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Abstract

In the video summarization domain it is needed to efficiently differentiate between
informative and non-informative video segments to create concise summaries that encap-
sulate essential content. Utilizing advanced deep learning methods for feature extraction
from both audio and visual data, the study employs a diverse array of optimized classifi-
cation algorithms and novel LSTM, alongside Attention-based models and Transformers.
An early fusion approach integrates audio-visual data to enhance classification accuracy.
Despite notable successes, particularly with visual data, challenges in audio feature ex-
traction and certain model performances indicate areas for future improvement. The
thesis contributes to the field by demonstrating the potential of combining aural and
visual features using deep learning techniques for video binary classification, setting a

solid groundwork for advancements in achieving more accurate video summarizations.

Keywords: Video Summarization; Binary Classification; Deep Learning; Audio Fea-

ture Extraction; Visual Feature Extraction
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Chapter 1

Introduction

1.1 Motivation

In the ancient Greek mythology, Talos was a giant, thirty-meter height, automaton made
of bronze used to protect the island of Crete from invaders. It is often described as
one of the earliest concepts of a robot. This mythological figure, embodying the ancient
Greeks’ imagination of automated guardians, prefigures today’s world where Artificial
Intelligence (AI) and robotics have begun to play a critical role in our everyday life.
Among the domains of AI, Computer Vision stands out as a particularly breakthrough
technology. It gives the ability to see and understand the world, enabling a wide range
of applications like autonomous vehicles navigating the streets, surveillance systems that
can identify and respond to threats and healthcare assistance for making better decisions

regarding the treatments of patients.

According to the latest statistics provided by YouTube, Viewers globally watch more
than one billion hours on average of YouTube content on their TVs every day and more
than five hundred hours of content are uploaded to the platform every minute [31]. The
exponential rise in the last years of platforms where short videos are uploaded, like Tik-

Tok, YouTube Shorts and Instagram Reels, is evidence that people want to consume more
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content in less time. Existing audiovisual content, that is lengthy and contains repetitive
scenes, could be useful when transformed into more concise versions, such as highlights or
summaries. Creators can maximize the reach and engagement of their content, meeting
the audience’s demand for quick, yet informative and entertaining viewing experiences
in the fast-paced digital age we live on.

To meet the increasing demands mentioned before, this thesis digs into the realm
of Computer Vision and Computer Audition, originally motivated by the challenges in
the video summarization domain, where distinguishing between informative and non-
informative video segments is crucial for creating concise summaries that retain all critical
content. It aims to leverage the capabilities of deep learning methods to interpret and
analyze video data comprehensively. The focus is on developing Al systems capable
of making binary distinctions within video segments, determining what constitutes an
informative or non-informative one-second clip, so to enhance the utility and efficiency

of video summarization processes.

1.2 Related Work

In [22] is addressed the growing need for efficient video summarization techniques due to
the exponential increase in user-generated content. Traditional methods often overlook
the importance of aural features and are primarily designed for commercial /professional
videos. This study presents a novel approach that utilizes both aural and visual features
to create dynamic summaries of user-generated videos. These summaries include the
most important parts of the original video while preserving their temporal order. The
approach involves a supervised binary classifier trained on audio, video, and fused fea-
ture representations. A unique user-generated dataset, comprising videos from various

categories, is introduced for training and evaluation.

In this paper|23] is proposed an approach focusing on the fusion of audio and visual
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features and the use of data augmentation. The goal is to create dynamic video summaries
that include the most essential segments of the original video while maintaining the
original temporal sequence. The approach is based on supervised classification, using

deep features from pretrained models and augmented training datasets.

In this work[32], a novel supervised learning technique for video summarization is in-
troduced, utilizing Long Short-Term Memory (LSTM) to model temporal dependencies
among video frames for selecting keyframes or key subshots. This approach aims to gen-
erate representative and compact summaries by acknowledging the sequential structure of
videos, achieving superior results on benchmark datasets. Additionally, it addresses the
challenge of requiring extensive annotated data by employing domain adaptation tech-
niques on auxiliary datasets, despite their diversity, to mitigate statistical discrepancies

and enhance the summarization process.

