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Περίληψη

Στόχος της παρούσας διπλωματικής είναι η εισαγωγική παρουσίαση της επιστημονικής περιοχής

της Μηχανικής Μάθησης και ενδεικτικών εφαρμογών της σε πραγματικές μελέτες που

συνδέονται άμεσα ή έμμεσα με την Ναυτιλία. Ξεκινά με τον ορισμό και την ταξινόμηση της

Μηχανικής Μάθησης, συνοδευόμενη από τις εξελίξεις της μέσα στο χρόνο. Στη συνέχεια

παρέχει το υπολογιστικό υπόβαθρο και τις βασικές αρχές τεσσάρων αλγορίθμων Εποπτευόμενης

Μηχανικής Μάθησης: Γραμμικής Παλινδρόμησης, Πολυωνυμικής Παλινδρόμησης, Λογιστικής

Παλινδρόμησης και των Νευρωνικών Δικτύων. Τα βασικότερα πλεονεκτήματα και

μειονεκτήματα παρουσιάζονται για όλες τις μεθόδους. Επεξηγείται επίσης η επιλογή της χρήσης

του λογισμικού MATLAB, πριν προχωρήσουμε σε τρεις εφαρμογές που βασίζονται σε

πραγματικά δεδομένα θαλάσσιου κυματισμού στο Αιγαίο και το Ιόνιο Πέλαγος. Στην

κατεύθυνση αυτή χρησιμοποιούνται: ένα μοντέλο Γραμμικής Παλινδρόμησης για την εκτίμηση

του μέγιστου ύψους κύματος, ένα μοντέλο Λογιστική Παλινδρόμησης για την υποστήριξη της

απόφασης να εκδοθεί απαγόρευσης απόπλου από τις λιμενικές αρχές και ένα Νευρωνικό Δίκτυο

για την προσομοίωση του ύψους κύματος, και της κατάστασης θάλασσας σύμφωνα με την

κλίμακα Douglas. Η διπλωματική ολοκληρώνεται με τα συμπεράσματα που απορρέουν από τις

εν λόγω εφαρμογές.

Λέξεις – Κλειδιά

Μηχανική Μάθηση, Γραμμική Παλινδρόμηση, Λογιστική Παλινδρόμηση, Νευρωνικά Δίκτυα,

Εφαρμογές Προσομοίωσης Θαλάσσιου Κυματισμού
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Abstract

This dissertation aims to give an introduction to Machine Learning’s logic notions and present its

application in real-life Maritime case studies. It begins with the definition and taxonomy of

Machine Learning, accompanied by its advancements through time. It then provides the

computational background and fundamentals of four Supervised Machine Learning algorithms:

Linear Regression, Polynomial Regression, Logistic Regression, and Neural Network. Both

advantages and disadvantages are presented for all methods. The selection of MATLAB’s usage

is explained, before proceeding to three applications based on real-life maritime occurrences,

appearing in the Aegean and Ionian Seas. A Linear Regression model estimates the maximum

wave height, a Logistic Regression model decides if a prohibition of sailing should be issued by

port authorities, and a Neural Network characterizes, through wave heights, the sea condition

based on the Douglas Sea Scale. The dissertation ends with the conclusions that are derived from

said applications.

Keywords

Machine Learning, Linear Regression, Logistic Regression, Neural Networks, Sea Wave

Modeling Applications
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Introduction

Machine Learning, also known as ML, has been the subject of study since the 1950s. Throughout

time, from the very first concept up to the present solutions, its applications have been far and

wide in every aspect and field of life including that of the Shipping and Maritime field. The

purpose of this dissertation is to present and explain the scientific background and limitations of

primary Supervised Machine Learning algorithms. This is even more comprehensible when we

showcase their application through real-life Maritime case studies, thus providing suggestions for

possible applications and further research. All data and applications used concern our seas in

Greece, but their utilization may easily be applied to other geographical areas or even on an

international scale through further fine-tuning.

Chapter 1 will begin by defining Machine Learning, presenting its historical steps and

cornerstones so far, and briefly reviewing the four main categories of Machine Learning. Chapter

2 will focus on Supervised Machine Learning, explaining the methodologies and mathematical

background for the four principal algorithms: Linear Regression, Polynomial Regression,

Logistic Regression, and Neural Network. Chapter 3 will review the advantages and

disadvantages of each algorithmic method, while Chapter 4 will explain why Matlab’s

environment is preferable for Machine Learning applications, compared to other programming

machines. For this dissertation's practical part, Chapter 5 will present three applications based on

real-life maritime issues, appearing in the areas of the Aegean and Ionian Seas: a Linear

Regression model to find the maximum wave heights, a Logistic Regression model to decide if a

vessel will be allowed to depart when certain sea conditions are evident, and a Neural Network

to classify and characterize the sea’s condition, through sea wave heights, based on the Douglas

Sea Scale. Chapter 6 will end with a final review of the observations noted in this dissertation’s

theory and practical parts.

1
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Bearing in mind the theory presented and the evaluations made through the case studies we

notice that: there isn’t a unique Linear model that can accurately simulate data collected from the

environment, Logistic models may have high prediction accuracy but can only provide us with

limited feedback, and Neural Networks are powerful models but their structure is so complex

that they are not easily modified or generalized.

2
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1. Machine Learning

Machine Learning, also referred to as ML, has many interpretations. Depending on the way it is

used, many have tried to define it and give it meaning. Some of the most common definitions

given for Machine Learning are:

● The process of computers changing the way they carry out tasks by learning from new data,

without a human being needing to give instructions in the form of a program1,

● A type of artificial intelligence in which computers use huge amounts of data to learn how to

do tasks rather than being programmed to do them2,

● It is a field in computer science where existing data are used to predict or respond to future

data,

● It means using machines (computers and software combined) to gain meaning from data or

● It can even mean giving machines the ability to learn from their environment’s parameters.

In 1959, Arthur Samuel3 defined ML as a “Field of study that gives computers the ability to learn

without being explicitly programmed”, while later on, in 1997, Tom Mitchell4 gave a definition

that has proven to be more useful for real-life engineering set-ups: “A computer program is said

to learn from experience E with respect to some class of tasks T and performance measure P, if

its performance at tasks in T, as measured by P, improves with experience E”. For example, a

computer program that learns to play checkers might improve its performance as measured by its

ability to win at the checkers game, through experience obtained by playing games against itself.

4 Mitchell, T.M. (1997)Machine learning. New York: McGraw-Hill.

3 Samuel, A.L. (2000) “Some studies in machine learning using the game of Checkers,” IBM Journal of
Research and Development, 44(1.2), pp. 206–226. Available at: https://doi.org/10.1147/rd.441.0206.

2 Machine learning (no date) Oxford Learner's Dictionaries. Available at:
https://www.oxfordlearnersdictionaries.com/definition/english/machine-learning (Accessed: January 19,
2023).

1 Machine learning (no date) Cambridge Dictionary. Available at:
https://dictionary.cambridge.org/dictionary/english/machine-learning (Accessed: January 19, 2023).

3
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Nowadays, ML is used in many different fields of science, including Computer Science,

Engineering, Physics, Economics, Neuroscience, Biology, Health Professions, etc. Through the

utilization of ML in real-life applications, great progress has been made in Computational

Finance (for algorithmic trading and credit scoring), Image processing and computer vision (for

motion detection, face recognition, and object detection), Computational biology (for tumor

detection, DNA sequencing, and drug discovery), Energy production (for price and load

forecasting), Automotive, aerospace, and manufacturing (for predictive maintenance) and most

recently on Natural Language Processing (also known as NLP)5.

1.1. Historical Review

The words, Artificial Intelligence (AI) and Machine Learning (ML), have been widely used since

the early 1950s. They have been researched, re-invented, utilized, and applied by researchers,

computer scientists, students, engineers, and industry professionals for over 70 years. Even

though they had been used as synonymous in the beginning, later on, they were differentiated to

better separate their applications’ focus.

The mathematical foundation of ML lies in statistics, probability, and algebra. Serious

development in both fields began in the 1950s and 1960s with the contributions of researchers

like Alan Turing, Arthur Samuel, John McCarthy, Frank Rosenblatt, and Alan Newell. Samuel

proposed the first working ML model on Optimizing Checkers Program, while Rosenblatt

created Perceptron, a popular ML algorithm based on the structure of biological neurons, which

laid the foundation for the construction and use of Artificial Neural Networks.

5 Machine learning with Matlab (no date) MATLAB & Simulink. Available at:
https://www.mathworks.com/campaigns/offers/machine-learning-with-matlab.html (Accessed: August 26,
2022).

4
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Below is a table containing some significant steps and cornerstones made by researchers and

scientists in the field of Machine Learning to have it reach where it stands today6,7:

Table 1. Historical Review

1947 Logician Walter Pitts and neuroscientist Warren McCulloch published the world’s first

mathematical modeling of a neural network to create algorithms that mimic human

thought processes.

1950 Alan Turing created the “Turing Test'' to check a machine’s intelligence. In order to

pass the Tuning Test, the machine should be able to convince humans that they are

actually talking to a human and not a machine.

1952 Arthur Samuel created an intelligent learning algorithm that can play the game of

Checkers with itself and get self-trained.

1956 Martin Minsky and John McCarty with Claude Shannon and Nathan Rochester

organized a conference in Dartmouth in 1956 where they brainstormed ideas on

thinking machines. The event is considered the birthplace of Artificial intelligence.

1958 Frank Rosenblatt created Perceptron, which laid the foundation for developing an

Artificial Neural Network (ANN). It was built to receive visual inputs such as images

and create outputs such as labels and categorizations in response.

1967 The Nearest Neighbor Algorithm was proposed which could be used for “Pattern

Recognition”.

7 A timeline of machine learning history (2020) WhatIs.com. TechTarget. Available at:
https://www.techtarget.com/whatis/A-Timeline-of-Machine-Learning-History (Accessed: August 26,
2022).

6 Alzubi, J., Nayyar, A. and Kumar, A. (2018) “Machine learning from theory to algorithms: An
overview,” Journal of Physics: Conference Series, 1142, p. 012012. Available at:
https://doi.org/10.1088/1742-6596/1142/1/012012.

5
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1973 As a response to the Lighthill report8 (James Lighthill’s scholarly article “Artificial

Intelligence: a paper symposium”), the British government cut funding for artificial

intelligence research in all of its universities, except for three. This event was and is

now called an “AI Winter”.

1979 Kunihiko Fukushima released work on neurocognition, which is a hierarchical,

multilayered type of artificial neural network, used for pattern recognition tasks such as

handwritten character recognition.

1979 Stanford University students developed “Stanford Cart”, a sophisticated robot that

could navigate around a room and avoid obstacles in its path.

1981 Explanation-Based Learning (EBL) was proposed by Gerald Dejong, whereby a

computer can analyze the training data and create rules for discarding useless data.

1985 NetTalk was invented by Terry Sejnowski, that learned to pronounce English words in

the same manner children learn.

1989 Axcelis Inc. released a software package called Evolver, which offered the first

commercially available genetic algorithm package for personal computers.

1995 Kam Ho, a computer scientist working for IBM, released a paper on random decision

forests, an ensemble learning method. Also, a paper on support vector machines was

published by Vladimir Vapnik and Corinna Cortes, researchers at AT&T Bell Labs.

1996 Deep Blue, a chess-playing computer program developed by IBM, defeated the

reigning world champion of chess at the time, Garry Kasparov.

8 AGAR, J.O.N. (2020) “What is science for? The Lighthill Report on Artificial Intelligence
reinterpreted,” The British Journal for the History of Science, 53(3), pp. 289–310. Available at:
https://doi.org/10.1017/s0007087420000230.

6
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1998 A team led by Yann LeCun released a data set known as the MNIST (Modified

National Institute of Standards and Technology) database, which has become widely

adopted as a handwriting recognition evaluation benchmark.

2002 Torch is released, offering the first open-source software library for machine learning.

2006 The term “Deep Learning” was coined by Geoffrey Hinton, a psychologist and

computer scientist, which referred to a new architecture of neural networks that used

multiple layers of neurons for learning・ algorithms that helped computers recognize

different types of objects and text characters in pictures and videos.

2010 Microsoft released the Kinect motion-sensing input device for its Xbox360 gaming

console, which could track even 20 human features at the rate of 30 times per second,

allowing users to interact with machines via gestures and movements.

2011 IBM’s Watson, built to answer questions posed in a natural language, defeats a Human

Competitor at the Jeopardy Game show.

2012 Google’s X Lab team, developed Google Brain, which is a Neural Network that can

teach itself to recognize cats through Youtube videos.

2014 Facebook invented the “DeepFace” algorithm based on Deep Neural Networks capable

of recognizing human faces in photos, as accurately as a human can (approximately

97.35%).

2014 Google introduces Sibyl, a large-scale machine learning system, to the public. It is used

for Google's prediction models, specifically ranking products and pages, while also

measuring user behavior for advertising9.

9 Gladchuk, V. (2020) The History of Machine Learning: How Did It All Start?. Label Your Data.
Available at: https://labelyourdata.com/articles/history-of-machine-learning-how-did-it-all-start#1950
(Accessed: August 26, 2022).

7
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2015 Amazon proposed its own Machine Learning Platform. Microsoft created the

“Distributed Machine Learning Toolkit” to efficiently distribute machine learning

problems to multiple computers to work parallel to find a solution.

2015 Elon Musk and Sam Altman, created a non-profit organization “OpenAI”, with the

objective of using Artificial Intelligence to serve human beings. At the same time, more

than three thousand AI and robotics researchers endorsed by figures like Elon Musk,

Stephen Hawking, and Steve Wozniak signed an open letter warning about the dangers

of autonomous weapons that could select targets without any human intervention.

2016 Google’s artificial intelligence algorithms managed to beat a professional player in the

Chinese board game Go. Go is considered the world’s most complex board game. The

AlphaGo program became the first Computer Go program to beat a professional human

player. It is based on a combination of machine learning and tree-searching techniques.

2017 Google proposed Google Lens, Google Clicks, Google Home Mini, and Google

Nexus-based phones which use Machine Learning and Deep Learning Algorithms.

Nvidia proposed NVIDIA GPUs- The Engine of Deep Learning. Apple proposed Home

Pod which is a Machine Learning Interactive device.

2020 OpenAI announced a groundbreaking natural language processing algorithm GPT-3

with a remarkable ability to generate human-like text when given a prompt. Today,

GPT-3 is considered the largest and most advanced language model in the world, using

175 billion parameters and Microsoft Azure’s AI supercomputer for training10.

2022 OpenAI launched ChatGPT, an artificial intelligence chatbot. It is built on top of their

GPT-3 family of large language models and is using both supervised and reinforcement

learning techniques. GPT models are capable of Natural Language Processing tasks

such as text generation, summarization, and analysis.

10 Kot, J. (2022) A brief history of machine learning, Concise Software. Available at:
https://concisesoftware.com/blog/history-of-machine-learning/ (Accessed: August 26, 2022).

8
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1.2. Taxonomy

Any Machine Learning problem is typically categorized based on the algorithm's training

method and the availability of the output during training. Hence, there are four basic categories

of ML methodologies: Supervised learning, Unsupervised learning, Semi-supervised learning,

and Reinforcement learning. The graph below displays the three most popular categories along

with some of the algorithms produced from each type of ML category:

Figure 1. Machine Learning Taxonomy11

11 Rajbanshi, S. (2021) Machine learning algorithms: Introduction to machine learning, Analytics
Vidhya. Available at:
https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
(Accessed: August 26, 2022).

9
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1.2.1. Supervised Learning

In Supervised Learning, the user plays the role of the instructor, giving the computer the already

collected and available data, so it is said that the user “supervises” the algorithm while it is in the

training phase. These “training” examples consist of two parts: the input values, otherwise called

the “features” of the training set, and the corresponding answer or output. The expectation in this

mode of learning is that the machine will be able to learn and discern the patterns in the data that

explain the relations between inputs and output. A Supervised Machine Learning algorithm using

the training data sets finds patterns and then uses the learned behavior to predict the output value

of a target variable based on new data sets. A learning problem is referred to as a regression

problem when the output variable that we're attempting to predict is continuous, while a

classification problem is one where the output variable can only accept a small number of

distinct values. Some examples of these algorithms are the: Perceptron (P), Naive Bayes

Classifier (NBC), Decision Tree (DT), Support Vector Machines Classification (SVM), Random

Forest (RF), k-Nearest-Neighbor (k-NN), Logistic regression (LogR), Linear Discriminant

Analysis Classifier (LDA), Neural Networks (NN) & Bayesian Networks (BN). Applications of

supervised learning algorithms can be seen to have been used for Facial recognition, Disease

prediction, Bankruptcy prediction, Fraud detection, Weather Forecasting, Fraud Analysis &

many more.

1.2.2. Unsupervised Learning

In Unsupervised Machine Learning algorithms, there is no instructor or supervisor. The

unsupervised learning approach is to let the computer recognize unidentified existing patterns

from the data to extract and create rules from them on its own. When the categories of the

training data sets are unknown, or when the data is not labeled, this approach is suitable.

Unsupervised machine learning is thought of as a statistically based learning approach, and as

such, it refers to the challenge of uncovering hidden structures in unlabeled data. Some of these

10
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algorithms derive their structure by clustering or grouping the data based on relationships

between the variables in the data. Some examples of these algorithms are the: Fuzzy C-Means

Clustering Algorithm (FCM), Soft K-Means Clustering Algorithm (SKM), K-Harmonic Means

Clustering Algorithm (KHM), Kernel K-Means Clustering Algorithm (KKM), DBSCAN

Clustering, Mixture Models (MM) & Hierarchical Clustering (HC). The use of unsupervised

learning algorithms has been applied to problems such as Genetics (i.e. clustering DNA patterns

to analyze evolutionary biology), Customer segmentation, Recommender systems, Finding

different customer groups, Anomaly detection (i.e. detecting defective mechanical parts), etc.

