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The paths we take in life are infinite, and the trajectories we follow are as unique as the stars in

the sky

Megan Mayhew Bergman



Abstract

The objective of this thesis paper is to compare the performance of trajectory similarity tech-

niques for vessels in real-time. The study presents a comprehensive review of multiple trajec-

tory similarity techniques and identifies the most widely used methods. The methods selected

for comparison include Lock-Step Euclidean distance, Dynamic Time Warping and Longest

Common Subsequence.

The study begins with a comprehensive examination of existing trajectory similarity tech-

niques and their applications in the maritime domain. Following that, a fresh dataset comprised

of various vessel trajectories is assembled in order to evaluate the performance and attributes of

the chosen approaches. The evaluation is primarily concerned with computational efficiency.

In addition to the primary focus on comparing the performance and properties of trajectory

similarity techniques for real-time vessel tracking, this thesis also encompasses a thorough

analysis of the tools and supplementary techniques employed in the used algorithm. A dis-

tributed processing system is employed to compute the evaluations using Spark, notably Spark

Streaming for real-time data. In terms of partitioning strategies, uniform grid partitioning has

been applied.

Overall, a dataset of vessel trajectories is collected from a real time monitoring system of AIS,

and the selected techniques are applied to the dataset. The results show that LSED performs

better than the other two methods in terms of accuracy and computational efficiency. In gen-

eral, the findings of this study contribute to the advancement of vessel trajectory analysis and

provide guidance for selecting appropriate techniques for real-time vessel monitoring.



Περίληψη

Στόχος της παρούσας διατριβής είναι η σύγϰριση των επιδόσεων των τεχνιϰών οµοιότητας

τροχιάς για πλοία σε πραγµατιϰό χρόνο. Η µελέτη παρουσιάζει µια ολοϰληρωµένη ανα-

σϰόπηση των πολλαπλών τεχνιϰών οµοιότητας τροχιάς ϰαι προσδιορίζει τις πιο ευρέως

χρησιµοποιούµενες µεϑόδους. Οι µέϑοδοι που επιλέχϑηϰαν για σύγϰριση περιλαµβάνουν

την Lock-Step Euclidean distance, την Dynamic Time Warping ϰαι την Longest Common

Subsequence.

Η µελέτη ξεϰινά µε µια ολοϰληρωµένη εξέταση των υφιστάµενων τεχνιϰών οµοιότητας τρο-

χιάς ϰαι των εφαρµογών τους στον ϑαλάσσιο τοµέα. Στη συνέχεια, συγϰροτείται ένα νέο

σύνολο δεδοµένων που αποτελείται από διάφορες τροχιές πλοίων, προϰειµένου να αξιολο-

γηϑούν οι επιδόσεις ϰαι τα χαραϰτηριστιϰά των επιλεγµένων προσεγγίσεων. Η αξιολόγηση

αφορά ϰυρίως την υπολογιστιϰή απόδοση.

Εϰτός από βασιϰό στόχο στη σύγϰριση των επιδόσεων ϰαι των ιδιοτήτων των τεχνιϰών

οµοιότητας τροχιάς για τον εντοπισµό πλοίων σε πραγµατιϰό χρόνο, η παρούσα διατριβή

περιλαµβάνει επίσης µια διεξοδιϰή ανάλυση των εργαλείων ϰαι των συµπληρωµατιϰών τε-

χνιϰών που χρησιµοποιούνται στον αλγόριϑµο που χρησιµοποιείται. Για τον υπολογισµό

των αξιολογήσεων χρησιµοποιείται ένα ϰατανεµηµένο σύστηµα επεξεργασίας µε τη χρήση

του Spark, ιδίως του Spark Streaming για δεδοµένα πραγµατιϰού χρόνου. ΄Οσον αφορά τις

στρατηγιϰές ϰατάτµησης, έχει εφαρµοστεί οµοιόµορφη ϰατάτµηση πλέγµατος.

Συνολιϰά, συλλέγεται ένα σύνολο δεδοµένων µε τροχιές πλοίων από ένα σύστηµα παραϰο-

λούϑησης AIS σε πραγµατιϰό χρόνο ϰαι οι επιλεγµένες τεχνιϰές εφαρµόζονται στο σύνολο

δεδοµένων. Τα αποτελέσµατα δείχνουν ότι η LSED αποδίδει ϰαλύτερα από τις άλλες δύο µε-

ϑόδους όσον αφορά την αϰρίβεια ϰαι την υπολογιστιϰή αποδοτιϰότητα. Σε γενιϰές γραµµές,

τα ευρήµατα της παρούσας µελέτης συµβάλλουν στην πρόοδο της ανάλυσης τροχιών πλοίων

ϰαι παρέχουν ϰαϑοδήγηση για την επιλογή ϰατάλληλων τεχνιϰών για την παραϰολούϑηση

πλοίων σε πραγµατιϰό χρόνο.



Acknowledgements

I would like to express my sincere gratitude to the following individuals and organizations who

have contributed to the completion of this thesis:

I want to start by expressing my gratitude to my supervisor, Christos Doulkeridis, for his

invaluable advice and assistance during my graduate studies. My research and writing have

benefited greatly from his knowledge and encouragement.

I also want to thank my Ubitech coworkers and my unit for their understanding and support

while I tried to balance my work and thesis responsibilities. Their support, adaptability, and

willingness to work together allowed me to balance the demands of both worlds.

For their unwavering love and support, especially during the trying times of my research and

writing, I am grateful to my family and friends. My perseverance has been sustained by their

support and understanding throughout this journey.

Thank you all for your contributions and support.

iv



Contents

Abstract ii

Περίληψη iii

Acknowledgements iv

List of Notations & Abbreviations viii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 State Of The Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Spatial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Trajectory similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Similarity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Lock-step Euclidean distance (LSED) . . . . . . . . . . . . . . . 9

Dynamic time warping (DTW) . . . . . . . . . . . . . . . . . . 10

Longest Common Subsequence (LCSS) . . . . . . . . . . . . . . 10

2.4 Real Time Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Apache Flink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Apache Storm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Apache Samza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.4 Apache Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Space Partitioning Techniques . . . . . . . . . . . . . . . . . . . . . . . 17

Uniform Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Quad Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

v



Contents vi

2.5.2 Data Partitioning Techniques . . . . . . . . . . . . . . . . . . . . . . . 17

STR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

STR+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

K-d tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Z-curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Hilbert curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Notation & Real-time Trajectory Similarity 18

3.1 Datasets Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Routes dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 AIS Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Procedure Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Batch Processing API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Partitioning Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Trajectory Similarity Implementation . . . . . . . . . . . . . . . . . . . . . . . 23

3.5.1 Lock-Step Euclidean Distance . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.2 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.3 Longest Common Subsequence . . . . . . . . . . . . . . . . . . . . . . 26

4 Experimentation & Validation 27

4.1 Experimentation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusions & Future Work 31

5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A Custom Receiver 33

Bibliography 35



List of Figures

Figure 2.1. Demonstration of LSED . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.2. Demonstration of DTW . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.3. Demonstration of LCSS . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.4. Data Stream Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.5. Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.6. Partitioning Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.1. Reference Routes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.2. Demonstration of distance computation for each AIS message and way-

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 3.3. Resilient Distributed Datasets (RDDs) pipeline . . . . . . . . . . . . . 22