A video summarization technique introduced in [19] aimed at quickly overviewing In-
ternet video content, addressing the challenge of identifying important segments within
diverse video types without relying on prior knowledge. A deep neural network is designed
to encode content semantics—objects, actions, and scenes—into deep video features by
mapping videos and descriptions to a common semantic space through joint training.
Summaries are generated by extracting these deep features from video segments and
applying a clustering-based technique. Evaluated using the SumMe dataset and com-
pared against baseline methods, the results highlight the benefits of incorporating deep

semantic features into video summarization processes.

In [30] a novel video summarization technique is presented, that focuses on preserving
semantic information, especially long-term temporal semantics. The proposed technique,
named Semantic Attended Video Summarization Network (SASUM), utilizes a frame
selector and video descriptor to extract semantically relevant video segments for a com-
prehensive summary. By aiming to minimize the discrepancy between the generated

description of the summarized video and human-annotated text of the original video,
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SASUM ensures the retention of crucial semantic content.

By addressing the challenge of maintaining inherent relationships between a video and
its summary while minimizing semantic loss, video summarization is approached in [13].
It is highlighted that while supervised deep learning methods have been effective, they
often focus on one challenge without adequately addressing both. The proposed solution
introduces an encoder-decoder attention mechanism and semantic preserving loss within
a deep Sequence to Sequence framework, aiming to closely monitor and preserve semantic
integrity.

Unlike previous attention-based models that observe entire frame sequences, this ap-
proach [1] leverages both global and local multi-head attention mechanisms to understand
frame dependencies at varying granularity levels. Additionally, it incorporates a com-
ponent for encoding the temporal positions of frames, crucial for generating coherent

summaries.

This paper [17] introduces VISCOM, a novel video summarization approach utiliz-
ing color co-occurrence matrices to analyze and condense large volumes of video content
across diverse categories. By characterizing video frames through color patterns, VIS-

COM aims to create synopses that capture the most representative moments.

In [20] a video summarization method leveraging a Generative Adversarial Network
(GAN) model pre-trained with human eye fixations to tackle the growing volume of
video data from surveillance, medical, and telecommunication systems is presented. The
novel contribution of this method is its ability to generate perceptually compatible video
summaries by integrating both color perception and spatiotemporal visual attention cues
in an unsupervised manner.

Addressing the challenge of managing the vast volume of online videos, this approach
[24] enhances video search, retrieval, and browsing. It’s contribution lies in formulating
video summarization as a sequence labeling problem and introducing fully convolutional

sequence models, diverging from traditional recurrent model strategies. By drawing
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a unique parallel between semantic segmentation and video summarization, the paper
adapts semantic segmentation networks to summarize videos effectively.

This study [12] develops a computational model for automatic video summarization,
targeting digital videos from television archives. The proposed model draws inspiration
from the human visual system and employs computer vision techniques such as face
detection, motion estimation, and saliency map computation to generate static video

collections of salient images or key frames from the original videos.

1.3 Methodology Overview

The methodology for video binary classification in this study integrates advanced deep
learning techniques for both audio and visual feature extraction, alongside a diverse array
of optimized classification algorithms. For feature extraction in the audio modality pre-
trained CNN are used to extract features via Mel Spectrograms. In the visual modality a
VGG19 pre-trained network is deployed and adapted through transfer learning to analyze
video frames.

The study exploits various classification algorithms, including Logistic Regression,
KNN, Gaussian Naive Bayes, Decision Tree, Random Forest, XGBoost. Novel LSTM,
Attention-based models, and Transformer binary classifiers are developed to introduce
deep learning techniques in the classification problem, each attempted to enhance classi-
fication accuracy and the evaluation metrics used.

It is adopted an early fusion approach for integrating audio and visual data, with
experiments conducted on Google Colab for computational efficiency. The study focuses
on binary classification of video segments into informative or non-informative categories,
leveraging multimodal data and extensive computational resources to optimize model
performance.

While we achieved notable success, especially with visual data, the limitations around
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audio feature extraction effectiveness and specific deep learning model performances war-

rant further investigation and optimization.”

1.4 Structure

The rest of the thesis is organized in five main chapters:

In Chapter 2 the foundational concepts and theories that used in the research are
addressed. This chapter is divided into several sections, covering machine learning, deep
learning, transfer learning, and feature extraction methods for both visual and audio
data. It provides the necessary theoretical background of the research.

Chapter 3 describes the data used in the study, including the source of the dataset,
data transformations, and explains the selection and preparation of the data

In Chapter 4 the methodology employed in the study is presented in detail including
feature extraction techniques for audio and visual data and the binary classification
algorithms used. This chapter also outlines the evaluation metrics and the experimental
design, providing an explanation of how the research was conducted.