1.2.3. Reinforcement Learning

Reinforcement Machine learning is classified as a middle-level learning process because the

algorithm merely receives a response that tells it whether the calculated output is true or not. For

the algorithm to produce the desired result without aid or additional guidance from an outside

source, it must consider and rule out a wide range of possibilities. It is regarded as learning with

a fault-finder as the algorithm doesn’t propose any sort of suggestions or solutions to the

problem. It enables machines and software users to automatically select the best behavior in a

given situation to improve their efficiency. Same to the previous methods of Machine Learning

described, we have some sample examples of Reinforcement algorithms such as the:

Deterministic Q-Learning (DQL), Monte-Carlo Methods (MCM) & Temporal Difference

Methods (TDM). Some examples of reinforcement learning applications are Autonomous cars,

Traffic light control, Data Center cooling, Image processing, Healthcare, Natural language

processing (NLP), Robotics, Marketing, Gaming, etc.

1.2.4. Semi-Supervised Learning

Semi-Supervised Machine Learning algorithms offer methods that combine the strengths of both

Supervised learning and Unsupervised learning. In these two categories, labels for the input data

are either given for every observation or none are given at all. Due to the high expense of
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labeling and a lack of qualified human experience, it is possible that some observations will be

provided with labels while the majority will not. Semi-Supervised algorithms are best suited for

building models in these circumstances. Semi-Supervised Machine Learning can be used with

problems like classification, regression, as well as prediction. Some examples of use for

semi-supervised learning are: Internet Content Classification, Speech Analysis, and Protein

Sequence Classification in DNA.

Figure 2. Types of Machine Learning12

12 Anisimova, A. (2022) Types of machine learning out there, IDAP Blog. Available at:

https://idapgroup.com/blog/types-of-machine-learning-out-there/ (Accessed: August 26, 2022).

12
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2. Supervised Machine Learning

In the present dissertation, we will be focusing on supervised Machine Learning and its main and

most used algorithms, namely Linear Regression, Polynomial Regression, Logistic Regression,

and Νeural Νetworks.

2.1. Βasic Concepts

To begin with, let’s define some notations. We’ll be using to denote the “input” variables,𝑥(𝑖)

also called input features, and to denote the “output” or target variable that we are trying to𝑦(𝑖)

predict. A pair is called a training example, and the data set, that we’ll be using in our(𝑥(𝑖), 𝑦(𝑖)) 

computations to learn how to predict , is a list of m training examples. So any set of𝑦(𝑖) (𝑥(𝑖), 𝑦(𝑖))

, {i = 1, …, m}, is called a training set. Note that the superscript “(i)” in the notation is simply an

index into the training set, and has nothing to do with exponentiation. We will also use X to

denote the space of input values, and Y to denote the space of output values. In this example, X =

Y = ℝ. So, given a training set, our goal is to learn a function : X → Y so that is a “good”ℎ ℎ(𝑥)

prediction for the corresponding value of . This function is called a hypothesis. The𝑦 ℎ

hypothesis can be linear (i.e.: ) or nonlinear (i.e.:ℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥

) depending on the mathematical approach of the application,ℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥

1
 + θ

2
𝑥

2
3 

defined by a varying set of parameters that it entails.θ
𝑖

∈ ℝ

A problem of learning using a set of training samples presents also an optimization task, which

can be decided by searching for the minimum value of a cost function across all available𝐽(θ)

examples, defined as the “Mean Squared Errors”, or as it’s mostly known as the “Sum of

Squared Differences”, of a “forecasted” value and a “real” value y through a set ofℎ
θ
(𝑥)

examples m. Herein the hypothesis function is tasked with providing the minimum valueℎ
θ
(𝑥)

13
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of , by setting the most appropriate set of parameters ℝ. Following this description, the𝐽(θ) θ
𝑖

∈

mathematical equation that describes the cost function is: .𝐽(θ) =  1
2𝑚

𝑖=1

𝑚

∑ (ℎ
θ
(𝑥(𝑖)) − 𝑦(𝑖))2

2.2. Linear Regression

Linear regression is by far the simplest Machine Learning algorithm and has a wide range of uses

for ML problems. In this section, we have two available sets: Linear regression with one variable

& Univariate linear regression.

2.2.1. Linear Regression With One Variable

Beginning with the simpler single-variable Linear Regression, the attempt is to model the

relationship between the two variables by fitting a linear equation to the observed data.(𝑥(𝑖), 𝑦(𝑖))

As such our hypothesis is defined as: and our goal is to choose the rightℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥

set of parameters so that we can minimize the cost functionθ
0
 ,  θ

1
𝐽(θ

0
 ,  θ

1
).

Figure 3. Linear Regression Representation
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On the previous figure, the hypothesis’ shape can be easily observed, along with the connection

between the training examples and the predicted values, . Having a better perception of theℎ
θ
(𝑥)

difference between and y we can continue with the cost function.ℎ
θ
(𝑥)

In the following image13, we can see the graphic representation of the cost function

for this general linear hypothesis , in𝐽(θ
0
 ,  θ

1
) =  1

2𝑚
𝑖=1

𝑚

∑ (ℎ
θ
(𝑥) − 𝑦)2 ℎ

θ
(𝑥) =  θ

0
 +  θ

1
𝑥

relation to its parameters’ values .θ
0
 ,  θ

1

Figure 4. Cost Function Representation

The main observation of this figure is that the function is convex, which means that it𝐽(θ
0
 ,  θ

1
)

has a certain point where its value is minimized. Since our objective is defined as the

minimization of the cost function, we will be applying the most frequently used way of finding

13 Ng, A. (2011). Machine Learning Course by Stanford University, week 1 Lecture notes [MOOC].
Coursera. Available at: https://www.coursera.org/learn/machine-learning
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the best pair of parameters to minimize , which is called Gradient Descent.θ
0
 ,  θ

1
𝐽(θ

0
 ,  θ

1
)

Gradient Descent calculates the cost function for a starting pair of and it keeps𝐽(θ
0
 ,  θ

1
) θ

0
 ,  θ

1
 ,

changing the parameters to reduce the value of until it gradually finds the minimum or𝐽(θ
0
 ,  θ

1
)

the point of convergence, as it’s usually called.

The successive change of the parameters is performed by the following equation:

for j = 0 and j = 1, depending on the θ parameter we calculateθ
𝑗
 : = θ

𝑗
  −  𝑎 ∂

∂θ
𝑗

𝐽(θ
0
 ,  θ

1
) ,  

each time. Also, is a predefined learning parameter, and is the partial derivativeα ∂
∂θ

𝑗
𝐽(θ

0
 ,  θ

1
)

of the cost function by , where . Finally and mostθ
𝑗
 ∂

∂θ
𝑗

𝐽(θ
0
 ,  θ

1
) = 1

𝑚
𝑖=1

𝑚

∑ (ℎ
θ
(𝑥(𝑖)) −  𝑦(𝑖))𝑥

𝑗
(𝑖)

importantly, the sign (:=) means “assignment”, contrary to the sign of equality (=) seen in

algebraic expressions.

The update of the parameters should be done on the same step for Gradient Descent to be correct,

so in the case of only two parameters we could describe it as per the below expression inθ
0
 ,  θ

1

pseudo-code:

;𝑡𝑒𝑚𝑝0 : = θ
0
  −  𝑎 ∂

∂θ
0

𝐽(θ
0
 ,  θ

1
) 

;𝑡𝑒𝑚𝑝1 : = θ
1
  −  𝑎 ∂

∂θ
1

𝐽(θ
0
 ,  θ

1
) 

;θ
0
 =  𝑡𝑒𝑚𝑝0

;θ
1
 =  𝑡𝑒𝑚𝑝1

The above-described procedure is also called “Batch” Gradient Descent, which means that each

step of Gradient Descent uses all the training examples m.
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2.2.2. Learning Parameter α 

Regarding the learning parameter which defines the distance of each step that Gradient𝑎 ,

Descent performs in every iteration, researchers have made the below observations:

A. If is too small, gradient descent can be slow to converge.𝑎

B. If is too large, gradient descent can overshoot the minimum and it may even fail to𝑎

converge.

C. Gradient descent can converge to a minimum, even with a learning parameter fixed. As𝑎

we approach the minimum, gradient descent will automatically take smaller steps, so there

is no need to decrease over time.𝑎

2.2.3. Linear Regression With Multiple Variables

Continuing with the Univariate Linear Regression, we now assume that our sets of training

examples include a set of ( , ), where for every training example (i = 1,…,m), with m being𝑥(𝑖) 𝑦(𝑖)

the total number of training examples, there is n total number of features , where𝑥
𝑗
(𝑖)

that are taken into account when computing the respective . As such, our(𝑗 =  1,  …,  𝑛), 𝑦(𝑖)

hypothesis is now described by the equation: ,ℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥

1
 + θ

2
𝑥

2
 +  ...  +  θ

𝑛
𝑥

𝑛
 

where we always set to ensure that the bias unit of is also represented.𝑥
0
(𝑖) = 1 θ

0
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Proceeding with the application of Gradient Descent on this algorithm, the consequent and

simultaneous change of the parameters that is performed, is the following equation, calculated

for every single that constitutes the hypothesis in the cost function:θ
𝑗
 

, (for j = 0, …, n), with .θ
𝑗
 : = θ

𝑗
 − 𝑎 ∂

∂θ
𝑗

𝐽(θ) ∂
∂θ

𝑗
𝐽(θ) = 1

𝑚
𝑖=1

𝑚

∑ (ℎ
θ
(𝑥(𝑖)) −  𝑦(𝑖))𝑥

𝑗
(𝑖)

Additionally, there is another method to solve our minimization problem by using vectors and

matrices to describe all relevant variables and to find the parameters analytically. This methodθ

is called Normal Equation. In this procedure, the is expressed as a vector with n+1 rowsθ

making , where n is the number of features and 1 accounts for the bias unit. We alsoθ ∈ ℝ𝑛+1 𝑥
𝑗

add all data in a matrix X of by m dimensions, one row for each training example’s𝑥
𝑗
(𝑖) (𝑛 + 1)

features plus the bias unit. The same is applied to our values which are added to a vector𝑦(𝑖) 𝑦

with m rows. Having defined our vectors and matrices we calculate: , whereθ =  (𝑋𝑇𝑋)−1𝑋𝑇𝑦

is the inverse matrix of and is the transpose matrix of .(𝑋𝑇𝑋)−1 𝑋𝑇𝑋 𝑋𝑇 𝑋

With this method, we eliminate the problems we had with the added learning parameter and we𝑎

do not need to iterate all training examples, but there is an easily detectable issue with this

method as well. There is a possibility that the matrix might not be inversible. In this case,𝑋𝑇𝑋

there are two possible causes & solutions:

A. There may be some features that are linearly interdependent and so they need to be studied

and removed before any calculations.

B. There may be too many features, especially in the case when m n, and thus some need to≤

be deleted.
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2.2.4. Regularization Parameter λ

There are cases where the hypothesis we created can predict the values with high accuracy,𝑦(𝑖)

but cannot predict the output correctly given a new features data set . This is called overfitting𝑥
𝑗
(𝑖)

and the easiest way of dealing with it is to apply regularization. Regularization means that we

keep all our features, but reduce the magnitude (weight) of the parameters . The newθ
𝑗

hypothesis will then have smaller values of θ, thus making it simpler and less prone to

overfitting.

To apply regularization we simply need to add the sum of the weighted parameters to our

original cost function and minimize the newly defined cost function:

, where is the regularization parameter,𝐽(θ) = 𝑚𝑖𝑛 1
2𝑚 [

𝑖=1

𝑚

∑ (ℎ
θ
(𝑥(𝑖)) − 𝑦(𝑖)) 2 + λ

𝑗=1

𝑛

∑ θ
𝑗
2] λ

which determines how much the costs of our theta parameters are inflated.

Using the above cost function with this extra summation, we can smooth out the output of our

hypothesis function to reduce overfitting. If lambda is chosen to be too large, it may smooth out

the function too much and cause underfitting, however, if we choose a the overfittingλ ≃ 0

problem will persist, hence the choice of the correct value of is very important.λ

This affects both Gradient Descent and Normal Equation. The updated equation for Gradientλ

Descent is now separated into two equations, one applied for as perθ
𝑗
 = 0

and another for the rest of the cases for as perθ
0
 : = θ

0
 − 𝑎 ∂

∂θ
0

𝐽(θ) (𝑗 = 1,..., 𝑛)

. We modify our gradient descent function to separate outθ
𝑗
 : = θ

𝑗
(1 − 𝑎 λ

𝑚 ) − 𝑎 ∂
∂θ

𝑗
𝐽(θ) θ

0

from the rest of the parameters because we do not want to penalize out bias unit As advised,θ
0
.

there is also the case of the updated matrix-vector algorithm for Normal Equation, which is now
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set as , where L is an identity matrix with dimensions (n+1) by (n+1),θ =  (𝑋𝑇𝑋 + λ𝐿)−1𝑋𝑇𝑦

but with the only difference that the very first number of the first row is 0, while the rest of the

diagonal is all 1.

2.2.5. Data Normalization

Throughout our data processing, a few issues may arise regarding the form of the present

features. We need to make sure that they are on a similar scale for our calculations to have

meaning and procure a result that is consistent and relevant to the data. This can be accomplished

with either of the two methods that are described below:

A. “Feature scaling” is accomplished by performing the division of every feature’s value with

their respective range of values in the said feature, expressed as: , where
𝑥

𝑗
(𝑖)

𝑥
𝑗, 𝑟𝑎𝑛𝑔𝑒

 

for j = 1,...,n and i = 1,...,m. This ensures that all values are𝑥
𝑗, 𝑟𝑎𝑛𝑔𝑒

 = 𝑥
𝑗, 𝑚𝑎𝑥

 −  𝑥
𝑗, 𝑚𝑖𝑛

,  

between or . Note that this method is not to be applied for0 ≤ 𝑥
𝑗
(𝑖) ≤ 1 − 1 ≤ 𝑥

𝑗
(𝑖) ≤ 1 

as all by definition.𝑗 = 0 𝑥
0
(𝑖) = 1

B. “Mean Normalization” is achieved by performing the transformation of every feature’s

value, expressed as: , where is the mean value of the feature’s
𝑥

𝑗
(𝑖) − µ

𝑗

𝑥
𝑗, 𝑟𝑎𝑛𝑔𝑒

 (𝑜𝑟) 𝑆𝑇𝐷
𝑗
 

µ
𝑗

= 1
𝑛

𝑖=1

𝑛

∑ 𝑥
𝑗
(𝑖)

values and is the standard deviation of feature’s values𝑥
𝑗
(𝑖) 𝑆 𝑇𝐷

𝑗
= ( 1

𝑛
𝑖=1

𝑛

∑ (𝑥
𝑗
(𝑖) − µ

𝑖
))2 

, for every j = 1,...,n and i = 1,...,m. This would result in all values being between𝑥
𝑗
(𝑖)

. Note that this method is also not to be applied for as− 0, 5 ≤ 𝑥
𝑗
(𝑖) ≤ 0, 5 𝑗 = 0 𝑥

0
(𝑖) = 1

by definition.
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2.3. Polynomial Regression

We might also have a set of training examples that follow a hypothesis that is expressed with the

non-linear equation: . Τhis is a case ofℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥

1
 + θ

2
𝑥

2
2 + θ

3
𝑥

3
3 +  ...  +  θ

𝑛
𝑥

𝑛
𝑛 

polynomial regression and is often used when we need to fit a more complex data set to our

prediction model.

Everything that has already been described above for the linear regression, meaning the

minimization of the cost function through the application of Gradient Descent, can be applied to

a polynomial regression algorithm as well.

The many combinations and possibilities of expressing relations between features and outputs

make polynomial regression difficult to present and so, no further examples will be given in the

present dissertation.

2.3.1. Addressing Fitting Problems Of The Hypothesis

As discussed, the hypothesis is the equation that best predicts the element, given a set of𝑦(𝑖)

input data If we have too many features, the learned hypothesis may fit the training set very𝑥(𝑖).

well, provided that we find the right parameters θ to minimize the cost function , but will𝐽(θ)

fail to generate new outputs based on new input data sets.

In the linear and non-linear regression algorithms we have seen so far, we may have the

following algorithm examples and their graphical representations as depicted in the figure below:

21



“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

Figure 5. Fitting Cases

Considering that the stars are the training sets and the red line is the fitted hypothesis, we notice

that:

A. In the case of figure (a), the hypothesis is and we say that there is aℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥

high bias or that the hypothesis underfits.

B. As seen in figure (b) the hypothesis fits the data sets justℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥 + θ

2
𝑥2 

right.

C. Figure (c) shows hypothesis and in thisℎ
θ
(𝑥) =  θ

0
 +  θ

1
𝑥 + θ

2
𝑥2 + θ

3
𝑥3 + θ

4
𝑥4 

case we say that there is a high variance or that the hypothesis overfits.

There are several ways of correcting these phenomena. Let’s first examine the occurrence of

underfitting in figure (a). We may either use additional features to our training examples or we

may use special synthesized (polynomial) features, showing higher degrees and products of basic
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properties . On the first solution, we have the issue of high applicational( 𝑥
1
2,  𝑥

1
𝑥

2
,  𝑥

2
2 ,  𝑒𝑡𝑐.)

cost, as these features need to be manually added to our existing training data sets, and on the

second solution, there is the matter of finding the correct polynomials to use.

Continuing with the overfitting case of figure (c), we may reduce the number of used features,

but this raises the problem of eliminating the proper features and if , it makes little𝑚 ≃ 𝑛

difference for our analysis. We may also add additional training sets to our input/output data if

that is possible, which is a solution with high applicational cost due to the manual work that is

required. Finally, as already advised, the best way to correct an overfitting hypothesis is by

applying regularization.