Figure 3.4. Grid Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 4.1. Dataset representations . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.2. Total Execution time in seconds . . . . . . . . . . . . . . . . . . . . . 29

vii



List of Notations & Abbreviations

AIS Automatic Identification System

ETL Extract, Transform, Load

NCA Norwegian Coastal Administration

DTW Dynamic Time Warping

LSED Lock-Step Euclidean Distance

LCSS Longest Common Subsequence

MBR Minimum Bounding Rectangle

RDD Resilient Distributed Datasets

DStreams Discretized Streams

A, B Trajectories A and B

n, m Total Number of points for trajectories A and B respectively

a, b Points from trajectories A and B respectively

t time

viii



To my parents, who have instilled in me the value of education and hard

work. Thank you for providing me with opportunities and for always

believing in me. This thesis is a testament to your love and dedication.

ix



Chapter 1

Introduction

The shipping industry is an essential part of the economy of the entire world since it is in

charge of the transportation of commodities and other items across the oceans of the world,

while the economic development of different countries is significantly dependent on the move-

ment of a containerized cargo [15]. According to a recent study, conducted by Lloyd’s Marine

Intelligence Unit, maritime transportation accounts for≈ 75% of the total volume and≈ 60%

of the total value of global trade [24]. Because of the growing size and complexity of vessels, it

is becoming increasingly vital to optimize vessel routing in order to guarantee that operations

will be carried out in an effective and risk-free manner. The utilization of Automatic Identi-

fication Systems (AIS) and data in real time has brought about a revolutionary change in the

manner in which vessel routing is carried out[2].

The purpose of this thesis is to examine vessel routing by making use of AIS and real time

data, with a particular emphasis on trajectories and the use of waypoints to detect similarities

between the itineraries taken by different vessels. Waypoints are predetermined positions that

a vessel is required to travel through in order to reach its destination. They are also frequently

utilized to guarantee safe navigation and to avoid potentially dangerous regions.

In this work, we will investigate how vessel trajectories may be examined by making use of real

time data in order to determine the extent to which different vessel paths are similar, regarding

the similarity metrics. The results of this research will assist in determining the most effective

routing techniques and provide valuable insight for decision making in the shipping business.

The utilization of AIS data will also be investigated as a potential method for the collection of

real time information on the locations, speeds, and courses of individual vessels.

The case study for this thesis will require examining vessel trajectories in a certain geographical

area, and specifically the minimum bounding rectangle (MBR) which is the smallest rectangular

area that can fully enclose a set of geographic features, such as points, lines or polygons. The

1
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MBR is defined by the minimum and maximum coordinates in the x and y dimensions of the

geographic dataset. In this regard, this study performs a comparison of the pathways taken

by different vessels, and identifying common waypoints utilized in their routes. The followed

methodology will comprise the following steps:

1. Define the MBR based on a waypoints dataset and proceed with relevant space parti-

tioning accordingly

2. Grouping together the real time data taken from AIS, in order to create trajectories of

vessels

3. Calculation of Trajectory Similarity of each vessel route with the given waypoints data

4. Compare performance

5. Create evaluation for performance and characteristics for each trajectory similarity mea-

sure

All of these steps will be realisen in order for this work to be completed. Moreover, the findings

of this research will assist to optimize vessel traffic in the region by providing insights into the

success of various routing techniques and providing information about those tactics.

1.1 Motivation

Optimizing vessel routing has become more crucial as vessels’ sizes and complexity increase in

order to ensure effective and secure operations. The collection of vital data like vessel positions,

speed, and course has revolutionized vessel routing thanks to the use of AIS and real time data.

With a particular emphasis on trajectories and the use of waypoints, the goal of this thesis is

to investigate the potential of vessel routing using AIS and real time data. The optimization of

vessel traffic in particular geographic areas can help to increase efficiency and safety. This is

done by analyzing vessel trajectories and identifying common waypoints.

Moreover, this work aims to contribute to the growing body of knowledge on vessel routing

by providing insight on how real time data and AIS are used in the shipping industry to guide

decision making. real time vessel trajectory analysis can assist in determining the best routing

options and guiding vessel traffic management in particular areas.

Overall, the need to improve vessel routing in the maritime sector and the potential of AIS and

real time data to support decision making and increase effectiveness and safety in vessel traffic

management serve as the driving forces behind this thesis.
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1.2 State Of The Art

In the field of trajectory similarity for vessels, there are several key aspects, including data

sources, similarity measures, clustering algorithms, and anomaly detection methods. This sec-

tion will describe the current knowledge about the subject through the analysis of similar or

related published work.

The primary source of data for analyzing vessel trajectories is the Automatic Identification

System (AIS). AIS data provides a wealth of information, including vessel positions, speeds,

and headings, which can be utilized to analyze vessel movement patterns, predict future routes,

and detect abnormal behavior. The preprocessing of this data involves data cleaning, filtering,

interpolation, and handling uncertainty and noise[10].

When comparing vessel trajectories, various similarity measures have been developed and ap-

plied, such as Dynamic Time Warping (DTW), Longest Common Subsequence (LCSS), Edit

Distance on Real sequences (EDR), Frechet Distance, and Hausdorff Distance. These measures

consider different aspects of trajectory similarity, such as the order of points, the shape of the

trajectory, and the ability to handle varying speeds and sampling rates. Researchers have also

explored adapting these similarity measures for specific maritime applications by incorporat-

ing additional information, such as vessel types or contextual attributes[34].

Clustering algorithms, such as DBSCAN, k-means, and hierarchical clustering, have been em-

ployed to group similar trajectories together based on their spatial and temporal characteris-

tics. These techniques enable the identification of common patterns and anomalies in vessel

movements, which can be used to inform maritime safety, security, and efficiency efforts. Re-

cent advancements in machine learning and deep learning have also been applied to trajectory

clustering, including autoencoders for learning trajectory representations and graph based ap-

proaches for analyzing the relationships between trajectories[33].

Anomaly detection and pattern recognition are critical components of vessel trajectory anal-

ysis. A variety of supervised and unsupervised methods have been proposed for detecting

abnormal behavior in maritime traffic, taking into account both the spatial and temporal as-

pects of vessel movement. By integrating contextual information, such as weather, ports, and

maritime regulations, these methods can provide more accurate and comprehensive detection

of anomalies[31].

In summary, the state of the art in vessel trajectory similarity includes a wide range of tech-

niques and methodologies, with ongoing research intended to enhance the accuracy, efficiency,

and applicability of these methods to real world maritime scenarios. Future work in the field

can advance our understanding of vessel movement patterns and contribute to the develop-

ment of more effective and intelligent maritime systems by building on this foundation.
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1.3 Problem Definition

The objective of this thesis is to explore the use of trajectory similarity analysis for vessel

routing in real time by making use of past data. The study of vessel trajectories will be used

to determine which routing methods are the most successful in order to increase efficiency

and safety in the shipping sector. This will be accomplished by identifying the most effective

routing strategies.

The necessity to optimize vessel routing in the face of increasing vessel size and complexity

has given rise to the challenge that we are currently experiencing. The adoption of AIS and real

time data has completely transformed the process of vessel routing by making it possible to

gather crucial data such as the positions, speed, and courses of individual vessels. Despite this,

it is necessary to do a thorough analysis of this data in order to determine which trajectory

similarity schemes are the most successful.

