of input features in

various instances, making the task of predictive modeling considerably more complex.

Managing and visualizing a high-dimensional training dataset can be challenging. In

such scenarios, the employment of dimensionality reduction techniques becomes

imperative (Guyon & Elisseeff, 2003).

Dimensionality reduction techniques can be defined as follows: "They are

methods for transforming a high-dimensional dataset into a lower-dimensional one,

with the objective of retaining similar information". These techniques find widespread

application in machine learning, particularly in improving predictive models when

dealing with classification and regression problems. Some of the common techniques

of dimensionality reduction are: Principal Component Analysis, Backward Elimination,

Forward Selection, Score comparison, Missing Value Ratio, Low Variance Filter, High

Correlation Filter, Random Forest and Factor Analysis (Huang et al., 2019).

2.4 Evaluation of Machine Learning Models

2.4.1 Generally

Evaluation metrics serve as essential tools for assessing the quality of statistical

or machine learning models. The concept behind building machine learning models is

49

rooted in a feedback loop that fosters improvement. Evaluation metrics provide insights

into a model's performance (Zhou et al., 2021).

A crucial attribute of evaluation metrics lies in their ability to distinguish

between different outcomes generated by a model. Evaluation metrics offer valuable

insights about your model, such as whether it has truly learned or merely memorized

patterns. This distinction holds great significance because a model that has only

memorized is efficient in handling known data but lacks adaptability and efficiency

(Dalianis & Dalianis, 2018).

To ensure that the model genuinely learns, it is imperative to employ a variety

of evaluation metrics. This approach is essential because a model might perform

exceptionally well according to one evaluation metric, but its performance may decline

when assessed using a different metric. Utilizing multiple evaluation metrics is pivotal

in verifying that the model operates correctly and optimally (Rjoob et al., 2022).

2.4.2 Holdout and Cross validation methods

In the realm of machine learning, the dataset is typically divided into two

distinct types: the "Training dataset" and the "Test dataset." The training dataset serves

as the foundation for building and training the machine learning model to assess its

functionality and performance. However, when it comes to evaluating the model, we

rely on the test dataset, which consists of data samples that the model has never

encountered during training (Perlaza et al., 2023).

The reason we use a separate test dataset for evaluation is to gauge how well the

model performs on previously unseen or unknown data, essentially testing its ability to

generalize from the training data to new, unfamiliar examples (Takano & Alaghband,

2019).

If we were to evaluate the model using the same training dataset, it would likely

exhibit high accuracy measures for all instances within that dataset. However, this

scenario can be misleading because the model is essentially predicting outcomes it has

already learned, and it may not perform as effectively on new, real-world data.

Therefore, using the training dataset for evaluation doesn't provide a genuine

assessment of the model's ability to handle novel scenarios (Mahesh, 2020).

Two common methods for evaluating the performance of a model are the

Holdout and the Cross validation methods.

50

I. Holdout method: The Holdout method is a technique used to assess the

performance of a machine learning model. It involves dividing the

dataset into two distinct sets: training data and testing data. The training

data is used to train the model, while the testing data is employed to

evaluate its performance. This method provides insight into how well

the model, developed using various algorithm techniques, performs on

previously unseen data. The Holdout approach is known for its

simplicity, flexibility, and efficiency (Raschka, 2018).

II. Cross validation: Cross-Validation is a more comprehensive evaluation

procedure. It entails partitioning the dataset into multiple subsets or

"folds." The model is trained on a subset of the data and evaluated on

the remaining data. Cross-validation helps assess the model's

performance across various data subsets, providing a more robust

estimate of its accuracy (Stone, 1978). There are different methods for

conducting cross-validation, including:

a. Validation: The given dataset is split into 50% of training and 50%

for testing purpose. The main drawback in this method is that the

remaining 50% of data that is subjected to testing may contain some

crucial information that may be lost while training the model (Borg

et al., 2018).

b. Leave one out cross validation (LOOCV): All the datasets are

trained in the model and a single data point is left for testing purpose.

This method aims at exhibiting lower bias, but there are some

chances that this method might fail because, the data-point that has

been left out may be an outlier in the given data; and in that case we

cannot produce better results with good accuracy (Syed, 2011).

c. K-Fold Cross Validation: Is a popular method used for evaluation of

a Machine Learning model. It works by splitting the data into k-

parts. Each split of the data is called a fold. Here we train all the k

subsets of data to the model, and then we leave out one (k-1) subset

to perform evaluation on the trained model. This method results in

high accuracy and produces data with less bias (Anguita et al., 2009).

51

2.4.3 Overfitting and Underfitting

When discussing machine learning models, the focus is often on their

performance and accuracy, which is measured by prediction errors. A machine learning

model is considered good when it effectively generalizes new input data from the

problem domain, enabling accurate predictions for unseen future data (Zhang et al.,

2019). However, issues arise in assessing how well a machine learning model learns

and generalizes to new data, leading to problems like overfitting and underfitting. These

issues are primarily responsible for suboptimal performance in machine learning

algorithms (Jabbar & Khan, 2015).

More specifically, on the one hand underfitting in the context of statistical

modeling or machine learning refers to a situation where the model's simplicity renders

it incapable of adequately grasping the intricacies present in the data. This leads to

suboptimal performance not only on the training dataset but also when the model is

tested on new, previously unseen data. In simpler terms, an underfit model tends to

produce inaccurate results, especially when confronted with novel examples. This issue

predominantly arises when an overly simplistic model is employed, often characterized

by overly generalized assumptions. To tackle the problem of underfitting, it is essential

to opt for more intricate models that possess improved feature representation and

employ less regularization (Cunningham & Delany, 2021).

On the other hand, overfitting is a phenomenon observed in statistical models

when they fail to make accurate predictions on testing data. This occurs when a model

is trained on an extensive dataset to the extent that it begins to learn from noise and

inaccuracies present in the data, resulting in high variance when applied to test data.

Consequently, the model struggles to correctly categorize data due to an excessive focus

on fine details and noise (Roelofs et al., 2019). Overfitting is often associated with non-

parametric and non-linear machine learning methods, as these algorithms possess

greater flexibility in constructing models based on the dataset, sometimes leading to the

creation of unrealistic models. To mitigate overfitting, one strategy is to use linear

algorithms for linear data or to apply parameters like maximal depth when employing

decision trees. This helps strike a balance between model complexity and generalization

(Ying, 2019).

Figure 9, depicts the underfitting, goodfitting and overfitting of Machine

learning models.

52

Figure 9. Underfitting, goodfitting and overfitting of Machine learning models.

2.4.3.1 Bias and Variance in Machine Learning

Bias refers to the error stemming from overly simplistic assumptions within the

learning algorithm. These assumptions, while simplifying the model and its learning

process, may not adequately capture the inherent complexities in the data. This error

occurs when the model cannot accurately represent the genuine relationship between

input and output. High bias is observed when a model performs poorly on both training

and testing data, signifying underfitting due to its simplicity (Domingos, 2000).

Conversely, variance pertains to the error resulting from the model's sensitivity

to variations within the training data. It quantifies the extent of prediction variability

for different training data instances. High variance arises when a model captures the

noise and random fluctuations in the training data rather than the underlying pattern.

Consequently, the model excels on the training data but falters on the testing data,

indicating overfitting (Valentini & Dietterich, 2004).

53

2.4.4 Classification Metrics

2.4.4.1 Confusion Matrix

A confusion matrix is a square NxN matrix structure employed for the

evaluation of a classification model's performance. More extensively, N represents the

number of classes that the model predicts. This matrix is applied to a test dataset for

which the true values are known. Its purpose is to provide insight into the accuracy of

a classifier by documenting the count of both correct and incorrect predictions

(Choudhary & Gianey, 2017). Within the matrix, we can find key values (Mehrabi et

al., 2021) such as:

 True Positives (TP) - The cases in which our predictions are true, and the actual

output was also true.

 False Positives (FP) -

The cases in which our

predictions are true,

and the actual output

was false.

 True Negatives (TN) -

The cases in which our

predictions are false,

and the actual output

was also false.

 False Negatives (FN) -

The cases in which our

predictions are false,

and the actual output was true. Figure 10. Confusion Matrix.

These elements collectively contribute to assessing the model's correctness and

effectiveness in classifying data. Figure 10, depicts the confusion matrix classes.

2.4.4.2 Accuracy

Accuracy serves as a fundamental metric for assessing the performance of

classification models. Formally, accuracy can be defined as the ratio of the sum of True

Positives (correctly predicted positive instances) and True Negatives (correctly

54

predicted negative instances) to the total number of predictions. In other words,

accuracy measures how often the model's predictions are correct in relation to the entire

dataset (Kotsiantis et al., 2007).

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Accuracy alone may not provide a comprehensive understanding of model

performance, especially when we are working with a class-imbalanced data set, where

there is a significant disparity between the number of positive and negative labels.

2.4.4.3 Precision

Precision is a valuable metric in classification evaluation. It quantifies the ratio

of True Positives (correctly predicted positive instances) in a sample to the total number

of positive samples predicted by the classifier. In essence, precision provides insights

into how accurately the model identifies positive samples, highlighting the fraction of

predicted positives that are indeed true positives. This metric is particularly relevant in

situations where the cost or impact of false positives is a critical consideration

(Osisanwo et al., 2017).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

2.4.4.4 Recall/ Sensitivity/ True Positive Rate

The Recall also known as Sensitivity and True Positive Rate, expresses the

percentage of positive instances out of the total actual positive instances. Therefore

denominator (TP + FN) here is the actual number of positive instances present in the

dataset.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

2.4.4.5 Specificity

Specificity, often referred to as the True Negative Rate, is an important metric

in classification evaluation. It quantifies the ratio of True Negatives (correctly predicted

55

negative instances) in a sample to the sum of True Negatives and False Positives (actual

negative instances that were incorrectly classified as positives) within a given dataset.

In essence, specificity provides insights into how effectively the model

identifies actual negative samples from the provided dataset. This metric helps assess

the model's ability to correctly recognize instances that are genuinely negative, without

misclassifying them as positive. Mathematically, specificity can be expressed as:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

So, whether the term specificity or true negative rate is used, both are describing

the same evaluation metric that focuses on the model's capacity to accurately identify

true negatives within the dataset.

2.4.4.6 F1 Score

The F1 score, which is the harmonic mean of precision and recall, offers a

balanced assessment of a classification model's performance. A higher F1 score

indicates better overall performance. Notably, the F1 score is sensitive to changes in

either precision or recall; if one of them decreases, it can significantly impact the final

F1 score due to their product relationship.