2.4. Logistic Regression

Logistic regression is applied to classification problems, meaning that our can only take two𝑦(𝑖)

values, it may either be {0, 1} or {positive, negative} or any other similar binary class problem.

For easy reference, we will assume here that and as such our hypothesis should at𝑦 ∈ {0, 1}

first be able to fulfill the condition .0 ≤  ℎ
θ
(𝑥) ≤ 1

The solution here is given by the sigmoid or logistic function which is set as:𝑔(𝑧),

Trying to fit this function for our use, we set and when applied to the𝑔(𝑧) = 1

1 + 𝑒−𝑧  . 𝑧 = θ𝑇𝑥

function, the resulted hypothesis is as per , with being the vector ofℎ
θ
(𝑥) = 𝑔(θ𝑇𝑥) θ

parameters and the matrix of all the features’ values.𝑥

As proven by the graphical representation of the sigmoid function below, the function ,𝑔(𝑧)

maps real numbers in the (0,1) interval, making it useful for transforming an arbitrary-valued

function into a function better suited for classification.
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Figure 6. Sigmoid Function

To finally get to our distinct {0, 1} classification, we can translate the output of this hypothesis

function as the likelihood that the object of our function can be {1}, meaning , when𝑦 = 1

or {0}, meaning , when . The way the logistic functionℎ
θ
(𝑥) ≥ 0. 5 𝑦 = 0 ℎ

θ
(𝑥) < 0. 5 𝑔(𝑧)

behaves is that when its input is greater than or equal to zero ( ), its output is greater than or𝑧 ≥ 0

equal to 0.5 ( ). So, if our input is then that means that𝑔(𝑧) ≥ 0. 5 𝑧 = θ𝑇𝑥

only when . From these statements we can define that: ifℎ
θ
(𝑥) = 𝑔(θ𝑇𝑥) ≥ 0. 5 θ𝑇𝑥 ≥ 0

⇒ , and if ⇒ . In other words, we can also say that theθ𝑇𝑥 ≥ 0 𝑦 = 1 θ𝑇𝑥 < 0 𝑦 = 0

hypothesis expresses the probability of , for any given input .𝑦 = 1 𝑥

Logistic regression also has its corresponding cost function, as defined per below:

𝐽(θ) =  − 1
𝑚

𝑖=1

𝑚

∑ [𝑦(𝑖)𝑙𝑜𝑔 ℎ
θ
(𝑥(𝑖)) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ

θ
(𝑥(𝑖)))]

Gradient Descent is also applicable for this algorithm’s optimization and can be achieved by

repeatedly applying the below equation, almost the same as with linear regression, but with the

difference that the partial derivatives, in this case, include the logarithmic equation:

, (for j = 0, …, n), with .θ
𝑗
 : = θ

𝑗
 − 𝑎 ∂

∂θ
𝑗

𝐽(θ) ∂
∂θ

𝑗
𝐽(θ) = 1

𝑚
𝑖=1

𝑚

∑ (ℎ
θ
(𝑥(𝑖)) −  𝑦(𝑖))𝑥

𝑗
(𝑖)
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Finally, regularization can also be applied on this algorithm to increase its performance:

𝐽(θ) =  − 1
𝑚

𝑖=1

𝑚

∑ [𝑦(𝑖)𝑙𝑜𝑔 ℎ
θ
(𝑥(𝑖)) + (1 − 𝑦(𝑖))𝑙𝑜𝑔(1 − ℎ

θ
(𝑥(𝑖)))] + λ

2𝑚
𝑗=1

𝑛

∑ θ
𝑗
2

Moreover, the logistic function can be applied even if we have more than two classes, meaning

that , where i is the total number of classes. We just need to train a logistic𝑦 ∈ {0, 1,  2,  ...,  𝑖}

regression classifier for each class i to predict the probability that . On a new inputℎ
θ
(𝑖)(𝑥) 𝑦 = 𝑖

, to make a prediction, we then pick the class i that maximizes .𝑥 ℎ
θ
(𝑖)(𝑥)

2.5. Neural Networks

Neural Networks, also referred to as Artificial Neural Networks (ANNs) or simply NN, are a

subset of Machine Learning and are at the heart of deep learning algorithms. Their name and

structure are inspired by the human brain, mimicking the way that biological neurons signal one

another. The feedforward Neural Networks that we will be examining are composed of node

layers, containing an input layer, one or more hidden layers, and one output layer. The units are

connected using various connection parameters, also referred to as "weights" in this context. The

first layer receives input data, and the values are "propagated" from each neuron to every neuron

in the following layer. The output layer eventually delivers a result. A simple visualization can

be seen in the following image presenting a simple Neural Network that contains three input

neurons, one hidden layer with three neurons, and one output neuron.
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Figure 7. Neural Network14

In the figure, input neurons, namely the features of each training example, are marked with the

symbol , where i = 1, …, m for m total training examples, hidden layer neurons are similarly𝑥
𝑖

marked with the symbols , where the superscript (2) defines the layer’s position inα
1
(2), α

2
(2), α

3
(2)

the network’s line of layers, and one output layer neuron with the symbol , which is inα
1
(3)

actuality the final . The are also called “activation nodes” of unit in layer . It shouldℎ
Θ

(𝑥) α
𝑖
(𝑙) 𝑖 𝑙

be noted that for all i = 0 we define new neurons in each layer called the “bias units” and always

equal to the value of 1, set as either in the input layer or in all hidden layers .𝑥
0

α
0
(𝑙)

The propagation of information from one layer to the next is by computing these activation

nodes, with the help of the sigmoid function we previously described, which in Neural Networks

is also called the activation function, and the respective weights of each feature. In the presently

described Neural Network the activation nodes are:

14 Muhamedyev, R.I. (2015) “Machine learning methods: An overview,” Computer Modelling & New
Technologies, 19(6), pp. 14–29. Available at:
https://www.researchgate.net/publication/320550516_Machine_learning_methods_An_overview
(Accessed: August 26, 2022).

26

https://www.researchgate.net/publication/320550516_Machine_learning_methods_An_overview


“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

α
1
(2) = 𝑔(Θ

10
(1)𝑥

0
+ Θ

11
(1)𝑥

1
+ Θ

12
(1)𝑥

2
+ Θ

13
(1)𝑥

3
)

α
2
(2) = 𝑔(Θ

20
(1)𝑥

0
+ Θ

21
(1)𝑥

1
+ Θ

22
(1)𝑥

2
+ Θ

23
(1)𝑥

3
)

α
3
(2) = 𝑔(Θ

30
(1)𝑥

0
+ Θ

31
(1)𝑥

1
+ Θ

32
(1)𝑥

2
+ Θ

33
(1)𝑥

3
)

Each feature’s value is weighted by a randomly initiated parameter , where the superscriptΘ
𝑗𝑖
(𝑙) 

is the order number of the previous layer we refer to, the subscript is the node’s reference(𝑙) (𝑗)

number and the subscript is the feature’s reference number. From the above, we can create(𝑖)

the matrix of weights controlling the function’s mapping from layer to layer . If theΘ(𝑙) 𝑙 (𝑙 + 1)

network has units (not counting the bias unit) in the layer , and units in the layer𝑠
𝑙

𝑙 𝑠
𝑙+1

(𝑙 + 1),

then the matrix will have dimensions of by .Θ(𝑙) (𝑠
𝑙+1

) (𝑠
𝑙

+ 1)

Following the same process to propagate the data from the hidden layer to the final output layer,

we calculate the final activation node which is the Neural Network’s output neuron, as expressed

by the equation:  α
1
(3) = 𝑔(Θ

10
(2)α

0
(2) + Θ

11
(2)α

1
(2) + Θ

12
(2)α

2
(2) + Θ

13
(2)α

3
(2)) = ℎ

Θ
(𝑥) 

Although in our example the output layer of the network only has one neuron, the benefit of

Neural Networks is the opportunity to classify several classes at once. In this case, the output

layer contains the number of neurons equal to the number of classes.

Same to the previous algorithms’ method process, the assignment is to minimize the cost

function of the network by adjusting the weights . The relevant cost function, taking intoΘ
𝑗𝑖
(𝑙) 

account the possible regularization that may or may not be needed, is per below:

𝐽(θ) =− 1
𝑚 [

𝑖=1

𝑚

∑
𝑘=1

𝐾

∑ 𝑦
𝑘
(𝑖)𝑙𝑜𝑔(ℎ

θ
(𝑥(𝑖)))

𝑘
+ (1 − 𝑦

𝑘
(𝑖))𝑙𝑜𝑔(1 − ℎ

θ
(𝑥(𝑖)))

𝑘
] + λ

2𝑚
𝑙=1

𝐿−1

∑
𝑖=1

𝑠
𝑙

∑
𝑗=1

𝑠
𝑙+1

∑ (Θ
𝑗𝑖
(𝑙))2 ,
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where L is the total number of neural network layers, is the number of neurons in layer l, K is𝑠
𝑙

the total number of classes (equal to the number of neurons in the output layer), and is theΘ

weight matrix. We have added a few nested summations to account for our multiple output

nodes. In the first part of the equation, before the square brackets, we have an additional nested

summation that loops through the number of output nodes. In the regularization part, after the

square brackets, we must account for multiple matrices. The number of columns in ourΘ(𝑙)

current matrix is equal to the number of nodes in our current layer (including the bias unit).Θ(𝑙)

The number of rows in our current matrix is equal to the number of nodes in the next layerΘ(𝑙)

(excluding the bias unit). Same as with logistic regression, we square every term.

2.5.1. Backpropagation

The task for every ML algorithm is to find the weights’ values that will optimize the network’s

classification performance. This process in Neural Networks is called “training”. To train a

multi-layered neural network to work effectively, our goal is to minimize our cost function 𝐽(Θ)

by computing the using an optimal set of parameters Θ. In this section, we'll look at𝑚𝑖𝑛
Θ

𝐽(Θ)

the “backpropagation” error algorithm which uses equations to compute the partial derivative of

, meaning: for every . To do so, we use the following algorithm process:𝐽(Θ) ∂

∂Θ
𝑖,𝑗
(𝑙) 𝐽(Θ) Θ

𝑗𝑖
(𝑙)

Firstly, given a training set , with , we create a matrix , for all(𝑥(𝑖), 𝑦(𝑖)) (𝑖 = 1,..., 𝑚) Δ
𝑖,𝑗
(𝑙) : = 0 

, hence we end up having a matrix full of zeros.𝑖,  𝑗,  𝑙

Then, for every training example t from 1 to m, we perform the below steps, keeping in mind

that the following operations are between matrices and vectors:
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1. Set α1 : = 𝑥(𝑡)

2. Perform forward propagation to compute for every , where L is our totalα(𝑙) (𝑙 = 2,..., 𝐿)

number of layers. To perform forward propagation we calculate the below steps:

● α(1) = 𝑥

● 𝑧(2) = Θ(1)α(1)

● & addα(2) = 𝑔(𝑧(2)) α
0
(2)

● Continue for all the rest and finally𝑙 = 3,..., (𝐿 − 1)

● 𝑧(𝐿) = Θ(𝐿−1)α(𝐿−1)

● α(𝐿) = 𝑔(𝑧(𝐿)) = ℎ
Θ

(𝑥)

3. Using , compute the "error values" , where is the vector of outputs𝑦(𝑡) δ(𝐿) = α(𝐿) − 𝑦(𝑡) α(𝐿)

of the activation units for the last layer. So our "error values" for the last layer are simply the

differences between our actual results in the last layer and the correct outputs in y.

4. To get the delta values of the layers before the last layer, we can use an equation that takes

back steps, from right to left, using: , thus computing theδ(𝑙) = ((Θ(𝑙))𝑇δ(𝑙+1)) . * 𝑔'(𝑧(𝑙))

values of . The delta values of layer are calculated by multiplying theδ(𝐿−1),  δ(𝐿−2),...,  δ(2) (𝑙)

delta ( ) values in the next layer with the theta ( ) matrix of layer . We then element-wiseδ Θ (𝑙)

multiply that with a function called g’, or g-prime, which is the derivative of the activation

function g, evaluated with the input values given by . The g-prime derivative terms can𝑧(𝑙)

also be written out as: , so we can also express as:𝑔'(𝑧(𝑙)) = α
(𝑙)

 . * (1 − α(𝑙)) δ(𝑙)

.δ(𝑙) = ((Θ(𝑙))𝑇δ(𝑙+1)) . * α(𝑙) . * (1 − α(𝑙))
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5. For our final step, we update the Δ matrix as per: .Δ(𝑙) : = Δ(𝑙) + δ(𝑙+1)(α(𝑙))Τ

This Δ matrix can also be expressed as: .Δ
𝑖,𝑗
(𝑙) : = Δ

𝑖,𝑗
(𝑙) + α

𝑗
(𝑙)δ

𝑖
(𝑙+1)

6. Having reached this point, we update our new D matrix per below:

● , if j=0 or𝐷
𝑖,𝑗
(𝑙) : = 1

𝑚 Δ
𝑖,𝑗
(𝑙)

● , if j 0𝐷
𝑖,𝑗
(𝑙) : = 1

𝑚 (Δ
𝑖,𝑗
(𝑙) + λΘ

𝑖,𝑗
(𝑙)) ≠

The matrix D is used as an "accumulator" to add up our values as we go along and eventually

compute our partial derivative and thus we get .∂

∂Θ
𝑖,𝑗
(𝑙) 𝐽(Θ) = 𝐷

𝑖,𝑗
(𝑙) 

Having calculated the partial derivatives of the cost function we can now use Gradient Descent

or any other built-in optimization function to minimize the cost function with the theta weights.

Ideally, we want , as this will minimize our cost function, however, we have toℎ
Θ

(𝑥(𝑖)) ≈ 𝑦(𝑖)

keep in mind that is not a simple convex function in Neural Networks and thus we may end𝐽(Θ)

up in a local minimum instead of the global minimum that characterizes the convex functions.
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3. Method Applications, Benefits, And Drawbacks

Each method described above has its own uses and limitations. In the following section, we will

try to note some examples in each case but also the advantages and disadvantages that their

application may present.

3.1. Linear Regression

The algorithm of Linear regression is widely used for the task to predict a dependent variable’s

value y based on a given independent variable(s) x, creating a model that presents the linear

relationship that exists between x (input(s)) and y (output). A very simple example of this is the

prediction of house selling prices. We may have as input variables the house’s size in square

meters, the number of bedrooms, the year it was built, the floor number, and many other

characteristics of the house. All this data of training sets collected from various properties are

inserted into our database, along with their corresponding output values, which are the selling

prices. Based on this data and by applying linear regression, we train an algorithm that can take

into account a new house’s characteristics, that we now have for sale, and predict the price that it

should be sold for. We can easily find many more similar examples like this in real-life

applications, such as weather prediction, employee performance, market forecasting, stock price

prediction, risk analysis, etc.

Linear regression may be powerful as it is simple to implement and easy to interpret the output

coefficients, but it has its limitations. This is made clear once we look at the advantages and

disadvantages of its implementation:
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Table 2. Linear Regression’s Merits & Drawbacks

Advantages Disadvantages

Since the relationships between the

independent and dependent variables are

linear, this algorithm is the simplest available.

The linear relationship means that there is a

straight-line relationship and interdependence

between attributes which is not always true.

It is susceptible to over-fitting but it can be

avoided using some dimensionality reduction

techniques, regularization techniques, and

cross-validation data sets.

It is sensitive to outliers that can have huge

effects on the regression and its boundaries.

3.2. Polynomial Regression

Polynomial Regression is applied when fitting non-linear data, where linear regression may

underfit. The relationship between the independent variable(s) x and dependent variable y, is

modeled through an nth degree polynomial in x, or a combination of polynomials of x, to predict

y. Since we increase the model’s complexity and use Polynomial Regression, it will interpret

such data relations better. An example of this implementation is death rate prediction.

Catastrophe management teams must forecast the number of injured or fatalities when calamities

like epidemics, fires, or tsunamis occur so they can allocate resources. Through the analysis of

numerous dependent variables, this approach enables us to create adaptable Machine Learning

models that report the probable death rate. For example, in the COVID-19 pandemic, the

prediction of the death rate can be based on the factors on the number of days passed, people
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tested, active cases, and confirmed cases so far15. Other examples may be tissue growth rate

prediction for cancer masses and traffic speed regulation software.

As with our previous regression types, polynomial regression comes with its pros and cons when

applied to a research’s data and deductions. Some of them are listed below16:

Table 3. Polynomial Regression’s Merits & Drawbacks

Advantages Disadvantages

It works well on non-linear problems.

Polynomials have simple forms and

well-known and understood properties.

These models have poor asymptotic

properties. They have a finite response for

finite values and have an infinite response if

some variable takes an infinite value. Thus

polynomials may not model asymptotic

phenomena very well.

They have moderate flexibility in shapes, and

they are computationally easy to use.

We need to choose the right polynomial

degree for a good bias vs variance trade-off.

The use of polynomials provides a good fit

within the range of data.

The degree of the fit frequently deteriorates

rapidly outside the range of the data.

It is heavily affected by outliers and thus is

prone to overfitting.

16 Pečkov Aleksandar (2012) A machine learning approach to polynomial regression: Doctoral
dissertation = Algoritmi Strojnega učenja za polinomsko regresijo: Doktorska Disertacija. dissertation.
A. Pečkov.

