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Abstract

In the video summarization domain it is needed to efficiently differentiate between

informative and non-informative video segments to create concise summaries that encap-

sulate essential content. Utilizing advanced deep learning methods for feature extraction

from both audio and visual data, the study employs a diverse array of optimized classifi-

cation algorithms and novel LSTM, alongside Attention-based models and Transformers.

An early fusion approach integrates audio-visual data to enhance classification accuracy.

Despite notable successes, particularly with visual data, challenges in audio feature ex-

traction and certain model performances indicate areas for future improvement. The

thesis contributes to the field by demonstrating the potential of combining aural and

visual features using deep learning techniques for video binary classification, setting a

solid groundwork for advancements in achieving more accurate video summarizations.

Keywords: Video Summarization; Binary Classification; Deep Learning; Audio Fea-

ture Extraction; Visual Feature Extraction
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Chapter 1

Introduction

1.1 Motivation

In the ancient Greek mythology, Talos was a giant, thirty-meter height, automaton made

of bronze used to protect the island of Crete from invaders. It is often described as

one of the earliest concepts of a robot. This mythological figure, embodying the ancient

Greeks’ imagination of automated guardians, prefigures today’s world where Artificial

Intelligence (AI) and robotics have begun to play a critical role in our everyday life.

Among the domains of AI, Computer Vision stands out as a particularly breakthrough

technology. It gives the ability to see and understand the world, enabling a wide range

of applications like autonomous vehicles navigating the streets, surveillance systems that

can identify and respond to threats and healthcare assistance for making better decisions

regarding the treatments of patients.

According to the latest statistics provided by YouTube, Viewers globally watch more

than one billion hours on average of YouTube content on their TVs every day and more

than five hundred hours of content are uploaded to the platform every minute [31]. The

exponential rise in the last years of platforms where short videos are uploaded, like Tik-

Tok, YouTube Shorts and Instagram Reels, is evidence that people want to consume more

1



Chapter 1. Introduction 2

content in less time. Existing audiovisual content, that is lengthy and contains repetitive

scenes, could be useful when transformed into more concise versions, such as highlights or

summaries. Creators can maximize the reach and engagement of their content, meeting

the audience’s demand for quick, yet informative and entertaining viewing experiences

in the fast-paced digital age we live on.

To meet the increasing demands mentioned before, this thesis digs into the realm

of Computer Vision and Computer Audition, originally motivated by the challenges in

the video summarization domain, where distinguishing between informative and non-

informative video segments is crucial for creating concise summaries that retain all critical

content. It aims to leverage the capabilities of deep learning methods to interpret and

analyze video data comprehensively. The focus is on developing AI systems capable

of making binary distinctions within video segments, determining what constitutes an

informative or non-informative one-second clip, so to enhance the utility and efficiency

of video summarization processes.

1.2 Related Work

In [22] is addressed the growing need for efficient video summarization techniques due to

the exponential increase in user-generated content. Traditional methods often overlook

the importance of aural features and are primarily designed for commercial/professional

videos. This study presents a novel approach that utilizes both aural and visual features

to create dynamic summaries of user-generated videos. These summaries include the

most important parts of the original video while preserving their temporal order. The

approach involves a supervised binary classifier trained on audio, video, and fused fea-

ture representations. A unique user-generated dataset, comprising videos from various

categories, is introduced for training and evaluation.

In this paper[23] is proposed an approach focusing on the fusion of audio and visual
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features and the use of data augmentation. The goal is to create dynamic video summaries

that include the most essential segments of the original video while maintaining the

original temporal sequence. The approach is based on supervised classification, using

deep features from pretrained models and augmented training datasets.

In this work[32], a novel supervised learning technique for video summarization is in-

troduced, utilizing Long Short-Term Memory (LSTM) to model temporal dependencies

among video frames for selecting keyframes or key subshots. This approach aims to gen-

erate representative and compact summaries by acknowledging the sequential structure of

videos, achieving superior results on benchmark datasets. Additionally, it addresses the

challenge of requiring extensive annotated data by employing domain adaptation tech-

niques on auxiliary datasets, despite their diversity, to mitigate statistical discrepancies

and enhance the summarization process.

A video summarization technique introduced in [19] aimed at quickly overviewing In-

ternet video content, addressing the challenge of identifying important segments within

diverse video types without relying on prior knowledge. A deep neural network is designed

to encode content semantics—objects, actions, and scenes—into deep video features by

mapping videos and descriptions to a common semantic space through joint training.

Summaries are generated by extracting these deep features from video segments and

applying a clustering-based technique. Evaluated using the SumMe dataset and com-

pared against baseline methods, the results highlight the benefits of incorporating deep

semantic features into video summarization processes.

In [30] a novel video summarization technique is presented, that focuses on preserving

semantic information, especially long-term temporal semantics. The proposed technique,

named Semantic Attended Video Summarization Network (SASUM), utilizes a frame

selector and video descriptor to extract semantically relevant video segments for a com-

prehensive summary. By aiming to minimize the discrepancy between the generated

description of the summarized video and human-annotated text of the original video,
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SASUM ensures the retention of crucial semantic content.

By addressing the challenge of maintaining inherent relationships between a video and

its summary while minimizing semantic loss, video summarization is approached in [13].

It is highlighted that while supervised deep learning methods have been effective, they

often focus on one challenge without adequately addressing both. The proposed solution

introduces an encoder-decoder attention mechanism and semantic preserving loss within

a deep Sequence to Sequence framework, aiming to closely monitor and preserve semantic

integrity.

Unlike previous attention-based models that observe entire frame sequences, this ap-

proach [1] leverages both global and local multi-head attention mechanisms to understand

frame dependencies at varying granularity levels. Additionally, it incorporates a com-

ponent for encoding the temporal positions of frames, crucial for generating coherent

summaries.

This paper [17] introduces VISCOM, a novel video summarization approach utiliz-

ing color co-occurrence matrices to analyze and condense large volumes of video content

across diverse categories. By characterizing video frames through color patterns, VIS-

COM aims to create synopses that capture the most representative moments.

In [20] a video summarization method leveraging a Generative Adversarial Network

(GAN) model pre-trained with human eye fixations to tackle the growing volume of

video data from surveillance, medical, and telecommunication systems is presented. The

novel contribution of this method is its ability to generate perceptually compatible video

summaries by integrating both color perception and spatiotemporal visual attention cues

in an unsupervised manner.

Addressing the challenge of managing the vast volume of online videos, this approach

[24] enhances video search, retrieval, and browsing. It’s contribution lies in formulating

video summarization as a sequence labeling problem and introducing fully convolutional

sequence models, diverging from traditional recurrent model strategies. By drawing
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a unique parallel between semantic segmentation and video summarization, the paper

adapts semantic segmentation networks to summarize videos effectively.

This study [12] develops a computational model for automatic video summarization,

targeting digital videos from television archives. The proposed model draws inspiration

from the human visual system and employs computer vision techniques such as face

detection, motion estimation, and saliency map computation to generate static video

collections of salient images or key frames from the original videos.

1.3 Methodology Overview

The methodology for video binary classification in this study integrates advanced deep

learning techniques for both audio and visual feature extraction, alongside a diverse array

of optimized classification algorithms. For feature extraction in the audio modality pre-

trained CNN are used to extract features via Mel Spectrograms. In the visual modality a

VGG19 pre-trained network is deployed and adapted through transfer learning to analyze

video frames.

The study exploits various classification algorithms, including Logistic Regression,

KNN, Gaussian Naive Bayes, Decision Tree, Random Forest, XGBoost. Novel LSTM,

Attention-based models, and Transformer binary classifiers are developed to introduce

deep learning techniques in the classification problem, each attempted to enhance classi-

fication accuracy and the evaluation metrics used.