A good F1 score is achieved when the model excels in both precision (correctly

predicting positives among all predicted positives) and recall (not missing actual

positives by predicting them as negatives). Mathematically, F1 Score can be expressed

as:

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

2.4.4.7 Area Under Curve (AUC) - Receiver Operating Characteristic (ROC) Curve

The AUC-ROC curve serves as a performance measurement tool for

classification problems across various threshold settings. The ROC (Receiver

Operating Characteristic) curve is a graphical representation of the classifier's

performance, while AUC (Area Under the Curve) quantifies the degree of separability

between classes.

Specifically, the AUC value indicates how effectively the model can

56

differentiate between classes. A higher AUC corresponds to a better ability of the model

to correctly classify instances of class 0 as 0 and instances of class 1 as 1. In essence, a

higher AUC signifies superior discrimination by the model.

To create the ROC curve, True Positive Rate (TPR), also known as sensitivity,

is plotted on the y-axis, and

False Positive Rate (FPR) is

plotted on the x-axis. The

ROC curve visually illustrates

the trade-off between TPR and

FPR at different threshold

settings, helping to visualize

the classifier's performance

across various decision

boundaries (Narkhede, 2018).

Figure 11, depicts the graph

the AUC-ROC.

Figure 11. Graph of AUC – ROC.

2.4.5 Regression Metrics

Predicting outcomes with the assistance of correlated independent variables is

a fundamental aspect of regression analysis. In this context, three primary metrics serve

the purpose of assessing the model's performance and determining whether it suffers

from underfitting or overfitting (Botchkarev, 2019). These metrics include:

 Mean Absolute Error (MAE): Mean Absolute Error represents the average

discrepancy between predicted values and actual outcomes. It provides insight into

the overall prediction accuracy but does not directly address issues related to

underfitting or overfitting. Its calculation involves finding the mean of the absolute

differences between predictions and actual values.

 Mean Squared Error (MSE): Mean Squared Error shares similarities with Mean

Absolute Error but introduces an element of squared differences. This entails

computing the average of the squared disparities between original and predicted

values. Squaring helps in managing the impact of both small and large errors within

the dataset.

57

 Root Mean Squared Error (RMSE): Root Mean Squared Error is a widely adopted

metric for evaluating regression models. It is derived by taking the square root of the

mean of the squared differences between predicted and actual values. This metric

adheres to a normal distribution assumption and relies on the notion of unbiased

errors.

These metrics serve as critical tools for gauging the effectiveness of regression

models and guiding decisions on model fit and performance.

58

Chapter 3. DATA & METHODS

 Chapter 3 describes the dataset and methods that are utilized in the present

thesis. Specifically, the chapter starts with a description of the dataset and the sample.

The chapter concludes with a description of the statistical methods that are used in

order to analyze the data.

3.1 Dataset

For the purposes of this research a secondary data analyses is conducted. The

examined dataset containing the medical records of 299 heart failure patients from the

Faisalabad Institute of Cardiology and the Allied Hospital in Faisalabad, Punjab,

Pakistan. The data was collected between April and December 2015 (Ahmad et al.,

2017). Among these patients, 105 were women (label 0) and 194 were men (label 1),

with ages ranging from 40 to 95 years old. All 299 patients had experienced left

ventricular systolic dysfunction and had previous heart failures, placing them in classes

III or IV of the New York Heart Association (NYHA) classification for heart failure

stages.

This dataset includes 13 features, providing clinical, body, and lifestyle

information (see Table 8). Some of these features are binary, indicating whether a

patient has conditions like anemia, high blood pressure, diabetes, along with

information about their sex and smoking habits. The diagnosis of anemia was based on

hematocrit levels below 36%, as determined by the hospital physician. Unfortunately,

the original dataset manuscript does not offer a specific definition for high blood

pressure (Ahmad et al., 2017).

Among the features, Creatinine Phosphokinase (CPK) indicates the level of the

CPK enzyme in the blood, which rises when muscle tissue is damaged (McClellan et

al., 2002). Elevated CPK levels may suggest heart failure or injury (Özbay Karakuş &

Er, 2022). Ejection fraction measures the percentage of blood the left ventricle pumps

out with each contraction. Serum creatinine, a byproduct of muscle breakdown, is

closely monitored by doctors to assess kidney function. High levels of serum creatinine

can signal renal dysfunction. Sodium, a vital mineral for muscle and nerve function, is

assessed through a routine blood test to check for normal levels. Abnormally low

sodium levels may be linked to heart failure (Chicco & Jurman, 2020).

The 'death event' feature, used as the target in our binary classification study,

59

indicates whether a patient passed away or survived before the average follow-up period

of 130 days (Ahmad et al., 2017). Unfortunately, the original dataset article does not

provide information about whether any patients had primary kidney disease or details

about the follow-up procedure. In terms of dataset balance, there are 203 patients who

survived (death event = 0) and 96 patients who did not (death event = 1). This translates

to 32.11% positive cases and 67.89% negative cases in statistical terms.

Table 8. Meanings, measurement units, and intervals of each feature of the dataset.

Feature Explanation Measurement Range

Age Age of the patient Years [40, ..., 95]

Anaemia Decrease of red blood cells or

hemoglobin

Boolean 0, 1

High blood

pressure

If a patient has hypertension Boolean 0, 1

Creatinine

phosphokinase

(CPK)

Level of the CPK enzyme in the

blood

mcg/L [23, ..., 7861]

Diabetes If the patient has diabetes Boolean 0, 1

Ejection fraction Percentage of blood leaving

the heart at each contraction

Percentage [14, ..., 80]

Sex Woman or man Binary 0, 1

Platelets Platelets in the blood kiloplatelets/mL [25.01,...,850.00]

Serum

creatinine

Level of creatinine in the blood mg/dL [0.50, ..., 9.40]

Serum sodium Level of sodium in the blood mEq/L [114, ..., 148]

Smoking If the patient smokes Boolean 0, 1

Time Follow-up period Days [4,...,285]

(target) death

event

If the patient died during the

follow-up period

Boolean 0, 1

mcg/L: micrograms per liter. mL: microliter. mEq/L: milliequivalents per litre

In the comprehensive analysis of the full dataset comprising heart failure

patients, the distribution of key categorical features is detailed in the Table 9. The

sample is categorized based on the presence or absence of specific conditions: Anaemia

(0: false, 1: true), High blood pressure (0: false, 1: true), Diabetes (0: false, 1: true), Sex

(0: woman, 1: man), and Smoking (0: false, 1: true).

60

Table 9. Statistical quantitative description of the categorical features.

 Full

Sample

Dead

patients

Survived

patients

Feature Count % Count % Count %

Anaemia (0: false) 170 56.86 50 52.08 120 59.11

Anaemia (1: true) 129 43.14 46 47.92 3 40.89

High blood pressure (0: false) 194 64.88 57 59.38 137 67.49

High blood pressure (1: true) 105 35.12 39 40.62 66 32.51

Diabetes (0: false) 174 58.19 56 58.33 118 58.13

Diabetes (1: true) 125 41.81 40 41.67 85 41.87

Sex (0: woman) 105 35.12 34 35.42 71 34.98

Sex (1: man) 194 64.88 62 64.58 132 65.02

Smoking (0: false) 203 67.89 66 68.75 137 67.49

Smoking (1: true) 96 32.11 30 31.25 66 32.51

Full sample: 299 individuals. Dead patients: 96 individuals. Survived patients: 203 individuals.

The presented Table 10, offers a comprehensive statistical analysis of numeric

features within a dataset, differentiating between two distinct groups: "Dead patients"

and "Survived patients." These features encompass various clinical and demographic

characteristics, and the statistics provided offer valuable insights into the central

tendencies and variabilities exhibited within each group.

 Age Analysis The median age for the full sample is 60.00 years, with a mean

age of 60.83 years. Notably, the median age for Dead patients is slightly higher

at 65.00 years, with a mean age of 65.22 years, while Survived patients exhibit

a lower median age of 60.00 years and a mean age of 58.76 years. These figures

suggest that Dead patients tend to be older on average, potentially indicating age

as a factor worth exploring in the context of patient outcomes.

 Creatinine Phosphokinase (CPK) Insights The data reveals varying trends in

creatinine phosphokinase levels. For the full sample, the median is 250.00, while

the mean is substantially higher at 581.80. Dead patients exhibit a median of

259.00 and a mean of 670.20, while Survived patients have a median of 245.00

and a mean of 540.10. This indicates that creatinine phosphokinase levels tend

to be higher on average in Dead patients, warranting further investigation into

the potential significance of this marker in predicting patient outcomes.

 Ejection Fraction (EF) Findings Ejection fraction statistics show differences

61

between the groups. The full sample has a median ejection fraction of 38.00 and

a mean of 38.08, while Dead patients present a lower median of 30.00 and a

mean of 33.47. In contrast, Survived patients have a similar median of 38.00 but

a higher mean of 40.27. These variations highlight the potential role of ejection

fraction in distinguishing outcomes, with Dead patients generally showing

lower ejection fractions.

 Platelets Examination The analysis of platelet counts indicates modest

differences between the groups. The full sample exhibits a median of 262.00

and a mean of 263.36. Dead patients have a slightly lower median of 258.50 and

mean of 256.38, while Survived patients have a slightly higher median of 263.00

and mean of 266.66. This suggests that platelet counts do not significantly

differentiate between the two groups.

 Serum Creatinine (SC) Considerations Serum creatinine values are notable,

with the full sample showing a median of 1.10 and a mean of 1.39. Dead patients

have a higher median of 1.30 and mean of 1.84, indicating elevated serum

creatinine levels, while Survived patients have a lower median of 1.00 and mean

of 1.19. These findings suggest that serum creatinine could serve as a valuable

predictor of patient outcomes, with higher levels potentially associated with

increased mortality risk.

 Serum Sodium (SS) Implication The analysis of serum sodium levels

demonstrates modest variation. The full sample has a median of 137.00 and a

mean of 136.60. Dead patients exhibit a slightly lower median of 135.50 and

mean of 135.40, while Survived patients present a higher median of 137.00 and

mean of 137.20. These findings suggest that serum sodium levels may not be a

major distinguishing factor in predicting patient outcomes.

 Time and Its Impact Time, a variable with significant variance, exhibits

interesting patterns. The median time for the full sample is 115.00, but Dead

patients have a substantially lower median of 44.50, indicating a shorter time

period, while Survived patients have a higher median of 172.00. The mean time

for Dead patients is 70.89, while for Survived patients, it is 158.30. These results

suggest that the time factor plays a critical role in distinguishing outcomes, with

a shorter time interval being associated with higher mortality.

In summary, this analysis of numeric features provides valuable insights into

62

the potential predictors of patient outcomes, highlighting the significance of age,

creatinine phosphokinase, ejection fraction, serum creatinine, and time in

distinguishing between Dead and Survived patients. These findings may serve as a basis

for further research and clinical decision-making in healthcare contexts.

Table 10. Statistical quantitative description of the numeric features.