15 Singh, H. and Bawa, S. (2021) “Predicting covid-19 statistics using machine learning regression model:
Li-Muli-poly,” Multimedia Systems, 28(1), pp. 113–120. Available at:
https://doi.org/10.1007/s00530-021-00798-2.
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3.3. Logistic Regression

Logistic Regression is used for probability prediction because it is mathematically constrained to

produce probabilities in the range [0,1] and generally converges on parameter estimates

relatively easily for these binary results. A very simple example of logistic regression’s

application is the classification problem of labeling a tumor found in a patient as malignant or

benign. We add many training data in our database with input parameters such as the tumor’s

size, location in the body, density, etc., data found from a simple MRI (Magnetic resonance

imaging), and based on the output (malignant or benign) that we have from there historical data,

we can create a logistic regression algorithm. This algorithm is then used to predict the

probability of a new data input set, being a malignant or benign tumor. The applications of

Logistic Regression are widely used in medicine, health, and psychology research, as well as

sociological deductions.

On this regression type, we have also some findings that are either in favor or not of this

method’s use. Some of them are recorded below17:

Table 4. Logistic Regression’s Merits & Drawbacks

Advantages Disadvantages

It is a familiar and well-understood tool for

researchers in a variety of disciplines.

If the number of observations is lesser than

the number of features, Logistic Regression

should not be used, as it may lead to

overfitting.

17 Westreich, D., Lessler, J. and Funk, M.J. (2010) “Propensity score estimation: Neural networks, support
vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression,”
Journal of Clinical Epidemiology, 63(8), pp. 826–833. Available at:
https://doi.org/10.1016/j.jclinepi.2009.11.020.
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It can easily extend to multiple classes

(multinomial regression) and a natural

probabilistic view of class predictions.

It is difficult to obtain complex results using

logistic regression, thus more powerful and

compact algorithms such as Neural Networks

can easily outperform this algorithm.

It is easy to implement in most statistical

packages (e.g., SAS, STATA, R).

Logistic regression always makes a

parametric assumption of the log-odds

transformation, whether the predictors in that

model are simple or higher order.

3.4. Neural Networks

There is no end to the applications of Neural Networks, whether they are shallow (with one

hidden layer) or deep (with 2 or more hidden layers). It may be a Supervised Learning algorithm

approach, which needs to be given training data to learn, but its uses are far and wide. The use of

Neural Networks on social media breakdown to shed new light on our understanding of drug use

and addiction is a very straightforward example. In the relevant research18, a deep learning

technique was created to automatically categorize people's risk for using alcohol, tobacco, and

drugs based on the content of their Instagram profiles. The utilization of Neural Networks can

easily be identified in everyday applications such as personalized marketing, facial recognition,

and Natural Language Processing (used in personal assistants like Siri, Alexa, and Cortana),

while it has reached the fields of Neuroscience, Engineering, Medicine, Biochemistry, Genetics,

and Molecular Biology, Psychology, Environmental Science, and many more.

18 Hassanpour, S. et al. (2018) “Identifying substance use risk based on deep neural networks and
Instagram social media data,” Neuropsychopharmacology, 44(3), pp. 487–494. Available at:
https://doi.org/10.1038/s41386-018-0247-x.
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As with all our previous algorithms, neural networks are not infallible in any way. They present

certain characteristics that may either be in their favor or against their application. Some of them

are cataloged below19:

Table 5. Neural Network’s Merits & Drawbacks

Advantages Disadvantages

Neural network models require less formal

statistical training to develop and can easily

learn from past events to make decisions.

Neural networks are “black boxes” and can be

trained with only numeric data, so they have

limited ability to explicitly identify causal

problems.

These models can implicitly detect complex

non-linear relationships between independent

and dependent variables.

Since it’s similar to the functionality of the

human brain, we may not be able to determine

what is the proper network structure of a

Neural network.

They can detect all possible interactions

between predictor variables.

Most models are prone to overfitting.

Neural networks can provide the data to be

processed in parallel, which means they can

handle more than one task at the same time.

Neural network modeling requires greater

computational resources. Since they execute

parallel processing, they need processors that

support parallel processing and are dependent

on the hardware.

The networks can be developed using

multiple different training algorithms.

Their development is empirical, and many

methodological issues remain to be resolved.

19 Tu, J.V. (1996) “Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes,” Journal of Clinical Epidemiology, 49(11), pp. 1225–1231.
Available at: https://doi.org/10.1016/s0895-4356(96)00002-9.

36

https://doi.org/10.1016/s0895-4356(96)00002-9


“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

4. Matlab Implementation

Machine Learning has been applied through various computer languages and many independent

programs. One of these applications is through the use of MATLAB’s environment, which we

will also be using for our applications later on. Using MATLAB, computer engineers and other

experts have created thousands of ML applications. There are many sources for ML software.

Machine Learning includes both software used to help us learn from data and software that helps

to teach machines in learning and adapting to their environment. Here we will look into some of

those resources, both MathWorks’ resources, as well as some Open-Source resources.

4.1. Mathworks Products

MATLAB is a computing environment created by MathWorks that provides users with the

products to create complex ML algorithms while having already solved the simpler and basic

algorithms for them.

4.1.1. Statistics And Machine Learning Toolbox

Applications and functions for describing, analyzing, and modeling data are available in the

Statistics and Machine Learning Toolbox20. The user can use visualizations, descriptive statistics,

and clustering for exploratory data analysis, perform hypothesis tests, generate random numbers

for Monte Carlo simulations, and fit probability distributions to data. Using AutoML or the

interactive Classification and Regression Learner apps, regression and classification algorithms

enable us to infer conclusions from data and create prediction models. Principal component

analysis (PCA), dimensionality reduction, regularization, and feature selection techniques are

20 Statistics and machine learning toolbox (no date) Statistics and Machine Learning Toolbox
Documentation. Available at: https://www.mathworks.com/help/stats/index.html?s_tid=CRUX_lftnav
(Accessed: August 26, 2022).
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provided by the toolbox for multidimensional data analysis and feature extraction, allowing us to

find variables with the highest predictive accuracy.

The toolbox provides algorithms for all the main ML types: Supervised, Semi-supervised, and

Unsupervised learning. These include k-means, boosted decision trees, support vector machines

(SVMs), and other clustering methods.

Below are presented some of the available functions in this toolbox that can be used in the

Supervised learning algorithms we described above21:

Table 6. Statistics and Machine Learning Toolbox

Model / Image / Function Function / Description

Linear Regression

Function: fitlm

mdl = fitlm(tbl) returns a linear regression model fit to variables

in the table or dataset array tbl. By default, fitlm takes the last

variable as the response variable.

mdl = fitlm(X,y) returns a linear regression model of the

responses y, fit to the data matrix X.

mdl = fitlm(___, modelspec) defines the model specification

using any of the input argument combinations in the previous

syntaxes.

mdl = fitlm(___, Name, Value) specifies additional options using

one or more name-value pair arguments. For example, the user

can specify which variables are categorical, perform robust

regression, or use observation weights.

21 Types of machine learning models explained (no date) Types of Machine Learning Models Explained -
MATLAB & Simulink. Available at:
https://www.mathworks.com/discovery/machine-learning-models.html (Accessed: August 26, 2022).
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Logistic Regression

Function: fitglm

mdl = fitglm(tbl) returns a generalized linear model fit to

variables in the table or dataset array tbl. By default, fitglm takes

the last variable as the response variable.

mdl = fitglm(X,y) returns a generalized linear model of the

responses y, fit to the data matrix X.

mdl = fitglm(___, modelspec) returns a generalized linear model

of the type the user specifies in modelspec.

mdl = fitglm(___, Name, Value) returns a generalized linear

model with additional options specified by one or more Name,

Value pair arguments. For example, the user can specify which

variables are categorical, the distribution of the response variable,

and the link function to use.

Neural Network (Shallow)

Function: fitcnet

Mdl = fitcnet(Tbl, ResponseVarName) returns a neural network

classification model Mdl trained using the predictors in the table

Tbl and the class labels in the ResponseVarName table variable.

Mdl = fitcnet(Tbl, formula) returns a neural network

classification model trained using the sample data in the table

Tbl. The input argument formula is an explanatory model of the

response and a subset of the predictor variables in Tbl used to fit

Mdl.

Mdl = fitcnet(Tbl, Y) returns a neural network classification

model using the predictor variables in the table Tbl and the class

labels in vector Y.

Mdl = fitcnet(X, Y) returns a neural network classification model

trained using the predictors in the matrix X and the class labels in

vector Y.

Mdl = fitcnet(___, Name, Value) specifies options using one or

more name-value arguments in addition to any of the input
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argument combinations in previous syntaxes. For example, the

user can adjust the number of outputs and the activation functions

for the fully connected layers by specifying the LayerSizes and

Activations name-value arguments.

4.1.2. Deep Learning Toolbox

Compared to shallow Neural Networks, Deep Neural Networks feature more hidden layers, in

some cases, hundreds of them. Deep Learning Toolbox22 offers a framework for creating Deep

Neural Networks and putting them into use with pre-trained models, apps, and algorithms:

● Convolutional Neural Networks (ConvNets, CNNs) and Long Short-Term Memory (LSTM)

can be used to conduct classification and regression on time series, picture, and text data,

● The Deep Network Designer app can graphically create, evaluate, and train networks, while

● The Experiment Manager app can manage many deep-learning experiments, keep track of

their training settings, and finally compare the code from various experiments. The training

process may be graphically followed, and layer activations can be seen as well.

Below23 are presented some of the available functions in this toolbox that can be used to create

models of Deep Neural Networks based on Supervised learning algorithms:

23 Types of Machine Learning Models Explained (no date) MATLAB & Simulink. Available at:
https://www.mathworks.com/discovery/machine-learning-models.html (Accessed: August 26, 2022).

22 Deep learning toolbox (no date) Deep Learning Toolbox Documentation. Available at:
https://www.mathworks.com/help/deeplearning/index.html?s_tid=CRUX_lftnav (Accessed: August 26,
2022).

40

https://www.mathworks.com/help/stats/fitcnet.html#mw_c8492e70-f801-44ab-a58c-995a26e9e6ab
https://www.mathworks.com/help/stats/fitcnet.html#mw_2c997922-957c-4e43-b5e7-b6673c4cdfab
https://www.mathworks.com/discovery/machine-learning-models.html
https://www.mathworks.com/help/deeplearning/index.html?s_tid=CRUX_lftnav


“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

Table 7. Deep Learning Toolbox

Model / Image / Function Function / Description

Neural Network (Deep)

Function: trainNetwork

net = trainNetwork(images, layers, options) trains the neural

network specified by layers for image classification and

regression tasks using the images and responses specified by

images and the training options defined by options.

net = trainNetwork(images, responses, layers, options) trains

using the images specified by images and responses specified by

responses.

net = trainNetwork(sequences, layers, options) trains a neural

network for sequence or time-series classification and regression

tasks (for example, an LSTM or GRU network) using the

sequences and responses specified by sequences.

net = trainNetwork(sequences, responses, layers, options) trains

using the sequences specified by sequences and responses

specified by responses.

net = trainNetwork(features, layers, options) trains a neural

network for feature classification or regression tasks (for

example, a multilayer perceptron (MLP) network) using the

feature data and responses specified by features.

net = trainNetwork(features, responses, layers, options) trains

using the feature data specified by features and responses

specified by responses.

net = trainNetwork(mixed, layers, options) trains a neural

network with multiple inputs with mixed data types with the data

and responses specified by mixed.

[net, info] = trainNetwork(___) also returns information on the

training using any of the previous syntaxes.
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4.1.3. Mathematics And Optimization Application

Several products in this applications toolbox24 can help create and analyze mathematical models

which are the basis of many Machine Learning algorithms. These programs include a variety of

modeling techniques, including interactive and programmatic functionality, fundamental and

specialized mathematical tools, and numeric and symbolic computing. Some of those are:

● Optimization Toolbox: aids in the resolution of issues involving linear, quadratic, conic,

integer, and nonlinear optimization,

● Global Optimization Toolbox: resolves non-smooth optimization problems, as well as

multiple maxima or minima,

● Partial Differential Equation Toolbox: utilizing finite element analysis, it deals with partial

differential equations, etc.

4.2. Other Machine Learning Resources

Modern Machine Learning algorithms can be implemented in MATLAB using MathWorks’

open-source tools, but there are also many other programs, both open-source and commercial,

that users may use to build ML models. Following are some such examples25.

25 Paluszek, M. and Thomas, S. (2017) “3.3 MATLAB Open-Source Resources,” in Matlab Machine
Learning. New York: Apress.

24 Mathematics and Optimization (no date) MATLAB & Simulink. Available at:
https://www.mathworks.com/help/overview/mathematics-and-optimization.html?s_tid=hc_product_group
_bc (Accessed: August 26, 2022).
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The Deep Neural Network toolbox was created based on Masayuki Tanaka’s paper26 that proves

that “a Deep Neural Network (DNN) pre-trained via stacking Restricted Boltzmann Machines

(RBMs) demonstrates high performance”. This toolbox is available through MathWorks File

Exchange27 and includes a set of functions that assist in creating such Neural Network

applications for both Unsupervised and Supervised learning cases.

The MatConvNet28 toolbox is found also in MathWorks File Exchange29 and can be easily used

for image processing. By implementing functions that create Convolutional Neural Networks

(CNNs), it provides us with a wide range of pre-trained networks that can deal with image

classification, segmentation, face recognition, and text detection.

A Machine Learning and Artificial Intelligence software library called TensorFlow30 is free and

open-source. Although it can be applied to a variety of applications, Deep Neural Network

training and inference are its main areas of interest. The Google Brain team created TensorFlow

for use in internal Google research and production. It can be converted and used in the

programming environment of MATLAB31, but it can also be used in a broad range of computer

languages, most notably Python, but also Java, Javascript, and C++.

31 Deep learning toolbox converter for TensorFlow models (2021) MathWorks. Available at:
https://www.mathworks.com/matlabcentral/fileexchange/64649-deep-learning-toolbox-converter-for-tens
orflow-models (Accessed: August 26, 2022).

30 Google Brain Team (2015) Tensorflow, TensorFlow. Available at: https://www.tensorflow.org/
(Accessed: August 26, 2022).

29 Vedaldi, A. (2015) vlfeat/MATCONVNET, MathWorks. Available at:
https://www.mathworks.com/matlabcentral/fileexchange/47811-vlfeat-matconvnet?s_tid=srchtitle
(Accessed: August 26, 2022).

28 Vedaldi, A. and Lenc, K. (2015) “MatConvNet: Convolutional Neural Networks for MATLAB,”
Proceedings of the 23rd ACM international conference on Multimedia, pp. 689–692. Available at:
https://doi.org/10.1145/2733373.2807412.

27 Masayuki, T. (2016) Deep Neural Network, MathWorks. Available at:
https://www.mathworks.com/matlabcentral/fileexchange/42853-deep-neural-network?tab=reviews%2F21
05423 (Accessed: August 26, 2022).

26 Tanaka, M. and Okutomi, M. (2014) “A novel inference of a restricted Boltzmann machine,” 22nd
International Conference on Pattern Recognition (ICPR2014) [Preprint]. Available at:
https://doi.org/10.1109/icpr.2014.271.
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5. Case Studies For Machine Learning Implementations

Ensuing the theoretical analysis presented so far on Supervised Machine Learning and its various

applications and possibilities, this dissertation will now implement said theory into practice using

the below case studies as applications:

● Linear Regression model creation, set to predict the maximum wave height at any given

environmental conditions, with the output being a continuous variable.

● Logistic Regression model creation, set to determine if a prohibition of departure order

should be issued by a Hellenic port authority for certain vessels, with the output being a

binary variable.

● Neural Network model creation, set to categorize the sea’s condition through the maximum

wave height class based on the Douglas Sea Scale code, with the output being a

multiclassification variable.

5.1. Data Collection And Screening

Supervised Machine Learning is using known data, from historical observations, in order to train

a model to successfully predict outputs based on new data, so beginning this analysis, we will

have to take a look at the available numerical data that we will be using in our study cases.

All the data have been sourced from the POSEIDON32 system’s fixed mooring buoys. The

POSEIDON system operates and monitors a network of fixed measuring floats, located in

various areas in the Aegean and Ionian seas. Each station’s location has distinct geographical

characteristics, as they are also located in various sea depths, but altogether, they provide

information that also indicates some interaction between them. The POSEIDON operations

center is the one that receives the data after it has been transmitted by the stations. There the data

32 Fixed mooring buoys (no date) Poseidon System. Available at:

https://poseidon.hcmr.gr/components/observing-components/buoys (Accessed: December 28, 2022).
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are automatically processed, quality-checked, saved in the system's database, and subsequently

made available to the European Marine Databanks (CMEMS, EMODnet).

The platforms used are of two different types and their structures are as per the displays below:

Figure 8. Seawatch Type Buoy33 Figure 9. WaveScan Type Buoy34

The Seawatch platforms, in Figure 8, are created to collect data in areas with shallow waters of

up to 300m. The Wavescan platforms, in Figure 9, however, can accommodate devices that

collect multiparameter observations and are structured in a way that makes them withstand deep

water basins with depths greater than 1000m and still support real-time data transfers. Both of

these platform types are produced by Fugro Oceanor, which is a manufacturer of floats in

Norway.

34 WaveScan type buoy (no date) Poseidon System. Available at:

https://poseidon.hcmr.gr/components/observing-components/buoys#lg=2&slide=1 (Accessed: December

28, 2022).

33 Locations of fixed position Poseidon system buoy moorings (no date) Poseidon System. Available at:

https://poseidon.hcmr.gr/components/observing-components/buoys#lg=2&slide=2 (Accessed: December

28, 2022).
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There are presently six (6) fixed floating stations operating in Greece and their locations are

indicated by the map below:

Figure 10. Locations of Fixed Position Poseidon System Buoy Moorings35

The respective sea depth36 at each buoy’s location is also available in various data platforms and

will be of crucial importance when working with the data later on. The buoys that are located in

shallow waters up to ~300m (Seawatch platforms) are ATHOS (212m), HERAKLION (175m),

MYKONOS (138m), and SARONIKOS (209m), while the buoys located in deep sea levels that

exceed 1000m (Wavescan platforms) are those of E1M3A (1450m), and PYLOS (1681m).