The experiments conducted in this work are presented in Chapter 5. The experimental
setup, the results obtained from the experiments, and a discussion of these results are
presented.

The final chapter, Chapter 6, summarizes the findings of the research and discusses
the conclusions that can be drawn. It also identifies the limitations of the current work

and suggests directions for future research.



Chapter 2

Theoretical Background

Machine Learning (ML) and Deep Learning (DL) are subsets of artificial intelligence
(AI) that have revolutionized the way we interact with data and technology. Machine
Learning is a method of data analysis that automates analytical model building. It
enables computers to learn from and make decisions based on data. This learning process
is not explicitly programmed but achieved through algorithms that iteratively learn from

data, thus allowing computers to find hidden insights.

Deep Learning, a subset of ML, takes inspiration from the workings of the human
brain in processing data and creating patterns for use in decision making. It utilizes
artificial neural networks, which are algorithms modeled after the human brain, consisting
of layers of nodes, or "neurons”. Each layer can learn to transform its input data in a
different way, making DL particularly powerful for complex, large-scale tasks like image

recognition, natural language processing, and speech recognition.

The key difference between ML and DL is in how they learn. Traditional ML algo-
rithms become better at their tasks as they are exposed to more data over time. However,
they still require some guidance. In contrast, DL algorithms try to learn high-level fea-
tures from data in a layered manner, and this can be achieved with little or no human

intervention.
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As technology advances, the applications of ML and DL are becoming increasingly
widespread, impacting various sectors including healthcare, finance, transportation, and
more. These technologies are not just transforming the way we interact with machines,

but they’re also profoundly altering how we understand and utilize data.

2.1 Machine Learning

The invention of computers ignited the interest about their potential to learn. Mastering
computer learning could unlock new applications and enhance customization, potentially
offering insights into human learning abilities and challenges.

While computers still don’t learn as adeptly as humans, algorithms for specific learn-

ing tasks have been developed, and a theoretical understanding is emerging.

2.1.1 Types of learning

In terms of its types, learning in ML can be categorized into these forms: supervised, un-
supervised, semi-supervised, and reinforcement learning. Each of these types represents
a different approach and methodology in the learning process, made for specific input
and learning outcomes.

Supervised Learning is perhaps the most frequent form of machine learning. In super-
vised learning, the algorithm is trained on a labeled dataset. This means that the data
is already accompanied by the groundtruth, and the model learns to predict outcomes
based on this input-output mapping. Applications where supervised learning is used are
image and speech recognition, as well as regression and classification tasks.

In supervised learning, we work with a dataset comprising labeled examples and try

to find a relationship between data and output:

{(s yi)}ily
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Here, each z; is referred to as a feature vector, representing an individual data point
with multiple dimensions. Each dimension j (where 7 = 1,..., D)) in this vector holds
a specific value that characterizes the data point in some way, known as a feature and
represented as ). The label in the dataset can vary in form — it might be a class in
a finite set (e.g., 1, 2, ..., C), a real number, or a more complex structure like a vector,
matrix, tree, or graph. Often, especially in this context, y; is either a class label or a real

number. Class labels categorize each example.

The primary objective of a supervised learning algorithm is to develop a model that
predicts the label of a new, unseen feature vector. The model learns from the dataset to

infer the label based on the input feature vector.

Supervised learning is typically categorized into three types: binary, multiclass and
regression. In binary classification, the objective is to categorize data points into one of
two distinct classes. The algorithm is trained on a dataset where each input is labeled
with one of these two classes, and it learns to predict which class a new input belongs
to.Multiclass classification extends the concept of binary classification to scenarios where
there are more than two classes. These two types are classification tasks. Regression

deals with predicting a continuous value.

Based on the methodology and the nature of the output supervised learning could be
also categorized either as instance-based and model-based or as single-label and multi-

label tasks.

In unsupervised learning, the data used to train the model is not labeled, meaning
that the model has to identify patterns and relationships in the data on its own. This
type of learning is useful for exploratory analysis, as it can uncover hidden structures
in data. Unsupervised learning tasks include clustering, dimensionality reduction and

outlier detection.