The method we have been proposing in this work, is to do a trajectory similarity analysis in

order to compare the itineraries taken by different vessels and locate the similarity metric the

routes share. This study can assist to optimize vessel traffic in certain geographic regions by

assessing real time data in addition to historical data. As a result, both efficiency and safety

will be improved.



Chapter 2

Background

2.1 Spatial data

Geospatial information, sometimes known as spatial data or geographic data, involves data that

represents objects, phenomena, or features with specific Earth surface locations. In fields like

environmental management, urban planning, transportation, agriculture, and disaster man-

agement, this data is crucial. Geospatial data can be expressed in different forms, such as

vector, raster, and attribute data[10].

1. Vector-based data represents spatial data by using points, lines, and polygons. These geo-

metric entities are defined by a set of coordinates, typically latitude and longitude. Points

represent discrete locations such as cities or buildings. Lines represent linear features

such as roads or rivers, whereas polygons represent areas such as country boundaries

or land parcels. Geographic Information Systems (GIS) frequently use vector-based data

for analysis, modeling, and visualization.

2. Grid-based data, also known as raster data, represents spatial data as a matrix or grid of

cells, with each cell containing a unique value corresponding to a specific Earth surface

location. A cell’s value can represent various attributes such as elevation, temperature,

or land cover type. For satellite imagery, digital elevation models, and remote sensing

applications, grid-based data is commonly used.

3. Non-spatial data, also known as attribute data, is information associated with spatial

features that provides context or additional information about the features. This infor-

mation can be stored in tables and linked to the corresponding spatial data through the

use of unique identifiers. A city’s attribute data, for example, could include population,

area, and GDP.

5
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GIS software (e.g., ArcGIS, QGIS), spatial databases (e.g., PostGIS, Oracle Spatial), and web map-

ping platforms can all store and manage spatial data (e.g., Google Maps, OpenStreetMap)[4].

These applications enable users to create, edit, analyze, and visualize spatial data in a variety

of formats[9].

Some key concepts related to spatial data include:

1. Coordinate systems: A coordinate system defines how spatial data is represented in

terms of location and measurement. There are various coordinate systems, such as the

geographic coordinate system (latitude and longitude) and projected coordinate systems

(e.g., Universal Transverse Mercator).

2. Spatial reference frameworks: A spatial reference framework (SRF) is a combination of a

coordinate system and a datum (a reference surface for Earth’s shape). SRF ensures that

spatial data from different sources can be accurately integrated and analyzed.

3. Scale and resolution: Scale refers to the ratio between the size of a feature on the Earth’s

surface and its representation on a map or image. Resolution, on the other hand, is the

level of detail at which spatial data can be represented. Higher resolution data has finer

detail but may require more storage and processing power.

4. Spatial examination: Spatial examination is the process of studying and modeling pat-

terns, relationships, and trends within spatial data. This can involve various techniques

such as buffering, overlay, interpolation, and network analysis, depending on the prob-

lem being addressed.

5. Spatial data quality: The quality of spatial data is essential for accurate analysis and

decision making. Quality can be affected by factors such as positional accuracy, attribute

accuracy, and completeness of the data.

In conclusion, geospatial data is an important part of many applications because it helps us un-

derstand how geographical features and events are related. Using GIS tools to manage and ana-

lyze it lets people in many fields make better decisions and solve problems more effectively[9].

2.2 Trajectory

Trajectories, also known as routes, are a type of spatial data that represents the movement of

objects or people through space and time. Vehicles, animals, people, and even natural phe-

nomena such as storms and wildfires can be considered[23]. Trajectories and routes are useful



7

for analyzing and comprehending a wide range of spatiotemporal patterns, behaviors, and re-

lationships in fields such as transportation planning, wildlife ecology, human mobility, and

emergency response[38].

A combination of spatial and temporal data can be used to represent and analyze trajectory

and route data:

• The spatial component of a trajectory or route is made up of a series of spatial points

that define the path of the object. Each point on the trajectory corresponds to a specific

location on the Earth’s surface (e.g., latitude and longitude). These points can be con-

nected in vector data to form a polyline or a line feature, which represents the object’s

movement from one location to another.

• The timestamps associated with each spatial point are referred to as the temporal com-

ponent of a trajectory or route. Timestamps indicate when an object was at a specific lo-

cation, allowing for analysis of movement speed, duration, and temporal patterns. Tem-

poral data can be stored as an attribute of spatial points or in a separate table linked to

spatial data.

Working with trajectories and routes as spatial data requires a variety of techniques and meth-

ods:

1. Data collection: Trajectory data can be collected using a variety of methods, including

GPS tracking devices, mobile phone data, vehicle sensors, and social media check-ins.

These methods produce raw spatial and temporal data that can be cleaned, processed,

and formatted for further analysis.

2. Data preprocessing: To address issues such as noise, gaps, or errors in the data, trajectory

data frequently requires preprocessing. To improve the quality and usability of the data,

techniques such as filtering, interpolation, and smoothing can be used. Trajectories can

be segmented and clustered based on specific criteria such as distance, time, or speed.

This aids in identifying and analyzing various phases of movement or events within the

trajectory. Clustering techniques can be used to group similar trajectories or routes,

allowing common patterns, trends, or anomalies to be identified[14].

3. Spatiotemporal analysis: Examining the relationships between the spatial and tempo-

ral components of data is common when analyzing trajectories and routes. Calculating

distances, speeds, and durations, as well as identifying points of interest along the trajec-

tory, are all examples of this. Various spatiotemporal analyses can be performed using

time series analysis, spatial statistics, and geographic information systems (GIS).
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4. Visualization: Trajectories and routes can aid in the discovery of patterns, trends, and

relationships in data. Static maps, animated maps, space-time cubes, and interactive web

maps are all common visualization techniques. GIS software, programming languages

(e.g., R, Python), or web mapping platforms can be used to create these visualizations

(e.g., Leaflet, Mapbox).

5. Applications: Trajectories and routes have a wide range of applications in a variety of

fields. They can be used in transportation planning to analyze traffic patterns, optimize

public transportation routes, and identify accident hotspots. They can aid in the study of

animal migration, habitat use, and the impact of human activities on animal movement

in wildlife ecology. They can help in emergency response by predicting the spread of

wildfires, tracking storms, and planning evacuation routes.

In conclusion, trajectories and routes as spatial data provide important insights into the move-

ment of objects or individuals through space and time. Researchers and practitioners can better

understand and address various spatiotemporal patterns, behaviors, and relationships in a va-

riety of fields by collecting, preprocessing, analyzing, and visualizing this data[38].

2.3 Trajectory similarity

Trajectory similarity for vessels can be determined using various algorithms and techniques.

