UNIVERSITY OF PIRAEUS - DEPARTMENT OF INFORMATICS
MANENIZTHMIO MNEIPAIQY — TMHMA NAHPO®OPIKHX

MSc «Cybersecurity and Data Science»

NMMZ «KuBepvoao@aAeia kal ETTIOTAPN Aedopévwv»

MSc Thesis

MeTatrTuxiakn AlaTpi3n

Thesis Title:

Tithog AlaTpIBng:

Assessing the Security Risks of Medical Mobile
Applications - A comparative case study in Android
and iOS platforms

Atrotiunon Kivduvwy Ac@dAeiag Kivntwy latpikwy E@apuoywy —
ZUYKPITIKA MEAETN TTEPITITWONG O€ TTEPIBAAAOV Android kai iIOS

Student’s name-surname:

OvouaTeTWVUPO QOITNTH:

Christos - Marios Markellos

XpAhoTtog — Maplog MdpkeAAog

Father’s name:

Matpwvupo:

Michail Markellos
MixanA MdapkeAAog

Student’s ID No:
Ap1Bu6g MnTpwou:

MMKEA21030

Supervisor:

EmBAéTTWV:

Supervisor: Panayiotis Kotzanikolaou, As. Professor

EmpAéTTwv: Mavayiwtng KotavikoAdou, Av. Kabnyntig

May 2023 / Mdiog 2023

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

3-Member Examination Committee

TpiueAAg E¢eTaoTikr) ETTpoTtm)

Christos Douligeris Konstantinos Patsakis Panayiotis Kotzanikolaou
Professor As. Professor As. Professor
XpnroTtog AouAnyépng KwvoTavTivog Marodkng Mavayiwtng KotfavikoAdou
KaBnynTng Av. Kabnyntig Av. KaBnyntig
Assessing the Security Risks of Medical Mobile Application — 2

A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Abstract

In this thesis, a comprehensive security analysis of 70 popular medical mobile applications was
conducted, tested in both Android and iOS platforms, for a total of 140 apps analyzed. The basic
methodology includes looking for side channel leaks that can be abused by third-party applications
installed on the device, assessing support for old and potentially vulnerable versions of Android and
iOS, evaluating device and application integrity protections, conducting dynamic and static analysis
to observe runtime behavior such as SSL usage and local data storage practices, and searching for
hardcoded keys or other sensitive information embedded in the code. Also, traffic analysis is
included to observe communication patterns between the mobile applications and their associated
APIs. The overall findings reveal significant underlooked risks in this area. The vast majority of the
apps we analyzed, lacked standard security safeguards such as SSL pinning and root detection.

The study highlights the importance of ensuring that medical apps comply with security standards
and undergo rigorous testing before being made available to the public. Overall, the findings of this
study underscore the need for increased attention to mobile application security, particularly in the
healthcare industry where data privacy and security are of paramount importance.

Keywords: Mobile Application Security, Security Controls, Mobile Device Management, Secure
Software Development Lifecycle (SDLC), Secure Communication Protocols.

Assessing the Security Risks of Medical Mobile Application — 3
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

MepiAnyn

1NV TTapoUoa PETATITUXIOKA OIaTPIPN, TTPAYUATOTTOINONKE WIa OAOKANPWHEVN avAAucon ao@aAcgiag
70 dNUOPIAWV 1ATPIKWV EQPAPHOYWV YIA KIVNTEG OUOKEUEG, TTOU OOKIUAOTNKAV TOOO O€ TTAATQPOPUES
Android 6c0 kai g iOS, yia cuvoAikd 140 epapuoyég TTou avaAuBnkav. H Baaoikh peBodoloyia
mepIAapBavel avaditnon diappowv TTAEUPIKOU KavaAioU TTou PTTopoUv va XpnoiyotroinBouv atrd
EQAPHPOYEG TPITWYV TTOU €ival EYKATEGTNPEVEG OTN GUOKEUN, agloAdynan uttooTipIENG yia TTAAIEG Kal
duvnTIKA eudAwTeg ekdOoeIg Android kai iOS, agloAdynon akepPaIOTNTOG GUOKEUWY KAl EQAPUOYWY,
dleaywyrn OUVOUIKNAG Kal OTATIKAG avdAuong yia TTapatripnon CUUTTEPIPOPAS XPOVOU €EKTEAEONG,
OTTWG XprAon SSL kal TTPaKTIKEG aTTOBrKEUONG TOTTIKWY OedOMEVWY, KABWG Kal avalitnon yia
KwOIKOTTOINUEVA KAEIDIG 1} AAAEG €uaicoBNTEG TTANPOYOPIEG TTOU €ival EVOWPOTWHEVEG OTOV KWOIKA.
Emiong, mepiAapBaveral avadAuon €MOKEWIPOTNTAG YIA TNV TTAPATAPNGCN TTPOTUTIWY ETTIKOIVWVIAG
METOEU TWV E€QAPMOYWYV VIO KIVATA Kal TwV OUoXeTIOYéEvwy Toug APL. Ta OuvoAIkG eupruata
ATTOKGAUTITOUV GNUAVTIKOUG KIVOUVOUG TToU TTapafAETTOVTal 0€ auTdv Tov TOHEA. H OUVTPITITIKNA
TAEIOVOTATA TWV £EQAPUOYWYV TTou avaAuoapue dev diEBeTav TUTTIKEG BIKAEIDEG agpaAcgiag, OTTwg SSL
Pinning kai evrotmouég Root.

H ueAéTn utroypaupidel Tn onuaacia NG d1a0@AAIGNG OTI OI IOTPIKEG EQAPUOYEG GUUNOPPWVOVTAI E
Ta TPOTUTTA ac@aAgiag kair uttoBdAAovTal o€ auaTnpég OOKIPEG TTPpoToU dlaTeBolv OTO KOIVO.
2UVOAIKA, TO EUPANATA AUTAG TNG MEAETNG UTTOYPAPUICOUV TNV avAaykn yia auénuévn TTpoaoxr oTnv
ACQAAEIa TWV EQAPUOYWYV YIa KIVATA, 1I81aiTEPa aTOV KAGDO TNG UYEIOVOUIKAG TTEPIBaAWNnGg 61Tou TO
ammoéppENTO Kal N acPalela Twv 6edoUEVWY gival uyioTng onuaaciag.

NEEEIG-KAE1B1a: ACGQAAEIO EQAPUOYWV Yia QopnTEG CUTKEUEG, 'EAeyx0l aopaAeiag, Alaxeipion
QopNTWYV oUoKEUWV, KUkAOG CwAg aa@aAoug avamtugng Aoyiopikou (SDLC), MpwTtdkoAAa
ao@AAoUG ETTIKOIVWVIOG.

Assessing the Security Risks of Medical Mobile Application — 4
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Thesis Contents

Figure ContentsS....ccccecurmmnmmemmsssnsssssnsssssssssnsssssssnsnsnnsnsnnsnsnnnnnnnsnnnnnnnnnnnn 1
1 Introduction...ccuiiiirismnsssss s n s a s nnnannnnnnnn s nnnannnnnnnnnnnnnnnnnn O

1 l1 scopellllllllllllllllllllllllllllllllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIlIlIlIlIllllllllllllllllllllll

1.2 ENVIironment ...ccccccicsisnsssssssssssssasssssssssssssssssasssssssssssssasssasssnnssnnsnnnnnnnnns 8
1.2.1 Computer and Operating Systemccccccccmmmmesnmsssssmssssssssssssssssnsnsnnnnsnnnnn 8
1.2.2 Physical PRONES ..cccccmmmmmmssssssss s s s s s mmn 8
1.2.3 Emulated DeViCes ..ccucurrurrmmmsmsmmmsmsnsssssssssnsnssssssnsnsnsnnsnsnsnnsnsnnnnsnannnnsnnnnn 9

1-3 security TOOIS NN NN NN NN NN NN NN NN NN 9
1-4 style Of the ThesiSIIllllllIIllllllllllllllllllllIIlll 9
2 Background - Relates worklllllllllllllllllllllllIlllllIllllllllllllllllllllllllllll 10

2-1 MObile security Landscape NN NN NN NN NN NN NN 10

2.1.1 Device-Side Security Threatscccucuimimimimimsmsmssssssssesessns s s s s snsnsnss 11
2.1.2 Application-Side Security Threatsc.cccusmremcmnmmesnssnsssassnsssassnsssassnsnnnnsns 14
2.1.3 Network-Side Security Threatsccccirmnmmmsmnmmssssssssassssssassnssssssnsnnnnnns 20
2.1.4 User-Side Security Threatscccccuirumimimsmsmsmsmsmsssssssssssssssssssnsnsnsnsnsnsnnnss 21
2.2 Mobile Operating SyStemsccccceuramsmsmssmsmsassnsnssssnsnssnsnsnsnsnnnnsnsnnnnss 22
2.2.1 Android Operating SyStemccccciimimimsmimsesessssse s anannnnnss 22
2.2.2 10S Operating SyStemsccccicimimimsmsmsmsmsssssssssssssssssssnsnsnsssnsnsnsnsnsnsnsnsnnnss 25
2.3 Medical Mobile Application Significanceccccumemmsmsmmmsmsasassnsnnanes 27
2.3.1 Mobile Health - mHealth meaning...c.cccucutresmsmsmsmsmsnsnsnsnsnsnsnsnsnsnsnsnsnnnss 27
2.3.2 Values & Costs in Healthcarec.cocimsmmmnmsmnmsssssssssssesessssssssssssnsnsnsnnnnnns 29
2.3.3 New TechnNolOgY ..ccuumiumcmimimmamsnsanssnsnnsnsnsnnsnsnsnssnsnsnssnsnsnnsnsnsnnsnsnnnnsnsnnnnnns 32
2.4 Related WOrK ...cccerremssssmsnsssssssssssssssnsassnssnsssssnsnnssssnsnnsnnnnnnnsnnsnnsnnnns 33

3 MethodOolOgY uurmrmmmrmmnmsnsansnsnssnsnnssssnsnssnsnssnssnnnsnnnnsnnnnsnnnnsnnnnsnnnnnnnnns SO

3.1 Security TOOIS .cciirrmnmmsnmnssnssn s s s s s nn s s s n s nnnnnannannnnnnnnnnnnnnnn 35
3.1.1 Android Debug Bridge.......cccuuemimiimsmsssasssasassss s ssnsn s snsa s s s annnnnnsns 35

3.1.2 Frida.cccccesssssssssssssssssssssnsssssssssssssssssssssssssnssssssnssssssssnsnsnnsnsnnnnsnnnnnnsnnnnnnnns 36

3.1.3 Mobile Security Frameworkccccciieimimimsmsmsmsssssssssssssssssnsnsnsnsnsnsnsnsnsnnnss 38

i T I . Y« 4 T s 39

B e I - 1 | = 40

3.1.6 BUrpSUIte uuruiimmmmmmnmsmsss s s amamamamamamamamamamamanannnnnannnnnan 40

3.2 Analysis Categories...ccccurmumnmrmtmtmsmsnsesnsnsnsnsnsnsnsnsnsnsn s s s nannananannnnnnns 40
Assessing the Security Risks of Medical Mobile Application — 5

A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

3.2.1 Side Channel Leakscccummmimemamsmsmamsnssss s s s s s s s s s s nannnannmnnnns 40
3.2.2 SSL Specific FINAdiNgS ..cuuimiiimimimimimissnsnsnsnsnsnnnss 41
3.2.3 Application Protection Integrity....cccccrrmnmmmmmsmsssmsnssssssnsssassnsssnnsnnnnnnnns 42
3.2.4 Storing Data...ccciecmrmmemammsmssnsmsssssssssssssssssssssssssssssssssnsssnssnssnnnsnnnnnnsnnnnnnnnn 45
3.2.5 Bypassing Root Detection.......ccccimimimimimimsesssmssssssssssse s s s s s s s nnsnsnnnnnss 46

4 REeSUItS.cccaennniiiiiiiesseeesssasaaaannnnnnnnnsnsnnssssssaannnnnnnnnnnnnnnnnnnsnsnsnnnnnnnnnnnn G 7

4.1 Thesis Categories for all analyzed applications - patient interaction

... 47
4.1.1 Categories for analyzed applications.....cccccrmcmsmmesnmssssssssssssssssssssnsnnnnas 47
4.1.2 Application with external device connection......c.cecmeemimemcmse e snnasas 48

4.2 Thesis Application versions and ratings of downloadscccceee. 49

4.2.1 Android / 10S versions of analyzed appPs -ccresesmrsmsmsamsmsmsnssnsnsansnsnnsnsnnnnas 49
4.2.2 Number of downloads of medical applications......ccccececmrmremnmrnsnnnsnnanas 50
4.3 MetriCS immrmmmnnmnanmnnnsansnssssssassas s sssas s s s s n s naaa s aa R R R a R n R R nnnnE 50
4.3.1 Side Channel LeaKscccuuuurmrmsmsmsmsmsmsssssssssssnsssssssssssssssssssnsssnsnsnsnsnsnsnsnsnss 51
4.3.2 SSL Pinning / Plain HTTP .cccciccciietsnmmesesssmsssssssssssssssssssssssnsssssssnssssnsnsnnnnns 51
4.3.3 Root - Jailbreak Detectioncccecmimemsmsmsmsssmsssnsssnssnsnsssnsnsansnsnnansnnnnns 52
4.3.4 Application Integrity — obfuscation — ATS.......ccccmcmsmemmmsms s snsansnsnnanas 53
4.3.5 Data Storage in Android APPS wicceceressssmssssssssssssssssasssssssssssssssssssnsnsnnnnss 54

LI 02 T [T T U - 1+
6 ApPendiCeS..uimmmrmmnmrmmmrnmnnssssssssnssssnssssnsnssnssnsnsnnnnsnnsnsnnnnsnnnnsnnnnnnnnns DO
6.1 MobSF Analysis Report Android Aetna APP wcccerrersmmsmsmsnsnnsansnnsnnsnns 56
6.2 MobSF Analysis Report iOS Aetna APP -cccrrersmmsmsnssnmsmsnssnsnnsnnsnnsnnsnns 60

7 ReferencCes ..ccccueeeeeeeasaaannnnnnssssssssssssssaaanannnnnnnnnnsnnnssssssannnnnnnnnnnnnnnn 1

Assessing the Security Risks of Medical Mobile Application — 6
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Figure Contents

Figure 1: Mobile Security Landscape Categories. ..
Figure 2: Medical Mobile Applications USAgQeS.........ccceeeviiiuirieiiee e
Figure 3: Android Emulator 7.1 version is running with writable permissions....
Figure 4: ADB shell and mobile details in direCtory.cccoecvverieeeiiiiee e
Figure 5: Push Frida server file in android emulator device.c..cccocvveernneen.
Figure 6: Giving extra permissions needed for the execution of server file.....
Figure 7: Frida monitoring process is running for active appliCations.ccccooveveiiiiie e

Figure 8: Frida hooking of specific method running fouNd. ..o 38
Figure 9: ModSF running on specific ip address and port

Figure 10: MObSF uploading fil@S SCIEEN.ccoiiiieiee e e e e e e e e s e e e e e 39
Figure 11: Apktool import framework for specific application file.ccccccoeviiiiiiii e 42

Figure 12: Apktool decompiling of .apk file.......ccocviiiiiiiiiii e,
Figure 13: Found SSL Pinning mechanism in java source files (Part 1)
Figure 14: Found the exact point in code in smali files which will be removed for the new .apk file

GENETALION (PAIT 2). 1eiiiiiie ittt e et e et e e e h bt e e e bt e e e b e et e e b b et e e e b et e e s abbe e e e b be e e e annn e e e s nneee s 43
Figure 15: Apktool compile the new folder with code change and new .apk is generated. ..
Figure 16: Create using keytool new keystore file with RSA encryption
Figure 17: JarSigner basic command using sign file and apk file.....................

Figure 18: JarSigner successfull result of OPeration.ccooiiiiiiii i 45
Figure 19: Result of successful removal of SSL Pinning mechanism and user successful logging using
CUSTOM COITITICALE. .oiiiiiiiiiiiiie ettt e e et e e bt e e b bt e e et e e s b et e e bt e e e e aann e e e s nneee s 45
Figure 20: Exploring to /data/data in specific app shared_prefs folder and found user credentials. 46
Figure 21: Root Detection mechanisSm fOUNG.ooouiiiiiiiiii e 47
Figure 22: Table of Apps Categories and number of apps eXamined.ccccoovveeeiiiiie e 48

Figure 23: Mobile application with external device use support.cccceevuueee..
Figure 24: Android version vs percentage of apps USed.ccccevvvveeriiieeennnenn.
Figure 25: iOS versions vs percentage of apps USed.......ccccocuveeeviiieernieeeennnenn.
Figure 26: Android apps number of downloads vs percentage of the apps.....
Figure 27: Side Channel Leaks percentage of Android and iOS apps.ccceeevvveeenniiieeeninnenn.
Figure 28: SSL findings of both Pinning and plain HTTP for Android and iOS apps.ccccccvvveeeiniiieennnns 52
Figure 29: Lack of Jailbreak or Root detection for Android and iOS apPS......ccoveeeiriiieiniieeeiiiiee e

Figure 30: Application Transport Security per iOS apps in percentage.
Figure 31: Lack of Obfuscation in androids apps iN PErCeNtage.........uueiiieiiiiiiiiiiee et

Figure 32: Data storage revealed secrets of android @PPS. ...ueeeeee i iiiiiiiee e 54

Assessing the Security Risks of Medical Mobile Application — 7
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

1 Introduction

Mobile applications, have become an integral part of our daily lives. From social networking to
banking, and healthcare to entertainment, mobile apps have revolutionized the way we interact with
technology. However, with this convenience comes potential security risks, particularly when it
comes to sensitive data.

Mobile apps are vulnerable to security risks such as data breaches, malware, and hacking
attacks. Mobile devices are also vulnerable to physical theft or loss, which can result in the
compromise of personal information stored on the device. Furthermore, many mobile apps collect
user data, such as location information and personal contacts, which can be used for marketing or
other purposes without the user's consent.

The healthcare industry is particularly vulnerable to mobile app security risks, as medical
apps may collect and transmit sensitive patient data such as medical history, symptoms, and
medication schedules. In order to ensure patient privacy and prevent data breaches, it is crucial to
assess the security risks of medical mobile applications and implement measures to mitigate them.

1.1 Scope

The scope of this paper is to assess the security risks of medical mobile applications on both
Android and iOS platforms. By identifying common security vulnerabilities and discussing potential
solutions, we hope to promote safe and secure use of medical mobile applications and contribute to
the development of security standards in the healthcare industry. The rise of medical mobile
applications has enabled patients to manage their health more effectively, from tracking medication
schedules to monitoring symptoms. However, these applications also present significant security
risks, particularly when it comes to sensitive medical data. In this paper, the assessment of the
security risks of 70 medical mobile applications on both Android and iOS platforms will be analyzed.

1.2 Environment

In security analysis and application development, many factors can depend on the used
environments (operating system (OS), version, programs, etc.) and the available and used tools.
For this reason, the following sections list the primary factors and conditions used during this
thesis creation.

1.2.1 Computer and Operating System

The basic computer used was an ACER Aspire 7 from year 2019 with Windows 10 operating
system running on it. The feature that made this computer reliable for the aspects of this thesis was
the architecture of its Central Processing Unit (CPU), using eight total cores equipped with x64
architecture.

Another tool that was used was Virtual Box, equipped with host Kali Linux 2022.1 version
operating system installed on it. In this machine was installed all the required security tools for
analysis reasons.

1.2.2 Physical Phones

During this thesis creation, in the initial structure, has been used an android physical phone
Samsung Galaxy with Android 5.1 Lollipop running on it.

Another physical devices used, was the basic iPhone 11 with the latest installed 10S
version of 16.1 which is applicable for all app installation and a jailbroken iPhone 5s, which was
identical for the jailbreak device detection analysis.