Semi-Supervised Learning falls between supervised and unsupervised learning. In

semi-supervised learning, the algorithm is trained on a dataset that includes both labeled
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and unlabeled data. This approach is useful when acquiring a fully labeled dataset is

expensive or time-consuming.

Reinforcement learning, as described in [27], focuses on identifying the appropriate
actions in specific situations to maximize rewards. Unlike supervised learning, where the
learning algorithm is provided with examples of optimal outputs, reinforcement learning
requires the algorithm to learn through trial and error. It involves a series of states and
actions where the algorithm interacts with its environment. In this setting, the choice
of action influences not only the immediate reward but also affects future rewards at

subsequent time steps.

2.1.2 Binary Classification

Since the task in hand is a binary classification task we will provide a quick overview of

the algorithms used.

Logistic Regression

Logistic Regression is a statistical method used in machine learning for binary classifica-
tion tasks, where the goal is to predict a binary outcome (such as yes/no, true/false, or
0/1). It’s a type of regression analysis that is suited for situations where the dependent

variable is categorical.

Unlike linear regression, which predicts continuous outcomes, Logistic Regression es-
timates the probability that a given input point belongs to a certain class. The core
concept is to transform the output of a linear equation (using the standard logistic func-
tion, also known as the sigmoid function) to a probability value ranging between 0 and
1. This function outputs a smooth curve that can classify the data points as belonging

to one of the two categories.
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The sigmoid function takes the form:

where e is the Euler’s number and is the base of the natural logarithm.

Logistic Regression is widely used due to its simplicity, efficiency, and interpretability.

It works well for problems where the boundary between classes is linearly separable.

K-Nearest Neighbors (KINN)

K-Nearest Neighbors (KNN) is a non-parametric learning algorithm. In contrast to other
learning algorithms that may deallocate the training data after the model is built, KNN
keeps all training examples in memory. The core idea of KNN is to predict the label of

a new data point based on the labels of its 'k’ nearest neighbors in the training dataset.

The process involves calculating the distance between the new data point and all
points in the training set. The algorithm then identifies the 'k’ closest points, or 'neigh-

bors’, and determines the output label based on the majority label among these neighbors.

The hyperparameters of KNN is the choice of ’k’ which is the number of neighbors
to consider and the distance metric. A smaller value of 'k’ makes the model sensitive
to noise in the data, while a larger 'k’ value makes it computationally expensive and
possibly less precise in defining the locality of the data point. Popular distance metrics
are Euclidean distance, Manhattan distance, Mahalanobis distance, Hamming distance

and cosine similarity.

KNN is favored where the relationship between features is complex and other models
are hard to train. However, its performance can degrade with high-dimensional data (the

curse of dimensionality) and it can be computationally intensive with large datasets.
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Bayes

The Naive Bayes classifier is a probabilistic machine learning model based on Bayes’
Theorem, widely used for classification tasks. It’s called "naive” because it makes a strong
assumption that the features used to make the prediction are mutually independent given
the target variable. Despite this simplification, Naive Bayes classifiers often perform
remarkably well and are particularly popular in text classification tasks.

Bayes’ Theorem provides a way of calculating the probability of a class label based
on prior knowledge. In classification it computes the probability of a class given a set of

features. The Bayes’ rule is:
p(z|y) P(y)
p(z)

Pylz) =
Where P(y|x) is the posterior probability of the class given predictors. P(y) is the a
priori probabilities of the class. p(z|y) is the likelihood of the predictor given the class
and p(z) is the probability density function of x.[26]

Naive Bayes classifiers work efficiently with large datasets, are easy to implement
and can be used with high-dimensional data. The assumption of feature independence
simplifies the computation, allowing the model to operate by considering each feature’s
contribution to the probability independently.

There are different types of Naive Bayes models depending on the nature of the
features in the data, like Gaussian Naive Bayes or Multinomial Naive Bayes, where each
type makes different assumptions about the distribution of data so it suitable for different

types of datasets. Naive Bayes can outperform more complex models, especially when

the assumption of independent features holds true or nearly true.

Decision Tree Learning

Decision tree learning is a method for approximating discrete-valued target functions, in

which the learned function is represented by a decision tree.[16] It is an acyclic graph
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used to make decisions.[3] The model predicts the value of a target variable by learning
simple decision rules inferred from the data features. It is called a "tree” because the
model takes the form of a tree structure, comprising branches, nodes, and leaves.