In maritime applications, such as monitoring ship movements, trajectory similarity is crucial

for detecting abnormal behavior, estimating travel times, and evaluating route efficiency. Here

are a few popular techniques to assess trajectory similarity for vessels[38]:

• Dynamic Time Warping (DTW)

• Longest Common Subsequence (LCSS)

• Edit Distance on Real sequences (EDR)

• Fréchet Distance

• Trajectory Clustering[33]

When evaluating vessel trajectory similarity, it is critical to consider factors such as data ac-

curacy and frequency, as well as the specific application requirements. Depending on the con-

text and the desired level of similarity between trajectories, different methods may be more

appropriate[31].
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2.3.1 Similarity measures

Several different distance metrics, such as Lock-Step Euclidean distance, Dynamic Time Warp-

ing, and Longest Common Subsequence, can be utilized to determine how similar two tra-

jectories are to one another. These metrics quantify the degree to which two trajectories are

comparable by comparing the distance or dissimilarity between the corresponding locations

in space and time of the two sets of trajectories[34].

The application and the features of the trajectories being compared are two factors that influ-

ence the decision on which similarity metric to use. For instance, Euclidean distance may be

suitable for trajectories that consist of straight lines, but Dynamic Time Warping may be more

ideal for trajectories that differ in terms of their lengths or speeds, while both methods are

used to calculate distance. Some of the most important methods for measuring the similarity

of trajectories are presented below:

Lock-step Euclidean distance (LSED) counts every pair of related points along both tra-

jectories, calculating the total distance between them. Lock-step Euclidean distance in the

continuous case necessitates that the lengths of two trajectories match. In the discrete case,

lock-step Euclidean distance demands that two trajectories have the same number of points

or that we can extrapolate over the length of the trajectories. Formally, we may interpret the

trajectory data as points in the Euclidean space R2n
and calculate their Euclidean distance if

n = m [34].

1 2 3 4 5 6 7

1

2

3

a1

a2

a3

b1

b2

b3

A
B

SQRT (dist(a1, b1)
2 + dist(a2, b2)

2 +

dist(a3, b3)
2), n = m = 3

Figure 2.1. Demonstration of LSED.

The lock-step Euclidean distance of A and B is de-

fined as:

Eu(A,B) =

√√√√ n∑
i=1

dist22(ai, bi)

The average distance between measurements is a

common variant:

Eu′(A,B) =
1

n

√√√√ n∑
i=1

dist22(ai, bi)

The maximum distance may also be used in in-

stead of the average distance.
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When the two trajectories are in sync with one another in terms of time, the concept above

becomes most clear. That is, if tai = tbi for all 1 ≤ i ≤ n = m, then the distance between the

trajectories at respective times is then measured by LSED.

Dynamic time warping (DTW) is a classic example of dynamic programming. It was

first implemented for the purpose of speech detection. Time series data have been effectively

analyzed using DTW. Successively, it became one of the most widespread approaches for eval-

uating trajectory similarity. The DTW is defined as[12]:

DTW (A,B) =


0 , if m = n = 0

∞ , if m = 0 or n = 0

dist22(a1, b1) +min(DTW (A|2,n|, B|2,m|), , otherwise

DTW (A,B|2,m|), DTW (A|2,n|, B))

1 2 3 4 5 6 7

1

2

3

a1

a2

a3
a4

b1

b2

b3

b4

A
B

dist(a1, b1)
2 + dist(a1, b2)

2 +

dist(a2, b3)
2 + dist(a3, b4)

2 +

dist(a4, b4)
2
, n = m = 4

Figure 2.2. Demonstration of DTW.

DTW determines the best match between the el-

ements of two sequences by building a matrix

with all possible combinations of two elements in

the sequences as entries and the distance between

them. The total distance between two sequences

is the sum of the elements in the matrix represent-

ing the shortest contiguous path. Because it dis-

covers at least one match for all items and then ag-

gregates the distance values, DTW is susceptible

to noise. For example, if a trajectory A contains a

stop that is very distant from all of B’s stops, even

though all of A and B’s other stops are close, the

distance will be dominated by the distant stop[8].

What distinguishes a similarity measure such as

DTW is how the cost of a path is determined, as

the cost of a path indicates how well two trajecto-

ries are aligned along that path. The cost of a path

is equal to the sum of the squared distances between all aligned point pairs. Similar to other

distance metrics based on squared distance, this metric can provide tolerance for outliers[21].

Longest Common Subsequence (LCSS) measure attempts to quantify the similarity be-

tween two trajectories by calculating the length of the longest point sequence they have in
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common[13]. The length of the longest common subsequence between A and B is defined as:

LCSS(A,B) =


0 , if A or B is empty

1 + LCSS(A[1,n−1], B[1,m−1]) , if dist∞(an, bm) < ϵ

and |n−m| ≤ δ

max(LCSS(A[1,n−1], B), LCSS(A,B[1,m−1])) , otherwise

1 2 3 4 5 6 7

1

2

3
ϵ = 1

a1

a2

a3

a4

b1
b2

b3

b4

A
B

No. of matched pts. = 3 , n = m = 4

Figure 2.3. Demonstration of LCSS.

The definition uses two parameters, δ and ϵ. ϵ is a

matching threshold distance between two match-

ing points in order to align the trajectories in time

(i.e. two points closer than ϵ are considered to

match). Notably, δ is not unique to LCSS and

could be added to any of the other measures[35].
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2.4 Real Time Processing

Real time data processing is the execution of data in a short amount of time, yielding an imme-

diate outcome. It is a rapid data processing solution that integrates data capture, data process-

ing, and data exports. Big Data real time processing aims to create a system that processes data

at a near instant rate, which necessitates a constant flow of data intake and output in order to

maintain real time insights.

Big data processing in real time is made possible by a variety of technologies, methods, and

infrastructure elements, including:

1. Stream processing which is a technique for processing data as it arrives in real time,

without the need for storage. Stream processing platforms such as Apache Flink, Apache

Storm, Apache Samza and Apache Spark Streaming allow for real time data analysis

and transformation[25]. They frequently support windowing and event time processing,

which allow users to process data at specific time intervals or based on event occurrences.

They are also designed to handle large scale data processing tasks with low latency[29].

2. Data Ingestion, where the data are generated by a variety of sources, including social

media, IoT devices, log files, and sensors. Real time data ingestion entails quickly and

efficiently capturing, filtering, and preprocessing this data. For real time data ingestion,

popular tools include Apache Kafka, Amazon Kinesis, and Google Cloud Pub/Sub[22].

3. Data storage for real time processing necessitates storage systems capable of handling

high velocity data while also providing low latency access to stored data. Traditional

databases are unsuitable for this purpose. For real time big data storage, NoSQL databases

like Apache Cassandra, Amazon DynamoDB, and Google Cloud Datastore, or distributed

file systems like Apache Hadoop HDFS, are frequently used[20].

4. Using Machine Learning algorithms and Analytics techniques to derive insights and

make predictions is common in real time big data processing. TensorFlow, PyTorch,

and scikit-learn machine learning frameworks, as well as specialized tools like Apache

Mahout and H2O, can be integrated with real time data processing systems to enable

real time analytics.

To efficiently process large volumes of data with low latency, stream processing is frequently

combined with distributed processing systems. These systems process data record by record

as it arrives, enabling real time or near real time analysis. Distributed processing systems, on

the other hand, divide processing tasks among multiple nodes or machines in order to increase

throughput and fault tolerance[27].
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When a streaming system receives input data streams, it may use a technique called micro-

batching to divide the data into small batches. Micro-batching provides a balance between the

low latency of stream processing and the efficiency of batch processing. Each batch contains

a small set of records, which are processed together in parallel by the distributed processing

system as shown in the Fig3.3. This enables the system to achieve high performance while

maintaining low latency, allowing for near real time processing of the data.