 Full sample Dead patients Survived patients

Feature Mdn M σ Mdn M σ Mdn M σ

Age 60 60.83 11.89 65 65.22 13.21 60 58.76 10.64

Creatinine

phosphokinase
250 581.8 970.3 259 670.2 1316.58 245 540.1 753.8

Ejection

fraction
38 38.08 11.83 30 33.47 12.53 38 40.27 10.86

Platelets 262 263.36 97.80 258.5 256.38 98.53 263 266.7 97.53

Serum

creatinine
1.10 1.39 1.03 1.30 1.84 1.47 1 1.19 0.65

Serum sodium 137 136.6 4.41 135.5 135.4 5.00 137 137.2 3.98

Time 115 130.3 77.61 44.50 70.89 62.38 172 158.3 67.74

Mdn: Median. M: Mean. σ: Standard deviation Full sample: 299 individuals. Dead patients:

96 individuals. Survived patients: 203 individuals.

Following the presentation of statistical Tables 9 and Table 10, that elucidate

the quantitative aspects of our dataset, we embark on a visual exploration of the data

through graphical plots (Figure 12, 13, 14). Visualization serves as a powerful

complement to numerical summaries, providing a more intuitive understanding of

trends, patterns, and relationships within the data. This sequential integration of

statistical tables and graphical plots aims to offer a comprehensive perspective on the

dataset, enhancing the interpretability and depth of our analysis.

63

Figure 12. Distributions and Box-plots of numerical features.

Figure 13. Histograms of numerical features.

64

Figure 14. Histograms of categorical features.

3.2 Methodology

In our research on predicting death events in heart failure patients through

Machine Learning, the dataset was thoroughly examined for missing values, and it was

found to be complete, with no missing entries. An outlier analysis was also conducted,

but no modifications were made due to the medical nature of the data, which was

determined to have medically plausible values.

Data normalization was applied to ensure consistent feature scaling, a vital step

to enhance model performance. Feature selection was carried out using the Extra Tree

Classifier in several experimental approaches, helping to identify and retain the most

relevant features, thus improving model efficiency and interpretability (see Figure 15).

The feature “time”, which is the most important feature, has been excluded from all the

analyses to highlight the differentiation among the approaches of this study.

For binary classification of patient outcomes, a selection of Machine Learning

models was employed, including Random Forest, Decision Tree, Support Vector

Machine (SVM), Logistic Regression, k-Nearest Neighbors (KNN), and Gradient

Boosting. Hyperparameters for each model were optimized through grid search. The

dataset is separated as follows: 70% for training our Machine Learning models and 30%

for validation.

A variety of experimental approaches were undertaken to assess model

performance under different conditions. These approaches included using:

65

1. the full dataset,

2. with feature selection to retain the 'Serum creatinine' and 'Ejection fraction' features,

3. employing undersampling techniques for data balance,

4. combining undersampling with feature selection,

5. applying SMOTE for oversampling using the entire dataset,

6. combining SMOTE with feature selection,

7. and Principal Component Analysis (PCA) was employed to reduce dimensionality.

The dataset used for this research consists of clinical data related to heart failure

patients, with the primary objective of classifying and predicting death events. Model

performance was evaluated using various metrics, such as the Confusion matrix, AUC-

ROC curve, Recall, Precision, F1-score, and Accuracy.

This comprehensive methodology provides a solid foundation for our research,

enabling a clear presentation of findings and robust conclusions regarding the

effectiveness of different Machine Learning models and approaches in predicting death

events in heart failure patients.

Figure 15. Feature importance using Extra Tree Classifier.

66

Chapter 4. RESULTS

 Chapter 4 presents the results of this thesis, while the discussion of the findings

also takes place. More specifically, for each machine learning model, the parameters

obtained from the Grid search method are analyzed, and the results are presented

through a Confusion matrix, Receiver operating characteristic - Area under the curve

and other statistical validation measures.

4.1 Full dataset

In this section all the data features – except the time feature are used to create

the machine learning models.

4.1.1 Random forest

The optimized Random Forest model, resulting from a grid search, is configured

with the following parameters: 'bootstrap' set to False, 'criterion' utilizing entropy,

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 2 samples

per leaf node, 'min_samples_split' set at 5, and an ensemble of estimators consisting of

200 trees.

This confusion matrix provides a clear breakdown of the model's predictions.

The elements along the main diagonal represent correct predictions, while off-diagonal

elements indicate misclassifications (Figure 16). In this case:

 True Positive (TP):

11 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

57 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

5 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

17 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.766 (Figure 16).

67

Figure 16. Random forest’s confusion

matrix, ROC Curve and statistics for the full dataset.

4.1.2 Decision tree

The optimized Decision tree model, obtained through grid search, is

characterized by the following key parameters: a Gini criterion for node splitting, a

maximum tree depth of 3 levels, a minimum of 7 samples required for leaf nodes, and

a minimum of 2 samples for node splitting.

The confusion matrix (Figure 17) for the Decision tree model provides a

breakdown of the model's predictions:

 True Positive (TP):

8 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

53 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

9 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

20 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.749 (Figure 17). The Decision tree model that arises is presented in Figure

18.

68

Figure 17. Decision tree’s confusion

matrix, ROC Curve and statistics for the full dataset.

Figure 18. Decision tree for full dataset approach.

4.1.3 Gradient boosting

The Gradient Boosting model, refined through grid search, is characterized by

the following parameters: a criterion for impurity measurement set to Friedman Mean

Squared Error, a learning rate of 0.1, a maximum tree depth of 10 levels, feature

selection based on the logarithm base 2 of total features, 10 boosting stages (estimators),

and a subsample fraction of 0.6.

69

The confusion matrix (Figure 19) for the Gradient Boosting model analyzed

below as follows:

 True Positive (TP): 7 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 21 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.683 (Figure 19).

Figure 19. Gradient boosting’s

confusion matrix, ROC Curve and statistics for the full dataset.

4.1.4 Logistic regression

The optimized Logistic Regression model, obtained through grid search, is

characterized by a regularization strength 'C' of 10 and an 'L2' penalty. This parameter

configuration signifies a meticulous fine-tuning process, achieving a balance between

model complexity and predictive accuracy tailored to the specific characteristics of the

dataset.

The confusion matrix (Figure 20) for the Logistic Regression model is presented

and analyzed as follows:

 True Positive (TP): 12 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0.

70

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.733 (Figure 20).

Figure 20. Logistic regression’s

confusion matrix, ROC curve and statistics for the full dataset.

4.1.5 K-Nearest Neighbors (KNN)

After a research for the ideal number of Nearest Neighbors for the K-Nearest

Neighbors (KNN) model, it is concluded that the value of the ideal number of the

Nearest Neighbors is setting N=3 (Figure 21), achieving a prediction accuracy score of

0.711.

The confusion matrix (Figure 22) for the K-Nearest Neighbors (KNN) model is

analyzed:

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 54 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.681 (Figure 22).

71

Figure 21. Ideal number of Nearest Neighbors (full dataset approach).

Figure 22. KNN’s confusion matrix,

ROC curve and statistics for the full dataset.

4.1.6 Support vector machines Linear (SVM Linear)

The optimized Support Vector Machine (SVM) model with a linear kernel,

obtained through grid search, is characterized by a regularization parameter (C) of 10,

a degree of 1, and a gamma value of 0.0001.

The confusion matrix (Figure 23) for the Support Vector Machine (SVM) –

Linear model is examined:

72

 True Positive (TP): 12 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.736 (Figure 23).

Figure 23. SVM’s (Linear)

confusion matrix, ROC curve and statistics for the full dataset.

4.1.7 Support vector machines Radial (SVM Radial)

The optimized Support Vector Machine (SVM) model with a radial kernel

(Figure 24), obtained through grid search, is characterized by a regularization parameter

'C' of 10 and a gamma value of 0.1.

The confusion matrix for the Support Vector Machine (SVM) Radial model

with a radial kernel is tested:

 True Positive (TP): 17 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 43 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 19 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 11 instances of actual class 1 incorrectly predicted as class 0.

73

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.686 (Figure 24).

Figure 24. SVM’s (Radial)

confusion matrix, ROC curve and statistics for the full dataset.

4.2 Feature selection

In this section, the Extra Tree algorithm was employed to identify the two most

significant features. The time feature was excluded from the analysis. As illustrated in

Figure 25, serum creatinine and ejection fraction emerged as the two most important

features, and they were consequently utilized in the construction of the machine

learning models.

Figure 25. Feature selection for “Feature selection” approach.

74

4.2.1 Random forest

The optimized Random Forest model, resulting from a grid search, is configured

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini,

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 2 samples

per leaf node, 'min_samples_split' set at 2, and an ensemble of estimators consisting of

200 trees.

This confusion matrix provides a clear breakdown of the model's predictions.

The elements along the main diagonal represent correct predictions, while off-diagonal

elements indicate misclassifications (Figure 26). In this case:

 True Positive (TP): 13 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 55 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 15 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.799 (Figure 26).

Figure 26. Random forest’s confusion

matrix, ROC Curve and statistics for the

feature selection approach.

75

4.2.2 Decision tree

The optimized Decision Tree model, obtained through grid search, is

characterized by the following key parameters: a Entropy criterion for node splitting, a

maximum tree depth of 7 levels, a minimum of 5 samples required for leaf nodes, and

a minimum of 2 samples for node splitting.

The confusion matrix (Figure 27) for the Decision Tree model provides a

breakdown of the model's predictions:

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 58 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 4 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.746 (Figure 27).

Figure 27. Decision tree’s confusion

matrix, ROC Curve and statistics for the

feature selection approach.

76

4.2.3 Gradient boosting

The Gradient Boosting model, refined through grid search, is characterized by

the following parameters: a criterion for impurity measurement set to Friedman Mean

Squared Error, a learning rate of 0.1, a maximum tree depth of 6 levels, feature selection

based on the logarithm base 2 of total features, 10 boosting stages (estimators), and a

subsample fraction of 0.8.

The confusion matrix (Figure 28) for the Gradient Boosting model analyzed

below as follows:

 True Positive (TP): 11 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 56 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 17 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.741 (Figure 28).

Figure 28. Gradient boosting’s confusion

matrix, ROC Curve and statistics for the

feature selection approach.

77

4.2.4 Logistic regression

The optimized Logistic Regression model, obtained through grid search, is

characterized by a regularization strength 'C' of 1 and an 'L2' penalty. This parameter

configuration signifies a meticulous fine-tuning process, achieving a balance between

model complexity and predictive accuracy tailored to the specific characteristics of the

dataset.

The confusion matrix (Figure 29) for the Logistic Regression model is presented

and analyzed as follows:

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 59 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 3 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.716 (Figure 29).

Figure 29. Logistic regression’s confusion

matrix, ROC curve and statistics for the

feature selection approach.