In a Decision Tree, each internal node examine a specific feature or attribute, each
branch represents one of the possible values for this feature, and each leaf node represents
a class label, a decision taken after computing all attributes. The paths from root to leaf
represent classification rules.

The most well-known decision tree algorithms include ID3 (Iterative Dichotomiser
3), C4.5 (successor of ID3), CART (Classification and Regression Trees), and CHAID
(Chi-squared Automatic Interaction Detector).

One key advantage of Decision Trees is their interpretability and simplicity. They are
easy to understand and visualize, making them useful for explaining the decision-making
process to non-technical stakeholders. However, they tend to overfit, especially when the
tree becomes too complex. This can be handled through techniques like pruning, setting
a maximum depth for the tree, or requiring a minimum number of samples to split a
node.

Overfitting occurs when our model tries to capture minor changes in the dataset,
which only represents a limited sample of all possible instances of the phenomenon we
are attempting to model.

Decision Trees form the building blocks for more advanced methods like Random
Forests and Gradient Boosting, where multiple trees are combined to produce more ac-

curate and robust models.

Ensemble Learning

Ensemble learning is a machine learning paradigm where multiple low accuracy models
referred as "weak learners” are trained to solve the same problem and combined to get

better results instead of big accurate model.
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The most frequently used weak learner is a decision tree learning algorithm. The
obtained trees are shallow and not particularly accurate, but if the trees are at least
slightly better than random guessing, then we can obtain high accuracy by combining a

large number of such trees.

The weak learners can be trained simultaneously (as in bagging) or sequentially (as
in boosting), and their predictions are combined using methods like averaging, weighted
averaging, or voting.The two most widely used examples of ensemble learning methods

are Random Forest and Gradient Boosting.

Random Forest is an application of the bagging technique. It creates an ensemble
of decision trees, typically constructed using a method called bootstrap aggregation,
or bagging. Each tree is built from a random sample of the training dataset, and the
final prediction is typically made by averaging the predictions of each individual tree for
regression problems or by a majority vote for classification problems. Random Forest is
effective because it reduces the variance of the model, without increasing the bias. This

means it is less likely in overfitting situations.

Gradient Boosting and it’s variation XGBoost (eXtreme Gradient Boosting)[4] is a
type of boosting technique where new models are added sequentially to correct the errors
made by existing models. XGBoost builds one model on top of another, iteratively im-
proving the model’s accuracy. It incorporates regularisation (L1 and L2), which improves

model generalization capabilities and reduces overfitting.

In both Random Forest and XGBoost, the ensemble approach combines multiple
individual models to produce a more powerful and reliable prediction model compared
to a single model. This is because ensemble methods can capture a variety of simple
patterns in the data by different models, and then blend these patterns to achieve greater

predictive performance.
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2.1.3 Classifier Evaluation Train-Validation-Tests Splits

In machine learning a dataset typically is split into three different subsets: training,
validation, and test datasets, each serving a distinct function in the development and

evaluation of a classifier.

The training dataset is used to train the classifier. This subset is usually the largest
and is kept separate from the examples used in the validation and test datasets. The
purpose of this separation is to ensure that the model learns to generalize from the

training data to new, unseen data.

The validation dataset, often smaller than the training set and usually about the same
size as the test set, is used to validate the performance of the trained model against various
hyperparameters and learning methods. This validation is based on specific performance

metrics, and the results are used to decide on the best model and hyperparameters.

Finally, there is the test dataset, which is used for the final evaluation of the model
before it is deployed or put into production. This step is crucial to assess how well the

model will perform in real-world scenarios.

The need for these separate datasets arises from the potential issue of overfitting,
where a model performs well on the training data but poorly on unseen data. While
the training dataset helps in building the model, the validation dataset aids in tuning
it without compromising its ability to generalize. However, there’s a risk of overfitting
on the validation dataset too, especially in models with many parameters or in cases of
small datasets. Hence, the test dataset becomes essential as it ensures the final model

evaluation is based on completely unseen data.

In essence, dividing data into training, validation, and test sets is a fundamental
approach in machine learning to develop a model that not only learns effectively from
the training data but also generalizes well to new data and performs reliably in practical

applications.
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2.1.4 Performance Metrics

Evaluating the performance of classifiers is a fundamental aspect of machine learning,
as it provides insights into how well a model performs and aids in comparing different

models. Several key metrics are commonly used for this purpose.