Assessing the Security Risks of Medical Mobile Application — 8
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

1.2.3 Emulated Devices

All the basic analysis for Android applications has been performed using emulated devices, which
are listed below:

e Android 7.1.1 x86 (Google APIs)
e Android 8 x86 (Google APIs), which is rooted.

1.3 Security Tools

This thesis tries to use as many and as diverse for static and dynamic analysis, penetration testing,
and reverse engineering tools as possible. For all the below listed tools a separate chapter is
following in the Chapter 3 for specific technical details.

The basic tool used was mobSF, for android .apk and ios .ipa file analysis and reporting.
Specifically for Android apps were used the below tools:

. ApkTool (Specifically for decompile and compile .apk files)

. JarSigner (Used for sign the decompiled .smali file)

. Frida (For Hooking basic function or methods called)

. JDB (Debugger to investigate running application using process id)

o BurpSuite (To identify original API calls between application and server side)

1.4 Style of the Thesis

This thesis is presenting a security analysis of 70 medical health — mHealth, apps analyzed in both
I0S and Android platforms (in total 140).

Regarding the structure, in first chapter an extensive analysis of mobile security landscape
will be presented for specific categories such as: device-side, network-side, application-side and
user side.

In the second chapter, platform security analysis will take place for both Android and 10S,
analyzing also the existing security mechanisms found on them, pointing also to some critical
mechanisms that used extensively to mobile operating systems. Also, mHealth validity and meaning
is explained, presenting also the improvements in health management and future — technological
innovations.

In addition, in third chapter, an extensive analysis will be presented for all mechanisms
used for both android and iOS applications for categories:

e Side Channel Leaks
e SSL Findings (SSL Pinning, SSL/TLS HTTPS Usage)
e Device Integrity (Root Detection)
e Application Protection Integrity (Apktool, JarSigner, JDB, Obfuscation)
e HardCoded keys
portraying also all the relevant metrics from our significant findings in chapter 4.

Finally, in chapter 7, general improvements and techniques are proposed for future
research for both preventing existing vulnerabilities and design more security applications with
standard security practices.

Assessing the Security Risks of Medical Mobile Application — 9
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

2 Background - Relates Work

In this chapter a whole overview of not only Mobile Application Landscape and Mobile Operating
Systems but also the overall background and newly technologies of Mobile mHealth Applications
will be analysed per each respective category.

2.1 Mobile Security Landscape

The enterprise mobile application security threats landscape is growing larger year over year.
Increased enterprise mobility, meaning allowing access to the organization's network from a remote
location, results in a growing variety of unprotected endpoints vulnerable to outside attacks. To gain
a better understanding of the threats landscape revolving around enterprise mobile application
security, ASEE discusses the four main threat categories in today's cyber security environment.

Mobile security is to protect smartphones, tablets, laptops, and other computing devices.
Mobile security is also known as wireless security. Mobile security has increased in recent years. To
secure devices from thief, phishing, hacker mobile security is used. There are many organizations
which have many data and data should be protected from hacker. Information should be private and
should not be leaked. Company needs to protect their devices. The best way to protect company
data is not to store the data in client devices. If somebody wants to know the data then they should
need to get access permitted only over the network, there is no local copy to lose if a laptop or PDA
is stolen or lost. This method also protects PCs in the office. This can be more convenient for a
worker to work from local copy of data on a laptop transported from home or on a thumb drive, the
high ability of broadband access and the maturity of remote access the technologies such as
laptops and smart phones, which is much or less convenient. This approach provides better security
while still letting people work in many locations and in many devices.

"The Mobile Security Landscape" by Christoffer Kanig, presents a survey of the mobile

security landscape and discusses various security challenges, such as the increasing number of
mobile devices and the diversity of mobile operating systems [1].

v’/}:ﬁ ’
M |'| ‘ ACCESS CORPORATE
NETWORK
A [‘
a3

Q,

h

HOST ATTACKS =+, .

e Steal Sensitive Data

:.:... ’ @

Compromise Brand

I - a ..
~ g .
o ot COMPROMISED -«
. DEVICE
ACCESS CLOUD SERVICES
—
\“__‘_._'_/’

Compromise Other
Employees

NETWORK ATTACKS

Figure 1: Mobile Security Landscape Categories.

Assessing the Security Risks of Medical Mobile Application — 10
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

2.1.1 Device-Side Security Threats

Enterprises nowadays have a BYOD (bring-your-own-device) policy in place. It allows the
employees to use their personal mobile devices to install enterprise apps or connect them to the
office network. By doing so, mobile devices automatically become a potential weak endpoint
exposing the organization to external threats.

The threats personal mobile devices carry, range from insecure mobile apps, too few
restrictions regarding applications accessing the data stored on the device, as well as OS
vulnerabilities. A malicious app installed on the user's phone can easily harvest credentials used to
connect to the organization's network. These are just some of the examples of how a mobile device
can be a potential threat to an enterprise's security infrastructure. Educate your employees about
the threats and consequences a cyberattack can cause.

To protect against these device-side security threats, users should always keep their
device's operating system up-to-date, use strong passwords or biometric authentication, avoid
downloading apps from untrusted sources, and enable device encryption if available. Additionally,
users should be cautious when giving physical access to their devices and should always be aware
of their device's security settings.

The device-side security threats can be divided to the below categories:

Data Leaks

Data leaks can occur in various ways, such as through malicious apps, phishing attacks, unsecured
networks, and physical theft or loss of devices. Once sensitive information is leaked, it can be used
for various malicious purposes such as identity theft, fraud, and cyber attacks.

According to various reports and studies, data leaks are becoming increasingly common in
the mobile security landscape. For example, in 2020, the nhumber of reported data breaches in the
United States reached a record high of over 1,000, with the majority of these incidents involving
mobile devices.

Some of the most common types of data leaked from mobile devices include personal
identifiable information (PIl) such as names, addresses, and Social Security humbers, financial
information such as credit card details and bank account information, and sensitive corporate
information such as trade secrets and intellectual property.

Respective analysis of privacy protection was performed by Joseph Chan Joo Keng [2] with
the goal of the correlation of user actions to data leaks.

To mitigate the risk of data leaks, it is important to take measures such as using strong
passwords, keeping mobile operating systems and apps up-to-date, avoiding unsecured networks,
using encryption and two-factor authentication, and being cautious of suspicious emails or
messages. Additionally, users can also consider using mobile security software that can help detect
and prevent data leaks.

Open WiFi
Open WiFi networks are wireless networks that do not require a password to connect, and they are
often found in public places such as cafes, airports, and hotels.

The security risks associated with open WiFi networks are mainly due to the fact that they
are unencrypted, which means that any data transmitted over these networks is vulnerable to
interception and eavesdropping by cybercriminals. This can include sensitive information such as
passwords, usernames, credit card details, and other personal information. Related work, examined
the users’ awareness of privacy leakage in public hotspots [3].

Hackers can use various methods to intercept data transmitted over open WiFi networks,
such as man-in-the-middle (MITM) attacks, where they intercept and modify data packets sent

Assessing the Security Risks of Medical Mobile Application — 11
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

between the user and the internet, or they can set up rogue access points that mimic legitimate
networks to trick users into connecting.

Phishing attacks

Phishing is a type of cyber attack where an attacker impersonates a trusted entity, such as a bank
or a social media site, to trick the victim into revealing sensitive information such as usernames,
passwords, and credit card details. Can occur through various channels, including email, text
messages, social media, and messaging apps. In the context of mobile devices, phishing attacks
may target users through mobile-specific channels such as push notifications or mobile-specific
apps [4].

Phishing attacks are designed to exploit human vulnerabilities, such as trust and urgency,
to trick users into taking actions that compromise their security. For example, a phishing email may
contain a link to a fake login page that looks like the legitimate site, where the user is prompted to
enter their login credentials. Once the user enters their credentials, the attacker can use them to
gain access to their accounts.

Mobile applications lack security properties such as confidentiality, authentication,
authorization, data integrity, and non-repudiation. So, mobile apps should be less trusted than
desktops [4] and the trust also depends on platform security of application permission in the
environment of either Android or iOS [5].

Spyware

Spyware is a type of malicious software that is designed to secretly monitor and collect information
from a device without the user's knowledge or consent. In the mobile security landscape, spyware
can be a serious threat to users, as it can compromise their privacy and security. Malware and
malicious software such as spyware, Trojans, and bots are used to carry out unauthorized
operations on a targeted system in order to steal information or disrupt the system [6].

Spyware can be installed on a mobile device through various methods, such as through
phishing attacks, app downloads, or even physical access to the device. Once installed, spyware
can monitor and collect various types of information, such as call logs, text messages, browsing
history, location data, and even keystrokes.

Some common types of malicious apps include those that steal user data, such as login
credentials and personal information, those that send spam messages or make unauthorized
charges, and those that hijack a device and use it to launch attacks on other devices or networks.

Malicious apps can be distributed through various channels, including unofficial app stores,
phishing websites, and even legitimate app stores if the app is able to bypass security measures.
Once installed, malicious apps can often run in the background without the user's knowledge,
allowing them to perform malicious activities undetected.

Apps with weak security

Apps with weak security can pose a significant threat to users, as they can expose them to various
types of cyber attacks and data breaches. Weak security in apps can manifest in various ways,
such as poor encryption practices, insecure data storage, or insufficient user authentication
measures [7].

If an app has weak security, it can make it easier for attackers to exploit vulnerabilities and

gain unauthorized access to sensitive data or user accounts. This can include personal and
financial information, as well as login credentials for other accounts associated with the user.

The risk posed by apps with weak security has become more significant with the increasing
use of mobile devices for sensitive transactions, such as online banking and shopping. A successful

Assessing the Security Risks of Medical Mobile Application — 12
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

attack on an app with weak security can result in significant financial losses for the user, as well as
reputational damage to the app's developer.

Out-of-date devices

Out-of-date devices may be more vulnerable to cyber attacks and exploits. When a device's
operating system or applications are not up-to-date, known vulnerabilities may remain unpatched,
leaving the device and its data at risk [8].

Attackers may exploit these vulnerabilities to gain unauthorized access to the device or
steal sensitive information, such as login credentials and personal data. They may also use the
device as part of a larger botnet, which can be used to carry out distributed denial-of-service
(DDoS) attacks and other malicious activities.

Identity theft

Attackers may be able to steal personal information, such as Social Security numbers and credit
card information, and use it to carry out fraudulent activities. Can occur through various methods,
such as phishing attacks, malware-infected apps, and social engineering. Attackers may use stolen
information to open new accounts in the victim's name, make unauthorized purchases, or even
apply for loans and credit cards.

Mobile devices are particularly vulnerable to identity theft, as they often contain a large
amount of personal information and are frequently used to access sensitive accounts, such as
banking and financial accounts. If a mobile device is lost or stolen, this can also increase the risk of
identity theft.

"Mobile Apps and Identity Theft: An Exploratory Study" by Harsh Verma, examines the
potential risks of identity theft associated with the use of mobile apps, including vulnerabilities in
app security, data breaches, and phishing attacks [9].

Operating system vulnerabilities

The operating system (OS) of a mobile device is a critical component that can significantly impact
the overall security of the device. The OS is responsible for managing various functions of the
device, including access to data, hardware, and applications, and can be vulnerable to a wide range
of security threats.

Mobile OS security threats can include malware infections, remote exploits, and
vulnerabilities in the code of the OS itself. Malware can compromise the device's security by
stealing sensitive data, tracking the user's location and activities, and even taking control of the
device. Remote exploits can allow attackers to gain access to the device without the user's
knowledge or consent, while vulnerabilities in the code of the OS can leave the device open to
various types of attacks.

"An Analysis of Operating System Vulnerabilities in Mobile Devices" by Tuba Yavuz,
provides an analysis of operating system vulnerabilities in mobile devices, including the frequency
and severity of such vulnerabilities and their impact on mobile app security [10].

Physical Access

When a device falls into the wrong hands, an attacker can potentially gain access to sensitive
information, such as login credentials, personal data, and even financial information. Can occur
through various means, such as theft or loss of the device, as well as unauthorized access by
someone with legitimate access to the device. This can include family members, friends, or
colleagues who may be able to access the device when it is left unattended.

Assessing the Security Risks of Medical Mobile Application — 13
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

"Investigating the Security of Mobile Health Applications" by Karthikeyan Shanmugam,
investigates the security of mobile health applications and examines the impact of physical access
to devices on the confidentiality, integrity, and availability of sensitive health data [11].

Unauthorized access to device settings

Access to device settings can allow an attacker to make changes to the device's security settings or
install malicious applications without the user's knowledge. Can occur through various means, such
as social engineering attacks or the use of vulnerabilities in the device's operating system. Social
engineering attacks may involve tricking the user into providing their login credentials or other
sensitive information, while vulnerabilities in the operating system can allow an attacker to bypass
security measures and gain access to device settings.

"Mobile Application Security: A Survey" by Muazzam A. Khan and Muhammad Ali Babar,
provides a survey of mobile application security and discusses various security issues related to
unauthorized access to device settings [12].

Side-loading of apps

Sideloading is the process of installing an application onto a device from a source other than the
official app store. Can introduce security risks to a device, as applications downloaded from
unofficial sources may not have undergone the same level of scrutiny and testing as those available
on the official app store. This can lead to the installation of malicious applications or apps that have
vulnerabilities that can be exploited by attackers [26].

Additionally, side - loading may require users to grant permissions to the app that they may
not fully understand. This can allow the app to access sensitive data or device settings, which can
be exploited by attackers.

"A Survey of Android Security Threats and Defenses"” by Xiaoyin Wang, et al, provides a
survey of Android security threats and defenses, including side - loading apps and
countermeasures to mitigate these threats [13].

2.1.2 Application-Side Security Threats

Mobile security applications have been developed to address these risks, but they too are not
immune to side threats.

Jailbroken or rooted devices, which have been modified to allow users to bypass
restrictions imposed by the manufacturer or service provider, are one such threat. These devices
may allow malicious actors to gain access to sensitive information or take control of the device.

Reverse engineering is another threat that mobile security applications face. This process
involves analyzing and deconstructing the software to understand its inner workings, potentially
exposing vulnerabilities and allowing attackers to exploit them.

Hooking and debuggers are other techniques used by attackers to intercept data and
manipulate applications. They may be used to inject malicious code or to modify the behavior of the
application.

Poor encryption practices can also leave mobile security applications vulnerable to attack. If
encryption keys are not properly secured or if the encryption algorithm is weak, attackers may be
able to decrypt sensitive information.

Assessing the Security Risks of Medical Mobile Application — 14
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

JailBroken/Rooted Devices
Jailbroken or rooted devices are mobile devices that have undergone unauthorized modifications to
bypass security protocols and gain root access to the operating system [14].

"Protecting Sensitive Data in Untrusted Android Environments Using Trusted Execution
Environments" by Xiaojing Liao, presents a method for protecting sensitive data in untrusted
Android environments, including the detection of jailbroken/rooted devices [15].

"Detecting Jailbroken iOS Devices" by Julian Schitte and Eric Bodden, presents a method
for detecting jailbroken iOS devices, including the detection of jailbreak detection mechanisms used
by mobile apps.

These devices pose a significant security threat to application developers and end-users.
Here are some of the application side security threats for jailbroken/rooted devices that you can
consider for the current thesis:

1. Application Tampering: Jailbroken/rooted devices have elevated privileges, which allow
users to modify the behavior of applications. Hackers can use this to modify an application's
code, inject malicious code, or alter the behavior of the application, leading to security
breaches.

2. Data Theft: Jailbroken/rooted devices can allow unauthorized access to the device's file
system, enabling hackers to steal sensitive information such as login credentials, credit
card information, and personal data.

3. Malware Attacks: Hackers can distribute malware through third-party app stores, which are
commonly used on jailbroken/rooted devices. Malware can take control of the device, steal
data, or use the device for malicious activities.

4. Reverse Engineering: Hackers can use jailbroken/rooted devices to reverse engineer
applications to discover vulnerabilities that can be exploited to launch attacks against other
devices or networks.

5. App Store Abuse: Jailbroken/rooted devices can bypass app store restrictions, allowing
users to download and install untrusted applications. These applications may contain
malware or be used to launch attacks on other devices.

6. Debugging: Debugging tools can be used on jailbroken/rooted devices to gain insights into
the application's behavior, including sensitive data such as encryption keys.

Reverse Engineering
Reverse engineering is the process of analyzing a product or device to understand its design and
functionality.

"A Survey on Reverse Engineering of Android Applications” by Hui Wang and Xinming Ou,
provides a comprehensive survey on the reverse engineering of Android applications, including
various reverse engineering techniques and tools [16].

In the context of mobile apps, reverse engineering is often used to analyze the code and
resources of an app to understand how it works and potentially extract sensitive information.

There are various tools and techniques that can be used for reverse engineering mobile
apps. Some of the commonly used tools include:

1. Decompilers: These tools can be used to decompile the compiled code of an app, which
can help in understanding how the app works and potentially identifying any vulnerabilities or
weaknesses.

2. Debuggers: Debuggers can be used to step through the code of an app and identify any
bugs or vulnerabilities that may exist.

3. APK Extractors: These tools can be used to extract the APK (Android Application
Package) file of an app, which can then be analyzed using other tools.

Assessing the Security Risks of Medical Mobile Application — 15
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

4, Obfuscation: Some developers use obfuscation techniques to make it harder to reverse
engineer their apps. Obfuscation tools can be used to reverse the effects of these techniques and
gain a better understanding of the app's code.

Reverse engineering can be used for legitimate purposes, such as analyzing the code of an
app to identify security vulnerabilities and improve its security. However, it can also be used for
malicious purposes, such as stealing intellectual property or personal data. Therefore, it is important
to use reverse engineering tools and techniques responsibly and ethically.

Hooking Attacks

Hooking attacks in mobile apps involve an attacker intercepting the flow of code execution in an app
and modifying it to their advantage.

"Hooking Detection Techniques for Mobile Applications" by Timothy D. Morgan, presents a
survey of hooking techniques used in mobile application security, along with detection techniques to
identify and prevent hooking attacks [17].

"A Survey of Hooking Techniques and Their Applications" by Jiong Zhang and Xiaolin Gui,
provides an overview of hooking techniques used in various applications, including mobile apps,
and analyzes their security implications [18].

The attacker can use these attacks to bypass security measures, steal sensitive data, or
perform other malicious actions.

There are several types of hooking attacks that can be carried out on mobile apps,
including:
1. Function Hooking: In this type of attack, an attacker modifies the function calls in an app
to redirect the flow of code execution to a malicious function.

2. Method Swizzling: Method swizzling is a technique used by iIOS developers to dynamically
replace the implementation of a method at runtime. Attackers can use this technique to
replace legitimate code with malicious code.

3. Inline Hooking: In this type of attack, an attacker modifies the instructions of an app's code
to redirect it to a malicious function.

4. Memory Hooking: Memory hooking involves modifying the memory of an app to redirect its
execution to a malicious function.

To carry out a hooking attack, an attacker needs to have access to the code of the app,
which can be obtained through reverse engineering techniques. Once the code has been analyzed,
the attacker can identify the functions and methods that can be hooked and modified.

To protect against hooking attacks, developers can implement security measures such as
code obfuscation, anti-debugging techniques, and integrity checks. They can also use runtime
protection mechanisms such as binary code signing and encryption to prevent attackers from
tampering with the app's code.

Debuggers
There are several tools examples of tools used for debugger-based attacks in mobile apps:
Debuggers are software tools used by developers to analyze and debug the code of an application.
However, they can also be used by attackers to steal sensitive information from mobile apps.
Attackers can use debuggers to modify the execution of an app's code to their advantage,
intercept and inspect network traffic, and access sensitive data such as usernames, passwords,
and other personal information. They can also use debuggers to bypass security measures
implemented by the app.