78

4.2.5 K-Nearest Neighbors (KNN)

After a research for the ideal number of Nearest Neighbors for the K-Nearest

Neighbors (KNN) model, it is concluded that the value of the ideal number of the

Nearest Neighbors is setting N=18 (Figure 30), achieving a prediction accuracy score

of 0.789. The confusion matrix (Figure 31) for the K-Nearest Neighbors (KNN) model

is analyzed:

 True Positive (TP): 14 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 57 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 5 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 14 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.733 (Figure 31).

Figure 30. Ideal number of Nearest Neighbors (feature selection approach).

Figure 31. KNN’s confusion matrix, ROC

curve and statistics for the feature selection

approach.

79

4.2.6 Support vector machines - Linear (SVM Linear)

The optimized Support Vector Machine (SVM) model with a linear kernel,

obtained through grid search, is characterized by a regularization parameter (C) of 1, a

degree of 1, and a gamma value of 0.0001.

The confusion matrix (Figure 32) for the Support vector machine linear model

is examined:

 True Positive (TP): 10 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 59 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 3 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.718 (Figure 32).

Figure 32. SVM’s (Linear) confusion

matrix, ROC curve and statistics for the

feature selection approach.

80

4.2.7 Support vector machines - Radial (SVM Radial)

The optimized Support Vector Machine (SVM) model with a radial kernel

(Figure 33), obtained through grid search, is characterized by a regularization parameter

'C' of 1 and a gamma value of 10.

The confusion matrix for the Support Vector Machine (SVM) model with a

radial kernel is tested:

 True Positive (TP): 13 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 54 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 15 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.804 (Figure 33).

Figure 33. SVM’s (Radial) confusion

matrix, ROC curve and statistics for the

full dataset.

81

4.3 Undersampling

In response to the imbalanced nature of the dataset, characterized by 203

instances of class 0 (death event not occurred) and 96 instances of class 1 (death event

occurred), an undersampling technique was implemented. This involved randomly

removing instances from the majority class (class 0) to create a more equitable

distribution between the classes. The primary goal of undersampling is to address bias

and ensure that the machine

learning model does not

disproportionately favor the

dominant class. The Figure 34,

presents how the final classes

are formulated after the

undersampling method.

Figure 34. Final classes after

the undersampling method.

4.3.1 Random forest

The optimized Random Forest model, resulting from a grid search, is configured

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini,

'max_depth' limited to 6 levels, 'min_samples_leaf' requiring a minimum of 1 samples

per leaf node, 'min_samples_split' set at 4, and an ensemble of estimators consisting of

100 trees. This confusion matrix provides a clear breakdown of the model's predictions.

The elements along the main diagonal represent correct predictions, while off-

diagonal elements indicate misclassifications (Figure 35). In this case:

 True Positive (TP): 23 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 9 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.833 (Figure 35).

82

Figure 35. Random forest’s confusion

matrix, ROC Curve and statistics for the

undersampling approach.

4.3.2 Decision tree

The optimized Decision Tree model, obtained through grid search, is

characterized by the following key parameters: a Entropy criterion for node splitting, a

maximum tree depth of 10 levels, a minimum of 1 samples required for leaf nodes, and

a minimum of 9 samples for node splitting.

The confusion matrix (Figure 36) for the Decision Tree model provides a

breakdown of the model's predictions:

 True Positive (TP): 22 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 15 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 11 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 10 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.706 (Figure 36).

83

Figure 36. Decision tree’s confusion

matrix, ROC Curve and statistics for the

undersampling approach.

4.3.3 Gradient boosting

The Gradient Boosting model, refined through grid search, is characterized by

the following parameters: a criterion for impurity measurement set to Friedman Mean

Squared Error, a learning rate of 0.05, a maximum tree depth of 7 levels, feature

selection based on the logarithm base 2 of total features, 100 boosting stages

(estimators), and a subsample fraction of 0.5.

The confusion matrix (Figure 37) for the Gradient Boosting model analyzed

below as follows:

 True Positive (TP): 19 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 13 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.774 (Figure 37).

84

Figure 37. Gradient boosting’s confusion

matrix, ROC Curve and statistics for the

undersampling approach.

4.3.4 Logistic regression

The optimized Logistic Regression model, obtained through grid search, is

characterized by a regularization strength 'C' of 0.01 and an 'L2' penalty. This parameter

configuration signifies a meticulous fine-tuning process, achieving a balance between

model complexity and predictive accuracy tailored to the specific characteristics of the

dataset.

The confusion matrix (Figure 38) for the Logistic Regression model is presented

and analyzed as follows:

 True Positive (TP): 15 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 21 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 5 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 17 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.722 (Figure 38).

85

Figure 38. Logistic regression’s confusion

matrix, ROC curve and statistics for the

undersampling approach.

4.3.5 K-Nearest Neighbors (KNN)

After a research for the ideal number of Nearest Neighbors for the K-Nearest

Neighbors (KNN) model, it is concluded that the value of the ideal number of the

Nearest Neighbors is setting N=5 (Figure 39), achieving a prediction accuracy score of

0.672.

The confusion matrix (Figure 40) for the K-Nearest Neighbors (KNN) model is

analyzed:

 True Positive (TP): 18 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 21 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 5 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 14 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.706 (Figure 40).

86

Figure 39. Ideal number of Nearest Neighbors (Undersampling approach).

Figure 40. KNN’s confusion matrix, ROC

curve and statistics for the undersampling

approach.

87

4.3.6 Support vector machines - Linear (SVM Linear)

The optimized Support Vector Machine (SVM) model with a linear kernel,

obtained through grid search, is characterized by a regularization parameter (C) of 1, a

degree of 1, and a gamma value of 0.0001.

The confusion matrix (Figure 41) for the Support vector machine linear model

is examined:

 True Positive (TP): 20 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 12 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.793 (Figure 41).

Figure 41. SVM’s (Linear) confusion

matrix, ROC curve and statistics for the

undersampling approach.

88

4.3.7 Support vector machines - Radial (SVM Radial)

The optimized Support Vector Machine (SVM) model with a radial kernel

(Figure 42), obtained through grid search, is characterized by a regularization parameter

'C' of 10 and a gamma value of 0.01.

The confusion matrix for the Support Vector Machine (SVM) model with a

radial kernel is tested:

 True Positive (TP): 21 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 11 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.768 (Figure 42).

Figure 42. SVM’s (Radial) confusion

matrix, ROC curve and statistics for the

undersampling approach.

89

4.4 Undersampling and feature selection

In this section, a combination of undersampling and feature selection

approaches is applied.

4.4.1 Random forest

The optimized Random Forest model, resulting from a grid search, is configured

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini,

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 2 samples

per leaf node, 'min_samples_split' set at 5, and an ensemble of estimators consisting of

200 trees. This confusion matrix provides a clear breakdown of the model's predictions.

The elements along the main diagonal represent correct predictions, while off-diagonal

elements indicate misclassifications (Figure 43). In this case:

 True Positive (TP): 24 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 8 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.819 (Figure 43).

Figure 43. Random forest’s confusion

matrix, ROC Curve and statistics for

Undersampling and feature selection

90

approach.

4.4.2 Decision tree

The optimized Decision Tree model, obtained through grid search, is

characterized by the following key parameters: a Gini criterion for node splitting, a

maximum tree depth of 4 levels, a minimum of 5 samples required for leaf nodes, and

a minimum of 2 samples for node splitting.

The confusion matrix (Figure 44) for the Decision Tree model provides a

breakdown of the model's predictions:

 True Positive (TP): 19 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 22 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 4 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 13 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.745 (Figure 44).

Figure 44. Decision tree’s confusion

matrix, ROC Curve and statistics for

Undersampling and feature selection

approach.

91

4.4.3 Gradient boosting

The Gradient Boosting model, refined through grid search, is characterized by

the following parameters: a criterion for impurity measurement set to Friedman Mean

Squared Error, a learning rate of 0.01, a maximum tree depth of 2 levels, feature

selection based on the logarithm base 2 of total features, 100 boosting stages

(estimators), and a subsample fraction of 0.5.

The confusion matrix (Figure 45) for the Gradient Boosting model analyzed

below as follows:

 True Positive (TP): 23 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 9 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.796 (Figure 45).

Figure 45. Gradient boosting’s confusion

matrix, ROC Curve and statistics for

Undersampling and feature selection

approach.

92

4.4.4 Logistic regression

The optimized Logistic Regression model, obtained through grid search, is

characterized by a regularization strength 'C' of 10 and an 'L2' penalty. This parameter

configuration signifies a meticulous fine-tuning process, achieving a balance between

model complexity and predictive accuracy tailored to the specific characteristics of the

dataset.

The confusion matrix (Figure 46) for the Logistic Regression model is presented

and analyzed as follows:

 True Positive (TP): 25 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 7 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.767 (Figure 46).

Figure 46. Logistic regression’s confusion

matrix, ROC curve and statistics for

Undersampling and feature selection

approach.

93

4.4.5 K-Nearest Neighbors (KNN)

After a research for the ideal number of Nearest Neighbors for the K-Nearest

Neighbors (KNN) model, it is concluded that the value of the ideal number of the

Nearest Neighbors is setting N=5 (Figure 47), achieving a prediction accuracy score of

0.793. The confusion matrix (Figure 48) for the KNN model is analyzed:

 True Positive (TP): 29 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 17 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 9 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 3 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.864 (Figure 48).

Figure 47. Ideal number of Nearest Neighbors (Undersampling and feature selection

approach).

Figure 48. KNN’s confusion matrix, ROC

curve and statistics for the Undersampling

and feature selection approach.

94

4.4.6 Support vector machines - Linear (SVM Linear)

The optimized Support Vector Machine (SVM) model with a linear kernel,

obtained through grid search, is characterized by a regularization parameter (C) of 10,

a degree of 1, and a gamma value of 0.0001.

The confusion matrix (Figure 49) for the Support vector machine linear model

is examined:

 True Positive (TP): 21 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 19 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 11 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.766 (Figure 49).

Figure 49. SVM’s (Linear) confusion

matrix, ROC curve and statistics for the

Undersampling and feature selection

approach.

95

4.4.7 Support vector machines - Radial (SVM Radial)

The optimized Support Vector Machine (SVM) model with a radial kernel

(Figure 50), obtained through grid search, is characterized by a regularization parameter

'C' of 100 and a gamma value of 0.01.

The confusion matrix for the Support Vector Machine (SVM) model with a

radial kernel is tested:

 True Positive (TP): 20 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 20 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 12 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.785 (Figure 50).

Figure 50. SVM’s (Radial) confusion

matrix, ROC curve and statistics for the

Undersampling and feature selection

approach.

96

4.5 Oversampling

In response to the imbalanced nature of the dataset, with 203 instances

representing the absence of a death event (class 0) and 96 instances indicating the

occurrence of a death event

(class 1), an oversampling

technique was employed.