Confusion Matrix is used to describe the performance of a classification model on
a set of test data for which the true values are known. It shows true positives (TP),
false negatives (FN), true negatives (TN) and false positives (FP). It reveals all possible

misclassifications between the different classes.

Precision is the ratio of correctly predicted positive predictions to the total number

of positive predictions. Confusion matrices can be used to calculate precision and recall.

TP

Precision = (m—w)

Recall is the ratio of correctly predicted positive predictions to all observations in actual

class.

TP

hecall = (757N

)

Accuracy represents the ratio of correctly predicted observations to the total observations.

TP+TN
TP+TN+ FP+ FN

)

Accuracy = (

F1 Score

The F1 Score is a harmonic mean of precision and recall, offering a balance between these
two metrics. The F1 Score reaches its best value at 1 (perfect precision and recall) and

worst at 0.
2 x Precision x Recall

F1 =
( Recall + Precision
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Since F'1 Score is a per class metric most of the times used as “overall F1”. To calculate
overall F1 there are: macro - F1 where we compute F1 of each class and average, micro
- f1 same with accuracy for single-label classification tasks and weighted - f1 same as
macro but weighted by (true) number of samples in class.

This score is particularly useful when dealing with imbalanced datasets where one
class is significantly more prevalent than the other. In such scenarios, a model might
have a high accuracy by simply predicting the majority class, but this doesn’t necessarily
indicate a good model. The F1 Score helps to mitigate this by considering both false

positives (precision) and false negatives (recall).

ROC AUC Score

ROC (Receiver Operating Characteristic) AUC (Area Under the Curve) Score measures
the ability of a classifier to differentiate between classes and is used for binary classifi-
cation problems. The ROC curve plots the True Positive Rate (TPR) against the False
Positive Rate (FPR) at various threshold settings. The TPR is the same as recall, while

the FPR is the ratio of false positive results to all actual negatives.

TP
PR = (TP+FN)
and
FP
FPR= <FP+TN)

The AUC represents the degree to which the model is capable of distinguishing between
the two classes. An AUC of 1 indicates a perfect model that makes no mistakes in
classification, while an AUC of 0.5 suggests a model that is no better than random
chance.

The ROC AUC Score is particularly valuable when evaluating a model’s performance

across a range of thresholds, which is crucial when the cost of false positives and false
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negatives varies. Unlike the F1 Score, which is a single value derived at a particular
threshold, the ROC AUC provides a consolidated measure of performance across all
possible thresholds.

The choice of metrics depends on the specific requirements and context of the task

at hand.

2.2 Deep Learning

Deep Learning, a subset of Machine Learning in Artificial Intelligence (Al), is a rapidly
evolving field that has gained immense popularity due to its ability to process and learn
from large amounts of data. Deep Learning models, particularly neural networks, are
inspired by the structure and function of the human brain and are designed to mimic the
way humans learn.

Deep Learning models involve layers of algorithms called neural networks. Each layer
consists of units, or 'meurons’, that transform incoming data and pass the output to
the next layer. The "deep” in Deep Learning refers to the number of layers through
which data is transformed. More layers allow the network to learn complex, abstract
representations of data. Some of the key components of Deep Learning are the neural
networks, the activation functions, the backpropagation and the gradient descent.

The center piece in Deep Learning are neural networks. These are structured in layers:
input, hidden (one or more), and output. Each neuron in a layer is connected to neurons
in the next layer, and these connections hold weights that adjust during learning.

The activation functions introduce non-linear properties to the network, allowing it to
learn more complex relationships in the data. Examples of activation functions include
Sigmoid, Tanh, and ReLLU (Rectified Linear Unit).

Backpropagation is a method used in training neural networks. There we adjust the

weights of neurons based on the error, difference between predicted and actual output,
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calculated at the output layer.

Gradient Descent is an iterative optimization algorithm that minimizes the cost or
error function, which measures how far the network’s prediction is from the actual result.
The model’s parameters are adjusted iteratively to find the minimum value of the cost
function using the chain rule to backpropagate from output to input.

Some of the advantages of Deep Learning are the superiority of their models as the
amount of data increases and the feature extraction where deep learning algorithms
automatically detect and prioritize the most relevant features.

Deep Learning represents a significant step forward in the capability of Al systems to
learn from and make sense of large-scale and complex datasets. As computational capa-
bilities continue to advance and we gain better insights from neural network operations,

DL is currently playing a transformative role in technology and society.