Assessing the Security Risks of Medical Mobile Application — 16
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

"Debugger Detection Techniques for Android Applications" by Samaneh Tajalizadehkhoob,
proposes a set of techniques to detect the use of debuggers in Android applications, which can be
used to prevent or mitigate attacks that rely on debuggers [19].

To carry out a debugger-based attack, the attacker needs to have physical access to the device or
use other techniques such as jailbreaking or rooting to gain access to the app's code. Once the
code has been accessed, the attacker can use a debugger to analyze the app's behavior, identify
vulnerabilities, and steal sensitive information.

1. Frida: Frida is a dynamic instrumentation tool that allows attackers to inject their
own code into the runtime of an application, modify its behavior, and steal sensitive
information.

2. Xposed: Xposed is a framework that allows attackers to modify the behavior of an
app by intercepting method calls and replacing them with their own code.

3. JDB: JDB is a powerful debugger that can be used to inspect and modify the code
of an app.

4. IDA Pro: IDA Pro is a disassembler and debugger that can be used to analyze and
reverse-engineer the code of an app.

5. Hopper: Hopper is a reverse engineering tool that can be used to disassemble,
decompile, and debug the code of an app.

These tools can be used by attackers to steal sensitive information such as passwords,
banking information, and personal data.

To protect against debugger-based attacks, developers can implement security measures
such as code obfuscation, anti-debugging techniques, and runtime protection mechanisms such as
binary code signing and encryption. Additionally, developers can implement security best practices
such as secure coding, data encryption, and secure communication protocols to minimize the risk of
data theft.

Screen Recording

Screen recording mobile apps can be used by attackers to record and steal sensitive information
such as login credentials, personal information, and banking information.

"Detecting Screen Capture-based Attacks on Android Devices Using Motion Sensors" by
Alireza Sadeghi, proposes a technique for using motion sensors to detect screen capture-based
attacks on Android devices [20].

These apps allow the attacker to record the user's screen and capture any information that
is displayed on it.

Here are some examples of screen recording mobile apps that can be used for malicious

purposes:

1. AZ Screen Recorder: AZ Screen Recorder is a popular screen recording app that
can be used to record the screen of an Android device.

2. DU Recorder: DU Recorder is another screen recording app that can be used to
capture the screen of an Android device.

3. iOS Screen Recorder: iOS Screen Recorder is an app that can be used to record
the screen of an iPhone or iPad.

4. AirShou: AirShou is a screen recording app that can be used to capture the screen
of an iOS device.

5. Mobizen: Mobizen is a screen recording app that can be used to capture the

screen of an Android device.

Attackers can trick users into downloading these apps by disguising them as legitimate
apps or by using social engineering techniques such as phishing attacks. Once the app is installed

Assessing the Security Risks of Medical Mobile Application — 17
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

on the user's device, the attacker can use it to record the user's screen and capture sensitive
information.

Poor Encryption/Storage

Mobile apps can store data insecurely on the device itself or in cloud storage. If the data is not
properly encrypted or protected, it can be easily accessed by unauthorized parties.

"Security Analysis of iOS Password Vaults" by Andi Bejleri, examines the security of
password vaults in iOS apps, and identifies a number of vulnerabilities related to poor encryption
and storage practices [21].

"Encryption in Android Applications: A Comparative Study" by Sami Qasem, compares the
encryption practices of different Android apps, and identifies a number of weaknesses and
vulnerabilities [22].

Mobile apps often store sensitive data such as user credentials, personal information, and
financial data. If this data is not properly encrypted and stored, it can be vulnerable to theft and
misuse by attackers.

Some examples of poor encryption/storage practices that can make mobile apps vulnerable
to attack are categorized below:

1. Storing data in plain text: If sensitive data is stored in plain text, it can be easily
accessed by attackers who gain access to the app's data storage.

2. Using weak encryption: If the app uses weak encryption algorithms or keys,
attackers can easily crack the encryption and access the sensitive data.

3. Storing encryption keys in the app's code: If the app's encryption keys are
stored in the app's code, they can be easily extracted by attackers who reverse engineer
the app.

4, Failing to implement secure data transfer protocols: If the app fails to
implement secure communication protocols such as SSL/TLS, attackers can intercept and
steal data transmitted over the network.

To protect against poor encryption/storage practices, developers should implement strong
encryption algorithms and keys, and store encryption keys securely, such as using hardware
security modules (HSMs) or key management services (KMS). They should also use secure
communication protocols such as SSL/TLS to protect data during transmission.

Insecure Application Code

Insecure application code is a major vulnerability for mobile apps. If the app's code contains
security flaws or vulnerabilities, it can be exploited by attackers to steal sensitive data or gain
unauthorized access to the device.

"Analyzing the Security of Third-Party iOS Applications" by Matthew Smith and Sam Small,
investigates the security of third-party iOS apps, and finds that many of these apps contain insecure
coding practices that can lead to vulnerabilities [23].

Here are some examples of insecure application code practices that can make mobile apps
vulnerable to attack:

1. Input validation: If the app fails to properly validate user input, it can be vulnerable to
attacks such as SQL injection and cross-site scripting (XSS).

2. Insecure data storage: If the app stores sensitive data in insecure locations or fails to
properly encrypt the data, it can be vulnerable to theft and misuse by attackers.

Assessing the Security Risks of Medical Mobile Application — 18
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

3. Authentication and authorization: If the app fails to properly authenticate users or
authorize access to sensitive data, it can be vulnerable to attacks such as brute force
attacks and session hijacking.

4. Lack of server-side controls: If the app relies solely on client-side controls, it can be
vulnerable to attacks such as tampering and reverse engineering.

To protect against insecure application code, developers should follow secure coding
practices and regularly perform security testing to identify and address vulnerabilities in the app's
code. They should also implement security measures such as input validation, encryption, and
server-side controls to protect sensitive data and prevent unauthorized access.

Insecure Communication

Insecure communication is a significant vulnerability for mobile apps. If the app fails to implement
secure communication protocols, such as SSL/TLS, it can be vulnerable to attacks such as
eavesdropping, man-in-the-middle attacks, and data interception.

"Analysis of Insecure Communication Channels in Mobile Applications" by Shubham Jain
and Pramod Kumar. This paper analyzes the insecure communication channels used in mobile
apps and identifies potential security vulnerabilities [24].

Here are some examples of insecure communication practices that can make mobile apps
vulnerable to attack:

1. Failure to implement secure communication protocols: If the app fails to use secure
communication protocols such as SSL/TLS, attackers can intercept and steal data
transmitted over the network.

2. Insecure Wi-Fi connections: If the app connects to insecure Wi-Fi networks, attackers can
intercept and steal data transmitted over the network.
3. Insufficient encryption: If the app uses weak encryption algorithms or keys, attackers can
easily crack the encryption and access the sensitive data.
4. Unencrypted data transmission: If the app transmits sensitive data in plain text, attackers
can easily intercept and steal the data.
For protecting purposes, developers should implement secure communication protocols
such as SSL/TLS to protect data during transmission. They should also use strong encryption
algorithms and keys, and avoid transmitting sensitive data in plain text.

Social Engineering

Attackers can use social engineering tactics, such as phishing and other forms of deception, to trick
users into installing malicious apps or providing sensitive information.

Social engineering tools are not specific to hacking mobile apps but rather are designed to
exploit human vulnerabilities to gain access to sensitive information or systems.

"Mobile Application Security and Social Engineering Attacks: A Review" by S. A. E.
Alshehri, reviews the security challenges in mobile app development and the different types of
social engineering attacks on mobile apps [25].

Social engineering tools and techniques that attackers might use to hack mobile apps:
1. Phishing: Attackers may use phishing emails or text messages that appear to be from a
legitimate source to trick users into divulging sensitive information such as login credentials.

2. Pretexting: Attackers may impersonate a trustworthy person or organization, such as a
bank or IT support staff, to gain access to sensitive information.

3. Baiting: Attackers may leave physical devices or digital files containing malware in a public
place, in the hope that someone will take the bait and open the file or plug in the device.

Assessing the Security Risks of Medical Mobile Application — 19
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

4. Tailgating: Attackers may follow an authorized person into a restricted area or access a
secure system by posing as an authorized user.

Protecting against social engineering attacks, users should be cautious when responding to
unsolicited emails, text messages, or phone calls that request sensitive information. They should
also be wary of opening attachments or clicking on links in emails or text messages from unknown
sources. In addition, users should be cautious when using public Wi-Fi networks and avoid
downloading apps from untrusted sources.

2.1.3 Network-Side Security Threats

Employees are no strangers to connecting their mobile devices to public Wi-Fi. Without an added
security layer, the mobile device is left vulnerable to man-in-the-middle (MitM) attacks. Combined
with weak or no end-to-end encryption at all, the data stored on the mobile device could be easily
targeted by a hacker. Fake Wi-Fi set up by hackers, also known as network spoofing, is a great
way of baiting unsuspecting users to connect to free Wi-Fi. What follows is the user submitting their
login credentials for a particular service, and the hacker in charge of the fake Wi-Fi is in possession
of sensitive data.

Mobile network-side security threats refer to vulnerabilities or risks that affect the cellular
network infrastructure and communication channels between mobile devices and network servers.
Here are some common mobile network-side security threats:

Man-in-the-middle attacks

This type of attack involves a hacker intercepting the communication between two devices and
inserting themselves into the conversation. This can allow the attacker to steal data or modify the
data being sent.

"A Survey on Mobile Man-in-the-Middle Attacks" by S. Wang et al, presents a
comprehensive survey on mobile Man-in-the-Middle (MitM) attacks, including attack vectors,
detection techniques, and countermeasures [27].

Denial of Service (DoS) attacks

A DoS attack is a type of attack that floods a network with traffic, making it unusable for legitimate
users. These attacks can disrupt mobile network services, making it difficult for users to make calls,
send messages or access the internet.

"Detecting and Mitigating Flooding Attacks on Mobile Devices" by A. Alshehri, proposes a
mechanism for detecting and mitigating flooding attacks on mobile devices [28].

Malware Infections

Malware can infect mobile network infrastructure and servers, allowing attackers to gain access to
sensitive data or manipulate the network for their own purposes.

"A Study on the Prevalence of Malware in Android Applications" by A. Alzahrani, presents a
study on the prevalence of malware in Android applications and identifies the different types of
malware found in the applications [29].

Authentication and encryption weaknesses

Mobile networks rely on authentication and encryption to protect communication between devices
and the network. However, weaknesses in these mechanisms can be exploited by attackers to gain
access to sensitive data.

Assessing the Security Risks of Medical Mobile Application — 20
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

"Security Vulnerabilities in Mobile Communication Protocols" by M. M. Islam et al, explores
the security vulnerabilities in mobile communication protocols, including the authentication and
encryption mechanisms used in these protocols [30].

Network Spoofing

Network spoofing is another type of mobile network-side security threat. It involves an attacker
impersonating a legitimate network to intercept or manipulate communication between devices and
the network.

"Security Analysis of Mobile Applications and Mitigation Strategies Against Network
Spoofing Attacks" by A. Khelifi, analyzes the security of mobile applications and proposes mitigation
strategies against network spoofing attacks, including man-in-the-middle attacks [31].

2.1.4 User-Side Security Threats

Mobile user-side security threats refer to security risks that originate from user behavior or actions,
rather than from the mobile device or app itself. Poor password security is a common user-side
security threat, as users often choose easily guessable or reused passwords that can be easily
cracked. Unsecured Wi-Fi networks also pose a risk, as they can be easily intercepted by attackers
to steal sensitive information. Outdated software is another common threat, as older software
versions may have known vulnerabilities that can be exploited by attackers to gain access to the
device or data.

Poor password security

Poor password security can make it easier for attackers to gain unauthorized access to their
accounts and sensitive information. Poor password security can manifest in various ways, such as
using weak passwords, reusing passwords across multiple accounts, and not changing passwords
frequently enough.

"Weak Password Analysis of Mobile Users" by J. Alnabulsi, S. Khan, and I. A. Khan,
presented at the 2020 IEEE International Conference on Innovations in Information Technology
(IIT), examines the issue of weak password usage among mobile users. The authors conducted a
survey of 206 mobile users to analyze the characteristics of their passwords, and found that a
significant proportion of users chose weak passwords that are easily guessable or crackable. The
paper also provides recommendations for improving password security on mobile devices [32].

If a user's password is compromised, an attacker may be able to gain access to their
accounts, steal sensitive data, and carry out fraudulent activities. This can include financial
transactions, as well as accessing personal and confidential information.

Unsecured Wi-Fi Networks

Public Wi-Fi networks are often unsecured, which can make it easy for hackers to intercept user
traffic and steal sensitive data. Attackers can set up fake Wi-Fi networks to lure users into
connecting, or they can use specialized tools to eavesdrop on traffic on legitimate networks.

Goyal, S., & Singh, G, discusses the risks associated with using mobile applications on
unsecured Wi-Fi networks and provides recommendations for users to stay safe while using such
networks. It also proposes a framework for testing the security of mobile applications on Wi-Fi
networks [33].

Outdated Software

Assessing the Security Risks of Medical Mobile Application — 21
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Outdated software can contain security vulnerabilities that can be exploited by attackers to gain
access to user data or control over the device.

"A Study on the Risk of Using Outdated Applications in Mobile Devices" by S. Ryu, Y. Jang,
and H. J. Kim, presented at the 2017 4th International Conference on Information Science and
Control Engineering (ICISCE), focuses on the risks associated with using outdated mobile
applications. The authors analyze the impact of outdated applications on mobile device security and
propose a system that identifies and mitigates such risks. The paper concludes that the use of
outdated applications on mobile devices can pose a significant security threat, and recommends
that users keep their apps updated to minimize such risks [34].

2.2 Mobile Operating Systems

Mobile operating systems (OS) are software platforms that provide the necessary environment for
running mobile applications and managing hardware resources on mobile devices such as
smartphones and tablets. They serve as the intermediary between the hardware and software
layers, enabling users to interact with their devices and access various services and applications.

Android is an open-source mobile operating system developed by Google, which is
designed to run on a variety of mobile devices such as smartphones, tablets, and smartwatches. It
has a large user base and a wide range of app offerings on the Google Play Store. Android is
known for its flexibility and customization options, but also for its fragmentation due to the diverse
hardware and software configurations across different devices.

iOS, on the other hand, is a proprietary mobile operating system developed by Apple for its
iPhone, iPad, and iPod Touch devices. It is known for its user-friendly interface and seamless
integration with other Apple devices and services. iOS has a curated App Store with strict guidelines
for app approval, which helps maintain its reputation for security and reliability. However, iOS is less
customizable than Android due to its closed system architecture.

2.2.1 Android Operating System

Android is a popular operating system developed by Google for mobile devices, such as
smartphones, tablets, and smartwatches. Android is based on the Linux kernel and uses a modified
version of the Java programming language. It was first released in 2008 and has since become one
of the most widely used mobile operating systems, powering more than 2 billion active devices
worldwide.

Android offers a customizable and flexible user interface, with a variety of pre-installed apps
and the ability to download additional apps from the Google Play Store. Android also provides
support for multi-tasking, allowing users to run multiple apps at the same time.

One of the key features of Android is its open-source nature, which allows developers to
customize and modify the operating system to suit their needs. This has led to a large community of
developers creating custom ROMs and modifications to the Android operating system.

However, the open-source nature of Android also presents some security risks, as it can be
more vulnerable to malware and other types of attacks. To address these risks, Google provides
regular security updates to the Android operating system, as well as a suite of security features,
such as app sandboxing, permission controls, and secure boot.

Overall, Android is a powerful and flexible operating system that offers a wide range of
features and customizability for users, but it also requires vigilance to protect against security risks.

Android provides several security features to protect users and their devices from threats.
Some of these security features are:

Google Play Protect

Assessing the Security Risks of Medical Mobile Application — 22
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Google Play Protect developed by Google for Android devices. It is built into the Google Play Store
app and is designed to continuously scan apps that are installed on a device to detect potential
security threats such as malware, spyware, and harmful apps. It uses machine learning algorithms
and data analytics to detect suspicious behavior and patterns in apps and on-device activity [35].

As per Google, Play Protect is enabled by default on all Android devices running Google
Play Services 11 or higher. Users can access the Play Protect feature by going to the Google Play
Store app and clicking on the three-line menu icon in the top left corner, then selecting "Play
Protect” from the drop-down menu. The feature provides users with information on the status of
their device's security, including the last time it was scanned and any detected security threats.

App Sandboxing

App sandboxing used in mobile operating systems, including Android, that limits the permissions
and resources available to an app. The app is confined to a sandbox, which is a separate and
isolated environment where it can only access the resources that it has been granted permission to
access. This helps to prevent malicious apps from accessing sensitive information or causing
damage to the device [36].

In Android, app sandboxing is enforced through a combination of kernel-level security
features and the Android permission system. The Android permission system allows users to
control which resources an app can access, such as the camera or microphone, while the kernel-
level security features prevent apps from accessing resources outside of their designated sandbox.

Permissions System

The Android operating system provides a permission system that allows users to control the access
that apps have to sensitive data and device features. This permission system serves as an
important security feature in Android apps, as it ensures that apps are not granted access to
sensitive data or device features without the user's consent [37].

When an app requests permission to access a sensitive data or device feature, such as the
camera or location, the Android system presents a permission prompt to the user. The user can
then decide whether or not to grant the permission request. If the user denies the permission
request, the app is not granted access to the requested data or feature.

The permission system in Android also provides users with the ability to view and manage
the permissions that have been granted to each installed app. Users can revoke permissions at any
time if they no longer trust an app or want to limit its access to sensitive data or features. It is
important for app developers to understand how the permission system works and to use it
appropriately in their apps to ensure that user data and device features are not compromised.

Verified Boot

Verified Boot ensures the integrity of the operating system and other software components during
the boot process. It works by verifying the digital signature of each component before allowing it to
execute. If the signature is invalid or does not match the expected value, the boot process is halted,
and the user is notified that their device may be compromised [38].

Verified Boot is implemented in the Android operating system using a technology called dm-
verity. This technology uses cryptographic hashes to verify the integrity of each file in the system
partition, including the kernel, the device tree, and the system image. When the device boots up,
the bootloader checks the integrity of each file by verifying its hash against a known value stored in
the device's read-only memory (ROM). If the hashes do not match, the device refuses to boot up,
indicating that the system has been tampered with [39].

Assessing the Security Risks of Medical Mobile Application — 23
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

In addition, it protects against a class of attacks known as bootkits. Bootkits are malicious
software that infects the bootloader, allowing attackers to control the device even before the
operating system has loaded. By verifying the integrity of the bootloader and other critical
components, Verified Boot makes it much more difficult for attackers to execute these types of
attacks.

Encryption

Encryption protects sensitive data stored on the device from unauthorized access. Android provides
built-in support for both full-disk encryption and file-based encryption [40].

Full-disk encryption (FDE) protects the entire device by encrypting all user data on the
device's internal storage. When the device is locked, the encryption keys are discarded, making it
virtually impossible for anyone to access the data without the correct credentials. Android devices
running version 6.0 (Marshmallow) and later are required to implement FDE by default.

File-based encryption (FBE) is a more flexible form of encryption that allows individual files
to be encrypted using different keys. This makes it possible to encrypt only sensitive data while
leaving other data unencrypted for faster access. Android devices running version 7.0 (Nougat) and
later are required to implement FBE by default.

Android also provides a framework for developers to implement encryption in their apps
using the Android Keystore system. The Keystore system provides a secure location for storing
encryption keys and other sensitive data, making it more difficult for attackers to access them.

Google Play app review process

The Google Play app review process helps ensure the safety and security of apps available on the
Google Play Store. The review process is designed to identify and remove apps that violate
Google's policies or could potentially harm users' devices or data [41].

The review process includes both automated and manual checks. Automated checks use
machine learning algorithms to scan apps for common security issues, such as malware, phishing,
and deceptive behavior. Manual checks are performed by human reviewers who examine apps in
more detail, looking for issues such as inappropriate content or behavior.