It is adopted an early fusion approach for integrating audio and visual data, with

experiments conducted on Google Colab for computational efficiency. The study focuses

on binary classification of video segments into informative or non-informative categories,

leveraging multimodal data and extensive computational resources to optimize model

performance.

While we achieved notable success, especially with visual data, the limitations around
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audio feature extraction effectiveness and specific deep learning model performances war-

rant further investigation and optimization.”

1.4 Structure

The rest of the thesis is organized in five main chapters:

In Chapter 2 the foundational concepts and theories that used in the research are

addressed. This chapter is divided into several sections, covering machine learning, deep

learning, transfer learning, and feature extraction methods for both visual and audio

data. It provides the necessary theoretical background of the research.

Chapter 3 describes the data used in the study, including the source of the dataset,

data transformations, and explains the selection and preparation of the data

In Chapter 4 the methodology employed in the study is presented in detail including

feature extraction techniques for audio and visual data and the binary classification

algorithms used. This chapter also outlines the evaluation metrics and the experimental

design, providing an explanation of how the research was conducted.

The experiments conducted in this work are presented in Chapter 5. The experimental

setup, the results obtained from the experiments, and a discussion of these results are

presented.

The final chapter, Chapter 6, summarizes the findings of the research and discusses

the conclusions that can be drawn. It also identifies the limitations of the current work

and suggests directions for future research.



Chapter 2

Theoretical Background

Machine Learning (ML) and Deep Learning (DL) are subsets of artificial intelligence

(AI) that have revolutionized the way we interact with data and technology. Machine

Learning is a method of data analysis that automates analytical model building. It

enables computers to learn from and make decisions based on data. This learning process

is not explicitly programmed but achieved through algorithms that iteratively learn from

data, thus allowing computers to find hidden insights.

Deep Learning, a subset of ML, takes inspiration from the workings of the human

brain in processing data and creating patterns for use in decision making. It utilizes

artificial neural networks, which are algorithms modeled after the human brain, consisting

of layers of nodes, or ”neurons”. Each layer can learn to transform its input data in a

different way, making DL particularly powerful for complex, large-scale tasks like image

recognition, natural language processing, and speech recognition.

The key difference between ML and DL is in how they learn. Traditional ML algo-

rithms become better at their tasks as they are exposed to more data over time. However,

they still require some guidance. In contrast, DL algorithms try to learn high-level fea-

tures from data in a layered manner, and this can be achieved with little or no human

intervention.

7
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As technology advances, the applications of ML and DL are becoming increasingly

widespread, impacting various sectors including healthcare, finance, transportation, and

more. These technologies are not just transforming the way we interact with machines,

but they’re also profoundly altering how we understand and utilize data.

2.1 Machine Learning

The invention of computers ignited the interest about their potential to learn. Mastering

computer learning could unlock new applications and enhance customization, potentially

offering insights into human learning abilities and challenges.

While computers still don’t learn as adeptly as humans, algorithms for specific learn-

ing tasks have been developed, and a theoretical understanding is emerging.

2.1.1 Types of learning

In terms of its types, learning in ML can be categorized into these forms: supervised, un-

supervised, semi-supervised, and reinforcement learning. Each of these types represents

a different approach and methodology in the learning process, made for specific input

and learning outcomes.

Supervised Learning is perhaps the most frequent form of machine learning. In super-

vised learning, the algorithm is trained on a labeled dataset. This means that the data

is already accompanied by the groundtruth, and the model learns to predict outcomes

based on this input-output mapping. Applications where supervised learning is used are

image and speech recognition, as well as regression and classification tasks.

In supervised learning, we work with a dataset comprising labeled examples and try

to find a relationship between data and output:

{(xi, yi)}Ni=1



Chapter 2. Theoretical Background 9

Here, each xi is referred to as a feature vector, representing an individual data point

with multiple dimensions. Each dimension j (where j = 1, ..., D)) in this vector holds

a specific value that characterizes the data point in some way, known as a feature and

represented as x(j). The label in the dataset can vary in form – it might be a class in

a finite set (e.g., 1, 2, ..., C), a real number, or a more complex structure like a vector,

matrix, tree, or graph. Often, especially in this context, yi is either a class label or a real

number. Class labels categorize each example.

The primary objective of a supervised learning algorithm is to develop a model that

predicts the label of a new, unseen feature vector. The model learns from the dataset to

infer the label based on the input feature vector.

Supervised learning is typically categorized into three types: binary, multiclass and

regression. In binary classification, the objective is to categorize data points into one of

two distinct classes. The algorithm is trained on a dataset where each input is labeled

with one of these two classes, and it learns to predict which class a new input belongs

to.Multiclass classification extends the concept of binary classification to scenarios where

there are more than two classes. These two types are classification tasks. Regression

deals with predicting a continuous value.

Based on the methodology and the nature of the output supervised learning could be

also categorized either as instance-based and model-based or as single-label and multi-

label tasks.

In unsupervised learning, the data used to train the model is not labeled, meaning

that the model has to identify patterns and relationships in the data on its own. This

type of learning is useful for exploratory analysis, as it can uncover hidden structures

in data. Unsupervised learning tasks include clustering, dimensionality reduction and

outlier detection.

Semi-Supervised Learning falls between supervised and unsupervised learning. In

semi-supervised learning, the algorithm is trained on a dataset that includes both labeled
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and unlabeled data. This approach is useful when acquiring a fully labeled dataset is

expensive or time-consuming.

Reinforcement learning, as described in [27], focuses on identifying the appropriate

actions in specific situations to maximize rewards. Unlike supervised learning, where the

learning algorithm is provided with examples of optimal outputs, reinforcement learning

requires the algorithm to learn through trial and error. It involves a series of states and

actions where the algorithm interacts with its environment. In this setting, the choice

of action influences not only the immediate reward but also affects future rewards at

subsequent time steps.

2.1.2 Binary Classification

Since the task in hand is a binary classification task we will provide a quick overview of

the algorithms used.

Logistic Regression

Logistic Regression is a statistical method used in machine learning for binary classifica-

tion tasks, where the goal is to predict a binary outcome (such as yes/no, true/false, or

0/1). It’s a type of regression analysis that is suited for situations where the dependent

variable is categorical.

Unlike linear regression, which predicts continuous outcomes, Logistic Regression es-

timates the probability that a given input point belongs to a certain class. The core

concept is to transform the output of a linear equation (using the standard logistic func-

tion, also known as the sigmoid function) to a probability value ranging between 0 and

1. This function outputs a smooth curve that can classify the data points as belonging

to one of the two categories.
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The sigmoid function takes the form:

f(x) =
1

1 + e−x

where e is the Euler’s number and is the base of the natural logarithm.

Logistic Regression is widely used due to its simplicity, efficiency, and interpretability.

It works well for problems where the boundary between classes is linearly separable.

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a non-parametric learning algorithm. In contrast to other

learning algorithms that may deallocate the training data after the model is built, kNN

keeps all training examples in memory. The core idea of KNN is to predict the label of

a new data point based on the labels of its ’k’ nearest neighbors in the training dataset.

The process involves calculating the distance between the new data point and all

points in the training set. The algorithm then identifies the ’k’ closest points, or ’neigh-

bors’, and determines the output label based on the majority label among these neighbors.

The hyperparameters of KNN is the choice of ’k’ which is the number of neighbors

to consider and the distance metric. A smaller value of ’k’ makes the model sensitive

to noise in the data, while a larger ’k’ value makes it computationally expensive and

possibly less precise in defining the locality of the data point. Popular distance metrics

are Euclidean distance, Manhattan distance, Mahalanobis distance, Hamming distance

and cosine similarity.