36 SeaDataNet common data index (CDI) (no date) CDI SeaDataNet. Available at:

https://cdi.seadatanet.org/search (Accessed: December 28, 2022).

35 Locations of fixed position Poseidon system buoy moorings (no date) Poseidon System. Available at:

https://poseidon.hcmr.gr/components/observing-components/buoys#lg=2&slide=2 (Accessed: December

28, 2022).
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Through the POSEIDON system’s database, we have access to the recordings of the buoys in

real-time stamps with numerous available variables concerning the present environmental

conditions. Opening these datafiles, the variables that we can view and will be using for

processing in our respective case studies, are presented in the below table37:

Table 8. Variables’ Reference Table

Name Description / Comment

TIME Time of the measurement in days since noon, 1950-01-01.

Based on the standard Gregorian calendar:

http://cfconventions.org/cf-conventions/cf-conventions.html#calendar

TIME_QC Quality flag for each TIME value.

LATITUDE Latitude of the measurements.

Units: degrees north; southern latitudes are negative.

LONGITUDE Longitude of the measurements.

Unit: degrees east; western longitudes are negative.

POSITION_QC Quality flag for each LATITUDE and LONGITUDE value.

DEPH Depth of the measurements.

DEPH_QC Depth quality flags.

DEPH_DM Data mode for values of associated DEPH.

VZMX Maximum zero crossing wave height (Hmax).

37 Copernicus Marine In Situ Tac Data Management Team (2021) Copernicus Marine in situ TAC -

physical parameters list. Available at: https://doi.org/10.13155/53381 (Accessed: December 28, 2022).
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VZMX_QC Quality flag for each VZMX value.

VZMX_DM Data mode for values of associated VZMX.

HCSP Horizontal current speed.

HCSP_QC Quality flag for each HCSP value.

HCSP_DM Data mode for values of associated HCSP.

WDIR Wind from direction relative true north.

WDIR_QC Quality flag for each WDIR value.

WDIR_DM Data mode for values of associated WDIR.

WSPD Horizontal wind speed.

WSPD_QC Quality flag for each WSPD value.

WSPD_DM Data mode for values of associated WSPD.

VHM0 Spectral significant wave height (Hm0).

VHM0_QC Quality flag for each VHM0 value.

VHM0_DM Data mode for values of associated VHM0.

VMDR Mean wave direction from (Mdir).

VMDR_QC Quality flag for each VMDR value.

VMDR_DM Data mode for values of associated VMDR.

VTM02 Spectral moments (0,2) wave period (Tm02).

48



“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

VTM02_QC Quality flag for each VTM02 value.

VTM02_DM Data mode for values of associated VTM02.

Before beginning any data processing and analysis, it is important to check and carefully gather

the data that will be used in the analysis, as some are either unusable or not available at all. Thus,

starting with the most important factor, which is the availability of usable data, we observe that

the buoy of SARONIKOS has not given us any data within the needed time frame and so for this

dissertation, it will not be considered as a reference. Also, upon opening the file from the buoy of

HERAKLION we notice that it is missing all data related to the Horizontal current speed,

meaning the variables “HCSP”, “HCSP_QC'' & “HCSP_DM”, which are present in the other

buoys’ files, and as such will also be excluded from our study as we need to compare the same

measurements when conducting each analysis.

Having separated the usable data files, below are presented the next steps taken to clear up the

data before usage, as they were applied to each data file received from the remaining buoys

(ATHOS, MYKONOS, E1M3A, and PYLOS). Not all data collected are correct and thus some

should be omitted, while some others need to be converted to a computationally efficient format

before being used in our analysis:

1. To begin our screening process, we need to clarify and distinguish the variables ending with

the letters “QC”, which refers to Quality, and “DM”, which refers to Data Mode. Based on

Copernicus’ instructions manual regarding these data files, there are reference tables38

available in section 5 where instructions are given to determine which data can be used in

any analytic process and which should be excluded based on these two (2) variable flags.

The “QC” variable determines the quality control flags of the data values in the file and is

38 Copernicus Marine In Situ Tac Data Management Team (2021) Copernicus Marine in situ netcdf format

manual. Available at: https://doi.org/10.13155/59938 (Accessed: December 28, 2022).
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normally assigned after quality control procedures have been performed on the collected

data, while the “DM” variable indicates if the data point is taken from real-time mode,

delayed mode, or provisional mode. Following these instructions, we will be omitting the

data set lines that do not conform with both the acceptable quality flags and data modes.

2. Following on, we come upon a formatting issue, concerning the variables that describe

direction relative to the true north, meaning “WDIR” and “VMDR”. These two (2) variables

are expressed in degrees of direction that cannot be easily utilized computationally in our

following case studies. As such, editing these variables’ data will take a two (2) step

process:

a. We begin by converting the direction’s degrees to the corresponding four (4) main

cardinal directions of a compass and replace the data in each respective column with

the values of “North”, for degrees between (315o ~ 360o) or [0o ~ 45o], “East”, for

degrees between (45o ~ 135o], “South”, for degrees between (135o ~ 225o] and “West”,

for degrees between (225o ~ 315o] respectively.

b. Following on, we need valid data that can be processed, so we use “dummy” variables39

to make the categorical variable into a series of binary variables, meaning variables that

can have a value of zero (0) or one (1) only. For all the levels of the categorical

variable, a new variable will be created that has a value of 1 for each observation at that

level and 0 for all others. Dummy variables are created to describe each direction, on

each variable, meaning the Wind and Wave directions.

39 UCLA: Statistical Consulting Group (no date) CODING SYSTEMS FOR CATEGORICAL VARIABLES

IN REGRESSION ANALYSIS, OARC Stats. Available at:

https://stats.oarc.ucla.edu/spss/faq/coding-systems-for-categorical-variables-in-regression-analysis-2/#SI

MPLE%20EFFECT%20CODING (Accessed: December 28, 2022).
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i. Starting with the variable “WDIR”, the first new variable created will be

“WDIR_N” which will have a value of one (1) for each observation in which

direction is “North”, and zero (0) for all other observations. Likewise, we create

“WDIR_E” to be 1 when the direction is “East”, and 0 otherwise, “WDIR_S” to

be 1 when the direction is “South”, and 0 otherwise, and “WDIR_W” to be 1

when the direction is “West”, and 0 otherwise.

ii. Likewise, we create another set of four (4) additional dummy variables, named

“VMDR_N”, “VMDR_E”, “VMDR_S” and “VMDR_W” to describe the North,

East, South, and West direction of the Wave variable, “VMDR”. Using the same

thinking process we set 1 or 0 on the four dummy variables based on the direction

of the wave as defined by “VMDR”.

3. A significant factor for our analysis is the impact of each buoy’s location on the data it

provides us with. The available variable “DEPH” only provides us with the different levels

of the measurements, which means that it advises if a measure is taken from high above the

sea level (at which height), at the level of the sea’s surface, or even below the sea level (at

which specific depth). What we do need instead is the respective sea depth in which the

buoys are located, the actual sea depth at the location of the buoy. Since this is not available

in the data, we have to add it manually. Thus, we create a new variable named “DEPTH”

where we add the respective depth of each buoy in their respective data file (ATHOS (212),

MYKONOS (138), E1M3A (1450), and PYLOS (1681)).

4. It is important to note that the variables of “TIME”, “LATITUDE”, and “LONGITUDE”

cannot be used in the computations later on and give no significance to the purpose of our

case studies. As such, all tree variables will be omitted.
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5. As a final step, we add all available data in a single reference data table and randomly

shuffle the data lines to have a more fair distribution of them so that our calculations are

impartial.

Ultimately, the final data table consists of 11043 data lines, hand-picked from four buoys’ data

files (ATHOS, MYKONOS, E1M3A, and PYLOS) and concern the time period between the 1st

of September 2020, 00:00:00, and the 1st of September 2022, 00:00:00. Our data table will have

the below variables with which we will be working in our analysis for the case studies:

Table 9. Final Variables’ Reference Table

Name Description / Comment

DEPTH Sea level depth at the location.

WSPD Horizontal wind speed.

WDIR_N “1”, if the Wind’s direction is from the North, “0”, otherwise.

WDIR_E “1”, if the Wind’s direction is from the East, “0”, otherwise.

WDIR_S “1”, if the Wind’s direction is from the South, “0”, otherwise.

WDIR_W “1”, if the Wind’s direction is from the West, “0”, otherwise.

HCSP Horizontal current speed.

VMDR_N “1”, if the Wave's direction is from the North, “0”, otherwise.

VMDR_E “1”, if the Wave's direction is from the East, “0”, otherwise.

VMDR_S “1”, if the Wave's direction is from the South, “0”, otherwise.

VMDR_W “1”, if the Wave's direction is from the West, “0”, otherwise.
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VTM02 Spectral moments (0,2) wave period (Tm02).

VHM0 Spectral significant wave height (Hm0).

VZMX Maximum zero crossing wave height (Hmax).

Having collected and added all usable data to a single data table, we can proceed with the

application and study of the three (3) case studies as advised at the beginning of this chapter with

the help of Supervised Machine Learning algorithms.

5.2. Case Study: Linear Regression For Continuous Variable Results

The first application of Supervised Machine Learning that we will be attempting to implement is

the creation of a Linear Regression model. Taking into account that the accumulated data in the

table we have already hand-picked are all real numbers, it will be easy to create a Linear

Regression equation through the studied Machine Learning algorithm and check if we can prove

that some relation between the variables exists.

As such, using the present data set that we have in our hands, we will try to create a linear model

that will be used to predict the output variable of the Maximum zero crossing wave height

“VZMX”, taking into consideration the given environmental conditions as they are described by

the rest of the input variables, namely the features.

5.2.1. Initialization And Data Processing

Beginning our case study on this Linear Regression model, we come upon an issue with the use

of dummy variables that were created and are currently present in the data table for the Wind and
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Wave directions. When using dummy variables in a Linear Regression model we need to omit

one (1) variable level to be used as a reference to the rest. The level of the categorical variable

that is coded as zero in all of the other variables will then be the reference level or the level to

which all of the other levels are compared to, and in this case, we will be referencing all to the

direction of the true “North”. For example, when the wind is coming from the South, then

“WDIR_S” has value 1, and the rest have 0 (“WDIR_E”, “WDIR_W”), but when the wind is

from the North, all variables will simply be 0 (“WDIR_S”, “WDIR_E”, “WDIR_W”). So both

variables “WDIR_N” & “VMDR_N” will be deleted from the data, while we will be keeping the

remaining directions’ variables, for both Wind and Wave (six (6) in total).

Another matter that we should deal with before using the data table is the fact that although the

variables can take real numbers as values, these values do not have the same value range, making

them different from one another in terms of comparison. For this reason, we will apply Feature

Scaling on the variables that need modification, namely those of “DEPTH”, “WSPD”, “HCSP”,

“VTM02” & “VHM0”, which means that every feature’s value will be divided by their

respective range of values in the said feature. The dummy variables are already binary and ready

for use, while the “VZMX” values are already in the form of real numbers that we wish to find.

Finally, our data table consists of the below variable columns:

● “DEPTH”, “WSPD”, “WDIR_E”, “WDIR_S”, “WDIR_W”, “HCSP”, “VMDR_E”,

“VMDR_S”, “VMDR_W”, “VTM02”, “VHM0” & “VZMX”.

Only then can we import the data files into our Matlab coding procedures.

Having the data we’ll be working with ready to be imported, we can proceed to the below Matlab

coding that will be leading us to the final results of our Linear Regression model, step-by-step.

Each coding is explained below and explanations of the processes will be given as well along the

way. All codes are enclosed in boxes that provide a brief title of their purpose, after the “%%”, and

the lines they take up in Matlab’s Editor environment. The result we expect to see in the

54



“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

Command Window is also shown, whenever it is available. The main functions and their coding

can be found in the Annex (Part A40) of this dissertation.

5.2.2. Model Training

The data table that is imported in Matlab has twelve (12) columns: eleven (11) of which will be

considered as the features of the training examples and will be added into the table “X”, and the

last final column of “VZMX” will correspond to the output variable and will be added in the

table “y”.

In Linear Regression it is important to split the available training examples into two parts:

1. a training set, which will be used to actually train our model, and

2. a validation set, which will be used for validation trials on the created model.

It is usually good practice to separate the data in sets of ~70% and ~30% respectively, meaning

at about the 7700th line in the table.

Carrying on, having determined the actual length of the usable training examples, we add the

bias unit of number “1” at the beginning of each training example’s features. It is also imperative

to define the vector where our theta parameters, one for each feature and the bias unit, will be

stored and we will begin by setting all thetas in this vector as zeros.

So, having set up our data correctly and adding the needed variables for our future functions’

use, including the need to disregard regularization in this part, we proceed by calculating the

initial cost function , referred to as J for coding purposes. Using the “function [J, grad]𝐽(Θ)

= linearRegCost(X, y, theta, lambda)” will give us its first value so we can later compare

it to the achieved minimum cost for the J function through our optimization processes.

40 Ng, A. (2011). Machine Learning Course by Stanford University, weeks 1 & 6 Exercises [MOOC].
Coursera. Available at: https://www.coursera.org/learn/machine-learning
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Line %% Start Data Load

1
2
3
4
5
6

7
8

9

load('Data.mat');
X = Data(1:7700, 1:11);
y = Data(1:7700, 12);
m = length(y);
X = [ones(m, 1) X];
theta = zeros(size(X, 2), 1);

lambda = 0;
[J, ~] = linearRegCost(X, y, theta, lambda);

fprintf('Initial cost with thetas all zeros : %f\n', J)

Command Window output:

Initial cost with thetas all zeros : 1.601048

The preliminary check of the cost function’s value on the training data set, results in a value of

1.601048, which we will then try to minimize through Gradient Descent.

To start our optimization with the Gradient Descent method, as explained in the theory above, we

need to specify a learning rate alpha to have for this part of the process, as well as the number of

“steps” that we will allow the Gradient Descent to take until it can reach the minimum for the

cost function. We start by setting alpha = 0.1 and num_iters = 100000. Then, using the
“function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha,

num_iters)”, we get a set of computed theta parameters that ensure that the cost function is at

its’ minimum and the final cost’s value using Gradient Descent. It should be noted that, besides

performing Gradient Descent, this function also stores the value of J after every iteration in the

J_history variable, so in order to display the final cost’s value we will print out the last stored

value in J_history.

Line %% Run gradient descent with multiple variables

10
11

12

alpha = 0.1;
num_iters = 100000;

[theta, J_history] = gradientDescentMulti(X, y, theta, alpha, ...
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13

14

num_iters);

fprintf(['\nThetas computed from Gradient Descent :\n%f (1) ' ...
'\n%f (2) \n%f (3) \n%f (4) \n%f (5) \n%f (6) \n%f (7) ' ...
'\n%f (8) \n%f (9) \n%f (10) \n%f (11) \n%f (12)\n'], ...
theta(1), theta(2), theta(3), theta(4), theta(5), ...
theta(6), theta(7), theta(8), theta(9), theta(10), ...
theta(11), theta(12))

fprintf(['\nCost with thetas from Gradient Descent : ' ...
'%f\n'], J_history(num_iters))

Command Window output:

Thetas computed from Gradient Descent :
-0.307798 (1)
0.155187 (2)
0.064183 (3)
0.004299 (4)
0.001079 (5)
0.006114 (6)
-0.020850 (7)
0.012530 (8)
-0.017613 (9)
-0.029452 (10)
0.275556 (11)
10.534861 (12)

Cost with thetas from Gradient Descent : 0.018264

As we have explained, Gradient Descent depends on the learning rate alpha and the number of

iterations we allow it to perform to reach the optimum minimum value for the cost function.

After much trial and error, the results below show that the optimum combination of these two

factors is the one used in the code above. Any other selection results in a higher cost value,

meaning that the Gradient Descent has not converged yet or in cases of a big learning rate, the

gradient descent overshoots the minimum and fails to converge (J = NaN).

Some trial examples are:

● For alpha = 0.001 and num_iters = 100000, J = 0.308178

● For alpha = 0.01 and num_iters = 10000, J = 0.049098

● For alpha = 0.1 and num_iters = 10000, J = 0.024416
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● For alpha = 0.3 and num_iters = 10000, J = 0.018661

● For alpha = 1 and num_iters = 100000, J = NaN

Having carefully selected which parameters to use in the process, the theta vector and its values

make up the Linear Regression model we have come up with. The success of our process is

visible by the much lower cost value we achieved, which is now almost zero (~0.01), compared

to the original value of ~1.60.

5.2.3. Model Evaluation

It is important to remember that there is also another method with which we may find the theta

parameters that minimize the cost function and thus check that Gradient Descent was successful

with our choice of said learning rate and iterations. This is achieved with the help of the Normal

Equation method. By using the “function [theta] = normalEquation(X, y)”, we get a new

vector of theta parameters.