In addition to the initial review process, Google also monitors apps on an ongoing basis to
ensure they continue to meet its policies and standards. Apps that are found to violate Google's
policies are removed from the Play Store, and developers may be subject to further action, such as
account suspension or termination.

By implementing a thorough app review process, Google helps ensure that the apps
available on the Play Store are safe and secure for users to download and use.

Security Updates

Security updates can protect devices from known vulnerabilities and exploits. Android devices
receive security updates from the device manufacturer or carrier, and Google provides monthly
security patches for its own devices, as well as regular security updates for the Android operating
system itself [42].

Security updates typically address known vulnerabilities in the operating system or other
software components, such as the browser or messaging app. These vulnerabilities can be
exploited by attackers to gain access to the device or steal data, so it is essential that devices are
kept up to date with the latest security patches.

In addition to providing security updates, Google also works closely with device
manufacturers and carriers to ensure that devices receive timely updates. This can be a challenge,

Assessing the Security Risks of Medical Mobile Application — 24
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

as many devices are sold with custom versions of Android that may require additional testing and
development before they can be updated [43].

To help address this challenge, Google has introduced Project Treble, a major restructuring
of the Android operating system that makes it easier for device manufacturers to provide updates.
Project Treble separates the device-specific code from the core Android operating system, making it
easier for manufacturers to update devices without having to make significant changes to the
underlying code.

2.2.2 10S Operating Systems

iOS is the mobile operating system developed by Apple for their iPhones, iPads, and iPod Touch
devices. It was first released in 2007 and has since become one of the most popular mobile
operating systems, known for its user-friendly interface, security, and privacy features.

One of the key features of iOS is its closed-source nature, which means that only Apple can
modify and update the operating system. This allows Apple to have greater control over the security
and stability of the system, as well as the quality of the apps available on the App Store.

iOS also offers a wide range of features, including Siri, a voice-controlled personal
assistant, and the ability to use Apple Pay for mobile payments. Additionally, iOS provides support
for multi-tasking, allowing users to switch between apps quickly and easily.

In terms of security, iOS is known for its strict app review process, which ensures that all
apps on the App Store meet Apple's guidelines and do not contain malware or other malicious
code. Additionally, iOS provides a range of security features, such as Touch ID and Face ID
biometric authentication, app sandboxing, and secure boot.

Overall, iOS is a powerful and user-friendly mobile operating system that offers a wide
range of features and strong security and privacy protections. However, because it is a closed-
source system, it can be less flexible and customizable than some other mobile operating systems,
such as Android.

App Store Review Process

The App Store Review Process ensures the safety and security of apps available on the Apple App
Store. The review process is designed to identify and remove apps that violate Apple's policies or
could potentially harm users' devices or data [44].

The review process includes both automated and manual checks. Automated checks use
algorithms to scan apps for common security issues, such as malware, phishing, and deceptive
behavior. Manual checks are performed by human reviewers who examine apps in more detail,
looking for issues such as inappropriate content or behavior.

In addition to the initial review process, Apple also monitors apps on an ongoing basis to
ensure they continue to meet its policies and standards. Apps that are found to violate Apple's
policies are removed from the App Store, and developers may be subject to further action, such as
account suspension or termination.

By implementing a thorough app review process, Apple ensure that the apps available on
the App Store are safe and secure for users to download and use.

Touch ID and Face ID

Touch ID and Face ID are security features in iOS that use biometric authentication to protect user
data and sensitive information stored on the device. Touch ID uses a fingerprint scanner embedded
in the device's Home button, while Face ID uses facial recognition technology to authenticate users
[45].

Assessing the Security Risks of Medical Mobile Application — 25
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

These technologies allow users to unlock their devices or authenticate within apps without
having to enter a password or passcode manually, making it more convenient and faster to access
their devices and apps. Additionally, biometric authentication can be more secure than traditional
passwords or passcodes since they are unique to each individual and more difficult to replicate or
guess.

To ensure user privacy and security, Apple has implemented several measures to protect
biometric data. Biometric data is stored securely on the device's secure enclave, a special hardware
component separate from the device's main processor that is designed to store sensitive
information. The biometric data is never shared with Apple or other third parties and is only used to
authenticate the user on the device [46].

Secure Enclave

The Secure Enclave consists of a secure environment for the storage and processing of sensitive
information, such as biometric data (e.g. fingerprints for Touch ID, face data for Face ID),
cryptographic keys, and other authentication-related information.

The Secure Enclave is a separate hardware component embedded within the device's
processor, with its own secure boot process and isolated memory space. This ensures that
sensitive information stored in the Secure Enclave is protected from potential security threats, such
as malware or unauthorized access attempts [47].

For the fact of protecting sensitive information, the Secure Enclave is also responsible for
performing secure operations, such as cryptographic operations for encryption and decryption. This
ensures that sensitive data is only accessed by authorized users or processes and that
cryptographic operations are performed securely.

Data Protection

Data protection is equivalent to the encrypted data stored on the device. This includes data such as
user passwords, application data, and other sensitive information. When data protection is enabled,
iOS uses a combination of hardware and software encryption to protect data stored on the device.
This encryption is based on a unique device-specific encryption key that is generated when the
device is first set up. The encryption key is protected by the device's secure enclave, ensuring that
it cannot be accessed or extracted by unauthorized parties [47].

iOS also provides additional protections to prevent unauthorized access to data. This
includes measures such as requiring a passcode or biometric authentication to unlock the device,
and limiting the amount of time the device can be idle before requiring reauthentication.

Permissions System

The permissions system allows users to control what data and features an app can access on their
device. This helps protect user privacy and prevent apps from accessing sensitive information
without the user's knowledge or consent [47].

When an app requests access to a particular feature or data, such as the device's camera
or microphone, iOS prompts the user to grant or deny the request. Users can also view and
manage app permissions at any time by going to the device's Settings app and selecting the app in
question.

In addition includes other security features to prevent unauthorized access to data. For
example, apps are sandboxed, which means that each app is isolated from other apps and the
underlying operating system. This helps prevent malicious apps from accessing data or features
that they should not have access to.

Assessing the Security Risks of Medical Mobile Application — 26
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Two-Factor Authentication

Two-Factor Authentication (2FA) adds an additional layer of protection to user accounts by requiring
users to provide a second form of authentication in addition to a password or passcode. This helps
prevent unauthorized access to user accounts, even if a password or passcode has been
compromised [47].

In iOS, 2FA is typically implemented using a trusted device, such as an iPhone or iPad, that
is associated with the user's account. When 2FA is enabled, the user is required to enter a
verification code in addition to their password or passcode when logging into their account from a
new device or browser. The verification code is typically sent to the user's trusted device via text
message, push notification, or phone call.

In general includes other security features to protect user accounts. For example, iOS
includes a feature called "Sign in with Apple" that allows users to create and sign in to accounts
using their Apple ID. This feature includes additional privacy protections, such as the ability to
create a unique email address for each app or service that forwards to the user's real email
address, to help protect user privacy and prevent spam.

Automatic Updates

Automatic updates ensure that users are always running the latest version of the operating system
and apps on their device. This helps protect users from security vulnerabilities and other security
threats that may be present in older versions of software [47].

In iOS, users have the option to enable automatic updates for both the operating system
and apps. When automatic updates are enabled, iOS will automatically download and install
updates in the background, without requiring any action from the user.

Additionally, includes other security features to protect users from security threats. For
example, iOS includes a feature called "App Transport Security" that requires apps to use secure
HTTPS connections when communicating with servers over the internet. This helps prevent
attackers from intercepting and modifying data transmitted between the app and the server.

2.3 Medical Mobile Application Significance

Mobile medical applications, also known as "health apps"”, are software applications designed to
help people manage their health and wellness. These apps can be used to track health metrics,
manage medication schedules, communicate with healthcare providers, and more. The significance
of mobile medical applications lies in their ability to make healthcare more accessible and
convenient for people. By using these apps, patients can easily track their health data and
communicate with healthcare professionals, which can lead to more personalized and effective
care.

Mobile medical apps can also be used to address healthcare disparities by reaching people
in remote or underserved areas who may not have access to traditional healthcare services.
Additionally, mobile medical apps can help reduce healthcare costs by providing preventative care
and early intervention, which can ultimately lead to fewer hospitalizations and better health
outcomes.

2.3.1 Mobile Health - mHealth meaning

Mobile health, or mHealth, refers to the use of mobile devices, such as smartphones, tablets, and
wearable devices, to support healthcare and medical services. This includes a wide range of
applications and services that are designed to improve health outcomes, enhance patient care, and
provide healthcare professionals with better tools and resources.

Assessing the Security Risks of Medical Mobile Application — 27
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

mHealth technologies can be used for a variety of purposes, including remote monitoring of
patients, medication adherence tracking, access to health information and resources, and
communication between patients and healthcare providers. mHealth also enables the use of mobile
apps and other digital tools for health and wellness, such as fithess tracking, diet and nutrition
tracking, and mental health support (Figure 2).

Overall, mHealth is an important area of healthcare innovation that has the potential to
improve access to care, reduce costs, and enhance the quality of care for patients. As mobile
devices continue to become more ubiquitous and powerful, the potential for mHealth to transform
healthcare will only continue to grow.

Figure 2: Medical Mobile Applications usages.

Health and wellness apps

These apps are designed to help individuals manage their health and wellness, such as tracking
their fitness goals, monitoring their diet and nutrition, and managing their mental health. These apps
may also provide access to educational resources and support communities [48],[49],[50],[51].

Clinical and diagnostic apps

The design of the apps is to support clinical and diagnostic services, such as remote patient
monitoring, telemedicine, and mobile diagnostic tools. These apps can enable healthcare providers
to provide care to patients in remote or underserved areas, and can improve patient outcomes
through early detection and intervention [52],[53],[54],[55].

Electronic health records (EHRs) and personal health records (PHRS)

These apps point to allow patients and healthcare providers to access and manage health
information, such as medical history, test results, and medication records. EHRs and PHRs can
improve the coordination of care between healthcare providers, and enable patients to take a more
active role in their own healthcare [56],[57],[58].

Medical education and training apps

Supporting medical education and training, such as providing access to medical textbooks and
resources, facilitating remote medical education, and supporting continuing medical education for
healthcare professionals [59],[60].

Assessing the Security Risks of Medical Mobile Application — 28
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Health Information Systems

HIS support the management and analysis of health data, such as population health management,
public health surveillance, and health system performance monitoring [61],[62].

2.3.2 Values & Costs in Healthcare

Mobile medical apps can provide a range of values and benefits in healthcare, but they also come
with costs and potential risks. Some of the values and costs associated with mobile medical apps in
healthcare include the below listed categories.

VALUES OF MEDICAL MOBILE APPS

Improved patient outcomes

Mobile medical apps can support patient self-management and provide access to health information
and resources, leading to Dbetter patient outcomes and quality of life.
There are several ways in which medical mobile apps can lead to improved patient outcomes:

1. Increased patient engagement: Medical mobile apps can help patients to take a more
active role in managing their health. By providing patients with personalized information and
tools for tracking their health, these apps can help patients to better understand their
conditions and make more informed decisions about their care.

2. Improved medication adherence: Medical mobile apps can help patients to remember to
take their medications on time, which can improve medication adherence and reduce the
risk of complications.

3. Early detection of health problems: Some medical mobile apps allow patients to track
their symptoms and vital signs, which can help to detect health problems early on. This can
lead to earlier interventions and better outcomes.

4. Improved communication with healthcare providers: Many medical mobile apps allow
patients to communicate with their healthcare providers, which can improve care
coordination and reduce the risk of medical errors.

5. Increased access to healthcare: Medical mobile apps can provide patients with access to
healthcare resources and services that they may not have otherwise been able to access.
This can lead to better health outcomes for patients who may have difficulty accessing
traditional healthcare services.

Cost savings

Mobile medical apps can reduce healthcare costs by enabling remote monitoring and telemedicine
services, reducing hospital readmissions, and improving care coordination.

Here are a few ways in which medical mobile apps can help to reduce healthcare costs:

1. Reduced hospital readmissions: Patients can manage their conditions more effectively,
which can reduce the need for hospital readmissions. This can lead to cost savings for
healthcare providers and payers.

2. Improved medication adherence: As mentioned earlier, medical mobile apps can help to
improve medication adherence. This can reduce the risk of complications and the need for
costly medical interventions.

3. Early detection of health problems: By facilitating early detection of health problems,
medical mobile apps can help to prevent more serious health issues from developing. This
can reduce the need for expensive medical treatments and hospitalizations.

Assessing the Security Risks of Medical Mobile Application — 29
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Remote patient monitoring: Some medical mobile apps allow healthcare providers to
monitor patients remotely. This can reduce the need for in-person visits and allow
healthcare providers to intervene early if any issues arise. This can lead to cost savings for
healthcare providers and payers.

Improved care coordination: Improving care coordination between healthcare providers
and patients reducing the risk of medical errors and ensure that patients receive the most
appropriate and cost-effective care.

Convenience and accessibility

Regarding the convenience and accessibility, mHealth apps can improve access to healthcare
services and resources, especially for patients in remote or underserved areas.

Convenience and accessibility can be achieved by:

1.

24/7 access to health information: Access to health information anytime and anywhere,
making it easier for patients to stay informed about their health and manage their
conditions.

Virtual consultations: Some medical mobile apps allow patients to have virtual
consultations with healthcare providers, eliminating the need for in-person visits and saving
patients time and travel expenses.

Prescription renewals: Renew their prescriptions electronically, saving them time and
eliminating the need for a visit to the pharmacy.

Health tracking: Tracking patient symptoms, medications, and vital signs, providing
patients with a convenient way to monitor their health.
Reminder notifications: Sending reminder notifications to patients for medications,

appointments, and other healthcare-related activities, helping patients stay on track with
their health management.

Patient engagement

Patient engagement can be enriched by enabling patients to take a more active role in their own
healthcare, leading to better health outcomes and patient satisfaction.

Some ways in which medical mobile apps can promote patient engagement:

1.

Personalized information and resources: Providing evidences to patients with
personalized information and resources based on their health condition, preferences, and
needs. This can empower patients to take a more active role in their own healthcare.

Health tracking and monitoring: End — To — End tracking of symptoms, medications, and
vital signs. This can help patients to better understand their health and make more informed
decisions about their care.

Goal setting and progress tracking: Achieving health goals and track progress can
motivate patients to make positive changes to their health and stay engaged in their
healthcare.

Social support and community building: Social support features and community building
tools can connect patients together having similar health conditions and share experiences,
tips, and resources. This can create a sense of community and provide patients with
emotional support and motivation.

Patient education and empowerment: Educational resources and tools can help patients
understand their health conditions and treatment options. This can empower them to make
informed decisions about their healthcare.

Assessing the Security Risks of Medical Mobile Application — 30
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

COSTS OF MEDICAL MOBILE APPS

Involving a range of costs, depending on various factors such as development complexity,
maintenance requirements, hosting needs, regulatory compliance, and marketing efforts.
Development costs can include designing, coding, testing, and debugging the app, which can range
from a few thousand dollars to hundreds of thousands of dollars.

Maintenance costs may include ongoing updates and bug fixes, while hosting costs may
involve expenses associated with data storage and certain features. Regulatory compliance costs
can add to the expenses if the app handles sensitive patient information, and marketing costs may
be necessary to promote the app to attract users.

Security and privacy risks

Security and privacy risks, such as data breaches and unauthorized access to sensitive health
information can pose potential security and privacy risks to consider when evaluating the cost of
medical mobile apps:

1. Data breaches: mHealth apps can collect and store sensitive patient data, including
personal health information. If this data is not properly secured, it could be vulnerable to
hacking and data breaches.

2. Data sharing: Sharing patient data with third-party partners or advertisers, which could
compromise patient privacy.

3. Inadequate data encryption: Encrypting patient data to protect it from unauthorized
access. If the app does not use strong encryption methods, patient data could be
vulnerable to theft or misuse.

4. Malware and hacking: Medical mobile apps can be susceptible and vulnerable to malware
and hacking if they are not designed with strong security features. This could compromise
patient data and potentially harm patients.

5. User error: Users can pose security and privacy risks if they do not use the app correctly.
For example, if a patient uses a weak password or shares their login credentials with
others, their data could be compromised.

Technical issues and limitations

Technical limitations, such as compatibility issues with different devices and operating systems,
which can impact their effectiveness and usability.

There are several technical issues and limitations to consider when evaluating the cost of
medical mobile apps:

1. Device compatibility: Patients should ensure that they have access to compatible devices
before downloading or purchasing the app.

2. Network connectivity: The importance of a data plan or internet connection to use is
required, should help patients evaluate the cost of data plans and ensure that they can
access the app without incurring significant expenses.

3. Technical glitches and bugs: Technical glitches and bugs that can impact their
functionality and usability and anyone can be aware of potential issues and ensure that the
app is regularly updated and maintained by the app developer.

4. Limited features and functionality: Limited features and functionality, which can impact
usefulness for patients evaluating the features and functionality of the app to ensure that it
meets their needs and expectations.

5. Integration with other healthcare systems: Some medical mobile apps may not be fully
integrated with other healthcare systems, which can impact their effectiveness and
usefulness for patients. This can ensure that the app is compatible with their healthcare

Assessing the Security Risks of Medical Mobile Application — 31
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

providers and other healthcare systems to ensure seamless integration and care
coordination.

Limited evidence of effectiveness

Many mobile medical apps lack rigorous scientific evidence to support their effectiveness and
safety, which can raise concerns about their reliability and potential harm.

Here are a few factors to consider when evaluating the limited evidence of effectiveness
associated with medical mobile apps:

1. Lack of rigorous research: mHealth apps have not been rigorously tested through clinical
trials or other research methods, which can make it difficult to assess their effectiveness
and impact on patient outcomes.

2. Limited long-term data: Giving more details about limited data on long-term outcomes,
can conclude to the basic difficult to assess their impact on patient health and wellbeing
over time.

3. Limited data on specific patient populations: Limited data on specific patient populations
can impact their effectiveness and usefulness for those patients.

4. Variation in app quality: Medical mobile apps can vary widely in terms of quality,
functionality, and usability. This can impact their effectiveness and usefulness for patients.

5. App developer bias: App developers may have a vested interest in promoting their app
and may be biased in their assessment of its effectiveness and impact on patient outcomes.

Overall, the values and costs associated with mobile medical apps in healthcare will
depend on a range of factors, including the specific app and its intended use, the user population,
and the regulatory and security requirements. It's important for healthcare organizations and
providers to carefully evaluate mobile medical apps before adopting them, and to ensure that they
are secure, effective, and compliant with regulatory requirements.

2.3.3 New Technology

There are a variety of new technology medical mobile apps that have been developed in recent
years, ranging from apps that help patients manage chronic conditions to those that provide
telemedicine services and remote monitoring.

Artificial Pancreas

A closed-loop system that monitors blood glucose levels and automatically delivers insulin to
patients with type 1 diabetes, which involve a fully automated process for adjusting insulin delivery
based on the user's glucose levels. One example of this is the Control-IQ system from Tandem
Diabetes Care, which uses a mobile app to connect the CGM device and insulin pump and adjust
insulin delivery in real-time based on the user's glucose levels and other factors such as exercise
and meals [63].

Wearable health monitors

Devices that are worn on the body to track vital signs such as heart rate, blood pressure, and sleep
patterns. Real-Time Monitoring and Alerts of Mobile apps for wearable health monitors are also
incorporating real-time monitoring and alerts to help users stay on top of their health. For example,
some devices can alert users if their heart rate or blood pressure is outside of a normal range, or if
they need to take medication at a specific time [64].

3D printing

Assessing the Security Risks of Medical Mobile Application — 32
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Used to create customized implants and prosthetics, as well as surgical models for pre-operative
planning. 3D printing is also being used in the medical field, and mobile apps are being developed
to facilitate the design and printing of medical devices and implants. For example, a recent study
published in the Journal of 3D Printing in Medicine demonstrated the feasibility of using a mobile
app to design and print custom implants for craniofacial reconstruction [65].