KNN is favored where the relationship between features is complex and other models

are hard to train. However, its performance can degrade with high-dimensional data (the

curse of dimensionality) and it can be computationally intensive with large datasets.
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Bayes

The Naive Bayes classifier is a probabilistic machine learning model based on Bayes’

Theorem, widely used for classification tasks. It’s called ”naive” because it makes a strong

assumption that the features used to make the prediction are mutually independent given

the target variable. Despite this simplification, Naive Bayes classifiers often perform

remarkably well and are particularly popular in text classification tasks.

Bayes’ Theorem provides a way of calculating the probability of a class label based

on prior knowledge. In classification it computes the probability of a class given a set of

features. The Bayes’ rule is:

P (y|x) = p(x|y)P (y)

p(x)

Where P (y|x) is the posterior probability of the class given predictors. P (y) is the a

priori probabilities of the class. p(x|y) is the likelihood of the predictor given the class

and p(x) is the probability density function of x.[26]

Naive Bayes classifiers work efficiently with large datasets, are easy to implement

and can be used with high-dimensional data. The assumption of feature independence

simplifies the computation, allowing the model to operate by considering each feature’s

contribution to the probability independently.

There are different types of Naive Bayes models depending on the nature of the

features in the data, like Gaussian Naive Bayes or Multinomial Naive Bayes, where each

type makes different assumptions about the distribution of data so it suitable for different

types of datasets. Naive Bayes can outperform more complex models, especially when

the assumption of independent features holds true or nearly true.

Decision Tree Learning

Decision tree learning is a method for approximating discrete-valued target functions, in

which the learned function is represented by a decision tree.[16] It is an acyclic graph
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used to make decisions.[3] The model predicts the value of a target variable by learning

simple decision rules inferred from the data features. It is called a ”tree” because the

model takes the form of a tree structure, comprising branches, nodes, and leaves.

In a Decision Tree, each internal node examine a specific feature or attribute, each

branch represents one of the possible values for this feature, and each leaf node represents

a class label, a decision taken after computing all attributes. The paths from root to leaf

represent classification rules.

The most well-known decision tree algorithms include ID3 (Iterative Dichotomiser

3), C4.5 (successor of ID3), CART (Classification and Regression Trees), and CHAID

(Chi-squared Automatic Interaction Detector).

One key advantage of Decision Trees is their interpretability and simplicity. They are

easy to understand and visualize, making them useful for explaining the decision-making

process to non-technical stakeholders. However, they tend to overfit, especially when the

tree becomes too complex. This can be handled through techniques like pruning, setting

a maximum depth for the tree, or requiring a minimum number of samples to split a

node.

Overfitting occurs when our model tries to capture minor changes in the dataset,

which only represents a limited sample of all possible instances of the phenomenon we

are attempting to model.

Decision Trees form the building blocks for more advanced methods like Random

Forests and Gradient Boosting, where multiple trees are combined to produce more ac-

curate and robust models.

Ensemble Learning

Ensemble learning is a machine learning paradigm where multiple low accuracy models

referred as ”weak learners” are trained to solve the same problem and combined to get

better results instead of big accurate model.
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The most frequently used weak learner is a decision tree learning algorithm. The

obtained trees are shallow and not particularly accurate, but if the trees are at least

slightly better than random guessing, then we can obtain high accuracy by combining a

large number of such trees.

The weak learners can be trained simultaneously (as in bagging) or sequentially (as

in boosting), and their predictions are combined using methods like averaging, weighted

averaging, or voting.The two most widely used examples of ensemble learning methods

are Random Forest and Gradient Boosting.

Random Forest is an application of the bagging technique. It creates an ensemble

of decision trees, typically constructed using a method called bootstrap aggregation,

or bagging. Each tree is built from a random sample of the training dataset, and the

final prediction is typically made by averaging the predictions of each individual tree for

regression problems or by a majority vote for classification problems. Random Forest is

effective because it reduces the variance of the model, without increasing the bias. This

means it is less likely in overfitting situations.

Gradient Boosting and it’s variation XGBoost (eXtreme Gradient Boosting)[4] is a

type of boosting technique where new models are added sequentially to correct the errors

made by existing models. XGBoost builds one model on top of another, iteratively im-

proving the model’s accuracy. It incorporates regularisation (L1 and L2), which improves

model generalization capabilities and reduces overfitting.

In both Random Forest and XGBoost, the ensemble approach combines multiple

individual models to produce a more powerful and reliable prediction model compared

to a single model. This is because ensemble methods can capture a variety of simple

patterns in the data by different models, and then blend these patterns to achieve greater

predictive performance.
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2.1.3 Classifier Evaluation Train-Validation-Tests Splits

In machine learning a dataset typically is split into three different subsets: training,

validation, and test datasets, each serving a distinct function in the development and

evaluation of a classifier.

The training dataset is used to train the classifier. This subset is usually the largest

and is kept separate from the examples used in the validation and test datasets. The

purpose of this separation is to ensure that the model learns to generalize from the

training data to new, unseen data.

The validation dataset, often smaller than the training set and usually about the same

size as the test set, is used to validate the performance of the trained model against various

hyperparameters and learning methods. This validation is based on specific performance

metrics, and the results are used to decide on the best model and hyperparameters.

Finally, there is the test dataset, which is used for the final evaluation of the model

before it is deployed or put into production. This step is crucial to assess how well the

model will perform in real-world scenarios.

The need for these separate datasets arises from the potential issue of overfitting,

where a model performs well on the training data but poorly on unseen data. While

the training dataset helps in building the model, the validation dataset aids in tuning

it without compromising its ability to generalize. However, there’s a risk of overfitting

on the validation dataset too, especially in models with many parameters or in cases of

small datasets. Hence, the test dataset becomes essential as it ensures the final model

evaluation is based on completely unseen data.

In essence, dividing data into training, validation, and test sets is a fundamental

approach in machine learning to develop a model that not only learns effectively from

the training data but also generalizes well to new data and performs reliably in practical

applications.
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2.1.4 Performance Metrics

Evaluating the performance of classifiers is a fundamental aspect of machine learning,

as it provides insights into how well a model performs and aids in comparing different

models. Several key metrics are commonly used for this purpose.

Confusion Matrix is used to describe the performance of a classification model on

a set of test data for which the true values are known. It shows true positives (TP),

false negatives (FN), true negatives (TN) and false positives (FP). It reveals all possible

misclassifications between the different classes.

Precision is the ratio of correctly predicted positive predictions to the total number

of positive predictions. Confusion matrices can be used to calculate precision and recall.

Precision = (
TP

TP + FP
)

Recall is the ratio of correctly predicted positive predictions to all observations in actual

class.

Recall = (
TP

TP + FN
)

Accuracy represents the ratio of correctly predicted observations to the total observations.

Accuracy = (
TP + TN

TP + TN + FP + FN
)

F1 Score

The F1 Score is a harmonic mean of precision and recall, offering a balance between these

two metrics. The F1 Score reaches its best value at 1 (perfect precision and recall) and

worst at 0.

F1 = (
2× Precision×Recall

Recall + Precision
)



Chapter 2. Theoretical Background 17

Since F1 Score is a per class metric most of the times used as “overall F1”. To calculate

overall F1 there are: macro - F1 where we compute F1 of each class and average, micro

- f1 same with accuracy for single-label classification tasks and weighted - f1 same as

macro but weighted by (true) number of samples in class.

This score is particularly useful when dealing with imbalanced datasets where one

class is significantly more prevalent than the other. In such scenarios, a model might

have a high accuracy by simply predicting the majority class, but this doesn’t necessarily

indicate a good model. The F1 Score helps to mitigate this by considering both false

positives (precision) and false negatives (recall).

ROC AUC Score

ROC (Receiver Operating Characteristic) AUC (Area Under the Curve) Score measures

the ability of a classifier to differentiate between classes and is used for binary classifi-

cation problems. The ROC curve plots the True Positive Rate (TPR) against the False

Positive Rate (FPR) at various threshold settings. The TPR is the same as recall, while

the FPR is the ratio of false positive results to all actual negatives.