2.2.1 CNN

A Convolutional Neural Network (CNN) is a type of deep learning algorithm which has
shown great success in computer vision problems like image classification and object
detection. CNNs are essential in computer vision due to their ability to learn complex
patterns in data, while requiring relatively little pre-processing compared to other image
classification algorithms.

At the core of CNNs are layers that perform convolutions. A convolution is a math-
ematical operation that involves sliding a filter (or kernel) over the input data (such as
an image) to produce a feature map. Kernel or mask is a matrix that defines the filter
that is convolved with the image. This process involves multiplication of the kernel with
the input, followed by summing the results into a single output pixel. The convolution
operation helps the network remove noise, detect features like edges, textures, or specific
objects in the image.

In convolution the result is a new shrank image where the image’s edges are trimmed.
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An essential feature of CNN is the zero padding where it allows us to control the kernel
width and the size of the output independently.|8]

To reduce computational demands, it might be beneficial to overlook certain positions
of the kernel, effectively reducing the detail in feature extraction. This approach can be
seen as a form of downsampling the output of the convolution and is called stride s.[8]

A typical CNN architecture comprises several types of layers, each with a specific
function. Convolutional Layer: This is the core building block of a CNN. The layer’s
filters convolve across the width and height of the input volume, computing the dot
product between the filter and input, producing a 2D activation map that represents the
response of that filter at every spatial position.

Activation Layer (ReLU or similar): After each convolution operation, an activation
function like ReLU (Rectified Linear Unit) or a similar non-linear function is applied.
This introduces non-linear properties to the system, allowing the network to learn more
complex representations.

Pooling Layer: Pooling (usually max pooling) is used to reduce the spatial dimen-
sions (width and height) of the input volume for the next convolutional layer. It is done
to decrease the computational power required to process the data through dimension-
ality reduction. It also helps in extracting dominant features which are rotational and
positional invariant, thus maintaining the process of effectively training the model.

After several convolutional and pooling layers, the high-level reasoning in the neural
network is done via fully connected layers. Neurons in a fully connected layer have
connections to all activations in the previous layer. These layers are typically placed
before the output layer and are used to flatten the input into a one-dimensional array

for classification.

Output Layer is the final layer where a softmax activation function is used for classi-

fication tasks and it returns probabilities of each class.

This architecture that is presenented with the name ”"LeNet5” in [15] is typical in
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CNNs.

The learning process in CNNs involves adjusting the weights of the filters to minimize
the difference between the predicted output and the actual output (ground truth). This
is typically done using backpropagation and an optimization algorithm like Stochastic
Gradient Descent (SGD). During training, the network is exposed to a large number of
input images. The network adjusts its weights to try and correctly classify the images

by minimizing the loss function.

Unlike traditional algorithms, CNNs can automatically and adaptively learn spatial
hierarchies of features from input images. This feature learning is a significant advantage
over traditional algorithms where manual feature extraction was required. In CNNs, the
same kernel (weights) is applied across all pixels in a layer. This common use of the same
weights throughout the layer makes the CNN identify an object regardless of its position
in the image.

Connection sparsity is a fundamental characteristic of CNNs. Each output from a
convolutional activation is determined by only a limited number of inputs. This aspect is
crucial as it allows the network to focus on specific features within a localized area of the
input image, enhancing its ability to recognize patterns with high precision. Translation
invariance property of CNNs means that the network can recognize objects regardless of
their location in the input field. This is one of the reasons why CNNs are doing well in
handling image datasets. By being less sensitive to the exact location of features within
an input image, CNNs can more reliably detect and classify objects in varied positions
and orientations. This makes them particularly suited for tasks like image and video

recognition, where the subject of interest could appear in any part of the frame.

Due to parameter sharing and pooling, CNNs are efficient in terms of computation
and memory.

Examples of CNNs algorithms are the AlexNet [14] which significantly improved upon

LeNet-5 by being deeper, with more filters per layer and used ReLU as the activation
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functions. VGG Networks in [25] with up to 19 weight layers were the first to use
a very deep network. Residual Networks (ResNet) [10] introduced the skip or shortcut
connections that allow the flow of gradients directly through these connections. It enabled
the training of networks with over 100 layers, solving the vanishing gradient problem.