Telehealth Platforms

These platforms enable remote consultations and virtual visits between patients and healthcare
providers. One of the most significant advancements in telehealth platform technology has been the
development of virtual visit capabilities. Patients can now connect with healthcare providers via
video chat, eliminating the need for in-person visits for routine check-ups or follow-up appointments
[66].

Minimally invasive surgical tools — Robotic surgery

Advanced surgical tools that allow surgeons to perform procedures with smaller incisions, reducing
patient pain and recovery time. Robotics technology is being integrated into minimally invasive
surgical tools, allowing for more precise movements and reducing the risk of human error. Mobile
apps can be used to control these robotic surgical tools remotely, allowing for more flexibility and
reducing the need for complex and expensive surgical equipment [67].

Wireless health sensors

Small, wireless sensors that can be implanted in the body to monitor vital signs or track medication
adherence. Wireless health sensors can be integrated with wearable devices such as fitness
trackers or smartwatches, allowing for continuous monitoring of health parameters such as heart
rate, blood pressure, and glucose levels [68].

Augmented reality (AR) and virtual reality (VR)

Used in medical training and education, as well as to help patients visualize their condition and
potential treatments. Augmented Reality (AR) and Virtual Reality (VR) Integration: AR and VR
technologies are being integrated into mobile apps for 3D printing to enhance the design and
printing process. For example, some apps allow users to view 3D models in AR, which provides a
more immersive experience and allows for better visualization of the finished product [69].

2.4 Related Work

Security analysis of mobile applications has been an active research area in recent years, due to
the widespread adoption and usage of mobile devices and apps. Several studies have
proposed various methods and tools for detecting and mitigating security vulnerabilities in mobile
apps.

Janaka Senanayake et al. proposed a method to develop secure Android applications by
mitigating code vulnerabilities with machine learning. They demonstrated that machine learning can
assist in identifying and mitigating code vulnerabilities in Android apps, thereby improving the
security of the applications [70]. Ashwag Albakri et al. conducted a survey on reverse-engineering
tools for Android mobile devices. They discussed various reverse-engineering tools used for
Android app analysis and presented a comparative analysis of the most popular tools [71]. Hilmi
Abdullah and Subhi RM Zeebaree conducted a comprehensive review of Android mobile application
vulnerabilities and prevention methods. They discussed the different types of vulnerabilities that
exist in Android apps and presented various prevention methods to mitigate these vulnerabilities

Assessing the Security Risks of Medical Mobile Application — 33
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

[72]. Juliza Mohamad Arif et al. proposed a fuzzy analytic hierarchy process-based method to
detect Android mobile malware. They demonstrated that their proposed method can effectively
detect malware with high accuracy [73]. Gioacchino Tangari et al. analyzed the security issues of
Android mobile health and medical applications. They identified the major security threats and
vulnerabilities that exist in these applications and presented recommendations for improving their
security [74].

Regarding to our analysis, the whole perspective covers the below three factors:

i) a malicious third-party app, which could be installed on a user’s device alongside the
vulnerable app and use its permissions to gain unauthorized access to sensitive data, ii) a physical
attacker, who gains access to the user’s device, either by stealing it or by accessing it while it is
unattended, and iii) a remote attacker, who has intercepted the network traffic between the app and
the relevant API.

Having in knowledge all the relevant security fields of analysis, some already published
references pointed in the analysis of specific mHealth applications around some categories: manual
inspection, dynamic analysis, static analysis, traffic analysis, insecure data storage, insecure
network and inter-app communication [75],[76],[77].

After analyzed the existing work, none of them have conducted a comprehensive manual
security analysis of multiple categories of medical apps on both Android and iOS platforms. The
specific work also expands upon the threat model used in related research. Specifically, looked at
the threat actor of a malicious third-party mobile app installed on the phone by developing a
methodology that looks for side channel leaks that could allow third-party apps on the device to
access sensitive data that belongs to the medical app. Finally, a good sample of 140 mHealth apps
for manual analysis allowed us to provide a more accurate view of the security posture of such apps
in both platforms of Android and iOS.

Assessing the Security Risks of Medical Mobile Application — 34
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

3 Methodology

In this chapter, is described the methodology used to analyze the security of Android applications
using a set of open-source security tools. The tools used in this research include Mobile Security
Framework (MobSF), Frida, Java Debugger (JDB), Android Debug Bridge (ADB), Apktool,
BurpSuite and Jarsigner. These tools were used in combination to obtain a comprehensive
understanding of the security of Android applications.

The objective of this research is to evaluate the effectiveness of these tools in identifying
and mitigating security vulnerabilities in Android applications. A set of Android applications have
been selected from the Google Play Store using a random sampling technique. These applications
cover a diverse range of categories, including games, social networking, finance, and productivity.
Virtual environment is needed to be implemented that replicates the Android operating system to
carry out the security analysis.

3.1 Security Tools

In this thesis, some security tools have been used for security analysis. In the below chapters some
key information is categorized per security tool and steps performed.

3.1.1 Android Debug Bridge

The Android Debug Bridge (ADB) [78], is a versatile command-line tool that allows developers and
advanced users to interact with an Android device or emulator from a computer. ADB is included in
the Android SDK (Software Development Kit) and can be installed on Windows, macOS, and Linux
operating systems.

ADB has several features that make it a powerful tool for debugging and testing Android
applications. Here are some of its key features:

Android Emulator using 7.1 version is running as below (Figure 3), explaining also basic usages:

-avd Android_7.1.1_APT_25_

Figure 3: Android Emulator 7.1 version is running with writable permissions.

1. File transfer: ADB can transfer files between the Android device and the computer. This
can be useful for installing apps, copying logs, and retrieving data.

2. Debugging: ADB can connect to an Android device or emulator and provide debugging
capabilities for developers. This allows developers to examine the device's log files, view
real-time system stats, and diagnose problems with their apps.

3. Shell access: ADB can open a shell on the device or emulator, giving developers and
advanced users direct access to the device's command-line interface. In addition, it's use
can be expanded to various tasks, such as starting and stopping services, modifying
system files, and installing apps (Figure 4).

Assessing the Security Risks of Medical Mobile Application — 35
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

o] init
default.prop init.environ.rc

Figure 4: ADB shell and mobile details in directory.

4. Screen capture: ADB can capture screenshots of the device's screen and save them to the
computer, explaining the ease for documenting app behavior or testing user interfaces.

5. Port forwarding: ADB can forward ports between the device and the computer, allowing
developers to test network-based apps and services.

3.1.2 Frida

Frida is an open-source dynamic instrumentation toolkit that is widely used for security analysis of
Android applications [79]. It allows security researchers and penetration testers to perform real-time
manipulation of a running application's code and behavior.

Frida works by injecting a small JavaScript code into the target application at runtime. This
code can then interact with the application's memory, hooks and alters function calls, and even
replace entire functions with custom code. With Frida, you can perform a range of dynamic security
analysis techniques on Android applications, including:

1. Code injection: Frida allows you to inject custom code into the running application, which
can be used to perform various security analysis tasks. For example, you can use Frida to
dump sensitive data from memory or modify the application's behavior to bypass security
controls.

2. Function tracing: Frida can trace function calls made by the target application and provide

real-time information about the arguments passed to each function. This can be useful for
identifying vulnerabilities such as SQL injection or buffer overflow attacks.

3. Hooking system calls: Frida can hook into system calls made by the application and
intercept data transmitted over the network. Explaining it's effectiveness for analyzing
network traffic and identifying potential security issues.

4. Dynamic instrumentation: Frida can dynamically instrument the application's code to
identify vulnerabilities such as insecure file operations or unsecured communications.

5. Reverse engineering: Frida can be used in conjunction with other tools to reverse
engineer the target application's code and identify vulnerabilities.

Frida installation in Android Emulator

As it can be listed below (Figure 5), the special Frida server file is pushed to emulator device in
order to be executed.

flocal/tmp

Figure 5: Push Frida server file in android emulator device.

Assessing the Security Risks of Medical Mobile Application — 36
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Frida server give permissions and execute
Giving extra permissions needed before executed (Figure 6).

isVAppDatatLocal\AndroidhSdkh\platform-tools»adb shell

ftmp #- chmod 7
1/tmp # i

Figure 6: Giving extra permissions needed for the execution of server file.

Frida hooking with specific methods of running applications
As first step, a monitoring process for running applications was performed (Figure 7):
/mnt/c/WINDOWS/system32

frida-ps -aU
Identifier

co
co

.android.chrome
.android.documentsui

B

w o
w U =

Gallery .android.gallery3d

Gmail .google.android.gm

Google .google.android.googlequicksearchbox
Google .google.android.googlequicksearchbox
Hangouts .google.android.talk

Medical ID (free) .medicalid.free

Microsoft SwiftKey Keyboard .touchtype.swiftkey

SN O R EOONNSNWD
DO ®
O e0NNNW

Figure 7: Frida monitoring process is running for active applications.

After that, and with the proof of app running, using Frida like below, method or function hooking
should be performed (Figure 8):

Assessing the Security Risks of Medical Mobile Application — 37
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

/mnt/c/Users/Chris/Appdata/Local/Android/Sdk

frida-trace -U -F -j "*lonConfigurationChanged
Instrumenting...
ActivityThread$3.onConfigurationChanged: Auto-generated handler at "/mnt/c/Users/Chris/Appdata/Local/Android/Sdk/__handl
ers__/android.app.ActivityThread_3/onConfigurationChanged.js"
Fragment.onConfigurationChanged: Auto-generated handler at "/mnt/c/Users/Chris/Appdata/Local/Android/Sdk/ _handlers_ /an
droid.app.Fragment/onConfigurationChanged.js"
ActionBar.onConfigurationChanged: Auto-generated handler at "/mnt/c/Users/Chris/Appdata/Local/Android/Sdk/__handlers /a
ndroid.app.ActionBar/onConfigurationChanged.js"
Phonelindow.onConfigurationChanged: Auto-generated handler at "/mnt/c/Users/Chris/Appdata/Local/Android/Sdk/__handlers_|
/com.android.internal.policy.Phonellindow/onConfigurationChanged
T iew.onConfigurationChanged: Auto-generated handler at "/m Users/Chris/Appdata/Local/Android/Sdk/__handlers_ /an
droid.widget.TextView/onConfigurationChanged.js"
ContentProvider.onConfigurationChanged: Auto-generated handler at "/mnt/c/Users/Chris/Appdata/Local/Android/Sdk/__handle
rs__/android.content.ContentProvider/onConfigurationChanged.js"
DecorView.onConfigurationChanged: Auto-generated handler at nt/c/Users/Chris/Appdata/Local/Android/Sdk/__handlers /c

drnid + " nlirv Derar / nnfi t hange

Figure 8: Frida hooking of specific method running found.

3.1.3 Mobile Security Framework

In this thesis for the aspects of security analysis, MobSF framework was used for the purposes of
statis analysis in both android and iOS application files [80].

Mobile Security Framework meaning

MobSF (Mobile Security Framework) is an open-source, automated mobile application security
testing tool. It is designed to simplify the process of mobile application security testing, and it
supports both Android and iOS platforms.

MobSF provides a wide range of features to identify and assess potential security
vulnerabilities in mobile applications. Some of the key features of MobSF include dynamic and static
analysis, binary analysis, malware analysis, and vulnerability assessments.

In terms of dynamic analysis, MobSF can intercept network traffic between the mobile app
and the server to help identify potential vulnerabilities. It also includes a range of static analysis
features, such as identifying insecure storage, detecting hard-coded secrets, and finding vulnerable
code.

Another key feature of MobSF is its ability to conduct binary analysis of mobile applications.
This includes analyzing the code of the application to identify potential vulnerabilities and to verify
that the app is free from malware.

Finally, MobSF provides a range of vulnerability assessment features that can help identify

potential security issues in an application. This includes identifying common vulnerabilities such as
SQL injection, cross-site scripting (XSS), and insecure data storage.

Overall, MobSF is a powerful and comprehensive mobile application security testing tool
that can help developers and security professionals identify and remediate potential vulnerabilities
in mobile applications.

Installation and prerequisites

MobSF was installed in virtual box kali Linux machine. Python and Java are needed for installation
and the whole MobSF source code can be found from [80],[81].

Assessing the Security Risks of Medical Mobile Application — 38
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

Run and upload file for analysis
After the installation was completed, running the run.sh file as below (Figure 9):

/Mobile-Security-Framework-MobSF]
127.©0.0.1:8000
15:14:06 —-©0400]1 [1361]1 [INFO] Starting gunicorn 20.1.0
15:14:06 —-0©400] [1361]1 [INFO] Listening at: http://127.0.0.1:8000

15:14:06 —-0©400] [1261] [INFO] Using worker: gthread
15:14:06 —0©400] [1362]1 [INFO] Booting worker with pid: 1362

REST API Key: 4c536Ff73b9dab754ed775b8325a52b8e2f700aad53322b91960b91b8c48d8792
d

Figure 9: ModSF running on specific ip address and port.

After that, uploading of both APK and IPA files are required for the analysis.

& Upload & Analyze

Figure 10: MobSF uploading files screen.

MobSF Analysis categories Android
MobSF analysis categories for Android are described with fully details in the (Appendix 6.1)

MobSF Analysis categories iOS
MobSF analysis categories for iOS are described with fully details in the (Appendix 6.2)

3.1.4 Apktool

Apktool is a tool used for reverse engineering Android applications. It allows you to decode an APK
file into its constituent resources and then recompile them back into a functional APK. This can be
useful for analyzing the inner workings of an app, identifying security vulnerabilities, and even
modifying the app's behavior [82].

Here are some of the features of Apktool:

1. Decompiling APK files: Apktool can decode an APK file and extract its resources,
including the manifest file, XML files, and various binary files.

Assessing the Security Risks of Medical Mobile Application — 39
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

2. Recompiling APK files: Once you have modified an app's resources, you can use Apktool
to recompile them into a new APK file.

3. Smali/Baksmali support: Apktool uses Smali and Baksmali, which are assembly
languages for the Android Dalvik Virtual Machine, to disassemble and reassemble an app's
bytecode.

4. Debugging: Apktool can generate debuggable APK files, which can be helpful for
debugging an app or analyzing its behavior.

5. Resource injection: Apktool allows you to inject resources into an app, which can be
useful for modifying an app's behavior or adding new functionality.

3.1.5 JarSigner

Jarsigner is a command-line tool provided by the Java Development Kit (JDK) that is used to
digitally sign Java Archive (JAR) files, including Android Package (APK) files. Digital signatures are
used to verify the authenticity and integrity of software, and are an important security feature of
Android apps [83].

To use jarsigner for an APK file, you must first obtain a code signing certificate, which can
be obtained from a certificate authority or created using the keytool utility that comes with the JDK.

Signing your APK file with jarsigner is an important step in the app development process,
as it helps to ensure that your app is secure and can be trusted by users. It is particularly important
when publishing your app on the Google Play Store, as Google requires all APK files uploaded to
the store to be signed with a digital signature.

3.1.6 BurpSuite

Burp Suite is a software tool used for testing the security of web applications. It is developed by
PortSwigger, a UK-based software company. Burp Suite helps in identifying vulnerabilities in web
applications by intercepting and analyzing the traffic between the web application and the client
[84].

Installation of Burp Suite on Android and iOS devices is different than installing it on a
desktop or laptop computer. Burp Suite works as a proxy server that intercepts and analyzes the
network traffic between a web application and the client. This functionality is available on both
Android and iOS devices. When you start Burp Suite and configure your device's Wi-Fi connection
to use the Burp Suite proxy server, all network traffic is routed through the Burp Suite proxy. This
allows Burp Suite to monitor and analyze all incoming and outgoing requests made by the web
application. Burp Suite provides a user interface that allows you to view and analyze the captured
network traffic. You can view the HTTP requests and responses, including the headers and
message body, and analyze them for any security vulnerabilities or issues.

For iOS devices, Burp Suite also provides the ability to intercept and analyze HTTPS traffic.
This is achieved by installing the Burp Suite CA Certificate on the device, which allows Burp Suite to
act as a trusted man-in-the-middle (MITM) and intercept encrypted traffic.

3.2 Analysis Categories

3.2.1 Side Channel Leaks

Side Channel Leaks are categorized in five discrete categories:

e Third-party Keyboards: One-way third-party keyboards can be vulnerable is through
keylogging, which is the process of recording every keystroke made on a device. Some

Assessing the Security Risks of Medical Mobile Application — 40
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

third-party keyboards have been found to contain keylogging software, which can be used
to capture sensitive information such as passwords and credit card numbers.

In addition, some third-party keyboards may request access to sensitive data or
permissions that they do not need in order to function properly, which can also put users'
data at risk. For example, a keyboard that requests access to a user's contacts or location
data could potentially use that information for malicious purposes.

e Copy-paste for sensitive fields: One of the risks is the potential for malicious apps to read
the clipboard data, which means that they could potentially access any sensitive information
that was copied to the clipboard. This could happen even if the user has closed the app
from which the information was copied.

Another risk is the potential for apps to capture the screen while sensitive information is
being displayed, which could allow attackers to view the information.

e Sensitive Screen Captures: If an app has access to the screen capture feature, it can
potentially capture sensitive information, such as login credentials or credit card numbers,
while the user is using the app.

This can happen even if the user is not actively copying and pasting sensitive information,
as the app may be able to capture the entire screen, including any sensitive data that is
being displayed.

e Captures: When an app enters the background, the operating system may take a
screenshot of the app's current state, which can include any sensitive information that is
being displayed. So screenshot can then be accessible to other apps, the operating system
itself, or even third-party services or apps that the user has granted permissions to.

e Accessibility: TalkBack is a feature designed to assist users with disabilities by providing
spoken feedback as they interact with the user interface. However, if TalkBack is enabled in
sensitive fields such as password fields, it can read aloud sensitive information, such as
passwords or credit card nhumbers, as the user is typing them in.

This can potentially expose the sensitive information to anyone who is within earshot of the
device, or if the device is being recorded.

3.2.2 SSL Specific Findings

In this chapter an analysis of the SSL categories that checked in our analysis is performed.

e Plaintext HTTP Requests — No SSL: Plaintext HTTP requests in mobile apps are
vulnerable because they are not encrypted and can be intercepted and read by third
parties. Attackers are eligible to access sensitive information such as login credentials,
personal information, and other data that should be kept private. Therefore, it is
recommended that mobile apps use HTTPS (HTTP Secure) for all requests to encrypt the
data being transmitted and ensure the security and privacy of their users' data.

e SSL Pinning: SSL pinning is a technique used in mobile apps to enhance the security of
HTTPS connections. It involves hard-coding or "pinning" the SSL certificate of a specific
server into the app, rather than relying on the default trust model of the device's operating
system.

By pinning the SSL certificate, the app will only trust that specific certificate and
reject all others, even if they are signed by a trusted certificate authority. This helps to
prevent man-in-the-middle attacks, where an attacker intercepts and modifies HTTPS traffic
by using a fake SSL certificate. SSL pinning can be implemented in two ways: certificate
pinning and public key pinning. Certificate pinning involves hard-coding the entire SSL
certificate of the server into the app, while public key pinning only hard-codes the public key
portion of the certificate.

Implementing SSL pinning in mobile apps can help to mitigate security risks such

Assessing the Security Risks of Medical Mobile Application — 41
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

as network eavesdropping, SSL stripping attacks, and other forms of man-in-the-middle
attacks. However, it is important to note that SSL pinning can also make it more difficult to
update SSL certificates, as the app will need to be updated with the new certificate
information.

3.2.3 Application Protection Integrity

It refers to the ability of an app to ensure that it has not been modified or tampered with by
unauthorized parties.

There are several techniques that can be used to protect the integrity of a mobile app, such
as code obfuscation, checksums, and code signing. Code obfuscation involves transforming the
app's code to make it more difficult to reverse engineer and understand, while checksums and code
signing are used to ensure that the app's code has not been modified or tampered with.