Oversampling

(SMOTE) is a corrective

measure that involves

artificially boosting the

representation of the minority

class (class 1) in the dataset

(Figure, 51).

Figure 51. Final classes after the undersampling method.

4.5.1 Random forest

The optimized Random Forest model, resulting from a grid search, is configured

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing entropy,

'max_depth' limited to 5 levels, 'min_samples_leaf' requiring a minimum of 1 samples

per leaf node, 'min_samples_split' set at 4, and an ensemble of estimators consisting of

100 trees.

This confusion matrix provides a clear breakdown of the model's predictions.

The elements along the main diagonal represent correct predictions, while off-diagonal

elements indicate misclassifications (Figure 52). In this case:

 True Positive (TP): 53 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 45 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.850 (Figure 52).

97

Figure 52. Random forest’s

confusion matrix, ROC Curve and statistics after SMOTE.

4.5.2 Decision tree

The optimized Decision Tree model, obtained through grid search, is

characterized by the following key parameters: a Gini criterion for node splitting, a

maximum tree depth of 3 levels, a minimum of 1 samples required for leaf nodes, and

a minimum of 2 samples for node splitting.

The confusion matrix (Figure 53) for the Decision Tree model provides a

breakdown of the model's predictions:

 True Positive (TP):

49 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

43 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

10 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

20 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.743 (Figure 53).

98

Figure 53. Decision tree’s

confusion matrix, ROC Curve and statistics after SMOTE.

4.5.3 Gradient boosting

The Gradient Boosting model, refined through grid search, is characterized by

the following parameters: a criterion for impurity measurement set to Friedman Mean

Squared Error, a learning rate of 0.025, a maximum tree depth of 7 levels, feature

selection based on the logarithm base 2 of total features, 100 boosting stages

(estimators), and a subsample fraction of 0.5.

The confusion matrix (Figure 54) for the Gradient Boosting model analyzed

below as follows:

 True Positive (TP):

54 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

44 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

9 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

15 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.871 (Figure 54).

99

Figure 54. Gradient

boosting’s confusion

matrix, ROC Curve and

statistics after SMOTE.

4.5.4 Logistic regression

The optimized Logistic Regression model, obtained through grid search, is

characterized by a regularization strength 'C' of 0.1 and an 'L2' penalty. This parameter

configuration signifies a meticulous fine-tuning process, achieving a balance between

model complexity and predictive accuracy tailored to the specific characteristics of the

dataset.

The confusion matrix (Figure 55) for the Logistic Regression model is presented

and analyzed as follows:

 True Positive (TP):

52 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

41 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

12 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

17 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.846 (Figure 55).

100

Figure 55. Logistic regression’s

confusion matrix, ROC curve

and statistics after SMOTE.

4.5.5 K-Nearest Neighbors (KNN)

After a research for the ideal number of Nearest Neighbors for the K-Nearest

Neighbors (KNN) model, it is concluded that the value of the ideal number of the

Nearest Neighbors is setting N=25 (Figure 56), achieving a prediction accuracy score

of 0.811.

The confusion matrix (Figure 57) for the K-Nearest Neighbors (KNN) model is

analyzed:

 True Positive (TP):

52 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

47 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

6 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

17 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.859 (Figure 57).

101

Figure 56. Ideal number of Nearest Neighbors (SMOTE).

Figure 57.KNN’s confusion

matrix, ROC curve and

statistics after SMOTE.

4.5.6 Support vector machines - Linear (SVM Linear)

The optimized Support Vector Machine (SVM) model with a linear kernel,

obtained through grid search, is characterized by a regularization parameter (C) of 0.01,

a degree of 1, and a gamma value of 0.0001.

102

The confusion matrix (Figure 58) for the Support vector machine linear model

is examined:

 True Positive (TP): 49 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 42 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 11 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):20 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.847 (Figure 58).

Figure 58. SVM’s

(Linear) confusion

matrix, ROC curve and

statistics after SMOTE.

4.5.7 Support vector machines - Radial (SVM Radial)

The optimized Support Vector Machine (SVM) model with a radial kernel

(Figure 59), obtained through grid search, is characterized by a regularization parameter

'C' of 100 and a gamma value of 0.001.

The confusion matrix for the Support Vector Machine (SVM) model with a

radial kernel is tested:

 True Positive (TP): 48 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 41 instances of actual class 0 correctly predicted as class 0.

103

 False Positive (FP): 12 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 21 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.839 (Figure 59).

Figure 59. SVM’s (Radial)

confusion matrix, ROC curve

and statistics after SMOTE.

4.6 Oversampling and feature selection

In this section, a combination of oversampling (SMOTE) and feature selection

approaches is applied.

4.6.1 Random forest

The optimized Random Forest model, resulting from a grid search, is configured

with the following parameters: 'bootstrap' set to True, 'criterion' utilizing gini,

'max_depth' limited to 10 levels, 'min_samples_leaf' requiring a minimum of 4 samples

per leaf node, 'min_samples_split' set at 2, and an ensemble of estimators consisting of

500 trees.

This confusion matrix provides a clear breakdown of the model's predictions.

The elements along the main diagonal represent correct predictions, while off-diagonal

elements indicate misclassifications (Figure 60). In this case:

104

 True Positive (TP): 53 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 45 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 8 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 16 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.882 (Figure 60).

Figure 60. Random forest’s confusion matrix,

ROC Curve and statistics for SMOTE and

feature selection approach.

4.6.2 Decision tree

The optimized Decision Tree model, obtained through grid search, is

characterized by the following key parameters: a Gini criterion for node splitting, a

maximum tree depth of 9 levels, a minimum of 2 samples required for leaf nodes, and

a minimum of 8 samples for node splitting.

The confusion matrix (Figure 61) for the Decision Tree model provides a

breakdown of the model's predictions:

 True Positive (TP): 49 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 42 instances of actual class 0 correctly predicted as class 0.

105

 False Positive (FP): 11 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 20 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.786 (Figure 61).

Figure 61. Decision tree’s confusion matrix,

ROC Curve and statistics for SMOTE and

feature selection approach.

4.6.3 Gradient boosting

The Gradient Boosting model, refined through grid search, is characterized by

the following parameters: a criterion for impurity measurement set to Friedman Mean

Squared Error, a learning rate of 0.15, a maximum tree depth of 3 levels, feature

selection based on the logarithm base 2 of total features, 10 boosting stages (estimators),

and a subsample fraction of 0.8.

The confusion matrix (Figure 62) for the Gradient Boosting model analyzed

below as follows:

 True Positive (TP): 51 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 44 instances of actual class 0 correctly predicted as class 0.

106

 False Positive (FP): 9 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 18 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.854 (Figure 62).

Figure 62. Gradient

boosting’s confusion

matrix, ROC Curve and

statistics for SMOTE and feature selection approach.

4.6.4 Logistic regression

The optimized Logistic Regression model, obtained through grid search, is

characterized by a regularization strength 'C' of 0.01 and an 'L2' penalty. This parameter

configuration signifies a meticulous fine-tuning process, achieving a balance between

model complexity and predictive accuracy tailored to the specific characteristics of the

dataset.

The confusion matrix (Figure 63) for the Logistic Regression model is presented

and analyzed as follows:

 True Positive (TP): 50 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN): 44 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP): 9 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN): 19 instances of actual class 1 incorrectly predicted as class 0.

107

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.855 (Figure 63).

Figure 63. Logistic

regression’s confusion

matrix, ROC curve and

statistics for SMOTE and feature selection approach.

4.6.5 K-Nearest Neighbors (KNN)

After a research for the ideal number of Nearest Neighbors for the K-Nearest

Neighbors (KNN) model, it is concluded that the value of the ideal number of the

Nearest Neighbors is setting N=25 (Figure 64), achieving a prediction accuracy score

of 0.787.

The confusion matrix (Figure 65) for the K-Nearest Neighbors (KNN) model is

analyzed:

 True Positive (TP):

50 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

46 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

7 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

19 instances of actual class 1 incorrectly predicted as class 0.

108

The Receiver Operating Characteristic - Area Under the Curve (ROC AUC)

value is 0.850 (Figure 65).

Figure 64.Ideal number of Nearest Neighbors (Smote and feature selection approach).

Figure 65. KNN’s

confusion matrix, ROC

curve and statistics for SMOTE and feature selection approach.

109

4.6.6 Support vector machines - Linear (SVM Linear)

The optimized Support Vector Machine (SVM) model with a linear kernel,

obtained through grid search, is characterized by a regularization parameter (C) of 0.01,

a degree of 1, and a gamma value of 0.0001.

The confusion matrix (Figure 66) for the Support vector machine linear model

is examined:

 True Positive (TP):

49 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

43 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

10 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

20 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.850 (Figure 66).

Figure 66.SVM’s (Linear)

confusion matrix, ROC

curve and statistics for

SMOTE and feature selection approach.

110

4.6.7 Support vector machines - Radial (SVM Radial)

The optimized Support Vector Machine (SVM) model with a radial kernel

(Figure 67), obtained through grid search, is characterized by a regularization parameter

'C' of 100 and a gamma value of 0.001.

The confusion matrix for the Support Vector Machine (SVM) model with a

radial kernel is tested:

 True Positive (TP):

48 instances of actual class 1 correctly predicted as class 1.

 True Negative (TN):

41 instances of actual class 0 correctly predicted as class 0.

 False Positive (FP):

12 instances of actual class 0 incorrectly predicted as class 1.

 False Negative (FN):

21 instances of actual class 1 incorrectly predicted as class 0.

The Receiver Operating Characteristic - Area under the Curve (ROC AUC)

value is 0.837 (Figure 67).

Figure 67. SVM’s (Radial)

confusion matrix, ROC curve

and statistics for SMOTE and feature selection approach.

111

4.7 Principal component analysis

Seeking to apply the Principal Component Analysis (PCA) method to the initial

dataset under examination in this study, in order to determine the ranking of the

coefficients resulting from it, a different data normalization method (Min-Max scaling)

was employed. The objective was to minimize deviations among values and standardize

all variables to the same scale (0-1).

In Figure 68, the Principal components (PCs) are depicted for a dataset with

N=11 variables, illustrating the correlation coefficients of the eigenvectors for each

principal component.

Figure 68.

Principal components (PCs),

their values and the

cumulative explained

variable.

112

In the bar chart below (Figure 69), the percentage of variance (vertical axis) for

each principal component is illustrated. Based on this bar chart, the histogram (Figure

70) was constructed, pinpointing the elbow in the sixth principal component (PC6). The

elbow represents the point beyond which the components contribute less variance to

our data. Using six components, we can explain 93% of the variability in the original

data.

Figure 69. Bar

chart of variance

in principal

components.

Figure 70.

Histogram of

Variance in

Principal

Components.

Using the six Principal components (PC6) derived from the information

mentioned earlier, all machine learning models implemented in this study were

executed. The summarized results of these models are presented in Table 11.