TPR = (
TP

TP + FN
)

and

FPR = (
FP

FP + TN
)

The AUC represents the degree to which the model is capable of distinguishing between

the two classes. An AUC of 1 indicates a perfect model that makes no mistakes in

classification, while an AUC of 0.5 suggests a model that is no better than random

chance.

The ROC AUC Score is particularly valuable when evaluating a model’s performance

across a range of thresholds, which is crucial when the cost of false positives and false
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negatives varies. Unlike the F1 Score, which is a single value derived at a particular

threshold, the ROC AUC provides a consolidated measure of performance across all

possible thresholds.

The choice of metrics depends on the specific requirements and context of the task

at hand.

2.2 Deep Learning

Deep Learning, a subset of Machine Learning in Artificial Intelligence (AI), is a rapidly

evolving field that has gained immense popularity due to its ability to process and learn

from large amounts of data. Deep Learning models, particularly neural networks, are

inspired by the structure and function of the human brain and are designed to mimic the

way humans learn.

Deep Learning models involve layers of algorithms called neural networks. Each layer

consists of units, or ’neurons’, that transform incoming data and pass the output to

the next layer. The ”deep” in Deep Learning refers to the number of layers through

which data is transformed. More layers allow the network to learn complex, abstract

representations of data. Some of the key components of Deep Learning are the neural

networks, the activation functions, the backpropagation and the gradient descent.

The center piece in Deep Learning are neural networks. These are structured in layers:

input, hidden (one or more), and output. Each neuron in a layer is connected to neurons

in the next layer, and these connections hold weights that adjust during learning.

The activation functions introduce non-linear properties to the network, allowing it to

learn more complex relationships in the data. Examples of activation functions include

Sigmoid, Tanh, and ReLU (Rectified Linear Unit).

Backpropagation is a method used in training neural networks. There we adjust the

weights of neurons based on the error, difference between predicted and actual output,
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calculated at the output layer.

Gradient Descent is an iterative optimization algorithm that minimizes the cost or

error function, which measures how far the network’s prediction is from the actual result.

The model’s parameters are adjusted iteratively to find the minimum value of the cost

function using the chain rule to backpropagate from output to input.

Some of the advantages of Deep Learning are the superiority of their models as the

amount of data increases and the feature extraction where deep learning algorithms

automatically detect and prioritize the most relevant features.

Deep Learning represents a significant step forward in the capability of AI systems to

learn from and make sense of large-scale and complex datasets. As computational capa-

bilities continue to advance and we gain better insights from neural network operations,

DL is currently playing a transformative role in technology and society.

2.2.1 CNN

A Convolutional Neural Network (CNN) is a type of deep learning algorithm which has

shown great success in computer vision problems like image classification and object

detection. CNNs are essential in computer vision due to their ability to learn complex

patterns in data, while requiring relatively little pre-processing compared to other image

classification algorithms.

At the core of CNNs are layers that perform convolutions. A convolution is a math-

ematical operation that involves sliding a filter (or kernel) over the input data (such as

an image) to produce a feature map. Kernel or mask is a matrix that defines the filter

that is convolved with the image. This process involves multiplication of the kernel with

the input, followed by summing the results into a single output pixel. The convolution

operation helps the network remove noise, detect features like edges, textures, or specific

objects in the image.

In convolution the result is a new shrank image where the image’s edges are trimmed.
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An essential feature of CNN is the zero padding where it allows us to control the kernel

width and the size of the output independently.[8]

To reduce computational demands, it might be beneficial to overlook certain positions

of the kernel, effectively reducing the detail in feature extraction. This approach can be

seen as a form of downsampling the output of the convolution and is called stride s.[8]

A typical CNN architecture comprises several types of layers, each with a specific

function. Convolutional Layer: This is the core building block of a CNN. The layer’s

filters convolve across the width and height of the input volume, computing the dot

product between the filter and input, producing a 2D activation map that represents the

response of that filter at every spatial position.

Activation Layer (ReLU or similar): After each convolution operation, an activation

function like ReLU (Rectified Linear Unit) or a similar non-linear function is applied.

This introduces non-linear properties to the system, allowing the network to learn more

complex representations.

Pooling Layer: Pooling (usually max pooling) is used to reduce the spatial dimen-

sions (width and height) of the input volume for the next convolutional layer. It is done

to decrease the computational power required to process the data through dimension-

ality reduction. It also helps in extracting dominant features which are rotational and

positional invariant, thus maintaining the process of effectively training the model.

After several convolutional and pooling layers, the high-level reasoning in the neural

network is done via fully connected layers. Neurons in a fully connected layer have

connections to all activations in the previous layer. These layers are typically placed

before the output layer and are used to flatten the input into a one-dimensional array

for classification.

Output Layer is the final layer where a softmax activation function is used for classi-

fication tasks and it returns probabilities of each class.

This architecture that is presenented with the name ”LeNet5” in [15] is typical in
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CNNs.

The learning process in CNNs involves adjusting the weights of the filters to minimize

the difference between the predicted output and the actual output (ground truth). This

is typically done using backpropagation and an optimization algorithm like Stochastic

Gradient Descent (SGD). During training, the network is exposed to a large number of

input images. The network adjusts its weights to try and correctly classify the images

by minimizing the loss function.

Unlike traditional algorithms, CNNs can automatically and adaptively learn spatial

hierarchies of features from input images. This feature learning is a significant advantage

over traditional algorithms where manual feature extraction was required. In CNNs, the

same kernel (weights) is applied across all pixels in a layer. This common use of the same

weights throughout the layer makes the CNN identify an object regardless of its position

in the image.

Connection sparsity is a fundamental characteristic of CNNs. Each output from a

convolutional activation is determined by only a limited number of inputs. This aspect is

crucial as it allows the network to focus on specific features within a localized area of the

input image, enhancing its ability to recognize patterns with high precision. Translation

invariance property of CNNs means that the network can recognize objects regardless of

their location in the input field. This is one of the reasons why CNNs are doing well in

handling image datasets. By being less sensitive to the exact location of features within

an input image, CNNs can more reliably detect and classify objects in varied positions

and orientations. This makes them particularly suited for tasks like image and video

recognition, where the subject of interest could appear in any part of the frame.

Due to parameter sharing and pooling, CNNs are efficient in terms of computation

and memory.

Examples of CNNs algorithms are the AlexNet [14] which significantly improved upon

LeNet-5 by being deeper, with more filters per layer and used ReLU as the activation



Chapter 2. Theoretical Background 22

functions. VGG Networks in [25] with up to 19 weight layers were the first to use

a very deep network. Residual Networks (ResNet) [10] introduced the skip or shortcut

connections that allow the flow of gradients directly through these connections. It enabled

the training of networks with over 100 layers, solving the vanishing gradient problem.

The vanishing gradient problem emerges when errors backpropagated from deep layers

to layers closer to the input become progressively smaller, making these early layers

difficult to train in very deep networks, so that increased depth does not always result in

improved performance.

CNNs represent a powerful tool in the field of AI and deep learning, capable of

handling complex image recognition tasks with high accuracy.

2.2.2 Sequential Modeling- RNN - LSTM - Attention - Trans-

formers

In deep learning, sequential models are designed to recognize the patterns and depen-

dencies in sequences of data. These models are adept at handling data with temporal

dependencies. They can capture and utilize information from previous time steps to

make predictions or understand the current data point.

Recurrent Neural Networks (RNNs) are a cornerstone of sequential modeling in deep

learning. They are designed to process sequences by maintaining a form of ’memory’ of

previous inputs. This memory helps in understanding the context and making informed

predictions.