Application integrity protection is important because mobile apps can be vulnerable to a
wide range of security threats, including malicious code injection, man-in-the-middle attacks, and
other forms of tampering. By implementing application integrity protection, mobile app developers
can help to mitigate these threats and ensure that their app is secure and trustworthy.

In addition to application integrity protection, other security measures should also be
implemented, such as secure data storage, secure communication protocols, and user
authentication mechanisms. By taking a comprehensive approach to mobile app security,
developers can help to ensure that their app is as secure as possible and can be trusted by their
users.

In this thesis, the below methodology was used to remove SSL Pinning mechanism from a
mobile application starting from the decompiling of the file:

Decompile using Apktool

Below are shown the required steps needed for the process of decompiling.
In first step the basic process of decompiling the .apk file is taking place (Figure 11).

/mnt/c/Users/Chris/Desktop/DIPLWMATIKH
apktool if FibriCheck_2.5.0_apk 3

: Framework installed to: /home/kali/. are/apktool/framework/127.apk

Figure 11: Apktool import framework for specific application file.

The new decompiled folder of the basic .smali files has been created and will be needed for the
next step in order to proceed with basic code changes (Figure 12).

Assessing the Security Risks of Medical Mobile Application — 42
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

‘newFibri3

/mnt/c/U
/Chris/D

Figure 12: Apktool decompiling of .apk file.

Perform code change to .smali files
In this example the result is to remove SSL Pinning check code from .smali code files (Figure
13,14).

rtificate

Figure 13: Found SSL Pinning mechanism in java source files (Part 1).

vircual methods Find X
.method public final check(Ljava/lang/String;Ljava/util/List| ‘
.locals 1 Find Replace FindinFies FindinProjects Mark

system Ldalvik/annotation/Signatur

T e tficatepinner schec M Find Next 10

Count

Find Allin Current

java/security/cert/Certificate;", Socment
S)V [Backward direction Find Allin All Opened
} [Match whole word only
.end annotation
[Match case Close
M w
system Ldalvik/annotation/Throws; Nep e
{ Search Mode [ATransparency
Ljavax/net/ssl/SSLPeerUnverifiedException; @ormal ® Onlosing focus
A ARRGEAETAR Opextended (n, ¥, \t, 0, W...) O Aways
(ORegular expression matches newline 1 |

-st v0, "hostname"

invoke-static {pl, v0}, Lkotlin/jvm/internal/Intrinsics;=

const-st v0, "peerCertificates”

invoke-static {p2, v0}, Lkotlin/jvm/internal/Intrinsics;->checkNotNullParameter (Ljava/lang/Object;Liava/lang/String;)V

0
tance v0, Lokhttp3/CertificatePinner$check$l;

#invoke-direct {v0, p0, p2, pl}, Lokhttp3/CertificatePinn eck$1;-><init>(Lokhttp3/Cer

check-cast v0, Lkotlin/jvm/functions/Function0;

nctions/Function0;

>check$okhttp (Ljava/lang/String;Lkotlin/vm/ £

invoke-virtual {p0, pl, vO}, Lokhttp3/CertificatePin

Figure 14: Found the exact point in code in smali files which will be removed for the new .apk file
generation (Part 2).

Assessing the Security Risks of Medical Mobile Application — 43
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

Compile new .apk file with code change
New .apk file is created with the initiated code change of SSL Pinning removal (Figure 15).

/mnt/c/Users/Chris/Desktop
apktool b newFibri3 -o fibriNew3.apk
Using Apktool 2.5.0
Checking whether sources has changed..
Smaling smali folder into classes.dex
Checking whether sources has changed...
Smaling smali_classes2 folder into classes2.dex...
Checking whether sources has changed. ..
Smaling smali_classes3 folder into cl asses3.dex...
Checking whether resources has changed. ..
Building resources...
Copying libs... (/1ib)
Copying 1libs... (/kotlin)
Copying l1libs... (/META-INF/servic
Building apk file...
Copying unknown files/dir...
Built apk...

Figure 15: Apktool compile the new folder with code change and new .apk is generated.

Sign the new .apk file using JarSigner
The new .apk created should be signed using the custom sign files and jarSigner (Figure 16,17,18).

mnt/c/Users/Chrls/Desktop
re /mnt/c/Users/Chris/Desktop/DIPLWMATI key.keystore -alias chris -keyalg RSA -keysize 2

/mnt/c/Users/Chris/Desktop
SHA1withRSA -di 1 A keystore /mnt/c/Us ktop/DIPLUWMA y.k re fibriNew3.apk chris

g

00 (0 0Q 69 0Q

m

otlin_| bullLlns
1nibu11tins

Figure 17: JarSigner basic command using sign file and apk file.

Assessing the Security Risks of Medical Mobile Application — 44
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

igner

X.509, CN=chris mark, OU=unipi, O=unipi, L=Athens, ST=Greece, C=GR
nature algorithm: SHA256withRSA, 2048-bit key
rusted certificate]

certificate is self-signed.
cified for the -digestalg option is considered a security risk and is disabled.
The SHA1withRSA algorithm specified for the -sigalg option is considered a security risk and is disabled.

Figure 18: JarSigner successfull result of operation.

Install new.apk file using adb to android device

After the new application is installed to the android emulator, then using BurpSuite, the login action
is captured and then the user is successfully logged in using a new app which is custom signed and
is deprived of SSL Pinning mechanism checking.

58 https://api.fibricheck.com POST Jauth/v2/oauth1/tokens v 200 500 JSON
59 https://apifibricheck.com GET Jusers/vi/me 200 397 JSON
60 https://api.fibricheck.com GET /configurations/v2/users/639d828246e... 200 938 JSON

Request Response

Pretty Raw Hex = \n = Pretty Raw Hex R g \n

1 POST /auth/vZ/oauthl/tokens HTTP/2 1 HTTP/2 200 OK

2 Host: api.fibricheck.com 2 Date: Wed, 1l Jan 2023 20:05:04 GMT

3 Accept: application/json, text/plain, */* 3 Content-Type: application/json; charset=utf-8

4 X-User-Agent: SDK/7.0.0 4 Content-Length: 312

5 Authorization: OAuth 5 X-Powered-By: Express

ocauth consumer key="108c¢8c3cb3c39de7326£53732e££fho8 ¢ Etag: W/"138-7JtcBEEVENnfCEoVY2EOQfSve/ Zw"

392e8870a", 7

ocoauth _nonce="isQJIVhZkESnoBnok0XdS8ojOsAIGWZpSG", 8 |{

oauth_signature="bodZiB8TSZuBlmeEEybhjWsZBwRE3IN%3D", "applicationId":"57b5aZ7cd3d5db5ddfat3cco”,
oauth_signature_method="HMAC-SHAL", "userId":"€39d¢ €=0fh0007hb0EA4E",

oauth timestamp="1£734€7505", oauth version="1.0" "token":

& Content-Type: application/json "fhiB d7cda3dS566ac5a0dfB8bh59d4d9ab7bth 10,

7 Content-Length: €& "tokenSecret":

= Accept-Encoding: gzip, deflate "20e34b1792h877dbS 7chdd24fdl136641£931",

9 User-Agent: okhttp/4.9.2 "updateTimestamp":"2023-01-11T20:05:04.9152Z",
10 "creationTimestamp”:"2023-01-11T20:05:04.9152Z",
114 "id":"E3bEflE7012d025f07Llath0éa”

"email"”:"christos_markellos@hotmail.com", }
"password"”:" ! ! 'KKk1l631"
}

Figure 19: Result of successful removal of SSL Pinning mechanism and user successful logging using
custom certificate.

3.2.4 Storing Data

Storing data on Android apps can be achieved through several mechanisms, depending on the type
and size of the data, the security requirements, and the expected access patterns. Here are some
of the common methods for storing data on Android apps:

1. SharedPreferences: This is a key-value pair storage mechanism that allows you to store
small amounts of data, such as application preferences, settings, or user credentials.
SharedPreferences are easy to use and do not require any complex setup. They are ideal
for storing simple and non-sensitive data.

Assessing the Security Risks of Medical Mobile Application — 45
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

2. SQLite Database: SQLite is a lightweight and embedded database that provides a SQL
interface for storing and querying data. It is well-suited for storing structured data, such as
user profiles, contacts, or product catalog. SQLite can handle large amounts of data and
supports transactions and indexing, making it suitable for complex data storage and
retrieval.

3. Content Providers: Content Providers are a mechanism for sharing data between Android
apps. They provide a standardized interface for storing and retrieving data that can be
accessed by other apps, allowing for seamless integration and data sharing. Content
Providers can be used to store and manage structured data, such as media files, contacts,
or messages.

4. File Storage: Android apps can also store data as files on the device's file system. This can
be useful for storing large files, such as multimedia or documents, that do not require
frequent access or complex querying. File storage can be achieved using standard Java I/0
libraries or Android-specific APIs, such as the External Storage or Internal Storage APIs.

5. Cloud Storage: For storing data that needs to be accessible across multiple devices or
requires high availability and scalability, cloud storage services such as Google Drive,
Dropbox, or Firebase can be used. These services provide easy-to-use APIs for storing and
retrieving data, as well as robust security and backup mechanisms.

In this thesis in all .apks when the app is running on the device, additional check has been
performed shared preferences files to identify if possible hardcoded keys or user credentials were
stored without applying security perspectives (Figure 20).

1group.my

m.dupagemedica
standalone=

ing="utf-8"

T al_blacklist™ />
reference_Allo

m.dupagemedi
ference_Format
ference_Defaul
reference_L e
name="epic.mychart.android ry isDevice#id">3daf2dad-ad40-4c93-8810-6824c0826e419</string>

Figure 20: Exploring to /data/data in specific app shared_prefs folder and found user credentials.

3.2.5 Bypassing Root Detection

Bypassing root detection in Android and iOS apps refers to the process of circumventing or
disabling the built-in security feature of an app that detects whether the user's device has been
rooted (Android) or jailbroken (iI0S).

Rooting and jailbreaking are the processes of removing restrictions imposed by the
operating system on the device, which can enable users to access and modify system files and
settings that are otherwise inaccessible. This can potentially lead to security risks, as well as give
users unauthorized access to apps and services.

To prevent unauthorized access and protect the app from tampering, many app developers
implement root detection as a security measure. When a rooted or jailbroken device is detected, the
app may either restrict certain features or deny access altogether.

In the analysis that was performed only a few apps have applied restrictions to the users
who may run apps in insecure rooted or jailbroken devices as below (Figure 21):

Assessing the Security Risks of Medical Mobile Application — 46
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

Android Emulator - Pixel_4_XL_AP|_25:5554
MM@ % ¥ X < O &

Rooted Device Detected

This app will not run on a rooted device.

EXIT

Figure 21: Root Detection mechanism found.

4 Results

After the part of the methodology and technical work has finished, resulting could take place in
order to compare and contrast the crucial findings that found from analysis with the relevant
theoretical aspects in the scientific literature and the desired result.

4.1 Thesis Categories for all analyzed applications - patient interaction

In this thesis was examined several applications with the key of belonging in different medical
categories having also big downloading ratings from users.

The categories are proposed below, and are between patient and doctor interaction, pointing not
only to medical library apps but also to both simulation and fithess apps.

4.1.1 Categories for analyzed applications

Mobile apps that were analyzed were 70 in total belonging also in 30 medical categories (Figure
22). The apps are in total 140 in number because were analyzed in both Android and iOS platforms.

Assessing the Security Risks of Medical Mobile Application — a7
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

i

App Cln!u'_l
Allergy

Blood Donation
Cancer
Cardiovascular
Climical
chl'mml:l_hn'
Dingmosis

Discase
Drug Information and Intersclions

Endocrinology
Emecrgency Healthcare
Ciastrointestinal
Cleriainics

H ¥
Health Insurance - Medical Library
Immunisation

Lifestyle Health and fitness
Maicmity

Medication

Medicine Literature

Mental - Health

Neurology

Mutrition

tmm.ﬂgmnhm

Orthopacdic

Other™Miscellancous

Paticni Examination

Radiology

Surgery

Telecommunication [Dociors reservaibons

Total # of examincd apps in both platforms (x 2)

EIHH_NEH_HHHNh___.;____Nw__uuwuw”

Figure 22: Table of Apps Categories and number of apps examined.

4.1.2 Application with external device connection

There are some apps that were analyzed in which the external device connectivity is required for
scanning or monitoring processes to take place to patients. In the below (Figure 23), can be
identified that a percentage of 24.3% of totally analyzed applications has external patient
interraction, pointing also to the ability of the user to to safe ensured of none data leakage can be
found.

@ Functional
@ Non-Functional

Figure 23: Mobile application with external device use support.

Assessing the Security Risks of Medical Mobile Application — 48
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

4.2 Thesis Application versions and ratings of downloads

In this chapter will be analyzed the belonging and the versions of the apps that was picked for the
aspects of the analysis. Special version, vulnerable and not in both android and iOS platforms were
picked and a download range up to 5000 was selected too.

4.2.1 Android / 10S versions of analyzed apps

The specific findings indicate that 10% of the Android apps support Android version 4, which is
known to be vulnerable to various exploits. In addition, 61.43% support an Android version less
than 5, 4.29% support Android 5.1, while 8.57% support Android 6, 14.29% support Android 7,
1.43% support Android 7.1, 5.7% apps support Android 8, and 4.29% apps support Android 9
(Figure 24).

The results is representative and raise the concern to the scientific and commercial
community that application of big downloads rates use until now vulnerable Android 4 — 5 versions.

Android 5.0 and earlier also lack important security features, such as full disk encryption and
SELinux, which make them more susceptible to attacks. It is essential that app developers keep

their apps up-to-date
and support the latest secure versions of operating systems to ensure the privacy and security of
their users.

Regarding iOS, we found that 11.43% of the medical apps still support iOS 9 or earlier
versions (Figure 25). These older iOS versions lack important security features and are vulnerable
to various exploits. Specifically, iOS 9 and earlier versions have known vulnerabilities that allow
attackers to jailbreak the device, bypass passcode locks, and install malicious apps. Moreover,
these older iOS versions do not receive security updates from Apple, making them more
susceptible to attacks.

51.43
50

10

S

20
14.29

Percentage of Apps

10
10 | =

B.57)
1.29 5.7 499
|—| 1.43 h—'
0 : —
5 51 6 71 8 9

9
Android Version

Figure 24: Android version vs percentage of apps used.

Assessing the Security Risks of Medical Mobile Application — 49
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis)

20

10

Percentage of Apps

(=]

1.29

LI

2.85

12.8612.86

8 9

10

T
1 12

108 Version

Figure 25: iOS versions vs percentage of apps used.

13 14

15

4.2.2 Number of downloads of medical applications

XpnoTog — Mdapiog MdpkeAAog

Regarding the popularity of each application installed and analyzed, below (Figure 26), propose a
chart of Android applications pointing also that the most of them have been downloaded per
customers having more than 100k downloads found in a percentage of 35,73% and among them
21.43% has more that 1M+ user downloads.

S0

20

Percentage of Apps

10

1286

1.29

7.14

10

21.43

2.85

1

1)

Figure 26: Android apps number of downloads vs percentage of the apps.

4.3 Metrics

Sk+ 10k+ 50k+100k-S00k+ 1M+ 5M+ 10M+
Number of Downloads

In this chapter, the overall metrics about the proposed categories will be presented and evaluated

regarding their aspect.

Assessing the Security Risks of Medical Mobile Application —
A comparable case study in Android and iOS platforms

50

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

4.3.1 Side Channel Leaks

During the evaluation, identified that most of the evaluated apps lack safeguards against side -
channel leaks, including pasteboard leakage, third-party keyboard leakage, and sensitive
screen capture as illustrated in (Figure 27). These vulnerabilities could allow third-party applications
installed on the device to circumvent sandbox restrictions and gain access to sensitive
data, including PHI. Pasteboard leakage, for example, enables the user to copy sensitive
information to the clipboard, which could be accessed by other applications installed on the device.
Similarly, third-party keyboard leakage allows third-party applications to read keystrokes, including
sensitive data such as passwords or private information, entered using the third-party keyboard.
Sensitive screen capture leakage allows attackers to capture sensitive information displayed on the
screen by taking screenshots or recording the screen. Additionally, Android and iOS automatically
capture a snapshot when an application enters the background, which can be retrieved by other
apps, further increasing the potential for data leakage.

Pointing further to the results, iOS has completely lower applications comparing the same
ones of android, assuming that iOS applications are more secure regarding the initialization of third-
party keyboards, screenshots and snapshots.

Oo ios
0o Android
100
100 L850 850 7 9

80 74 60
:F)
5 60
=
=] i
g 10 31

)

0
e ol & -
= oS & -
-l.ﬂ Hgdb .ﬁ- éﬁq
- Qﬂ = TR~ 'C.» c'_'l
L ~ s
& &
& e
& g
o

Figure 27: Side Channel Leaks percentage of Android and iOS apps.

4.3.2 SSL Pinning / Plain HTTP

The analysis was performed on whether the medical apps leveraged SSL or used plain HTTP, and
whether SSL certificate validation was properly implemented. We also checked whether SSL
Pinning

was implemented. We did find that two apps used plain HTTP (Figure 28), which is a critical issue
given that these apps deal with PHI. Without the encryption provided by SSL, any data transmitted
between the app and its server can be intercepted by an attacker who is able to eavesdrop on the
communication. We also found that SSL Pinning was only implemented in 20% of the apps (Figure
28),

Assessing the Security Risks of Medical Mobile Application — 51
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

leaving the majority of the devices with a compromised trust store, vulnerable to man-in-the-middle
attacks. SSL Pinning is an important security measure that ensures the authenticity of the SSL
certificate presented by the server, even if the device’s trust store has been compromised.

lo ios
8 Android
100
sp 82
80 —
L'
= 60
£
g 10
5
20
2 2
0 .
.QJ
N
o ‘35‘
A L
& x
<

Figure 28: SSL findings of both Pinning and plain HTTP for Android and iOS apps.

4.3.3 Root - Jailbreak Detection

In order to assess the device integrity protection of the examined apps, was checked whether the
apps implement root or jailbreak detection mechanisms. Out of the 70 Android apps, only 2 had root
detection implemented, while only 3 out of 70 had jailbreak detection for iOS (Figure 29). The lack
of device integrity protection exposes the apps to potential security threats, as a rooted or jailbroken
device can compromise the security measures of the app and expose sensitive user
data. Rooted or jailbroken devices can allow attackers to bypass security controls implemented in
the app, such as SSL pinning or encryption mechanisms. Attackers can also use root access
to install malware or manipulate the app’s behavior. Without proper device integrity protection,
sensitive information, such as Protected Health Information (PHI), can be exposed, leading to
severe consequences for the user and the app’s reputation.

Assessing the Security Risks of Medical Mobile Application — 52
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XpnoTog — Mdapiog MdpkeAAog

lo ios
00 Android
100 LT 95
80
O
=2 60
n!: 41)
20
() 0
0
& &
@U
<F &
Q—‘ﬁ wé‘}
& &
Ry 5
WF \553.,“

Figure 29: Lack of Jailbreak or Root detection for Android and iOS apps.

4.3.4 Application Integrity — obfuscation - ATS

Application Transport Security (ATS) - iOS

Out of the 70 iOS apps examined, found that 10 apps did not have Application Transport Security
(ATS) enabled as illustrated in (Figure 30). ATS is a security feature in iOS that requires all app
connections to use HTTPS with TLS 1.2 or higher, to ensure secure and encrypted communication.
Without ATS, an attacker can potentially intercept network traffic and obtain sensitive user
information. This is particularly concerning for medical apps that handle sensitive medical data, as
an attacker can obtain this data by exploiting the lack of ATS.

O Disabled
B5.71% 14.29% O Enabled

Figure 30: Application Transport Security per iOS apps in percentage.