Figure 2.4. Data Stream Processing.

For instance, Apache Flink, a popular stream processing framework, supports both record by

record processing and micro-batching, allowing users to select the appropriate strategy based

on their use case and performance requirements. Similarly, Apache Spark Streaming uses

micro-batching to handle data streams in near real time by breaking them into small batches

and processing them using Spark’s distributed processing capabilities.

However, efficiently handling unbounded data streams requires additional techniques that can

break down the continuous flow of data into smaller, manageable units. Windowing is one

such technique, enabling users to perform various operations on finite subsets of data, making

real time analytics feasible[5].

Windowing divides unbounded data streams into smaller chunks called windows based on

specific criteria in stream processing systems. Among the most common types of windows

used in stream processing systems are:

• Tumbling windows: Divide the data stream into non overlapping, fixed size time in-

tervals, which are ideal for computing aggregates or summaries over consistent time

ranges.

• Sliding windows: Divide the data stream into fixed size time intervals with overlap

between consecutive windows, which is useful for tracking moving averages or tracking

trends over time with fine grained updates.

• Session windows: These are ideal for analyzing user interactions or session based ac-

tivities because they group together events that are closely related in time based on a

specified gap duration.
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(a) Tumbling Windows (b) Sliding Windows

(c) Session Windows

Figure 2.5. Windows.

We can efficiently manage and analyze unbounded data streams by using stream processing

systems and techniques that break them down into smaller, manageable chunks. This enables

real time or near real time data operations such as aggregation, filtering, and transformation,

as well as the extraction of valuable insights. A crucial role in implementing and scaling the

aforementioned across different use cases are the real time Processing Frameworks.

2.4.1 Apache Flink

Apache Flink is an open source data processing solution for streaming and batch data. Flink’s

architecture is built on top of a distributed dataflow engine that can handle both batch and

stream processing workloads. It provides APIs for processing data in real time streams as

well as for processing batch data. Flink also is based on the idea that many different types of

data processing applications, such as real time analytics, continuous data pipelines, batch data

processing, and iterative algorithms (machine learning, graph analysis), may be represented

and run as pipelined fault tolerant dataflows [19]. Flink’s capability to handle stateful stream

processing is one of its key features. Flink is appropriate for complex event processing, real

time analytics, and other applications that call for stateful processing because it can maintain

state across multiple streams. Apache Flink was created by the data Artisans team in Berlin
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and became an Apache project in 2014. Savepoints and checkpoints are advanced features of

Flink that allow for application state management and recovery. It also has a strong ecosystem

with connectors for a variety of data sources and sinks, such as Apache Kafka, Apache Cas-

sandra, and Amazon S3. Flink can be run on-premises, in the cloud, or on a variety of cluster

management systems such as Apache Mesos and Kubernetes[11].

2.4.2 Apache Storm

Apache Storm provides a simple programming framework that allows developers to create ap-

plications that can process data streams in real time. It is based on a topology based architec-

ture, with a topology being a directed acyclic graph (DAG) made up of spouts and bolts. Spouts

are in charge of ingesting data into the system, while bolts are in charge of data processing,

transformation, and storage. Storm’s data is represented as tuples, which are immutable and

ordered lists of elements.Nathan Marz and the team at BackType (later acquired by Twitter)

initially developed Apache Storm. It was open sourced in 2011 and became a top level Apache

project in 2014. Storm is intended to integrate easily with other data storage and process-

ing systems such as Apache Hadoop, Apache HBase, and Apache Cassandra. It also supports

multi language programming, allowing developers to create topologies in various program-

ming languages[36].

2.4.3 Apache Samza

Apache Samza is a distributed stream processing framework designed for real-time process-

ing of large scale data streams. It was created by LinkedIn and became an Apache project

in 2013[30]. Apache Samza uses Apache Kafka for messaging and Apache Hadoop YARN for

cluster resource management. Samza offers fault tolerant stream processing, stateful stream

processing, and flexible deployment options[6].

2.4.4 Apache Spark

Spark is an other open-source distributed computing system that provides an interface for

programming entire clusters. It also has implicit data parallelism and fault tolerance. It can

be used for batch processing, interactive queries, machine learning. It is designed to be a fast

and general-purpose engine for large-scale data processing. Although performs better than

Hadoop, lacks a distributed storage system of its own[28].

A library build on top of Spark that is called Apache Spark Streaming, allows the developer to

process real time data streams using the same programming model as batch processing. With
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support for well-known data sources, it offers a high-level API for ingesting and processing

data in real time[25].

2.5 Partitioning

When it comes to distributed storage and parallel computing for large amounts of data, data

partitioning plays an important and powerful role. Big data can be partitioned into relatively

tiny and independent blocks, which is a fundamental and powerful method for enhancing the

efficiency of data storage and management systems. This can be accomplished by using data

partitioning. In addition to this, the concept of data partitioning known as ”divide and conquer”

can help increase data processing and computing. For instance, if the data partitioning was

done correctly, it should only be necessary to scan a few partitions rather than the full dataset

[37].

Partition techniques can be divided to space partitioning (Grid, Quad tree), data partitioning

(STR, STR+, K-d tree) and space filling curve (Z-curve, Hilbert curve). These techniques can

also be grouped, according to boundary object handling, into replication-based techniques and

distribution-based techniques [16].

(a) Grid (b) Quad Tree (c) STR and STR+

(d) K-d Tree (e) Z-curve (f) Hilbert Curve

Figure 2.6. Partitioning Techniques.
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2.5.1 Space Partitioning Techniques

Uniform Grid This approach divides the input MBR into a uniform grid of ⌈
√
n⌉ × ⌈

√
n⌉

grid cells and uses the replication method to handle boundary objects, thus it does not need a

random sample.

Quad Tree In this technique, where k is the sample size and n the cells, all sample points

are inserted into a quadtree with a node capacity of ⌊k/n⌋. All leaf node borders are used as

cell boundaries. To allocate records to cells, we employ the replication mechanism [17].

2.5.2 Data Partitioning Techniques

STR The capacity of each node is set to ⌊k/n⌋ in this technique. The random sample is then

bulk loaded into an R-tree using the STR algorithm [26]. The cell borders are the MBRs of leaf

nodes. The distribution method, which distributes a record r to the cell with the most overlap,

is used to handle boundary objects.

STR+ This technique is similar to the STR technique, but it handles boundary objects using

the replication method.

K-d tree This technique uses the K-d tree [7] partitioning method to partition the space into

n cells accordingly. It divides the input MBR into n cells by starting with it as a single cell and

partitioning it n times. The replication mechanism assigns records to cells.

Z-curve This method sorts the sample points according to their position on the Z-curve [32]

and divides the curve into n segments, each comprising about ⌊k/n⌋ points. It employs the

distribution approach to assign a record r to a single cell by mapping the MBR’s center to one

of the n splits.

Hilbert curve This approach [18] is identical to the Z-curve method, except that it employs

a Hilbert space filling curve with superior spatial features.



Chapter 3

Notation & Real-time Trajectory

Similarity

In this work, trajectory similarity measures are studied while being applied to a real time

processing application. The goals of this research are to investigate the performance of each

measure and compare the characteristics of these measures when applied to the specific ap-

plication. In order to accomplish what was outlined as the use case, streaming big data along

with historical data were utilized.