RNN architectures are versatile, enabling single fixed-sized inputs with multiple out-

puts, variably sized inputs with a single fixed-sized output, and variably sized inputs

with variably sized outputs, which do not necessarily have to be of the same size.

A ”loop” mechanism plays a crucial role by transferring information across different

steps within the same network. This process involves saving the output of a particular

layer and then feeding it back as input to the network. This output, known as the
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”hidden state,” acts as a representation or memory of previous outputs. As a sequence

of input vectors (x) is introduced to the network, a recurrence formula is applied at each

step, effectively allowing the network to process and remember information from previous

inputs in the sequence.

However, traditional RNNs often struggle with long-term dependencies due to is-

sues like the vanishing gradient problem. Training a model becomes impractical with

sequences longer than ten when using traditional Stochastic Gradient Descent.

To address the limitations of RNNs, architectures like Gated Recurrent Units (GRU)

[5] and Long Short-Term Memory (LSTM)[11] have been developed. These models in-

corporate mechanisms named gates that regulate the flow of information and can retain

long-term dependencies in sequences.

A gate employs an additional hidden unit, rather than relying on the weighting of

historical and new data. These gates are composed of a sigmoid neural network layer,

coupled with a pointwise multiplication operation.

LSTM are designed to manage and control the flow of information. Unlike standard

RNNs, which consist of a single network layer, LSTMs consist of four interacting layers

that enable them to effectively retain information for long periods. These units within

LSTMs are often referred to as “memory cells” or simply “cells.”

The operation of an LSTM can be broken down into several key steps. The first

step in the LSTM’s process is to determine how much of the past information to keep or

forget. This decision is made by combining the current input x with the previous hidden

state h(t−1) and applying a sigmoid function. The output of this function, known as the

forget gate and decides which information is no longer important and should be discarded.

Next, the LSTM needs to assess which parts of the new information are important to

keep. Again, it concatenates the input x with the previous hidden state h(t − 1) and

applies the sigmoid function to filter the values. Additionally, the tanh function is used

to weigh the importance of this new information, resulting in two outputs: the input
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gate i and the tanh gate g. The final step is to decide which parts of the current memory

cell state are crucial for the output. The LSTM applies a sigmoid function to make this

decision, determining what portions of the cell state should contribute to the output. It

also uses the tanh function to scale the cell state values within the -1 to 1 range. By

multiplying these two outputs element-wise, the LSTM’s output gate o is obtained.

LSTM networks, while powerful for handling long sequences and retaining information

over time, have some disadvantages. They are computationally complex and resource-

intensive, making them difficult to train, especially with very long sequences. LSTMs

process data sequentially, limiting the potential for parallel computation. This architec-

ture poses challenges for transfer learning, which is more successfully applied in CNNs,

necessitating new data for each new application. Consequently, their practicality in real-

world scenarios, where transfer learning is often crucial, is limited.

2.2.3 Attention - Transformers

More recent advancements in sequential modeling include attention mechanisms and

transformers. The rise in popularity of attention mechanisms within deep learning is

attributed to multiple factors. Primarily, integrating attention into models has led to

state-of-the-art performance across a wide range of tasks. These mechanisms can be

effectively trained alongside foundational models, such as recurrent neural networks or

convolutional neural networks, through standard backpropagation techniques[2]. The

introduction of the Transformer model [29] marked a significant boost in the use of

attention mechanisms, showcasing their effectiveness. Disadvantages in RNNs like the

parallelizing can be overcome. Originating in machine translation attention approaches

found applications in other areas including video summarization [1]

Attention allows the model to focus on different parts of the input sequence when

predicting each part of the output sequence, thereby capturing context more effectively.

It assigns different weights to different parts of the input, indicating the importance of
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each part in the context of the entire sequence. In its core the model computes a score

for each input token to determine its relevance. The scores are then normalized using the

softmax function, converting them into probabilities. The output is a weighted sum of

these probabilities and the input features, giving more emphasis to the important tokens.

The Transformer model is primarily used for handling sequences without relying on

recurrence, as in traditional RNNs. Different than attention mechanisms (previously

mentioned) that map inputs to outputs, self-attention allows inputs to interact with each

other. Each token looks at every other token to better understand their context within the

sequence. Since transformers do not use recurrence, they incorporate positional encodings

to maintain the order of the sequence. The Transformer model typically consists of an

encoder stack and a decoder stack. Each consists of multiple identical layers that use

self-attention and feed-forward networks.

Some of advantages of Transformers are parallelization, scalability, and adaptability

for transfer learning. The lack of recurrence in their design allows them to process

entire sequences simultaneously, which results in more efficient and quicker training.

Additionally, their ability to handle longer sequences with a greater number of parameters

makes them exceptionally effective for large datasets. Their ability to be trained on huge

data makes them well-suited for transfer learning applications.

2.3 Transfer Learning

Transfer learning is a powerful technique in machine learning where a model developed

for one task (Task A) is repurposed for another related task (Task B). Instead of building

a model from scratch for Task B, transfer learning leverages the knowledge gained from

Task A, making it particularly useful when Task B has limited annotated data. Tasks

A and B should have similar inputs (type and size), although this isn’t always a strict

requirement
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Strategies for Transfer Learning involve using a Pretrained Source Model trained on

Task A and using it as a starting point for Task B. The model is then fine-tuned based on

the output values of Task B. Another approach, if there is a related dataset large enough,

is to develop a source model for Task A. This model then serves as the foundation for

Task B, where it is again fine-tuned according to requirements.

To implement transfer learning we could utilize the pretrained Model A, freezing

some of its layers to retain the knowledge from the source model. Then, add new fully

connected layers and train these on the target dataset. These new layers act as a classifier,

using the source model as a feature extractor. Another approach is to use Model A

and fine-tune it on the target data, typically with a lower learning rate. This option

can be combined with previous one, starting with freezing layers and then progressively

retraining the entire network.

In summary, transfer learning is a technique that boosts efficiency and effectiveness

in machine learning. By leveraging pre-trained models or related datasets, we can use

complex models to new tasks with relatively less effort and resources.

2.4 Visual feature extraction

Visual feature extraction is a critical process in the field of computer vision and image

processing, where specific characteristics or attributes are identified and extracted from

visual data. This process is essential for understanding and interpreting the content of

images and videos, and is widely used in various applications such as image recognition,

video surveillance, and automated vehicle systems.

The essence of visual feature extraction lies in transforming raw visual data into a set

of features that are more meaningful and informative for specific tasks. These features

might include edges, corners, textures, colors, or shapes within an image. For instance,

in facial recognition software, features such as the eyes, nose, and mouth are identified
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and analyzed to differentiate between individuals.

Advanced techniques in visual feature extraction often involve the use of algorithms

and machine learning models. Convolutional Neural Networks (CNNs), for example,

have become a standard in extracting hierarchical features from images for deep learning

tasks. These networks automatically learn to identify and abstract features at multiple

levels, leading to more accurate and sophisticated interpretation of visual data.

Another crucial aspect of visual feature extraction is dimensionality reduction. High-

dimensional data can be complex and computationally expensive to process. Techniques

like Principal Component Analysis (PCA) are used to reduce the number of variables

while preserving the most important visual information.

Overall, visual feature extraction plays a pivotal role in enabling machines to perceive

and understand the visual world, much like human vision. Its continuous evolution drives

forward the capabilities of computer vision systems, making them more efficient, accurate,

and applicable to a broader range of real-world scenarios.

2.5 Audio feature extraction

Audio feature extraction is a fundamental process in audio analysis where specific char-

acteristics of sound are identified and isolated. This process involves analyzing audio

signals to extract meaningful data, such as tempo, pitch, timbre, and rhythm, which are

crucial for various applications like speech recognition, music classification, and sound

event detection.