Lack of Code Obfuscation — Android

Among the 70 Android apps examined in this study, 49 of them lacked any indication of code
obfuscation as shown in (Figure 31). Code obfuscation is a critical security measure that safeguards
an application’s code from tampering and reverse engineering. The absence of proper code
obfuscation presents a serious security risk, as attackers could easily decompile the app and

Assessing the Security Risks of Medical Mobile Application — 53
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

extract confidential information, including APl and encryption keys. Moreover, it makes it easier for
attackers to insert malicious code into the app, putting sensitive user data at risk.

O Without
3 With

Figure 31: Lack of Obfuscation in androids apps in percentage.

4.3.5 Data Storage in Android Apps

Insecure local data storage was another major issue identified in our study. It is found that 17 out of
the 70 medical apps in Android (24.28%) were insecurely storing sensitive data locally on the
device, including usernames, passwords, session information, private IDs, PHI, and other medical
data (Figure 32). The impact of this finding is significant, particularly in a rooted environment where
third-party apps can access this data, bypassing the app’s sandbox protections. This puts users’
sensitive information at risk of theft or misuse, potentially leading to identity theft, financial fraud, or
even physical harm in the case of medical data.

In the analysis perspective, it was noticed that some medical mobile applications had
hardcoded sensitive secrets, such as API keys and passwords, which can be easily extracted by
attackers. This finding is significant since hardcoded secrets can be exploited by attackers to gain
unauthorized access to sensitive data or systems. Hardcoded secrets can also lead to the
compromise of other systems and applications, which share the same secrets. Additionally, in a
rooted device environment, attackers can extract these hardcoded secrets by bypassing sandbox
protections, which can have severe consequences for the confidentiality and integrity of the data.
Therefore, it is essential that developers avoid hardcoding sensitive secrets and implement secure
storage mechanisms for these credentials.

2428% @ Insccure
’ O Secure
Figure 32: Data storage revealed secrets of android apps.
Assessing the Security Risks of Medical Mobile Application — 54

A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

5 Conclusion

In conclusion, the analysis of 70 medical mobile applications across Android and iOS platforms has
revealed that there are significant security risks associated with the use of these applications. While
some apps demonstrated strong security measures, many others fell short in protecting sensitive
user data.

The findings of this study highlight the urgent need for mobile app developers, regulatory
bodies, and healthcare providers to prioritize the security of medical mobile applications. Future
studies in this area should focus on developing standardized security protocols for medical apps
and implementing rigorous testing and certification processes to ensure that they meet these
standards.

As the use of medical mobile applications continues to grow, it is essential that security
measures keep pace with this trend. By addressing the security risks identified in this study and
implementing robust security measures moving forward, we can ensure that medical mobile
applications remain a valuable tool for improving healthcare outcomes while also protecting the
privacy and security of users' sensitive information.

Assessing the Security Risks of Medical Mobile Application — 55
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis)

6 Appendices

6.1 MobSF Analysis Report Android Aetna App

SF

ANDROID STATIC ANALYSIS REPORT

Aetna Health (4.25.0.155763-

prod)

& FINDINGS SEVERITY

Toresdcdsiazbe
2607541153048 daNS8160

‘U256 4062

1 APP INFORMATION

o e A
Mam Aetuty com. aecna aecnaheslth acifty AetraSplshScrosr ATy
Tt 50031

s 24

MK

e Vo Mo 4.25.0,155763 prod.

vt Ve Coe: 2971810

PERMISSION

STATUS

INFO

| pEscripTION

ol permission ACCESS_ COARSE_LOCATION

File Name: aetna.apk

Package Name: comatna setnabealty
Sean Date: F8.12.2023, 1234 pm.
Agp Secarity Score

Grade:

Trackes Detection

28 APP COMPONENTS

XpnoTog — Mdapiog MdpkeAAog

i= APPLICATION PERMISSIONS

com samsung android sroviders contest permissien WRITE USE AP FEATURE SURVEY

android permission CALL PHONE

android permission NTERNET

i permission ACCESS NETWORK STATE

android permission USE_FNGERPRNT

figerpeint.

it pamission CAVERA ngurcia

e prrisvon WITE_EXTERNAL STORAGE angwos | on

Alows an apphcacon to weke 0 e

on SEAD EXTERNAL STORAGE P—
- i
anieoid purmision SECORD AUDIO PR—
androit pemision MDY AUDIO SETTINGS
andeeidpurmisson FEAD. PHONE STATE g, | (edsnora e

Assessing the Security Risks of Medical Mobile Application —
A comparable case study in Android and iOS platforms

‘android permission SLUETOOTH

56

Mertamrruxiakn Aiatpifr) (MSc Thesis)

XpnoTog — Mdapiog MdpkeAAog

Schumen: stnadgtals,

Bl ENGERPRIT check

R - (oo | e e R
S oparator check

- T netwerk operator name chack
sitormodty | e evert o your condar eich may
ooz | 30 e o g o Comprer 18 wthout marker tuspicious)
ot parmison WAITE_CALUNAR dongerous | maondemlto | 3pkAGnS o uss i o arse o
s s
FINDINGS DETAILS
Adows i apicaton o red o e R
sl et 1AD CAOM s | T oo B wooRL rack
7 - ‘sendyour calendar events 15 other ::wm check
Gaved v Build HARDWARE check.
Buid BOAD.

e parmision FORSGROUND,SCRACE p— Abown ool sppintos e sy Tl
network cpersoe rame check
dedce 0 chack

anbdgermion IBATE omat | commsivormr | Al e sppicaton o cosrel he

Comper [—
comgoage s 2om perision ECENE sppsre | Compammns | Mo oo devn
FINDINGS DETALS
 GETINSTALL wanown | e Mncepratsenies ol
Buld ENGERPRIT chack
Bt MANUFACTURER chck
s don " Bl HAROWARE check
@ APKID ANALYSIS BuldTAGS chck
dekcn 0 check
FLE DETALS Comptar [EIP———
| FINDINGS DETAILS T
<O aetna detnaheath acity DeeplinkAcvy naapp Sk,
plam sy,
” | Fowes | perans |
[I — | & NETWORK SECURITY
FINDINGS DETALS NO | scope SEVERMTY | DESCRIPTION
pr——
Comper 8 wthous marker uspicious) e seira.com
<o sesmacom =
- s
(8 BROWSABLE ACTIVITIES . i
AcTTy INTENT
B8 CERTIFICATE ANALYSIS
[T — gl
TME SEVERITY DESCRIPTION

o

Application s sgned with a code sigaing certicate

oM aeins setnaheoth sy Alnabeuth b creenAcIvy

Host: ogin_calbacs.

{arrou retwxsoc.rityCond g aminatucrh sacunty.confel

Schames Wps/ seinadgtats,

Thase wetngs can b confgared ot pectic doman and.
foraspechc aps.

A Brosacast Baceive Tound 1 be shared with otber 3995
00 the devce herefore leaving & accesiti 8 any other
agplcarin on he devee. I protaced by a poision

Permesion: cor gsae anarod <20m parmisson SEND
lonro oxzorss-tral

checked,
Permision. com goope android om permisson SEND.
Landrout exporiedeirl

checes.
Permesion: ndrehd pemision NSTALL PACAGES
anrost xgeridetron]

e, crly ppYCALONS ugned wE the arme ertcate
cermisson

A Broacast Receiver found 10 be shared wiih ot ap0s.
o the device herefore maving K accesite o any oher
asplcaion on the deve. s protacied by a pemisson

Assessing the Security Risks of Medical Mobile Application —
A comparable case study in Android and iOS platforms

| Aeehes e Network securty contguration

e
o sy ety | ST el Q_ MANIFEST ANALYSIS
comanna st sy T SpbSreAY | e No | IssuE SEVERTY | DESCRIPTION

Schemes semadgtal//, The Network Secunty Configuration featire lets apps.

ustomize their network securty Setings in asafe,
dedlarsiive configuration fie wehout modifyrg 499 code.

‘Parmission; android permission DUMP.

where it s defined. I s et o normal or dangerous, &

[ancroid exportedetruc] makcous <an request and obtain the
perrission and ekeract win the compornert, L1 310
signaure, cely applcations agred wEh the same certficato
<an o th permision

</> CODE ANALYSIS
NO | I1SSUE SEVERITY | STANDARDS ALES
wajea
meworkAsCatbac
chier

oo
comiaciveandroMIActeANdrod e
comacmeandraid/Cache jovs

57

Mertamrruxiakn Aiatpifr) (MSc Thesis)

XpnoTog — Mdapiog MdpkeAAog

Assessing the Security Risks of Medical Mobile Application —

A comparable case study in Android and iOS platforms

comiadopermaracing motieegaopbsrachiDs
“oomeciypriengSomeris premion
reseterjon o abs/ap O,
P — Y b -
Agp uses Qe Dtabase s execute
e
peb el T LTS O 5L QA TS AL 0GR D owe e
an 50 uaries an ause 306 ommand
merhgere s 2 v e ———
P ———— - fiscina s
Sehguipsiunion 3 comnmabunotficationor ocaNoticaconlic
<omkamysesiandradiCO202a jave dwanie, ot oncaans
ComonenandosiaI0n e parirontyis - SN
«
prelvincmersriomossisy mincarsiagersa
ar widinsinmeresonrsQUs
comPomutniandrosiKton e s
comfomstaangroasjoa e
P ——— g
WA Sap v
comomemsiandroiKomlociCompletectecers
a OCGDD e
: OaG o
comomazs o
ComonassiandroaiRumabiec2iolme
comAomaza/androaRunnaeCo21) ma comiaceandroCache
comonatmandrodijavs camiascoemarieing/mebien egaceterrertind
<ommomutsapiA e ergove
a Comiaetnatastrabea i BURKonfg jos
o Comiamtraerab S onGen il o
y | massnres eomaon sensiom | O/ e et Des et
eQuatyProgransPayiond e
comomacaiapiCTz8 v e RO —
ComonucnapVCOLIIm o
Comisetna/secnsheaidomarimoselsRerhod
comMonystaiapiCa2ATo e
comkomarsiopicO2ATuime COmisntnssenabestimanage S edrelrens
ComAomata/apiCOSSay s Mnsgerion
ComAomsea/apiCTSSe pvinaaRS———"
< niSchemaantest jua
<omPonataiapitjeve < -
comihonyassrapi
commonstsapi e ComisetnalghamscyompeneressenvCaTorent
<omkomucniapi e peie=ia
o O BRSSO
« et
comonazsiagis o Camiatnghamscyemponeresmode CToken
ComimcnaretroncaaResponseCache e
bumetecighdaroadienginarérgineResource
= 4 [ISR ——
ComypyprancridcenmorsasmgeRasehs Ryt s
aciy v e s
<oy ryprandeiknmers st ageriduaida Bancaies .
st BselragmentOuts ey
ComypeyprandevidkemmorsusaageraTd camneladocmembers s TouTabARORDS
OMyprActveyRes aDua java ajos
Comyprmyprandeidkeemmonsserager it A e
iyprOobOa s
mimype iyt amemorssatchent
- CWE CHENZ Cowten Stoage of Savstve | o 2P oy " T——
NG Itormation s
‘nformaton ke uermaes, mitypeityprandecidingerprediramemorkAuiaci
2 (OWASP Tap 10: M, Reverse Ergineering P i o - Commypryprararacarmon T goaryadegte
‘e b e el ity ops borcins % s Aomsass Sk ceaicaepocngsa | o o
yoePinAcityjova sesue commueicaton shanel. K bE e
comceysssiap v Jiomeess
comoryssuapT Juoan
comorysssiap e Dy,
commemrescagerta
Pl i =
gt acre/ St et m e g
iR —— - o coepraTouchiDACDY,
Sanbmcsn M e st (OWASP Top 10 MS: WsuTcant Cryprogragty i
Commenresagentiandroid e HInesCont) Sodiii P MASYS MSTG CRYPTO-) -
ratonjo
Commereiciagerta e T —
ancetoggerjma
Comnemreld/agentandroliAsPersErAIO ja O
i
ComiopentoandraiaiDetautAUSROvCe s comPany TS iR s
comeissomenberssdb/data/Acien - oo
: 3 T |
mriadocmenberysdvidaarscren. e oo
Comeissocimembers/sdbdatamessageATIm
erebaraa Commadomambirsh e ot bar
Comeladocmenbersdh/datumessage/ AR b
ondmajmva s
Cometadovmembers/sdMdatAmEsSaR TN Lo
pretsene
oW w27 -
M3 . meat hash nomn to b losdjon
b ssngsipiinisicass nsecure mlemesiasan ol S5
7 | beshcotisins, N Top 10 . it oypragrahy | CTVPPRBROSTg @
orgmuomolsdioolChacksum e 1| sl signed sesticans 2 civkal n S To 104 roscreCommnicain. | ryouocznejna
Secumy oo, Thsapplcaton & OWAS? MASVS: MSTG NETWORK
derabie 10 MIM atcks
amiaseosimarkecrg/motieGrfonwetvewsoc
betjorn
comvaccestioeguardantamemortcore/Oevce
st et iem Ingleniesacs. ko
" i Messagenumiavew s Jo | s have ot getecion
Sndinstbiisnae s ONAS? MASYS MSTGPLATIORM.? pecinn i
J e — [SHARED LIBRARY BINARY ANALYSIS
‘CWE: CWE-330: Use ofInsuffcently Random :“"’Wm""
The Ave uses a0 e Random Voloes iAokl
0 AP o
Nunbe: Generaar, (WA Top 10,05 ik optography | STt —
pe———
OWAS? MASYS MSTG CRIPTO. by NO | SHARED OBJECT NX STACK CANARY RPATH | RUNPATH | FORTIFY Flraing
orpmutomorsdTracat jars
e Trve Nora [~ E
B —— = = | = I oy
The Tasharedotiethass [The | Thestwed | Theshwedotactdoes | Symbotsare
o | B tncthannx | stackcanary e assndto | shared | cbiecdoes | nothavesrylonited | suipped
st colisions, op busmes | tesacksotmatkwiibe | objec | rothwe | funcions Fortfed
SIS MSIS- IO . ks ovewtien by siace donsnot | mneae | funcuons prodes buter
ComipubnblapivenseefisEncryptoniljave 1| marmestiranstypusse | mumerypape | bueratcuetomsine | nve | sec ovetiow chacks againat
non execatie adsress T otows | runome e, nsecre
Comisstnarsetranestvpreseresenvsecuremezns makrg tnction of oveflms smarch functons e wrcpy, gts
Ao crentes temp e Sensie acacinr vertyrg the ntagrty ol e | po or e Use thecomgier
" rjeced anaybeforefinczon | RoATH
ka3 tamp e sneikon oo - 0.FONTIY_S0URCE=2 10
w ctons.
T ————— Troe Trve o e T
o || o ot | S s (S B (% P [
enrypied pristosimbiioh Atvinuny inactannx | suckcansywesssedto | hares | cbiocdom | nothavesrytorted | sripped

58

Mertamrruxiakn Aiatpifr) (MSc Thesis)

True Troe
e nte
This shared object has o

XpnoTog — Mdapiog MdpkeAAog

“Contact info_cel ey 1"Celr

“corsactinfo_mobike key":"Mobike"

“egired sokart - Expring”

“Frgerprin tagong creen_auth fabed - touch Jd_suthentcaton. faled view”

“Prebase,_database w1 ; TpsJ/aeens healt frsbases. com

“goagie s key" | NIASASIMUCHEHINWD-OqUecr Wb T

“goope_crash reporting apL ey’ - “AlzaSyANGZIMUACEEHKSHOVKIND OecrZbn Y™

o see bey.da: Data’

objecthashx | stack canary vae a0ded 0
boscthe | demckthukvbe | ot | oothae Sbecsontused | eyt - g ——
PN [VCEOTPRNSI (st ool O ool B u | mnozaas Tarom | et | i,
roneseasatle | retum address. This atows | runtme
making datection o overtiows soarch
atackar verityeg th incegriyofihe | pathor ptinwisecury | Cyprograstc e apphcason sl gerarate e ypiop K by g
injected Canary betore functen RPATH = | rsomu Funconal Symerc Key Random Bt Generator 3 specried n FC5_386.6X1.| and peciied
shikcocence. | retum. Requirements Ganaraton rypromraphic ey szes 128 b or 256 be.
exscuavie
@ DOMAIN MALWARE CHECK
B NIAP ANALYSIS v1.3
DOMAIN STATUS GEOLOCATION
NO | IDENTIFIER REQUIREMENT | FEATURE DESCRIPTION r—
Gowtry Greece
v Dty Socurny Functional | Random Bt g P s
Taquiremens: prasiciois bleskstonvcginessotan nnoussanestmecare o o o ahens
e 37970050
Lngtoe 22716223
2 T Securty Funcional Vow: Googleap
Requremanss
Paszasezz
s | s oyl | APt | the appikamon rplement asymemer key generason. . ::::-ukm
Ltnte 4k w5309
o Tocation’, camesa’ Lwgte 2308300
4 | REEm Requrements Resources Buetccth, microphonel. Vo Google Map
gl P s | s | o R e
s barrerssra g om @ o
s | roenermm esmtidscsipualll ovunni TSN e 1510
tesgtstmaiLcom
o Googie ag Hpasmaronzatcnecina om g R
P
Custy asprodopensso Wb eaibopentok so
g ks
ascccan snadigiatcon a iy Athens
Uttt 37975450
Loghae 23716231
i 2 TRACKERS
P
Caetry TRACKER CATEGORIES URL
g Az
configaperson.com o« Gty Achens
il 37970450 Mo By C100¢ ‘hitos/ireorts.exodus-rteacy u oopATackery/22)
gt 23716221
o= Bancn Anatyocs DD rep0rs exodn BB e cORRACRSNET
Bvaze formerty Appboy) Anaycs Advertzamere, Locaton RG0S X0 AR 14 CBAACKRTSLT
£ FIREBASE DATABASES
Googl Frsbase Amayics Anaiyics Btasirenons excs prbECY e CeBNTACArSieD
FIREBASE URL DETALS Matomo (i) Anaiytcs RG0S exoda-Brhcy s cpATACRRCS 1A
oto " g repans exoda- By s erpATICkErS1)
epene ko P —— b ke
= EMALS 2 HARDCODED SECRETS
EMAL AE POSSIBLE SECRETS

“bad_Sokert : InvaAdating’

“com_appboy_apLkey" : CHb4%d6-tcba-Laef-T315 64107 1be63"

(R —

“revoking souee “Revekrg”

“ute,Engerprint o, maherticate_Aey" "use,Sngerprint. 1o ahentcate key"

P> PLAYSTORE INFORMATION

Lo

Anira

e e Duc 1, 2077 Py o ey Ak

[
oot ton ey e for Tl

Ty tee bey.exss true’ “True apesy e oo does
Toyor_zee ey, genarate_ssserceer Assanon”

Ty tee_bey._genecate, chalenge” “Chatenge”

Ty e bey._sign” - Sign”

“Tyor_tes_bey._sgnature” “Sgnature”

Report Geserated by - MebSF v36.2 Beta

“Tpor_teekey._sgned 06" “Signed

Capatin of parfortiing s and dyramic anwss,

Topor_tee_key.type_rsa’ RA°

“Passwcect - “Pasaword”

Assessing the Security Risks of Medical Mobile Application —

A comparable case study in Android and iOS platforms

59

Mertamrruxiakn Aiatpifr) (MSc Thesis)

6.2 MobSF Analysis Report iOS Aetna App

SF

10S STATIC ANALYSIS REPORT

& Aetna Health (5.23.0)