3.1 Datasets Description

The Norwegian Coastal Administration provided the data used for our study, which encom-

passes the entirety of Norway (NCA).The data consist of:

• One set of reference routes

• A collection of AIS messages regarding vessel movements in the Norwegian region

3.1.1 Routes dataset

The routes dataset is formed by the reference routes for Navigation, that are provided by the

Norwegian Coastal Administration (NCA), which are recommendations from NCA to support

voyage planning based on their best practices[1]. The reference routes for vessel navigation

are predefined routes that assist mariners in safely navigating waterways by avoiding obstacles

and taking the most efficient routes between ports or other locations. International organiza-

tions, such as the International Maritime Organization (IMO), create and maintain them in

18

https://www.routeinfo.no/cruiseroutes
https://ais-public.kystverket.no/ais-download/
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order to provide guidance and support to mariners who may be unfamiliar with the waters

they are navigating[3]. The information that these may include is:

• Tracks or routes that are recommended based on factors such as weather, currents, or

the presence of navigational hazards

• Waypoints along the recommended route that serve as navigational reference points.

• Information on potential navigational hazards along the route, such as shallow areas,

wrecks, or other impediments.

• Information about areas that require extra caution or attention, such as narrow channels

or high-traffic areas.

• Local regulations or requirements that may affect navigation, such as speed limits or

reporting requirements, are listed.

• Other pertinent data, such as the location of ports, anchorages, or other facilities.

For the purposes of this research, the ETL procedure was used in the set of reference routes. As

it was already stated before in section 2.2, a trajectory (route), is made up of a series of spatial

points that define the path of the object. These spatial points are called Waypoints and can be

found in each route file that has been downloaded from the NCA. In the Fig 3.1 the trajectories

are displayed, and the number of waypoints in each one can be seen.

Route Name Waypoints

Cruise Haugesund - Skudefjorden

Inbound

11

Cruise Stavanger - Skudefjorden

Outbound

8

Cruise Stavanger - Feistein Inbound 11

Cruise Haugesund - Skudefjorden

Outbound

11

Cruise Stavanger - Skudefjorden In-

bound

8

Cruise Stavanger - Feistein Out-

bound

11

Figure 3.1. Reference Routes.

Each file that has been downloaded from the NCA contains a route in RTZ format. The RTZ

format, which stands for ”Routeing Guide and Zone,” is a digital format used to electronically

https://www.routeinfo.no/cruiseroutes
https://www.routeinfo.no/cruiseroutes
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store and transmit reference route information. It contains the same information as the printed

Routeing Guide, but in a machine-readable format that navigation software and other digital

tools can easily access and use[3]. The RTZ files use XML-based syntax to store waypoints,

making them simple to parse with programming tools. Finally, a final dataset containing all of

the waypoints was created, keeping only the necessary information.

3.1.2 AIS Data

Data from the Automatic Identification System (AIS) is a real time positioning information

system that is mainly used in maritime navigation. It allows ships to share and receive infor-

mation about their identity, position, course, and speed with other nearby vessels and maritime

authorities, improving situational awareness, safety, and security in congested sea lanes.

AIS works by transmitting data packets between vessels and shore-based stations over VHF

radio frequencies. These packets contain critical information such as the ship’s Maritime Mo-

bile Service Identity (MMSI), GPS coordinates, heading, speed over ground, and navigational

status. The ship’s speed and course changes cause AIS data to be updated at regular intervals

ranging from a few seconds to a few minutes[2].

Historical data from AIS messages in the Norwegian region for 499 unique MMSIs (vessels)

were obtained from January to June of 2021. The AIS messages arrived by monthly files. For

the purposes of this study, it was assumed that these data would be sent as a stream into the

real time processing system in order for the examinations to take place. More information of

how the system receives the AIS messeges can be found in Appendix A.

3.2 Procedure Outline

Based on the problem’s description (1.3), the primary objective is to examine various trajectory

similarity measures in real time vessel routing compared to the predefined historical trajecto-

ries described in section 3.1.1. Regarding the methodology, a number of steps must be carried

out.

The first step was to retrieve both datasets, as described in section 3.1, that had been used in

the system as reference routes and AIS messages in order to proceed with data partitioning.

It is worth noting that the distance to each waypoint (of the route) is computed for each AIS

message within its allocated partition. Figure 3.2 shows that the first two AIS messages received

are close to route B, and as more messages are received, the distance for this vessel becomes

closer to route A.
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a1

a2
a3 a4

a5
b1

b2 b3 b4

b5

A
B

AIS

Figure 3.2. Demonstration of distance computation for each AIS message and waypoint.

After computing the distance, the system assigns a score (probability) to each route based

on the similarity measure it employs each time. By comparing the scores and evaluating the

output, a vessel’s trajectory may match a route or more based on its similarity. Finally, the goal

is to examine the processing time and results for the three similarity measures (LSED, DTW,

LCSS) we are evaluating for this type of problem.

3.3 Batch Processing API

In order to perform efficient processing of large datasets across a cluster of machines, it has

been used in conjunction with Apache Spark, and in particular, Spark streaming, in order

to meet the requirements of the thesis. The Resilient Distributed Datasets (RDDs) and the

Discretized Streams (DStreams) are the two core abstractions that have been used [28].

RDDs are immutable collections of objects that are distributed across a system and can be

processed in parallel. RDDs are fault-tolerant, which means that they are able to recover from

the failure of individual nodes without losing any data. Users have the option of either loading

data from external storage systems such as HDFS, HBase, or Amazon S3 in order to create
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RDDs, or transforming already existing RDDs. RDDs can be cached in memory so that they

can be accessed more quickly and reused more frequently. RDDs allow users to perform a wide

variety of operations, including transformations like map, filter, and reduce, as well as actions

like count, collect, and save.

Figure 3.3. Resilient Distributed Datasets (RDDs) pipeline.

DStreams are a high-level abstraction built on top of Spark’s RDDs that make it possible to

process live data streams. These abstractions were developed by Apache Spark. DStreams are

a representation of a continuous stream of data that is segmented into discretely small groups

of data. Users are granted the ability to apply RDD operations such as map, reduce, and filter

to the stream because each batch is handled as if it were an RDD. Spark Streaming is able to be

used to perform processing on DStreams after the streams have been created by connecting to

various sources such as Kafka, Flume, and HDFS. Spark Streaming is an extension of the core

Spark API that enables users to process live data streams using the same API that is used for

batch processing[25].

In conclusion, RDDs and DStreams are two essential abstractions for this work that enable

the process of the waypoint datasets and real time AIS data in a timely and effective manner,

respectively. They offer a method to represent immutable, distributed collections of objects

that are fault-tolerant and can be processed in parallel, in order provide efficient results.

3.4 Partitioning Implementation

Given that the development makes use of distributed processing, it is necessary to devise a

method that is more efficient for computing the vast amount of data. In order to improve the

effectiveness of the system, the strategy of Uniform Grid Partitioning was put into action.

In this work, a grid partitioning is required for the historical data of the waypoints before we

can move forward with the calculations of the similarities.
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Figure 3.4. Grid Partitioning.