Techniques commonly used include Fast implementation of the Discrete Fourier Trans-

form (DFT) for frequency analysis, Mel Spectrogram, Mel-Frequency Cepstral Coeffi-

cients (MFCCs) for representing the short-term power spectrum and chroma vector for

capturing harmonic pitch class profiles.

The Mel Spectrogram represents a signal in both time and frequency dimensions,
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Figure 2.1: A Mel Spectrogram

but on the Mel frequency scale. To construct this, the initial step involves creating the

Short Time Fourier Transform (STFT) of the audio signal. This is done by dividing the

signal into segments, each defined by a chosen window size. When the window length is

sufficiently small, it’s assumed that the frequencies within each segment remain constant,

allowing for the computation of the Fast Fourier Transform (FFT). However, a smaller

window size leads to better temporal resolution but less accurate frequency resolution,

and vice versa. This trade-off is due to the fixed resolution nature of the STFT, where the

product of time and frequency deviations is constrained. The final step in this process is

to concatenate all these window segments to form the spectrogram.

Subsequently, the spectrogram is transformed from the Hertz scale to the Mel fre-

quency scale. This conversion is needed because the Mel scale mimics the way a human
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ear reacts to a sound, by being more sensitive at the lower frequency and less so to higher

ones.

The Mel filter bank consisting of overlapping triangular filters is constructed, each

overlapping halfway with the adjacent triangle. These triangular filters peak at a value of

1 at the center frequency. Finally, by applying the Mel filter bank on the power spectrum

of each frame, the Mel spectrogram is obtained.[28]

The Mel scale (mel) is the result of the frequency (f) scale that is transformed in a

non-linear way using the following formula [18]:

mel = 2595lg(1 +
f

700
)

The Mel Spectrogram is widely used as an audio representation and due to its 2D

structure is compatible with the CNNs. In that way complex audio data are trans-

formed into a more manageable form, enabling algorithms to perform tasks like genre

classification, emotion recognition in speech, or identifying specific sounds within a noisy

environment, to bridge the gap between raw audio data and actionable insights.
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Dataset

3.1 Source data set

The dataset comprises user-generated videos, categorized into fourteen distinct themes:

building, cars, climbing, downhill, fishing, kayaking, moto, mountain biking, roller coast-

ers, skydiving, snacks, spearfishing, survival, and theme parks. These videos, primarily

first-person footage, are sourced from the online platform YouTube and are predomi-

nantly captured using action cameras.

In [22] which provided the dataset, an annotation process was performed. The aim

of this phase was to generate ground truth video summaries to aid in the training and

testing of the video summarization method. Specifically, a group of 22 individuals was

tasked with watching and marking segments of interest in various videos to help establish

these ground truth summaries. This task was facilitated by a web application created

specifically for this annotation workflow. The application allowed users to sequentially

access the videos, providing the flexibility to view the entire content, navigate through it,

and identify and mark segments they found noteworthy. Users were instructed to mark

the beginning and end timestamps of these segments, with no limit on the number of

segments they could identify, thus ensuring the process remained highly subjective. A

30
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total of 1430 videos received annotations. While most videos received annotations from

three to four individuals, some videos annotated from up to eight annotators.

A process of aggregating the annotated data is conducted, combining individual an-

notations to form a comprehensive ground truth summary. As highlighted in the earlier

process, the annotated video summaries varied in the number of annotators per video,

affecting the dataset robustness. Consequently, to enhance the dataset’s integrity, videos

annotated by fewer than three individuals were removed from the original collection.

The resulting dataset comprised 336 videos, each annotated by at least three individu-

als. Ground truth was established by a majority rule, considering a segment informative

if agreed upon by 60% of annotators. Annotations were processed into binary arrays

for each second of video, with the average agreement calculated to determine the final

ground truth, using a threshold of 0.6 for consensus. The average agreement as a macro

averaged F1 metric was equal to 72.8% [22].

Consequently, the source dataset utilized in this thesis comprises two primary com-

ponents: firstly, a collection of 336 videos spanning across 14 distinct categories, and

secondly, the corresponding ground truth for each video.

3.2 Data transformations

In order to facilitate the experiments carried out in chapter 5 there are some data trans-

formation made in the source video dataset. The videos were required to be split into

two modalities: audio and images, in order to facilitate their processing and handling.

For the audio modality is used the ”FFmpeg” python library[6]. ”FFmpeg” is a

widely-used, powerful tool that can handle video and audio processing tasks such as

conversion, compression, and alteration of media files. To summarize, our process begins

by taking a video file as input, which is then processed using ”FFmpeg” to convert it into

a mono audio file with a sample rate of 8000 Hz. The resulting output is subsequently
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saved in the WAV file format.

Concerning the visual modality, it was necessary to treat it as a sequence of images.

This approach allowed for the application of algorithms and the utilization of sophisti-

cated feature extraction methods, as outlined in Chapter 4. Therefore, each video was

divided into image frames extracted from the source video file, with a sampling rate of

one frame per second.
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Methodology

4.1 Feature Extraction

4.1.1 Audio Feature Extraction Methodology

In this work ’deep audio features’ [7], a python library, is used, designed for exploiting

CNNs on audio classification tasks.

The first input parameter is the model which is a pre-trained four class model trained

to distinguish the classes ’music’, ’other’,’silence’ and ’speech’. The file pathindicating

the path of the audio file to be tested, layers dropped = 1 this argument specifies that

one layer from the end of the neural network model should be dropped before making

predictions in order to extract the audio features. The feature extraction method is the

Mel Spectrogram with a spectrogram size of (128, 51) which is later resized to (21, 128)

The process runs for each audio file in the dataset and then it stored in tensor file

(.npy).

4.1.2 Visual Feature Extraction Methodology

In this work ’deep video extraction’ [21] is used to extract the visual features. Visual

feature extraction using a VGG19 convolutional network [25], particularly one trained

33
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on the ImageNet dataset, represents a sophisticated approach in the field of computer

vision. The VGG19 architecture, known for its depth and robustness, consists of 19 layers

including 16 convolutional layers, and is highly effective in extracting complex features

from images.

Trained on the vast and diverse ImageNet dataset, which contains over a million

images categorized into thousands of classes, the VGG19 network has learned to identify

and interpret a wide array of visual features. This pre-training enables the network to

have a deep understanding of various visual patterns and textures, making it capable of

handling different kinds of image recognition tasks.

This process involves transfer learning 2.3, which is beneficial for tasks like classifi-

cation. For the feature extraction, the first frame of each 1-second segment of the video

is analyzed, based on the frames per second (fps) information available in the video

metadata.

In this process, the frame vector from each second of the video 3.2 is fed into the

VGG19 pre-trained model. VGG19 model architecture with a total of 19 layers, including

16 convolution layers, 3 fully connected layers, 5 max pooling layers, and 1 SoftMax layer.

In [23] the last four layers of the VGG19 model are omitted to lessen the model’s domain

specificity. The intermediate output from this modified network serves as the feature

representation for the visual modality, yielding a total of 4096 features.

4.2 Classifications Algorithms

We have utilized libraries from scikit-learn, a powerful open-source machine learning

library for Python, to implement the classification algorithms. Scikit-learn’s compre-

hensive collection of algorithms has enabled us to experiment with various classification

models efficiently. By leveraging the library’s model evaluation modules, we were also

able to evaluate our models’ performance.
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For the deep learning part we used PyTorch a dynamic, open-source machine learning

library. PyTorch offers a comprehensive ecosystem with a wide array of tools and libraries

to facilitate the modeling, training, and evaluation processes in, making it a powerful

tool for deep learning projects. The library’s integration with Python and support for

GPU acceleration ensures that both development and training processes are efficient and

streamlined.