@& FINDINGS SEVERITY

V SECURE

& FILE INFORMATION

Fie Name: Acira Hesth 5.23.0.pa

Sor 89,1708

MOS: 68052661 3eaffacaiTeseTiettosis

‘S S4690C3674535da7a7afaT 230050 bbeet0 1 B
s

1 APP INFORMATION

Moy e Actra Heaith

£ BINARY INFORMATION

NSLccatonwharmwseUssgeDescrpson | dangerous

Hospials nea you

with a hesth cae provider

Aiow Aetra Veath to
wih a health car

5 yous photo Boraryfor i consubacions
NsPhototsreryihageOmerption your o

aaw

NSSpeschiecoptionUssgeescrpton | narmal | Apgies speech recognition

</> IPA BINARY CODE ANALYSIS

NO | 1SSUE

SEVERITY | STANDARDS DESCRIPTION
ot
R [—— funa Tha by ey ot hekowbng s AP oarcsy
insecure APHS) o OWAS? Tep 10 M. swrien, fopen, sscanf
s L e ey may s NSLog ez forlogging

ONE CWE- 785 Uncortralied Memory.
3 | s mesusa ctmatoc | | Abocation

ORASP To 107 Chent Coce Qualiy

[IPA BINARY ANALYSIS

Assessing the Security Risks of Medical Mobile Application —

A comparable case study in Android and iOS platforms

File Nam:
eatitier:

Scan Date:

App Secarity

Grade:

XpnoTog — Mdapiog MdpkeAAog

Aetna Health 523.0:pa
comaetrange
Feb. 17,2023, 816 pm.
Soore:
ek s

ek G SURTYPABMEAALL
eoitn
b <

#CUSTOM URL SCHEMES

URL NAME SCHEMES

i= APPLICATION PERMISSIONS

senadpix
— —

PERMISSIONS. sTATUS | INFO REASON IN MANIFEST
NSCamndantssgeDescrpticn dangereun | Access Colendars Py
NSCamaratragrescrimon dangereun | Acea

Access he abiey 10 manantcate
[— o | A e
[er— dangerus | Resdtewth Duea
g
PROTECTION | STATUS | SEVERITY | DESCRIPTION
- -~ - b set This ks .
execussbie
me ™ Pogammry
- e RO atzachs much more 8fcul 10 extcute resably
sckoamr | T
o Tre
2 T
e
NCRYPTED T
svwaoLs ; ;
e T Symbon sew wripped

@ DOMAIN MALWARE CHECK

DOMAIN STATUS

GEOLOCATION

Ps222%m
Coneey:

rdom o Grase Bran e Northern ireiand

60

Mertamrruxiakn Aiatpifr) (MSc Thesis)

XpnoTog — Mdapiog MdpkeAAog

[T
[R— e~ o oron —ssacom « iy
e 130530 [Do N
g 0125780 oot frsond
Ve Googie Map Vew:
P oo rssam
O pAm—
st oot
e sicbetrizon .. o s " Sy
Longiode: 135.691656. Longhade 74005013
Ve Google Map Ve
ez
Onty et s At oot - o Gelcaion oo el
Regh Catformia
e googe.com ok Gty Mountain View
franrireion
it = EMAILS
Ve Google Map
P e oGttt it = =
R .. e Gt et ot
wetis
e fosy
Oty et ot A -
Cone E]
i “ vy Sewiarn
s 1550w *
Langhade 72 663681 Lot
e
el
ooty “ Mo Gaskcaton ormatin avelae o)
-~
[— I
D raratons o8
Regin Noor +oland #Man
petvn
oo
e
Setrne
forin

APP STORE INFORMATION

T Actna veatn
See 465062 Fulares i 0.0 Cogery Heath & Fitmess, Medal
A S UL comaeEnargs

Dewlager: Aeira i Wrsurance Company

Oewsger [0 380845819
Oewlger Wbt Nz v 223 com

whaned,

PacProCeluiar.

PadTS Pod, a1t 2e7S,

PagProCensar,
Pad7) IPad7, Pad12-PadT2, PodTS PodT, Pac7PaTA,

1,

#noneid,

PacProsatrGenCebiar-PadProsihGenCetudar,

7 References

Assessing the Security Risks of Medical Mobile Application —

A comparable case study in Android and iOS platforms

‘walkin chics) are par of the CVS Heakth® famiby o companies

Roport Ganerated by - MobSF V352 Beta

capable of pforming s231c and dynamic analsks.

61

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

&

(10]

(11]

(12]

(13]

(14]

Kgnig, C., et al. (2014). The Mobile Security Landscape. Journal of Computer Security,

22(6), pp. 761-792.

Joseph Chan Joo Keng, Tan Kiat Wee, Lingxiao Jiang, and Rajesh Krishna Balan, The Case for
Mobile Forensics of Private Data Leaks:Towards Large-Scale User-Oriented Privacy Protection,
School of Information Systems, Singapore Management University 2012.

Hassanien, A. E., Haqiq, A., Tonellato, P. J., Bellatreche, L., Goundar, S., Azar, A. T., ... Bouzidi,
D. (Eds.). (2021). Proceedings of the International Conference on Artificial Intelligence and
Computer Vision (AICV2021). Advances in Intelligent Systems and Computing.

A. P. Felt, D. Wagner, Phishing on mobile devices, na, 2011.

Bojjagani, S., Brabin, D. R. D., & Rao, P. V. V. (2020). PhishPreventer: A Secure Authentication
Protocol for Prevention of Phishing Attacks in Mobile Environment with Formal Verification.
Procedia Computer Science, 171, 1110-1119.

Kim, K.; Shin, Y.; Lee, J.; Lee, K. Automatically Attributing Mobile Threat Actors by Vectorized
ATT&CK Matrix and Paired Indicator. Sensors 2021, 21, 6522. [Google Scholar]

Zitouni, R., Agueh, M., Houngue, P., & Soude, H. (Eds.). (2020). e-Infrastructure and e-Services for
Developing Countries. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering.

Murat Yesilyurt, Yildiray Yalman, Security Threats on Mobile Devices and their Effects: Estimations
for the Future, International Journal of Security and Its Applications Vol. 10, No. 2 (2016), pp.13-26
Verma, H., et al. (2017). Mobile Apps and Identity Theft: An Exploratory Study. Proceedings of the
2017 IEEE International Conference on Computer and Information Technology (CIT), pp. 212-217.
Yavuz, T., et al. (2015). An Analysis of Operating System Vulnerabilities in Mobile Devices.
Proceedings of the 2015 International Symposium on Innovations in Intelligent Systems and
Applications (INISTA), pp. 1-6.

Shanmugam, K., et al. (2016). Investigating the Security of Mobile Health Applications. Proceedings
of the 2016 IEEE International Conference on Communications and Signal Processing (ICCSP), pp.
558-562.

Khan, M. A., & Babar, M. A. (2017). Mobile Application Security: A Survey. IEEE Access, 5, pp.
8714-8734.

Wang, X., et al. (2015). A Survey of Android Security Threats and Defenses. Proceedings of the
2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf
on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and
Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 1910-1915.

Liao, X., et al. (2016). Protecting Sensitive Data in Untrusted Android Environments Using Trusted
Execution Environments. IEEE Transactions on Information Forensics and Security, 11(8), pp.
1795-1807.

Assessing the Security Risks of Medical Mobile Application — 62
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

[15] Schiitte, J., & Bodden, E. (2015). Detecting Jailbroken iOS Devices. Proceedings of the 2015 IEEE
International Conference on Mobile Services (MS), pp. 47-54.

[16] Wang, H., & Ou, X. (2016). A Survey on Reverse Engineering of Android Applications. IEEE
Transactions on Software Engineering, 42(7), pp. 641-660.

[17] Morgan, T. D., et al. (2015). Hooking Detection Techniques for Mobile Applications. IEEE
Transactions on Mobile Computing, 14(10), pp. 2049-2063.

[18] Zzhang, J., & Gui, X. (2017). A Survey of Hooking Techniques and Their Applications. Journal of
Computer Science and Technology, 32(3), pp. 415-429.

[19] Tajalizadehkhoob, S., et al. (2018). Debugger Detection Techniques for Android Applications.
Journal of Computer Virology and Hacking Techniques, 14(4), pp. 259-273.

[20] Sadeghi, A., et al. (2016). Detecting Screen Capture-based Attacks on Android Devices Using
Motion Sensors. Proceedings of the 2016 ACM Conference on Computer and Communications
Security, pp. 1315-1326.

[21] Bejleri, A., et al. (2016). Security Analysis of iOS Password Vaults. Proceedings of the 2016 ACM
Conference on Computer and Communications Security, pp. 1241-1252.

[22] Qasem, S., etal. (2017). Encryption in Android Applications: A Comparative Study. Proceedings of
the 2017 IEEE International Conference on Cloud Computing and Big Data Analysis, pp. 29-34.

[23] Smith, M., and Small, S. (2014). Analyzing the Security of Third-Party iOS Applications.
Proceedings of the 2014 USENIX Security Symposium, pp. 323-338.

[24] Jain, S., and Kumar, P. (2018). Analysis of Insecure Communication Channels in Mobile
Applications. Proceedings of the 2018 International Conference on Computing, Communication,
and Automation, pp. 126-130.

[25] Alshehri, S. A. E., et al. (2018). Mobile Application Security and Social Engineering Attacks: A
Review. Proceedings of the 2018 International Conference on Innovations in Information
Technology, pp. 58-63.

[26] Liu, J., etal. (2017). Security Analysis of Side-Loading on Android Devices. Proceedings of the
2017 IEEE Conference on Communications and Network Security, pp. 1-9.

[27] Wang, S., et al. (2018). A Survey on Mobile Man-in-the-Middle Attacks. IEEE Communications
Surveys & Tutorials, 20(4), 3453-3473.

[28] Alshehri, A., et al. (2018). Detecting and Mitigating Flooding Attacks on Mobile Devices.
Proceedings of the 2018 IEEE International Conference on Cybersecurity and Privacy, pp. 117-124.

[29] Alzahrani, A., et al. (2016). A Study on the Prevalence of Malware in Android Applications.
Proceedings of the 2016 IEEE/ACS 13th International Conference of Computer Systems and
Applications, pp. 1-6.

[30] Islam, M. M., et al. (2015). Security Vulnerabilities in Mobile Communication Protocols. International
Journal of Computer Networks and Communications, Vol. 7, No. 1, pp. 27-38.

Assessing the Security Risks of Medical Mobile Application — 63

A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

[31] Khelifi, A., et al. (2019). Security Analysis of Mobile Applications and Mitigation Strategies Against
Network Spoofing Attacks. International Journal of Network Security, Vol. 21, No. 6, pp. 1072-1082.

[32] J. Alnabulsi, S. Khan, and I. A. Khan, "Weak Password Analysis of Mobile Users," 2020 IEEE
International Conference on Innovations in Information Technology (lIT), 2020, pp. 1-6.

[33] Goyal, S., & Singh, G. (2018). Risks of Using Mobile Applications on Unsecured Wi-Fi Networks.
International Journal of Engineering and Technology (UAE), 7(2.26), 139-144.

[34] S.Ryu, Y.Jang, and H. J. Kim, "A Study on the Risk of Using Outdated Applications in Mobile
Devices," 2017 4th International Conference on Information Science and Control Engineering
(ICISCE), 2017, pp. 329-333.

[35] https://www.android.com/play-protect/

[36] https://developer.android.com/topic/security/sandboxing

[37] https://developer.android.com/guide/topics/permissions/overview

[38] https://source.android.com/security/verifiedboot/

[39] https://searchsecurity.techtarget.com/definition/verified-boot

[40] https://source.android.com/security/data-encryption

[41] https://support.google.com/googleplay/android-developer/answer/9859654?hl=en

[42] https://source.android.com/security/bulletin

[43] https://developer.android.com/topic/google-play-protect/treble

[44] https://developer.apple.com/app-store/review/

[45] https://support.apple.com/en-us/HT208108

[46] https://support.apple.com/en-us/HT204587

[47] https://www.apple.com/ios/security/

[48] Direito, A., Dale, L. P., Shields, E., Dobson, R., & Whittaker, R. (2014). Effectiveness of eHealth
interventions for promoting physical activity in older adults: A systematic review. Journal of Medical
Internet Research, 16(7), e161. doi: 10.2196/jmir.3050

[49] Bardus, M., Smith, J. R., Samaha, L., & Abraham, C. (2016). Mobile and web-based apps that
support self-management and self-monitoring of dietary intake: A systematic review. Journal of
Medical Internet Research, 18(6), e164. doi: 10.2196/jmir.5590

[50] Huberty, J., Eckert, R., Larkey, L., Kurka, J., de Moor, C., & Klemann, N. (2019). Smartphone-
based meditation for myeloproliferative neoplasm patients: Feasibility study to inform future trials.
Journal of Medical Internet Research, 21(4), e13150. doi: 10.2196/13150

[51] Firth, J., Torous, J., Nicholas, J., Carney, R., Pratap, A., Rosenbaum, S., ... & Sarris, J. (2017). The
efficacy of smartphone-based mental health interventions for depressive symptoms: A meta-
analysis of randomized controlled trials. World Psychiatry, 16(3), 287-298. doi: 10.1002/wps.20472

Assessing the Security Risks of Medical Mobile Application — 64

A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

[62]

(63]

(64]

[65]

Cook, D. A., Wittich, C. M., Daniels, W. L., West, C. P., Harris, A. M., Beebe, T. J., & Hartzband, P.
I. (2018). Incentivizing the use of smartphone-based diagnostic apps: A randomized trial. JAMA
Internal Medicine, 178(3), 385-392. doi: 10.1001/jamainternmed.2017.7853

Oakley, A., Patel, D., Gerhards, A., Murrell, D. F., & Sweeney, M. R. (2018). Accuracy of a
smartphone app for triage of skin lesions based on machine learning algorithms. JAMA
Dermatology, 154(4), 402-406. doi;: 10.1001/jamadermatol.2017.5376

Mehrotra, A., Jena, A. B., Busch, A. B., & Souza, J. (2013). Telemedicine and ambulatory
subspecialty care utilization among Medicare beneficiaries. JAMA, 309(22), 2437-2438. doi:
10.1001/jama.2013.5928

Cook, D. A., Triola, M. M., & loannidis, J. P. (2014). More than meets the eye: Bias that lurks
beneath the surface in visual grading studies. JAMA, 311(21), 2161-2162. doi: 10.1001/jama
Ammenwerth, E., Schnell-Inderst, P., & Hoerbst, A. (2012). The impact of electronic patient portals
on patient care: A systematic review of controlled trials. Journal of Medical Internet Research, 14(6),
e162. doi: 10.2196/jmir.2238

Lau, A. Y., Arguel, A., Dennis, S., Liaw, S. T., & Coiera, E. (2019). “Why didn't it work?” Lessons
from a randomized controlled trial of a web-based personally controlled health management system
for adults with asthma. Journal of Medical Internet Research, 21(4), €12380. doi: 10.2196/12380
Jakicic, J. M., Davis, K. K., Rogers, R. J., King, W. C., Marcus, M. D., Helsel, D., ... Belle, S. H.
(2016). Effect of wearable technology combined with a lifestyle intervention on long-term weight
loss: The IDEA randomized clinical trial. JAMA, 316(11), 1161-1171. doi: 10.1001/jama.2016.12858
Isaac, T., Zheng, J., & Jha, A. (2012). Use of UpToDate and outcomes in US hospitals. Journal of
Hospital Medicine, 7(2), 85-90. doi: 10.1002/jhm.944

Patterson, J. W., Mann, T., & Kirsner, R. S. (2011). Skin diseases: Diagnosis and management —
an online medical education and clinical decision support tool. Journal of Drugs in Dermatology,
10(5), 569-575.

Whitten, P., Holtz, B., & Laplante, C. (2017). Telemedicine adoption by different groups of
physicians. Health Affairs, 36(12), 2268-2276. doi: 10.1377/hlthaff.2017.1012

Chen, R., Powell, J., Reeves, D., Bardsley, M., & Majeed, A. (2019). Using a patient appointment
booking website (Zocdoc) in NHS general

Abraham MB, Nicholas JA, Smith GJ, et al. Use of a predictive algorithm in a closed-loop artificial
pancreas system. Diabetes Care. 2013;36(9):2633—-2640.

Hua R, Tang VY, Li K, et al. A review of wearable sensor-based systems for real-time health
monitoring. J Sens. 2021;2021:6565869.

Jia J, Lu S, Zhang C, et al. A cloud-based 3D printing service platform for customized medical
devices. 3D Print Med. 2021;7(1):4.

Assessing the Security Risks of Medical Mobile Application — 65
A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

[66] Hollander JE, Carr BG. Virtually perfect? Telemedicine for Covid-19. N Engl J Med.
2020;382(18):1679-1681.

[67] Memic A, Tadayon M, Navarro M, et al. Soft robotics and microfluidics for minimally invasive
surgery. Adv Healthc Mater. 2021;10(1):e2000798.

[68] Wang Z, Tang F, Wang J, et al. Wearable health sensors in personalized medicine: a systematic
review of the literature. Am J Med Res. 2021;8(1):1-9.

[69] Martinez-Marin JL, Gil-Lépez S, Sanchez-Gonzalez A, et al. A review of 3D printing mobile apps.
Addit Manuf. 2021;40:101926.

[70] Janaka Senanayake, Harsha Kalutarage, Mhd Omar Al-Kadri, Andrei Petrovski, and Luca Piras.
Developing secured android applications by mitigating code vulnerabilities with machine learning. In
Proceedings of the 2022 ACM on Asia Conference on Computer and Communications Security,
pages 1255-1257, 2022

[71] Ashwag Albakri, Huda Fatima, Maram Mohammed, Aisha Ahmed, Aisha Ali, Asala Ali, and Nahla
Mohammed Elzein. Survey on reverse-engineering tools for android mobile devices. Mathematical
Problems in Engineering, 2022:1-7, 2022.

[72] Hilmi Abdullah and Subhi RM Zeebaree. Android mobile applications vulnerabilities and prevention
methods: A review. 2021 2nd Information Technology To Enhance e-learning and Other Application
(IT-ELA), pages 148-153, 2021.

[73] Juliza Mohamad Arif, Mohd Faizal Ab Razak, Sharfah Ratibah Tuan Mat, Suryanti Awang, Nor
Syahidatul Nadiah Ismail, and Ahmad Firdaus. Android mobile malware detection using fuzzy ahp.
Journal of Information Security and Applications, 61:102929, 2021.

[74] Gioacchino Tangari, Muhammad Ikram, | Wayan Budi Sentana, Kiran ljaz, Mohamed Ali Kaafar,
and Shlomo Berkovsky. Analyzing security issues of android mobile health and medical
applications. Journal of the American Medical Informatics Association, 28(10):2074-2084, 2021.

[75] Rajindra Adhikari, Deborah Richards, and Karen Scott. Security and privacy issues related to the
use of mobile health apps. ACIS, 2014.

[76] Achilleas Papageorgiou, Michael Strigkos, Eugenia Politou, Efthimios Alepis, Agusti Solanas, and
Constantinos Patsakis. Security and privacy analysis of mobile health applications: the alarming
state of practice. leee Access, 6:9390-9403, 2018.

[77] Xiaokuan Zhang, Xuegiang Wang, Xiaolong Bai, Yingian Zhang, and XiaoFeng Wang. Os-level side
channels without procfs: Exploring cross-app information leakage on ios. In Proceedings of the
Symposium on Network and Distributed System Security, 2018.

[78] https://developer.android.com/tools/adb

[79] https:/frida.re/

[80] https://medium.com/@Kamal_S/mobile-security-framework-mobsf-setup-kali-linux-and-windows-
afb055721c41

Assessing the Security Risks of Medical Mobile Application — 66

A comparable case study in Android and iOS platforms

Mertamrruxiakn Aiatpifr) (MSc Thesis) XproTog — Mapiog MdpkeAAog

[81] https://github.com/MobSF/Mobile-Security-Framework-MobSF
[82] https://ibotpeaches.github.io/Apktool/
[83] https://docs.oracle.com/javase/8/docs/technotes/tools/windows/jarsigner.html

[84] https://portswigger.net/burp

Assessing the Security Risks of Medical Mobile Application —
A comparable case study in Android and iOS platforms

67