Line %% Solve with normal equation

15

16

17

18

theta_b = normalEquation(X, y);

fprintf(['\nThetas computed from the Normal Equation :\n%f (1) ' ...
'\n%f (2) \n%f (3) \n%f (4) \n%f (5) \n%f (6) \n%f (7) ' ...
'\n%f (8) \n%f (9) \n%f (10) \n%f (11) \n%f (12)\n'], ...
theta_b(1), theta_b(2), theta_b(3), theta_b(4), ...
theta_b(5), theta_b(6), theta_b(7), theta_b(8), ...
theta_b(9), theta_b(10), theta_b(11), theta_b(12))

J_normal = linearCostMultiVar(X, y, theta_b);

fprintf('\nCost at theta found by Normal Equation : %f\n', J_normal)

Command Window output:

Thetas computed from the Normal Equation :
-0.305718 (1)
0.155205 (2)
0.062238 (3)
0.004319 (4)
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0.001087 (5)
0.006094 (6)
-0.020748 (7)
0.012590 (8)
-0.017501 (9)
-0.029359 (10)
0.271322 (11)
10.542123 (12)

Cost at theta found by Normal Equation : 0.018264

We store the new thetas in another vector named theta_b, to be able to easily compare the two

results (theta & theta_b), and we can effortlessly confirm that the theta_b calculated with the

Normal Equation approach is almost identical to the theta calculated from the Gradient Descent

method we applied before.

Continuing on, we also need to check if the linear regression model we have come up with needs

to be regularized. We can initially set the regularization parameter to a small positive value, in

this code lambda = 0.1, while we then proceed with recalculating the cost function, taking into

account the theta parameters calculated and the lambda provided.

Line %% Regularized cost value

19

20

21

lambda = 0.1;

J_reg = linearRegCost(X, y, theta, lambda);

fprintf('\nCost with regularization (λ = 0.1) : %f\n', J_reg);

Command Window output:

Cost with regularization (λ = 0.1) : 0.018986

It is easy to see that any regularization is not needed, since the cost function, not only does it not

decrease further, which always remains as our main goal, but it increases instead, which is not

accepted and thus disregarded.

59



“Zacharoula Ampatzi”,
“Machine Learning Applications on Maximum Wave Height for Shipping and
Maritime”

Having proven that the theta parameters we calculated are correct, it is time to put our

calculations to practice and prove the efficiency of the model. As advised above, a Linear

Regression model is an equation of linear connection between independent and dependent

variables, and its optimization is achieved through the minimization of the “Mean Squared

Errors”. This ensures that the training data sets used to train the model will have a minimum cost

function value. Therefore, at the beginning of this code, we set aside ~30% of the available data

to be used as a validation data set, which means that these are data sets that have not been used to

train the model and so they remain “unknown” and “new” sets with which we can test the model.

Keeping in mind the deduction that the data should present a minimum cost function value when

applied to a trained model, we will check the model below.

We begin by adding the remaining ~30% of the features’ columns from our data lines to the table

“X_val” and the last column of this ~30% from our data lines, which corresponds to the output

variable “VZMX”, into table “y_val”. We’ll also need to have the total number of this new set of

examples and remember to add the bias unit of number “1” at the beginning of each validation

example’s features. Having set up the data for our validation, we calculate the cost function value

that is derived by this specific data set, but taking into account the already available theta

parameters from our Gradient Descent optimization technique.

Line %% Cost at validation set data

22
23
24
25

26

27

X_val = Data(7701:end, 1:11);
y_val = Data(7701:end, 12);
m_val = length(y_val);
X_val = [ones(m_val, 1) X_val];

J_val = linearCostMultiVar(X_val, y_val, theta);

fprintf('\nCost at validation data : %f\n', J_val)

Command Window output:

Cost at validation data : 0.018134
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As we may easily detect, the cost function’s value for the validation data set is even lower than

the one originally calculated using the training data set, fulfilling the deduction we surmised.

All these validation steps prove that this computed set of theta parameters is optimum for our

Linear Regression model and can predict with good accuracy the Maximum zero crossing wave

height (VZMX).

5.2.4. Results and Observations

The above coding process was completed using the total amount of training examples available

from all four (4) buoys. It is notable however to see that if we run Linear Regression another four

times, one for each different buoy’s data set, the results are not so ideal.

Each linear regression uses different amounts of data and parameters for the optimization to be

successful and from our trials we have found that those are as presented in the below table. In the

first column, we have the variables’ names or their matching meaning, and on the first row, we

have the name of the data set used in the analysis with the number of training examples

available.

Table 10. Linear Regression Applications’ Parameters

Variable

All 11043
data sets
from 4 buoys

5093 data
sets from
ATHOS

3858 data
sets from
E1M3A

1746 data
sets from
PYLOS

346 data sets
from
MYKONOS

Initial J(Θ) 1.601048 1.446932 1.828675 1.460187 1.850047

alpha 0.1 0.1 0.1 0.1 0.1

num_items 10000 10000 10000 10000 10000

Final J(Θ) 0.018264 0.017973 0.017434 0.014281 0.015053
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theta(1)for
bias unit

-0.307797 -0.520027 0.031104 -0.054299 -0.211993

theta(2)for
“DEPTH”

0.155186 -0.071449 0.029229 -0.059156 -0.018959

theta(3)for
“WSPD”

0.064183 0.004057 -0.083205 0.223729 -0.056469

theta(4)for
“WDIR_E”

0.004299 0.005336 0.005295 -0.018230 -0.047397

theta(5)for
“WDIR_S”

0.001078 -0.001466 -0.014449 0.001145 -0.049814

theta(6)for
“WDIR_W”

0.006113 0.006154 -0.001912 -0.010158 -0.067768

theta(7)for
“HCSP”

-0.020849 0.008180 -0.014625 0.000467 -0.077186

theta(8)for
“VMDR_E”

0.012530 0.006686 -0.015740 0.025146 0.108517

theta(9)for
“VMDR_S”

-0.017612 -0.017383 -0.018273 -0.004289 0.003833

theta(10)for
“VMDR_W”

-0.029452 -0.006064 -0.006902 -0.002466 0.127841

theta(11)for
“VTM02”

0.275556 0.748118 -0.152760 0.247639 0.635288

theta(12)for
“VHM0”

10.534861 10.257054 11.195536 9.930499 8.777971

The results show that we may reach optimization of the cost function in all applications, using

the same defining parameters of Gradient Descent, alpha & num_items every time, which means

that their selection is ideal when dealing with this type of numerical data.

In a Linear Regression model, the theta parameters are the multipliers of each parameter in the

model, as such, they directly express the linear relation and influence of said variable on the
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output. However, these theta parameters show that the independent variables do not have the

same relation to the output in each application. Bypassing the obvious numerical difference

between the models due to the usage of different data sets in each case, the problem lies in the

difference of signs (+ or -) between models. For example, a variable may have a positive relation

to the output in one model but a negative relation to the output in another model. This can be

attributed to the fact that each location has its own geographical and physical characteristics,

making them dissimilar to one another.

The only common factor in all applications is the high positive value of theta variable for

“VHM0”, meaning Spectral significant wave height, making it the most influential variable in

each model. It is important to note that all data set values have been processed through Feature

Scaling before usage, so the high influence of “VHM0” can easily be smoothed out by the other

negative thetas present on the models.

The above observations lead us to conclude that there is not one main and common Linear

Regression model that can explain the relations between the features and the output used in this

case study. Having no definite answer on whether it is due to geographical characteristics or laws

of physics, our study case shows that the Linear Regression model cannot simulate successfully

the maximum wave height observed in the Aegean and Ionian seas.

5.3. Case Study: Logistic Regression For Binary Classification

The next application of Supervised Machine Learning that we will be attempting to implement is

the creation of a Logistic Regression model. In order to create a Logistic Regression model, we

need to have an output that has a binary classification of {0, 1}, which is not available in our

present data table. We will thus be creating this classification variable to add to our data table.
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Searching for this classification problem, we come upon a very common issue in our Aegean and

Ionian seas, and that is the question of “When is a prohibition of sailing issued by a Hellenic Port

Authority?”. On December 8th of 1966, the passenger/ferry vessel “HERAKLION” sank at the

rock island of Falkonera, close to Milos island41. A truck that was transported in the vessel

moved inside the cargo hold space due to extreme weather conditions and inflicted damage to the

porthole, leading to water leaking into the vessel. The vessel soon sank, causing the death of the

250 passengers on board. Following this incident, a presidential decree was issued in 1976 (Π.Δ.

852/1976 (ΦΕΚ 321Α`/76)) that allowed the country’s port authorities to suspend the granting of

sailing permissions to vessels, sailing under the Greek flag, in cases of adverse weather

conditions. This suspension depends mainly on the present wind conditions as measured in the

Beaufort scale. As we may see in the table42 below, each scale corresponds to a certain level of

expected wave heights as well.

42 Hellenic National Meteorological Service (HNMS) (no date) Beaufort Scale, HNMS. Available at:

http://www.emy.gr/emy/en/navigation/naftilia_beaufort (Accessed: December 28, 2022).

41 ΜΗΧΑΝΗ ΤΟΥ ΧΡΟΝΟΥ (2019) Πώς καθιερώθηκε το απαγορευτικό απόπλου στην ελλάδα, ... ,

ΜΗΧΑΝΗ ΤΟΥ ΧΡΟΝΟΥ. Available at:

https://www.mixanitouxronou.gr/pos-kathierothike-to-apagoreytiko-apoploy-stin-ellada-o-thalamos-epich

eiriseon-to-orio-35-eton-sta-ploia-kai-oi-etaireies-laikis-vasis-ola-eginan-meta-apo-ena-tromero-nayagio/

(Accessed: December 28, 2022).
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Table 11. Beaufort Scale

Beaufort Wind’s State Probable wave height in m (Max)

0 Calm 0

1 Light Air 0,1 (0,1)

2 Light breeze 0,2 (0,3)

3 Gentle 0,6 (1)

4 Moderate 1 (1,5)

5 Fresh 2 (2,5)

6 Strong 3 (4)

7 Near Gale 4 (5,5)

8 Gale 5,5 (7,5)

9 Strong gale 7 (10)

10 Storm 9 (12,5)

11 Violent 11,5 (16)

12 Hurricane 14 (-)

Therefore, as an aid to the port authorities in enforcing the prohibition of sailing, a “Navigation

Safety Manual” was issued, which among other instructions regarding the safe handling of

vessels in adverse weather conditions, it provides the below table43,44 as well. On the first

column, we have the length of each vessel, and on the top line, the type of said vessel. The boxes

in between, express the level on the Beaufort scale over which the vessel of each category should

not be allowed to depart.

44 ΥΕΝ, Εγχειρίδιο Ασφάλειας Ναυσιπλοΐας Αρ. 9 – Ενέργειες Λιμενικών Αρχών σε περιπτώσεις

Δυσμενών Καιρικών Συνθηκών, Σελ. 219.

43 Μυλωνόπουλος, Δ.Ν. (1991) Η Απαγόρευση Του Απόπλου Των Πλοίων . διδακτορική διατριβή.

ΓΡΑΦΙΚΕΣ ΤΕΧΝΕΣ, ΑΘΗΝΑ
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Table 12. Prohibition of Sailing Categories

Vessel’s overall length Passenger / Ferry
vessels

Cargo / Ferry
vessels

Ships regardless of
length & class,
International Ships

Up to 25m 6BF & over 7 ΒF & over At the master's discretion

Over 25m & up to 40m 7BF & over 8 ΒF & over At the master's discretion

Over 40m & up to 75m 8BF & over At the master's
discretion

At the master's discretion

Over 75m 9BF & over At the master's
discretion

At the master's discretion

For each category of vessel size and type, a prohibition of sailing can be issued for different

weather conditions, as each vessel sails and faces the sea in its own way. As the vessels get

bigger in size, they are more durable and easier to handle in rough seas. It is important to take

note that the cargo/ferry vessels over 40m are not easily influenced by weather, so their sailing is

left to the discretion of the Master. Finally, this is a decree that binds only vessels sailing under

the Greek Flag, thus leaving the International Ships to decide on their own whether to sail or not

depending on the weather, hence the description “At the master's discretion”.

For the purposes of this dissertation then, we will be creating a classification problem by taking

into account the very first limitation box (marked in Blue), meaning that a prohibition order

should be issued for vessels below 25m in length when the wind is blowing with 6 Beaufort or

higher.
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5.3.1. Initialization And Data Processing

Consulting “Table 11. Beaufort Scale”, we see that at 6BF, the maximum wave height could

reach up to 4m. So, using this value of four (4) as the separation point for our data, we can create

a binary class of whether the observed wave height is over 4m or not.

Starting with the original data table, we perform a simple categorization in the output variable

“VZMX” based on the separation point we just set on the observed Maximum zero crossing

wave height: if the value is 4 or higher, we replace the value with “1”, and if the value is lower

than 4, we replace the value with “0”. Following this process for all our training examples, the

new “VZMX_CLASS” variable will now be a binary variable with values only of “0” & “1”.

Logistic Regression may work differently than Linear regression, but it remains a regression

algorithm, which means that we will follow the same previous steps and eliminate both dummy

variables “WDIR_N” & “VMDR_N” from the data.

Additionally and contrary to Linear regression, Logistic Regression is much different and does

not require any normalization to be applied to its features to reach the correct model, so the data

will not be processed further.

Finally, our data table consists of the below variable columns:

● “DEPTH”, “WSPD”, “WDIR_E”, “WDIR_S”, “WDIR_W”, “HCSP”, “VMDR_E”,

“VMDR_S”, “VMDR_W”, “VTM02”, “VHM0” & “VZMX_CLASS”.

Only then can we import the data files into our Matlab coding procedures.

Having the data we’ll be working with ready to be imported, we can proceed to the below Matlab

coding that will be leading us to the final results of our Logistic Regression model, step-by-step.

Each coding is explained below and explanations of the processes will be given as well along the

way. All codes are enclosed in boxes that provide a brief title of their purpose, after the “%%”, and
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the lines they take up in Matlab’s Editor environment. The result we expect to see in the

Command Window is also shown, whenever it is available. The main functions and their coding

can be found in the Annex (Part B45) of this dissertation.

5.3.2. Model Training

The data that will be imported into Matlab have twelve (12) columns: eleven (11) of which will

be considered as the features of the training examples and will be added into the table “X”, and

the last final column of “VZMX_CLASS” will correspond to the output variable and will be

added in the table “y”.

Same as with the linear application, we will split the available training examples into two parts:

1. a training set of ~70% of data sets, which will be used to actually train our model, and

2. a validation set of ~30% of data sets, which will be used for validation trials on the model.

Carrying on, having determined the actual length of the usable training examples, we add the

bias unit of number “1” at the beginning of each training example’s features. It is also imperative

to define the vector where our theta parameters, one for each feature and the bias unit, will be

stored and we will begin by setting all thetas in this vector as zeros.

So, having set up our data correctly and adding the needed variables for our future functions’

use, including the need to disregard regularization in this part, we proceed by calculating the

current cost function , or J for coding purposes, by using the “function [J, grad] =𝐽(Θ)

logisticRegCost(theta, X, y, lambda)”. This will give us its first value so we can later

compare it to the achieved minimum cost for the J function through our optimization processes.

45 Ng, A. (2011). Machine Learning Course by Stanford University, week 2 Exercise [MOOC]. Coursera.
Available at: https://www.coursera.org/learn/machine-learning
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Line %% Start Data load

1
2
3
4
5
6

7
8

9

load('Data.mat');
X = Data(1:7700, 1:11);
y = Data(1:7700, 12);
[m, n] = size(X);
X = [ones(m, 1) X];
initial_theta = zeros(n + 1, 1);

lambda = 0;
[J, ~] = logisticRegCost(initial_theta, X, y, lambda);

fprintf('Initial cost with thetas all zeros : %f\n', J);

Command Window output:

Initial cost with thetas all zeros : 0.693147

As we may see, the primary check of our cost function’s value on the training data sets gives us a

cost of 0.693147, which we will minimize through the most efficient way with the following

code.

As explained in theory, Gradient Descent is the most effective way of optimization for the

needed theta parameters, but it does have its complications in practice because of the complex

coding needed due to the logarithmic partial derivatives. As such, the solution to a Logistic

regression’s optimization has been researched, created, and given directly from Mathworks’

library of ready-made functions which ensure smooth computational results and simpler

processes. The “function [x, fval] = fminunc(f, X, options)”, found in the

Mathematics and Optimization Toolbox, is the one we will be using in this dissertation.

Line %% Fitting logistic regression

10
11

12
13

14

lambda = 0;
num_iters = 10000;

options = optimset('MaxIter', num_iters);
costFunction = @(t) logisticRegCost(t, X, y, lambda);

[theta, J_fitted] = fminunc(costFunction, initial_theta, options);
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15

16

fprintf(['\nThetas computed from "fminunc" function :\n%f (1) ' ...
'\n%f (2) \n%f (3) \n%f (4) \n%f (5) \n%f (6) \n%f (7) ' ...
'\n%f (8) \n%f (9) \n%f (10) \n%f (11) \n%f (12)\n'], ...
theta(1), theta(2), theta(3), theta(4), theta(5), ...
theta(6), theta(7), theta(8), theta(9), theta(10), ...
theta(11), theta(12))

fprintf('\nCost at theta found by "fminunc" : %f\n', J_fitted);

Command Window output:

Thetas computed from "fminunc" function :
-5.097593 (1)
-0.000344 (2)
-0.217695 (3)
-0.185238 (4)
1.098343 (5)
-0.459193 (6)
-0.582833 (7)
-0.923560 (8)
-0.128274 (9)
0.990869 (10)
-3.590367 (11)
10.369751 (12)

Cost at theta found by "fminunc" : 0.024741

As a result in our Command Window, we get a clear set of theta parameters for our Logistic

Regression model and a minimum for the cost function J at 0.024741. The success of our

process is visible by the much lower cost value we achieved, which is now almost zero (~0.02),

compared to the original value of ~0.69. It is clear that we have achieved the optimum result and

we’ll be checking its accuracy and value further below.