As it is already stated in the section 2.5.1, dividing the

input MBR into a grid of n× n cells and then replicat-

ing the waypoints from each cell into the cells that are

adjacent to it in order to handle boundary objects. For

instance on Fig 3.4 every point has to be assigned to the

neighboring cells. For instance the points in cell 11 get-

ting replicated on the 5, 6, 7, 10, 12, 15, 16 and 17. Below

is the algorithm of this method.

Algorithm 1 Uniform Grid Partitioning

Require: number of partitions n

1: P ← ∅
2: l←

√
n

3: h← height of MBR

l

4: w ← width of MBR

l

5: for i← 0 l − 1 do

6: for j ← 0 l − 1 do

7: xmin ← i× w

8: ymin ← j × h

9: xmax ← (i+ 1)× w

10: ymax ← (j + 1)× h

11: P ← P ∪ {partition(xmin, ymin, xmax, ymax)}
12: end for

13: end for

14: return P

3.5 Trajectory Similarity Implementation

Although the development’s earlier sections were significant, this one is the most noticeable.

Here is how the similarity measures are implemented throughout the application. Before any-

thing else, the ”trajectories” that refer to the collections of points for real time and historical

data (after the grid has been partitioned) need to be defined. In order to continue with the

efficient calculations of distance that it has already defined, the streaming data of AIS need to

be allocated on cells as well.

The methodology begins with a cross-join of the two datasets in order to proceed with forma-

tion of the routes and the trajectories of the waypoints and the AIS messages accordingly and

filtering them for the relevant partitions. On the newly created Dstream a a custom partitioner
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applies, with a given input of the number of the partitions. The recently created Dstream con-

tains the points that have been filtered and assigned to each partition or cell in the appropriate

manner. The points have to be transformed into trajectories on a new Dstream, and in order

to accomplish that transformation, the points have to be grouped by their respective IDs. One

more cross-join operation is carried out for the created trajectories of the distributed waypoints

and the vessel live routes before moving on to the next step of the distance calculation. It is

noticeable that for every transformation, the custom partitioner is getting used, so there will

not be any data shuffling among the partitions. Below is the described methodology.

Algorithm 2 Data Merge and Trajectory Formation

Ensure: w waypoints data RDD, d AIS data Dstream

1: for each rdd ∈ d do

2: rdd× d

3: j ← di, wi

4: end for

5: for each tid ∈ j do ▷ tid trajectory id

6: dt ← dG(tid)

7: wt ← wG(tid)

8: end for

9: for i← 0 do

10: wt × dt

11: . . .

12: trajectorySimilarity()

13: end for

3.5.1 Lock-Step Euclidean Distance

As we have already stated, calculating the distance between every related pair of points along

each trajectory is required to solve this problem. This must be done for each pair of trajectories.

We then calculate the length of the each trajectory, which will determine the number of points

to compare. For each point i from 1 to length(A) we calculate the Euclidean distance between

the corresponding points in trajectory A and B.
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Algorithm 3 Lock-Step Euclidean Distance

Require: Two trajectories A and B of lengths m and n, respectively, where m ≤ n

Ensure: The Euclidean distance between A and B

1: d← 0

2: for i← 1 to m do

3: d← d+ (ai − bi)
2

4: end for

5: for i← m+ 1 to n do

6: d← d+ b2i

7: end for

8: return

√
d

3.5.2 Dynamic Time Warping

In addition, we have previously mentioned DTW finds an optimal alignment between two time

series by warping them in the time dimension. First, we define the two sequences of points as

trajectories, where each point is a tuple of (x, y) coordinates. Let’s call the two trajectories A

and B. We create a 2D matrix DTW [][] with dimensions (length(A)+ 1)× (length(B)+ 1).

We initialize the first row and first column to infinity and the DTW [0][0] element to zero.

We iterate through the matrix starting from element DTW [1][1] and compute the cumulative

distance between each pair of points in trajectories A and B. At each point in the matrix,

we take the minimum of the values of the three neighboring cells of the matrix(above, left,

and diagonal) and add the distance between the corresponding points in A and B. The DTW

distance between the two trajectories is the value in the last cell of the matrix DTW [n][m],

where n,m, the total number of points for trajectories A and B .

Algorithm 4 Dynamic Time Warping

Require: Two trajectories A and B of lengths n and m, respectively

Ensure: The DTW distance between A and B
1: Initialize D0,0 ← 0, Di,0 ←∞, D0,j ←∞ for i = 1, . . . ,m and j = 1, . . . , n
2: for i← 1 to m do

3: for j ← 1 to n do

4: cost← |Ai −Bj |
5: Di,j ← cost+min{Di−1,j , Di,j−1, Di−1,j−1}
6: end for

7: end for

8: return Dn,m
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3.5.3 Longest Common Subsequence

As previously noted, the goal, as the name suggests, is to find the longest subsequence that is

shared by both trajectories. In order to implement the two trajectories, we first define them as

lists of points, where each point is a tuple of (x, y) coordinates, similar to how we previously

implemented the other measures. We refer to the two trajectories as A and B. We create

a 2D matrix LCSS[][] with dimensions (length(A) + 1) × (length(B) + 1). We initialize

the first row and first column to zero. We compare every pair of points in trajectories A and

B as we iteratively go through the matrix beginning with element LCSS[1][1]. We take the

maximum of the three neighboring cells’ values at each point in the matrix (above, left, and

diagonal) and add 1 if the corresponding points in A and B are the same, or 0 if they are not.

The length of the LCSS between the two trajectories is the value in the last cell of the matrix

LCSS[length(A)][length(B)]

Algorithm 5 Longest Common Subsequence

Require: Two trajectories A and B of lengths n and m, respectively

Ensure: The length of the LCSS between A and B
1: Initialize a matrix C of size (n+ 1)× (m+ 1) to all zeros

2: for i← 1 to n do

3: for j ← 1 to m do

4: if Ai = Bj then

5: Ci,j ← Ci−1,j−1 + 1
6: else

7: Ci,j ← max{Ci−1,j , Ci,j−1}
8: end if

9: end for

10: end for

11: return Cn,m



Chapter 4

Experimentation & Validation

In this chapter, we evaluate a comparative analysis of the LSED, DTW, and LCSS trajectory

similarity measures. And provide a performance evaluation as well as an examination of their

characteristics in relation to the issue of real time trajectory similarity in maritime.

4.1 Experimentation Setup

The datasets that were utilized for the experiments were obtained from:

• Waypoints

• AIS Data

VM CPU RAM

Master 4 4 GB

Worker 6 6 GB

Worker 6 6 GB

To begin, in order to facilitate the execution of our tests,

a cluster consisting of three virtual machines (VMs) has

been created. The cluster is made up of two workers and

a master virtual machine (VM) that also performs the du-

ties of a worker.

In the cluster, the applications have been run using the

spark-submit, bellow is an example of the command:

$ spark-submit --deploy-mode cluster “

--class com.similaritymeasure.LockStepEuclideanDistance “

--executor-memory 8G “

--total-executor-cores 16 “

--master spark://83.212.80.23:6066 “

--files waypoints.csv “
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--conf ”spark.driver.extraJavaOptions=-Dlog4j.configuration=

↪→ log4j-spark.properties” “

--conf ”spark.executor.extraJavaOptions=-Dlog4j.configuration

↪→ =log4j-spark.properties” “

main.jar waypoints.csv

Because we have already established that grid partitioning is necessary for the experiment, the

number of cells/partitions that we have devided the space is nine. Bellow is a map representa-

tion the 2 datasets and the grid partitioning (3× 3) of space:

(a) AIS data (b) Waypoints

Figure 4.1. Dataset representations.