In our project, key modules such as torch, torch.nn, torch.optim, and torch.utils.data

play crucial roles in developing and training neural network models. It provides a wide

array of complex multi-dimensional arrays known as tensors with added GPU acceler-

ation. The ’torch.nn’ module helps in building neural networks providing the building

blocks needed to create and train neural networks, such as layers, activation functions,

and parameters. There is a module that provides various optimization methods like SGD,

Adam and other utility modules for loading and preprocessing data efficiently.

In this logistic regression model several parameters are configured to optimize its

performance. The solver parameter is set to ’lbfgs’, which stands for Limited-memory

Broyden–Fletcher–Goldfarb–Shanno Algorithm and is the default choice for logistic re-

gression in scikit-learn.The max iter parameter, set to 100,000, defines the maximum

number of iterations taken for the solvers to converge. A higher number of iterations

allows the algorithm more opportunity to find the optimal solution. The random state

parameter is fixed at 42, which ensures that the same sequence of random events occurs

each time the code is run, making the results consistent and comparable across different

runs. Lastly, the C param range is a set of values 0.001, 0.01, 0.1, 1, 10, 100, 1000 that

represent the inverse of regularization strength. Regularization is a technique used to

prevent overfitting by discouraging overly complex models in logistic regression. The

’C’ parameter controls the degree of regularization (smaller values specify stronger regu-

larization). A range of values is provided so that the optimal balance between bias and

variance can be found so an equilibrium between accuracy and generalization is achieved.
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In the configuration of the KNN model, the primary parameter set is the nearest

neighbors, which is assigned the value of 5.

The ’GaussianNB’ classifier is part of the Naive Bayes family of classifiers and it

assumes that the continuous values associated with each feature are distributed according

to a Gaussian distribution. The Gaussian distribution is defined by two parameters: the

mean and the variance which are automatically calculated from the training data for

each class and feature.

In the ’DecisionTreeClassifier’ the criterion parameter is set to ’entropy’ where it

chooses splits that maximize the reduction in entropy. In that way a tree that captures

the most information about the dataset at each split is created. Limiting the depth of

the tree max depth = 6 helps prevent overfitting while allowing the tree to learn from

the data sufficiently and keeping its complexity in check.

The ’BalancedRandomForestClassifier’ is used which is an extension of the standard

Random Forest classifier designed to handle imbalanced datasets. The criterion =′ gini′

parameter specifies the function used to measure the quality of a split in the decision

trees of the forest. The ’gini’ criterion refers to the Gini impurity, a measure of how

often a randomly chosen element from the set would be incorrectly labeled if it was

randomly labeled according to the distribution of labels in the subset. It is used for binary

splits. The n estimators = 400 defines the number of trees in the forest. More trees

generally improve the performance and make the model more robust. This parameter

class weight = ”balanced subsample” deals with class imbalance by adjusting weights

inversely proportional to class frequencies in the input data. Like in Logistic Regression

random state parameter is fixed at 42.

The ’XGBClassifier’ implements the XGBoost algorithm. The n estimators = 400 is

the same as in ’BalancedRandomForestClassifier’. The scale pos weight = imbalance rate

parameter helps the model to pay more attention to the underrepresented classes. In the

parameter tree method =′ gpu hist′ is indicated that the model should use the histogram-
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based algorithm optimized for GPU computation.

LSTM

The LSTM-based classifier (’LSTMClassifier’) is designed to handle sequential data. To

use the classifier the data are reshaped to fit the LSTM’s input requirements.

The model architecture contains a Long Short-Term Memory (LSTM) layer to process

the input sequences which are effective in capturing long-term dependencies in sequence

data. A fully connected linear layer (self.fc) that maps the output of the LSTM layer to

the output dimension. In the forward method hidden state (h0) and cell state (c0) are

initialized to zeros for each batch. Then the input is processed through the LSTM layer.

The output of the last time step is passed through the fully connected layer (self.fc) to

produce the final output.

Model parameters input dim = 419 is the number of features in the input data.

hidden dim = 100: is the number of hidden states, layerdim is the number of stacked

LSTM layers and is set to 2, output dim = 2 is the number of output classes for the

classification task (informative or non-informative). In training the loss function used

is cross-entropy loss criterion = nn.CrossEntropyLoss() and the Adam optimizer with

a learning rate of 0.001. Adam is popular due to its effectiveness in handling sparse

gradients and adaptive learning rates. The model is configured to use a GPU if available,

to speed up training. Training occurs over 18 epochs and within each epoch, the training

data is processed in batches.

The ’LSTMClassifier’ is designed for the binary classification task with sequential

input data. The use of LSTM units allows the model to capture dependencies across

different time steps in the data, making it suitable for complex sequence modeling tasks.
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Attention

A neural network model named ’ClassifierWithAttention’ is defined using PyTorch. It

incorporates an attention mechanism and is designed for a classification task. The model

has two main components the attention mechanism(’Attention’) and the classifier with

attention(’ClassifierWithAttention’).

In the first the attention mechanism is used to weigh the importance of different

features in the input data. There is one linear layer that transforms the input features

and a second one that helps in deriving the attention weights from the transformed

features.It applies a linear transformation, followed by a tanh activation and another

linear transformation. The result is then passed through a softmax function to generate

attention weights, which are then used to create a weighted sum of the input features.

The parameters are feature dim which is the number of features in the input and is equal

to 419. The step dim which is also set to the size of each input sample and bias type

of boolean indicating whether or not to include a bias term in the attention calculation

layers.

The second component is the classifier with the attention mechanism created before.

The layers are: attentionlayer an instance of the ’Attention’ class, a fully connected

(dense) layer with ReLU activation function (fc1), another fully connected layer that

outputs the final classification results (fc2). First, the input data is passed through the

attention layer. The output of the attention layer, which represents the weighted features,

is then passed through two fully connected layers with a ReLU activation function in

between.

Model parameters input dim = 419 is the number of features in the input data.

hidden dim = 100: is the number of hidden layer in fc1, output dim = 2 is the number of

output classes for the classification task. In training the loss function used is cross-entropy

loss criterion = nn.CrossEntropyLoss() and the Adam optimizer with a learning rate

of 0.001.
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The model is configured to use a GPU if available, to speed up training. Training

occurs over 20 epochs and within each epoch, the training data is processed in batches.

(as provided by train loader). During training the gradients are reset between batches.

The ’ClassifierWithAttention’ model is a sophisticated neural network that utilizes

an attention mechanism to focus on the most informative parts of the input features for

classification. The model’s structure, consisting of the attention layer and two fully con-

nected layers, is suitable for complex classification tasks where the relationship between

different features significantly impacts the output. The training loop is standard, with

gradient descent optimization and a straightforward batch processing approach.

Transformers

A ’TransformerClassifier’ is designed to handle classification tasks using the Transformer

architecture and its ability to capture complex dependencies within the data in sequence

modeling tasks.

The architecture of the model is the following. The model first projects the input

features to a specified dimension (project dim) using a linear layer (self.project layer).

This is crucial as it prepares the input data for processing by the Transformer encoder.

The core of the model is the Transformer encoder, which is composed of multiple layers

of Transformer Encoder Layers. Each Transformer Encoder Layer consists of multi-

head attention mechanisms nhead = num heads and a feedforward neural network

dim feedforward = hidden dim, with dropout dropout rate applied to prevent overfit-

ting.The Transformer encoder processes the input data in a way that captures both local

and global dependencies within the sequence. The output of the Transformer encoder is

then passed through a fully connected linear layer (self.fc) to produce the final classifi-

cation output. In the forward pass, the input data is first projected, then permuted to

match the input requirements of the Transformer encoder. After being processed by the

Transformer encoder, the output is passed through the fully connected layer to generate
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the final predictions.