5.3.3. Model Evaluation

We will begin by checking if the logistic regression model we have come up with needs to be

regularized. We can initially set the regularization parameter to a small positive value, in this

code lambda = 3, while we then proceed with recalculating the cost function, taking into

account the theta parameters calculated and the lambda provided.
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Line %% Regularized cost value

17
18

19

lambda = 3;
J_reg = logisticRegCost(theta, X, y, lambda);

fprintf('\nCost with regularization (λ = 3) : %f\n', J_reg)

Command Window output:

Cost with regularization (λ = 3) : 0.048919

It is noteworthy to check a few times the different values that we can set lambda to take and the

effect on the cost’s value accordingly. As such we tried and saw that even the slightest increase

of the lambda parameter does not affect positively the cost function, if not else, it instead

increases the cost’s value when the goal of our analysis is to minimize this. As an example of this

observation, apart from the above-provided code, we have calculated the cost to be 0.024750

even with lambda = 0.001. As such we will continue to proceed further in our analysis with the

initial value of 0 for lambda.

Finally, our analysis would not be complete without a check on the accuracy of the trained model

on “new” data. We begin by similarly choosing the validation data set from the code’s beginning

to check if “new” examples can be predicted correctly from the model.

We begin by adding the remaining ~30% of the features’ columns from our data lines to the table

“X_val” and the last column of this ~30% from our data lines, which corresponds to the output

variable “VZMX_CLASS”, into table “y_val”. We’ll also need to have the total number of this

new set of examples and remember to add the bias unit of number “1” at the beginning of each

validation example’s features. Using the “function p = predict(theta, X)” we can get the

predicted output values that correspond to the new features’ data, but by using the already trained

model with the final theta parameters. We then compare these predicted outputs p to the real

outputs in y_val and get the accuracy percentage of the predictions.
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Line %% Accuracy of trained regression

20
21
22
23

24
25

26

X_val = Data(7701:end, 1:11);
y_val = Data(7701:end, 12);
m_val = length(y_val);
X_val = [ones(m_val, 1) X_val];

p = predict(theta, X_val);
accuracy = mean(double(p == y_val)) * 100;

fprintf('\nTraining Set Accuracy : %f\n', accuracy);

Command Window output:

Training Set Accuracy : 98.713730

As a result, we get an accuracy of 98.713730 which means that our Logistic Regression model

can correctly identify the given data to their corresponding class, whether this is 0 or 1

respectively, with accuracy at almost ~99%.

These validation steps prove that this computed set of theta parameters is optimum for our

Logistic Regression model and can predict with good accuracy whether a prohibition of sailing

should be issued or not for vessels up to 25m and wind over 6BF.

5.3.4. Results and Observations

The above coding process was completed using the total amount of training examples available

from all four (4) buoys. It is notable however to see that if we run Logistic Regression another

four times, one for each different buoy’s data set, the results are complicated but can be

considered a bit positive.

Each logistic regression uses different amounts of data and parameters for the optimization to be

successful and from our trials we have found that those are as presented in the below table. In the

first column, we have the variables’ names or their matching meaning, and on the first row, we
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have the name of the data set used in the analysis with the number of training examples

available.

Table 13. Logistic Regression Applications’ Parameters

Variable

All 11043
data sets
from 4 buoys

5093 data
sets from
ATHOS

3858 data
sets from
E1M3A

1746 data
sets from
PYLOS

346 data sets
from
MYKONOS

Initial J(Θ) 0.693147 0.693147 0.693147 0.693147 0.693147

num_items 10000 10000 10000 10000 10000

Final J(Θ) 0.024741 0.026575 0.026282 0.012896 0

Accuracy (%) 98.713730 98.363874 99.568221 99.809160 100

theta(1)for
bias unit

-5.097592 -0.000498 -0.000137 -0.000089 -0.002464

theta(2)for
“DEPTH”

-0.000343 -0.087271 -0.024196 -0.028183 -0.340131

theta(3)for
“WSPD”

-0.217694 -0.042325 0.121334 0.653926 -0.021778

theta(4)for
“WDIR_E”

-0.185238 -1.185465 0.569306 0.014529 -0.000142

theta(5)for
“WDIR_S”

1.098342 1.571816 -0.042584 1.821036 -0.000346

theta(6)for
“WDIR_W”

-0.459192 1.350902 0.369106 -0.809149 -0.000254

theta(7)for
“HCSP”

-0.582832 0.489741 0.120931 -0.647452 -0.000400

theta(8)for
“VMDR_E”

-0.923559 0.440213 -0.005914 -0.047146 -0.000244

theta(9)for
“VMDR_S”

-0.128273 -1.290879 -0.508035 1.488296 -0.000224
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theta(10)for
“VMDR_W”

0.990868 1.556517 0.049907 -1.251236 -0.000101

theta(11)for
“VTM02”

-3.590366 0.110530 3.974217 4.645146 -0.010224

theta(12)for
“VHM0”

10.369751 6.749998 4.435750 5.044521 -0.003323

The results show that we may reach optimization of the cost function in all applications, using

the same defining value of num_items every time. However, through the application, we can

see that in the data sets available from MYKONOS’ buoy there are no training examples where

the output is “1”. This makes the logistic regression model created by these data unreliable and

with high bias, due to the lack of proper representation of both binary results to create a correct

algorithm. The accuracy of 100% is also another way of verifying that the model has no practical

application since this certainty can not be present in real-life fluctuating data.

Looking at the rest of the four models, we can see some similarities between them. The theta

parameters for the “bias unit”, the “DEPTH”, and the “VHM0”, may be different from one

another, but they have the same negative or positive influence on the model. It is important to

note that due to the use of the Sigmoid Function in the Logistic Regression model, each input

variable is complexly related to the output, making their values difficult to understand.

Nevertheless, it should be noted that in all applications the highest positive value is for the

“VHM0” theta variable, meaning that the Spectral significant wave height is the most

influential variable in all models once again.

The above observations lead us to conclude that even though there is not one common Logistic

Regression model that can explain the relations between the features and the output, the main

model that was trained using all data sets, can be more easily used to predict the data from the

buoys. The trials proved that by showing high accuracy on any given data set from any buoy.

The usage of said model is not without fault and thus should be used cautiously.
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5.4. Case Study: Neural Network For Multiple Labeling Classification

Reaching our third and final case study of this dissertation, we will attempt to create a Neural

Network based on the available data. Neural Networks are complex but can best provide us with

multiple results with the same model so we will focus on a multiple-classification problem. For

this purpose, multiple classes will be needed to create an interesting classification output

variable.

To achieve this multiple classification variable, we will once again be transforming our output

data variable “VZMX” into a classification problem by categorizing it based on the Douglas Sea

Scale. This Douglas Sea Scale is also called the "international sea and swell scale", and was

introduced in 1921 by Captain H.P. Douglas46, who later became vice admiral Sir Percy Douglas

and hydrographer of the Royal Navy. Its purpose is to estimate the roughness of the sea for

navigation and categorize it into two scale codes: one code is for characterizing the sea state, and

the other code is for describing the swell of the sea. The present dissertation will be referencing

the “Sea State Code” as presented in the table below47:

47 Hellenic National Meteorological Service (HNMS) (no date) Douglas Scale, HNMS. Available at:

http://emy.gr/emy/en/navigation/naftilia_douglas (Accessed: December 28, 2022).

46 Wikipedia contributors (2022) Douglas Sea Scale, Wikipedia. Available at:

https://en.wikipedia.org/wiki/Douglas_sea_scale (Accessed: December 28, 2022).
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Table 14. State of The Sea

Scale Sea State Expected Max Wave Height (m)

0 Glassy 0

1 Rippled (0 - 0.1)

2 Smooth [0.1 - 0.5)

3 Slight [0.5 - 1.25)

4 Moderate [1.25 - 2.5)

5 Rough [2.5 - 4)

6 Very Rough [4 - 6)

7 High [6 - 9)

8 Very High [9 - 14)

9 Phenomenal [14, +∞)

The Douglas Sea Scale is even used by our national weather service, the Hellenic National

Meteorological Service. According to their clarification instructions: “the sea state with wave

height values refers to wind waves, in open sea and fully developed sea. In confined marine

areas, bays, etc., or near shores with the wind blowing from land to sea, wave heights are smaller

and sharper”.

5.4.1. Initialization And Data Processing

Following this thinking process, we will be categorizing the output values in variable “VZMX”

based on the above reference “Table 14. State of the sea” to create a new “VZMX_CLASSES”

variable. We will match each value with the appropriate “labeling” number, depending on their

value. It is imperative to note for this application that Neural Networks being computational
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algorithms do not recognize the number zero (0) as a classification label, so we will begin the

categorization into labels at “1” and proceed according to the below data categorization table:

Table 15. Classification Labels

VZMX value Label

0 1

(0 - 0.1) 2

[0.1 - 0.5) 3

[0.5 - 1.25) 4

[1.25 - 2.5) 5

[2.5 - 4) 6

[4 - 6) 7

[6 - 9) 8

[9 - 14) 9

[14, +∞) 10

A Neural Network may not work exactly like a regression model, but through trials, we noted

that the use of data which have been normalized greatly improves that minimization of the cost

function’s value and significantly increases the accuracy of the model on “new” data. As such,

we will apply normalization to our data, the same as in Linear Regression with the “Feature

Scaling” method to the numerical variables of “DEPTH”, “WSPD”, “HCSP”, “VTM02” &

“VHM0”. The dummy variables are already binary and ready for use, while the needed

“VZMX_CLASSES” values have already been made according to our classification problem.
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Furthermore, Neural Networks are sensitive to the number of nodes in each layer, so in order to

have smooth interaction between the layers we will be keeping all dummy variables, even those

referring to “North” directions.

Finally, our data table consists of the below variable columns:

● “DEPTH”, “WSPD”, “WDIR_N”, “WDIR_E”, “WDIR_S”, “WDIR_W”, “HCSP”,

“VMDR_N”, “VMDR_E”, “VMDR_S”, “VMDR_W”, “VTM02”, “VHM0” &

“VZMX_CLASSES”.

Only then can we import the data files into our Matlab coding procedures.

Having the data we’ll be working with ready to be imported, we can proceed to the below Matlab

coding that will be leading us to the final results of our Neural Network model, step-by-step.

Each coding is explained below and explanations of the processes will be given as well along the

way. All codes are enclosed in boxes that provide a brief title of their purpose, after the “%%”, and

the lines they take up in Matlab’s Editor environment. The result we expect to see in the

Command Window is also shown, whenever it is available. The main functions and their coding

can be found in the Annex (Part C48) of this dissertation.

5.4.2. Model Training

The data that will be imported into Matlab have fourteen (14) columns: thirteen (13) of which

will be considered as the features of the training examples and will be added into the table “X”,

and the last final column of “VZMX_CLASSES” will correspond to the output labels’ variable

and will be added in the table “y”.

48 Ng, A. (2011).Machine Learning Course by Stanford University, week 4 Exercise [MOOC]. Coursera.
Available at: https://www.coursera.org/learn/machine-learning
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Same as with the two previous study cases, we will split the available training examples into two

parts:

3. a training set of ~70% of data sets, to be used to actually train our Neural Network, and

4. a validation set of ~30% of data sets, to be used for validation trials on the Neural Network.

For a Neural Network, we also need to determine the total sum of our training examples and the

dimensions of the network’s layers. As such, we have thirteen (13) input features, which will also

be the size of our input layer, and ten (10) output labels, which is the same as the number of

labels in our classification. The size of the hidden layer should be somewhere in between those

two sizes, so we will be using eleven (11) hidden layer units.

Line %% Start Data load

1
2
3
4

5
6
7

load('Data.mat');
X = Data(1:7700, 1:13);
y = Data(1:7700, 14);
m = size(y, 1);

input_layer_size = 13;
hidden_layer_size = 11;
num_labels = 10;

Using symmetrical initialization always leads to the same learning result, since there is no

variety provided, so when training Neural Networks, it is important to randomly initialize the

parameters for symmetry breaking. One effective strategy for random initialization is to

randomly select values in the range . This range of values ensures that the[− 𝑒
𝑖𝑛𝑖𝑡

,  𝑒
𝑖𝑛𝑖𝑡

]

parameters are kept small and make the learning of the algorithm more efficient. An effective

strategy for choosing is to base it on the number of neurons in the network. A good choice𝑒
𝑖𝑛𝑖𝑡

is: , where and , are the number of neurons in the layers𝑒
𝑖𝑛𝑖𝑡

= 6

𝐿
𝑖𝑛

+𝐿
𝑜𝑢𝑡

𝐿
𝑖𝑛

= 𝑠
𝑙

𝐿
𝑜𝑢𝑡

= 𝑠
𝑙+1

adjacent to . Having this rule as guidance, we proceed with our code and using theΘ(𝑙)

“function T = randInitializeThetas(L_in, L_out)”, we get the parameters’ tables
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Theta1 & Theta2 with randomly initiated numbers. The parameters in Theta1 include the

weights needed to feedforward propagate the data from the input layer to the hidden layer, while

the parameters in Theta2 include the weights needed to feedforward data from the hidden layer

to the output layer. Due to vectorization’s needs in our future functions’ coding, we also store a

vector with the unrolled parameters we initiated in the variable initial_nn_params.

Line %% Random initialization

8

9

10

initial_Theta1 = randInitializeThetas(input_layer_size, ...
hidden_layer_size);

initial_Theta2 = randInitializeThetas(hidden_layer_size, num_labels);

initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)];

At this point, we are able to calculate an initial value for the cost function J from the Neural

Network that will, later on, be optimized through minimization. Using zero regularization for this

section, and with the “function [J, grad] = nnCostFunction(initial_nn_params,

input_layer_size, hidden_layer_size, num_labels, X, y, lambda)”, we get the cost

function’s value based on the randomly initialized weights.

Line %% Cost function

11
12

13

lambda = 0;
[J, ~] = nnCostFunction(initial_nn_params, input_layer_size, ...

hidden_layer_size, num_labels, X, y, lambda);

fprintf('Cost at randomly initialized parameters : %f\n', J);

Command Window output:

Cost at randomly initialized parameters : 7.179978

The value of our cost function J can only be assessed when compared to another reference level,

so we continue with our optimization and minimization process below.
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The Theta1 & Theta2 weights are calculated using Matlab’s software with the function

"fmincg()" written by Carl Edward Rasmussen ©. The “function [X, fX, i] = fmincg(f,

X, options, P1, P2, P3, P4, P5)” is an alternative simple conjugate gradient minimization

technique. It can be shown these results mimic those obtained by a simple gradient descent,

however, the computational efficiency of the optimization algorithm developed by Rasmussen

makes this function easy to use even when applied to a Neural Network due to its efficiency and

accuracy.

Line %% Learning parameters using fmincg

14
15
16

17

18

19

20

21

22

23

lambda = 0;
num_iters = 6000;
options = optimset('MaxIter', num_iters);

costFunction = @(p) nnCostFunction(p, input_layer_size, ...
hidden_layer_size, num_labels, X, y, lambda);

[nn_params, ~] = fmincg(costFunction, initial_nn_params, options);

Theta1 = reshape(nn_params(1 : hidden_layer_size * ...
(input_layer_size + 1)), hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * ...
(input_layer_size + 1))) :end), num_labels, (hidden_layer_size + 1));
nn_params = [Theta1(:) ; Theta2(:)];

J = nnCostFunction(nn_params, input_layer_size, ...
hidden_layer_size, num_labels, X, y, lambda);

fprintf('\nCost after optimization : %f\n', J);

Command Window output:

Iteration 1 | Cost: 2.955269e+00
Iteration 2 | Cost: 2.549795e+00
Iteration 3 | Cost: 2.458692e+00
. . .
Iteration 5998 | Cost: 4.951387e-01
Iteration 5999 | Cost: 4.951376e-01
Iteration 6000 | Cost: 4.951373e-01

Cost after optimization: 0.495137
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Although it is not efficient to print out the theta parameters calculated in this process, the result

of their optimization is clear through the value of the cost function. When we began our analysis

the cost was at about ~7.2, but after our optimization, the cost value dropped to 0.495137. This

is a clear indication that our code has successfully reached a minimum of the equation. It is

possible to get an even lower value after 6000 iterations of the code, but the value does not drop

much below ~0.49, and it even overshoots the minimum we found, so we stop at 6000 iterations.

5.4.3. Model Evaluation

Subsequently, and same as in our previous study cases, we will be checking if the cost function

we created needs any regularization. We begin with setting the lambda parameter to a value of

“0.1”, trying to see how the cost value is affected, always taking into account the theta

parameters already calculated in the network.

Line %% Regularized cost function

24
25

26

lambda = 0.1;
J_reg = nnCostFunction(nn_params, input_layer_size, ...

hidden_layer_size, num_labels, X, y, lambda);

fprintf('Regularized cost at optimized parameters : ...
%f\n', J_reg);

Command Window output:

Regularized cost at optimized parameters : 0.708323

It is clear that regularization is not needed in this case as well since it only increases the value of

the cost function. However, it is noteworthy that even with the smallest value of lambda =

0.001 the cost is increased to 0.497269 when the goal of our analysis is to minimize this. As

such we will continue to proceed further in our analysis with the initial value of 0 for lambda.
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Finally, our analysis will only be complete after checking the accuracy of the trained Neural

Network on “new” data. We begin by similarly choosing the validation data set from the code’s

beginning to check if “new” examples can be predicted correctly from the model.

We begin by adding the remaining ~30% of the features’ columns from our data lines to the table

“X_val” and the last column of this ~30% from our data lines, which corresponds to the output

variable “VZMX_CLASSES”, into table “y_val”. Using the “function p = predict(Theta1,

Theta2, X)”, which works in a similar way as the one we used in Logistic Regression, we can

compare the predicted outputs p to the real outputs in y_val by using the parameters of the

already trained Neural Network and get the accuracy percentage of the predictions.