4.2 Results

In this section, using grid partitioning, we examine the performance of the trajectory similarity

measures in Spark streaming. It is important to point out that Spark obtains AIS data at a

frequency that tends 100 records per second through the use of a customized receiver.

In order to investigate how long it takes the aforementioned algorithms to dispatch and process

data, we run twenty four different setups: one for each of the measures LSED, DTW, and LCSS,

as well as batch intervals for the streaming window, using grid partitioning for nine and sixteen
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cell partitions. The results of the execution time for each batch is shown in table 4.1. And the

results for the total execution time is shown in the Fig 4.2.

9 No of Partitions

Similarity

Measure
LCSS DTW LCSS

Records/

Batch
300 600 800 1000 300 600 800 1000 300 600 800 1000

1 5 28 14 3 8 17 12 19 6 10 9 17

2 4 41 50 96 14 33 72 118 5 40 61 101

3 5 27 47 107 15 38 68 116 5 38 60 116

4 4 36 52 110 16 41 71 119 4 22 62 108

5 6 47 48 102 14 39 69 120 5 34 57 114

6 5 25 51 108 13 52 70 121 4 46 55 116

16 No of Partitions

1 5 17 15 28 6 16 27 17 5 9 11 23

2 5 32 47 86 9 30 62 108 4 28 58 101

3 6 34 46 95 15 37 65 99 5 36 60 98

4 4 26 45 97 14 40 61 107 4 32 62 101

5 4 30 38 93 15 41 67 105 6 33 55 99

6 5 23 40 98 13 43 69 111 5 39 51 107

Table 4.1: Execution time (in seconds) per Batch of Records

300 600 800 1000

0

200

400

600

LSED DTW LCSS

(a) 9 No of Partitions

300 600 800 1000

0

200

400

600

LSED DTW LCSS

(b) 16 No of Partitions

Figure 4.2. Total Execution time in seconds.

In this particular application, it is abundantly clear that the LCSS and DTW measures both

incur significantly higher costs in terms of performance when compared to the LSED measure.

According to the experiment results, the performance degrades as the number of records in

each batch increases. Furthermore, we can see that the speed improves marginally when the

algorithm is executed on 16 partitions. Because the technique made use of Spark’s distributed

processing capabilities, the computation time for more partitions was lowered as expected.
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In terms of trajectory similarity measurements, DTW underperformed the others because it

required more actions to be performed in order to be calculated.

However it is highly noted that even if the performance the algorithmic measures provide dif-

fers, it has come to our attention that the outcomes of this application may turn out differently

due to the unique aspects of each measure. As we have already mentioned [34] LSED is simple

and effective, and it generally calls for trajectories to be of the same length. DTW and LCSS

are able to handle trajectories of varying lengths, but they are computationally expensive and

there is a possibility that they will not work well when the trajectories are related in a nonlin-

ear way. In conclusion the choice of similarity measure is dependent on the specific application

as well as the characteristics of the trajectories that are being compared; however, it is crystal

clear that the lock-step Euclidean distance performs better with the grid partition technique

when it comes to the specific application, and datasets in question.



Chapter 5

Conclusions & Future Work

This work has investigated that vessel routing problem by making use of AIS and real time

data, with a particular emphasis being put on trajectories and the use of waypoints to detect

similarities between the itineraries taken by different vessels. In particular, a comparison of the

LSED, DTW, and LCSS was carried out based on their computing performance on this specific

problem and some of their characteristics.

Finally, several conclusions are highlighted, based on the results of our experiments. Firstly,

LSED performs better than the other techniques that were tested in an application where the

length of the trajectories is dependent to the starting and finishing positions, but there is a

significant difference between them on the abundance of points. The performance of trajectory

similarity methods is dependent on a number of variables, including the length and complexity

of the trajectory, the sampling rate of the data, and the distance metric that is used. It is

important to consider the trade-off between accuracy and computational efficiency in real time

vessel tracking applications. This is because some techniques may be too computationally

intensive to be applied in real time scenarios. In conclusion, the selection of a technique for

determining trajectory similarity is dependant on the particular application requirements as

well as the characteristics of the vessel trajectory data.

Overall, the comparative analysis of trajectory similarity techniques for vessels in real time

emphasizes the significance of selecting the most suitable technique based on the specific ap-

plication requirements and characteristics of the vessel trajectory data. It also emphasizes the

need for continued research and development in this area to enhance the precision and effec-

tiveness of trajectory similarity techniques for real time vessel tracking applications.

31



32

5.1 Future Work

Based on the findings of the comparative analysis of trajectory similarity techniques for ves-

sels in real time, there are several avenues for future enhancements in this area. To begin, it is

possible to investigate the possibility of integrating multiple trajectory similarity techniques

into one another in order to capitalize on the benefits offered by a variety of approaches and

enhance accuracy overall. Some other methods that have not been used in this work and it is

noticable to be studied are Edit distance and Fréchet distance. In addition, it is important to

mention that a good way to improve performance is to integrate a different partitioning tech-

nique from those described in Chapter 2 and perform a comparison. This is worth mentioning

because it is important to note that this is a good way to improve performance.

Overall, future work in this area can focus on improving the accuracy, efficiency, and applica-

bility of trajectory similarity techniques for vessel tracking applications in real time scenarios.

This can be achieved through further evaluation, integration of multiple techniques, real time

implementation and partitioning methods.



Appendix A

Custom Receiver

This is a Custom Receiver class in charge of receiving AIS messages as a stream to the real-time

processing system.

public class AisReceiver extends Receiver¡String¿ –

private String host;

private int port;

public AisReceiver(String host, int port) –

super(StorageLevel.MEMORYANDDISK2());

this.host = host;

this.port = port;

public AisReceiver() –

super(StorageLevel.MEMORYANDDISK2());

@Override

public void onStart() –

new Thread() –

@Override

public void run() –

receive();

.start();

@Override

public void onStop() –
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private void receive() –

try –

File[] filesInDirectory = new File(StaticVars.dataAIS

↪→ ).listFiles();

Arrays.sort(filesInDirectory);

BufferedReader reader = null;

while (!isStopped()) –

for (File f : filesInDirectory) –

String filePath = f.getAbsolutePath();

String fileExtenstion = filePath.substring(

↪→ filePath.lastIndexOf(”.”) + 1, filePath.length());

if (”csv”.equals(fileExtenstion)) –

reader = new BufferedReader(new

↪→ FileReader(filePath));

String inputLine;

List¡String¿ buffer = new ArrayList¡¿();

while ((inputLine = reader.readLine()) !=

↪→ null && !isStopped()) –

buffer.add(inputLine);

if (buffer.size() ¿= StaticVars.

↪→ recordsBuffer) –

store(buffer.iterator());

buffer.clear();

Thread.sleep(1000);

if (!buffer.isEmpty()) –

store(buffer.iterator());

buffer.clear();

reader.close();

restart(”Trying to connect again”);

catch (Exception e) –

restart(”Error receiving data”, e);
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