The model’s input parameters are input dim = 419which is the number of features

in each input sequence, project dim = 420 the dimension to which the input features are

projected. The number of heads in the multi-head attention mechanism num heads = 4,

the number of layers in the Transformer encoder num layers = 2. The size of the

feedforward network within each Transformer encoder layer is hidden dim = 2048, the

output classes are 2, indicating a binary classification and last the dropout rate = 0.1 is

used in the Transformer encoder to prevent overfitting.

The model is trained using the Adam optimizer with a learning rate of 0.0001 and

CrossEntropyLoss function is used, suitable for binary classification tasks. The training

occurs over 40 epochs, with each epoch processing the data in batches. For each batch,

a standard training procedure is followed: performing a forward pass, calculating the

loss, conducting a backward pass for gradient computation, and updating the model

parameters. The model is configured to use a GPU if available, facilitating faster training.

4.3 Evaluation Metrics Used

Based on the discussed performance metrics in chapter 2, the F1 macro average and over-

all accuracy offer a comprehensive assessment of the classification task being analyzed.

The F1 score is particularly relevant as it considers the class imbalance inherent in the

task. Positive class recall and precision serve as indicative metrics for the classifier’s

chosen operational point. For instance, a precision of 50% and a recall of 60% in the

positive class implies that half of the identified 1-second segments are truly informative,

and 60% of the actual informative segments are correctly identified. The ROC AUC

score is also valuable, as it measures the classifier’s overall ability to distinguish between

the two classes, independent of the selected probabilistic threshold.
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4.4 Experimental Design

Throughout the experiments we utilize all the features generated as described in Section

4.1 as input. We employ an early fusion technique, integrating the two modalities (audio

and visual) before inserting them into the models, as outlined in [22]. For machine

learning algorithms, we calculate features and metrics separately for audio and visual

modalities, as well as in their fused form. However, for deep learning classifiers, we

exclusively use and evaluate the fused features.

Regarding the training process, we established a training set comprising 80% of the

videos from the initial dataset. Detailed discussions about the parameters of the algo-

rithms used as classifiers can be found in the section 4.2.

All experimental procedures and code executions for this project are conducted using

Google Colab, a cloud-based platform provided by Google [9]. It provides access to

powerful computational resources, including GPUs in order to handle large datasets and

complex algorithms for running machine learning and deep learning experiments. The

choice of Google Colab and in later stages the Pro paid version enabled the execution of

very demanding tasks using the GPUs in a fraction of the time needed in the free tier or

local desktop computers.
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Experiments

5.1 Results

The performance of a random classifier serves as a baseline when evaluating the effec-

tiveness of machine learning models. In the context of our binary classification task, the

random classifier achieved an F1 score of approximately 45.21% and an ROC AUC score

of 49.87%.

In table 5.1, the scores and outcomes of the experiments conducted using our method-

ology are presented.

The results indicate that the audio modality has not been effectively utilized, sug-

gesting potential issues with the audio feature extraction method. This is evident in the

analysis of the fused features, where the audio contributes minimally to the results, with

the visual features predominantly driving the outcomes.

When comparing our results with the reference data presented in [22] (see table 5.2),

it is observed that visual features in our work returned improved F1 scores in half of the

tested algorithms. This improvement also influenced the corresponding Fused F1 scores.

Additionally, the ROC AUC Score in our study outperforms the reference in two out of

six cases for visual features and in one case for the fused features.
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F1 Audio ROC AUC
Audio

F1 Visual ROC AUC
Visual

F1 Fused ROC AUC
Fused

Logistic Regression 43.87 49.80 51.74 64.78 51.88 64.80
KNN 49.53 51.90 54.59 59.26 54.60 59.38
Naive Bayes 47.38 51.83 58.85 66.74 58.81 66.75
Decision Tree 43.91 54.77 44.07 62.11 43.99 62.02
Random Forest 46.15 51.46 62.51 70.18 61.92 70.23
XGBoost 47.66 52.73 53.01 65.49 52.94 67.04

Table 5.1: ML algorithms scores

F1 Audio ROC AUC
Audio

F1 Visual ROC AUC
Visual

F1 Fused ROC AUC
Fused

Logistic Regression 41.40 62.76 44.62 67.18 49.42 67.38
KNN 54.56 59.28 56.26 60.71 57.65 62.55
Bayes 51.71 59.47 48.32 64.02 51.62 63.35
Decision Tree 41.81 60.58 45.60 66.32 45.57 66.48
Random Forest 57.77 66.72 60.41 69.86 60.58 71.82
XGBoost 59.77 65.32 60.41 66.75 62.34 69.61

Table 5.2: ML algorithms scores in [22]

In table 5.3, we present the results of the original deep learning classifiers developed

specifically for this research. The results indicate satisfactory performance for the LSTM

and Attention classifiers. However, the results for the Transformer classifier are less

encouraging. This underperformance in the Transformer model may be attributed to

the training loss, which at its best was at best around 0.4 and did not show signs of

convergence throughout the training process.

Further experimentation with the hyperparameters of the LSTM and Attention classi-

fiers, as well as potential modifications to their core architecture, might lead to enhanced

results.

Accuracy F1 Fused ROC AUC Fused
LSTM 72.72 54.67 54.45
Attention 71.59 53.68 53.55
Transformer 78.17 43.87 50.00

Table 5.3: DL algorithms scores
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Conclusions and Future Work

This thesis has explored the application of deep learning techniques for the binary clas-

sification of video segments into informative and non-informative categories, employing

a comprehensive methodology that integrates both audio and visual feature extraction

with a variety of classification algorithms. Our experiments, as detailed in the preceding

sections, have yielded insightful findings on the effectiveness of different modalities and

algorithms in addressing the challenges of video summarization.

6.1 Conclusions

Our results indicate a significant reliance on visual features for classification success, with

audio features contributing minimally to the overall outcomes. This suggests that while

visual information provides a robust basis for classifying video segments, the potential

of audio information has not been fully realized, likely due to limitations in our current

audio feature extraction method. Despite this, the improvement in F1 scores for visual

features and their contribution to the fused F1 scores highlights the strength of visual

data in our methodology.

Notably, the comparative analysis with reference data demonstrates that our ap-

proach to visual feature extraction and classification has led to improved performance
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in half of the tested algorithms. This is further evidenced by the superior ROC AUC

scores achieved in our study for visual features and in one instance for fused features,

underscoring the effectiveness of our visual data processing techniques.

The evaluation of deep learning classifiers developed for this research, LSTM, Attention-

based models, and the Transformer classifier—reveals a promising performance for the

LSTM and Attention classifiers. However, the Transformer classifier’s performance was

notably less effective, with training loss indicating issues with model convergence. This

aspect of our study highlights the challenges inherent in adapting complex models like

Transformers to specific tasks such as video segment classification.

6.2 Limitations

Our investigation acknowledges several limitations. The underutilization of audio features

points to a need for improved extraction methods that can capture the sophistication of

audio data more effectively. Additionally, the Transformer model’s underperformance

suggests that our current implementation may require further tuning or architectural

adjustments to fully harness its potential for this application.

6.3 Future Work

Building on the findings of this study, future research should aim to enhance the au-

dio feature extraction process, exploring advanced techniques that could provide a more

meaningful representation of audio information for classification tasks. Further experi-

mentation with the hyperparameters and core architecture of the LSTM and Attention

classifiers is also recommended to refine their performance.

Moreover, addressing the convergence issues of the Transformer classifier will be cru-

cial. This may involve exploring alternative training strategies, adjusting model architec-

ture, or incorporating additional data sources to improve the model’s learning capacity.
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In conclusion, this thesis contributes to the field of video summarization by demon-

strating the feasibility and challenges of using deep learning for binary video segment

classification. By highlighting the strengths and limitations of our approach, we set the

stage for future improvements in automated video analysis, potentially making video

summarization much more efficient and effective.
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