Line %% Accuracy of trained Neural Network

27
28

29
30

31

X_val = Data(7701:end, 1:13);
y_val = Data(7701:end, 14);

p = predict_nn(Theta1, Theta2, X_val);
accuracy = mean(double(p == y_val)) * 100;

fprintf('Training Set Accuracy : %f\n', accuracy);

Command Window output:

Training Set Accuracy : 88.064613

Finally, we can clearly note that the trained Neural Network’s accuracy is 88.06%. This means

that upon being given any new set of features’ values, the Neural Network while using the

trained theta parameters, can successfully identify and label the output variable based on our Sea

State coding with an accuracy of 88%, which makes it a clear success of our code and

processing.
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5.4.4. Results and Observations

The above coding process was completed using the total amount of training examples available

from all four (4) buoys. It is notable however to see that if we train another four Neural

networks, one for each different buoy’s data set, the results are inconclusive.

Each Neural network uses different amounts of data and parameters for the optimization to be

successful and from our trials we have found that those are as presented in the below table. In the

first column, we have the variables’ names or their matching meaning, and on the first row, we

have the name of the data set used in the analysis with the number of training examples

available.

Table 16. Neural Network Applications’ Parameters

Variable

All 11043
data sets
from 4 buoys

5093 data
sets from
ATHOS

3858 data
sets from
E1M3A

1746 data
sets from
PYLOS

346 data sets
from
MYKONOS

Initial J(Θ) 7.179978 7.764757 6.752115 7.443941 7.771781

num_items 6000 3000 10000 10000 3000

Final J(Θ) 0.495137 0.428309 0.497159 0.425141 0.364833

Accuracy (%) 88.064613 89.594241 86.183074 85.877863 76.923077

What can be easily highlighted is the difference in the number of iterations in each network.

After trials, we use 10000 iterations in only two Neural Networks as they are as close to the

minimum achieved value of the cost function as possible and there is no use in iterating further.

The same cannot be said however for the other three Neural Networks. The amounts of 6000,

3000, and 3000 respectively in three cases, are the maximum allowed numbers for iterations that

our process can take before leading to an overshooting of the minimum altogether. Using

different sets of training data in each case and with the random initialization of the theta

parameters, this difference is not unexpected.
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Another observation is that the accuracy of a model decreases if we use fewer data sets to train

our Neural Network which is understandable and expected from any optimization model.

Finally, although the rest of the variables look approximately the same, they are far from

identical and they cannot be easily compared. Neural Networks are as we called them “Black

Boxes” and their intricate workings are not fully understandable, presenting a risk when creating

and using them. As such we cannot determine if the Neural Network using all data is preferable

to the individual ones we created for every buoy’s location. Neural Networks work well in their

respective data range and application setting, but their coding is far more complex than this

simple application can improve on or apply to further uses.
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6. Conclusion

This dissertation has tried to present in a simple and easily understandable manner the main

concepts of Machine Learning through both theory and application.

In the case of Supervised Machine Learning that was examined and used in practice, the

algorithms are mathematically trained models that were optimized through the minimization of

the “Mean Squared Errors”. By applying three separate algorithms, it was made clear that each

algorithm worked in a distinct way and achieved different results in order to explain the data’s

correlations. Thus, even though MATLAB’s codes for the mathematical process were easy to

create and apply, the resulting models were not fully accurate. Every method has its limitations,

and that was made clear in the examined case studies.

A Linear Regression algorithm was used in the first case study to predict the continuous variable

on the Maximum Wave Height. The case study presented “idealistic” models that had good

evaluation results, but when comparing the multiplier parameters of the input variables in each

case, we saw that most have nothing in common. The model assumed that all variables’ relations

can be expressed through a linear equation, which is not the case when using data from

environmental observations. The physics of environmental phenomena is not as straightforward

as a linear equation.

Contrary to the linear model, a Logistic Regression algorithm was used to answer a binary

problem: “When should a prohibition of sailing be issued by a Hellenic Port Authority?”, using

the Maximum Wave Height as a reference. The case study showed that since this type of model

deals with simple binary problems, it could more easily be applied to new and different data sets,

but precisely due to its binary nature, it provided limited feedback. The complexity of this

equation makes it difficult to properly assess the use of the resulting parameters of the model,

even though its evaluation is clear and can be counted in percentage points.
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Finally, in the third and final case study, a Neural Network was created with the task to choose

between ten different labels that represent the sea’s state condition, once again depending on the

Maximum Wave Height. Neural Networks can be used widely and with flexibility, however, the

resulting models do not always provide comprehensive feedback, making it difficult to correct

and thus risky to apply in other cases. That was evident even in this case study, where the

computed models all presented high evaluation results, but little feedback as to the identity of the

most ideal Neural Network to be used in all separate locations.

The studies available on Machine Learning show the wide range of applications it has already

provided and will continue to provide. It is surely a research field with endless possibilities and

applications for every individual in any field of Science or others. The fields of Maritime and

Shipping can easily provide examples where real-life applications of Machine Learning can

improve current procedures and increase the safety of navigation.
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Appendix

A. Linear Regression’s Functions’ Coding

function [J, grad] = linearRegCost(X, y, theta, lambda)
% [J, grad] = LINEARREGCOST(X, y, theta, lambda) computes the cost
% and the gradient for a regularized linear regression with multiple
% variables.

m = length(y);
J = 0;
grad = zeros(size(theta));
h = X * theta;
theta_reg = [0;theta(2:end, :);];
J = (1/(2*m)) * sum((h - y).^2) + (lambda/(2*m)) * (theta_reg' * theta_reg);
grad = (1/m) * X' * (h - y) + (lambda/m) * theta_reg;
grad = grad(:);

end

function [theta, J_history] = gradientDescentMulti(X, y, theta, alpha,
num_iters)
% [theta, J_history] = GRADIENTDESCENTMULTI(x, y, theta, alpha, num_iters)
% performs gradient descent updating the thetas by taking num_iters
% gradient steps with learning rate alpha.

m = length(y);
J_history = zeros(num_iters, 1);

for iter = 1:num_iters
h = X * theta;
s = X' * (h - y);
theta = theta - alpha / m * s;
J_history(iter) = linearCostMultiVar(X, y, theta);

end

end
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function J = linearCostMultiVar(X, y, theta)
% J = COMPUTECOSTMULTI(X, y, theta) computes the cost for linear
% regression with multiple variables and no regularization.

m = length(y);
J = 0;
J = sum((X * theta - y)' * (X * theta - y)) / (2 * m);

end

function [theta] = normalEquation(X, y)
% [theta] = NORMAL EQUATION(X,y) computes the closed-form solution to
% linear regression using the normal equations.

theta = zeros(size(X, 2), 1);
theta = pinv(X' * X) * X' * y;

end
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B. Logistic Regression’s Functions’ Coding

function [J, grad] = logisticRegCost(theta, X, y, lambda)
% J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
% theta as the parameter for regularized logistic regression and the
% respective gradients.

m = length(y);
J = 0;
grad = zeros(size(theta));
z = X * theta;
h = sigmoid(z);
reg_term = sum(theta(2:end) .^ 2) * lambda / (2 * m);

J = mean((-y .* log(h)) - ((1 - y) .* log(1 - h))) + reg_term;
theta_reg = theta;
theta_reg(1) = 0;
grad = (X' * (h - y) ./ m) + theta_reg * lambda / m;

end

function g = sigmoid(z)
% g = SIGMOID(z) computes the sigmoid of z.

g = zeros(size(z));
z = -z;
g = 1 ./(1 + exp(z));

end

function p = predict(theta, X)
% p = PREDICT(theta, X) computes the predictions for X using a
% threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1).

m = size(X, 1);
p = zeros(m, 1);
h = X * theta;
p = round(sigmoid(h));

end
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C. Neural Network’s Functions’ Coding

function T = randInitializeThetas(L_in, L_out)
% T = randInitializeThetas(L_in, L_out) randomly initializes the weights
% of a layer with (L_in + 1) incoming connections (as the first column
% handles the "bias" terms) and L_out outgoing connections.

T = zeros(L_out, 1 + L_in);
E_init = sqrt(6)/sqrt(L_out + L_in);
T = rand(L_out, 1 + L_in) * 2 * E_init - E_init;

end

function g = sigmoidGradient(z)
% g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
% evaluated at z, regardless if z is a matrix or a vector.

g = zeros(size(z));
g = sigmoid(z).*(1-sigmoid(z));

end

function [J grad] = nnCostFunction(nn_params, input_layer_size, ...
hidden_layer_size, num_labels, X, y, lambda)

% [J grad] = nnCostFunction(nn_params, hidden_layer_size, num_labels, ...
% X, y, lambda) computes the cost and gradient of a two-layer neural
% network.

% Variables’ set-up
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size ...

+ 1)), hidden_layer_size, (input_layer_size + 1));
Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size ...

+ 1))):end), num_labels, (hidden_layer_size + 1));

m = size(X, 1);
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% Part 1: Feedforward neural network & Cost Function
y_matrix = (1:num_labels) == y;
y_matrix = double(y_matrix);

bias = ones(m, 1);
a1 = [bias, X];
z2 = a1 * Theta1';
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a2 = [bias, sigmoid(z2)];
z3 = a2 * Theta2';
a3 = sigmoid(z3);
h = a3;

J = (-1 / m) * sum(sum((y_matrix.* log(h)) + ((1 - y_matrix).* ...
log(1 - h))));

reg = (lambda/ (2 * m)) * (sum(sum(Theta1(:, 2:end).^ 2)) + ...
sum(sum((Theta2(:, 2:end).^ 2))));

J = J + reg; % Regularized Cost Function

% Part 2: Backpropagation algorithm
d3 = a3 - y_matrix;
g2 = sigmoidGradient(z2);
d2 = d3 * Theta2(:, 2:end).* g2;
del1 = d2' * a1;
del2 = d3' * a2;
Theta1_grad = (1 / m) * del1;
Theta2_grad = (1 / m) * del2;

% Regularized Gradients
greg1 = Theta1 * lambda / m;
greg2 = Theta2 * lambda / m;
greg1(:, 1) = 0;
greg2(:, 1) = 0;
Theta1_grad = Theta1_grad + greg1;
Theta2_grad = Theta2_grad + greg2;

grad = [Theta1_grad(:) ; Theta2_grad(:)];

end

function p = predict_nn(Theta1, Theta2, X)
% p = PREDICT(Theta1, Theta2, X) outputs the predicted label of X given
% the trained weights of a neural network (Theta1, Theta2).

m = size(X, 1);
num_labels = size(Theta2, 1);
p = zeros(size(X, 1), 1);
h1 = sigmoid([ones(m, 1) X] * Theta1');
h2 = sigmoid([ones(m, 1) h1] * Theta2');
[dummy, p] = max(h2, [], 2);

end
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function [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
% Minimize a continuous differentialble multivariate function. Starting point
% is given by "X" (D by 1), and the function named in the string "f", must
% return a function value and a vector of partial derivatives. The Polack-
% Ribiere flavour of conjugate gradients is used to compute search directions,
% and a line search using quadratic and cubic polynomial approximations and the
% Wolfe-Powell stopping criteria is used together with the slope ratio method
% for guessing initial step sizes. Additionally a bunch of checks are made to
% make sure that exploration is taking place and that extrapolation will not
% be unboundedly large. The "length" gives the length of the run: if it is
% positive, it gives the maximum number of line searches, if negative its
% absolute gives the maximum allowed number of function evaluations. You can
% (optionally) give "length" a second component, which will indicate the
% reduction in function value to be expected in the first line-search (defaults
% to 1.0). The function returns when either its length is up, or if no further
% progress can be made (ie, we are at a minimum, or so close that due to
% numerical problems, we cannot get any closer). If the function terminates
% within a few iterations, it could be an indication that the function value
% and derivatives are not consistent (ie, there may be a bug in the
% implementation of your "f" function). The function returns the found
% solution "X", a vector of function values "fX" indicating the progress made
% and "i" the number of iterations (line searches or function evaluations,
% depending on the sign of "length") used.
%
% Usage: [X, fX, i] = fmincg(f, X, options, P1, P2, P3, P4, P5)
%
% See also: checkgrad
%
% Copyright (C) 2001 and 2002 by Carl Edward Rasmussen. Date 2002-02-13
%
%
% (C) Copyright 1999, 2000 & 2001, Carl Edward Rasmussen
%
% Permission is granted for anyone to copy, use, or modify these
% programs and accompanying documents for purposes of research or
% education, provided this copyright notice is retained, and note is
% made of any changes that have been made.
%
% These programs and documents are distributed without any warranty,
% express or implied. As the programs were written for research
% purposes only, they have not been tested to the degree that would be
% advisable in any important application. All use of these programs is
% entirely at the user's own risk.
%
% [ml-class] Changes Made:
% 1) Function name and argument specifications
% 2) Output display
%
% Read options

if exist('options', 'var') && ~isempty(options) && isfield(options, 'MaxIter')
length = options.MaxIter;

else
length = 100;

end
RHO = 0.01; % a bunch of constants for line searches
SIG = 0.5; % RHO and SIG are the constants in the Wolfe-Powell conditions
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INT = 0.1; % don't reevaluate within 0.1 of the limit of the current bracket
EXT = 3.0; % extrapolate maximum 3 times the current bracket
MAX = 20; % max 20 function evaluations per line search
RATIO = 100; % maximum allowed slope ratio
argstr = ['feval(f, X']; % compose string used to call function
for i = 1:(nargin - 3)
argstr = [argstr, ',P', int2str(i)];
end
argstr = [argstr, ')'];
if max(size(length)) == 2, red=length(2); length=length(1); else red=1; end
S=['Iteration '];
i = 0; % zero the run length counter
ls_failed = 0; % no previous line search has failed
fX = [];
[f1 df1] = eval(argstr); % get function value and gradient
i = i + (length<0); % count epochs?!
s = -df1; % search direction is steepest
d1 = -s'*s; % this is the slope
z1 = red/(1-d1); % initial step is red/(|s|+1)
while i < abs(length) % while not finished
i = i + (length>0); % count iterations?!
X0 = X; f0 = f1; df0 = df1; % make a copy of current values
X = X + z1*s; % begin line search
[f2 df2] = eval(argstr);
i = i + (length<0); % count epochs?!
d2 = df2'*s;
f3 = f1; d3 = d1; z3 = -z1; % initialize point 3 equal to point 1
if length>0, M = MAX; else M = min(MAX, -length-i); end
success = 0; limit = -1; % initialize quantities
while 1
while ((f2 > f1+z1*RHO*d1) || (d2 > -SIG*d1)) && (M > 0)
limit = z1; % tighten the bracket
if f2 > f1
z2 = z3 - (0.5*d3*z3*z3)/(d3*z3+f2-f3); % quadratic fit

else
A = 6*(f2-f3)/z3+3*(d2+d3); % cubic fit
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = (sqrt(B*B-A*d2*z3*z3)-B)/A; % numerical error possible - ok!

end
if isnan(z2) || isinf(z2)
z2 = z3/2; % if we had a numerical problem then bisect

end
z2 = max(min(z2, INT*z3),(1-INT)*z3); % don't accept too close to limits
z1 = z1 + z2; % update the step
X = X + z2*s;
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;
z3 = z3-z2; % z3 is now relative to the location of z2

end
if f2 > f1+z1*RHO*d1 || d2 > -SIG*d1
break; % this is a failure

elseif d2 > SIG*d1
success = 1; break; % success

elseif M == 0
break; % failure

end
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A = 6*(f2-f3)/z3+3*(d2+d3); % make cubic extrapolation
B = 3*(f3-f2)-z3*(d3+2*d2);
z2 = -d2*z3*z3/(B+sqrt(B*B-A*d2*z3*z3)); % num. error possible - ok!
if ~isreal(z2) || isnan(z2) || isinf(z2) || z2 < 0 % num prob or wrong sign?
if limit < -0.5 % if we have no upper limit
z2 = z1 * (EXT-1); % the extrapolate the maximum amount

else
z2 = (limit-z1)/2; % otherwise bisect

end
elseif (limit > -0.5) && (z2+z1 > limit) % extrapolation beyond max?
z2 = (limit-z1)/2; % bisect

elseif (limit < -0.5) && (z2+z1 > z1*EXT) % extrapolation beyond limit
z2 = z1*(EXT-1.0); % set to extrapolation limit

elseif z2 < -z3*INT
z2 = -z3*INT;

elseif (limit > -0.5) && (z2 < (limit-z1)*(1.0-INT)) % too close to limit?
z2 = (limit-z1)*(1.0-INT);

end
f3 = f2; d3 = d2; z3 = -z2; % set point 3 equal to point 2
z1 = z1 + z2; X = X + z2*s; % update current estimates
[f2 df2] = eval(argstr);
M = M - 1; i = i + (length<0); % count epochs?!
d2 = df2'*s;

end % end of line search
if success % if line search succeeded
f1 = f2; fX = [fX' f1]';
fprintf('%s %4i | Cost: %4.6e\r', S, i, f1);
s = (df2'*df2-df1'*df2)/(df1'*df1)*s - df2; % Polack-Ribiere direction
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
d2 = df1'*s;
if d2 > 0 % new slope must be negative
s = -df1; % otherwise use steepest direction
d2 = -s'*s;

end
z1 = z1 * min(RATIO, d1/(d2-realmin)); % slope ratio but max RATIO
d1 = d2;
ls_failed = 0; % this line search did not fail

else
X = X0; f1 = f0; df1 = df0; % restore point from before failed line search
if ls_failed || i > abs(length) % line search failed twice in a row
break; % or we ran out of time, so we give up

end
tmp = df1; df1 = df2; df2 = tmp; % swap derivatives
s = -df1; % try steepest
d1 = -s'*s;
z1 = 1/(1-d1);
ls_failed = 1; % this line search failed

end
if exist('OCTAVE_VERSION')
fflush(stdout);

end
end
fprintf('\n');
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