The vanishing gradient problem emerges when errors backpropagated from deep layers
to layers closer to the input become progressively smaller, making these early layers
difficult to train in very deep networks, so that increased depth does not always result in
improved performance.

CNNs represent a powerful tool in the field of AI and deep learning, capable of

handling complex image recognition tasks with high accuracy.

2.2.2 Sequential Modeling- RNN - LSTM - Attention - Trans-

formers

In deep learning, sequential models are designed to recognize the patterns and depen-
dencies in sequences of data. These models are adept at handling data with temporal
dependencies. They can capture and utilize information from previous time steps to
make predictions or understand the current data point.

Recurrent Neural Networks (RNNs) are a cornerstone of sequential modeling in deep
learning. They are designed to process sequences by maintaining a form of 'memory’ of
previous inputs. This memory helps in understanding the context and making informed
predictions.

RNN architectures are versatile, enabling single fixed-sized inputs with multiple out-
puts, variably sized inputs with a single fixed-sized output, and variably sized inputs
with variably sized outputs, which do not necessarily have to be of the same size.

A "loop” mechanism plays a crucial role by transferring information across different
steps within the same network. This process involves saving the output of a particular

layer and then feeding it back as input to the network. This output, known as the
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“hidden state,” acts as a representation or memory of previous outputs. As a sequence
of input vectors (x) is introduced to the network, a recurrence formula is applied at each
step, effectively allowing the network to process and remember information from previous

inputs in the sequence.

However, traditional RNNs often struggle with long-term dependencies due to is-
sues like the vanishing gradient problem. Training a model becomes impractical with

sequences longer than ten when using traditional Stochastic Gradient Descent.

To address the limitations of RNNs, architectures like Gated Recurrent Units (GRU)
[5] and Long Short-Term Memory (LSTM)[11] have been developed. These models in-
corporate mechanisms named gates that regulate the flow of information and can retain

long-term dependencies in sequences.

A gate employs an additional hidden unit, rather than relying on the weighting of
historical and new data. These gates are composed of a sigmoid neural network layer,

coupled with a pointwise multiplication operation.

LSTM are designed to manage and control the flow of information. Unlike standard
RNNSs, which consist of a single network layer, LSTMs consist of four interacting layers
that enable them to effectively retain information for long periods. These units within

LSTMs are often referred to as “memory cells” or simply “cells.”

The operation of an LSTM can be broken down into several key steps. The first
step in the LSTM’s process is to determine how much of the past information to keep or
forget. This decision is made by combining the current input x with the previous hidden
state h(t—1) and applying a sigmoid function. The output of this function, known as the
forget gate and decides which information is no longer important and should be discarded.
Next, the LSTM needs to assess which parts of the new information are important to
keep. Again, it concatenates the input = with the previous hidden state h(t — 1) and
applies the sigmoid function to filter the values. Additionally, the tanh function is used

to weigh the importance of this new information, resulting in two outputs: the input
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gate i and the tanh gate g. The final step is to decide which parts of the current memory
cell state are crucial for the output. The LSTM applies a sigmoid function to make this
decision, determining what portions of the cell state should contribute to the output. It
also uses the tanh function to scale the cell state values within the -1 to 1 range. By
multiplying these two outputs element-wise, the LSTM’s output gate o is obtained.
LSTM networks, while powerful for handling long sequences and retaining information
over time, have some disadvantages. They are computationally complex and resource-
intensive, making them difficult to train, especially with very long sequences. LSTMs
process data sequentially, limiting the potential for parallel computation. This architec-
ture poses challenges for transfer learning, which is more successfully applied in CNNs,
necessitating new data for each new application. Consequently, their practicality in real-

world scenarios, where transfer learning is often crucial, is limited.

2.2.3 Attention - Transformers

More recent advancements in sequential modeling include attention mechanisms and
transformers. The rise in popularity of attention mechanisms within deep learning is
attributed to multiple factors. Primarily, integrating attention into models has led to
state-of-the-art performance across a wide range of tasks. These mechanisms can be
effectively trained alongside foundational models, such as recurrent neural networks or
convolutional neural networks, through standard backpropagation techniques|2]. The
introduction of the Transformer model [29] marked a significant boost in the use of
attention mechanisms, showcasing their effectiveness. Disadvantages in RNNs like the
parallelizing can be overcome. Originating in machine translation attention approaches
found applications in other areas including video summari