Additionally, the results tables for the statistics of the remaining methods executed are

provided, aiming to facilitate a comparison between models and methods (Table 12).

Table 11. Principal component analysis (PCA).

 Accuracy F1 score TP rate TN rate ROC/AUC Precision

Random Forest 0.62 0.57 0.14 0.85 0.508 0.56

Decision Tree 0.62 0.52 0.00 0.92 0.338 0.45

Logistic Regression 0.69 0.60 0.10 0.97 0.588 0.66

Gradient Boosting 0.64 0.55 0.03 0.93 0.577 0.52

KNN 0.68 0.60 0.10 0.95 0.531 0.60

SVM (linear-radial) 0.68 0.55 0.00 1.00 0.557 0.46

113

Table 12. Statistics of the other approaches.

 Accuracy F1 score TP rate TN rate ROC/AUC Precision

Full Dataset

Random Forest 0.76 0.73 0.39 0.92 0.766 0.74

Decision Tree 0.68 0.65 0.29 0.85 0.749 0.65

Logistic Regression 0.74 0.73 0.43 0.89 0.733 0.73

Gradient Boosting 0.69 0.65 0.25 0.89 0.683 0.65

KNN 0.71 0.69 0.36 0.87 0.681 0.69

SVM (Linear) 0.74 0.73 0.43 0.89 0.736 0.73

SVM (Radial) 0.67 0.68 0.61 0.69 0.686 0.70

Feature Selection

Random Forest 0.76 0.74 0.46 0.89 0.799 0.74

Decision Tree 0.76 0.73 0.36 0.94 0.746 0.75

Logistic Regression 0.77 0.74 0.36 0.95 0.716 0.77

Gradient Boosting 0.74 0.72 0.39 0.90 0.741 0.73

KNN 0.79 0.78 0.50 0.92 0.733 0.78

SVM (Linear) 0.77 0.74 0.36 0.95 0.718 0.77

SVM (Radial) 0.74 0.73 0.46 0.87 0.804 0.73

Undersampling

Random Forest 0.72 0.72 0.72 0.73 0.833 0.73

Decision Tree 0.64 0.64 0.69 0.58 0.706 0.64

Logistic Regression 0.62 0.61 0.47 0.81 0.722 0.66

Gradient Boosting 0.66 0.66 0.59 0.73 0.774 0.67

KNN 0.67 0.67 0.56 0.81 0.706 0.70

SVM (Linear) 0.69 0.69 0.62 0.77 0.793 0.70

SVM (Radial) 0.71 0.71 0.66 0.77 0.768 0.72

Undersampling and feature selection

Random Forest 0.76 0.76 0.75 0.77 0.819 0.76

Decision Tree 0.71 0.70 0.59 0.85 0.745 0.74

Logistic Regression 0.76 0.76 0.78 0.73 0.767 0.76

Gradient Boosting 0.74 0.74 0.72 0.77 0.796 0.75

KNN 0.79 0.79 0.91 0.65 0.864 0.80

SVM (Linear) 0.69 0.69 0.66 0.73 0.766 0.70

SVM (Radial) 0.69 0.69 0.62 0.77 0.785 0.70

Oversampling

Random Forest 0.80 0.80 0.77 0.85 0.850 0.81

Decision Tree 0.75 0.76 0.71 0.81 0.743 0.77

Logistic Regression 0.76 0.76 0.75 0.77 0.846 0.77

Gradient Boosting 0.80 0.80 0.78 0.83 0.871 0.81

KNN 0.81 0.81 0.75 0.89 0.859 0.83

SVM (Linear) 0.75 0.75 0.71 0.79 0.847 0.76

SVM (Radial) 0.73 0.73 0.70 0.77 0.839 0.74

Oversampling and feature selection

Random Forest 0.80 0.80 0.77 0.85 0.882 0.81

Decision Tree 0.75 0.75 0.71 0.79 0.786 0.76

Logistic Regression 0.77 0.77 0.72 0.83 0.855 0.78

Gradient Boosting 0.78 0.78 0.74 0.83 0.854 0.79

KNN 0.79 0.79 0.72 0.87 0.850 0.80

SVM (Linear) 0.75 0.76 0.71 0.81 0.850 0.77

SVM (Radial) 0.73 0.73 0.70 0.77 0.837 0.74

The cumulative charts corresponding to the above Table are presented in the Appendix.

114

Chapter 5. CONCLUSIONS

 Chapter 5 discusses the implications of the thesis' results and concludes with

a discussion of the thesis' limitations and recommendations for future research.

5.1 Thesis conclusions

In conclusion, the exploration into predicting death events in heart failure

patients through Machine Learning has provided valuable insights. The dataset's

meticulous examination confirmed its completeness, eliminating the need for

modifications and identified medically plausible outliers. Successful feature

normalization ensured consistent scaling, a crucial step for bolstering model

performance. The application of the Extra Tree Classifier for feature selection

effectively identified and retained crucial features, enhancing model efficiency and

interpretability. Notably, excluding the "time" feature underscored distinctions among

our experimental approaches. The array of Machine Learning models includes Random

Forest, Decision Tree, SVM, Logistic Regression, KNN, and Gradient Boosting. These

models demonstrated multiple important results. Hyperparameter optimization through

Grid Search further honed their performance. Experimentation with diverse conditions,

including feature selection, undersampling, SMOTE oversampling, and their

combinations, provided a nuanced understanding of model behavior.

In this study, the importance of feature selection is notably evident. As indicated

in the earlier chapters of the thesis, utilizing the two most crucial features in the

dataset—serum creatinine and ejection fraction—results in either comparable or

superior outcomes compared to the examined models (refer to subchapter 4.2). This is

in contrast to the scenario where all features are employed (refer to subchapter 4.1).

Additionally, the significance of undersampling and oversampling is highlighted by the

noticeable improvement in classifying the minority class, specifically class 1 (death

event = occurred). Combining undersampling-oversampling methods with the selection

of the most significant features in the dataset has the potential to bring about substantial

improvements in the results of machine learning models. In summary, this thesis

establishes a sturdy foundation for comprehending the dynamics of Machine Learning

models in predicting death events among heart failure patients. To conclude, it is crucial

to experiment with various models and methods to identify the most optimal and

suitable one before making the final selection.

115

5.2 Practical and theoretical implications

This thesis provides useful implications, for the practitioners in the medical and

bioinformatics sector. More specifically,

 Helping Doctors Make Decisions: The study's practical side means creating

tools that doctors can use. The computer models, especially when we use feature

selection and SMOTE, offer practical help for doctors to predict which heart

failure patients might face death. This aids in timely actions and better

personalized care.

 Making Models Easier to Understand: Picking the right features not only makes

the models work better but also makes it easier for doctors to understand why

the models predict certain outcomes. This is important for doctors who want to

use computer predictions in their decision-making.

 Guiding Healthcare Strategies: The thesis' practical impact extends to how

hospitals and healthcare providers use data. The successful use of SMOTE

shows its relevance in handling imbalanced data, helping make more accurate

predictions. This can guide how healthcare decisions are made in the future.

In summary, this research simplifies how machines predict deaths in heart

failure patients. It shows that using the right features and balancing data can improve

predictions, making it useful for doctors and healthcare decisions.

This thesis also provides several scholarly contributions. More extensively:

 Advancing Predictive Models: This dissertation boosts the understanding of

how machines can predict death events in heart failure patients. It shows that

using different computer models, along with picking important features and

balancing data, can improve predictions in medical scenarios.

 Importance of Picking Key Features: The thesis highlights how choosing the

right features (like specific health indicators) is crucial. This idea can be applied

more broadly in medical data analysis, emphasizing the need to focus on

important factors for accurate predictions.

 Balancing Data Effectively: By comparing two methods (undersampling and

SMOTE), the thesis suggests that adding more data through SMOTE helps

computer models perform better, especially when predicting rare events like

deaths in heart failure patients.

116

5.3 Limitations and suggestions for future research

In acknowledging the limitations of this study, it's crucial to note that our dataset

was relatively small, with only 299 patients. A larger dataset would have given more

reliable results and a better understanding of how well this thesis’ methods, especially

PCA, work. It would also help to determine if these methods are truly necessary.

Valuable information such as the patients' physical characteristics (like height,

weight, and body mass index) and their job histories, could have helped us identify

more risk factors for cardiovascular diseases. Additionally, not having an external

dataset from a different location limited the ability to validate the thesis findings with

a separate group.

Looking ahead, alternative normalization methods can be explored, such as the

robust scaler, and fine-tune our approach by adjusting hyperparameters using methods

like random search. Furthermore, future research avenues could explore additional

techniques for dimensionality reduction in small datasets, ensuring a more

comprehensive evaluation of model performance (Chicco & Jurman, 2020). Machine

learning methods can be also extend to different datasets related to cardiovascular

diseases (Masino et al., 2019; Aushev et al., 20018; Patrício et al., 2018) and other

illnesses like cervical cancer (Fernandes et al. 2018), neuroblastoma (Maggio et al.,

2018), breast cancer (Yunus et al., 2018), and amyotrophic lateral sclerosis (Kueffner

et al., 2019).

117

REFERENCES

1. Agrawal, R. (2014). K-nearest neighbor for uncertain data. International Journal

of Computer Applications, 105(11), 13-16.

2. Ahmad, T., Munir, A., Bhatti, S. H., Aftab, M., & Raza, M. A. (2017). Survival

analysis of heart failure patients: A case study. PloS one, 12(7), e0181001.

3. Ahsan, M. M., Mahmud, M. P., Saha, P. K., Gupta, K. D., & Siddique, Z. (2021).

Effect of data scaling methods on machine learning algorithms and model

performance. Technologies, 9(3), 52.

4. Al’Aref, S. J., Anchouche, K., Singh, G., Slomka, P. J., Kolli, K. K., Kumar, A.,

& Min, J. K. (2019). Clinical applications of machine learning in cardiovascular

disease and its relevance to cardiac imaging. European heart journal, 40(24),

1975-1986.

5. Al’Aref, S. J., Singh, G., van Rosendael, A. R., Kolli, K. K., Ma, X., Maliakal,

G., & Minutello, R. M. (2019). Determinants of in‐hospital mortality after

percutaneous coronary intervention: a machine learning approach. Journal of the

American Heart Association, 8(5), e011160.

6. Alanazi, A. (2022). Using machine learning for healthcare challenges and

opportunities. Informatics in Medicine Unlocked, 30, 100924.

7. Alloghani, M., Al-Jumeily, D., Mustafina, J., Hussain, A., & Aljaaf, A. J. (2020).

A systematic review on supervised and unsupervised machine learning

algorithms for data science. Supervised and unsupervised learning for data

science, 3-21.

8. Ambale-Venkatesh, B., Yang, X., Wu, C. O., Liu, K., Hundley, W. G.,

McClelland, R., & Lima, J. A. (2017). Cardiovascular event prediction by

machine learning: the multi-ethnic study of atherosclerosis. Circulation research,

121(9), 1092-1101.

9. Amer, E., Kwak, K. S., & El-Sappagh, S. (2022). Context-based fake news

detection model relying on deep learning models. Electronics, 11(8), 1255.

10. Aushev, A., Ripoll, V. R., Vellido, A., Aletti, F., Pinto, B. B., Herpain, A., &

Bendjelid, K. (2018). Feature selection for the accurate prediction of septic and

cardiogenic shock ICU mortality in the acute phase. PloS one, 13(11), e0199089.

11. Awad, M., & Khanna, R. (2015). Efficient learning machines: theories,

concepts, and applications for engineers and system designers (p. 268). Springer

118

nature.

12. Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis

of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967.

13. Biau, G., & Scornet, E. (2016). A random forest guided tour. Test, 25, 197-227.

14. Binder, T., Sandmann, A., Sures, B., Friege, G., Theyssen, H., & Schmiemann,

P. (2019). Assessing prior knowledge types as predictors of academic

achievement in the introductory phase of biology and physics study programmes

using logistic regression. International Journal of STEM Education, 6, 1-14.

15. Boateng, E. Y., & Abaye, D. A. (2019). A review of the logistic regression

model with emphasis on medical research. Journal of data analysis and

information processing, 7(4), 190-207.

16. Borg, M., Englund, C., Wnuk, K., Duran, B., Levandowski, C., Gao, S. &

Törnqvist, J. (2018). Safely entering the deep: A review of verification and

validation for machine learning and a challenge elicitation in the automotive

industry. arXiv preprint arXiv:1812.05389.

17. Botchkarev, A. (2019). A new typology design of performance metrics to

measure errors in machine learning regression algorithms. Interdisciplinary

Journal of Information, Knowledge, and Management, 14, 045-076.

18. Brereton, R. G., & Lloyd, G. R. (2010). Support vector machines for

classification and regression. Analyst, 135(2), 230-267.

19. Buchan, T. A., Ross, H. J., McDonald, M., Billia, F., Delgado, D., Posada, J. D.,

& Alba, A. C. (2019). Physician prediction versus model predicted prognosis in

ambulatory patients with heart failure. The Journal of Heart and Lung

Transplantation, 38(4), S381.

20. Burkart, N., & Huber, M. F. (2021). A survey on the explainability of supervised

machine learning. Journal of Artificial Intelligence Research, 70, 245-317.

21. Charbuty, B., & Abdulazeez, A. (2021). Classification based on decision tree

algorithm for machine learning. Journal of Applied Science and Technology

Trends, 2(01), 20-28.

22. Chen, Y., & Shi, C. (2023). Network revenue management with online inverse

batch gradient descent method. Production and Operations Management.

23. Chicco, D., & Jurman, G. (2020). Machine learning can predict survival of

patients with heart failure from serum creatinine and ejection fraction alone.

BMC medical informatics and decision making, 20(1), 1-16.

119

24. Chollet, F. (2021). Deep learning with Python. Simon and Schuster.

25. Christodoulou, E., Ma, J., Collins, G. S., Steyerberg, E. W., Verbakel, J. Y., &

Van Calster, B. (2019). A systematic review shows no performance benefit of

machine learning over logistic regression for clinical prediction models. Journal

of clinical epidemiology, 110, 12-22.

26. Cunningham, P., & Delany, S. J. (2021). Underestimation bias and underfitting

in machine learning. In Trustworthy AI-Integrating Learning, Optimization and

Reasoning: First International Workshop, TAILOR 2020, Virtual Event,

September 4–5, 2020, Revised Selected Papers 1 (pp. 20-31). Springer

International Publishing.

27. Dahouda, M. K., & Joe, I. (2021). A deep-learned embedding technique for

categorical features encoding. IEEE Access, 9, 114381-114391.

28. Dalianis, H., & Dalianis, H. (2018). Evaluation metrics and evaluation. Clinical

Text Mining: secondary use of electronic patient records, 45-53.

29. Dhanabal, S., & Chandramathi, S. J. I. J. C. A. (2011). A review of various k-

nearest neighbor query processing techniques. International Journal of

Computer Applications, 31(7), 14-22.

30. Domingos, P. (2000, June). A unified bias-variance decomposition. In

Proceedings of 17th international conference on machine learning (pp. 231-238).

Morgan Kaufmann Stanford.

31. Dunn, W. B., Broadhurst, D. I., Deepak, S. M., Buch, M. H., McDowell, G.,

Spasic, I., & Neyses, L. (2007). Serum metabolomics reveals many novel

metabolic markers of heart failure, including pseudouridine and 2-

oxoglutarate. Metabolomics, 3, 413-426.

32. El Naqa, I., & Murphy, M. J. (2015). What is machine learning? (pp. 3-11).

Springer International Publishing.

33. Fahle, S., Prinz, C., & Kuhlenkötter, B. (2020). Systematic review on machine

learning (ML) methods for manufacturing processes–Identifying artificial

intelligence (AI) methods for field application. Procedia CIRP, 93, 413-418.

34. Famili, A., Shen, W. M., Weber, R., & Simoudis, E. (1997). Data preprocessing

and intelligent data analysis. Intelligent data analysis, 1(1), 3-23.

35. Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to

knowledge discovery in databases. AI magazine, 17(3), 37-37.

36. Fernandes, K., Chicco, D., Cardoso, J. S., & Fernandes, J. (2018). Supervised

120

deep learning embeddings for the prediction of cervical cancer diagnosis. PeerJ

Computer Science, 4, e154.

37. Fernández, A., Garcia, S., Herrera, F., & Chawla, N. V. (2018). SMOTE for

learning from imbalanced data: progress and challenges, marking the 15-year

anniversary. Journal of artificial intelligence research, 61, 863-905.

38. Forman, G. (2003). An extensive empirical study of feature selection metrics for

text classification. J. Mach. Learn. Res., 3(Mar), 1289-1305.

39. François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J.

(2018). An introduction to deep reinforcement learning. Foundations and

Trends® in Machine Learning, 11(3-4), 219-354.

40. Gallagher, J., McCormack, D., Zhou, S., Ryan, F., Watson, C., McDonald, K., &

Ledwidge, M. T. (2019). A systematic review of clinical prediction rules for the

diagnosis of chronic heart failure. ESC heart failure, 6(3), 499-508.

41. García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining

(Vol. 72, pp. 59-139). Cham, Switzerland: Springer International Publishing.

42. García, S., Luengo, J., & Herrera, F. (2016). Tutorial on practical tips of the most

influential data preprocessing algorithms in data mining. Knowledge-Based

Systems, 98, 1-29.

43. García, V., Sánchez, J. S., & Mollineda, R. A. (2012). On the effectiveness of

preprocessing methods when dealing with different levels of class imbalance.

Knowledge-Based Systems, 25(1), 13-21.

44. Ghosh, S., Dasgupta, A., & Swetapadma, A. (2019). A study on support vector

machine based linear and non-linear pattern classification. In 2019 International

Conference on Intelligent Sustainable Systems (ICISS) (pp. 24-28). IEEE.

45. Gu, Q., & Han, J. (2013, April). Clustered support vector machines. In Artificial

intelligence and statistics (pp. 307-315). PMLR.

46. Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature

selection. Journal of machine learning research, 3(Mar), 1157-1182.

47. Hady, M. F. A., & Schwenker, F. (2013). Semi-supervised learning. Handbook

on Neural Information Processing, 215-239.

48. Hancock, J. T., & Khoshgoftaar, T. M. (2020). Survey on categorical data for

neural networks. Journal of Big Data, 7(1), 1-41.

49. Heiney, S. P., Donevant, S. B., Adams, S. A., Parker, P. D., Chen, H., & Levkoff,

S. (2020). A smartphone app for self-management of heart failure in older African

121

Americans: feasibility and usability study. JMIR aging, 3(1), e17142.

50. Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018).

Applications of support vector machine (SVM) learning in cancer genomics.

Cancer genomics & proteomics, 15(1), 41-51.

51. Huang, X., Wu, L., & Ye, Y. (2019). A review on dimensionality reduction

techniques. International Journal of Pattern Recognition and Artificial

Intelligence, 33(10), 1950017.

52. Hussein, A. S., Li, T., Yohannese, C. W., & Bashir, K. (2019). A-SMOTE: A

new preprocessing approach for highly imbalanced datasets by improving

SMOTE. International Journal of Computational Intelligence Systems, 12(2),

1412-1422.

53. Jabbar, H., & Khan, R. Z. (2015). Methods to avoid over-fitting and under-fitting

in supervised machine learning (comparative study). Computer Science,

Communication and Instrumentation Devices, 70(10.3850), 978-981.

54. Jakkula, V. (2006). Tutorial on support vector machine (svm). School of EECS,

Washington State University, 37(2.5), 3.

55. Jansen, B. J., Aldous, K. K., Salminen, J., Almerekhi, H., & Jung, S. G. (2023).

Data Preprocessing. In Understanding Audiences, Customers, and Users via

Analytics: An Introduction to the Employment of Web, Social, and Other Types

of Digital People Data (pp. 65-75). Cham: Springer Nature Switzerland.

56. Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised machine learning:

a brief primer. Behavior Therapy, 51(5), 675-687.

57. Kingsford, C., & Salzberg, S. L. (2008). What are decision trees?. Nature

biotechnology, 26(9), 1011-1013.

58. Kotsiantis, S. B. (2013). Decision trees: a recent overview. Artificial Intelligence

Review, 39, 261-283.

59. Kotsiantis, S. B., Zaharakis, I., & Pintelas, P. (2007). Supervised machine

learning: A review of classification techniques. Emerging artificial intelligence

applications in computer engineering, 160(1), 3-24.

60. Krishna, G. S., Supriya, K., & Rao, K. M. (2022, September). Selection of data

preprocessing techniques and its emergence towards machine learning

algorithms using hpi dataset. In 2022 IEEE Global Conference on Computing,

Power and Communication Technologies (GlobConPT) (pp. 1-6). IEEE.

61. Kueffner, R., Zach, N., Bronfeld, M., Norel, R., Atassi, N., Balagurusamy, V.,

122

& Stolovitzky, G. (2019). Stratification of amyotrophic lateral sclerosis patients:

a crowdsourcing approach. Scientific reports, 9(1), 690.

62. Le, Q. V. (2013, May). Building high-level features using large scale

unsupervised learning. In 2013 IEEE international conference on acoustics,

speech and signal processing (pp. 8595-8598). IEEE.

63. Li, N., Shepperd, M., & Guo, Y. (2020). A systematic review of unsupervised

learning techniques for software defect prediction. Information and Software

Technology, 122, 106287.

64. Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274.

65. Maggio, V., Chierici, M., Jurman, G., & Furlanello, C. (2018). Distillation of

the clinical algorithm improves prognosis by multi-task deep learning in high-

risk neuroblastoma. PloS one, 13(12), e0208924.

66. Mahesh, B. (2020). Machine learning algorithms-a review. International Journal

of Science and Research (IJSR), 9(1), 381-386.

67. Maimon, O. Z., & Rokach, L. (2014). Data mining with decision trees: theory

and applications (Vol. 81). World scientific.

68. Maimon, O., & Rokach, L. (2005). Introduction to knowledge discovery in

databases. In Data mining and knowledge discovery handbook (pp. 1-17).

Boston, MA: Springer US.

69. Masino, A. J., Harris, M. C., Forsyth, D., Ostapenko, S., Srinivasan, L.,

Bonafide, C. P., & Grundmeier, R. W. (2019). Machine learning models for

early sepsis recognition in the neonatal intensive care unit using readily available

electronic health record data. PloS one, 14(2), e0212665.

70. McClellan, W. M., Flanders, W. D., Langston, R. D., Jurkovitz, C., & Presley,

R. (2002). Anemia and renal insufficiency are independent risk factors for death

among patients with congestive heart failure admitted to community hospitals:

a population-based study. Journal of the American Society of Nephrology,

13(7), 1928-1936.

71. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A

survey on bias and fairness in machine learning. ACM computing surveys

(CSUR), 54(6), 1-35.

72. Meyer, D., & Wien, F. T. (2001). Support vector machines. R News, 1(3), 23-

26.

123

73. Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear

regression analysis. John Wiley & Sons.

74. Muhammad, I., & Yan, Z. (2015). Supervised Machine Learning approaches: A

survey. ICTACT Journal on Soft Computing, 5(3).

75. Müller, A. C., & Guido, S. (2016). Introduction to machine learning with

Python: a guide for data scientists. "O'Reilly Media, Inc.".

76. Narkhede, S. (2018). Understanding auc-roc curve. Towards Data Science,

26(1), 220-227.

77. Nayak, S., & Sharma, Y. K. (2023). A modified Bayesian boosting algorithm

with weight-guided optimal feature selection for sentiment analysis. Decision

Analytics Journal, 8, 100289.

78. Nnamoko, N., & Korkontzelos, I. (2020). Efficient treatment of outliers and

class imbalance for diabetes prediction. Artificial intelligence in medicine, 104,

101815.

79. Osisanwo, F. Y., Akinsola, J. E. T., Awodele, O., Hinmikaiye, J. O., Olakanmi,

O., & Akinjobi, J. (2017). Supervised machine learning algorithms:

classification and comparison. International Journal of Computer Trends and

Technology (IJCTT), 48(3), 128-138.

80. Özbay Karakuş, M., & Er, O. (2022). A comparative study on prediction of

survival event of heart failure patients using machine learning algorithms.

Neural Computing and Applications, 34(16), 13895-13908.

81. Patrício, M., Pereira, J., Crisóstomo, J., Matafome, P., Gomes, M., Seiça, R., &

Caramelo, F. (2018). Using Resistin, glucose, age and BMI to predict the

presence of breast cancer. BMC cancer, 18(1), 1-8.

82. Perlaza, S. M., Esnaola, I., Bisson, G., & Poor, H. V. (2023). On the validation

of Gibbs algorithms: Training datasets, test datasets and their aggregation. arXiv

preprint arXiv:2306.12380.

83. Podgorelec, V., Kokol, P., Stiglic, B., & Rozman, I. (2002). Decision trees: an

overview and their use in medicine. Journal of medical systems, 26, 445-463.

84. Pradipta, G. A., Wardoyo, R., Musdholifah, A., Sanjaya, I. N. H., & Ismail, M.

(2021, November). SMOTE for handling imbalanced data problem: A review.

In 2021 Sixth International Conference on Informatics and Computing (ICIC)

(pp. 1-8). IEEE.

85. Priyam, A., Abhijeeta, G. R., Rathee, A., & Srivastava, S. (2013). Comparative

124

analysis of decision tree classification algorithms. International Journal of

current engineering and technology, 3(2), 334-337.

86. Raja, P. S., & Thangavel, K. J. S. C. (2020). Missing value imputation using

unsupervised machine learning techniques. Soft Computing, 24(6), 4361-4392.

87. Ranganathan, P., Pramesh, C. S., & Aggarwal, R. (2017). Common pitfalls in

statistical analysis: logistic regression. Perspectives in clinical research, 8(3),

148.

88. Raschka, S. (2018). Model evaluation, model selection, and algorithm selection

in machine learning. arXiv preprint arXiv:1811.12808.

89. Rjoob, K., Bond, R., Finlay, D., McGilligan, V., Leslie, S. J., Rababah, A., ... &

Macfarlane, P. W. (2022). Machine learning and the electrocardiogram over two

decades: Time series and meta-analysis of the algorithms, evaluation metrics and

applications. Artificial Intelligence in Medicine, 102381.

90. Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil, S., Hardt, M., Miller, J., &

Schmidt, L. (2019). A meta-analysis of overfitting in machine learning.

Advances in Neural Information Processing Systems, 32.

91. Ruder, S. (2016). An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747.

92. Scholkopf, B., & Smola, A. J. (2018). Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press.

93. Schrider, D. R., & Kern, A. D. (2018). Supervised machine learning for

population genetics: a new paradigm. Trends in Genetics, 34(4), 301-312.

94. Seber, G. A., & Lee, A. J. (2003). Linear regression analysis (Vol. 330). John

Wiley & Sons.

95. Sessa, J., & Syed, D. (2016, December). Techniques to deal with missing data.

In 2016 5th international conference on electronic devices, systems and

applications (ICEDSA) (pp. 1-4). IEEE.

96. Shilaskar, S., & Ghatol, A. (2013). Feature selection for medical diagnosis:

Evaluation for cardiovascular diseases. Expert Systems with Applications,

40(10), 4146-4153.

97. Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random

forest variable selection methods for classification prediction modeling. Expert

systems with applications, 134, 93-101.

98. Stone, M. (1978). Cross-validation: A review. Statistics: A Journal of

125

Theoretical and Applied Statistics, 9(1), 127-139.

99. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction.

MIT press.

100. Syed, A. R. (2011). A review of cross validation and adaptive model selection.

101. Takano, N., & Alaghband, G. (2019). Srgan: Training dataset matters. arXiv

preprint arXiv:1903.09922.

102. Tharwat, A., Mahdi, H., Elhoseny, M., & Hassanien, A. E. (2018). Recognizing

human activity in mobile crowdsensing environment using optimized k-NN

algorithm. Expert Systems with Applications, 107, 32-44.

103. Valentini, G., & Dietterich, T. G. (2004). Bias-variance analysis of support

vector machines for the development of SVM-based ensemble methods. Journal

of Machine Learning Research, 5(Jul), 725-775.

104. Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015). Preprocessing techniques

for text mining-an overview. International Journal of Computer Science &

Communication Networks, 5(1), 7-16.

105. Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R.

& Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint

arXiv:1611.05763.

106. Wang, J., & Biljecki, F. (2022). Unsupervised machine learning in urban studies:

A systematic review of applications. Cities, 129, 103925.

107. Wang, Q. Q., Yu, S. C., Qi, X., Hu, Y. H., Zheng, W. J., Shi, J. X., & Yao, H.

Y. (2019). Overview of logistic regression model analysis and application.

Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine], 53(9),

955-960.

108. Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2017). Can

machine-learning improve cardiovascular risk prediction using routine clinical

data?. PloS one, 12(4), e0174944.

109. Wiens, J., & Shenoy, E. S. (2018). Machine learning for healthcare: on the verge

of a major shift in healthcare epidemiology. Clinical Infectious Diseases, 66(1),

149-153.

110. Wiering, M. A., & Van Otterlo, M. (2012). Reinforcement learning. Adaptation,

learning, and optimization, 12(3), 729.

111. Williamson, D. F., Parker, R. A., & Kendrick, J. S. (1989). The box plot: a

simple visual method to interpret data. Annals of internal medicine, 110(11),

126

916-921.

112. Wu, Z., Wu, Y., He, X., Wan, L., Tsai, L. C., & Chen, A. (2023, May).

Application of Machine Learning for Heart Failure Prediction. In 2023 6th

International Conference on Artificial Intelligence and Big Data (ICAIBD) (pp.

276-282). IEEE.

113. Ying, X. (2019, February). An overview of overfitting and its solutions. In

Journal of physics: Conference series (Vol. 1168, p. 022022). IOP Publishing.

114. Yunus, I., Fasih, A., & Wang, Y. (2018). The use of procalcitonin in the

determination of severity of sepsis, patient outcomes and infection

characteristics. PloS one, 13(11), e0206527.

115. Zhang, H., Zhang, L., & Jiang, Y. (2019, October). Overfitting and underfitting

analysis for deep learning based end-to-end communication systems. In 2019

11th international conference on wireless communications and signal processing

(WCSP) (pp. 1-6). IEEE.

116. Zhang, S., Li, X., Zong, M., Zhu, X., & Cheng, D. (2017). Learning k for knn

classification. ACM Transactions on Intelligent Systems and Technology

(TIST), 8(3), 1-19.

117. Zhou, J., Gandomi, A. H., Chen, F., & Holzinger, A. (2021). Evaluating the

quality of machine learning explanations: A survey on methods and metrics.

Electronics, 10(5), 593.

118. Zhou, Z. H., & Zhou, Z. H. (2021). Semi-supervised learning. Machine

Learning, 315-341.

119. Zhu, X. J. (2005). Semi-supervised learning literature survey.

127

APPENDIX

In the Appendix, all cumulative charts (graphs) of the results are provided.

Graph 1. Performance metrics comparison for Full dataset approach.

Graph 2. Performance metrics comparison for Feature selection approach.

128

Graph 3. Performance metrics comparison for Undersampling approach.

Graph 4. Performance metrics comparison for Undersampling approach and Feature

selection approach.

129

Graph 5. Performance metrics comparison for Oversampling approach.

Graph 6. Performance metrics comparison for Oversampling approach and Feature

selection approach.

130

Graph 7. Performance metrics comparison for Principal Component Analysis (PCA)

approach.

Graph 8. Performance metrics comparison between Full dataset and Feature selection

approaches.

131

Graph 9. Performance metrics comparison between Full dataset and Undersampling

approaches.

Graph 10. Performance metrics comparison between Undersampling and

Undersampling with Feature selection approaches.

132

Graph 11. Performance metrics comparison between Full dataset and Oversampling

approaches.

Graph 12. Performance metrics comparison between Oversampling and Oversampling

with Feature selection approaches.

133

Graph 13. Performance metrics comparison between Full dataset and Principal

Component Analysis (PCA) approaches.

